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Abstract

ABSTRACT

Rigorous numerical simulations have been carried out by using the Finite Element Method
(FEM) in order to calculate bending and leakage losses of Photonic Crystal FfEs A

modal solution approach including the implementations of the conformal transformadidhe
Perfectly Matched Layer (PML) were undertaken to determine the bending and leakage losses
of several designs of Photonic Crystal Fibres. This was carried out by vaeyngarameters

such as thepitch (A), diameter (d) and air-filling fraction (d/A). Output modal parameters
including the effective indices, spot sizes, leakage and bending losses as weihaddtfeeld
profiles were obtained. These output parameters were obtained by varying the badidisg

(R) from very large values to very low values for different dimensidrike PCF, with results

being obtained for Transverse Magnetic and Transverse Electric (quasi-TM and quasi-TE)
polarizations. These parameters were calculated by salvnglaxwell’s equations using the

H-field vector formulation and with the inclusion of PML to solve complex eigemvalu
equations. Generally, it was observed that for all A, d/A and the polarization considered, as R is
reduced from a very high value to lower values, the bending losses increase andatisbierps
increase at some lower values of R. At some very low values of R, some oscillatonpineha
was observed in the curves obtained for the fibre losses, where further invastigatre
carried out. These oscillations appeared due to degeneration of the fundamentalitimolle
cladding modes. In most of the cases investigated, there was a correlation aniatienvof
effective indices the loss values and also in the variation of spot sizes. PCFemwitlemtical
air-holes were also irstigated in which case the d # d, (diameter of 4 larger air-holes in the

first ring) and knowing the values for TM and TE polarizations, it was possidigtéomine the
birefringence, which is the difference between the effective indices farMhand TE modes

and also the loss ratio, which is the ratio of TM loss to that of the TE IdstheAinput and
output parameters that were considered with the symmetric air-holeslseomasidered in the

case with fibre with asymmetric air-holes study. The results obtaineggrémportant in the
design of Single Mode Single Polarization PCF. Results have also been obtainetthefrom
studies done of asymmetric arrangement of air-holes which lead to the deSglef Mode

Single Polarization PCF. Work was carried out on the design of a tapered PCbuldabe
efficiently coupled to a single mode fibre, SMF. This was achieved by inogesimumber

rings up to 10 rings of air-holes in the cladding and having the outermost rintaxgién air-

holes, the inner rings were near cutoff. This fibre was coupled to a conventionab Siliéwt

for better tolerance to fabrication errors. There has also been work carriedpolitmer fibre
namely Teflon and TOPAS in the terahertz regime. The conveahtiexagonal arrangement of

PCF was simulated and compared to spiral PCF in THz. An improved PCF design having a
porous core with hexagonal arrangement and cladding was designed and analysed and low-loss
guidance in THz was achieved. Thus overall a number of different PCF designs were
considered and their properties evaluated and detailed knowledge has been obtained on potential
performance of such fibres.
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Chapter One

CHAPTER ONE: Introduction

1.1 Historical Background

The concept of being able to communicate using light has been in existence since the
early history of man. As examples, in ancient Americas and in ancient China, smoke
signals were used to warn of impending enemy attacks or of other dangers. But the
concept of light guiding in optical fibores dates back two centuries to the optical
telegraph invented by French engineer Claude Chappe in 1790. He invented a system
which comprised a series of semaphores mounted on towers whereby human operators
would relay messages from one tower to another tower. These were later replaced by
the electric telegraph in the mid™@entury thus leaving a scattering of telegraph hills

as the most visible legacy (Hecht 1999). Further work continued on the modification,
improvement and application of optical fibre, which still had so much attenuation
associated with it.

In 1870, John Tyndall demonstrated that light used internal reflection and follows a
specific path. He demonstrated this with sunlight and used a jet of water that flowed
from one container to another. The light followed a zigzag path inside the curved path
of the water. The simple experiment, illustrated in Fig. 1.1, marked early research into
the guided transmission of light (Goff 2002) that has implications for modern fibre
optics.

=3 Light Reflected
S\ from Surface

Leaks Out

‘ |} Light Gradually

Water Flowing Out of Basin

Fig. 1. I John Tyndall’s Experiment (Goff 2002)
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Alexander Graham Bell patented an optical telephone system named Photophone in
1880 (Hecht 1999) which used free-space light to carry the human voice 200 metres.
Alexander Graham Bell believed this invention was superior to the telephone which was
an earlier invention of his because the Photophone did not need wires to connect the

transmitter and receiver (Goff 2002).

The need for reliable long distance communication systems has existed since antiquity.
Over time, the sophistication of these systems has gradually improved leading to the
development of the telegraph and to the first coaxial cable put into service in 1940. As
these communication systems improved, certain fundamental limitations presented
themselves. Electrical systems were limited by their small repeater spacing (the distance
a signal can propagate before attenuation requires the signal to be amplified) lzibd the
rate of microwave systems was limited by their carrier frequency. In the second half of
the twentieth century, it was realized that an optical carrier of information would have a

significant advantage over the existing electrical and microwave carrier signals.

Narinder Kapany from Imperial College of Science and Technology, London, first
coined the term “fibre optics” in 1956 (Goff 2002) and the development of fibre bundles

for image transmission, which had as the primary application as a medical endoscope,
was patented by Basil Hirschowitz, C. Wilbur Peters and Lawrence E. Curtiss who were
then researchers at the University of Michigan in 1956. While developing the

endoscope, Curtiss produced the first glass-clad fibres.

The next important step in the development of fibre optics has to be the development of
the laser technology. In 1957, Gordon Gould as a graduate student at Columbia
University described the laser conceptually as an intense light source (Goff 2002) and it
was developed experimentally by Theodore Maiman in 1960 using ruby as the laser

medium.

In 1965, Charles K. Kao (Nobel Laureate) and George A. Hockman of British company
the Standard Telecommunication Laboratory were the first to recognize that attenuation
of contemporary fibres was caused by impurities, which could be removed, rather than
fundamental physical effects such as scattering (Kao and Hockman 1966). They
suggested that optical fibre could be used for telecommunications if the attenuation

could be reduced to 20 dB/km or lower.
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Inspired by Charles K. Kao and George A. Hockman’s proposal, glass researchers

began to work on the problem of purifying glass. In 1970, the first practical optical fibre
(with a loss of 17 dB/km by doping silica glass with titanium) for communications was
developed by researchers Robert D. Maurer, Donald Keck, Peter Schultz and Frank
Zimar of American based glass maker Corning. It was the purest glass ever made (Goff
2002). On 22 April, 1977, General Telephone and Electronics sent the first live
telephone traffic through fibre optics at 6 Mbit/s in Long Beach, California. Further
work continued on improving the optical fibre by researchers in University of
Southampton, Bell Laboratories and others which produced lots of improvements and
also new applications such as the erbium-doped fibre amplifiers which eliminated the

need for optical-electrical-optical regeneration.

In 1986, David Payne of the University of Southampton and Emmanuel Desurvire at
Bell Laboratories developed the erbium-doped fibre amplifier (Desuetied. 1987),

which has reduced the cost of long-distance fibre systems by eliminating the need for
optical-electrical-optical repeaters. The first transatlantic telephone cable to use optical
fibre was TAT-8, based on Desurvire optimized laser amplification technology which
went into operation in 1988.

In 1991, the emerging field of photonic crystals led to the development of photonic
crystal fibre (Russell 2003). In 1995, Prof Phillip Russell and his research team created
the world’s first working photonic crystal fibre (Knightet al. 1996b) which became
commercially available in subsequent years from various suppliers. One way the
photonic crystal fiore may guide light is by means of diffraction from a periodic
structure; but it also guides light by means of total internal reflection. Photonic crystal
fibores can be designed to carry higher power than conventional fibre and their
wavelength dependent properties can be manipulated to improve their performance in
certain applications. Photonic crystal fibres now find applications in fibre optic
communications (Russell 2003), fibre lasers (Agrawal 2008), nonlinear devices
(Agrawal 2008), high-power transmission (Peti al. 2007 Agrawal 2008), highly

sensitive gas sensor (Jacobsenl.1996), and other areas.
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As the demand for data bandwidth increases (as shownginlR2) driven by the

phenomenal growth of the Internet, the move to optical networking is the focus of new
technologies.
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Fig. 1. 2IP traffic growth between 2011 and 2016 (projected) (After Cisco 2012).

The immense potential of internet traffic, whishprojected to be 90,000 Exabytes or
greater per month in 2016, implies that there are extraordinary possibilities for future
fibre optic applications. Today optical fibore cables are the backbone of the
telecommunication system, which has led to high speed broadband Internet and
affordable long distance telephone calls. Broadband service available to a mass market
opens up a wide variety of interactive communications for both consumers and
businesses bringing to reality interactive video networks, interactive banking and

shopping from home and interactive distance learning (Goff 2002).

1.1.1 Optical Fibre Communications Systems

After a period of intensive research from 1975 to 1980 the first commercial optical fibre
communication system was developed. This system operated at a wavelength around

0.8 um andt used GaAs semiconductor lasers. This first generation system opdrated a
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a bit rate of 45 Mbit/s with repeater spacing of up to 10 km (Agrawal 2002). The second
generation optical fibre communication system was then developed for commercial use
in the early 1980s and this system operated at 1.3 pm using the InGaAsP semiconductor
lasers. These systems were initially limited by dispersion but in 1981 the single mode
fibre was revealed which greatly improve system performance. By 1987 these systems
were operating at bit rates of up to 1.7 Gb/s with repeater spacing up to 50 km (Agrawal
2002). TAT-8 was developed as the first undersea fibre optic link between the United
States and Europe and this cable is more than 5,600 km in length and was the first
transatlantic cable to use optical fibres. It was designed to handle a mix of information
formats. At its inauguration it had an estimated lifetime in excess of 20 years. TAT-8
was the first of a new class of cables even though it had already been used in long
distance land and short distance undersea operations. Its installation was preceded by
extensive deep water experiments and trials conducted in the early 1980s to demonstrate
the project's feasibility (Agrawal 2002). The third generation of optical fibre systems
operated at 1.55um and had the lowest loss of about 0.2dB/km. They achieved this
despite earlier difficulties with pulse spreading at that wavelength using conventional
InGaAsP semiconductor lasers this is because scientists overcame this difficulty by
using dispersion shifted fibres designed to have minimal dispersion at 1.55um or by
limiting the laser spectrum to a single longitudinal mode. These developments
eventually allowed third generation systems to operate commercially at 2.5 Gbit/s with
repeater spacing in excess of 100 km (Agrawal 2002). The fourth generationcaf opti
fibore communication systems is the one to use optical amplification rather than
electrical amplification to reduce the need for repeaters and it also employed
wavelength division multiplexing to increase fibre capacity. These two improvements
caused a revolution that resulted in the doubling of system capacity every 6 months
starting in 1992 until a bit rate of 10 Tb/s was reached by 2001. By the year 2006, bit
rates of up to 14 Thit/s have been reached over a single 160 km line using optical
amplifiers (Agrawal 2002) but over 90,000 Exabytes/month data rates is projected by
2016. The fifth generation of fibre optic communications is all about the extension of
the wavelength range over which a WDM system can operate. The conventional
wavelength window, known as the C band, covers the wavelength range 1.53-1.57um,
and the new dry fibre has a low loss window promising an extension of that range to
1.30-1.65um. Other developments with this generation of optical fibre system include
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the concept of optical solitons, pulses that preserve their shape by counteracting the
effects of dispersion with the nonlinear effects of the fibre by using pulses of a specific
shape (Agrawal 2002).

1.2 The Optical Fibre

An optical fibre is an optical waveguide made usually of glass (silica) or plastic and it is
used to guide light along its length. It achieves this by exploiting the principle of total
internal reflection whereby the light is confined within the core of the optical fibre as
light travels along its length. The core has a refractive index slightly higher than that of
the cladding and this enables the light to be trapped within the core as it travels along
the length of the fibre as can be seen in Fig. 1.3. Today, optical fibre has largely
replacd metal wires in telecommunications because of their higher data rates, low loss,
immunity to electromagnetic interference, better security amongst others. Optical fibres
which support a single propagation path or a single mode along the guide are called
Single Mode Fibres (SMF), likewise, an optical fibre which supports multiple modes is
known as Multimode Fibres (MMF). Single mode fibres are used in applications
requiring very high data rates and longer distances whereas low-cost multimode fibres
are used for shorter distances with lower data rates.

cladding
/V
Acceptance
Angle Core
~ \
cladding

Fig. 1. 3 The propagation of light through a multi-mode optical fibre
1.2.1 Index of Refraction

The index of refraction is a way of measuring the speed of light in a material. Light
travels fastest in vacuum such as outer space. The actual speed of light in a vacuum is
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given asc = 299,792 kilometres per second or 186,282 miles per second. Index of
refraction is calculated by dividing the speed of light in a vacuum by the speed of light
in some other medium. The index of refraction of a vacuum is therefore 1 by definition.
The typical value of refractive index of silica is 1.445 (Agrawal 2002). The greater the

refractive index, the more slowly light travels in that medium.

1.2.2 Critical Angle
Snell’s law gives the relationship between the incident and refracted rays at a boundary

between two different media with different refractive indices. It is expressed as
n, sing, =n, sing, (1.2)

Where nn and n are the refractive indicesf the materials and 0; and 6, are the angles
of incidence and refraction. The critical angle is the angle of incidence above which
total internal reflection occurs. The angle of incidence is measured with respect to the

normal at the refractive boundary. The critical artglis given by:

9, - sin-l(”z/nlj (1.3)

Where n is the refractive index of the less dense medium arisl the refractive index

of the denser medium.

If the incident ray is precisely at the critical angle, the refracted ray is tangent to the

boundary at the point of incidence.

1.2.3 Total I nternal Reflection

When light crosses a boundary between materials with different refractive indices, the
light beam will be partially refracted at the boundary surface and partially reflected.
However, if the angle of incidence is larger; that is the ray is closer to being parallel to
the boundary than the critical angle, the angle of incidence at which light is refracted
such that it travels along the boundary, then the light will stop crossing the boundary
altogether and instead be totally reflected back internally. This can only occteg whe

light travels from a medium with a higher refractive index to one with a lower refractive
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index as shown in Fig. 1.4. For example, it will occur when passing from glass to air,

but not when passing from air to glass (Goure and Verrier 2002).

air n 0=1

glass n

Fig. 1. 4: The larger the angle to the normal, the smaller is the fraction of light ttedsuntil
the angle when total internal reflection occurs (Goure and Verrier 2002)

As an example, consider light coming from a dense medium like glass into a less dense
medium like air. When the light coming from the glass strikes the surface, part will be
reflected and part will be refracted. Measured with respect to the normal line
perpendicular to the surface, the reflected light comes off at an angle equal to that at
which it entered ais shown by path 1 with angle 61, while that for the refracted light,

that is angle 0o, is larger than the incident angle. In fact the greater the incident angle,
the more the refracted light bends away from the normal. As can be seen from Fig. 1.4
above, increasing the angle of incidence from path “1” to “2” with angle 6, will
eventually reach a point where the refracted angle s &which point the light
appears to emerge along the surface between the glass ahbisaimgle, 0, is also

known as the critical angle. If the angle of incidence is increased fuetipath “3”
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with angle 03 the refracted light cannot leave the glass and gets completely reflected.
The interesting thing about total internal reflection is that it really is total. That is 100%
of the light gets reflected back into the more dense medium, as long as the angle at
which it is incident to the surface is equal or larger than the critical angle (Goure and
Verrier 2002).

The light must strike the boundary with an angle greater than the critical angle and
because of this only light that enters the fibre within a certain range of angles ehn trav
down the fibre without leaking out. This range of angles is called the acceptance cone of
the fibre as shown in Fig. 1.3. The size of this acceptance cone is a function of the
refractive index difference between the fibre’s core and cladding (Goure and Verrier
2002).

In simpler terms there is a maximum angle from the fibre axis at which light may enter
the fibre so that it will propagate or travel in the core of the fibre. The size of this
maximum angle of incidence is the numerical aperture (NA) of the dilated. is the
critical angle (Fig. 1.5) conegand n is the refractive indices of the core and cladding

respectively. The numerical aperture can be expressed as
NA=/n’—n/ (1.4)

Fibre with a larger NA requires less precision to splice and work with than fibre with a
smaller NA (Goure and Verrier 2002).

1.2.4 Principle of Wave Guidancein a Fibre

An optical fibre is a cylindrical dielectric waveguide that transmits light along its axis
by the process of total internal reflection. The fibre consists of a core surrounded by a
cladding layer. To confine the optical signal in the core, the refractive index of the core
must be greater than that of the cladding. The boundary between the core and cladding
may be abrupt, which is referred to as step index fibre as in Fig. 1.5(a) or it could be

gradual and it is referred to as graded index fibre as can be seen in Fig. 1.5(b).
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1.3 Multimode Fibre

Optical fibres with large core diamesethat are greater thai®um, may be analyzed by
geometric optics. Such optical fibres are more likely to be multimode fibres from the
electromagnetic analysis. This is because the V parameter (which is the normalised
optical frequency) is likely above 2.405 (as discussed in more detail in Chapter 6). In a
step index multimode fibre, rays of light are guided along the fibre core by total internal
reflection. Rays that meet the core-cladding boundaapnangle (measured relative to

a line normal to the boundary), greater than the critical angle for this boundary, are
completely reflected. The critical angle (minimum angle for total internal reflection) is
determined by the difference in index of refraction between the core and cladding
materials. Rays that meet the boundary at a low angle are refracted from the core into
the cladding and do not confine light and hence information along the fibre. The critical
angle also determines the acceptance angle of the fibre, ofedreo the numerical
aperture. A high numerical aperture allows light to propagate down the fibre in rays
both close to the axis and at various angles, allowing efficient coupling of light into the
fibre. However, this high numerical aperture increases the amount of dispersion as rays
at different angles have different path lengths and therefore take different times to
traverse along the fibre. A low numerical aperture may therefore be desirablet @loli
2007).

n» ni H(‘

(b)

Fig. 1. 5: Optical fibre types (a) step index fibre (b) graded index fibre (Goure aneérVerr
2002).

31



Chapter One

In agraded index fibre, the refractive index in the core decreases continuously between
the axis and the cladding. This causes light rays to bend smoothly as they approach the
cladding rather than reflecting abruptly from the core-cladding boundary. The resulting
curved paths reduce multipath dispersion because high angle rays pass more through the
lower index periphery of the core rather than the high index centre. The index profile is
chosen to minimize the difference in axial propagation speeds of the various rays in the
fibre. This ideal index profile is very close to a parabolic relationship between the index
and the distance from the axis (Patial.2007).

1.4 Single Mode Fibre

Fibre with a core diameter less than about ten times the wavelength of the propagating
light cannot be modelled using geometric optics. Instead, it must be analyzed as an
electromagnetic structure, by solution of Maxwell's equations as reduced to the
electromagnetic wave equation. As an optical waveguide, the fibre may support one or
more confined transverse modes by which light can propagate along the fibre. Fibre
supporting only one mode is called single mode or mono mode fibre. The behaviour of
larger core multimode fibre can also be modelled using the wave equation which shows
that such fibre supports more than one mode of propagation. The results of such
modelling of multi-mode fibre approximately agree with the predictions of geometric
optics if the fibre core is large enough to support more than a few mode=t(Rdli
2007).

The waveguide analysis shows that the light energy in the fibre is not completely
confined in the core. Instead, especially in single mode fibres a significant fraction of

the energy in the bound mode travels in the cladding as an evanescent wave.

The most common type of single mode fibre has a core diameter of 8 to 10 um, with
refractive index difference between core and cladding around 0.36% and is designed for
use in the near infrared. Multimode fibre by comparison, is manufactured with core
diameters as small as 50 micrometres and as large as hundreds of micrometres (Goure
and Verrier 2002).
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1.5 Special Purpose Fibre

Some special purpose optical fibre is constructed with a non-cylindrical core and/or
cladding layer, usually with an elliptical or rectangular cross section. These include
polarization maintaining fibre and fibre designed to suppress whispering gallery mode

propagation like the suspended core micro-structured fibre.

Photonic crystal fibre is made with a regular pattern of index variation, in the form of
air-holes that run along the length of the fibre. Such fibre uses diffraction effects instead
of or in addition to total internal reflectio confine light to the fibre’s core. The
properties of the fibre can be tailored to a wide variety of applications and it is the focus

of this thesis.

1.6 Optical Fibre Manufacture

Glass optical fibres are almost always made from silica but some other materials, such
as fluorozirconate, fluoroaluminate, and chalcogenide glasses are also used for longer
wavelength infrared applications. Typically the difference between core and cladding is
less than one percent (Goure and Verrier 2002).

Plastic optical fiores (POF) are commonly step index multimode fibres with a core
diameter of 0.5mm or larger. POF typically have higher attenuation coefficients than
glass fibres, 1 dB/m or higher and this high attenuation limits the range of POF based
systems (Polet al.2007). Plastic optical fibres are low cost and used for short distance

links.

Standard optical fibres are made by first constructing a large diameter preform with a
carefully controlled refractive index profile and then pulling the preform to form the
long, thin optical fibre. The preform is commonly made by one of the three chemical
vapour deposition methods: inside vapour deposition, outside vapour deposition and

vapour axial deposition (Padit al.2007).

With inside vapour deposition, a hollow glass tube approximately 40 cm in length
known as a "preform" is placed horizontally and rotated slowly on a lathe and gases

such as silicon tetrachloride (Silor germanium tetrachloride (Geflare injected
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with oxygenat the end of the tube. The gases are then heated by means of an external
hydrogen burner, bringing the temperature of the gas up to 1900 Kelvin, where the
tetrachlorides react with oxygen to produce silica or germania (germanium oxide)

particles. When the reaction conditions are chosen to allow this reaction to occur in the
gas phase throughout the tube volume, in contrast to earlier techniques where the
reaction occurred only on the glass surface, this technique is called modified chemical

vapour deposition (Goure and Verrier 2002).

The oxide patrticles then agglomerate to form large particle chains which subsequently
deposit on the walls of the tube as soot. The deposition is due to the large difference in
temperature between the gas core and the wall causing the gas to push the particles
outwards; termed thermophoresis. The torch is then traversed up and down the length of
the tube to deposit the material evenly. After the torch has reached the end of the tube, it
is then brought back to the beginning of the tube and the deposited particles are then
melted to form a solid layer. This process is repeated until a sufficient amount of
material has been deposited. For each layer the composition can be modified by varying
the gas composition, resulting in precise control of the fidistbee’s optical properties

(Goure and Verrier 2002).

In outside vapour deposition or vapour axial deposition, the glass is formed by flame
hydrolysis, a reaction in which silicon tetrachloride and germanium tetrachloride are
oxidized by reaction with water @) in an oxyhydrogen flame. In outside vapour
deposition the glass is deposited onto a solid rod, which is removed before further
processing. In vapour axial deposition, a short seed rod is used, and a porous preform,
whose length is not limited by the size of the source rod, is built up on its end. The
porous preform is consolidated into a transparent, solid preform by heating to about
1800 Kelvin.

The preform, however it may have been constructed, is then placed in a device known
as a drawing tower, where the preform tip is heated and the optic fibre is pulled out as a
string. By measuring the resultant fibre diameter, the tension on the fibre can be

controlled to maintain the fibre thickness (Goure and Verrier 2002).
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1.7 Practical Issueswith Optical Fibres

In practical applications of optical fibres, the cladding is usually coated with a tough
resin buffer layer. This layer might still be surrounded by a jacket layer made of plastic
which helps to add strength to the fibre but without affecting its guidance properties.
Rigid fibre assemblies sometimes put light absorbing dark glass between the fibres to
prevent light that leaks out of a fibre from entering into another fibre. This reduces cross
talk between the fibres or reduces flare in fibre bundle imaging applications. Modern
cables come in a wide variety of sheathings and armour designed for applications such
as direct burial in trenches, dual use as power lines and installation in conduit, lashing to
aerial telephone poles, submarine installation or insertion in paved streets. In recent
years the cost of small fibre count pole mounted cables has greatly decreased due to the
high Japanese and South Korean demand for fibre to the home installations (Agrawal
2002).

Fibre cable can be very flexible but traditional fibre loss increases greatly if the fibre is
bent with a radius smaller than aroundn®®. This creates a problem when the cable is
bent around corners or wound around a spool, making FTTH installations more
complicated. "Bendable fibres", targeted towards easier installation in home
environments, have been standardized as ITU-T G.657. This type of fibre can be bent
with a radius as low as 7rBm without adverse impact. Even more bendable fibres have
been developed. Bendable fibre may also be resistant to fibre hacking, in which the
signal in a fibre is surreptitiously monitored by bending the fibre and detecting the
leakage (Agrawal 2008).

1.7.1 Attenuation in Optical Fibres

Fibre attenuation, which necessitates the use of amplification systems, is caused by a
combination of material absorption, Rayleigh scattering, Mie scattering, and connection
losses. Although material absorption for pure silica is only around 0.03 dB/km (modern
fibre has attenuation around 0.2 dB/km) (Agrawal 2002), impurities in the original
optical fibres caused attenuation of about 1000 dB/km. Other forms of attenuation are
caused by physical stresses to the fibre, microscopic fluctuations in density and

imperfect splicing techniques (Goure and Verrier 2003i et al.2007).
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1.7.2 Dispersion in Optical Fibres

For modern glass optical fibre, the maximum transmission distance is limited not by
attenuation but by dispersion or spreading of optical pulses as they travel along the
fibre. Dispersion in optical fibres is caused by a variety of factors. Intermodal dispersion
caused by the different axial speeds of different transverse modes, limits the
performance of multimode fibre. Because single mode fibre supports only one
transverse mode, intermodal dispersion is eliminated (Goure and Verrier 2002).

In single mode fibre performance is primarily limited by chromatic dispersion (also
called group velocity dispersion), which occurs because the index of the glass varies
slightly with the wavelength of the light and light from real optical transmitters
necessarily has nonzero spectral width (due to modulation). Polarization mode
dispersion, another source of limitation, occurs because although the single mode fibre
can sustain only one transverse mode, it can carry this mode with two different
polarizations and slight imperfections or distortions in a fibre can alter the propagation
velocities for the two polarizations. This phenomenon is called fibre birefringence and
can be counteracted by polarization maintaining optical fibre. Dispersion limits the
bandwidth of the fibre because the spreading optical pulse limits the rate that pulses can
follow one another on the fibre and still be distinguishable at the receiver.

Some dispersion, notably chromatic dispersion, can be removed by a dispersion
compensator. This works by using a specially prepared length of fibre that has the
opposite dispersion to that induced by the transmission fibre and this sharpens the pulse

so that it can be correctly decoded by the electronics éPali2007).

1.7.3 Terminating and Splicing of Optical Fibres

Optical fibres are connected to terminal equipment by optical fibre connectors. These

connectors are usually of a standard type su¢tCaSC, ST, LC or MTRJ.

Optical fibres may be connected to each other by connectors or by splicing, which mean
joining two fibres together to form a continuous optical waveguide. The generally
accepted splicing method is arc fusion splicing, which melts the fibre ends together with

an electric arc (Goure and Verrier 2002).
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Fusion splicing is done with a specialized instrument that typically operates as follows:
The two cable ends are fastened inside a splice enclosure that will protect the splices
and the fibre ends are stripped of their protective polymer coating (as well as the
sturdier outer jacket, if present). The ends are cleaved (cut) with a precision cleaver to
make them perpendicular and are placed into special holders in the splicer. The splice is
usually inspected via a magnified viewing screen to check for cleaves before and after
the splice. The splicer uses small motors to align the end faces together and emits a
small spark between electrodes at the gap to burn off dust and moisture. Then the
splicer generates a larger spark that raises the temperature above the melting point of the
glass, fusing the ends together permanently. The location and energy of the spark is
carefully controlled so that the molten core and cladding don't mix and this minimizes
optical loss. A splice loss estimate is measured by the splicer, by directing light through
the cladding on one side and measuring the light leaking from the cladding on the other
side. A splice loss under 0.1 dB is typical. The complexity of this process makes fibre

splicing much more difficult than splicing copper wire (Goure and Verrier 2002).

Mechanical fibre splices are designed to be quicker and easier to install but there is still
the need for stripping, careful cleaning and precision cleaving. The fibre ends are
aligned and held together by a precision made sleeve, often using a clear index
matching gel that enhances the transmission of light across the joint. Such joints
typically have higher optical loss and are less robust than fusion splices, especially if the
gel is used. All splicing techniques involve the use of an enclosure into which the splice

is placed for protection afterward (Goure and Verrier 2002).

Fibres are terminated in connectors so that the fibre end is held at the end face precisely
and securely. A fibre optic connector is basically a rigid cylindrical barrel surrounded
by a sleeve that holds the barrel in its mating socket. The mating mechanism can be
"push and click”, "turn and latch" ("bayonet"), or screw-in (threaded). A typical
connector is installed by preparing the fibre end and inserting it into the rear of the
connector body. Quickset adhesive is usually used so the fibre is held securely and a
strain relief is secured to the rear. Once the adhesive has set, the fibre’s end is polished

to a mirror finish. Various polish profiles are used depending on the type of fibre and
the application. For single mode fibre, the fibre ends are typically polished with a slight

curvature such that when the connectors are mated the fibres touch only at their cores.
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This is known as a physical contact (PC) polish. The curved surface may be polished at
an angle to make an angled physical contact (APC) connection. Such connections have
higher loss than PC connections but greatly reduced back reflection, because light that
reflects from the angled surface leaks out of the fibre core; the resulting loss in signal
strength is known as gap loss. APC fibre ends have low back reflection even when

disconnected (Goure and Verrier 2002).

1.7.4 Coupling Optical Fibresin Free Space

It often becomes necessary to align an optical fibre with another optical fibre or an
optical device such as a light emitting diode, a laser diode or an optoelectronic device
such as a modulator. This can involve both carefully aligning the fibre and placing it in
contact with the device to which it is to couple or can use a lens to allow coupling over
an air gap. In some cases the end of the fibre is polished into a curved form that is

designed to allow it to act as a lens called lensed fibre.

In a laboratory environment, the fibre end is usually aligned to the device or other fibre
with a fibre launch system that uses a microscope objective lens to focus the light down
to a fine point. A precision translation stage (micro-positioning table) is used to move
the lens, fibre or device to allow the coupling efficiency to be optimized (Goure and
Verrier 2002).

1.7.5 Optical Fibre Fuse

At high optical intensities, above 2 Megawatts per square centimetre, when a fibre is
subjected to a shock or is otherwise suddenly damaged, a fibre fuse can occur. The
reflection from the damage vaporizes the fibre immediately before the break and this
new defect remains reflective so that the damage propagates back toward the
transmitter. The open fibre control system, which ensures laser eye safety in the event of
a broken fibre, can also effectively halt propagation of the fibre fuse. In situations, such
as undersea cables, where high power levels might be used without the need for open
fibre control, a fibre fuse protection device at the transmitter can break the circuit to

prevent any damage.
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1.8 Advantages of Optical Fibres

Fibre optic transmission systems offer a wide range of benefits not offered by traditional
copper wires or coaxial cables. The small size and the fact that no electrical power is
needed at the remote location give fibre optic sensor advantages to conventional electric

sensor in certain applications.

Optical fibre offers enormous bandwidth and it takes a lot less room. A copper bundle

can be replaced with one single fibre strand.
Fibre optics has several advantages over traditional metal communication lines such as:

— High data rates: fibre optic networks operate at high speedsp into the
gigabits and more recently into the terabits region as well.

— Thinner diameters: optical fibres can be drawn to smaller diameters than
copper wire.

— High bandwidth: fibre optic cables have a much greater bandwidth than metal
cables. Because optical fibres are thinner than copper wires, more fibres can be
bundled into a given diameter cable than copper wire. This allows more phone
lines to go over the same cable. This means that fibre cables can carry more data
over greater distances and with greater fidelity than either copper wire or coaxial
cable.

— Easier maintenance: fibre optic cables cost much less to maintain.

— Invulnerability: optic fibre is totally immune to virtually all kinds of
interference, including lighting, electromagnetic noise such as radios, motors or
other nearby cables and will not conduct electricity. It can therefore come in
direct contact with high voltage electrical equipment and power lines.

