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Résumé: L’objectif principal de cette thèse est la formulation des mélanges stables 

contenant l’hydroxyapatite gel synthétisée (Ca-HAGel). Le comportement rhéologique 

des mélanges Eau/(sulfate de calcium) et hydroxyapatite/(sulfate de calcium) a été 

étudié. Les résultats ont montrés que tout les mélanges sont caractérisés par un 

comportement rhéologique rhéofluidifiant et thixotrope. Le potentiel zêta a été utilisé 

dans cette étude pour mieux appréhender les interactions entre les particules et leur 

effet sur le comportement des mélanges. La fixation de sulfate sur la surface de Ca-

HA favorise la stabilité de la structure du Ca-HAGel. Les analyses de caractérisation 

effectuées sur les formulations ont montrées la formation de nouveaux composés tels 

que le sulfate-phosphate de calcium hydraté et l’Ardealite. Les tests de lixiviation et 

de percolation ont révélés que le taux de relargage de soufre et strontium à partir des 

sous-produit de gypse était négligeable pour les mélanges contenant Ca-HAGel. Ca-

HAGel stabilise les métaux lourds relargués à partir du gypse et plâtre. Les particules 

du gypse améliore les performances hydrauliques de Ca-HAGel et le plâtre hydraté 

stabilise la structure de Ca-HAGel par la formation des particules agglomérées. Le test 

colonne effectués sur la formulation AWPG2 a montré une grande performance à 

retenir le plomb et le cadmium avec des capacités de rétention de plus de 99% et 88% 

respectivement. The traitement des métaux lourds était lié aux particules de Ca-HA 

et aux phosphate et calcium libres. La formulation AWPG2 peut être utilisée dans les 

barrières perméables réactives pour traiter les eaux souterraines contaminées. 

 
Mots clés : stabilité de la structure, stabilité chimique, performances hydrauliques, 
réactivité 
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Abstract: The main purpose of this thesis was the formulation of stable blends based 

on synthesized hydroxyapatite-gel (Ca-HAGel). The rheological behavior of 

water−calcium sulfates and hydroxyapatite−calcium sulfates blends was considered 

in this study. The results show that all blends and formulations exhibit a shear-

thinning effect and thixotropic behavior. The ζ potential was used in this study to 

understand the interaction between particles and its effect on the global behavior of 

the blends. Fixation of sulfate on Ca-HA surface promotes the stability of Ca-HAGel 

suspension. Characterization analysis of formulation shown the presence of new 

compounds such as calcium sulfate-phosphate hydrate and Ardealite. Leaching and 

percolation tests revealed that the release rate of sulfur and strontium from gypsum 

by-product was negligible in blends based on Ca-HAGel. Ca-HAGel was stabilized the 

heavy metals released from plaster and gypsum. Gypsum particles enhanced 

hydraulic performances of Ca-HAGel and hydrated plaster stabilized Ca-HAGel 

structure by the formation of agglomerated particles. Column test carried out on 

AWPG2 blend revealed high removal performances for lead and cadmium with 

retention capacity of 99% and 88% respectively. The reactivity was related to Ca-HA 

and free calcium and phosphate contained in the selected formulation. AWPG2 blend 

is to be used as permeable reactive barrier for in-situ contaminated groundwater 

remediation. 

 
Keywords: structure stability, chemical stability, metal behavior, hydraulic 
performances, reactivity.  
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General introduction 
 
I. Introduction and Motivation 
 
The contamination of natural resources such as groundwater has become a major 

problem associated to the abusive use of toxic industrial substances. In addition, the 

preservation and management of water resources has become a major concern in a 

world that suffers from water scarcity.  

  
Groundwater is the most exploited resource to meet the water needs of populations 

worldwide. In this case, up to two billion people lack in water table resources, they 

depend directly on aquifers and 40% of the world's food produced by irrigated 

agriculture relies heavily on groundwater. The water reserve depends on the global 

aquifer; up to 35% is intended for human consumption and industrial purposes. The 

UNESCO report published in 2008 on the hydrogeological map of underground 

water reserves worldwide shows identification of aquifers and 90 273 in Europe. 