— Less expensive: several miles of optical cable can be made cheaper than
equivalent lengths of copper wire.

— Lesssignal degradation: the loss of signal in optical fibre is less than in copper
wire.

— No light interference between fibres: electrical signals in copper wires can
interfere with each other; however, light signals from one fibre do not interfere
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with those of other fibres in the same cable. This means clearer phone
conversations or TV reception.

— Lower power consumption: because signals in optical fibres degrade less,
lower-power transmitters can be used instead of the high-voltage electrical
transmitters needed for copper wires. Again, this saves the provider and its
client’s money.

— Digital signals: data can be transmitted digitally (the natural form for computer
data, useful in computer networks) rather than analogically.

— Non-flammable: because no electricity is passed through optical fibres, there is
no fire hazard. Since the only carrier in the fibre is light, there is no possibility
of a spark from a broken fibre. Even in the most explosive of atmosphere, there
is no fire hazard and no danger of electrical shock to personnel repairing broken
fibres.

— Lightweight: an optical cable weighs less than a comparable copper wire cable.
A fibre cable even one that contains many fibres is usually much smaller and
lighter in weight than a wire or coaxial cable with similar information carrying
capacity. It is easier to handle and install and uses less channel space.

— Flexibility: fibre opticsis very flexible to transmit and receive light.

— Secure communication: fibre optic cable is ideal for secure communications
systems because it is very difficult to tap but very easy to monitor. In addition,
there is absolutely no electrical radiation from a fibre.

— Immunity to chemical reactions. as the basic fibre is made of glass, it will not
corrode and is unaffected by most chemicals. It can be buried directly in most
kinds of soil or exposed to most corrosive atmospheres in chemical plants
without significant concern. Fibre optic cables are virtually unaffected by
outdoor atmospheric conditions, allowing them to be lashed directly to telephone
poles or existing electrical cables without concern for extraneous signal pickup
(Keiser 2000Myabaev and Scheiner 2002).

1.9 Applications of Optical Fibres

Optical fibre is used by many telecommunications companies to transmit telephone

signals, internet communication and cable television signals ¢Pali. 2007). Due to
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much lower attenuation and interference, optical fibre has large advantages over
existing copper wire in long-distance and high-demand applications. However,
infrastructure development within cities was relatively difficult and time-consuming and
fibre-optic systems were complex and expensive to install and operate. Due to these
difficulties, fibre optic communication systems have primarily been installed in long
distance applications where they can be used to their full transmission capacity,
offsetting the increased cost (Goure and Verrier 2002). Since the year 2000, the prices
for fibre-optic communications have dropped considerably. The price for rolling out
fibre to the home has currently become more cost effective than that of rolling out a

copper based network.

Since 1990, when optical amplification systems became commercially available, the
telecommunications industry has laid a vast network of intercity and transoceanic fibre
communication line. By 2002, an intercontinental network of 250,000 km of submarine

communications cable with a capacity of 2.56 Th/s was completed and although specific
network capacities are privileged information, telecommunications investment reports

indicate that network capacity has increased dramatically since 2002.

1.10 Aims and Objectives of the Thesis

The broad aim of the work undertaken in this thesis is the design, characterization and
optimization of certain Photonic Crystal Fibres (PCFs) for potential uses in several
practical applications and showing an improvement in performance over that seen with
current optical systems. The analysis required for such work was undertaken by
implementing the rigorous full vectorial Finite Element (FEMfield formulation
together with the conformal transformation and the Perfectly Matched Layer (PML)
boundary. PCF designs have unique characteristics and offer several advantages over
conventional optical fibre as well as other optical waveguides. PCEF is typically made
from a single material which allows a lot of flexibility and has a very high index
contrast between the core and the cladding and the fibre can remain single moded over a

wide range of wavelengths.

In light of these unique characteristics offered by PCF designs, the research work set out

in this thesis had the following specific objectives:
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. To calculate the leakage and bending losses associated with the PCF, for several
different designs, by varying the pitch (A) and diameter of air-holes (d) and thereby
optimising those designs that would provide the lowest loss and that would be less
susceptible to bending for telecommunications applications at wavelength of
1.55um.

. Having established the optimal PCF designs and bending radii for low loss
transmission, next, the changing of the design where the first ring of air-holes were
altered to increase the birefringence of the PCF for single mode single polarization
guidance was done. This was also enhanced by increasing the bending radius of the
PCF.

. An important issue that needed to be addressed is how to couple the PCF to a
conventional single mode fibre or to other waveguides like the erbium doped fibre
amplifier. This was investigated using the Least Squares Boundary Residual (LSBR)
method in conjunction with the FEM and the power transmission at the
discontinuity boundary of the butt coupling between the PCF and conventional fibre
were obtained.

. The application of PCF designs to the Terahertz (THz) region in the development of
a low loss waveguide was also investigated. Several polymer materials were
analysed for this purpose and the conventional PCF was compared to an equiangular
spiral PCF arrangement.

. A novel design of porous core PCF was considered, aimed at further reducing the
leakage and bending losses in the THz regime was also investigated which provided
some very unique guiding properties.

. To disseminate the results of the work to the wider international community through

high quality Journal and Conference papers.

1.11 Structure of the Thess

The thesis has been structured as follows to present the key elements in the most

coherent and logical way:

Chapter One discusses optical communications in general starting with looking back at

the history of the development over the years and reflects on the applications and

advantages of optical communications. The guidance principles of optical fibres and
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the types of guidance for the different types of optical fibore were also discussed. The
procedures for manufacturing optical fibores as well as the practical issues associated
optical fibres were also included. The aims and objectives of the thesis are set out

systematically as is the structure of the thesis.

Chapter o focuses the discussion on Photonic Crystal Fibres (PCF) which are the
main waveguides analysed in this thesis. It also discussed the histisrgefelopmen

over the years and the major applications and advantages of PCF. The guidance
principle and the manufacturing process of the PCF were also discussed. The
uniqueness of the PCF asvaveguide and issues that affect the PCF were presented.
The method for calculating the bending of the PCF with conformal transformation

which is used in conjunction with the Finite Element Method was also presented.

Chapter Three discusses the various techniques used in the analysis of optical
waveguides but with a focus on the Finite Element Method (FEM) which was the

predominant method used in this work. Some other methods that are used by other
research groups were presented very briefly. However, in this thesis, the Finite Element
Method together with the conformal transformation was used for the analyses. The
Perfectly Matched Layer (PML) is used as the boundary of the computational domain
and the method of supressing spurious solutions by implementing the penalty factor was

also presented.

Chapter Four presents the results of mode degeneration in PCF which was observed by
simulations to calculate the bending losses associated with the PCFs studied. As the
bending radius is increased there is a steady increase in the bending loss. However, at
some very low bending radii there is a more rapid increase in the bending radius and
some oscillatory behaviour was observed when the bending radius is lowered even
further which is as a result of the mode degeneration. This effect is seen at different

bending radii for different PCF designs considered.

Chapter Five presents the results of a design of polarization maintaining PCF obtained
by designing and simulating highly birefringent PCF. By increasing the size of some of
the air-holes in the first ring of the cladding, the round symmetry of the core is

destroyed thereby leading to the core being more elliptical. This ensures the guidance of
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a single polarization at a time in the PCF. Also, by bending the PCF, the birefringence

can be further enhanced.

Chapter & concerns the method of butt coupling a PCF to a Single Mode Fibre (SMF)
with reduced losses. This numerical simulation was carried out using the FEM and the
Least Squares Boundary Residual (LSBR) method. By operating the PCF close to cutoff
the mode area expands more into the cladding region making a larger mode area. Also
by introducing larger air-hole diameters in the outermost ring of the cladding, this
expansion can be stabilized over a range of tapered PCF cross-section hence ensuring

good butt coupling even with manufacturing deviations.

Chapter Seven introduces the terahertz (THz) regime and design of Equiangular Spiral
PCF (ES-PCJarrangement in polymer materials; Teflon and TOPAS. The bending and
leakage losses were calculated. There are few waveguides available in this frequency
range and the PCF made of these polymer materials aims to fill in that gap. The
waveguides were designed using the ES-PCF and then an attempt was made to compare
them to the conventional hexagonal PCF. Also, a new design is considered, that of a
hexagonal PCF with a porous core whereby the core is made up of tiny air-holes similar
to the relatively larger air-holes found in the cladding. The aim is to reduce the
transmission losses by having some fraction of the power in the air-holes in the core.

The results of the numerical experiments carried out are presented.

In Chapters Three to Seven, a review of the relevant literature is presented at the start of
each Chapter to enable the background to the research issues for that Chapter to be
considered and the key research questions to be developed and then discussed in the
work reported subsequently in the Chap@mapter Eight then provides an overview of

the responses to these research issues and key conclusions of the research done which
lead to suggestions for new directions and further research work to continus in th
field.
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CHAPTER TWO: Photonic Crystal Fibre

2.0 Abstract

The fundamental issues relating to the Photonic Crystal Fibres (PCF) are discussed in
this chapter starting with its history and its development. The stack-and-draw
fabrication technique used in manufacturing of PCF is presented. The guidance
principle involved with PCF as well as the advantages and applications of the PCF are
discussed. The confinement and bending losses and the conformal transformation used

in conjunction with the Finite Element Method is introduced.

2.1 Photonic Crystal Fibre (PCF)

Photonic crystals have been the focus of increasing scientific and technological interests
since the pioneering works of Eli Yablonovitch (Yablonovitch 1987) and Sajeev John
(John 1987) because of their unique properties and numerous potential applications
Research in the field of photonic crystals was stimulated by the prediction of Photonic
Bandgap (Yablonovitch 1987) which was the only guiding mechanism considered for
this new class of optical fibres. Later, researchers discovered that by microstructuring
and including air-holes in the fibre, these devices could provide revolutionary features
using the simpler and more conventional principle of total internal reflection (Beteng

al. 1998).

The photonic crystal fibre was first demonstrated by Professor Philip Russell in 1995 at
the University of Bath (Knighet al. 1996b). Back in the 1920s, John Logie Baird had

the idea of using hollow tubes to transmit images in an early incarnation of television.
Recently, the idea of transmitting light through hollow waveguides has become cutting
edge technology once again in the form of “Holey Fibres” (Williamson 2002) which has
brought about revolutionary changes in the fibre optics world. Professor Philip Russell
has spent the years designing the so called holey fibre and some years later at the
University of Bath, he and a team of fellow researchers built a prototype that proved

that holey fibre could transmit light through a hollow, air-filled core (Lindstrom 2001).

The beginning of research on PCF can be traced back over past decade that has seen

PCF cut a large swath across a variety of disciplines. Many exciting phenomena have
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been reported since the first results on photonic crystal fibres (Katght. 1996a

Knight et al.1996b). The most common type of PCF, which was first fabricated in 1996
by Prof. Philip Russell and his research group, consists of pure silica core with an array
of air-holes running along the entire fibre length (Knightal. 1996a Knight et al.
1996b).

Over the past few years, photonic crystal fibres technology has evolved from a strong
research-oriented field to a commercial technology providing characteristics such as
single-mode operation from UV to IR spectral regions, large mode areas with core
diameters larger than 20pum and highly nonlinear performance with optimized

dispersion properties (Kristiansen 2002).

In general, such fibres have a cross-section (normally uniform along the fibre length)
microstructured from two or more materials, most commonly arranged periodically over
much of the cross-section, usually as a "cladding” surrounding a core (or several cores)
where light is confined (Agrawal 2008). For example, the fibres first demonstrated by
Russell consisted of a hexagonal lattice of air-holes in a silica fibre, with a solid (1996)
or hollow (1998) core at the centre where light is guided. Other arrangements include
concentric rings of two or more materials, first proposed as "Bragg fibres" by Yeh and
Yariv (Yehet al.1978), a variant of which was recently fabricated by Temelketarh
(Temelkuraret al.2002).

Photonic crystal fibre can also be classified in different categories, like photonic band
gap fibre (PCFs that confine light by band gap effects), holey fibre (PCFs using air-
holes in their cross-sections), hole-assisted fibre (PCFs guiding light by a conventional
higher index core modified by the presence of air-holes), and the Bragg fibre (photonic
band gap fibre formed by concentric rings of multilayer film). Photonic crystal fibres

can be designed to carry higher power than conventional fibres. Their wavelength
dependent properties can be manipulated to improve their performance in certain
applications and they have the ability to be continuously single moded amongst others
(Saitoh and Koshiba 2003). Band gap fibres with hollow cores can potentially

circumvent limits imposed by available materials, for example to create fibres that guide
light at wavelengths for which transparent materials are not available because the light

is primarily in the air, not in the solid materials. Another potential advantage of a
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hollow core is that one can dynamically introduce materials into the core such as a gas
that is to be analyzed for the presence of some substances{Rdli2007 Agrawal

2008). Figure 2.1 shows a typical 2-D cross-sectional structure of a PCF in which the
solid pure silica core region is surrounded by a cladding region containing air-holes.

() (b)

Fig. 2. 1: SEM micrographs of a photonic-crystal fibre produced at US Naval Research
Laboratory. (a) The diameter of the solid core at the centre of the fibre is 5 um, while (b)
diameter of the holes is 4 um (Image of Photonic Crystal Fibre from NRL 2006).

Generally, such fibres are constructed by the same methods as other optical fibres: A
preform on the scale of centimetres in size is constructed and then it is heated and drawn
down to a much smaller diameter (often nearly as small as a human hair), shrinking the
preform cross section but (usually) maintaining the same features. In this way,
kilometres of fibre can be produced from a single preform. This is illustrated in Fig. 2.2.
Other methods used in the fabrication of PCF include drilling and also extrusion. The
method of extrusion is applied to glasses other than silica which may not bg readil
available in tube form. In this method, molten glass is forced through a die containing a
suitably designed pattern of holes. Extrusion allows fibre to be drawn directly from bulk
glass, using a fibre drawing tower and almost any structure, crystalline or amorphous,
can be produced. It works for many materials, including chalcogenides, polymers, and
compound glasses. However, selective doping of specified regions, in order to introduce
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rare earth ions or render the glass photosensitive, is much more difficulte{Radli
2007).

Preform

iy

Heating zone

OO
Fiber Spool

‘v.l » ):‘:;& "4'\ @

Fig. 2. 2: Fabrication of Photonic Crystal Fibre (Fabrication of Photonic Crystal Fibre NKT
photonics 2008)

Most photonic crystal fibre has been fabricated in silica glass, but other glasses have
also been used to obtain particular optical properties (such as high optical non-linearity)
There is also a growing interest in making them from polymer, where a wide variety of
structures have been explored, including graded index structures, ring structured fibres
and hollow core fibres (Polet al. 2007 Agrawal 2008). These polymer fibres have
been termed "MPOF", short for microstructured polymer optical fibres (Eijkelerorg

al. 2001). A combination of a polymer and a chalcogenide glass was used by
Temelkuraret al (Temelkuraret al.2002) for 10.6 um wavelengths (where silica is not

transparent).
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Fig. 2. 3: Photonic Crystal Fibre (Photonic crystal fibre NKT photonics 2008).

2.2 Structureof PCF

The transverse section of a photonic crystal fibre (PCF) consists basically of a two-
dimensional (2D) photonic crystal, which for some specific geometries shows hotoni
bandgaps. By making a suitable geometry of the periodic dielectric medium, a photonic
crystal can be used as an optical fibre. The existence of a defect in the reguiarestruc
produces the transverse localization of light in its vicinity with the consequent

generation of axial guiding modes (Pelial.2007 Agrawal 2008).

A typical PCF has a 2-D cross-sectional structure in which the solid pure silica core
region is surrounded by a cladding region that contains air-holes, as shown in Fig. 2.1
These holes effectively lower the index of refraction in the cladding region creating a

step-index optical fibre as demonstrated by Fig. 2.3.

PCF structures can vary according to their applications; the design Ifkgxibivery

large and designers can use many different, fascinating and odd air-holes patterns to
achieve specific PCF parameters. The triangular arrangement of round air-holes in the
cladding is typically used to create single-mode fibres. Increasing the air-filling fraction
in the cladding typically leads to multimode behaviour. An elliptical core can create a
highly birefringent fibre that is polarization maintaining (Peti al. 2007 Agrawal

2008).

2.3 Light-Guiding M echanism
Generally, two different kinds of PCF exist, classified by their light-guiding
mechanism, depending on its structure:
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(1) waveguiding by total internal reflection (index guiding PCF)

(i) waveguiding by photonic band gap effect.

2.3.1 Index Guiding Photonic Crystal Fibre

If the cladding which is full of holes has a lower average refractive index than the core,
then light is guided by the modified total internal reflection (M-TIR) principle which is
similar to conventional fibres. It is possible to use a two-dimensional photonic crystal as
a fibre cladding, by choosing a core material with a higher refractive index than the
cladding effective index. This kind of structures is the PCF with a silica solid core
surrounded by a photonic crystal cladding with a triangular lattice of air-holes. These
fibres also known as index-guiding PCFs, guide light through a form of total internal
reflection (TIR), called modified TIR (M-TIR) and they have many different properties
with respect to conventional optical fibres (Ralial.2007).

2.3.2 Photonic Bandgap (PBG) Effect

The second type of fibre provides guidance by the photonic band gap effect. In this
case, the index of the core is uncritical, although the air-holes need to follow a strict
periodicity, it can be hollow or filled with material (Russell 2003) such as liquids,
gasses or particles. A holey fibre can guide light even when the refractive index of the
core is lower than that of the claddi(@ore<Nciadding — if, for example, the core of the

fibre comprises an air-hole. This phenomenon is known as the photonic bandgap (PBG)

effect.

A photonic band gap is a region in the optical frequency spectrum where propagating
modes do not exist. This allows for novel features such as light confinement to low-
index core. There is no material with a refractive index less than air, so this structure
would not support total internal reflection; instead the light would be contained within

the hollow core by the barrier of the two-dimensional photonic bandgap formed by the

periodic array of air-holes encircling of the core (Folal.2007 Agrawal 2008).

Light can be controlled and transformed in these fibres with unprecedented freedom,
allowing for example the guiding of light in a hollow core, the creation of highly
nonlinear solid cores with anomalous dispersion in the visible and the design of fibres

that support only one transverse spatial mode at all wavelengths (Russell 2003). In
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PBG, the air-holes that surround the light almost entirely eliminate dispersion, optical

nonlinearities and reflections on the fibre (Ralal.2007% Agrawal 2008).

Typical applications for these fibres are high power delivery with reduced nonlinear

effects and material damage, short pulse delivery and low loss guidance in vacuum.

This thesis Wl focus on index-guiding PCFs as these fibres are presently most common

and have less stringent requirements on structural uniformity.

2.4 Properties of Photonic Crystal Fibres

Photonic crystal fibres (PCF) offer a wide variety of possibilities as a result of the
variety air-holes arrangements possible. This means it is easier to control the index
contrast between the core and cladding unlike in the conventional optical fibres which

leads to some unique optical properties as listed below:
e High birefringence
e Dispersion tailoring
e Very high nonlinearigs
e Large mode areas

e Can also have very small mode areas

2.5 Advantages of Photonic Crystal Fibresover Optical Fibres

e Due to high effective index contrast between silica and air a much broader
range of dispersive behaviour is accessible with Photonic Crystal Fibres than
with standard fibres.

e Existence of two different light guiding mechanisms is one of the reasons for
the versatile nature of the Photonic Crystal Fibre.

e The design flexibility for tailoring a specific property in the Photonic Crystal
Fibre makes it more controllable to fabricate parameters than in single mode
fibres.

e Exceptional characteristics like insensitivity to bending, reduced fibre loss,
zero dispersion, non-linearity, polarization stability, highly adjustable
effective mode area and the engineerable dispersion at visible and near-
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infrared wavelength, high-power density and so forth give it a superior
improvement than the standard optical fibre.

Additional degree of freedom because of number of holes, shapes,
orientation and placement also make it better than the standard optical fibre.
The Photonic Crystal Fibre achieves single mode operation over a wide

range of wavelengths.

2.6 Applications of Photonic Crystal Fibre

Its zero dispersion can be applied to eliminate dispersion compensation for
long haul transmission links.

It’s extremely negative dispersion can be used in the area of dispersion
compensation.

It could have a large mode area which can be used to avoid non-linearity for
high power delivery.

It could have a small mode area for improved non-linearity interaction.

It could be designed to have high birefringence.

Photonic Crystal Fibres with higher numerical aperture (NA) are better for

collection and high performance in sensors, etc.

Fig. 2. 4:Fibre Optic Cable

2.7 Analysing Photonic Crystal Fibres
In this project, the analysis of PCF was carried out using the Finite Element Method

(FEM) as explained in Chapter 3. The simulations using the FEM, which was developed
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by City University London’s Photonics Group, were run in FORTRAN on a Linux
operating system. The simulations were carried out using a real program and a complex
program. For every design considered, initial testing was carried out then results
obtained to compare to other results to ensure accuracy. To conserve computer
resources, the symmetry of the design is taken advantage of; therefore half structure or a

quarter structure is used when it is practical instead of using the full structure.

2.8 Confinement L osses

Confinement losses or leakage losses are present in PCFs due to the fact that there are a
finite number of air-holes thatanbe made in the cross-section of the cladding which
results in the PCF guided modes to be leaky (Bxokl. 2007). The diameter to pitch

ratio (d/A) in a particular design of PCF determines how much light leaks from the core

into the cladding. The lower the ratio, the more leakage is expected into the cladding.

2.9 Bending Loss

This is caused by bending of the fibre as shown in Fig. 2.4. This is because internal light
paths exceeding the critical angle for total internal reflection, TIR. Theoretically, when
the fibre is bent, light propagates outside the bend faster than the inner radius, as is
represented in Fig. 2.5. This is not possible practically and the light is radiated away
(Goure and Verrier 2002oli et al. 2007 Agrawal 2008).

Light leaking

R — out of fibre

Fig. 2. 5: A bent optical fibre
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2.9.1 Conformal Transformation

It is also known that a bent PCF suffers from the bending that can also influence the
cutoff condition of a PCF as is seen in Fig. 2.5. This can be exploited further in the
optimization of the birefringence value. To study the effects of arbitrary bends, various
numerical methods have been developed and used to simulate the light propagation in
bent waveguides with the aim of characterizing the bending, the transition, and the
polarization losses. The conformal transformation (Heiblum and Harris 1975) has been
most widely used to represent such bent waveguides by converting a curved dielectric
waveguide to its equivalent straight waveguide with a modified index profile. The
coordinate transformation allows a bent optical waveguide in the x plane to be
represented by an equivalent straight waveguide with a modified refractive index
distribution, ryX,y) (Heiblum and Harris 1975):

Neg(X,Y) = N(X,y)(1+x/R) (2.2)

where n(x,y) is the original refractive index profile of the bent waveguide as shown in
Fig. 2.6(a), B(X,y) is the equivalent index profile of a straight guide as shown in Fig.
2.6(b), R is the radius of curvature and x is the distance from the centre of the
waveguide. With a reduction in the bending radius, the cladding in the outer side (away
from bending centre) encounters a higher equivalent index compared to the inner side
cladding and hence, the fundamental mode shifts farther outward, with a slight increase
in the modal effective index value. The shift of the modal field toward the raised
equivalent cladding index increases the leakage loss due to this bending, which

increases further for a lower bending radius.
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Fig. 2. 8 Refractive index profile of bent PCF. (a) straight fibre;gbgnt fibre with the centre
located at the side of ‘inside’(Xiangruet al.2010)

2.9.2 Typesof Bending L oss
e Macro bending: Large scale bending that is visible in which the bend is
imposed on optical fibre. The bend region strain affects the refractive index
and acceptance angle of the light ray.
¢ Micro bending: This is a small scale bend that is not visible which occurs
due to the pressure on the fibre that can be as a result of temperature, tensile
stress of force and so forth. It affects refractive index and refracts out the ray

of light; thus loss occurs.

2.10 Summary

In this chapter the fundamental issues related to photonic crystal fibres are discussed.
The history and development of the PCF including the fabrication technique has been
discussed. The guidance principle and the structure of the PCF were shown. This project
is based on the design and characterisation of the PCF by simulations using the finite
element method. This was carried out through the calculation of the confinement and
bending losses associated with these particular types of special fibres. This was
achieved with a view to mimising these losses as well as applying these losses to
applications in engineering these particular fibres for novel applications. The finite
element method is described in the next Chapter.
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CHAPTER THREE: Numerical Methods

3.0 Abstract

In this chapter, the theoretical background ofHh&eld Finite Element Method (FEM)

used in the analysis of waveguides is presented starting with the presentation of
Maxwell’s equations. The method of supressing spurious solutions by including the
penalty factor in the FEM formulation is also discussed. The properties of the various
numerical methods used in waveguide analgssdiscussed briefly. The Least Squares
Boundary Residual (LSBR) method used in the discontinuity analyses when butt

coupling waveguides is also presented.

3.1 Basic Equations

3.1.1 Maxwell’s Equations

Maxwell’s equations compris@a set of four electromagnetic field vectors, which
represent the governing laws of the electromagnetic wave phenomena. The four vectors
are: the electric field intensitygE (volts/meter), magnetic field intensityH
(amperes/meter), the electric flux dendly(Coulomb/metr® and the magnetic flux
densityB (Tesla). The Maxwell’s equations can be written in differential or integral

form. Since, the FEM is boundary-value problem which is defined by differential

equations; Maxwelk equations are presented in differential form as follows:

vxE+B 0 3.1)
ot

vxH-P (3.2)
P

V-D=p (3.3)

V.B=0 (3.2)
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Where p, is the dielectric charge density (coulomb/metre®); J, is the electric current

density (ampere/metie

The associated constitutive equations for the medium can be written as:

D= ¢E (3.5)

B = 1H (3.6)

Where ¢ is the permittivity and p is the permeability of the medium which can be
defined by:

(3.7)

M= Hop, (3.8)

Where &, &, Ho and p, are the permittivity of the vacuum (8.854 x*f@Farad/meter),
the relative permittivity of the medium, the permeability of the vacuum (4n x 107

Henry/meter) and the relative permeability of the medium, respectively.

3.1.2 Boundary Conditions
Boundary conditions are the conditions that must be met at the boundary surface when

two different media 1 and 2 come in contact. If the unit normal vextis directed
from medium 1 to medium 2 as shown in Fig. 3.1 in the absence of any surface currents

(J = 0) and surface charges (p = 0), the following boundary conditions apply:

1. the tangential component of the electric field must be continuous

nx(E,—E,)=0 (3.9)

2. the tangential component of the magnetic field must be continuous
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nx(H,—H,)=0 (3.10)

3. The normal component of the electric flux density must be continuous

n-(D,-D,)=0 (3.11)

4. The normal component of the magnetic flux density must be continuous

n-(B,-B,)=0 (3.12)

£, Uy, Ez, H, medium 2

€1, 1, Eq, Hy medium 1

Fig. 3. 1: Boundary between two media of refractive indigesd r3, wheren, is the unit
vector normal to the interface.

In certain cases, one of the two media can be considered, either as a perigct elect
conductor or a perfect magnetic conductor. When one of the two media becomes a

perfect electric conductor, an electric wall boundary condition is imposed as:
nxE =0 n-H=0 (3.13)

such conditions ensures the continuity of the electric field veEtand that of the
magnetic field vectod vanishes at the boundary. When one of the two media becomes

a perfect magnetic conductor, a magnetic wall boundary condition is imposed as:

58



Chapter Three

nxH =0 n-E=0 (3.14)

The above condition vanishes the electric field vedoand ensures the continuity of

the magnetic field at the boundary.

In the case of a closed surface, such as the boundary of an optical waveguide, additional
boundary conditions are considered. These boundary conditions can be natural, in case
where the field decays at the boundary, therefore they can be left free. In some other
cases they can be forced, in order to take advantage of the symmetry of the waveguide,
to reduce the number of elements in FEM (and the order of the matrices) or to impose
complementary symmetry to the waveguideorder to obtain a particular polarized

mode. The above boundary conditions can be classified as follows (Davies 1989):

® =0 homogenous Dirichlet (3.15)

® =k Inhomogenous Dirichlet (3.16)

oD

o =0 homogenous Neumann (3.17)
n

Where ® can be the electric or magnetic field, k is a prescribed constant value and n is

the unit vector normal to the surface.

The Neumann boundary conditions represents the rate of change of the field when it is
directed out of the surface and it can be used in the FEM to impose the field decay along

finite elements, adjacent to the boundary elements of a waveguide structure.

3.1.3 Wave Equations
In an isotropic lossless medium with no wave source (J &= 0), with constant
permeability p = po by eliminating the magnetic flux density in and the electric flux

density components for Maxw&lequation (3.1) and (3.these can be written as:

V’E +k’E =0 (3.18)

V?H +k*H =0 (3.19)
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Where the wavenumber, k (rad/m) is given as:

K=wg, (3.20)
If € = g then the wavenumber, ks called free space wavenumber and is defined by:

K, = @\ €, 14, (3.21)

(o]

Equations (3.18) and (3.19) are known as the vector Helmholtz wave equations (Mearz
1995) for homogenous media and in addition to the physical solutions, they may also
support non-physical or spurious solutions, since the conditbrtd =0, may not be
satisfied. In a rectangular coordinate system, if only one component of the electric or
magnetic field is considered, for examplg the vector Helmhotz wave equatiomca

lead to the scalar Helmhotz wave equation as (Koshiba 1990):

V’E,+k’E, =0 (3.22)

3.2 Analysis of Optical Waveguides
Optical waveguides analyses imply the process of finding the propagation constants and
the field profiles of all the modes that a waveguide can support. To beoaaleulate
these propagation characteristics, solutions of the well-kidwawell’s equations are
obtained along with the satisfaction of the necessary boundary conditions. Applying the
Maxwell’s equations may not bean easy task and precise anagysof optical
waveguides is generally considered taalmbfficult task because of some major reasons
such as the optical waveguides may have complex structures, arbitrary refractive index
distribution (graded optical waveguides or photonic crystal fibres) anisotropic and non-
linear optical materials as well as materials with complex refractive index such as
semiconductors and metals. These difficulties are surmounted using various methods of
optical waveguide analyses developed. These methods can be broadly classified into
two groups, namely the analytical approximation solutions and the numerical solutions.
An exact analytical solution can be obtained for stepped 2-D optical waveguides (i.e.
slab waveguides) and stepped optical fibre. However, if the waveguide has an arbitrary
refractive index distribution, then the exact solutions may not be possible. Therefore
various types of analytical approximation solutions have been developed Dor 2-
stepped optical waveguides which have their refractive index distribution gradually
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changing along the thickness of the waveguide. Some typical analytical approximation
solution techniques for such optical waveguides are the Ray Approximation Method
(RAM) (Qiao and Wang 1992) and the Wentzel, Kramers and Brillouin (WKB) method
(Srivastaveet al.1987). For 3-D optical waveguides, hybrid mode analysis is required

in order to satisfy the boundary conditions. However, the analytical approximation
solutions developed for these guides do not treat them as hybrid modes and therefore
they are not suitable for accurately analysing the practically used 3-D optical
waveguides. Approximation solutions used typically fdd 8ptical waveguides are the
Marcaili’s Method and subsequently the Effective Index Method (Okamoto 2006).

The numerical solutions can also be grouped into two categories and these are the
domain solution also called a differential solution and the boundary solution also known
as an integral solution. The domain solution includes the whole domain of the optical
waveguide structure as the operational area whereas the boundary solution includes only
the boundaries as the operational area. Some examples of the domain solutions include
the Finite Element Method (FEM), Finite Difference Method (FDM), Variational
Method (VM) and Multilayer Approximation Method (MAM). The boundary solutions
include the Boundary Element Method (BEM), Point Matching Method (PMM) and
Mode Matching Method (MMM).

A brief description of the most commonly used analytical and numerical solution

techniques for modelling in opto-electronics will be presented in subsequent sections.

3.2.1 Marecatili’s Method

Marcatili’s Method (MM) was one of the first analytical approximation methods to be
developed for the analysis of buried waveguides and couplers (Marcatili 19&€9). Th
method was developed for guiding structures with large dimensions and a small
refractive index difference (less than 5%) between the guiding (core) and cladding
materials. The field is assumed to exist in the rectangular waveguide core region and
also in the four neighbouring cladding regions which are obtained by extending the
width and the height of the waveguide to infinity. The field is also assumed to vary
sinusoiddly in the core region and exponentially in the four cladding regions, thus the
field is approximated to the field in two slab waveguides; one vertical and the other

horizontal. Two transcendental or eigenvalue equations for each slab waveguide are
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solved simultaneously to give the axial propagation constéatatili’s method works
well in the regions far from cut-off but does not provide a satisfactory solution close to
cut-off region (Chiang 1994).