However, the contamination of aquatic ecosystems including deep groundwater 

affected by various pollutants, is one of the main problems related to the infiltration 

of heavy metals and radionuclides, chlorinated compounds and volatile organic 

compounds through the soil layers. This scenario is often encountered in areas of 

feeding (fertilization), septic tanks, mines, nuclear operations, uncontrolled landfills 

and areas of agricultural activity in the non-oriented use of fertilizers. In Europe, the 

groundwater is polluted with many contaminants such as nitrates, pesticides, 

hydrocarbons, sulfates and bacteria. 

 
The politics of environmental protection insist on the decontamination and treatment 

of contaminated soil and groundwater. By the 1980s, the first attempts at treatment 

were started by using the method "pump and treat", this technique requires 

significant energy input to high operating costs. In 1999, the guidelines of the Soil 

Conservation in Germany issued the first laws requiring the highlighting techniques 

that can be used to clean up contaminated soil source of pollution of groundwater 

such as excavation and cleaning of soil, heat treatment, solidification and 

stabilization.  
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However, research has been focused on the development of a technical book for the 

effective treatment of soil and groundwater pollution. This book should be of benefit 

and potential technical and economic criteria that should be in favor of this 

application; A new technique, called the passive permeable reactive barriers (PRB), is 

based on the introduction of a reagent or a mixture of reactive porous materials with 

certain permeability in a cut at the water table to promote the in situ immobilization 

of pollutants by the passage of the plume along a polluted natural slope and a 

homogeneous flow through the reactive layer. This natural mechanism completely 

eliminates the cost of energy by reducing operating costs and offsetting the costs of 

monitoring and surveillance of the treatment technique of groundwater. 

 
During the last twenty years, the development of PRB by experiments at laboratory 

scale was conducted at the University of Waterloo and the application of a test driver 

has been installed in Borden (Ontario, Canada) in 1991. In France, the 

implementation of the first PRB was in 1994 in Neuville. Currently, the growing 

interest in this new system has allowed its use in several European countries. 

Particularly in Europe, 35 permeable reactive barriers were implanted with 20 

industrial projects by using reagents with decontamination mechanisms such as 

chemical degradation, the change in the chemical form of the pollutant, adsorption 

and biological processes. 

 
 
II. Context of the thesis 
 
The general context of this study was the use of synthesized hydroxyapatite in PRB 

technique as reactive material. Synthesized hydroxyapatite-gel (Ca10(PO4)6(OH)2, Ca-

HAGel) has shown a high capacity to retain heavy metals in its gel form. Gel form 

looks like a concentrated suspension already characterized by a unstable structure. 

The stabilization of concentrated suspensions requires the breakage of powder 

agglomerates by adding chemical material. Calcium sulfate industrial by-product 

was used to stabilize gel structure as support material. Hence, the valorization of 

industrial waste in PRB is a good issue. 
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III. Objectives 
 
The main goals of this thesis were as follows: 
 
The investigation of rheological behavior of gypsum, plaster, synthesized Ca-HAGel 

and blends between materials with different proportions (i.e. binary blends: 

water/plaster, water/gypsum, Ca-HAGel/plaster and Ca-HAGel/gypsum, and 

ternary blends: Ca-HAGel/(water/plaster) and Ca-HAGel/(water/gypsum). 

Furthermore, the rheological behavior of concentrated suspension Ca-HAGel was 

studied using the steady and dynamic rheological tests to characterize rheological 

behavior, viscosity and internal structure. Rheological behavior characterizes the 

matrix stability and hence the consistency. Study of the interaction between particles 

was considered as a major step to interpret the effects such as attraction and 

dispersion describing the stability of formulations.  

 
The determination of physicochemical characteristics and the identification of 

mineral phases present in formulations was examined. The study of the 

environmental behavior of waste materials (gypsum with different fraction sizes and 

plaster) and formulations based on gypsum, plaster and Ca-HAGel using a 

standardized leaching test. The evaluation of the stabilization of gypsum and plaster 

chemical elements release using Ca-HAGel. 

 
The determination of hydraulic performances (porosity and permeability) of initial 

materials and formulations. The investigation of chemical element release from 

materials and blends using standardized percolation test. The use of column test 

experiment to assess the treatability performance of blend at laboratory scale.  

 
 
IV. Approach & Methodology 
 
The approach followed in this thesis is summarized in 3 steps. Schema presented 

below illustrates the main methodologies explored to identify physicochemical and 

hydraulic properties of materials and formulations.  
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            The study of rheological behavior of initial materials and considered 

formulations is based on the determination of rheological behavior and the main 

parameters giving same indications concerning the implementation conditions and 

the flowability. The interaction between particles is also correlated to the particle 

surface explaining the attraction or repulsion between particles. However, the effect 

of interaction influences obviously the stability of matrix that requires chemical 

interpretations. Particle size and interaction between particles describe the hydraulic 

performances of formulations.  

 

 

 

            The determination of physicochemical characteristics such as density, surface 

specific area, pH, conductivity and also the chemical composition of materials and 

formulations was a step of great interest. This step helps to better understand the 

different mechanisms governing the release of major elements and heavy metals 

from materials and considered blends and to study their availability in the effluent. 

Environmental behavior (leaching and percolation tests) evaluates in this study the 

possibility of the use of waste in PRB by the evaluation of release rate and facilitates 

the selection of formulations presenting high stability and homogeneity.  

 

1 

2 
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           Main properties evaluated in the first and second steps may help to select a 

formulation giving better stability and hydraulic performances and characterized by 

a certain chemical stability. The selected formulation lead to the assessment of its 

capacity to treat polluted effluent. 

 
 
V. Outline 
 
The present thesis comprises 8 Chapters:  
 
Bibliographic research (Chapter I) presents briefly the Permeable Reactive Barrier 

(PRB) technique used to treat groundwater and the main criteria leading to reactive 

material selection. Reactive material such as calcium phosphates (Apatite) may be 

introduced in PRB for thin high capabilities to treat wastewater, hence the definition 

of its crystalline structure, physicochemical characterizations and mechanisms 

facilitating the removal of heavy metals which where illustrated and discussed in the 

second section (Calcium phosphates). Third section presents calcium sulfate, its 

fabrication with different forms and reactivity with water. Porous media and 

permeability determination were presented in fourth section.  

 
The second chapter entitled “Materials & Characterization procedures’” presents the 

main techniques to determine the physicochemical characterization and properties 

related to particle surface such as the charge and the procedure used to determine 

the rheological behavior and fluidability.  

 
Physicochemical and mineralogical properties of materials chapter focuses on the 

characterization of materials by application of different procedures described in 

“Materials & Characterization procedures’”. Density, particle size distribution, 

chemical composition and the mineralogical phases present in the samples of calcium 

phosphate and calcium sulfate were presented.  

 
Formulations destined to the evaluation of rheological behavior are summarized in 

Chapter IV. Two series of formulations were proposed, binary (calcium sulfate with 

water, calcium phosphate with calcium sulfate) and ternary blends (calcium 

3 
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phosphate blended with calcium sulfate and water). Materials consisted in 

formulations with different proportions to determine the adequate blend revealing 

the stability and to study the interaction between particles.  

 
The results of rheological behavior of binary and ternary blends are discussed in 

Chapter V and VI. This chapter presents the rheological properties of synthesized 

hydroxyapatite under its gel form using steady and dynamic procedures. 

Rheological properties of binary blends were interpreted as a function of viscosity 

and applied strain parameters and chemical point of view.  

 
Chapter VII discusses the chemical behavior of blends formulated from rheological 

behavior and interaction between particles results. Considered blends were 

mineralogically characterized. Chemical behavior was assessed using standardized 

leaching behavior. Another interest of leaching test was to study the stabilization of 

calcium sulfate by-product using synthesized hydroxyapatite-gel (Ca-HAGel). 