3.2.2 The Effective Index M ethod

The Effective Index method was first proposed by Knox and Toulios in 1970 (Knox and
Toulois 1970) as an extension to tMarcatili’s method (Marcatili 1969) for the
fundamental mode of a simple rectangular core waveguide. This resulted in the effective
index method becoming one of the most popular methods in the 1970s for the analysis
of optical waveguides whereby the rectangular structure is replaced by an equivalent
slab with an effective refractive index obtained from another slab. The rectangular
dielectric waveguide is divided into two slab waveguides in each transverse direction.
The initial step solves the transcendental equation for a vertical slab waveguide by
applying the appropriate boundary conditions. The effective index calculated in this step
Is then used as the refractive index of the horizontal slab waveguide and by solving the
eigenvalue equation gives a good approximation to the effective index of the original
waveguide structure. This method is significantly more efficient than those methods that
solve the rectangular structure directly since only the solutions for slab waveguides are
required. The advantage of the effective index method is that it can be applied to a wide
variety of structures including channel waveguides, strip waveguides and arrays of such
waveguides (Chiangt al. 1996) and also for various types of optical fibres and fibre
devices (Chiang 1986lan de Veldeet al. 1988). The disadvantage of this method is
that it does not give good results when the structure operates near cut-off region.
However, the simplicity and speed of the method have encouraged many engineers to
search for different approaches that will improve the accuracy of the effective index
method which subsequently lead to many different variants of the effective index
method to be developed including the effective index method based on linear
combinations of solutions (Chiang 1986d@an Der Tol and Baken 1988) or the

effective index method with perturbation correction (Chiahgl.1996).

3.3 Numerical Solution Methods
The rapid growth in the millimetre-wave, optical fibre and integrated optics fields has
included the use of arbitrarily shaped dielectric waveguides, which in many cases also

happened to be arbitrary inhomogeneous and/or arbitrarily anisotropic which do not
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easily lend themselves to analytical solutions. Therefore many scientists have given
their attention to the development of numerical methods to solve such waveguides.
Numerical methods may be used tovedMaxwell’s equations exactly and the results

they provide are accurate enough for the characterisation of most of the devices. Since
the advent of computers with large memories, considerable attention has been paid to
methods of obtaining numerical solutions of the boundary and initial value problems.
These methods are usually evaluated in terms of their generality, accuracy, sfficienc
and complexity. It is evident from the review art&{€hiang 1994Vassalo 1997) that

every method represents some sort of compromise between these aspects, implying that
no method is superior to the others in all aspects. The optimal method should be the one
that can solve the problem with acceptable accuracy but requires the minimum effort to
implement and run in terms of manpower and computer capacity. Also, the continuing
improvement in computer power has made computational efficiency less of an issue
over the years. Some factors with regards to the selection of methods for analysing

optical waveguide problems, based on reviews (Davies; Ny2974 Saad 1985) are:

¢ Whether the shape of the cross section of the structure is curved or polygonal or

whether it is convex or non-convex.

e Whether a method that can be realised as a computer program suitable for the

automatic solution of a wide range of structures is needed.

e Whether a computer program requiring human intervention of some exploratory

work with the computer is required.

e Whether the method could be programmable and/or if it has to be written

specially for each region of the structure separately.

e Whetherit is justthe dominant mode only or a number of higher order modes

that are required as well.
¢ Whether the field distribution and/or the cut-off frequency are needed.

e Whether the requirements for the accuracy needed are for the eigenvalues and/or

eigenfunctions.
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e Whethe the method would accurately model the dielectric boundaries and

regions.

e Whether the method would accurately give solutioapecific frequency ranges

as well as near cut-off frequency.

e Whether the method has a mechanism of generating spurious numerical

solutions and if so whether the method can identify and/or eliminate them.

e Whether the method is computationally efficient as weltsasomputer storage

requirements.

A short overview of these commonly used numerical solution techniques is given next.

3.3.1 The Boundary Element Method

The Boundary Element Method (BEM) is interpreted as a combination technique of the
conventional boundary integral equation method and a discretisation techniques
(Kagami and Fukai 1984). The BEM is a boundary solution method and therefore the
fields would be required onlgt the nodes which are on the boundaries of the region.
The derivation of the integral equations with respect to the unknown fields at
boundaries is obtained by the method of weighted residuwalise Green’s formula.

These integral equations are then discretised to a set of linear equations to be solved for
the numerical solutions. The BEM can be used for the analysis of arbitrarily shaped
discontinuities as is with the finite element method, but the boundary element method
can be performed using far fewer nodes than by the finite element method. Moreover,
the BEM can handle unbounded field problems easily and therefore has the possibility
of modelling domains extending to infinity without an infinite element analysis which is
often performed in the finite element method. However, the boundary element method
can only be applied to homogenous structures (Hirayama and Koshiba 1989) and also it
has been known that the matrices involved are dense matrices unlike those used with the
finite element method which are sparse. Therefore, the finite element method can be
treated as more numerically efficient than the boundary element method.

3.3.2 The Point Matching M ethod
The Point Matching Mthod (PMM) is one of the oldest and simplest ‘boundary

solution’ techniques for the analysis of isotropic homgenous dielectric waveguides. Its
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application was first shown by J. E. Goell (Goell and Standley 1969) to investigate the
propagation characteristics in rectangular cross section dielectric waveguides. The
numerical analysis used in the technique by Goell is based on expressing the internal
and external fields in terms of circular harmonics. The fields inside the dielectric and
outside the dielectric are expressed by a sum of Bessel functions and modified Bessel
functions multiplied by trigonometric functions, respectively and their derivatives. By
matching the tangential fields at optimally selected points around the boundary called
‘matching points’, a system of linear equations is obtained. By applying the condition of
nontrivial solution, a characteristic equation including the propagation constant is
obtained and solved for each mode eigenfunction by standard matrix techniques. The
point matching method is capable of analysing dielectric waveguides with arbitrary
cross sections and composite structures and also computing coupling coefficients
between two rectangular rods. Improved results for the point matching method were
reported (Cullenet al. 1971) by rotating the grid of equiangularly spaced matching
points in order to place a matching point at the corner of a rectangular dielectric
waveguide. However, the point matching method is not suitable for the analysis of a 3-
D waveguide structures with inhomogenous index distribution such as graded index

fibres.

3.3.4 The Mode Matching M ethod

The Mode Matching Method (MMM) which is also known as the Equivalent Network
Method is an approximate solution method for the analysis of open dielectric
waveguides (Peng and Oliner 1981). In this approach the structure is artificially
bounded and the waveguide cross section is viewed in terms of constituent parts or
building blocks, which are usually portions of uniform dielectric layered structures
interfaced by the dielectric step discontinuities. Then each constituent is analysed
separately and all the parts are put together to compromise the final structure of interest.
A transverse equivalent network for the structure is obtained by representing the
uniform dielectric regions as uniform transmission lines and by characterising the step
discontinuities as transformers. From this, the dispersion relation can be derived to
obtain the waveguide propagation characteristics. In the earlier analysis of the mode
matching method due to the artificial bounding of the structure, the continuous spectrum
(Peng and Oliner 1981) and TE and TM coupling at the sides of the waveguide are
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neglected. Dagli and Fonstad (Dagli and Fonstad 1986) reported a modified approach,
which takes into account the continuous spectra. Rather than artificially bounding the
structure to discretise the continuous modal spectrum, here, they are discretised by
converting integrals into summations using suitable basis function expansions. Koshiba
and Suzuki (Koshiba and Suzuki 198&®shiba and Suzuki 1986) reported a vectorial
wave analysis of rectangular optical waveguide using equivalent network method by

taking the TE-TM coupling and the discrete-continuous spectrum coupling into account.

3.3.5 The Spectral Index Method

The Spectral Index (SI) method may be used to find quickly and easily the guided
modes and propagation constants of semiconductor rib waveguides (KetradalP89

Sternet al. 1990). Here the true open structure is replaced by slightly larger, partially
closed one, which is simpler to analyse, in order to model the penetration of the optical
field into the cladding. The spectral index method can be expressed using steps in the
region below the rib. First of all, the Fourier transform is applied in order to reduce the
dimensionality of the problem to a one-dimensional structure and the field is expressed
in spectral space using Fourier transform. Next, in the rib region the wave equation is
exactly expressed using Fourier series in terms of cosine and sine functions then the two
solutions are linked by employing a transfer relationship and consequently, giving a
transcendental equation which can be solved for the propagation constant of the original
rib structure. The presence of the strong discontinuities at the dielectric interfaces is
dealt with by using an effective rib width and an effective outer slab depth. The spectral
index method has been extended to include rib coupler problems (BurkeBLORO

1990) cases with loss and gaiButke 1994) and also it has been used to analyse

multiple rib waveguides (Polet al.1996).

3.3.6 The Beam Propagation Method

The Beam Propagation Method (BPM) describes the evolution of the total field
propagating along a waveguide and it is the most widely used tool in the study of light
propagation in longitudinally varying wavguides such as tapers, Y-junctions, bends and
gratings. The beam propagation method was first applied to optoelectronics in 1980
(Feit and Fleck 1980) and the solutions for the optical waveguides can be made to
generate mode-related properties such as propagation constants, relative mode powers

and group delays with high precision and considerable flexibility. The initial BPM is
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based on the Fast Fourier Transform (FFT) and only solves the scalar wave equations
under paraxial approximation. Therefore the FFT-BPM was only developed for the case
of weakly guiding structures, neglecting the vectorial properties of the field. Several
numerical algorithms to treat the vectorial wave propagation (vector BPM) using the
finite difference method, have been reported (Chetngl. 1991 Huanget al. 1992a
Huanget al. 1992b). The VBPMs are capable of simulating polarized or even hybrid
wave propagation in strongly guiding structures. Recently, the finite element method
has been utilised to develop BPM approaches. A unified finite element beam
propagation method has been reported (Tsuji and Koshiba 1996) for both TE and TM
waves propagating in strongly guiding longitudinally varying optical waveguides.
Obayyaet al. (Obayyaet al.2000) has reported a full-vectorial BPM algorithm based
on the finite element method to characterise 3-D optical guided wave devices.

3.3.7 The Finite Difference M ethod

The Finite Difference Method (FDM) is one of the oldest and perhaps the most
commonly used numerical techniques in analysing dielectric waveguide problems. Its
application to the modelling of optical waveguides dates from the early eighties,
originally evolving from previous finite difference models for metal waveguides
(Davies and Muilwyk 1966). The finite difference method discretises the cross section
of the device that is being analysed aitdis therefore suitable for modelling
inhomogeneous media and complicated boundaries. In FDM, it is necessary to define
the a finite cross section by enclosing the dielectric guide in a rectangulasuobxas
Transparent Boundary Conditions, TBC (Okamoto 2006), with the side walls as either
electric or magnetic walls and the field at these boundaries are assumed to be very
small. However, if leakage losses need to be calculated, these hard boundaries can be
replaced by Perfectly Matched Layer (PML) (Berenger 1994). The enclosed cross
section is divided into a rectangular mesh allowing for the material discontinuities only
along mesh lines (Bierwirtkt al. 1986). The nodes are placed on mesh points so that
each node can be associatecatmaximum of four or eight neighbouring nodes and
each node can be of one or more field variables depending on vector, semi-polarized or
scalar wave equations that can be approximated in terms of the fields at the
neighbouring nodes of the mesh. Taking into account the continuity and discontinuity

conditions of the electric and magnetic components at the field interfaces an eigenvalue
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problem is generated which can be solved in order to obtain the modal propagation
constants and their modal field profiles. The accuracy of the method depends on the
mesh size, the assumed nature of the electromagnetic field (scalar, polarized or vector)
and the order of the finite difference scheme used. If a uniform mesh is used then it can
result in a very large number of nodes and large matrices and therefore the
disadvantages like long run times and high memory requirements may become

apparent.

3.3.8 The Finite Element M ethod

The Finite Element Method (FEM) is a well-established numerical method for the
solution of a wide range of guided wave problems. It can be very easily applied not only
to optical waveguides of any shape but also to optical waveguides with any refractive
index distribution and to those with any anisotropic materials or nonlinear materials.
This method is based upon dividing the problem region Btoon-overlapping
patchwork of polygons, usually triangular elements. The field over each element is then
expressed in terms of polynomials weighted by the fields over each element. By
applying the variational principle to the system functional, and thereby differentiating
the functional with respect to each nodal value, the problem reduces to a standard
eigenvalue matrix equation. This is solved using iterative techniques to obtain the
propagation constants and the field profiles (Rahman and Davies; 10@&gliba and

Inoue 1992). The accuracy of the finite element method can be increased by using finer
mesh. A number of formulations have been proposed, however, the full vetterial
field formulation is the most commonly used and versatile method in modelling optical
waveguides due to much easier treatment of the boundary conditions. This method can
accurately solve the open type waveguide problems near cut-off region and much better
results were obtained by introducing infinite elements to extend the region of explicit
field representation to infinity (Rahman and Davies 1984a). One drawback associated
with this powerful vector formulation is the appearance of spurious or non-physical
solutions. Suppression of these spurious solutions can be achieved by introducing a
penalty term into the variational expression (Rahman and Davies 19%34wyder to
eliminate the spurious solutions completely, another approach is employed using the
edge elements (Bossavit and Mayergoyz 198%hiba and Inoue 1992). In modelling

more complex structures, the finite element method is considered to be more flexible
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than the finite difference method due to the ability of employing irregular mesh. Since
this method is used in this work, a more detailed description of the finite element

method will be presented next.

3.4 Fundamentals of the Finite Element M ethod

The Finite Element Method (FEM) has emerged as one of the most successful
numerical methods for the analysis of waveguides from low frequency to microwave to
optical region. It is indeed capable of solving waveguides of arbitrary refractive index
distribution. In this thesis a full-vectorial-field based FEM has been used to
characterise waveguides operating at optical and terahertz frequencies. Such methods
are capable of handling a wide range of inhomogeneous problems with greater ease. It is

also capable of solving anisotropic problems.

In this approach, any waveguide cross-section can be divided in a patchwork of
triangular elements, where the appropriate field components are approximated by
polynomial expressions over these elements. Each element canahdifferent
dielectric material, which may be anisotropic, non-linear or lossy. The FEM, which is
based on the Ritz-Galerkin approach, converts a continuous system into a discretized
model. By applying the variational principle (Davies 1989) to the functional of the
system, the problem reduces to a standard eigenvalue matrix equaticn\JAJk = 0,

which can then be solved by using standard matrix solver algorithms. The FEM can be
used effectively for the analysis of various optical waveguides, with any shape,
including 2D and 3D optical waveguides, axisymmetrical and non-axisymmetrical

optical fibre and non-linear optical waveguides.

The FEM is based on the similar principles as the FDM; therefore a comparison of the
two methods can be attempted. Although in the FDM simpler matrix eigenvalue
equations are formed, which are formulated with less computer programming, less
computer memory storage and execution time and the clarity solution is free of spurious
modes My — Hy formulation), the above approach cannot be easily applied to structures
with odd-shaped boundaries. The triangular elements used in the FEM can give a better
fit to such structures and also the change of the density or the order of the elements in
regions where there is more rapid field variation is performed more easily with the

FEM. Additionally, in the FEM, the field is defined explicitly everywhere and this
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makes it easier for manipulation, such as when evaluating spatial derivatives to give
related fields (Davies 1989).

3.4.1 Theoretical Background
Mathematically, the FEM is a numerical technique for obtaining approximate solutions

to boundary-value problems and it is the extension of the two classical methods, the
Raleigh-Ritz variational methods and the Galerkin method of weighted residuals. A
boundary value problem can be defined by a governing differential equation in a
domain, together with the boundary conditions on the boundary that encloses the
domain. In the variational approach the boundary-problem is formulated in terms of
variational expressions, referred to as functionals, whose minimum corresponds to the
governing differential equations. The approximate solution is obtained by minimising
the functional with respect to its variables (Jin 1993). The Galerkin method is based on
the method of weighted residuals (Davies 1989) in which the domain of the differential
equation is discretized and the solution is approximated by the summation of the
unknown solutions of each subdomain weighted by known functionals, relating them to
the domain. The overall solution is obtained by minimising the error residual of the

differential equation.

Research on the application of the FEM to electromagnetic-wave engineering began
towards the end of the 1960s and since then, with the availability of larger and faster
computers, it has been established as a very powerful tool dealing with the analysis of
optical waveguides, particularly structures with arbitrary shapes, index profiles,

nonlinearities and anisotropies.
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Fig. 3. 2: Arbitrary shaped optical waveguide, divided into arbitrary sub-domains, each having
different type of material

A cross-section of an arlatty shaped optical waveguide in the-» transverse plane

as shown in Fig. 3.2 is considered, divided into a number of sub-domains, which may be
composed of several different materials, each of which can be described by arbitrary
permittivity and permeability tensors;, (x,y) and /i (x, y) respectively. A uniform
shape of the waveguide along the longitudinal z-axis is assumed and time and axial
dependencies are given b{’'eand & where» is the angular frequency and the

complex propagation constangsgiven by:
y=a+jp (3.23)

Where o (Np/m) is the attenuation constant and B (rad/m) is the phase constant. For a
loss less case, the propagation constant is considered to be equal to the phase constant
jB. The electri¢c E(x,y,z,t) and the magnetikl(x,y,z,t) fields over the region of the

waveguide can be expresdad
E(xY,2,t)=E(x ye'“7 (3.24)
H (x,y,zt)=H (x ye'? (3.25)
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whereH(x,y) andE(x,y) are the spatial time-domain-independent magnetic and electric

fields respectively.

For optical waveguides with 2-dimensional confinement, the modes are not purely of
TE or TM type, but they are hybrid in nature, with all the 6 components being present.
The quasi-TE modes withyfdeing dominant can also be identified dg,hode, where
m and n indicates spatial variation order in the x and y directions. Similarly, quasi-TM
modes with their K field being dominant can also be identified d%,/Hnode. These

notations are used throughout this thesis.

3.4.2 Variational Formulation

The finite element formulation is based on the variational or Raleigh-Ritz approach,
therefore, several variational formulations have been proposed for the analysis of the
optical waveguide problem. These can be a scalar form (Mataal981), where the
electric or magnetic field is expressed only in terms of one component, according to the
predominant field component or can be in the vector form, where the electric or

magnetic field is expressed in terms of at least two of the constituent field components.

It should be noted that most of the formulations applied in the FEM, yield to a standard

eigenvalue problem:
[Afix}-2[B]ix} =0 (3.26)

where [A] and [B] are real symmetric sparse and B is also positive definite. The
eignevalue, A, can be chosen as p? or K, depending on the formulation and the
eigenvalues represent the nodal field values of the finite elements. It is desirable for the

above matrix equation to be of this canonical form to allow an efficient solution.

3.4.3 Scalar Approximation

The scalar approximation can be applied in situations where the field can be described
as predominantly TE or TM and it can be expressed in terms of the longitudinal
components of the above modes. It has been used for the solution of homogenous
waveguide problems (Daly 1984), open boundary problems (Wu and Chen 1986) and
for the analysis of the anisotropic waveguides (Koskitbal. 1984). For the quasi-TE
modes over a region where the dominant field component & formulation can be

written as
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oy

I

Wheref is the propagation constant and n is the refractive index. For the quasi-TM

2 8E 2
j +( XJ —konZEf+ﬂ2Ef]dQ (3.27)

modes, where His the dominant field, the formulation can be written as (Maleaya.
1981):

1(eH " 1(oH, ) , 1 o,
L_”'QF[( axj +F( 6y] —kOHX+Fﬁ H?

3.4.4 Vector Formulation
The scalar formulation is inadequate to handle general anisotropic or inhomogeneous

dQ (3.28)

problems and it can be used only as an approximation in such cases. For a more
accurate representation of general waveguide fields, a vector formulation, witht at leas
two components is essential. This is particularly true for the analysis of photonic crystal
fibres. Several vector formulations dealing with optical waveguide problems have been
proposed by many authors. However, some of them are affected by non-physical
spurious solutions, which appear mixed with the correct ones in the computations and

therefore several methods have also been proposed to overcome such problems.

The E;-H; formulation which is one of the first formulations used in finite element
analysis (Csendes and Silvester 19Rlabaya et al. 1981) cannot treat general
anisotropic problems without destroying the canonical form of the eigenvalue equation
(3.26). In addition to that some problems also arise whilst enforcing boundary
conditions for a waveguide with an arbitrary dielectric distribution. Additionally, this
approach is based on the axial field components which are the least importank of the

andH fields for optical waveguide.

A vector E-field formulation (English and Young 197Hano 1984 Koshibaet al.

1985a) which can handle general anisotropy but loss-less problems, has also been
applied to the solution of several types of optical waveguides. For such a formulation,
the natural boundary conditions correspond to a magnetic wall and therefore it is
essential to enforce the electric watl X E = 0) as a boundary condition, which is

difficult to implement for irregular shaped structures.
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The vectorH-field formulation is more suitable for dielectric waveguide problems
because the magnetic field is continuous everywhere and the natural boundary
conditions correspond to those of the electrical wall therefore no forced boundary
conditions at the boundaries are required. This formulation can be written as (Berk
1956 Rahman and Davies 1984a):

VxH) &1 (VxH)dQ
a)zz,[( XI:*Sﬁlid; ) (3.29)

Where o, is the angularfrequency, Q is the waveguide cross-sectioné and g are the

permittivity and permeability tensors respectively. To obtain the stationary solution of
the functional (3.29) this is minimised with respect to each of the variables, which are
the unknown nodal field components, Hy, and H. This minimisation leads to a matrix
eigenvalue equation as stated in equation (3.26), where [A] is a complex Hermitian
matrix and [B] is a real symmetric and positive-definite matrix. Because of the general
9¢° phase difference between the axial and transverse componetitfietd (Konrad
1977), the Hermitian matrix [A] can be transformed to a real symmetric matrix for a
loss-less problem. In general, the matrices [A] and [B] are quite sparse. The
eigenvectors {x} represents the unknown field components at the nodal points for
different modes with\ as their corresponding eigenvalues and also A is proportional to

o In order to obtain a solution for a given wavelength, the propagation constant, 3

value has to be changed iteratively until the output eigenvalue corresponds to that
wavelength. By variyig B over the range of interest, it is possible to calculate the

dispersion characteristics for the various modes.

However, the above formulation (as well as tadield) yields spurious solutions
because the divergence conditiovi; H =0 is not satisfied automatically, therefore
alternative approaches, such as the penalty coefficient method (Rahman and Davies
1984a Koshiba et al. 1985b) have been proposed to eliminate those non-physical

solutions. This method will be discussed in a later section of this Chapter.
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3.4.5 Natural Boundary Conditions

The term “natural boundary condition” arises in the calculus of variations and since the

finite element method is fundamentally one minimisation of an error functional, the
term arises also in this context. The boundary condition, which is automatically satisfied
in the variational procedure is called the ‘natural boundary condition’. In variational

formulations these can be automatically satisfied, if left free. The scalar functional

defined earlier in equation (3.27) has the continuity %&as the natural boundary
n

condition and the functional defined in equation (3.28) has the cont(n%lﬂ(ya:—x) as
n n

the natural boundary condition, wherds the outward normal unit vector. The vector
H-field formulation described in equation (3.29) has the natural boundary condition of
an electric wall, i.e. i1 = 0. Therefore there is no need to force any boundary condition
on conducting guide walls. But for regular shaped waveguides and at the symmetric
walls (if applicable) the natural boundary condition can be imposed to reduce the matrix
problem size. However, it may be necessary to analyse the structure with
complementary symmetry conditions to obtain all the modes, although the exploitation

of the symmetry greatly reduces the computational cost.

3.4.6 FEM Formulation

The key objective of using the finite element method is to find the solution of a
complicated problem by replacing it with a simpler one. The differential operator
equations which describe the physical problem are replaced by an appropriate extremum
functional J, which is the variational for the desired quantity. The problem can be
regarded as obtaining the solutiBihover a specified region in the transverse plane so
that the boundary conditions and also the extremum requirement are satisfied. The axial
dependence is assumed in the fortf* @nd the transverse plane is used for the

discretisation.
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Fig. 3. 3 Finite elements in two dimensions

3.4.7 Domain Discretisation

The discretisation of the domain into sub-regions (finite elements) is considered as the
initial step in the finite element method. The shapes, sizes, number and configurations
of the elements have to be chosen carefully such that the original body or domain is
simulated as closely as possible without increasing the computational effort needed for
the solution. Each element is essentially a simple unit within which the unknown can be

described in a simpler manner. There are various types of elements available for use in
finite element formulations. These elements can be satisfied as one, two and three
dimensional elements. When the geometry and material properties can be described in
terms of two independent spatial coordinates, the two-dimensional elements shown in
Fig. 3.3 can be used. The simplest and indeed the most basic element typically
considered for two-dimensional analysis is the triangular element. The size of the

element also dictates the accuracy of the final solution as higher order elements tend to
provide more accurate solutions. A typical representation of an arbitrary waveguide

structure using triangular elements is shown in Fig. 3.4.
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Nodal points

Element

Actual boundary

Approximate boundary

X

Fig. 3. 4: Finite element discretisation of a waveguide with triangular elements

By dividing the waveguide cross section into triangular elements, the unkidoisn

also considered as to be discretised into corresponding sub-regions. These elements are
easier to analyse rather than analysing the distribution over the whole cross section. As
shown in Fig. 3.4, the transverse plane is covered with a grid of discrete nodes which
are the vertices of each triangular element. The valublsatfthese nodal points are the

basic unknowns. The intersections of the sides of the triangular elements are called the

nodal lines.

After running the simulations for the numerical experiments, the following parameters

are noted down from the program after the simulations concludes:

e Wavelength

e Real propagation constant

e Imaginary propagation constant
e Effective index

e loss

e H,field
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e Hyfield
e H,field
e Spot size

e Effective area
To be sure the output is correct, the 1-D, 2-D or even 3-D field profiles of the output
result of the K and/or H fields is plotted using MATLAB or Sigma plot. The dominant

field would yield a field profile showing the field within the core.

3.4.8 Shape Functions

In two-dimensional problems, the element assumes a linear interpolation between the
field values at the vertices of the triangle. Within each element the unknowifiedd
approximated by means of suitably chosen set of polynomials. These functions are
called ‘shape functions’. For a simple triangular element the interpolation polynomial

should include a constant term and both the x and y terms rather than only one of them.
The field variable representation within an element should not alter the local co-ordinate
system. In order to achieve this ‘geometric isotropy’ the polynomial should be complete

according tdascal’s triangle as shown in Fig. 3.5.

AN
NN
INONDN, 3

NN\ 4
WAYAVAVAVANERR

LXAXENLNSNEN

Fig. 3. 5 Pascal’s triangle for complete polynomials in two dimensions.
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The final consideration in selecting the order of the interpolation polynomial is to make
the total number of terms in the polynomial equal to the number of nodal degrees of
freedom of the element. For example, the first degree polynomial involves three
coefficients and so can be expressed in terms of three nodal values at the triangle
vertices as shown in Fig. 3.6. The second degree polynomial needs six coefficients and

can similarly be expressed in terms of values of six nodes.

The continuous field function ¢(x,y) in the problem domain may be replaced by a set of
discrete values (¢; = 1,2,3........... ,m) where m is the total number of nodes. This
function will be continuous across the triangles. To be admissible functions, they must
satisfy some specific conditions between the elements; usually the continuity of the

field across the boundaries is preferred.

Pe(x,y) A

Pelx,y)

v

v \ ()
2(x2,Y2

1(x1,y1)

Fig. 3. 6: Representation of a first order triangular element.

A typical first order triangular element used in finite element discretisation is shown in

Fig. 3.6. Inside each first order element, the nodal field valuese interpolated

79



Chapter Three

continuously. This can be achieved by introducing the interpolation functigfxsy)N

Thus, using the interpolation function the element field can be written as:

3

8.6 y)= D Ni(x,y)- ¢ (3.30)

i=1

where ¢; are the nodal field values. The functiongxly) are called ‘shape functions’.

Equation (3.30) can also be written in matrix form as:

¢

¢e(X’ y): [Nl N, N3¢, (3.31)
?s

¢.(x.y)=[NJig, } (3.32)

where [N] is the shape function matrix and the column vector {@¢} IS a vector
corresponding to the field values at the 3 vertices of the triangular element. In order to
obtain the shape functions,(My), i = 1,2,3....., a linear approximation of the field

inside the elements must be performed:
8.(%, Y)= oy + @ X+ oy (3.33)

for which oy, ap, and ag are constants. By re-writing the above relation, such that the

following conditions are satisfied:

a(x.v)=¢ =123 (3.34)

3

¢e(x1 Y): Z N, (X1 Y)'¢i

i=1

where(x;,y) (i = 1,2,3) are the global co-ordinates of the three vertices of the triangle.

Hence the nodal field values @; can be written as:
¢ = ¢e(X1’ Y1) =0y +aX +agzy,
P, E¢e:()(2!y2):0514'052X2 +asy, (3.35)
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¢y = ¢e(X3’ y3) =a; Ha X3+ agy;

This can also be written in the matrix form as:

¢ (R A
o =1 X, ¥, [, (3.36)

78 1 X3 y;llas

By solving the above matrix equatiathe constants a4, az andog can be determined in

terms of ¢j, i=1, 2, 3:

1

a, = K[ 1(X2y3 - X3y2)+¢2(X3y1 - le3)+ ¢3(le2 - X2y1)]
1

a, :ﬁ[ 1(y2_y3)+¢2(y3_Y1)+¢3(y1_y2)] (3-37)
1

a3 :ﬁ[ 1(X3 _X2)+¢2(X1_X3)+¢3(X2 _Xl)]

where A is the area of the triangular element given by:

1 x v
1
A :2_1 X Y2 :E(Xzys_X3Y2)+(X3y1_xly3)+(xly2_X2Y1) (3.38)
1 X Vs

Substituting the values of a; from equation (3.37) into equation (3.33) results in the

formation of the following equation:

¢e(x’ y): Nl(x’ Y)'¢1 + Nz(x’ Y)'¢2 + Ns(X7 y)'¢3

#.(x,y)=[N]ig.} (3.39)

The above relation has close resemblance to the matrix relation given earlier in equation
(3.32) and Nx,y) i =1,2,3 are shape functions given by the matrix notation (Davies
1989):
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N, XoY3=X3Y, Yo—VYs Xzg—X |1
[N ]T =N, |= K X3¥Y1 = X1¥Ys Ys—= Y1 X=X | X (3.40)
N, XYoo =X Yi— Y, X=X |Y

Where T denotes a transpose of the N matrix. The shape function matrix can also be re-

written as:
N, a, +bx+cy

IN]" =| N, [=|a, +b,x+c,y (3.41)
N, a; +b,x+cy

And a, b, ¢ (i = 1,2,3) are the constants for a given element and calculated as:

_ XY= X5Y,
i N
Yo—Y
b, =ﬁ (3.42)
X, — X
c, = —?’ZAe 2

Similarly &, bp, &, &, bs, and ¢ can be calculated by cyclixéange of 1-2—3 in
equation (3.42). The shape functionsdsdn also be expressed in terms of the areas of

the triangle shown earlier in Fig. 3.6 as:

_areaof subtriangleP23
areaof trianglel23

N, (3.43)

Similarly N, and Ny can be defined in the same way. Hencehdk the following

property:
YN, =1 (3.44)

Thus evaluating the shape functiongWes a value of 1 at the node 1{x) whereas at

nodes 2 and 3 a value of 0 is obtained. Hence it is unique first-degree interpolation
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function for node 1. Similarly the shape functionsaNd N; gives a value of 1 at nodes

2 and 3 respectively and 0 at other nodes.

3.4.9 Global and Element Matrices

The solution of the optical waveguide problem by the FEM can be transformed to a
standard eigenvalue problem as in equation (3.26) where matrices [A] and [B] are
known as global matrices and consist of the summation of the element matrices for each
triangular element of the discretised cross-section of the optical waveguide. In this
section, the assembly of the element and global matrices is shown, with respect to the
shape functions and the nodal field values of each triangular element, based on the
variational formulation. Throughout the procedure, theHfield formulation in terms

of the three components is assumed and first-order triangular elements are being used.
Within each of the triangular elements the three unknown Hettbmponents K Hy

and H of the magnetic field can be represented as follows:

x1
HX(X, y):[Nl N, Na] H,,
Hx3

H,,
H,(x y)=[N, N, N;]| H,, (3.45)
Hys
HZl
HZ(X, y):[Nl N, N3] H.,,
H23

Where H;, Hy and H; for i=1,2,3 are the x,y and z components of the magnetic fields.

Hence the magnetic field over the elemétl.[can be described as:
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e
Hx2
Hx3
H(xy)] [N, N, N O 0 0O O 0 O]H,
[HL=|H,(xy)[=|]0 0 O N, N, N, O O O|H,|(3.46)
H,xy)] [0 0 0 0 0 0 N N, NjjH,
Hzl
H22
_Hz3_

In more compact form, the above equation (3.46) can be written as:
[HE=[NKH (3.47)

where {H}. is the column vector representing the three components of the nodal field
values in the elements and [N] is the shape function matrix. Also using equation (3.47),

the curl ofH equation (3.29) can be written as:

o 2 o
0z oy

xH)=vxNHL=| £ 0 —ZNfuL-lelH) @4
REINCI
x|

Where the matrix [Q] can be written as:

|

o] - pw o]
a[N ~ %
OX

[—

[@l=| = [o] (3.49)

OO
oy

Where [0] = [0 0 0] and [N] = [NN2 N3] and some of the shape function derivatives are

assumed substituted using equation (3.41) as shown:
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ON, b, ON, b, %zbs,
OX OX OX
8;;,1 c,, 8('9\1; —c,, a(l;lyz —c, (3.50)

The solutions of the constants, I, bs, ¢, ¢ and ¢ were shown earlier in equation
(3.42). By substituting the expressions shown in equations (3.47) and (3.48) in to the
variational formulation of equation (3.29), the vedtbfield formulation functional for

an element can be obtained as:

(3.51)

Rearranging the last part of the above equation (3.51), the following can be obtained:

3= [{HE[QI - &7 [QJ{H }.do—w? [{H [L[NT - a[N]{H Ja (3.52)
A A
WhereA represents the integration over the triangular element domain. T and * denote
the transpose of a matrix and the complex conjugate transpose, respectively. The [Q]
matrix was defined earlier in equation (3.49). A transpose operation on this matrix
would define the [Q]* matrix. For isotropic material, the relative pemiitic, is a

scalar quantity. For waveguides consisting of anisotropic material the relative
permittivity € can be taken as a tensor represented by a 3 x 3 matrix and the inverse of
the matrix should be implemented. The total function, J associated with the whole cross-
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section of the waveguide can be obtained by summing dll the individual elements

as:

N
I=>1J, (3.53)
e=1

Where N is the number of elements.

The minimisation of the functional given in equation (3.53) can be performed by

differentiating with respect to the field nodal values and equating it to vary as below:

=0 (3.54)

Thus the following relation can be obtained:

o _ 2[{H LIQT -2 7[Ql - 20°[[NT 2INJH },d2 =0 (3.55)

~J[QI &Rl {H}, o [ uIN] [N]Ja-{H }, =0

A A

Thus the following eigenvalue equation can be obtained:
[Al{H }-@?[B{H }=0 (3.56)

Where the matrices [A] and [B] can be defined as:

[8]=>[Bl. =X a[[NT [N]Jdo (3.57)

Matrix {H} contains all theH-field nodal values over the whole cross-section of the
waveguide considered. [Aand [B] represent the element matrices whose assemblage
over the whole cross-section result in formation of the so called global matrices of the
eigenvalue equation, given by [A] and [B], respectively. The calculation of the element

matrices, [Al and [B} are shown in Appendix.
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When solving waveguide problems by using finite elements, the key factor affecting
storage requirements and computational effort is the choice of algorithm to solve the
matrix equation. The global matrices [A] and [B] shown in equation (3.57) are highly
sparse. The sparcity increases with the order of the matrices and decreases with the
polynomial order of the shape functions. It is obvious that using higher order basis
functions, one may obtain a more accurate solution of the problem under consideration.
However, the added disadvantage to that is that the process involves increasing the
programming effort, particularly when considering waveguide problems with material
anisotropy, infinite elements and penalty functions. In addition to that higher order
polynomials for a given matrix order increases the density of the matrix although this

can be handled with reasonable effort by using a sophisticated matrix solver.

3.4.10 Spurious Solution
The usage of vector formulations in analysing waveguide problems results in generating
some non-physical, spurious solutions along with the physical solutions of the system.

Spurious solutions may evolve due to several reasons such as:

(1) enforcement of boundary condition
(i) positive definiteness of the operator
(i) non-zero divergence of the trial fields

In theH-field formulation, the associated Euler equation is consistent with the two curl
Maxwell’s equations (3.1), (3.2) but does not satisfy tive B =0 condition which may

be the reason behind the appearance of spurious modes (Rahman and Davies 1984a).

The identification of the spurious modes amongst the physical modes can be difficult,
when a set of eigenmodes is computed. Sometimes spurious modes can be spotted from
their dispersion curves or by their eigenvectors, where the field varies in an
unreasonable, sometimes in a random way along the cross-section of the waveguide.
Rahman and Davies (Rahman and Davies 1984c) have developed a procedure which
gives a reasonable identification of the spurious modes. In the above approach, the
divergence of the magnetic fiel®,- H =0 is calculated for each eigenvector and when

the value obtained is high, it is assumed that the eigenmode does not satisfy the

divergence condition and therefore it is a spurious mode.
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Several approaches have been used, most of them aiming to force the condition
V-H =0, which is considered the main cause of spurious modes. In the method
developed by Rahman and Davies (Rahman and Davies 1984c) an integral is added to
the H-field formulation so that the resulting Euler equation is the Helmhotz equation
plus theV - B =0 condition. The variational formulation then becomes as (Rahman and
Davies 1984aRahman and Davies 1984c):

j(vXH)*j(vXH)dm;j(v.H)*(v.H)dQ
J(H" uH o

w =
Wherep is the dimensionless penalty factor. The valup ©f often taken to be around

(3.58)

1/en, where €p is the dielectric constant of the core of the waveguide. In this method the
divergence free constraint is imposed in a least-squares sense and the larger the penalty
factor the more heavily the constraint is implemented giving a further reduction of the
spurious modes from the spectrum. The penalty function also improves the quality of

the eigenvectors without increasing the order of the matrix in the eigenvalue problem.

There are some associated methods besides the mode solver methods discussed in
section 3.2 which are used. These techniques are used with the mode solvers and are
discussed below.

3.5 The Perfectly Matched Layer (PML) Boundary Condition

The Perfectly Matched Layer (PML) is the latest version of boundary conditions that
have shown their high efficiency and has proved to be more robust compared to the
previous approaches such as the Absorbing Boundary Conditions (ABC) and
Transparent Boundary Conditions (TBC). Using an imaginary electrical layer enables
the PML to absorb and attenuate the output wave at different angles and frequencies
(Berenger 1994).

Through the adjusting of the PML parameters so as to have a wave impedance of
exactly the same as inside the computational domain, the PML can offer a reflectionless
boundary to the outgoing radiation whatever its strength or angle it hits the PML-
computational domain interface. The PML boundary condition effectively absorbs the

unwanted radiation waves without reflection. The concept of the Perfectly Matched
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Layer (PML) was first introduced by Berenger (Berenger 1994) as an alternatinee to
Absorbing Boundary Conditions (ABC) and Transparent Boundary Conditions (TBC),
in order to synthesise an absorbing layer for the Finite Difference Time Domain
(FDTD) method. The PML concept has been successfully applied in one-dimensional
and three-dimension&D-BPM (Huanget al. 1996) and needs the splitting of field
components into two equations, which is not the desired form for the application of
finite elements. Pekel and Mittra (Pekel and Mittra 19%skel and Mittra 1995b) had
introduced a new form of the PML, for treating free space scattering problems, which
does not involve the field splitting, maintaining the desired form of the Maxwell’s

equation for the finite element application.

Obayya, Rahman and El-Mikati (Obaygaal.2000), incorporated the robust perfectly
matched layer boundary condition into the finite elemdyased BPM formulations,
which considers all the three field components. In this project, the PML is applied to our
FEM formulation. The main advantage of the present formulation is that the sparsity of
the global matrices is retained. Therefore a numerically efficient sparse matrix solver

can be used
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d Wy d»

Fig. 3. 7: The structure of a PCF showing transverse section of the PCF surrounded by PML
(Saitoh and Koshiba 2002).

Figure 3.7 shows the optical waveguide cross-section with different PML regions,
where x and y are the transverse directions, z is the direction of the propagation, the
regions 1, 2, 3 and 4 are the PML regions normally faced with x and y directions,
respectively, regions 5, 6, 7 and 8 corresponds to the four corners of the PML, the
middle region corresponds to the computational domain regip;,dl; and d are the

width or height of the PML and Wx and Wy are the width and height of the

computational domain in the x and y directions, respectively

Starting with new PML form, Maxwell’s equations can be taken the form:

VxH =eE 43 (3.59)
o
oH
VxE -y 3.60
1 (3.60)

WhereE andH are the electric and magnetic field vectors respectively.
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Assuming the time dependence to K& wheret is the time andb is the radian or
angular frequency angd is the imaginary part for convenience purposes. Thus the

differential formof Maxwell’s equations can be written as:
VxH = joe,n’E (3.61)
VxE =—jou,H (3.62)

Where, n is the refractive index aRts the modified differential operator defined as:

V= an§+ yaygjtzaxz2 (3.63)

oy 0z
Wherex, y andz are the unit vectors in the x, y and z directions respectively arsg a
and a are the parameters associated with the PML boundary conditions imposed at the
edge of the computational window. Since the wave propagation is assumed to be along
z direction, awill be set unity. On the other hang,and § has to be set in such a way
that the radiating waves can freely leave the computational window with almost no
reflection by taking the following profile (Obayya d. 2000):

a (t=xory)= 1 = 1 (3.64)

. O, . O,
1- > 1-]

we N wu,

In the case o., and oy, are the electric and magnetic conductivities of the PML
respectively. The equation (3.64) shows that the PML satisfies the impedance matching

condition with an adjacent medium in the computational domain with refractive index n

and wave impedancg ’u02 .
g,n

The values of the parameters ay and ay are defined in the different regions as:

(1) Centralregion (computational domain): ax=1and ay =1
(i) regiors 1 and 2 oy = orand ay =1
(i)  regions 3 and 4 cax=1and ay = oy
(iv) regions5,6,7,8 s ox = o and oy = oy
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in the PML regions, the electric conductivity profile can be assumed as

o.(p)= Gmax[wp } (3.65)

(x,y)

where omax is the maximum value of the electric conductivity, p is the distance inside

the PML which is measured from the interface of the computational domain and the
PML and m is the power of the conductivity profile and be taken as 2. For this
conductivity profile, the theoretical reflection coefficient, R, at the interface between the

PML and the computational domain is given as (Berenger 1994):

2

W

R=e —2Gﬂj[ P ]8,0 (3.66)
0

cne, W(X,y)

Wherec is the velocity of light in free space. Performing the integrating in equation

(3.66) amaxcan be shown as:

L In(lj (3.67)
24 (R

Where R is the value of the theoretical reflection coefficient.

In the case when R is set to a very small value, the maximum electric conductivity
(omay is calculated using the equation (3.6Fherefore, the PML parameters ay and ay

and the eletric conductivity profile o(p) will be determined for the different PML areas.

Such PML arrangements will force any non-physical radiating wave to leave freely the
computational domain whatever the angle and/or the strength it hits the boundary of the

computational domain.

3.6 The Least Squares Boundary Residual M ethod

There has been a considerable interest in the analysis and design of integrated optical
devices in which waveguide parameters vary along the axial direction. They play an
important role in designing practical devices such as an isolated step discontinuity as in
the simple butt-joining of two waveguides of different dimensions or materials or as
finite cascades of discontinuities as in the bending of an optical waveguide in an
integrated optical directional coupler circuit, the tapering of a channel waveguide for
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efficient coupling to an optical fibre, gratings on the dielectric waveguides on certain
components like Bragg reflectors or Y-junctions. Various methods for the analysis of
the discontinuity problems in a dielectric waveguide have been developed by a number
of authors (Clarricoats and Sharpe 19Hdckman and Sharpe 197Rlahmoud and

Beal 1975 Morishita et al. 1979 Shigesawa and Tsuji 1986). However, most of the
theoretical analyses reported earlier have restricted limitations of practical application,
since the radiated and reflected waves have been ignored and also used under the
assumption of slight discontinuity.

The problem considered here is an abrupt discontinuity in the transverse plane z = 0,
between two arbitrarily shaped uniform waveguides. Each waveguide can haveiscal
tensor permittivity that varies arbitrarily with the two transverse directions. The
incoming wave incident upon the discontinuity plane is presumed of one mode. In this
thesis, the discontinuities in the dielectric waveguides are accurately analysed using the
Least Squares Boundary Residual (LSBR) method (Rahman and Davies 1988)
Consequently, the LSBR method has been used along with the versatile vector finite
element method (Rahman and Davies 1984b) in order to calculate the power transfer

from a waveguide section to another.

The least squares boundary residual method was introduced as an alternative to the
point matching (and Galerkin) methods of numerically solving problems. The LSBR
method satisfies the boundary conditions in the useful least-squares sense over the
discontinuity interface. In contrast to the point matching method, the LSBR method is a
rigorously convergent procedure, free from the phenomenon of relative convergence.
The LSBR method has the flexibility of introducing an electric/magnetic weighting
factor and unlike the point matching the errors being minimised are global rather than
sampled just at discrete points. The method has been widely used to study discontinuity
parameters in microwave and optical waveguides (Davies; B¥68ke and Kharadly

1976 Matsumotoet al. 1986 Cullen and Yeo 198 #ernandez and Davies 1988). The
LSBR method matches the continuity of the tangential fields in the least squares sense
considering many modes at the discontinuity plane to provide the generalised scattering
matrix. In this study, it has been shown that LSBR method is an accurate and versatile

numerical tool to obtain the power transfer between coupled waveguides.
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3.6.1 Analysis of Discontinuity in Dielectric Waveguides

Consider the abrupt junction of two dielectric waveguides as illustrated in Fidt 3.8.
assumed that the discontinuity junction is excited by an incident wave of one mode
from side I. This incoming wave is partly reflected, partly transmitted and radiated at
the junction interface. Let;Eand H" be the transverse components of the electric and
magnetic fields of the incident wave respectively. Some of the incident wave is reflected
back into the side I. On the other hand, many modes will be generated at the
discontinuity plane to satisfy the boundary conditions. These can be guided or radiated
modes in both sides of the discontinuity. The total transverse electric and magnetic
fields B and H' in side | and E and H" in side Il at the discontinuity plane (z = 0),

can be expressed in terms of the eigenmodes in side | and side Il, respectively as

follows:

E =E"+ gai E, (3.68)
H, = H" —Za H, (3.69)
E' = gbi E, (3.70)
H =§,bth'i' (3.71)

The modes which are generated at the discontinuity plane may be propagating, radiating
or evanescent. Thereforg' Bnd H' represent the transverse field components of'the i
mode reflected from the junction in side | and ame the corresponding modal
amplitudes of these reflected modes. Similarly! Bnd H" are the transverse field
components of thé"imode transmitted in side Il ang &re the modal amplitudes of
those transmitted modes. These scattering coefficieatsdd) have to be determined.
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A Side Il
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» Y

Fig. 3. 8: Discontinuity junction of two dielectric waveguide (a) vertical secbf the
discontinuity between side | and Il (b) Transverse cross section of the disignéinthe
junction of two sides.

Considering the fields in either side of the discontinuity the mean-squares error to the

boundary condition in that plane can be defined as the functional:

I=[[E —E' +wzlH! - H!

fdg (3.72)

Wherew is a convenient, positive and dimensionless weighting fagias the free-

space wave impedance and the integral is calculated over the discontinuity plane.

In the LSBR method, the aim is to look for a stationary solution to satisfy the continuity
conditions of the tangential fields in a least squares sense by minimising the functional
(3.72) to obtain the approximate numerical solution to the problem. The infinite series
expansion of 3.68 to 3.71 are truncated including all relevant propagating modes plus as

many radiating and/or evanescent modes as convenient. In this analysis, all the

95



Chapter Three

reflection, transmission and radiation fields are determined in such a way the J becomes
a minimum. The electromagnetic fields thus obtained are the best approximate fields in
the sense of least square error. The condition for eq. (3.72) being minimised is

J J
a9 _g a_

=0 fori=1............... infinit 3.73
oa o Y (3.73)

this results in a set of linear equations:

Cx=v (3.74)

The solution of this equation gives (Yehal. 1978), the required approximate modal
coefficient of a and bh. These constitute one column of the scattering matrix,
corresponding to the chosen incident mode. C is a square matrix generated from the
eigenvectors and v is an array due to the incident mode. The elements of C and v are

given by:

C; =(E;, Ey)+WZ?(Hy Hy) €@.75

v, =(E", By ) +wWzZ?(H", Hy) (3.75b)
wherei,j=1...... N, and N is the total number of modes in side | and side Il and the

vectors Eand H are made up of all the corresponding modal fields in both sides.

The inner products involved in the above expressions are defined as:
(X, %,) :jxl-Xst (3.76)

Where % and % are two field vectors, X is the complex conjugate of,xand

integration is carried out over the waveguide cross section.

3.6.2 Numerical Analysis Using Finite Element Output

The vectorH-field finite element has become a powerful tool for the solution of
microwave and optical waveguides as described previously. One of the main advantages
of H-field formulation is that the continuity dfi-field component is automatically
satisfied even with permittivity discontinuities. In this thesis, to analyse the power

transfer characteristics of coupled waveguides, the rigorously convergent LSBR method
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is used along withH-field Finite Element program. The elimination of spurious
solutions by using the penalty method particularly improves the eigenvector quality,

which is a very important fact for the analysis of discontinuity problems.

By employing the Finite Element program the nodal values of the contpiéétd for

eah mode are obtained for both the waveguides (side | and side IE-Tietd over

each element is calculated using these nétiéileld values by means of Maxwell’s
equation. Modal eigenvalues and eigenvectors of all the modes in both sides of the
discontinuities are used as the input data to the LSBR method. All these eigenvalues and
eigenvectors are easily generated by employing the vector FEM program. The LSBR
program reads all the input data and calculates the integral J and minimises the error
criterion of equation 32 with respect to each value gfamd b for any given incidence

by solving a homogenous linear equation 3.74. There is no need to geneEfeetts

as the nodaH-fields can be directly used to calculate the electric field part ®f th
functional, J. The solution of the equation 3.74 gives the unknown vector {x} consisting
of the reflected and transmitted coefficients of all the modes considered in the analysis.
The singular value decomposition algorithm has been used to solve the linear equation
3.74. For numerical efficiency, the Finite Element nodal points of side | are matched
with the nodal points of side Il across the transverse plane at the discontinuity. The
LSBR method can be applied to a wide range of discontinuity problems, involving
abrupt changes at the transverse plane between arbitrary guiding structures of uniform
cross section. These include vertical shifts, horizontal misalignments, sudden changes of
width or height change in guide dimensions or materials or combinations of all these
varieties. The method can also be used to guiding structures, such as optical fibres or
titanium diffused LINb@Q channel waveguides with anisotropic or electro-optic
refractive indices. On the other hand the LSBR method can be used to find the optimum
matching of the two side waveguides by controlling the geometries and material
properties of the guides. In addition, by choosing the optimum guide parameters, the
radiation losses resulting from random fluctuations in the waveguide geometry and
refractive index can also be minimised. The resulting reflection matrix and the
transmission matrix give a complete understanding of the discontinuity problem which

facilitates better designs of optical and microwave devices.
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3.6.3 Lossesin Optical Waveguides

The sources of losses in waveguide devices include coupling losses, propagation loss,
electrode loading loss and if considered, the waveguide bending loss. The propagation
loss is generally attributable to three different mechanisms: scattering, absorption and
radiation. The scattering loss usually predominates in glass or dielectric waveguides
while absorption loss is most important in semiconductors and other crystalline
materials. Radiation losses become significant when waveguides are bent tarough
curve. Photons can be scattered, absorbed or radiated as the optical beam progresses
through the waveguide, thus reducing the total power transmitted. To describe
quantitatively the magnitude of the scattering loss, the exponential attenuation
coefficient is generally used and the intensity (power per unit area) at any point along

the length of the waveguide is given by:
1(2) = 1,672 (3.77)

Where } is the initial intensity at z = 0 and a is the power attenuation coefficient, as this

is givenasP=E"xH .

In the applications described in this thesis, the light is coupled in and out of one optical
waveguide to another through a butt joint. The LSBR method analyses the waveguide
junction efficiently in order to calculate the power transfer from the input guide to the
other. When a guided TE or TM mode is incident on the discontinuity plane between
two waveguides, some of the incident light energy is lost, called the insertion loss. The
method can also be used to calculate this power loss suffered by the TE or TM mode, by
utilising the scattering coefficients. If an incident mode of unit power is assumed then

the insertion loss in decibels is given by:

L= 10Ioglo[ZN:|bi| J (3.78)

i=1

Where, bis the transmission coefficients of tHermode and N is the total number of

modes considered.
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3.7 Summary

The aim of this chapter was to present a theoretical background of the finite element
method based on the variational principle to perform modal analysis of various
waveguide structures. The properties of various numerical methods often used in
analysing waveguide problems have been examined. An elaborate mathematical
description is given for the vectét-field based FEM formulation. Several aspects of

the method such as the boundary conditions, shape functions and methods aimed at
eliminating spurious solutions have been extensively analysed. Also, a rigorously
convergent least squares boundary residual method is described for use to analyse the
discontinuities in optical waveguides. The method is also capable of calculating the
power transfer between two waveguides using the scattering coefficients. The role of
the finite element program in utilising the LSBR technique is also presented followed
by the calculation of the insertion loss. Having established these formulations, the
results of their applications will be presented in the subsequent Chapters.
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CHAPTER FOUR: M ode Degener ation

4.0 Abstract

In this chapter the leakage and bending losses of various PCF designs are calculated and
presented. Some mode degeneration which is as a result of the coupling between the
core and cladding modes were discovered and analysed. As the bending radius is
increased the bending losses increase steadily and at some low bending radii there were
oscillatory behaviours observed which are as a result of the localised cladding modes in
the silica bridging regions (solid areas in between air-holes) coupling with the core

mode.

4.1 Introduction

Photonic Crystal Fibres (PCFs) are seen as potentially important specialized optical
waveguides due to their inherent advantages arising from their modal properties, such as
controllable spot size, birefringence and their dispersion properties which are achieved
through tailoring their structural parameters. In many practical applications, such PCFs
will encounter bends, twists and stress. It is also well known that when a fibre is bent,
the modal field shifts in the outward direction and suffers from radiation loss. One of
the main disadvantages suffered by standard silica fibre has been that significant
bending loss arises due to the low index contrast between the core and the cladding
when compared to that of a PCF. This chapter shows the studies on the variation of the
key modal parameters in such fibres that arises from the change in the coupling between
the fundamental core mode and the localized cladding mode across the air-holes. This
analysiswas done by using a rigorous full-vectorial finite element method with the

conformal transformation.
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4.2 Resultsfor PCF with Identical Air-holes
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Fig. 4. 1:A graph depicting the cross-section of a 3 ring PCF with half symmetry.

Figure 4.1 shows the structure of a photonic crystal fibre with 3 air-hole rings. It was
generated by using a graphics software package. The solid circles show the position of
the air-hdes in the PCF. The centre of the PCF is taken as the origin of the Cartesian
coordinates. The scaling used in Fig. 4.1 should be viewed as a general representation of
the cross-section of a half-structure PCF. The scales on results obtained subsequently

would vary.

4.3 M esh Refinement and Perfectly Matched Layer Optimisation

For the modal solutions of straight PCF, only a quarter of its cross-sectionsidered

by exploiting the available 2-fold of symmetry. However, to analyze modal properties
of a bent PCF, it is required to apply the conformal transformation, which will destroy
its symmetry along the vertical axis. So, in this case the available one-fold symmetry is

exploited and only upper half of the PCF is simulated as shown in Fig. 4.1.
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Fig. 4. 2: The variation of effective index ofHmode with bending radius for mesh divisions
128 x 65 and mesh 133 x 70.

The accuracy of all numerically simulated results are known to depend on the accuracy
of their representation. Initially, stability of the mesh refinement was studied. Figure 4.2
shows a comparison between two mesh divisions used, 128 x 65 and 132 70
effective index values as the bending radius, R is varied. The full width of the PCF is
discretized but only half of its heigtstp mesh division used in the x and y directions are
different. For this particular bench marking work a photonic crystal fibre with three
rings of air-holes is considered. The refractive index of the background maretias

case silicais taken as 1.445 and the air-holes are filled up with air with its refractive
index value of 1. The wavelength, A, considered here is1.55um and initially, the air

filling fraction, d/A = 0.5 and pitch A = 1.0um.

It can be observed from the curves that as the bending radieduced, the effective
index of the K;; mode increases and the increase is sharper for the lower values of
bending radius. It can be observed that the effective index value obtained for mesh of
133 x 70 is slightly higher than that of mesh 128 x 65 for all the bending radii. Isagree
with the results obtained from research previously carried out witl@nPhotonics
Group at City University London thatfiner mesh gives more accurate results and for

finer mesh refinement the effective index values increase slightl
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Fig. 4. 3: The variation of spot sizes with the bending radius, R for mesh divisions 128 x 65 and
133 x 70.

Figure 4.3 shows the variation of the spot size with the bending radius for two different
mesh refinements. It can be observed from the curves that as the bending radius reduces,
initially its spot size does not vary much but then, the spot size increases and the
increase is sharper as the bending radius is reduced further. However, it can be noted
that the spot size value is remarkably stable with the change in the mesh division used.

A more detailed discussion about spot size is provided in Chapter 6.
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Fig. 4. 4: Variation of modal loss with the bending radius, R, for mesh divisions 128 and 133.

Figure 4.4 shows the variation of the bending loss with the bending radius for two
different mesh refinements. It can be observed from the curves that as the bending
radius are reduced, the loss increases and the increase is sharper as for lower values of
bending radius. For higher values of bending radius, R, the loss curve represents only
the leakage loss. However, when R is reduced, modal field continuously shifts away
from the bending centre (on the left) and bending loss increases. It can be noted that
there is virtually no difference between the two loss curves which signifies that

calculated loss values are very stable with the mesh division used in this work.

The modal solution may also depend on the size of the orthodox computational domain
considered or location and/or width of PML used. Variation of bending loss with the
bending radius with the distance of the air-holes in the outermost ring to the nearest
PML region was tested to ascertain if there would be any interaction which could affect
the simulations. This was tested using various valueisAothere by varying the PML
distance It was observed that this did not affect the results of the experiments during
simulation which means the distance of the air-holes to the neleRBML doesn’t

affect the result. The width of the PML is taken as 40% of the length of the

computational domain (x-direction) after testing which then implies that itawvasy
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appropriate dimension to employ for accurate results in the simulations carried out to

calculate leakage and bending losses in the photonic crystal fibres.

4.4 Results of Numerical Experiments

1

—» Y (um)

— x(um)
Fig. 4. 5: H field profile of the H'' mode R = c0, A = 1.0pum, d/A = 0.5.

Figure 4.5 shows the,Hield contour of the fundamental®Hd mode in a straight PCF

for pitch A = 1.0um and d/A = 0.5. It can be seen that the field is confined to the core.

The four arrows in the profile shows the position of the air-holes while the circle-headed
arrow at the bottom shows the centre and it can be seen that at this straight PCF the field
is symmetric along the vertical axis, well confined within the core and it fits around the
air-holes. There is no visible leakage of the field to the right side into the cladding
region when the PCF is straight. The spot size of this mode is approximately.0 pm
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Fig. 4. 6: H field profile of the H' mode at R = 200pum, with A = 1.0pm and d/A = 0.5.

However, as the bending is introduced the field profile changes and.&ighows the

Hx field contour for pitch A = 1.0um, d/A = 0.5 at R = 200um. It can be seen that the

PCF is quite resistant to bending as can be seen that the field has not leaked too much
even at R = 200pum. However, it can be observed that modal field has moved more
towards the right, away from the bending direction. The spot size is increased very

slightly and is approximately 4.07 jfm
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Fig. 4. 7: H field contours for the K mode at R = 100um, with A = 1.0um, d/A =0.5.

As the bending radius is reduced further, Fig. 4.7 shows tHeld plot for pitch A =

1.0um, d/A = 0.5 when R = 100 pm. From this figure, it can be observed that the field
has leaked more into the cladding. It should be noted that for the arrangement shown in
this figure there is an air-hole on the x-axis for the first ring of air-holes. This reduces
leaking of the energy straight that direction. So, the leakage direction shown by ‘A’

and ‘B’ is in the direction in between two air-ha€in the first ring) through the silica
bridging area. The spot size has increased considemBlgunt as the bending radius

has been reduced.
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Fig. 4. 8: Thevariation of effective index with the bending radius for A = 1.6um, 1.7um, 1.8um
and 1.9um.

Next, the modal solutions of bent PCF are carried out for different pitch lenfgths,
Figure 4.8 shows the variations of effective indices with the bending rxadi\ =

1.6pm, 1.7um, 1.8um and 1.9um. It can be seen that the effective index increases as the
bending radius, R, decreases for all the pitch values. It can also be seen that as the pitch
is increased the effective indices increase as well. This is because modes are more
confined in the solid silica core area which is now larger and the effective refractive

index approaches the index of the core.
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Fig. 4. 9: The variation of bending losses with the bendidius, R for A = 1.6pum, 1.7um,
1.8um and 1.9um.

The variations of bending losses with the bending radius, R, for different pitch lengths,
A, are shown in Fig. 4.9. Higher value ofA makes the mode better confined; which
reduces loss as shown for higher bending radius. For all these cases, as the bending
radius, R decreases, the loss increddewever, for larger A, rate of loss increase with

R is faster particularly for lower R values. So, it is possible that for lower R, bending
loss foralarger A could be higher than that for a PCF wilsmaller A as shown here

the dotted line for A = 1.9um, crossing the loss value of A = 1.6pum, shown by a solid

line.
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Fig. 4. 10: H field contours for the 4; mode R = o, A = 1.9um, d/A = 0.5.

Figure 4.10 shows the 2-D field plot of the fundamental Mode forA = 1.9um and
d/A = 0.5. With R = oo, it can be observed that the field is well confined and
symmetrical within the core. Compared with the field for A = 1.0um and R = o as
shown in Fig. 4.5, the positions of the air-holes are clearly visible from the field profiles

refracting from the air-holes of the first ring. The spot size is approximately 5.9 um
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Fig. 4. 11: Variation loss with the pitch lengths for R = 5000pum, 10000pum and 50000pm

Figure 4.11 shows the variation of loss as the pitch length is varied. As pitch length
increases for the various values of bending radius, R considered, the loss decreases to
minimum value then it begins to increase again. It can also be observed that the higher

the bending radius considered the loss is smaller.

When the bending radius is large, as the bending loss is smaller, total loss mostly
represent the leakage loss. For a large bending radius, R = 50mm, as the pitch increases,
initially, loss values decreases. This is due to stronger confinement of the modes for
larger pitch length. However, it can be observed that for bending radius, R = 5mm, as
the pitch increases, although initially bending loss reduces but further increase of the
pitch causes the bending loss to increase. This is due to the availability of larger silica
bridging area in between air-holes which is susceptible to leakage loss at very small
bending radii. The discontinuity in the curves observed around pitch finro8due to

mode degeneration, which is discussed later.
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Fig. 4. 12: The variationf effective index with bending radius, R for d/A = 0.5 and d/A = 0.45.

Next, the effect of air-hole radius on the modal properties, particularly on the bending

loss is also studied. Figure 4.12 shows the graph of the variation of effective index with

the bending radius, R for d/A = 0.5 and d/A = 0.45. It can be seen from this figure that

the effective index increases as R is reduced and has a sharp increase at lower values of

R for both thed/A values. It can also be seen that the effective index isthighé/ A =

0.45 than for d/A = 0.5. The higher d/A, as in this example, d/A = 0.5 has bigger air-
holes and results in more air fraction in the cladding area. This leads to lower equivalent
index of the cladding and thus effective index reduces. However, for highes the

index contrast between core and cladding is increased, modes will be more confined in

the core.
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Fig. 4. 13: Hfield profile of the H'' mode R = o0, A = 1.0pm, d/A = 0.45

Figure 4.13 shows the 2-DyHleld plot of the F;; modefor pitch A = 1.0um andd/A =
0.45when R = . It has smaller air-holes compared to whigh = 0.5 and A is the

same for both cases. It can be seen that the field has been less confined in the core,
compared tal/A = 0.5, which was shown in Fig. 4.5. The spot size is approximately 5.0

unt.
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Fig. 4. 14: H field profile of the ™ mode R = 350pum, A = 1.0pm, d/A = 0.45

Figure 4.14 shows thesHield plot of the H;; modefor pitch A = 1.0um, d/A = 0.45,
and R = 350um. In this case it has smaller airshthlen d/A = 0.5, which was shown
earlier. It can be observed that the field has leaked a little into the cladding. The spot

size has increased to 5.4 firoompared to that of a straighEPshown in Fig. 4.13.
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Fig. 4. 15:The variation of spot size with bending radius, R for A=1.0 um d/A =0.5 and d/A =
0.45.

Figure 4.15 shows the variation of spot size with bending radius, R. The spot size
increases as bending radius is reduced and has a sharp increase at lower values of the
bending radius. It can also be seen the spot size is higher for d/A = 0.45 than for d/A =

0.5. Forhigher d/A, as example whed/ A = 0.5 it has bigger &-holes compared tal/A

= 0.45 and this causes the field to be squeezed by the larger air-holes and thus resulting

in smaller spot sizes.
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Fig. 4. 16: H field contours for the ' mode R = 170um, A = 1.9um, d/A = 0.5.

Figure 4.16 shows the 2-fld plot for A = 1.9um, d/A = 0.5, and R = 170um. It can

be observed that the field is no longer well confined or symmetrical within the core but

it has leaked considerably into the cladding region. It can be observed that the field has

moved more towards the right side and its spot size is approximately 6.0 um
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Fig. 4. 17:Variation of bending loss against bending radius, R, for A = 1.6um, 2.6pum and
5.0um for H** mode andl/A = 0.5.

Next, the bending loss for several cases of larger pitch lengths are presented and
shown in Fig. 4.17. When bending radius is very high, total loss is dominated by the
leakage loss and this value is low for bigger pitch lengthFor these cases, as the
bending radius is reduced, the bending loss increases progressively and as a result the
total loss also increases. It can be noted that when pitch length is larger, increases in the
bending loss with the bending radius are more rapid as the bending radius is reduced,
compared to the case with a lower pitch length, A = 1.6 um shown by a solid line. But it

also can be observed that in such a case, at a lower bending radius, the usual
nonmonotonic nature modifies with oscillations in the total loss values. In these cases, it
has been observed that the modal and leakage properties of both the quasi-TE and the
quasi-TM modes are almost similar along with the transition in their loss properties,
also appearing at similar locations. When the pitch length is incréasket, for A =

5.0 um the leakage loss is significantly reduced to 102 dB/m and a PCF with a larger
dimension is often then preferred. However, iis ttase the PCF is more susceptible to
bending and the total loss value increases rapidly as the bending radius is reduced: for
some fixed radii, this value can even be higher than that of a PCF with a lower pitch

value. However, in this case of a larger A, the oscillations in the loss values are more
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frequent and appear to be random in nature. Similar features have also been observed

experimentally (Yu and Chang 2004).
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Fig. 4. 18: The variation of bending loss against bending radius, R, for values of R between
700um to 900um, when A = 5.0um, d/A =0.5.

To identify the cause of such oscillationfsr A = 5.0um additional numerical
simulations are carried out for R values scale between 700pum to 900pm. Figure 4.18
shows the graph for loss valufes A = 5.0um, d/A = 0.5 and R values between 700pum

to 900um. This graph clearly illustrates the transitory behaviour in its bending loss

variation for this PCF.

118



Chapter Four

1.4400

1.4399 -

1.4398 -

1.4397

1.4396 -

Effective Index, n,

1.4395 -

1.4394 -

1.4393 T T T T T
650 700 750 800 850 900 950

Bending Radius, R(um)

Fig. 4. 19: The variation of effective index against bending radius, R, for values of R between
700um to 900pum, A = 5.0um, d/A =0.5.

To understand the origins of these oscillations, additionally, its effective index values
are also shown. Figure 4.19 shows the variation of the effective index for R between
700pm to 90Am, A = 5.0um and d/A = 0.5. This graph correlates the oscillatory
behaviour observed in bending loss of PCF. Here it can be seen that as if two separate
effective index curves meet near R = 840um, with an abrupt change. To understand it

further, its spot size is also studied and shown in Fig. 4.20.
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Fig. 4. 20: The variation of spot size against bending radius, R, for values of R between 700um
to 900pum, A = 5.0pum, d/A =0.5.

Figure 4.20 shows the variations of the spot size for R between 700um to 900um. This
graph is to illustrate the oscillatory behaviour observed in bending of PCF. Although the
spot size shows smaller variations, but in region near R = 850 to 900um, spot size is
clearly shown to reduce as bending radius is reduced. However, between values of R =
700 to 800um, it exhibits different features. There are also changes in the spot size,
besides the effective index and loss values. Following these observations, the field
variations, contour plots, line diagrams and 3ield profiles have been thoroughly

studied for this range.

As shown later in Fig. 4.33 variations of effective index with bending radius are
identical for both the quasi-TM and quasi-TE modes aom Fig. 4.34, the variation of
bending loss with bending radius are almost identical for both the quasi-TM and quasi-
TE modes. Hence, in the presentations that follow, the graphs of batidH modes

are discussed.
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Fig. 4. 21: Variation of the effective indices with the bending radius for the quasi-TE modes.

To study mode degeneration more closely, the smaller bending radius range is
considered in some further detail using an expanded range near R = 840um and creating
many additional simulated results. The variation of the effective index for the quasi-TE
mode with the bending radius is shown in Fig. 4.21. In this region, two distinct modes
can be easily identified. Their field profiles are shown later. The dashed line in Fig. 4.21
represents the first Y} eigenmode, with a higher effective index and the second
eigenmode, K, is shown by a solid line: it has a lower effective index for the range of
bending radius shown here. In a way similar to the formation of the even and odd-like
supermodes of two nonidentical coupled waveguides (Lizztwad. 2008)], these two
curves never cross each other, but these two modes go through a transition~near R
840um, when they are phase matched. The horizontal sections of these two lines
represent the H; core mode confined at the centre of the PCF. The slanted line
represents a highly dispersivé Hcladding mode, which is located on the right side of

the core and between the two air-holes for a bent PCF. This cladding mode has a
smaller core area but with a progressively higher local equivalent refractive index value
as the bending radius is reduced. For a specific bending radius, the effective index of
this cladding mode becomes equal to that of the core mode and they become degenerate.
It should be noted that the dispersion properties of the quasi-TE and quasi-TM polarized
modes for both the core and the cladding modes are similar. The loss values for these
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first H'; and second H modes are shown in Fig. 4.2% a solid and a dashed line,
respectively. Parts of these two curves form the lower section, which shows the loss
values of the M, core mode, is around 2000 dB/m. On the other hand, the upper lines
represent the Tg cladding modes with significantly higher loss values, around 14000
dB/m. However, these two curves also go through a transition nea83 pum. The

upper curve goes through a local minimum near the mode degeneration point, being
mixed with a less lossy’ core mode. Similarly the loss value of the lower curve also

peaks near the resonance due to being mixed with a highly lossy cladding mode.
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Fig. 4. 22: Variation of the total losses with the bending radius R.
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Fig. 4. 23: Variation of the HHield along the x-axis for R = 8m, A =5.0um, d/A = 0.5.

Next H, field profile of the Hy; modeis shown to demonstrate the transition of the
mode. Figure 4.23 shows the Ifhode variation along the x-axis for R = 840puam,

radius slightly bigger than the degeneration point anel5.0um and d/A = 0.5. It can

be observed that the main peak is almost at the centre but slightly shifted to the right
due to the bend whereas the minor peak has a magnitude approximately 0.22 a. u. The
modal field profile expands more on the right as the PCF is bending to the left. It can
also be seen that there are low fields near the two air-holes on the right (Locations of
air-holes are shown by arrows, where field is nearly equal to zero). It can be noted that
the first minor peak is also positive, same sign as that of the main lobe in the core.

These minor peaks can be part of the clad mode which can form in the bent PCF.
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Fig. 4. 24: H field profile along the X axis for the’d core when R = 830 um below the
degeneration point.

The field for R= 830um, for a value slightly lower than the degeneration point, is

shown in Fig. 4.24. The twadii values, R = 830pum and R = 840um were selected on

the two sides of the crossing point shown in Fig. 444 the clad mode crosses the

HY;11 mode, R curve, its mode order changes, which is identified by the sudden change

of the first minor peaks sign with a magnitude approximately -0.18 a. u.
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Fig. 4. 25: Variation of the Hield along the xaxis R = 825um, A = 5.0um, d/A = 0.5
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Next, field variation is shown for slightly reduced bend. Figure 4.25 shows the graph for
field along the xaxis for R = 825um, A = 5.0um and d/A = 0.5. It clearly shows three
secondary peaks along with the main peak near the centre. It can be observed that the
first secondary peak is negative and it is totally different from that shown in Fig 4.23.
Also, its value increased slightly compared to that at R = 830um with magnitude
approximately -0.2 a. u. This shows mode transformation from one form to the other,
which was observed in the change in the effective index, bending loss and spot size. The
mode profiles shown in Figs. 4.24 and 4.25 can be considered as coupled supermodes.
Two coupling guided-waw regions are non-identicalo the amplitudes of modes in

these regions are different. Similar abrupt changes in the field profiles have been

identified at the various transition points.

30 T T T 1
0.8
20 i
0.6

e |

Y-axis (um)
=

-0.4
206
-0.6
_30{ ! | : L 1
-30 -20 -10 0 10 20 30

X-axis (um)
Fig. 4. 26: H contour of the higher oed cladding mode when R = 833 um.

To show these cladding modes, a contour plot of this mode is shown next. Figure 4.26
shows H contour plot for the M, mode at R = 833 um. This is a higher order cladding
mode and it can be observed that the intensity of the mode is seen clearly in the

cladding region. The positions of the air-holes in the cladding are indicated by circles.
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Fig. 4. 27: H 3-D field for the H'* mode R = 825um, A = 5.0pum, d/A = 0.5.

For clarity the 3-D profile for the H' mode R = 825unis also shown. Figure 4.27
shows the graph for field along theaxis for R = 825um, A = 5.0um, d/A = 0.5. It can

be observed in Fig. 4.24or R = 825um) that there is a negative secondary peak as well
as another positive secondary peak. The ripaiése right side of the cladding region
indicate radiation loss. These field profiles shown between for R = 825um and R =
850um, clearly show the differences and their effects in the variation of its spot sizes
was shown in Fig. 4.20. This created an abrupt discontinuity in its effective index curve

and a sharp increase in its loss value.
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Fig. 4. 28: Variation of the effective indices with the bending radius R.

Besides the transition around R ~ 833um, there were additional transitory behaviours
which are shown in Fig. 4.28. The variation of effective indices with bending radius is
studied next around R = 1460 pum asanother oscillatory peak was visible in Fig. 4.17 in

this region.
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Fig. 4. 29: Variation of the total losses with the bending radius R.
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The loss values for these firstiHand second ¥4 modes are shown in Fig. 4.29 by a
solid and a dashed line, respectively. Parts of these two curves form the lower section,
which shows the loss values of thé Hcore mode, is around 100 dB/m. On the other
hand, the upper lines represent thg; Kladding modes with significantly higher loss
values, around 12000 dB/m. However, these two curves also go through a transition
near R~ 1445 um, which is similar to the effective index curves shown in Fig. 4.22.

The upper curve goes through a local minimum (which is not clearly visible) near the
mode degeneration point, being mixed with a less losSsydére mode. Similarly the

loss value of the lower curve also peaks near the resonance due to being mixed with a
highly lossy cladding mode. In this case it should be noted that the core mode has a
lower loss (about 100 dB/m) compared to a higher loss (2000 dB/m) shown in Fig. 4.22,

for a lower bending radius.
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Fig. 4. 30: H field profile of the H;; core mode along the x axis through the centre of the core
when R = 1460 um.

The variation of the Kfield for the H;; core mode along the centre of the guide in the
x direction is shown in Fig. 4.30 when R was arol#60 pm. It can be observed that
field is predominantly confined at the centre of the PCF core: however, its maximum

value is shifted slightly to the right of the waveguide centre, shown by an arrow. Two
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local peaks are also visible and are located in the silica bridge region between the first
and second air-hole rings and the second and third air-hole rings (shown as 1, 2, and 3
in Fig. 4.30), respectively. These peaks are only visible on the right of the core, not on
the left side, as following the conformal transformation; the higher local equivalent
index valwe on right allows such local modes to be formed on the right side of the core.

lts spot size and effeet area are 31.5 and 30.0 um?

, respectively. At this particular
bending radius (where R = 1460 pm), a local cladding mode also exists with its
effective index slightly lower than the"H core mode. The locations of the air-holes are
shown by circles. It can clearly be observed that this cladding mode is formed between
the air-holes of the second and third rings. Thefield contour for this F; cladding

mode is shown in Fig. 4.31. The spot size of this mode is smaller (6 = 26.1 pm?),

being restricted to a smaller silica bridging region (but ig-A37.4 um? is rather large

as the field spreads slowly), but this mode is highly dispersive with a higher loss value.
When the bending radius is reduced below the degeneration point (R < 1445 pm) the
effective index of the cladding mode becomes higher than that of*theedte mode

and the two eigenvalues swapped their positions.
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Fig. 4. 31: Hfield contour for K, cladding modevhen R = 1460 pm.

Figure 4.30 shows the field profile for the bending radius R = 146Gor the H*;;

mode. It is observed that there is a variation along the x-axis as discussed in previous
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figures. At this high bending radius the peaks of the variations are positive and not very
high in relation to the core mode. Whereas, in Fig. 4.31, we have shown the contour plot
of the H';; cladding mode at R = 1466mn. It can be observed that the intensity of the

mode has shifted to the right side into the cladding region and it is highest between the

second and the third ring of air-holes.

Next the polarization issues of such modal degeneration are studied.

1.4265
A —e— TE
_ |
1.4260 A —A— TM
A
e’ 1.4255 - i
-
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£ d/A = 0.5
o 142507 % = 1.55um
= N=3
[$)
Q
= 1.4245 -
1.4240 -
1.4235 : .

102 103 104 105

Bending Radius, R (um)

Fig. 4. 32:The variation of effective index with bending radius, R for A =2.6um, for both the
quasi-TE and quasi-TM modes.

In the work carried out in this chapter, it was observed that the effective index of the
quasi-TM, H' mode and that of the quasi-TE,'Hmode were nearly identical. Figure

4.32 shows the variation of effective index with bending radius, R for both the
polarizations. It can be seen from Fig. 4.32 that the effective index increases as bending
radius is reduced and has a sharp increase at lower values of bending radius. It shows
small abrupt changes around R = 60Qibuat positions were identical for both the

guasi-TE and quasi-TM polarizations.
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Fig. 4. 33:The variation of loss with bending radius, R for A = 2.6um, for both quasi-TE and
quasi-TM modes.

It was also observed from the work carried out in this chapter that the bending loss for
the quasi-TM and quasi-TE modes is identical also. Figure 4.33 shows the variation of
loss with bending radius, R. It can be seen from Fig. 4.33 that the loss increases as
bending radius is reduced and has a sharp increase at lower values of bending radius. It
shows small abrupt changes around R = 600um for the quasi-TE and quasi-TM
polarizations. This correlates with the change in effective index shown in Fig. 4.33.
Similar detailed field profiles, spot size variations were studied and the abrupt changes
are due to the transition of the modal profiles. This also shows the degeneration happens

for both the polarizations and these are not numerical artefact.

4.5 Summary

In this chapter, the origin of localized cladding modes in the silica bridging regions
between the air-holes is studied for the first time, with results obtained as summarized
in the figures above. This shows that these silica bridging areas are smaller than the
PCF core (where an diole is missing) and for a straight PCF particularly when A is

larger, these cladding modes with the lower effective indices do not interact with the
PCF core mode. However, for a bent PCF, as the local equivalent index is increased in
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the cladding region and this increase is more for small bending radius and also local
indices are higher for a silica region further away from the core on the right side. The
dispersion slopes of these modes are higher and for smaller bending radii they can be
phase matched to the core mode to form coupled supermodes. It is also shown that these
cladding modes can also cover several bridging regions simultaneously and also support
the higher order modes. This mode degeneration causes a mixing of these modes, the
formation of the supermodes and the transformation from one mode to another. These
cause rapid changes in their modal properties, #ifective index, the spot size and the
bending loss values. A higher pitch value or largér gitio which increaes the silica
bridging regions and such mode degeneration can appear at a higher bending radius,
which may often be encountered in practical applications. In these cases, the mode
degeneration appears more frequently and shows as noisy loss values in experimental
measurements. Resulting from this work, the origin of these fundamental and higher
order cladding modes, the coupling between them and ultimately the coupling of these
cladding supermodes with the fundamental core mode have been reported for the first
time and these can affect the design of various PCF-based applications. The study of
this mode degeneration gives insight to the practical application of PCFs and the
optimum handing conditionduring many “real world” applications. This understanding

can also be useful in the study of PCF-based devices, thereby exploiting bending loss,
for example by using effectively single mode waveguides with differential modal losses
and single polarization waveguides with highly differential polarization dependent
bending losses or additionally, in the design of optical attenuators, for example. The
application to the design of single mode single polarization PCF is presented in the next
Chapter.
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CHAPTER FIVE: Polarization Maintaining Fibre

5.0 Abstract

In this chapter, design approach of a highly birefringent PCF is considereduse i&s

a single mode single polarization waveguide. This was achieved by increasing diameters
of four air-holes in the first ring and thus making the PCF asymmetric resulting in the
core being more elliptical. By operating the PCF close to cutoff, differential loss
between the two polarized modes was enhanced. It is also shown that by bending this

asymmetric PCF, the differential modal loss can be further enhanced.

5.1 Polarization Maintaining Optical Fibres

Polarization maintaining optical fibore (PMF) is a type of optical fibore which maintains
the polarization state of the light waves that are launched into it, thereby maintaining the
polarization plane during the propagation. It does this with little or no cross coupling of
optical power between the polarizations modes. This type of fibre is very useful today
because of the increasing demand for higher bandwidth by using polarization division
multiplexing and polarization mode dispersion above 10Gbps data rate and as well as
the increasing complexity of optical networks in modern telecommunications systems
(Goure and Verrier 2002oli et al.2007 Agrawal 2008).

Polarization maintaining optical fibres are also used for special applications like fibre
optic sensing (Chaat al.2007), interferometry and quantum key distributibn ét al.

2011). They are also be commonly used in telecommunications for the connection
between a source laser and a modulator since the modulator requires light of a specific
polarization as input. They are rarely used for long distance transmission because
polarization maintaining optical fibre is relatively expensive and has higher attenuation
than the single mode fibres (Goure and Verrier 20t et al.2007 Agrawal 2008).

There are several types of polarization maintaining optical fibres avaitat#ekind of

such fibres are the asymmetric geometric high birefringence (Hi-Bi) fibres, such as the
elliptical core fibre or the D-shaped cladding fibre (letial. 1994). The core or the
cladding of this kind of fibre is usually deformed from a circular shape to generate an

asymmetryin the fibre structure. The other kind is the stress-induced hi-bi fibre. This
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kind of fibre is fabricated with stress applying zones so that a particular stress status can
be maintained in the fibre such as the Panda type and the Bow-tie type by using elasto-
optic effect or via rods of another material of different thermal expansion included
within the cladding of the fibre (Liet al.1994).

5.2 Photonic Crystal Fibre as a Polarization Maintaining Optical Fibre

There are different polarization maintaining optical fibres employed so that the
polarization of light is maintained as the light is propagated through the fibre. These
fibores are Panda type, Bow-tie type, photonic crystal fibore and elliptical clad type

Figure 5.1(a) shows the Panda type polarization maintaining optical fibre, Fig 5.1 (b)
shows the Bow-tie type polarization maintaining optical fibre and Fig 5.1(c) shows the
elliptical clad type polarization maintaining optical fiore. On the other hand, a simple

photonic crystal fibre (PCF) can also be designed as a polarization maintaining optical

@) (b) (©)

fibre as well.

Fig. 5. 1: The panda type (b) the bow-tie and (c) the elliptical clad type polarization niagntain
optical fibres (Liuet al.1994)
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Fig. 5. 2: The core and the first ring of air-holes in a PCF (a) witlhalair-holes of the same
diameter thus the core is circular (b) two larger air-holes on the side of the core makirg the c
elliptical, height > width (c) two larger air-holes above the core and twerlaigholes below
the core makes the core elliptical, width > height.
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Fig. 5. 3: A graph depicting half of the crasstion of a PCF; d # d,
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Fig. 5. 4: A graph depicting half of the crasstion of a PCF; d # d,, same as shown in Fig. 5.3
but witha 90 degree rotation.

Photonics Crystal Fibre (PCF) have several advantages that by varying the size and
location of the air-holes, the fibre mode shape, non-linearity, dispersion and
birefringence can reach values that are not achievable in conventional fibres. Photonic
crystal fibres can also be designed to carry higher power than conventional fibre and
their wavelength dependent properties can be manipulated to improve their peréormanc
in certain applications. It has been mentioned earlier that an ordinary PCF with 6-fold
symmetry has near zero birefringence and the air-hole arrangement of the difist rin
shown in Fig. 5.2(a). It is well known that air-holes in the first ring dominate the modal
properties of such PCFs. However, polarization maintaining photonic crystal fibres can
be designed by destroying the 90 degree rotational symmetry. In this case, different a
hole diameters along two orthogonal axes near the core region provide an effective
index difference between the two orthogonal polarization modes. As is observed in
Figs. 5.2(b) where the height>width and 5.2(c) where the width>height, thus making the
core more elliptical in shape ensuring increased birefringence. It has been shown that
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their birefringence is of the order of 10which is one order of magnitude larger than
that of conventional polarization maintaining optical fibores and better polarization

maintaining characteristics are expected (Suetikil.2001).

5.3 Straight Single M ode Single Polarization Asymmetric PCF

In this study, index guiding silica PCF with the air-holes arranged in a triangular lattice
is considered first. The refractive index of the silica used is taken as 1.444 at an
operating wavelength of 1.55 um. A typical PCF with 60° rotational symmetry can
support two fundamental’d (quasi-TE) and K (quasi-TM) modes and with higher

A and d/A values, but it may also support additional higher-order modes of a given
polarization. This structure possesses a birefringence as it does not have the necessary
90° rotational symmetry, but this value being very small which has often been ignored.
The modal birefringence of a PCF can be increased by breaking the rotational gymmetr
of having air-holes of different diameters. Initially, the asymmetric arrangement
considered here is similar to that considered in previous work (Rakmah2006
Kejalakshmyet al.2008b), where the diameters)(df the four air-holes in the first ring

are larger than those of the other air-hole diameters (d) as seen in Fig. 5.3. Later on,
orientation of the structural asymmetry is also studied for a bent PCF as shown in Fig.
5.4. In Fig. 5.5, the variations of the effective indices of the quasi-TE and quasi-TM
modes, with respect to the ratig'Al, are shown for a PCF with d/A = 0.5 and A = 1.6

um. Effective index decreases as the d/A is increased both the TE and TM
polarizations due the increase in the air fraction. The effective index is lower in the case
of the TM mode than that of the TE mode. For this arrangement, as its equivalent height
is smaller than its equivalent width, the effective index of the quasi-TW)(khode is

lower than that of the quasi-TE {H) mode as observed in Fig. 5.2. This also yields a
significantly high modal birefringence. Here, the birefringence is defined as the
difference between the effective indices of thg;Hnd H1; modes, B = |p— ny|. The
quasi-TM mode (with the dominant,Hind E fields) has a smaller effective index
value, is slightly weakly confined compared to the TE mode and expands more into the
cladding region, which also makes it highly exposed to the bigger air-holes. It can be
observed that, as the value of/Al increases, the effect of structural asymmetry

increases further, as does the modal birefringence. It should be noted that the modal
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birefringence shown here is higher than that 6Panda” or “Bow-tie” fibre and this

can be achieved by using simple air-hole diameter adjustment.
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All the modes in a PCF suffer from leakage loss. For a PCF with structural asymmetry,
leakage losses for quasi-TE and TM modes are different. In Fig. 5.6, it is observed that
as @/A is increased, the loss increases as well for both the TM and TE modes. As the
air-hole diameter is increased, its core size is reduced, which pushes modes more
towards their cut off. It can also be observed that the loss for the TM imadivays

higher than that of the TE mode.

In the design of a single polarization single mode PCF, a dimensionless differential loss
ratio, LR, is studied. To identify their relation, LR can be defined as the ratio of leakage
loss of TM mode (amm) to theleakage loss of TE mode (arg) and it is given as follows:

LR = (XTM/ OTE (51)
7
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Fig. 5. 7: Variation of the differential LR withya\ for pitches 1.6 and 18m

It is observed from Fig. 5.7 that as th#Adis increased, the loss ratio increases too for
A =1.6pm and N = 3. The rate of increase is slower starting from d/A = 0.6 but the rate
of increase is steeper towardg/d= 0.9 which could be attributed to approaching the

cut-off limit. As dy/A is increased so does the loss ratio, LR whereby the curves of A =
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1.6 and 1.8um are compared. It can be observed that A = 1.6um has a higher loss than
that A = 1.8um. As was observed in previous calculations, the loss values for both
TM and TE modes are higher for = 1.6um than that ofA = 1.8um, as for smaller

pitch, PCF are operating closer to their cut off condition.

5.4 Resultsfor Bent Asymmetric PCF, d # d, (Non-lIdentical Air-holes)
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Fig. 5. 8:Variation of effective index with bending radius, R for A = 1.8um, d/A = 0.5, do/A =
0.8 for both quasi-TE and quasi-TM modes.

Next, the effect of bending in such highly birefringent PCF is studied. Figure 5.8 shows
the variation of effective index with bending radius, R for both the fundamental quasi-
TE and quasi-TM modes. In both cases, the effective index increases as bending radius
is reduced. The use of conformal transformation modifies the local refractive index to
its equivalent index value. For a bent guide mode shape is modified by the higher index
seen at right side of the y-axis, which increases the effective indices as discussed in

Chapte 4. It can also be seen the effective index is higher for the quasi-TE mode

compared to the quasi-TM mode.
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Fig. 5. 9: H field profile of the H"* mode aR =, A = 1.8, dy/A =0.8.

Figure 5.9 shows the,Hield plot of the H;; modefor pitch A = 1.8um, d/A = 0.5 and

do/A = 0.8 and at R = . It can be noted that,Hield is the dominant component of the
quasi-TM, Hi; mode. The field is well confined within the core. The six-fold rotational
symmetry of the field is broken because of the air-hole diameters in the first ring are
different as d # dy. It can be noted at that fop ® d, width of the core is larger than its
height.
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Fig. 5. 10: H field profile of the H* mode aR = 500um, A = 1.8, d/A = 0.8.

Figure 5.10 shows the,Hield plot of the H1; modefor pitch A = 1.8um, d/A = 0.5 and

do/A = 0.8 and at R = 500um. It can be observed that the field shifts to the right side,
more into the cladding. It can be clearly observed that a smaller magnitude field
encircles one air-hole on the x-axis in the first ring. The symmetry of the field is broken

because of the variation of the air-hole diameiend because d # d..
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Fig. 5. 11: Variation of spot size with thending radius, R for A =1.8um, d/A=0.5, d/A =
0.8 for both quasi-TE and quasi-TM modes.

Figure 5.11 shows the variation of the spot size with the bending radius, R. The spot
size increases as bending radius is reduced but it is noted that the variation is small. This
particular example, with A = 1.0um, the PCF is operating close to its cut off condition.

In this case as the waveguide bends, due to the change in the refractive index profile, the
spot size increases when a bend is introduced. It can also be seen that the spot siz
higher for the quasi-TE polarization than that of the quasi-TM polarization. Further
explanations on spot size are given in Chapter 6.
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Fig. 5. 12: Variation of loss with th&nding radius, R for A = 1.8um, d/A =0.5, dQo/A = 0.8 for
both quasi-TE and quasi-TM modes.

Figure 5.12 shows the variation of loss with bending radius, R. The loss increases as
bending radius is reduced and there is a much sharper increase at lower values of the
bending radius. Similar feature has been widely observed for bent optical fibres and
bent integrated optical waveguides (Rajaragaual. 2000). It can also be observed that

the loss is higher for the quasi-TM polarization than that for the quasi-TE polarization
This also agrees with earlier work (Kejalakshetyal. 2008a) that when,d> d, the
guasi-TM mode approaches its cut off condition earlier than the quasi-TE mode and
expected to suffer from higher losses. It was shown earlier in Chapter 4 that whend =d

the curves for both the quasi-TE and quasi-TM mods identical.
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Fig. 5. 13:Variation of birefringence with bending radius, R for A = 1.8um, d/A =0.5, dy/A =

0.8.

Figure 5.13 shows the birefringence with bending radius, R. It can be observed that

birefringence reduces only slightly with the reduction in the bending radius, R and it

tends to level out at higher values of bending radius. The birefringence value for straight

PCF (R = «) agrees well with earlier results (Kejalakshney al.2008b).
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Fig. 5. 14:Variation of loss ratio with bending radius, R for A = 1.8um, d/A =0.5, d,/A =0.8.

Figure 5.14 shows the variation of loss ratio with the bending radius, R. In this case the
loss ratio is defined as the ratio of loss in quasi-TM mode to that of loss inTduasi-
mode,LR = arm/are. The loss ratio increases as bending radius is reduced and there is a
much sharper increase at lower values of bending radius. It should be noted the bending
of a PCF can be exploited to enhance the loss ratio, particularly in the design of a single
polarization PCF. It can be observed that the loss ratio increased from about 1.4 to 3.0 at
lower values of bending radius. This shows that loss ratio can be increased substantially
by bending an asymmetric PCF.

146



Chapter Five

108

[—— . =] dZI".’\ = D-E
i .. s =y dzf,.'\_ = D.Es
== 2/A =0.9

10%

102 ]

Loss (dB/m)

102 A=1.8um
d/ia=0.5
A=1.55um
N=3

j01 L H*44 mode | |
10° 104 10°

Bending Radius, R(um)
Fig. 5. 15: Variation of the bending losses with the bending radius, R, of the TM modes for
different d/A ratios.

Figure 5.15 shows the graph of the bending loss against the bending radius fax the H
mode as gA is varied. It is observed that as the bending radius is increased the loss
increases and also, as th@Adincreases, this results in increase in loss as well. As it has
been mentioned, an increase W\dnot only increases the asymmetry, but also brings

the modes close to their cut off conditions.
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Fig. 5. 16:Variation of loss ratio with bending radius, R for A = 1.8um, d/A =0.5, d,/A =0.8,
0.85 and 0.9.

Figure 5.16 shows the variation of loss ratio, LR, with the bending radius, R, for values
of do/A = 0.8, 0.85 and 0.9. The loss ratio increases as bending radius is reduced and

there is a much sharper increase at lower values of bending radius for all valp@s of d
considered, here it can be clearly observed that loss ratio is higherAor @.9 than

for dy/A = 0.85 which is as well higher than in the case of do/A = 0.8 as the asymmetry

was increased. It can also be seen that the loss ratio increases significantly in all three
cases for high bending radius than at low bending radius. It can be noted that the higher
the value of dA, the peak for loss ratio is attained at a slightly higher bending radius

value. The peak loss value is higher for the higher valuegsf d

148



Chapter Five

0.0060
0.0055 - -1

— A =1.8um

> = = = u W

S 0.0050 - L L d/A =05

£ A = 1.55um

|| N=3

M 0.0045 -

] L‘—»—A—&—&—A

(3]

c

S 0.0040 -

£ —e— d,/A=08

S

= -—

T 00035 - —A— d,/A=0.85

o S‘ m d/A=09
0.0030 -
0.0025 : : :

102 103 10¢ 10 106

Bending Radius, R (um)

Fig. 5. 17:Variation of birefringence with bending radius, R for A =1.8um, d/A =0.5, d/A =
0.8, 0.85and 0.9.

Figure 5.17 shows the variation of birefringence with bending radius, R, for values of
do/A = 0.8, 0.85 and 0.9. The curves for birefringence are fairly straight at higher values

of bending radius for all values of/d considered. As the bending radius is reduced,
initially B reduced slightly and very close to cutoff, it increases slightly. However, as
expected birefringence values are higher for higher structural asymmetry with larger

do/A values.
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Fig. 5. 18: Variation of loss ratio withyéh, A = 1.8um for R = o0 and 600um.

Modal birefringence and loss ratio increases as asymmetry of the PCF is increased and
this is studied next. Figure 5.18 shows the variation of loss ratio withaid A =

1.8um for a straight PCF and a case with R = 600um. The loss ratio increases as the
value of d/A is increased for a straight PCF. However, it is very interesting to observe
that the loss ratio increases further when PCF is bent for the same hlis suggests

that bending can be introduced to enhance the loss ratio of an asymmetric highly

birefringent PCF. This can be used in the desigmldtter single polarization PCF.
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Fig. 5. 19: Variation of loss wti bending radius, R for A = 1.6um, d/A = 0.5, do/A = 0.85 for
both quasi-TE and quasi-TM modes.

In Fig. 5.7, it was shown that for asymmetric but straight PCF, loss ratio increases as
pitch was reduced. Next, loss ratio of a bent PCF with a lower pitch is studied. Figure
5.19 shows the variation of loss with bending radius, R for a smaller pitch léngth,

1.6 um. The loss increases as bending radius is reduced and there is a much sharper
increase at lower values of bending radius. It can also be seen the loss is higher for
quasi-TM than for quasi-TE polarization.
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Fig. 5. 20:Variation of loss ratio with bending radius, R for A = 1.6um and A = 1.8um, d/A =
0.5, d/A =0.85.

Figure 5.20 shows the variation of loss ratio, LR, with the bending radius, R. The loss
ratio increases as bending radius is reduced and there is a much sharper increase at
lower values of bending radius for both A = 1.6pm and A = 1.8um. The loss ratio for a

small pitch,A = 1.6pum reached its peak earlier and it is greater than that for A = 1.8um.

As was observed earlier, the loss for quasi-TM mode and that of quasi-TE mode are
higher forA = 1.6um than that ofA = 1.8um thus, resulting in higher LR fox = 1.6um

than that 6A = 1.8um.
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Fig. 5. 21:Variation of birefringence with bending radius, R for A = 1.6um and A = 1.8um with
d/A=0.5,d,/A =0.85.

Figure 5.21 shows the variation of birefringence with bending radius, R. The curves for
birefringence are fairly straight higher values of bending radius for both A = 1.6um

and A = 1.8um. It can be seen that the birefringence for A = 1.6um is higher than that

for A = 1.8um when dA and @/A were kept constant at 0.5 and 0.85 respectively. It
was observed previously that effective index was highefer 1.8um in both the
guasi-TM and quasi-TE polarizations because of the lower air fraction than in the case

of A =1.6um. This results in higher B fok = 1.6umthan forA = 1.8um.
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Fig. 5. 22: Variation of the LRs with the bending radius for different N values.

In Fig. 5.22 the variations of the loss ratio, LR, with bending radius are presented as the
number of rings, N, is varied. Sthis suggests that LR can be enhanced by operating a

bent PCF near their cutoff but with higher number of air-hole rings.

It is necessary to evaluate the range gf\dfor which a given PCF will have SMSP
operation, with a lower TE modal loss. This analysis can be carried out by evaluating
the length of PCF that is necessary to offer a larger loss to the quasi-TM mode than that
of the quasi-TE mode (say, by an amount of 20-ai8 any other ratio can be defined).

This length (in cm) of PCF, 2 dB, to achieve 20 dB differential loss can be defined as:

L,,dB= ﬂ (5.2)
Ay — O

where orte and ary are loss values for the fundamental quasi-TE and quasi-TM modes

given in decibels per centimetre. Figure 5.23 shows the variation of a PCF with a length

of Lyo dB (in centimetres) with respect to R for differeptAdvalues. It can be seen that

the length of the PCF section that is necessary can be of the order of a fraction of a
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metre and with higher pitch ratio when the quasi-TM modes can be suppressed
effectively. However, a PCF for a specific application should be determined based on
the combined factor of the,4.dB and the total TE modal loss. From Fig. 5.23, it can be
seen that the value of the lengthg B, can be varied over a wide range by varying the
number of rings and bending radius. As an example, when N =5 and R is 0.5 cm, the

required PCF length to achieve the 20 dB differential loss is only 0.2cm.

10.0
—f ] = &
- e —— N=4
- N=3 . — Wi e
- n
[ " e i
E [
u..
[ ]
g 1.0 4 o
| | |
| |
| |
| ]
| ]
[ ]
| |
0.1 . .
0.1 1.0 10.0

Bending Radius, R(cm)

Fig. 5. 23: Variation of kydB length with the bending radius for different N values.

However, when the bending radius is increased to 1.0 cm, which would be easier,
depending on the stiffness of the PCF, the length required would be increased to 0.4 cm,
which would also be easier to handle. For these designs, the length and corresponding
total TE loss values are shown in Fig. 5.24 to achieve a 20 dB differential lossb# can
observed that total TE loss values could be less than 1 dB and the length of the PCF
section could be below 5 cm. For the examples given earlier, with N = 5 andch= 1

the required length was 0.4 cm and its corresponding total TE loss is only 0.07 dB. The
length may be too short to handle it conveniently, but it should be noted that, if the
length is increased by 10 times to 4 cm, which would allow it to be more easily handled,
in this case the total TE loss would increase to 0.7 dB. This is still a low value and the
differential loss would be 200 dB, a significantly improved value. Similarly, for N = 5
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and R = 0.5 cm, if the length is increased to 2 cm, the differential loss would be 200 dB
with the total TE loss only 0.5 dB. These TE loss values for a 200 dB differential loss
are shown separately by a chained line with stars. Similarly other fabrication
parameters, such as the pitch length, the airdwspetch ratio, d/A and the asymmetry

(via the d value) can be adjusted to obtain a suitable design for a specific application.

100
N =5
- em s e N=4
N=3
=msenmme N =5x10
101
1]
=)
" _
8 1 -
- | - -..-.-_._'_-.-i-*
L P - o oy n R
= /
0.1 / A=1.8um
dih =0.5
d, /A =09
A=1.55um
0.01 . . . .
0 1 2 3 4 5

Fig. 5. 24: Variation of kydB length with respect to the TE loss for different N values.

The bending loss depends not only on the polarization states, as shown above, but also
on the air-hole orientation and the bending plane. When the hole orientation is rotated
by 90° (and the bending plane remains the same) as shown in Fig. 5.4, modal properties
and the bending loss value change. Variation of the bending loss with the bending
radius for both polarization states and for both hole orientations are shown in Fig. 5.25
It should be noted that, in the original hole orientation (Rahretiral. 2006
Kejalakshmyet al. 2008b), the effective height of the waveguide is smaller than its
effective width. The resulting waveguide asymmetry gives the modal birefringence and
the differential LR. For this particular orientation, the effective index of the Hode

is lower and its bending loss is higher compared to therhbde as shown for the holes
orientation in Fig. 5.3. On the other hand, when the orientation of the larger four air-
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holes is rotated by 90° as shown in Fig. 5.4, its effective height becomes smaller than its
effective width. It can be observed that the bending loss of thentbde in the original
orientation (Fig. 5.Bis similar to the bending loss of theé'yd mode in the rotated
structure (Fig. 5.4) and vice versa. However, this nearly reverses the modal properties,

as the Pij; mode of the original orientation behaves similar to tHg khode in the
rotated structure. However, as in the bent PCF, due to the lack of symmetry along the

vertical axis, the bending losses for théHand Hi; modes are slightly different,

which is clearly shown in Fig. 5.25.
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Fig. 5. 25: Variation of the loss with the bending radius for two different asymmetr

orientations.

Modal confinement and bending loss also depend on the operating wavelength.
Variation of the bending loss for the quasi-TE(jHand quasi-TM (K1) modes with
the wavelength for both the original orientation and 90° rotated structures are shown in

Fig. 5.26 In this case, the structural parameters are taken as A = 1.8 pum, d/A = 0.5,
d/A=0.9,N=5and R =1 cm. It can be observed that, as the operating wavelength is

increased, the bending loss is increased as its modal confinement also reduces and the

modal field spreads more into the cladding area. It has already been mentioned that,
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when the structural asymmetry is rotated by 90°, quasi-TE modes would be comparable

to quasi-TM modes of the rotated structure and vice versa.
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Fig. 5. 26: Variation of loss with the operating wavelength for two different asymmetry
orientations.

5.6 Summary
In this chapter, the design of a SMSP PCF has been reported in which for the first time

(Rahmaret al.2011), it has been shown that, by bending an asymmetric PCF, it can be
observed that thelifferential loss polarization dependent loss can be significantly
increased. The design approach was developed by exploiting the differential bending
loss and then analyzed through the use of a rigorous full-vectorial FEM. Initially, the
bending of the PCF has been assumed to be in-tiYepiane.It has been shown that,

for this asymmetry arrangement chosen here, the TM modal loss is higher than that of
the TE mode. However, the differential LR increases with any excessive bending
beyond a critical value of the bending radius. Such a critical bending radius can be
tuned with a suitable adjustment of the value0AdThe LR increases with the number

of air-hole rings, N, in the PCF cladding. These results can be used to assist in designing
the single polarization condition in a bent PCF. The PCFs designs emalys all
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single-mode guides when operated closer to their cutoff conditions. Furthermore, the
effects of structural asymmetry have also been carried out to evaluate the effect on the
SMSP of a PCF due to bending for different air-hole orientations. Variations of the
bending loss for the quasi-TE and quasi-TM modes with the different operating
wavelengths are also presented. Such a PCF, which only guides one polarization state,
can be used for various linear, nonlinear, and sensing applications. It is also shown here
that the bending losses ofiand Hi; depend on the pilig A, the asymmetry via the

value of d/A, the number of rings, N, the operating wavelength and the bending radius
and so, the differential loss will depend on the fabrication tolerances relating to the
parameters A, d, and d,. However, since the differential loss also depends on the
bending radius, it is expected that, by adjusting the bending radius, the effect of the
fabrication tolerances may also be compensated for a wide range of applications, such
as attenuators or polarization maintaining applications. In the next Chapter, the butt

coupling of a PCF to a single mode fibre is analysed.
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CHAPTER SIX: Mode Coupling

6.0 Abstract

The butt coupling between a tapered PCF and a conventional optical fibre is presented.
When a PCF is tapered, the mode field area expands into the cladding region which
helps with the reduction of mismatch between the mode field area of the PCF and that
of the conventional optical fibore. The Least Squares Boundary Residual (LSBR)
method in conjunction with the Finite Element Method (FEM) was employed for these

analyses.

6.1 Introduction

Photonic Crystal Fibres (PCF) (Russell 208issell 2006) can be used as potential
waveguides and devices which may exploit their characteristics of being single moded,
having higher modal birefringence and offering adjustable spot size and dispersion
properties which may be tailored for various linear and nonlinear applications. Initially
PCF was considered to be an endlessly single mode fibre, but later numerical studies
such as using the multipole method and the finite element method, have revealed that
the cutoff conditions are critically controlled by the diameter to pitch ratio (Kuhéhey

al. 2002 Mortensen 2002Kejalakshmyet al.2008b). However, a wider single mode
operating range can still be useful for many applications. Their Mode Field Areas
(MFA) are also controllable and thus able to achieve both large and small spot sizes.
PCF with large spot size or even hollow core PCF are suitable for high power delivery.
On the other hand, as an example, PCFs with smaller MFAs can be envisaged by
enhancing their power density and tailoring their dispersion properties for various
nonlinear applications, such as supercontinuum generation. Such a PCF with small core
can also allow easy access to the evanescent fields for the design of optical sensors.
However, practical difficulties related to achieving efficient coupling of a PCF with a
smaller MFA to the input/output sections have often been considered as creating a
serious drawback in the exploitation of the PCF technology. Unlike fusion splicing in
conventional Single Mode Fibre (SMF), joining a PCF is difficult as the integrity of the
air-holes is difficult to preserve, even though several recent efforts in fusion splicing of
a PCF to a SMF have been reported (Bereteit. 1999 Chong and Rao 2008Vanget
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al. 2008). However, to obtain a low-loss coupling is particularly challenging due to the
large mismatch between the MFA of a PCF and that of a SMF. A short gradient index
fibre lens has also been considered (Yablon and Bise 2005) by incorporating this
component between the two coupling sections with different MFAs. Use of a fused
biconical taper, often used for a passive fibre coupler, has also been envisaged by
placing a PCF and a pre-tapered SMF side by side and twisting and tapering them for
efficient evanescent coupling (Let al.2009). A PCF can also be tapered adiabatically

to adjust its MFA (Nguyeret al. 2005a Nguyenet al. 2005b). As example, if the up-
tapered part has a larger width near the end, its MFA increases and the coupling loss to
a SMF can be relatively low, as reported in the literature (Charstadia2001, Town

and Lizier 2001). However, these terminal sections with a large core dimension are
likely to be multimoded which could also restrict the flexibility of the PCF applications.
On the other hand, if the dimensions of a tapered PCF are adiabatically reduced, when
the core mode approaches cutoff, the MFA would also increase. Such reduction in size
is possible, as PCFs have been routinely tapered to control their dispersion properties
with their pitch reduced from 3.0m to 500 nm (Leon-Savadt al. 2004) and even

below 300 nm (Maget d. 2004).

When a PCF is operating near the cutoff condition, as the pitch is reduced, this leads to
the expansion of the mode field into the cladding region with air-holes (Radinzn

2006). This could expand the MFA to a size similar to that of a SMF which would make
coupling between them easier. For this purpose, a PCF section can be tapered to bring it
close to the cutoff condition. However, as it expands very rapidly when approaching
cutoff, it may be difficult to control as any small fabrication errors can make the MFA
unstable when it expands exponentially. A similar problem exists in coupling a laser
beam with a small asymmetric shape to a SMF with a larger circular beam profile. In
that context, monolithically integrated spot size converters (SSC) have been reported
(Rajarajaret al.1998 Wongcharoeret al.2001), designed to transform the spot size of

the output laser beam to allow for efficient coupling. To control the MFA with its
fabrication tolerances, for the first time has been suggested in this work, that a
secondary guide can be considered. This approach is evaluated by using a rigorous full-
vectorial finite element method and the Least Squares Boundary Residual (LSBR)

method. It is also shown here that the MFA can be stabilized; this is to take account for
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the possible changes that may occur during the manufacturing processes of a tapered
PCF. Coupling between waveguide sections with different spot sizes have been a
consistent problem, such as for photonic crystals (Baretagl. 2004), plasmonic
waveguides l(u et al. 2011 Zhao et al. 2011) and also for efficient light extraction
(Weirer et al. 2009 Li et al. 2011), where the approach presented here, the use of

tapered guided wave section, can be considered.

6.2 Mode Field Study of a Single Mode Fibre

In this section, the MFA is studied in some detail; however it is important to note that
there have been various alternative definitions to represent this particular parameter.
The MFA can be represented by the spot,sizeéhe effective area, Aoy and the Area
second moment of intensity,sfy. The spot size is usually defined as the area where the
field intensity falls to 1 of its maximum value (or where power intensity ig’)L/

(Rajarajaret al.1998 Wongcharoeret al.2001).

On the other hand, the effective area, is defined as:

A = ([|EaAT /]|Eaa 6.1)

where, E is electric field profile (Technology 2008).

Similarly, another similar alternative is the area second moment of the optesaity,

given as:

A, = 2\/Ile (X, y)dxdy/_[l (x, y)dxdy (6.2)

where | (x, y)is second moment of intensity distribution profile (Technology 2008).

Mode field profile of a PCF is complex due to the presence of many air-holes. So, to
test these alternative definitions of MFA, a simple waveguide is considered. Initially, a
simple circular fibre is considered to study its different MFAs. The refractive indices of
the silica cladding and the Ge-doped core are taken as 1.445 and 1.4502 respectively at
the operating wavelength of 1.581. Since, the TE and TM modes are degenerate; only

the quasi-TM mode (with the dominant &hd E fields) is considered in this test.
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Fig. 6. 1: Variation of mode field area and effective index of a SMF against core radius, R.

Several MFA definitions were studied carefully for different core radii. Variations of
the effective index and the different MFAs with the core radius for this optical fibre are
shown in Fig. 6.1. It is shown that as the core radius is reduced, the effective index is
monotonically reduced. As the core radius is reduced, initially the MFAs reduce as the
core area is also reduced, but as cutoff region approaches, the MFAs begin to increase
again. When the waveguide dimension is too small, it is unable to confine the mode
inside the core and field starts expanding more into the cladding. However, the values
and expansion regimes of these MFA parameters are slightly different. These mode

field areas were slightly different for most of the radii values but they were identical at

R=5.0 um.
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Fig. 6. 2: 2b H, field profile for a Single Mode Fibre exploiting 2-fold symmetry with only
quarter of the structure simulated.

A SMF often has a radius of between 4.5 and 5.0 um. Figure 6.2 shows the 2-D field
profile for a Single Mode Fibreith core radius, R = 4.5um. In this case, the resulting
spot size = 77.70uMmAc = 80.8%unT and Ay = 84.61urA are of similar values. The
contour lines clearly show concentric fidides. To show their variation along the

radial direction, its variation profile along the x-axis is shown next.

To study their differences, the modal field profiles for different radii are shown in Figs.
6.3, 6.4 and 6.%Actual field profiles, as obtained from the mode solver are shpwn

solid lines. From the original field profile, first it4/edistance is calculated and then this

distance is used to obtain its approximate Gaussian profile as shown by a dashed line. A
closer investigation has revealed that the actual field profile (shown by a solid line) for
R = 5.0 um closely follows a Gaussian profile and this suggests that for a Gaussian
shaped field profile, all the different MFA definitions may lead to a similar value.
However, when the radius was larger than 5.0 um, as is seen from Fig. 6.4, it was
observed that in the field decay rate in the cladding was faster than its equivalent
Gaussian profile suggests. Similarly, for a radius smaller than 5.0 um, as is seen from
Fig. 6.5, the field decays slowly in the cladding region compared to its equivalent
Gaussian fitting profile. Thus an MFA defined by different approaches will likely have
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different values when the mode field is not Gaussian in shape. These three figures
illustrate that when radius is ~5.0 um then its modal field profile is Gaussian in nature

but the profile deviates when radii are different.
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Fig. 6. 3: Comparing Gaussian field profile and the obtained profile for R = 5.0um
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Fig. 6. 4: Comparing Gaussian field profile and the obtained profile for R = 7.0um.
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Fig. 6. 5: Comparing Gaussian field profile and the obtained profile for R = 3.0um

It has been shown in Fig. 6.1 that if fibre diameter is reduced, near modal cutoff spot
size increases rapidly. This feature in a PCF can be used, by incorporating a taper, when

reducing the pitch can increase the spot sigeperating close to cutoff.

6.3 Analysis of a Tapered PCF
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Fig. 6. 6: Variation of mode field areas of a PCF against the pitch,
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In this section, the MFA of a PCF, the main subject of this research, is thoroughly
investigated. The PCF considered here has number of rings, N (in this case, initially N =
7) and its silica refractive index is taken as 1.445 at the operating wavelength of 1.55
um. The pitch, A, is varied from 2.0 to 0.4 pum with an air-hole diameter, d = 0.4A.
Variations of the different MFA parameters with the pitch length, A, are shown in Fig.

6.6. The log scale is used for the MFA to illustrate the lower range more clearly. As the
radius is reduced, the MFA initially reduces but then begins to increase again. It can be
seen that all these parameters increase as the modal cutoff is approached; however, its
spot size o, also shows a saturation. It should be noted that for a low-index contrast
SMF, the modal field reduces monotonically in the cladding. However, due to the
presence of air-holes in a PCF, the field profile does not decay monotonically outside
the core region. In the definition of the spot size, only the localized field values are
considered, whereas thesAand Asyv use the integration of field profile and these
yields more stable values. Although, these values give some indication of their MFAs
and are useful to identify the size for optimum coupling, however, to calculate the
coupling efficiency the rigorous LSBR approach will be used.
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Fig. 6. 7: H field profile of the H;; mode for N=7, A = 1.0, d/A = 0.4, and d-/A=0.8 .
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Fig. 6. 8 Variation of H, field profile along XN =7, A=1.0, d/A = 0.4, and d//A=0.8.

The H; field profile for the H;; mode is shown in Fig. 6.7 for a PCF with 7 air-hole
rings, when A = 1.0 um and for all the rings d/A = 0.4 except for the last ring where

ds/A = 0.8. It can be observed that the field contours are not concentric circles, but show
‘cheese-like’ holes due to the presence of the air-holes. Variation of théet along

the x-axis is also shown in Fig. 6.8, which clearly demonstrating the field variations are
not monotonic and the location field minima around the air-holes are shown by arrows.
Hence, the simple spot size, which depends on the local field values, can be more
unreliable when used to describe the MFA of a PCF. Subsequently to gauge the field
expansion, the more stable ternyAs used in this work.

In Fig. 6.9, the variations of effective areass, with pitch for PCFs having d = 0.4A is
compared with that of d = 0.5A with all air-holes are equal. The effective area of d =
0.4A is higher than that of d = 0.5A and as the pitch decreases, there is a sharp increase

at lower values of pitch. In Fig. 6.1®CFs having d = 0.5A for all air-holes is
compared with that of d = 0.5A but with the outermost air-holes increasedde @.8A.
Variations of the effective areas with the pitch for a PCF with 5 air-hole rings are shown
in Fig. 6.11. Here the effect of the field expansion for two differenticdi ratios, d/A,

is shown, besides the effect of having a larger air-hole in the last ring. When all the air-

holes are of identical diameter and equal to either 0.4A or 0.5A, the value of Aef
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increase exponentially as A is reduced. It can be observed that for a smaller d/A = 0.4,

the effective area, & becomes higher due to the smaller size of the air-holes compared
to that whend/A = 0.5. It can also be observed that as larger air-holes were introduced

in the outermost ring {bring) as shown in Fig. 6.11, the value of the MFA is forced to
remain flatter than it would have been otherwise at lower values of pitch as is seen in
Fig. 6.10 In the case of d/A = 0.4, all the air-holes in the first 4 rings have their
dimension, d = 0.4A, except the 5" ring which has a larger dimension, denoted by d

0.8A. This ensures that the MFA is stable at the lower pitch values without it expanding
exponentially and the mode expansion slows down by the last ring, which has larger air-
holes. This would allow stable coupling to occur without much error or uncertainty even
if there were structural variations occurring during the fabrication or tapering. This
figure also demonstrates that a PCF with smaller air-holes in most of the inner rings and
larger air-holes in the last ring is expected to produce a largerwhich is also
reasonably stable with the pitch variation. There are also some random variations which
occur due to mode degeneration with the cladding modes as shown in Chapter 4. There
are similarities between these variations observed in Fig. 6.11 to those already shown in
Figs. 6.9 and 6.10.
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Fig. 6. 9: Variations of the & with the pitch length for PCF having/# 0.4 and 0.5 for N =5

with all air-holes equal.
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Fig. 6. 10: Variations of the A with the pitch length for PCF havingAd# 0.5 for N = 5 with
the outermost ring having larger air-holes.
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Fig. 6. 11: Variations of the A with the pitch length for PCF having/Ad# 0.4 and 0.5 for N =
5.

However, in order to achieve MFA comparable to that of a SMF, it is necessary to
increase the number of air-hole rings. Next, the variations of the effective atgas, A
with the pitch are shown in Fig. 6.12 for two different numbers of air-hole rings, given
by N =5 and 7. In both casesAdk taken as 0.4 and additional curves are also shown
when the air-hole diameter in the last ring is increased ta.(t8can be noted that
when all the air-hole diameters are of the same size for all the rings, the valye of A
increass progressively as the pitch, A, is reduced. When the number of rings is large,

the value of A« is slightly larger as there is a larger cladding region available into
which the mode can expand. It is also shown in Fig. 6.12 that by using 7 rings (N = 7)
and having the same diameter air-holes in the last riflg &7higher A; value can be
obtained, but this would be very sensitive to the pitch value. However, as the air-hole
diameter of the last ring is increased, in both cases, the valug efabilizes. It can be

also noted here that thissAvalue is stable when the air-hole diameter in the last ring is
large, vhere d = 0.8 A and with a smaller value of the pitch, Aet Shows a lower variation

with the pitch. This suggests that if the terminal dimension of a tapered PCF is taken as
A = 0.7 pm, a smaller variation of pitch due to the fabrication tolerances would not

change Ax significantly. For N = 7, when all the air-holes in the first 6 rings have the
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dimension, d = 0.4A (except the air-holes in the ? ring with the dimension of 0=
0.8A), the stabilized value of MFA is around 20 pur

As can be observed, when the number of rings in the cladding, N, is increased, this
results in an increase in the MFA as well. This shows that with a higher number of rings
it is possible to achieve a very high MFA that is comparable to thatSMF or if
needed to be comparable to that of an Erbium Doped Fibre Amplifier (EDFA); this

would then result in a lowering of the insertion loss when butt-coupled to these fibre
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100

A “mz
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Fig. 6. 12: Variations of the 4 with the pitch length for PCF havingd£~ 0.4 for N =5 and N

=T7.

6.4 Coupling between Photonic Crystal Fibre and Optical Fibre

Finally, the Coupling Efficiency is rigorously calculated by using the Least Squares
Boundary Residual (LSBR) method (Rahman and Davies 1988). In Fig. 6.12, it was
shown that a stable value ofsA= 2Qunt can be obtained for N = 7 with all the air-hole
diametes, d = 0.4A except that of the last ring, where d7 = 0.8A. A typical Erbium

Doped Fibre Amplifier (EDFA) may have an#value around 25 pfrand a SMF have
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its Aetr around 80 pr Thus a tapered PCF with N =7, d/A = 0.4 and a final (7") hole
ratio d/A = 0.8 um, as shown above, could be efficiently coupled to an EDFA or a

lensed fibre with a similar MFA.

The variations of the Coupling Efficiency with the pitch length for a PCF with 7 rings
are shown in Fig. 6.13 when it is butt-coupled to an EDFA. In this case the core and
cladding indices of the EDFA are taken to be 1.46178 and 1.445, respectively and its
radius is taken as 2.5 pm. When all the air-holes are equal Ao théd Coupling
Efficiency to this EDFA is shown by a dashed line and when the diameters of the air-
holes in the last ring are increased toA).this is shown by a solid line. A log-scale is

used for the coupling efficiency to show the lower value more clearly.

It can be observed that with the outer rings having larger air-holes, as the pitch length is
reduced from 2.0 to 0.5 um, the coupled power is seen to be stable over the range of
lower values of pitctifor A = 0.7 — 1.0 um) as shown by the solid line. In this case the
value of the MFA of the PCF has an expanded, but also a stable value as shown earlier
in Fig. 6.11, yielding a very stable power Coupling Efficiency with its maximum value

of ~ 0.95 can be achieved/at= 0.85 pmas can be seen in Fig. 6.13.

However, the power coupling to an EDFA, for a PCF with all the air-holes identical
(dashed line), not only shows a lower Coupling Efficiency but also shows a random
variation in the coupling coefficient. This is due to the degeneration of the core mode
with the cladding mode as discussed in Chapter 4, which is particularly frequent near
cutoff. Previously it had been reported that a PCF near cutoff or when bent shows that
the loss value is erratic due to mode degeneration (Bourliag@et2003 Rahmanet

al. 2009) of the core mode with the surface modes in the extensive solid outer cladding.
Similarly, it has been observed here that the presence of a larger air-hole reduces the
silica area near the boundary and consequently reduces the possibility of mode
degeneration, resulting in a more stable coupling efficiency. Hence it is shown that by
increasing the diameter of the last air-hole ring, the expanded modes are more isolated
from the high index outer cladding region and mode degeneration is also avoided. Thus
a stable coupling can be achieved over a range of the pitch lengths which is stable
during the possible change of the pitch when the PCF is tapered. Such an approach
would also be more tolerant against waveguides misalignment, as the spot sizes are

being expanded in this case.
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Fig. 6. 14: Variations of the A with the pitch length for PCFs having\d# 0.4 and outermost
d/A=0.8 for N=7, 8 and 10.
Next, an attempt was made to couple a PCF to SMF and various approaches were

considered. Generally, the spot size of a PCF is small compared to that of SMF and
174



Chapter Six

when coupling them, a large fraction of the power is lost. A new concept is studied here
to obtain an efficient coupling between PCF and SMF by introducing a tapered PCF end
section. The PCF can be tapered and to have a larger diameter of air-holes in the outer

ring.

Next, the number of rings is increased further to study the degree to which expansion of
spot size which can be achieved. The variation of the effective argayith the
reduction of the pitch, A, is shown in Fig. 6.14 for N = 7, 8 and 10. In all the cases, the
air-hole diameter of the last ring has been increased to 0.8A to stabilize the mode field

area near their cutoff conditions.

In each case as the pitch is reduced, the MFA increases as the PCF designs approaches
their cutoff, but due to the presence of larger air-holes in all the cases the MFA reaches

a maximum value. However, it can be observed that for higher ring numbers, the
maximum Ay value was higher, which would allow efficient coupling to an optical

fibre with a large MFA.

From the work done it is clear that different numbers of rings are best suited for
coupling of a PCF to a SMF, EDFA or lensed fibre. Next, the mode shape area required
from the different optical fibres, all of which guide a single moded waveguide, is
studied by adjusting the radius and index contrast to maintain to have the identical V
parameters. The V parameter was used to calculate the radiofsthe single mode
fibre for it to be single moded and it is given below:
2ma

V :T ng —n§ (63)
The V parameter was used to calculate the radjusf, the single mode fibre for it to be
single moded, V = 2.2382. In this case, the cladding refractive index is taken as 1.445

and the core index is adjusted for each fibre diameter to have the same normalized

dimension, V.
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Fig. 6. 15: Variation of A; and core refractive index differencg,af a SMF against fibre
radius,a.

The variation of the required refractive index of the core with its radjus,shown in

Fig. 6.15, designed to maintain the single modedness by keeping the V parameter fixed
at V = 2.2382, which is that of a typical SMF. The variation of the MF, with the

radius for this fibre with a constant value of V (where V= 2.2382), is also shown here. It
can be observed that ass reduced, the value ofsAalso reduces bugincreases. This

study is aimed at to get the suitable radius and optimal dapin@he refractive index

difference) for the core to achieve single modedness of an optical fibre.
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Next, the butt-coupling between a tapered PCF with N = 8 to an optical fibre with
3.5 um (V = 2.2382) is studied. The variation of the coupling efficiency of a PCF with
N = 8 to an optical fibre witla = 3.5um with the final pitch length, A, is shown in Fig.

6.16 for both equal air-holes and also larger air-holes in the last fiydpy& dashed

and a solid line, respectively.

It is shown here that the maximum coupling efficiency (of 95%) can be achieved when
the pitch length was 0.85 um and butt-coupled to this fibre avitt8.5um. During the
tapering process, if the pitch value varies between 0.7 pm to 1.0 um, the coupling
efficiency will still be above 90%. This shows the design is very stable, with the
possible adjustment of the terminating pitch length for a tapered PCF. However, using
the design principle discussed, for coupling to a SMk,n&eds to be further increased

to a value close to that of a SMF. As the number of rings is further increased, the
expansion of the mode field profile closer to cutoff increases as well, hence, allowing

for more effective coupling to a SMF.

Therefore, it can be seen that when a PCF is down-tapered for coupling, the variations

in the dimensions of the pitch or the diameter of the air-holes that may aasesast
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of the fabrication or tapering process would not affect appreciably the power coupled
between a PCF and an SMF or an EDFA.

6.5 Summary

In this chapter, a novel design approach for a PCF which could be considered as a
candidate for efficient coupling to an optical fibre has been presented (Uttnadn
2012). Initially various MFA parameters and field profiles for a SMF and a PCF were
studied. It has been shown here that a smaller air-hole diameter and a larger number of
rings would allow the & value to reach a higher value, which can be achieved by
operating a PCF near cutoff. However, its expansion near cutoff can be very rapid and
unstable, but by increasing the air-hole diameter in the last ring, this parameter can be
stabilized with the variation of the fabrication tolerances. Using this approach presented
above, it is possible to avoid uncertainty resulting from the variations in the dimensions
of the pitch or the diameters of the air-holes in the PCF as a result of fabrication or
tapering, thereby ensuring that the PCF can be successfully coupled to an optical fibre
without any significant loss in coupled power. Additionally, it is also shown here that
the largest air-holes in the last ring reduce the mode degeneration with the cladding
modes. As the PCF is tapered to reduce its dimension, close to its modal cutoff its MFA
expands and by introducing larger air-holes in the outer ring, it is shown here that
expansion of MFA can be stabilized against fabrication tolerances. In this workma bea
propagation approach is not used, rather, modal solutions are carried out for each
reduced dimension and junction analysis is carried out to obtain possible coupling
efficiency. During the tapering process it has been assumed that theApiteluuces
gradually while keeping the A/ratio constant. However, the air-holes can also collapse
and the air-hole/pitch ratio can also change although this may give an additional
flexibility but also an additional parameter to optimise the situation. Once the nature of
the deviations is knowrm priori then a rigorous numerical approach, such as that
presented above, can be used to optimize the designs before their fabrication for
experimental validation. In this approach, as the PCF operates near cutoff, it is normally
expected that the leakage and bending losses will be increased. However, in this
approach since larger hole diameters are used in the last air-hole ring, in fact rather,
lower leakage and bending losses are expected. Furthermore, if reqdolégbnal air-

hole rings with larger air-hole diameters can be included and the design can be
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optimized to reduce leakage and bending losses further. The application of PCF in the
terahertz (THz) region designed with polymer and using the conventional and

equiangular spiral PCF is analysed and presented in the next Chapter.
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CHAPTER SEVEN: Photonic Crystal Fibrefor Terahertz

7.0 Abstract

This chapter presents the work done on wave guidance in the THz regime. Two types of
materials namely, Teflon and TOPAS for THz guidance were used in the simulations.
The conventional Hexagonal PCF that was discussed from the beginning of this thesis
was compared to Equiangular Spiral PCFs. Lastly, a nhew porous core PCF design for

low loss THz guidance is presented together with its bending loss calculations.

7.1 Introdution

Terahertz radiation (or THz wavegjenerally identified as covering the 0.1 to 10 THz
frequency band, lies between the lower microwave frequencies and higher optical
frequencies and has attracted widespread attention in recent years. Numerous
applications of such radiation have been reported including medical diagnostics
(Crawleyet al.2003 Woodwardet al.2003), testing of pharmaceutical drugs (Strachan

et al. 2005) and defect detection in electronic circuits (Kigtaal. 2003), amongst
others. Devices operating in the THz regime can be used in hazardous or security
sensitive areas for monitoring drugs (Kawaseal. 2003 Jepsenet al. 2011), gas
(Jacobseret al. 1996), explosives (Shest al. 2005 Liu et al. 2006) or weapons and

also in the study and better understanding of the dynamics of complex natural biological
systems. This has led to a concerted effort in the development of better THz sources and
detectors and as a result, the last decade has seen significant technical advances in THz
wave generation (Kohlest al. 2002) and detectionNu et al. 1996 Karpowicz et al.

2008). However, most of the THz systems that are available today and for which market
introduction are sought are based on free-space transmission, due to lack of suitable

low-loss flexible waveguides.

The development of low-loss THz waveguides has been challenging as almost all
presently available materials are highly absorbent in this frequency band. Previously,
circular metallic guides, like stainless steel solid wires (Wang and Mittleman 2004) or
hypodermic needles (Gallet al.2000) have been considered but these waveguides are
highly lossy, these being in the order of 500 dB/m. Plasmonic modes are always very

lossy and in case of a metal rod, the mode field also extends well into the outer open
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space, which is less controllable. Although a THz wave cannot be guided inside a
hollow dielectric tube (unless the Bragg principle is used), if this tube is coated with a
metal layer, a plasmonic mode can form inside the hollow core, where the guiding
environment can be better controlled or manipulated. It has been shown that by
incorporating an additional thin dielectric layer (Bowdsnal. 2007), the mode field

can be drawn away from the lossy plasmonic interface and as a consequence the overall
loss value can be reduced (Themistvsal. 2007). However, often these waveguides
have rather large diameter and not very flexible and for a small diameter, the loss value

also increases.

On the other hand, most of the optical waveguides are dielectric waveguides, which
arises due to the availability of very low-loss materials at these important wavelengths.
However, at the THz frequency range most of the dielectric materials are lossy.
Previously, it had been demonstrated that a simple polyethylene (PE) fishing line can
guide THz waves (Cheat al.2006). Currently, polymers are the materials of choice

for making flexible terahertz dielectric waveguides, i.e., polymethyl methacrylate
(PMMA) (Ponseceet al. 2008), Teflon (Gotcet al. 2004), high-density polyethylene
(HDPE) (Hanet al. 2002 Chenet al. 2006), and TOPAS (Nielseet al. 2009) are

widely used as they have lower reported losses in the THz frequency range and they are
relatively easy to process. Enal (Jinet al.2006) have carried out an extensive study

on the loss values of various polymer materials in the THz frequency range.

However, because the absorption losses in these dielectric materials are still very high
variety of guiding mechanism have been reported to reduce the overall modal losses.
Dry air has one of lowest material losses in the THz frequency range and as such when
a dielectric rod is surrounded by air operating very close to its cut-off condition leads
the mode field to extend into the low index air cladding region and such sub-wavelength
waveguides have been reported (Cletnal. 2006). The main disadvantage of this
design is that mode extends considerably into the surrounding air cladding and the
power is propagated mostly outside the waveguide: this strongly interacts with the
surrounding environment and the bending loss would also be expected to be excessively
high.
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PCF is a class of optical fiore where many air-holes run along the length of the
waveguide (Russell 2003) and where light is guided by the modified TIR when the
equivalent refractive index of the porous cladding is less than that of the solid core, as
was discussed in Chapter 2. PCFs are being used as waveguides which exploit their
unique characteristics of being endlessly single-moded and which offer adjustable spot
size and dispersion properties for various linear and nonlinear applications. As a
fraction of the power can be confined and guided in the air-holes, this can reduce modal
loss and, Hart al (Hanet al.2002) and Gotet al (Gotoet al.2004) have fabricated
HDPE and Teflon PCF, respectively for THz wave guidance.

7.2 Equiangular Spiral Photonic Crystal Fibre

Fig. 7. 1 Schematic of the Hexagonal Photonic Crystal Fibre structure

In this section the new class of photonic crystal fibre called the Equiangular Spiral
Photonic Crystal Fibre (ES-PCF) design in TOPAS for use in the Terahertz regime is
presented together with a comparison with the hexagonal PCF. For comparison, first, a
schematic of the Hexagonal Photonic Crystal Fibre is shown in Fig. 7.1. The Hexagonal
PCF has a hexagonal air-hole arrangement in which the separation between air-holes is
constant and is also equal to the distance from the centre of the structure to the centre of
the air-holes in the first ring (it is normally termag. The diameter of the air-holes is

also fixed and equal to d. The optical properties of the Hexagonal PCF are determined
chiefly by the pitchA and thed/A ratio.
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Fig. 7. 2: Graph of effective index against pitch and spot size against pitch in hexagonal
TOPAS.

Some comparisons of PCF operating in this THz frequency range have also been carried
out in this project. Initially, modal solutions of simple PCFs made of TOPAS and
Teflon are obtained. Figure 7.2 shows the variations of the effective index and spot size
with the pitch for a hexagonal PCF made of TOPAS. In this, dase 0.3mm
corresponds to a frequency of 1 THz. This PCF has Bo&drrings and d/A was taken

as 0.5. The refractive index of TOPAS is taken as 1.5258. It can be observed as A is

reduced, effective index reduces as well. It can also be observed that as A is reduced,

the spot size reduces and the mode approaches its cutoff.
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Fig. 7. 3 Graph comparing effective index for Teflon and TOPAS PCFs with respect to pitch.

Figure 7.3 shows the variation of effective index against the pitch comparing PCF made
of both TOPAS and Teflon. The refractive index of TOHA&ken as 1.5258 whereas
that of Teflon is 1.445 at the wavelength of 0.3nfintan be observed that as the pitch

is reduced, the effective index reduces too and when cutoff is approached, the decrease
is sharper for both the cases of TOPAS and Teflon PCF. The differences in their

effective indices are comparable to the difference in their refractive indices.
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Fig. 7. 4 Variations of spot sizes for Teflon and TOPAS PCFs with the pitch

Figure 7.4 shows the comparison of spot size against the pitch in hexagonal PCF made
of TOPAS and Teflon. As the pitch is reduced, it is observed that the spot size decreases

as well. It can be noted that their spot sizes are nearly similar.
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Fig. 7. 5 Variations of the leakage loss in Teflon and TOPAS PCFs with the pitch.

Figure 7.5 shows the variation of leakage loss against the pitch comparing both types of

PCF, made from TOPAS and Teflon. It is observed that the loss decreases with increase

in the value of pitch. In this case it can be easily observed that the leakage loss is

negligible, unless the A is too small and the PCFs are operating very close to their

cutoff. There isaneed to have flexible waveguides in engineering applications because

waveguides are generally subjected to bending in their practical applications.
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Next, the results of the bending loss calculations for both Teflon and TOPAS based

PCFs are presented. This work was carried out by applying the PML and additionally

conformal transformation as described in Chapter 3.
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Fig. 7. 6 Graph comparing effective index in Teflon and TOPAS with respect to bending

radius.

Figure 7.6 shows the variations of the effective indices with the bending radius. The
materials considered here are TOPAS and Teflon and the refractive indices for Teflon
and TOPAS were taken as 1.445 and 1.5258 at operating wavelength wiD.3

(frequency of 1 THz). It can be observed that as the bending radius is reduced the

effective index increases.
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Fig. 7. 7 Graph of loss against bending radius in TOPAS for hexagonal arrangement/with d
0.45 and 0.5.

Figure 7.7 shows variations of bending loss against the bending radius in hexagonal
PCFs for two different/A values, 0.45 and 0.5 for a TOPAS PCF. It can be observed
that the bending loss decreases as the bending radius is incréased.also be
observed that as the d/A is increased, the loss decreases as well. As the size of the air-

holes is increased, the gap between the air-holes reduces and thus leading to reduction

in loss as well.
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Fig. 7. 8 Graph comparing loss Hexagonal TOPAS with respect to pitch for bending radius of
5m, 10m and 100m.

Figure 7.8 shows the variation of loss against the pitch for several fixed bending radii
The material used here is TOPAS with bending radius of 5 metre, 10 metre and infinity
(100 metres). It can be observed here that as the pitch is increased, the loss decreases as
well. It is observed that as the pitch is increased above 1.5mm, the loss begins to
increase in the case of a waveguide with 5 metre bending radius and that with a 10
metre bending radius. This similar phenomenon was observed with silica PCF operating

at 1.55 um wavelength as well and that was reported in Chapter 4; and this increase is
due to the availability of larger bridging area between the air-holes which is susceptible

to leakage loss at very small bending radii.

189



Chapter Seven

L

2 v v v v v v v v

Q00O 0N
gelofofele 1 M.
O 0 000 ©Ff ) ThE
O O Q OO 00D | e
ast OO OO0 ){IE
O000d ~E
jencEoNerreg |

08

—
-
|

|

y-(mm)

.
=
v

-2 A A A A i 2 A i i -0.1
15 2 2S 3 3s K 45 5 55 6 65
x-(mm)

Fig. 7. 9: Field profile in the bent Hexagonal PCF in Teflon, where bend raémm.

It is observedn Fig. 7.9,which shows the fundamental mode in the bent hexagonal
PCF (to show the effect of the air-holes, the air-holes are also drawn in the figure), in
Teflon. When the fibre is bent in this hexagonal PCF arrangement, the field tends to
spread out of the core as was reported in the results from previous chapters. In the
Hexagonal PCF the distance between the first and second ring of air-holes is large
enough to allow the field to escape from the core through this bridge especially when
bent, as can be seen clearly in Fig. 7.9. When the addition of Mal&rsa is
considered there is a marked increase in the Modal Loss values due to the modal field
residing mostly in the solid polymer core and taterial Loss dominating. In this
section so far, modal characteristics of TOPAS and Teflon based PCFs with hexagonal

air-hole arrangement are presented at 1 THz operating frequency.

Next, a very special design of PCF is considered known as the Equiangular Spiral PCF
(ES-PCF). The equiangular spiral PCF designsyhich air-holes are arranged in a
spiral pattern governed by the golden ratio, where the design has been inspired by the
optimal arrangement of sunflower seeds as found in nature. The air-hole arrangement in
the Equiangular Spiral PCF desigfimics the ‘spiramirabilis’ and appears in nature in

nautilus shells and sunflower heatldeads to efficient feature growth/packing of seeds
and the growth of this type of curve does not alter the shape of the curve. In the

Equiangular Spiral Photonic Crystal Fibre, as shown in Fig. 7.10, each arm of air-holes
190



Chapter Seven

forms a single Equiangular Spiral of radiys angular increment 6 and the radius of
each air-hole is fixed (r). In the Equiangular Spiral, the radii drawn at any equal
intervals of 0 are in a geometric progression; therefore, the pitch (distance between air-

holes) in a ring increases with the ring number.

Fig. 7. 10: Schematic of the Equiangular Spiral Photonic Crystal Fibre.

Fig. 7. 11 Schematic of the ES-PCF structure
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A schematic of the ES-PCF is shown in Fig. 7.11 and it has 6 arms and 3 rings=with
30°. Each arm of air-holes, (depicted by air-holes of same colour); air-hole radlius, (r
forms a single equiangular sprial of radigsangular incremem andn in this case is

number of arms (narm), given by the polar equation:

Foey = rn.e()cota (71)
o= (n ;nZ)ﬂ: (72)

Wherea is the constant angle between a radius of the equiangular spiral and the tangent
at the end point of the radius anghis the distance of the nfir-hole along the spiral

arm from the centre of the structure. Each air-hole is separated by an angular increment
of 6 with respect to the previous and/or successive air-hole in the same arm as shown in
Fig. 7.10. Distance for each ring progressively increases, following the definitign of r

for each ring. To compare with the hexagonal PEk,taken as A. The total number of
air-holes in each arm represents the number of rings in the equiangular spiral PCF and
the total number of air-holes is thus simply the product of the number of arms with the
number of rings.

The x and ycoordinates of the centre of each air-hole can be found from Equation (7.1)
and the angle they make with the first air-hole. In the equiangular spiral PCF it has been
found that it is possible to tune the modal characteristics of the field by choosing a
suitable combination of values for the fibre parameters: the number of arm& (n),
(spiral angle), 4; (spiral radius)r,(air-hole radius)and the number of rings.

In order to ease comparison betweenERePCF structure with that of the conventional
Hexagonal PCF (shown in Fig. 7.1), the following parameters were optimised for the
ESPCF: number of arms = 7, number of rings = 5, thus number abki= 35 and 0

= 27. These are the parameters associated with the results presented subsequently in

this chapter unless where stated otherwise.
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Fig. 7. 12 Graph comparing the effective index verses frequency for Hexagonal TOPAS,
equiangular spiral TOPAS and Hexagonal Teflon.

Figure 7.12 shows the variations of the effective indices against THz frequency for 3
different PCFs, namely Hexagonal PCF in TOPAS and Teflon and spiral PCF in

TOPAS. As the frequency is decreased, the effective index decreases as well in all

cases. When frequency is increased, modes are well confined for all the cases and

effective indices of TOPAS PCFs, Equiangular Spiral and Hexagonal PCFs were almost

identical.
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Fig. 7. 13 Graph of spot size against frequency for hexagonal TOPAS, equiangular spiral
TOPAS and Hexagonal Teflon.

Figure 7.13 shows the variations of spot size against THz frequency for Hexagonal PCF

in TOPAS, spiral PCF in TOPAS and Hexagonal PCF in Teflon. As the frequency is
decreased, the spot size increases as well in all cases, because modes approach their
cutoff. The spot sizes of the guided modes are similar in all the PCFs over this entire
range as is seen in Fig. 7.13. We explain here the mechanism for the lower bending loss

in the equiangular spiral PCF.
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Fig. 7. 14: Graph of loss against frequency in hexagonal PCF, equiangular spiral PCF in
TOPAS and hexagonal PCF in Teflon.

Figure 7.14 shows the variations of the leakage loss against THz frequency 3or the
PCFs, as discussed earlier. As the frequency is increased, the loss decreases in all cases,
as the mode is more confined in the core. It can be noted here, that in the typical
operating region, say between-12 THz, leakage losses for all 3 cases are very low.
However, it can be observed that leakage loss for the Equiangular Spiral PCF is

significantly lower at higher operating frequency.

195



Chapter Seven

1e-2
—&— d/A=05
— A — d/A=045
1e-3 ‘4\
E
= A
Z fe4 - A
?
CE» 1e-5 - Mas s s aa
T
c
]
11]
1e-6 -
1e-7 T T T
1e+1 1e+2 1e+3 1e+4 1e+5

Bending Radius, R(mm)

Fig. 7. 15 Graph of bending loss against bending radiueginangular spiral PCkvith d/A =
0.45 and 0.5.

Figure 7.15 shows the graph of bending loss against bending radius for two Equiangular
Spiral PCF with narm = 7, nring = 5, that is 35 air-holes in total and angle of 27 degrees
but with two differentd/A = 0.45 and 0.5, respectivelfhe loss is higher for d/A = 0.45
because there is lesser fraction of air in the cladtieguse when the d/A is lower,

there is a larger gap between air-holes through which more power can escape.

The bending of a PCF leads to the distortion of the optical mode which loses its shape
and tends to move towards regions of higher equivalent refractive index (Heiblum and
Harris 1975 Rahmanet al. 2009 Rahmanet al.2011) In the equiangular spiral PCF

the bridge regions of high refractive index between air-holes are much smaller and
narrower than in the Hexagonal PCF (distance of the air-holes in the second ring from
the first ring is 0.494in the equiangular spiral PCF while it is 0.8ifr the Hexagonal

PCF). By choosing an appropriate valuépothe placements of air-holes in the second

ring may block the spread of the field into the polymer regions between the holes.
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Fig. 7. 16: Field profile in the bent Equiangular Spiral Photonic Crystal Fibre, where bend
radius= 60mm.

Figure 7.16 shows the fundamental mode profile in the bent equiangular spiral PCF and
to show the effect of the air-holes, the air-holes are also drawn in the figure. A similar
behaviour is observed in hexagonal Teflon PCF. This is the main cause that even when
the fibre is bent, in the equiangular spiral PCF the field is blocked from spreading out of
the core by the second ring of air-holes. The location of air-holes in the second ring can
be controlled by the parameter 6 as shown in Fig. 7.10 and leakage loss of an
Equiangular Spiral (PCF) can be significantly reduced. When the addition of material
loss is considered there is a marked increase in the modal loss values due to the modal

field residing mostly in the solid polymer core and the material loss dominating.
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Fig. 7. 17 Graph of loss against bending radius in Teflon for equiangular spiral arrangement
with A = 0.55, 0.56 and 0.57 with narm = 7, nring = 5 an@l= 27°.

Figure 7.17 shows the variations of bending loss against bending radius in equiangular
spiral PCFs considering spiral pitch of 0.55mm, 0.56mm and 0.57 mm, respectively. It
can be observed that the bending loss decreases as the spiral pitch is increased and when
the bending radius is 10cm, the bending loss is 0.1dB/m, which confirms that these
waveguides can be used in many practical applications when the PCF is subjected to
random bends. This is a similar trend observed earlier with the hexagonal PCF. It can
also be observed that as the pitch is increased the mode is better confined in the core

and bending loss is smaller.
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Fig. 7. 19: Variation of bending loss against bending radius and normalised spotsize against
bending radius for hexagonal PCF and equiangular spiral PCF in TOPAS.

The modal loss shows a sharp increase as the bend radius decreases drelimvthe

Hexagonal PCF (LMA) design, while for the equiangular spiral PCF it remains almost

199



Chapter Seven

constant. Bend loss is the dominant loss mechanism for such small bend radii; the
equiangular spiral PCF does not allow the modal field to escape into the cladding in a
way similar to the Hexagonal PCF or oscillation in the Bending Loss due to mode
degeneration (Rahmaat al.2009) Figures 7.18 and 7.19 shows the graphs of some of
the results obtained in the process of optimizing the parameters of ES-PCF to aid in the
comparison with conventional hexagonal PCF. Figure 7.18 shows the graph of bending
loss against bending radius in TOPAS using various configurations of spiral PCF
arrangement compared to hexagonal arrangement. The most important parameter varied
here is the angle to see its effect. The graphs were then plotted for some possible

designs.

Often, loss for a well confined mode is lower. So in this case, spot size of two different
designs, one hexagonal PCF and andd@®PCF are adjusted to have similar spot size.
Figure 7.19 show the graph of Loss against bending radius and normalised spot size
against bending radius for Hexagonal PCF and that of Equiangular PCF with parameters
A =560um, r = 125um, d/ A = 0.45 and for the ES-PCF: 7 arms, 5 rings; 560um, r

= 250um, 0 = 27°. A slightly different radius of air-holes is used here. It is observed
that the loss is significantly lower in Equiangular PCF than in Hexagonal PCF the

curves of the spot size are slightly lower for Equiangular PCF as well.

A key characteristic for THz waveguides is the Modal Loss (ML), which is the sum of
the Confinement Loss (CL), the Bending Loss (BL) and the Material Loss (Mal)
associated with the mode. A comparison of the Modal Loss in the Hexagonal PCF (the
Large Mode Area (LMA) design) (Nielsest al.2009), and an equiangular spiral PCF
which has been optimized with 36 air-holes as in the case of the LMA where the key
fibre parameters used are as follows for the LMA= 560um, r = 125um, d/ A = 0.45
and for the ES-PCF: 7 arms, 5 ringss 660um, r = 250um, 6 = 27°. Figure 7.19 shows
the Modal Loss and the normalized spot size variation with the bend radius. To separate
out the effect of the air-hole arrangement, this initial result assumes a loss less material,
although Material Loss is included in later results. From Fig. 7.19 it can be seen that for
large bend radii (100-1006@m), the loss is primarily Confinement Loss and the
equiangular spiral PCF loss is about three orders of magnitude lower than for the
Hexagonal PCF. For a fair comparison we have used equal number of air-holes, same
air-holes diameter and also comparable spot size. For bending radii lower timam 100
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(where Confinement Loss and Bending Loss are present), the Hexagonal PCF suffers
severe mode leakage while the mode is extremely well confined in the equiangular
spiral PCF with loss lower by 5-6 orders of magnitude. Thus, for applications where
fibres may need to be wound on tight spools, the equiangular spiral PCF can show the
better loss performance (Bending Loss ~10dB/cm even for very tight behdm). At

large bend radii (where the loss is primarily due to Material Loss and Confinement
Loss) the loss values are almost similar for both PCF designs. Even when examining the
Confinement Loss variation with frequency for straight fibres, both PCFs exhibit almost
similar performance. At high bending radii the Confinement Loss is much lower than
the Material Loss with the Confinement Loss is low but as Material Loss is the effect of
equiangular spiral PCF and Hexagonal PCF is almost similar even when the

Confinement Loss of the equiangular spiral PCF was less.
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Fig. 7. 20: Graph of loss against frequency in hexagonal PCF and equiangular spiral PCF in
Teflon with inclusion of material loss.

Figure 7.20 above shows the variations of loss against the THz operating frequency in
hexagonal and equiangular spiral PCFs without bending. It is observed that the
inclusion of material loss (the data for material loss were obtained from published
experimental results (Jiet al.2006) does not alter the loss curves for both hexagonal

PCF and equiangular PCF in TOPAS and Teflon. The imaginary refractive index for
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Teflon was taken as 0.00119 whereas that for TOPAS was 0.000561. In these cases,

material loss is much higher than other loss values.

Earlier, Nielsenet al. (Nielsen et al. 2009) reported two types of low loss bendable
fibres in TOPAS showing two types of fabricated low loss bendable fibre in TOPAS
operating in the terahertz regime. Some of the detailed simulations carried out in this
chapter are based on the fabricatletagonal TOPAS PCF from that research group.

7.3 Bending L oss Calculation in Teflon
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Fig. 7. 21 Graph comparing loss (without material loss) of Equiangular spiral Teflon with
respect to pitch for bending radius of 5,000mm, 10,000mm and infinity.

Figure 7.21 shows the graph of loss against pitch for ES-PCF. The material used here is
Teflon in THz and comparing with bending radius of 5 metre, 10 metre and infinity
(100 metres). It is observed that as the pitch is increased, the loss decreases as well.
However, at a cutoff point the loss begins to increase in the case of waveguide with a 5

metre and that of 10 metre bending radius. This increase happens earlier, implying
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cutoff is reached a bit earlier as the bending radius is increased. This is similar to what
was observed with the hexagonal PCF in Fig. 7.8, however, the loss is generally lower
in equiangular spiral PCF and the cutoff condition is reached much later than in the case
of Hexagonal PE.
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Fig. 7. 22: Modal loss (including material loss) variation with bend radius at 1THz for the
Hexagonal PCF and equiangular spiral PCF.

Often, a PCF in practical applications goes through random bends. It is useful to study
their bending loss. Figure 7.22 shows the bending loss graph of equiangular spiral PCF
and Hexagonal PCF in Teflon from 1000cm to below 10cm. It is seen that the loss
increases much more for the hexagonal PCF below 10cm and even oscillations due to
mode degeneration are observed in the loss curve (as discussed in Chapter 4). However,
the curve for the equiangular spiral PCF remains relatively flat. It can be observed in
Fig. 7.23, which shows the field profiles for Hexagonal and ES-PCFs, that at bending
radius, R = 40mm, the mode is still confined in the core for the ES-PCF but the mode

has leaked more into the cladding in the case of the Hexagonal PCF.
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Fig. 7. 23: Field profile of the fundamental mode in the bent Hexagonal PCF (mode leaking into
cladding region) and the equiangular spiral PCF with bend radinm40

It has been observed through our work that the equiangular spiral PCF has ultra low
bending loss and very low confinement loss compared to conventional Hexagénal PC
(H-PCF). The equiangular spiral PCF has excellent modal confinement properties,
together with several parameters to allow the optimization of the performance over a
range of important characteristics. The full vector Finite Element simulation has been
used to characterize the design which can be fabricated by a range of techniques
including extrusion and drilling. Recently, very low loss operation in a PCF made from
TOPASpolymer has been demonstrated (Nielseal.2009)and a new class of porous
fibres have also been reported (Atakarmiaenal.2008 Hassaniet al.2008a Dupuiset

al. 2009) though achieving high porosity is not trivial (Dup@sal. 2009) Here, an
Equiangular Spiral (ES) PCF desigs inspired by nature (Agrawagt al. 2009
Agrawal et al. 2011) in TOPAS has been presented for THz frequencies. This
equiangular spiral PCF shows significantly better performance over loss compared to
the conventional Hexagonal PCF (H-PCF). Spiral curves appear in plant and animal life
forms as well as huge structures such as galaxies. The equiangular design presented here
is adapted from the original design reported previously by our group (Ageivedl

2009 Agrawalet al.2011)

7.4 Low-L oss Porous Cor e Photonic Crystal Fibre
Although, in a PCF, a large part of the power is in the air-holes, however, results shown

above for PCF with both the Hexagonal and equiangular arrangements in Teflon and
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TOPAS indicate significant modal and bending loss as material loss is significant in this
frequency range. So, next a novel porous core PCF is considered. It has also been
reported that polystyrene foam (Zhabal.2002), with its large air fraction ratio, can

have lower overall material loss, but with its refractive index close to 1.02, it needs not
only air cladding for total internal reflection (TIR) based guidance, but also a larger
dimension to confine most of the THz waves in its core: this is difficult for many

practical applications.

Following the principle of Bragg guidance in optical fibre, hollow core designs have
also been considered for guiding THz waves (Skorobogatiy and A. Dupuis 2067

al. 2008). Neilseret al (Nielsenet al.2011) have also reported a microstructured core
and honeycomb bandgap THz fibre. However, it is well known that these are narrow-
band waveguides and strict periodicity needs to be maintained to satisfy the Bragg
conditions (Okamoto 2006).

Recently, it has been shown that in silicon slot waveguides (Alne¢ida2004 Leung

et al.2012), light can be guided in the low index air region. Using this concept, &tagel
al. (Nagel et al.2006) have reported the use of sub-wavelength air-hole within a solid
silica core to increase the power fraction within the air-hole to reduce the loss.
Similarly, Kejalakshmyet al (Kejalakshmyet al. 2009) have reported on a Teflon
photonic crystal fibre (PCF) with metal-clad hollow defect-core supporting plasmon

modes for possible THz sensing applications.

Recently, Hassaret al (Hassaniet al. 2008b) and Ungt al. (Ung et al. 2011) have

also reported a porous core design to take advantage of the guiding offered through the
low-loss air-holes. In this case, they have used a relatively largeratib to have a

larger power fraction in the air-holes (wherés the air-hole diameter and the piteh,

is the centrde-centre distance between two adjacent air-holes). However, as a large
d/A is used in this case, the equivalent index of the core was very low and the authors
had to consider air cladding for the TIR. As a consequence they also had to consider a
large core diameter, which was 70 times the operating wavelength; equal to 21 mm for
mode confinement as the index contrast between the porous core and air-cladding was
very small. In their work (Hassaat al.2008b) they report the maximum confinement

in the air-holes of the core was around 58% and in that design, the total power in the air
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was around 80%, which indicates that remaining 20% power was confined in the solid
PE. They have also mentioned that total confinement in the PE could be as low as 8%,

and in that case the expected loss value would be only 10dB/m.

In this section, a novel concept, using porous core and also porous cladding, is
discussed. In this case the\d/atio of the cladding air-holes must be larger than that in
the core to create a differential refractive index contrast to confine the THz waves
within the waveguide. In this case, all the power will be fully confined inside the
waveguide and the system performance will not be affected by the surrounding medium.
Here, optimization of the power fraction in the air-holes is shown, with the fabrication

parameters, including their bending loss calculations.

7.4.1 Numerical Solution for Porous-Core PCF

In this study a Teflon PCF is considered with the number of air-hole ringg=Nt in

the cladding and also)e= 4 in the core. To achieve the maximum porosity, at the
centre of the core a similar air-hole is consider rather than a solid rod. In this case, if the
outer pitch,A,, is equal to diameter of the porous core (D), which is 9 times (2N

1) the inner pitchA;, then it would be easier to use the conventional stack-and-draw

technique to fabricate such a porous-core PCF. The refractive index of Teflon is taken
to be 1.445. In this case, the bulk material loss for Teflon has been considered to be 0.3
cm® or 130 dB/m (Hassamit al.2008b), at 1 THz. This gives the imaginary part of the
refractive index as 0.000715 at the operating frequencyl®fzZl(A = 0.3mm), which is

used in this work. The overall structure has a two-fold symmetry, so only a quarter of
the PCF is simulated as shown in Fig. 7.24. In total, 80,000 first order triangular
elements of different sizes are used to represent a quarter of the structure. The porous

core is also shown as an inset at the top right corner of this figure.

It has been mentioned that the inner air-hole diameter/pitch ratig) (oh the core
needs to be smaller than that of the cladding\@l to have a higher equivalent index
necessary to support the TIR guidance. In this case, initiglly;Y(@&s taken as 0.5 and
(d/Ao) = 0.8. Variations of the effective index and the mode-size areas with the outer-
pitch, Ao, are shown in Fig. 7.25. It can be observed that as the pitch value is reduced,

the effective index of the fundamental;imode is also reduced shown by a solid.line
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The cutoff condition is reached when the effective index approaches the equivalent
index, often designated as thgnnKejalakshmyet al.2009), of the cladding. For this
structure, the 90 degrees rotational symmetry is nearly satisfied, so the modal properties
of the quasi-TE (M 1) and quasi-TM (F4;) modes would be almost identical.

Variations of the mode-size areas with the pitch are also shown in Fig. 7.25. There have
been different definitions used to quantify this mode-size area and for a Gaussian

shaped field profile they give identical results as shown in Chapter 6. It can be observed
that as the outer pitchy/d.,, is reduced, initially the mode-size areas reduce since the
core size is also being reduced. All three mode area definitions give similar values when
Ao = 0.45mm, as in this case the field profile is close to a Gaussian shape. However,
when the pitch is reduced further, the mode-size areas start to increase as the mode
approaches its cutoff condition. In this case, a greater amount of the modal field will
extend into the cladding areas. It should be noted that whes reduced, the inner

pitch, A;, is also reduced to maintain their constant ratio to be 9, necessary for this

design with Nore= 4.
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Fig. 7. 24: Representation of the porous core PCF cross-sectionyyith 8l Njaa=4. A=
outer pitch and g= outer radius. Inset shows A; = inner pitch and;& inner radius.
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The variations of the power confinement in various regions with the outer pijchre
shown in Fig. 7.26. The power confinement facigrwas determined for different
regions of the porous core PCF, normalized to the total power. The confinement factor

can be calculated by integrating the Poynting vector over a given regias,

Iy =_[Qi{E* x H}dQ (7.3)

Therefore, the confinement ratiolis=T; /T, = I{E xH }in/I{E* xH }th
Qi

WhereE is the electric field andd is the magnetic field of the mode. In this full-
vectorial approach, all the six components of theand H fields are used for the
calculation of the confinement factors. Four regions have been clearly identified, air-

holes in core, Teflon in core, air-holes in cladding and Teflon in claddidg.asre

t t :
[solidcore [airclad @NdI solidclad respectively.

It can be observedadt as the pitch, A,, is reduced, the power in the Teflon-core region,
Msoiigcore ShOwn by stars, initially increased and then subsequently reduced as the mode
approaches its cutoff, when most of the power extends into the cladding. Similar
features were shown for the power in the air-holes of the core reGfgRore
represented by squares. On the other hand, the power in the solid Teflon area of the
clad, Isoigcias Shown by triangles, initially reduces with the pitdhand then increases
when the mode approaches its cutoff condition and the power extends further into the
cladding. However, the power in the cladding air-hol&s;cas Shown by circles,
monotonically increases as the piteh, is reduced and increases more rapidly when
the cutoff condition approaches. It can be observed that the maximum confinement in
the Teflon corelsiidcors iS @about 52% whereas the confinement in the air-holes in core,
aircore 1S ONly 17%, when the outer-pitch, = 0.35 mm. To understand the complex

interaction between these parameters, the field profiles for two pitch values are shown
in Fig. 7.28 and Fig. 7.29.
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Fig. 7. 25 Variations of the mode field areas and effective index with the pitch, A, for dy Ao =
0.8 and dA; = 0.5 for H;; Mode.

In Fig. 7.25 the mode field area and the effective index against the outer pitch radius are
presented. In this casg/d, = 0.8 and dA; = 0.5. The mode field areas decreases as the
outer pitch is decreased but start to increase again at the cutoff region. This is similar to

previous results obtained.
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Fig. 7. 26: Variation of the confinement factors with the outer pitghfor d/A, = 0.8 and dA;
=0.5.

Figure 7.27 shows the variation of the confinement factors with outer pitcly/foy =

0.8 and dA; = 0.5. The maximum confinement in the solid core is 52% whereas that in
the air core is 1%.

210



Chapter Seven

70
60 -
a
50 A I airclad
[ t
) solidclad
"g 40 - .
s aircore
E 1"tsolidcore
o 30 -
£
Q
£ 20 -
o
c
o
O 40-
0 4
0.0 0.2 04 0.6 0.8

Pitch(out), mm

Fig. 7. 27: Variation of the confinement factors with the outer pitghfor d/A, = 0.8 and dA;
=0.6.

Figure 7.27 shows the variation of the confinement factors with outer pitcly/fqy =l
0.8 and dA; = 0.6. The maximum confinement in the solid core is 39% whereas that in

the air core is 18%.
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Fig. 7. 28: Variations of the Hield of the H;; mode along the axis for A, = 0.7mm.
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Fig. 7. 29: Variations of the Hield of the H;; mode along the #xis for A, = 0.35mm, when
ds/A, = 0.8, and dA; = 0.50.
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The variations of the Hfields of the fundamental’ ¥t mode along the horizontal axis

are shown in Fig. 7.28 and Fig. 7.29 for two different pitch values. For a higher pitch
value, Ao = 0.7mm, the field profile shown in Fig. 7.28 demonstrate a reasonably well-
confined mode inside the core with its decay length ¢1the maximum field) a8 =

0.12 mm. The field variation inside the core clearly shows the presence of the 5 air-
holes (shown by arrows), along the x-axis with their local field minima. In this case,
near the outer air-hole ring (of the inner core), the modal field shows it maximum value
due to the presence of a large solid Teflon areas just before the first air-hole ring in the
cladding. In this case, total confinement in the core was around 50%. On the other
hand, for a smaller outeiitch value, A, = 0.35mm as shown in Fig. 7.29 field is more
confined in the corele = 52%), but associated with a slower decay (decay léngth

0.18 mm) in the cladding.
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Fig. 7. 30: Variation of the confinement factor in the core air-hdfgg.. with the outer pitch

A, for d/A, = 0.8 but with different d\; values.

The variations of the power confinements in the core air-holes with the outer/gjtch,
are shown in Fig. 7.30 for a giveg/d, value, but withthree different d/A; values. It
can be observed that as the outer pitch, A, is reduced, the power confinement in the core
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air-holes,I"%;core increases and reaches a maximum value. A further reduction of the
pitch value brings this mode closer to cutoff and the mode field extends in the outer
cladding sd%rcorereduces. It is also shown that as thia;dncreases from 0.4 to 0.6,

the maximum confinement in the core air-holE%;core also increases. This maximum
value is identified ag™4core It can be observed here that in all the 3 cases, the
maximum power in the core was obtained when the outer pifclvas around 0.35

mm. However, there is a limit to the increment of the value/af,das this needs to be
lower than the outer i\, value to have sufficient index contrast for the TIR guidance.
To increase the air-filling area and also to avoid the field localization at the core-
cladding interface, it was considered to increase both ia¢ ahd d/A, values to

reduce the solid Teflon area near the core-cladding boundary.
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Fig. 7. 31 Variation of the confinement factor in the core air-hol€g,as With the outer pitch
A, for dy/A, = 0.8 but with different d\; values.

The variations of the power confinements in the air cladding region with the outer pitch,
Ao, are shown in Fig. 7.31. As the outer pitch is reduced the air cladding confinement

increases as the modes approach cutoff and field expands into the cladding.
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Fig. 7. 32 Variation of the confinement factor in the core air-hol&s;iqciags With the outer
pitch A, for d/A, = 0.8 but with different é\; values.
The variations of the power confinements in the solid core with the outer picare

shown in Fig. 7.32. The curves of& = 0.4, 0.5 and 0.6 are presented. As can be
observed, the confinement factor increases as the outer pitch is increased, it reaches the

maximum at outer pitch = 0.35mm.
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Fig. 7. 33 Variation of the confinement factor in the core air-hol&s,qag With the outer

pitch A, for d/A, = 0.8 but with different g\; values.

The variations of the power confinements in the solid cladding with the outer fijtch,

are shown in Fig. 7.33. The curves ¢f\gd= 0.4, 0.5 and 0.6 are presented. As can be
observed, the confinement factor decreases as the outer pitch is increased, it reaches the

minimum at outer pitch = 0.35mm.

217



Chapter Seven

40
Teflon
A =0.3mm [ ] -
35 1 n = 1.445 =
|
||
30 - A A=
-~
® A
g 7
® E ||
x® 25 P
g
||
P
20 - 7
—— d /A, =0.8
151 — A — dJ/A, =09
= d,/A,=0.95
10 T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9
d/A,

Fig. 7. 34: Variation of the maximum confinement factor in the air core withtkhefok some

fixed dyA, values.
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Fig. 7. 36: Variation of the total maximum confinement factor in the air core and aimgaddi
with the /A, for some fixed glA, values.

Further, besides varying tiag and the inner;t\; values, the outer,f\, values are also
adjusted to get the maximum confinement in the core air-h®8%,core The
variations of the maximum power confinement in the air core, with the inidgrade
shown in Figs. 7.34. For given values @fAd and @A, the pitch A, is adjusted to
achieve the maximum power confinement in the core air-hbBlE%,.core The variation

of this value with dA; is shown for a fixed A, It was noted that for most of the
cases, the outer pitch, was around 0.35mm to achieve the maximum confinement in

the core air-holes. It can be observed that as the valug/ofisl increased, the

maximum power confinement in the core air-holes also increases. However, a further
increase in dA; reduces the index contrast between the core and claddidd"&&dcore
reduces as more power is extended in the cladding. It can also be not€tf’that.
increases as the/d, is increased. It can be observed that total power in the air-holes
(both in core and cladding) reaches 58%, whgnd= 0.95 and dA; = 0.85. By

increasing the ratio, ol\,, the maximum confinement in the air-holdsy.x also
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increases but this also needs a higher value/af. dit is noted here that reducing the
difference between the outer/inner d/A ratios increases the maximum power
confinement in the core air-holes. If it is possible to incredée t more than 0.85

(and @d/A, more than 0.95), the power fraction in the air-holes can be increased further.
In the design reported (Hassatial.2008b) ¢A; has been considered as 0.95 and as a

consequence, it had been necessary to consider an air-cladding (porous cladding with
air-holes is not possible) to achieve the index contrast necessary for the TIR guidance

and thus exposing the mode to external environmental influences.
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Fig. 7. 37: Variation of the Hield along the x-axis for the’4 mode when A, = 0.35mm,

do/Ao = 0.95 and diA; = 0.85.

Figure 7.37 shows thesHield variation along the x-axis for the fundamental modg H

mode when A, = 0.35mm, gA, = 0.95 and @dA; = 0.85, a combination which achieved

the maximum power confinement in the air-holes. Here the field profile is almost
constant within the core with small ripples due to the presence of the air-holes inside the
core. In this case, the index contrast between core and cladding is smaller and the field
extends in the cladding region with the tlecay length given by 0.23 mm but most of

the power is well confined inside the waveguide. One local field maximum is shown by

an arrow identifying the location between ti&ahd 29 air-hole rings where the field
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value is about 0.004% of the maximum field. This also signifies that the THz energy is
well confined inside the cladding and does not extend outside the waveguide, unlike the
waveguides with air-cladding (Hassagtial. 2008b), when the field extends in the air

cladding and the mode would be influenced by both environmental factors and bending.
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Fig. 7. 38: Variatin of bending loss with bending radius, R at A= 0.35mm and A; = 0.039mm.

Modal loss and the bending loss of this porous core PCF have also been studied from
Chapter 4. In this analysis, a Conformal Transformation (Heiblum and Harris 1975
Rahmanet al.2011) was carried out to obtain the equivalent index of a bent PCF and
PML regions (Berenger 199Rahmanet al.2009) are introduced to absorb the leaking
power. For a bent PCF, only one-fold symmetry is available and symmetry along the
vertical axis is destroyed. Figure 7.38 shows the variation of the loss values for a bent
PCF with the bending radius, R. In this case, for the porous core PCF, the parameters
are taken to be A, = 0.35mm, dA, = 0.95, and dA; = 0.85. Initially the material loss is
ignored and the bending and leakage loss is shown by a dashed curve with solid
squares. When bending radius is large, the loss value is around 8 dB/m, which identifies
the leakage loss only. If necessary, this leakage loss can be further reduced by

increasing the number of rings in the cladding region (in the present simulgtign &
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is considered) or by increasing theAdvalue of the outer rings. When the bending
radius, R is reduced the total loss value increases, which now includes the bending loss.
It can be noted that for this particular design, the bending loss is negligible when the
bending radius, R, is above 2 cm. However, as the material loss is the dominant loss-
contributing factor, when this is added by considering the imaginary part of the complex
refractive index of Teflon, the total loss is shown by a solid line with solid circles. It can
be indentified that the material loss dominates with its value around 53 dB/m. However,
this value is considerably less than that of a solid core Teflon PCF, which could be as
high as the bulk material loss, this being 130dB/m. It can be noted that the loss value
peaks when R = 1.4 cm, and this is due to the mode coupling between the PCF mode
and a cladding mode and appearance of such more degeneration was reported earlier

(Rahmaret al.2009).

1.6

1.4

1.2

y (mm)
o o
oM w -

o
i

o
(M

X (mm)

Fig. 7. 39: H field profile of the bent PCF for the fundamentaj;Hinode for bending radius,
1.5cm.

The H field profile of the bent PCF for the fundamentdhHmnode is shown in Fig.
7.39, when the bending radius is 1.5 cm. Only half of the PCF structure is shown, as
symmetry along the horizontal axis was exploited during the simulation. It can be

observed that the centre of the mode field has shifted towards the right (away from the

223



Chapter Seven

bending centre) and the influence of the air-holes in the first cladding ring is clearly

visible.

7.5 Summary

The focus of this Chapter has been on PCF design for the THz band. Initially, an
equiangular spiral PCF design has been presented which has shown the ability for very
effective control of the modal fieldin some cases better than the hexagonal design and
thus allowing significantly lower bend loss. The fabrication of the equiangular spiral
PCF should be possible using the extrusion and/or drilling and is not beyond present
capabilities or more challenging than for other designs. Using porous core PCF the aim
has been to reduce the effects of Material Ld%ss is a novel design incorporating

both a porous core and also a porous clad, this being a better design than a traditional
PCF with porous cladding (Haet al.2002 Goto et al.2004) or a porous core (Hassani

et al.2008h Ung et al.2011) fibre with air-cladding. A rigorous full-vectorial modal
solution approach is used to optimize the index contrast and the dimensions to

maximize the power confinement in the air-holes.

It is shown here that by using a porous core along with the porous cladding of a
conventional PCF, the power confinement in the air-holes can be significantly
increased, which will reduce the effect of material loss by 60% for the solid Teflon. The
overall loss value can be further reduced if the material loss can be reduced or the
fabrication technology improved to allow a highen d/alue than 0.95 (for the outer
d/A), which is considered in this study. It has been shown the leakage loss and the
bending losses for such a PCF are very small for practical applications. The
manufacturing technology for PCF operating at optical frequencies has matured and
PCFs with a sub-micron pitch are routinely being fabricated. Compared to that, PCF for
THz frequencies with a pitch 100 times larger would be relatively easy to fabricate and
such a PCF has also been fabricated (etaal. 2002 Goto et al.2004). In the design
reported here, when a THz PCF with additionally porous core @inagj. 2011) is
considered, the 20-40m inner pitch dimensions are easily feasible and the fabrication
process does not introduce any additional challenge. The design shown here, with a
fixed AJ/Aj ratio depending on number of air-hole ringseNin the core, would be

compatible for more widely used draw-and-stack approaches. The availability of a low-
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loss flexible waveguide will allow both distributing THz waves and also a waveguide to
act as part of a functional device for processing the signals. The reliability and the
performance of a THz system can be improved by having a compact, flexible, robust

and low-loss waveguide for the remote delivery of high power.
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CHAPTER EIGHT: Conclusion and Further Work

8.0 Review of the Aims and Objectives of the Work

The broad aim of the work undertaken in this thesis was, as set out in Chapter 1, to
Design, Characterize and Optimize Photonic Crystal Fibre (PCF) for practical
applications with current optical systems. This was achieved in the work reported and in
the examples chosen by implementing the rigorous full vectorial Finite Element Method
(FEM) H-field formulation together with the conformal transformation and the
Perfectly Matched Layer (PML) boundary. Several materials used in the simulations
included silica for a wavelength of 1.55um, Teflon and TOPAS at frequencies around
the 1 THz regions. Designs of PCF considered included Hexagonal PCF arrangements
with cladding containing from 3 rings up to 10 rings with a solid core, Hexagonal PCF
arrangement containing cladding with a porous core and PCF with Equiangular Spiral
PCF air-hole arrangements.

The research carried out and presented in this thesis meets the specific objectives set out
in Chapter 1 as discussed in summary below. The theoretical background of the finite
element method based on the variational principle to perform modal analysis of various
waveguide structures was presented in Chapter 3 with discussions beginning by
introducing Maxwell’s equations. The properties of various numerical methods often

used in analysing waveguide problems were also briefly examined. An elaborate
mathematical description given for the vectétfield based FEM formulation with

some aspects of the method such as the boundary conditions, shape functions and
methods aimed at eliminating spurious solutions analysed. Also, a rigorousl
convergent least squares boundary residual method is described for analysing the
discontinuities in optical waveguides. The method is also capable of calculating the
power transfer between two waveguides by obtaining the scattering matrix; and the role

of the finite element program in utilising the LSBR technique.

Further, by applying the methods in Chapter 3, the aim has been to calculate the leakage
and bending losses associated with the PCF for several designs by varying the pitch (A)
and diameter of air-holes (d) thereby optimising the designs that would provide the
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lowest loss and that would be less susceptible to bending for telecommunications
applications at wavelength of 1.55um. The results obtained by applying the above
discussed methods were presented in detail in Chapter 4 and also publishptieic

Optics as shown in the List of Publications. First, the origin of localized cladding
modes in the silica bridging regions between the air-holes was studied and results
presented. These silica bridging areas are smaller than the PCF core (where an air-hole
iIs missing) and for a straight PCF; these modes with the lower effective indices do not
interact with the PCF core mode. However, for a bent PCF, as the local equivalent index
is increased in the cladding region, the dispersion slopes of these modes are higher and
for smaller bending radii they can be phase matched to the core mode to form coupled
supermodes. It was also shown that these cladding modes can also cover several
bridging regions simultaneously and also support the higher order modes. This mode
degeneration causes a mixing of these modes, the formation of the supermodes and the
transformation from one mode to another. These cause rapid changes in their modal
properties, their effective index, the spot size and the bending loss values. A higher
pitch value which increases the silica bridging regions and such mode degeneration can
even appear at a higher bending radius, which may often be encountered in practical

applications.

Secondly, having established the optimal PCF designs and bending radii for low loss
transmission, the first ring of air-holes was altered to increase the birefringence of the
PCF for single mode single polarization guidance. This was also enhanced by
controlling or reducing the bending radius of the PCF. The design of a Single Mode
Single Polarization (SMSP) PCF was reported in Chapter 5 and also published in
Applied Optics as shown in the List of Publications. The design approach was
developed by exploiting the differential bending loss and then analyzed through the use
of a rigorous full-vectorial FEM. It has been shown that, for asymmetry arrangement
used in our work, the TM modal loss is higher than that of the TE mode. However, the
differential LR increases with any excessive bending beyond a critical value of the
bending radius. Such a critical bending radius can be tuned with a suitable adjustment of
the value of g¢A. The LR increases with the number of air-hole rings, N, in the PCF
cladding. These results can be used to assist in designing the single polarization
condition in a bent PCF. The PCF designs analysed are all single-mode guides when
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operated closer to their cutoff conditions. Furthermore, the effects of structural
asymmetry have also been carried out to evaluate the effect on the SMSP of a PCF due
to bending for different air-hole orientations. Variations of the bending loss for the TE
and TM modes with the operating wavelengths are also presented. Such a PCF, which
only guides one polarization state, can be used for various linear, nonlinear and sensing
applications. It is also shown here that the bending lossesefaHd Hi; modes

depend on the pitch, A, the asymmetry via the value of do/A, the number of rings, N, the
operating wavelength and the bending radius and, so, the differential loss will depend
on the fabrication tolerances relating to the parameters A, d, and d,. However, since the
differential loss also depends on the bending radius, it is expected that, by adjusting the
bending radius, the effect of the fabrication tolerances may also be compensated for a
wide range of applications, such as attenuators or polarization maintaining applications.

Following that, an important issue that needed to be addressed was how to couple the
PCF to a conventional single mode fibre or to other waveguides like the erbium doped
fibore amplifier. This was investigated using the Least Squares Boundary Residual
(LSBR) method in conjunction with the FEM and the power transmission at the
boundary of discontinuity when butt coupling between the PCF and conventional fibre
were obtained. A novel design approach for a PCF which could be considered as a
candidate for efficient coupling to an optical fibre has been presented in Chapter 6 and
also published IREEE Photonicslournalas shown in the List of Publications. Initially
various MFA parameters and field profiles for a SMF and a PCF were studied. It has
been shown here that a smaller air-hole diameter and a larger number of rings would
allow the A value to reach a higher value, which can be achieved by operating a PCF
near cutoff. However, its expansion near cutoff can be very rapid and unstable, but by
increasing the air-hole diameter in the last ring, this parameter can be stabilized with the
variation of the fabrication tolerances. Using this approach presented above, it is
possible to avoid uncertainty resulting from the variations in the dimensions of the pitch
or the diameters of the air-holes in the PCF as a result of fabrication or tapering, thereby
ensuring that the PCF can be successfully coupled to an optical fibre without any
significant loss in coupled power. Additionally, it is also shown here that the larger air-
holes in the last ring can reduce the degeneration of the core mode with the cladding

modes. During the tapering process it has been assumed that theApiteduces
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gradually while keeping the Ml/ratio constant. However, the air-holes can also collapse

and the air-hole/pitch ratio can also change although this may give an additional

flexibility or uncertainty but also an additional parameter to optimise the situation.

In closing, the application of the PCF to the Terahertz (THz) region as a low loss
waveguide was also investigated. Several polymer materials were analyzed for this
purpose and the conventional PCF was compared to an equiangular spiral PCF
arrangement. This was presented in Chapter 7 and publisiA¢el Advancesas shown

in the List of Publications. An equiangular spiral PCF design has been presented which
has shown the ability for very effective control of the modal field some cases better

than the hexagonal design and thus allowing significantly lower bend loss. Further, the
operating bandwidth of the equiangular spiral PCF can be larger than in porous fibres.
The fabrication of the equiangular spiral PCF should be possible using extrusion and/or

drilling.

Finally, a novel design of porous core PCF aimed at further reducing the leakage and
bending losses in the THz regime was also investigated which provided some unique
guiding properties. This is shown in Chapter 7 as well and publish&dt i Photonics
Journalas shown in the List of Publications. Using a porous core PCF, it is shown here
that it was possible to reduce the effects of Material Loss and thus, this novel design
incorporating both a porous core and also a porous clad was studied, this being a better
design than a PCF with porous cladding or that of a porous core fibre with air-cladding.
It is shown that by using a porous core along with the porous cladding of a conventional
PCF, the power confinement in the air-holes can be significantly increased, which
reduced the effect of material loss by 60% for the solid Teflon. The overall loss value
can be further reduced if the material loss can be reduced or the fabrication technology
improved to allow a higher d/value than 0.95 (for the outerAd/ which is considered

in this study. It has been shown that the leakage loss and the bending losses for such a
PCF are very small for practical applications. The manufacturing technology for PCF
operating at optical frequencies has matured and PCFs with a sub-micron pitch are
routinely being fabricated. Compared to that, PCF for THz frequencies with a pitch 100
times larger would be relatively easier to fabricate. The reliability and the performance
of a THz system can be improved by having a compact, flexible, robust and integrable

waveguide for the remote delivery of high power.
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Chapter Eight

8.1 General Conclusions and Directionsfor Further Work

Optical fibres have made a very significant impact on the world in general and the way
we communicate with each other. This point is further emphasized by the fact that
following the pioneering paper by one of the founding researchers in this field,
Professor Charles K. Kao (Kao and Hockman 1966), he was awarded the Nobel Prize in
2009. This project has aimed to add to the body of knowledge in the field on optical
fibre research, building on the brief history of the development of optical technology
and basic modal properties of optical fibres presented at the beginning of the thesis.
Next, the main focus of the thesis, which is work on the special type of optical fibre
known as the photonic crystal fibre (PCF) was introduced to provide the foundation for
the discussions that were to follow subsequently. The history and development of the
PCF, which came about in 1996, including the fabrication technique was discussed and
the guidance principle and the structure of the PCF were shown. The Design and
Characterisation of the Photonic Crystal Fibre was carried out by simulation using
rigorous full vectoriaH-field formulation Finite Element Method (FEM) to perform the
numerical experiments required to calculate leakage and bending losses, insertion losses
with a view to minimising those losses as well as applying them to novel applications in

engineering photonics.

The work presented in this thesis has been published in major international journals and
presented at major international conferences (as discussed above) with a view to making
a useful contribution to the study of photonics through research in optical fibre design

and further meeting one of the objectives set out in Chapter 1.

The research reported in the thesis has opened up scope for further work which could be
carried out in this field by prospective students. All areas studied here provide scope
for further study to enhance the designs needed for better optical fibre-based devices. In
the work reported in Chapter 6 for instance, PCFs with up to 10 rings in the cladding are
considered; with larger outer rings, these have been considered for coupling to SMFs. It
may be possible to use more rings of air-holes and as such larger air-holes in the outer
rings to stabilize the mode field areas. New approaches and new materials could be
considered for future research work and some materials like chalcogenide glasses may
offer significant promise especially with regards to applications in technologies
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Chapter Eight

requiring nonlinear applications. A new way of designing and analysing a triangular
core fibre can be obtained using three large hollow tubes stacked together similar to
PCF fabrication. Also, work in THz regime could be enhanced to a possibility of
including a hollow core which would bring about some really interesting properties
especially with regarding improvement to attenuation, for high power delivery and in
sensing applications. Some work could be carried out on more ways to harness the
bending of PCF to an advantage especially in tailoring dispersion. Thus overall there is
considerable opportunity for on-going research in this field which could positively

impact the community.
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APPENDI X

Evaluation of Element Matrices
The elements of matrices [Aand [BL in equation (3.57) can be evaluated by expressing
the derivatives of the shape function vectors in terms of the shape functidoientsff as

determined in (3.56) and (3.57) and by performing the integration of the shapierfsinc
with the aid of (3.46)

[AliH }-o?[BJH }=0 (1)

The global matrices [A] and [B] are expressed as:

A=Y= sk @

e=1A

N |

And
B]-2(eL=> [N N2 @

In equation (2) the matrix [A] has matrices Q and Q* which can be written as follows:

o - A
0z
- M g @ @

Replacingag with — j# the following [Q] matrix is obtained:
z

BORRZORE
Q= -ian) Bl -2
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Consequently, the Q* matrix is defined as:

Appendix

o ey BT
k= -ipy o] -V ©
_a[(;]T 6[{;? (o]
Where [N] is defined as:
[N]: [Nl N, Ns] 7
w2 iBIN]=[iANL N iN,] ©)
This results in the formation of the [Ahatrix as:
(L= [ [l ek ©
o) v L[ ey A
TR0 N QR B R 1) R et
N oNT _aN] - oIN]
5y o U y o 9
pinri-ALAN - dANE Y] ity 2
o [ A O e O G
_ ~ip Ny -ip 2] 6[;T8g§]—@[;”g§]_
(11)

The [B]. element matrix of equation (3) can be defined as:
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[B]. = x| IN] [N]do (12)

0 (13)

[N] [o] [o]
N{[O] [N] [0]] (14)
o] [o] [N]

Where [N] is a row vector defined as [N] =N, Ns]. The transpose of [N]

Can be defined as [Njvhich can be represented as:

[N, [o]  [o]]
[N,] [0] [o]
[N;] [0]  [o]
o] [N [o] | [N [o] o]
IN]"=| [0] [N,] [0l |=| [o] [N,]' o] (15)
o INJ [ol | | [o] [0 [NST
o] o] [N,
o] o] [N,]
[0 [o] [N]

(16)

Now the integrating the individual shape functions inside the matrix will result:
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(N1)2 N1N2 N1N3
:I N, N, (N2)2 N,N; (dQ 17)
. NSNl N3N2 (N3)2
JINdQ [N;N,dQ [N;NGdO

=[[N,NdQ  [(N,)?dO _fNZNSdQ
A

For a triangular element, the shape functions can be integrated using the relation:

| |
[NLNZNSdO = aulL )2Ae (18)
A

(l+m+n+2

Hence the integral elements in the matrix relation shown in equation (17) can be expresse

as:

101
ledegzjﬂ-z :iszledQ (19)
) 4 12 4
jNNdQ 1?“1 2Ae=%= N,N,dQ
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Now, if we consider a matrix [K] where [K] can be defined in terms of thpeshanction
integrals as:

[K]=uf[N] [N}oe

(20)

Thus using the shape function definition in equation (19) the above relation foafikje
expressed as:

U

> o>

[K]

i) (21)

A
Y

I
=)
=
=)

(22)

The integral elements of the [Afatrix in equation (11) can be further expressed as:

i 2 A 2 A 2i_
ﬂpi B 1A§ B '163
J;ﬂ IN]'[N]dQ=| B E B E B E (23)
TR TS
o
oy
_[a[N]TMdQ:I N, ><{aml oN, aNg}dQ
L oy oy A oy oy oy oy
oN,
| Oy |
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Which can be expanded into the following 3 x 3 matrix as:

[ (aNlJz N, N, N, oN, |
oy oy oy oy oy
J-G[N]T Md@:j N, ON, (aNZJZ N, ON,
A oy oy Al Oy oy oy oy a);
ON, ON, 0N, ON, (0N,
P (Wj

dQ (24)

The elements of the matrix in equation (24) can be expressed after integration as:

oN,
oy

J

A

|
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2
J dQ:J‘cfdQ:cfAe
A

J

A
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J

A

oN, ON,

|

J

A

J

A
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A

oN,
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2
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A
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A
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A

dQ = 'f C;C,dQ = C,C, A,
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Hence the matrix in equation (24) can be re-written as:

A CCA  CGA
| %%dw CLA  GA  CGA (26)
A LA CCA  CA

.
Similarly, thej—MMdQ term in equation (20) can be expressed as:
A

N, |
T oy
J_a['\'] Mdg):j _ N, ){_aNl N, aNl}dQ (27)
R | oy

0N,
oy

OX OX OX

This results in the formation of the following matrix:

CONg AN, ON AN, 0N, 0N |
oy OX oy oOx oy oOx

CON,ONy OGN, AN, OGN, AN | (28)
oy Ox dy Ox oy Ox

CONg AN, ONZ AN, AN, 0N,
oy Ox oy Ox oy Ox |

NS aN]
oy OX

> C—y
> C—y

The components in the above matrix shown in equation (28) can be re-arranged by
substituting the relation of equation (3)50
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Similarly other terms of equation (11) such asjﬁj[N]T
A

as:
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Other terms such asj
A

OX

be expressed as follows:

MMdQ and

Appendix

Ia[N]T d[N]
A Xy

dQ of equation (11) can also

0N, |
. OX
_Ia[N] a[N]dQ:j _ON, | JON, 0N, ONgl,o
= OX oy | OX oX  OXx  OX
_ONg
ox |
| ON AN, AN, ON, AN, ON, |
oxX oy ox oy ox oy
=_[ _ON, ON; 0N, ON,  ON3 ON; 10 (32)
| Ox oy ox oy ox oy
_ONgON;  ONg ON,  ON; 0N,
ox oy OX oy ox oy |
_blclAe _b1C2Ae _blCSAe
=|-bc A —bC,A. —DbCA
- 3C1A\9 _bsczp\e —b3C3Ae
"oN,
. OX
Ja[N] 8[N]dQ:J- N, {ar\ul N, ONs}dQ
L OX  OX | OX oX  OX  OX
ON,
L ox |

242



Appendix

oN, Y N, ON, ON, oN, |
OX OX OX OX OX
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Hence from equation (11), the 9 x 9 [Apatrix can be evaluated as:
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Thus, some of the elements of the 9 x 9. [Ahtrix can be evaluated as:
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1[ 52
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Similarly 72 other elements of the 9 x9 [A]e matrix can be evaluated.
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