Hydraulic and chemical properties are presented in Chapter VIII. The selection of 

formulation destined to PRB application was based on the hydraulic performances 

(porosity and permeability), the release rate of elements such as sulfur, strontium 

and heavy metals from calcium sulfate by-products and the capacity of 

hydroxyapatite proportion in the stabilization of released elements. Selected blends 

were studied using column test assimilated to PRB to evaluate the performance of 

blend to remediate wastewater containing lead and cadmium.   
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Chapter 1 

Literature review 
 
I. Permeable Reactive Barrier 
 
1. Introduction 
 
Permeable Reactive barrier (PRB) is a technique used for the remediation of soil and 

groundwater. Using this concept in large-scale facilities remains of major interest. 

PRB can be applied to the treatment of groundwater resources containing different 

toxic pollutants such as hexavalent chromium, dissolved components (SO4, Fe, Ni, 

Co, Cd and Zn) and dissolved nutrients such as nitrate. It should be noted that the 

reactive material widely used in the world for reactive barrier is the zero-valent iron 

(ZVI) (near 120 applications within 83 are large scale [1]). Therefore, this reagent has 

great purification power resulting from the substances reduction of toxic metals by 

transforming them to inert or less dangerous substances. In recent years, reagents for 

groundwater remediation which have attracted attention for their adsorption 

capacity of species include activated carbon [2], apatite [3], fly ash and zeolites [4-5], 

the atomized slag [6] and limestone [7]. Precipitation, adsorption and immobilization 

process such as nucleation by inclusion and substitution reactions are considered to 

be the main physicochemical mechanisms promoting mitigation of the contamination 

level in the barrier. But the main issues that arise in PRB technology are the reactive 

media durability characterization and the hydraulic performances of the barrier. 

 
 
2. PRB Notions 
 
2.1. Definition 
 
Permeable reactive barrier is an innovative and passive (without energy input) 

concept, based on the location of a reactive material perpendicular to the flow of 

groundwater in an aquifer. Figure 1 shows a simplified schema of the groundwater 

purifying process using PRB technology. In terms of efficiency, the barrier allows the 

passage of a volume of water (proportionally to the hydraulic conductivity) resulting 

in the ability of the reactive material used to trap and intercept a plume of pollutants 
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by different immobilization agents limiting the leachability of the barrier. Treatment 

efficiency is a function of residence time and mechanical characteristics that facilitate 

preferential flow water through the barrier following a natural hydraulic gradient.  

 

 

Figure 1: PRB general concept [8] 
 
Furthermore, the reduced cost due to the semi-permanent installation, lack of 

external energy supply, monitoring and productive use of the site after installing are 

the principal advantages of PRB project. Obviously, the transformation of 

groundwater contaminants to acceptable and inert forms regarding the environment 

is the major purpose to reach by using an adequate reactive material. Traditional 

methods such as "pump-and-treat" technology and microbiological processes are not 

favorable for a number of chemical harmful contaminants [9] and operating costs of 

PRB is 50% lower than the costs of pump-and-treat method used so far [10].  

 
Performance reduction of PRB depends primarily on common problems associated to 

the regression of the porosity of the reactive material followed by a clogging and 

blockage of the flow in the upstream of the barrier, resulting in the failure of 

potential reactive and hydraulic properties. System development of reactive barriers 

for heavy metals and radionuclides removal in groundwater requires a 

comprehensive understanding of elementary processes that control the interactions 
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between dissolved contaminants and reactive materials. Schneider et al. studied the 

feasibility test on landfill SRB using Fe0, apatite and alkali hydroxide (Ca(OH)2 and 

Ba(OH)2) to prevent the infiltration of contaminants in an acid medium, which 

attracted attention [11]. 

 
 
2.2. Models and conventional system 
 
Currently, most widely used PRB systems for in-situ groundwater treatment are 

Continuous PRB and Funnel-and-Gate PRB. Indeed, each of these configurations is 

characterized by its own influence on the flow and a perfect hydrodynamic modeling 

of the barrier emplacement milieu may be required to help the selection of the 

appropriate system for the treatment of polluted plumes. 

 
 
2.2.1. Continuous PRB 
 
The first application of this type of barrier in France was in 1994 in NEUVILLE in 

Ferrain (A22 road site) to intercept plumes loaded by Chrome VI using ECOSOL 

granules as reactive media. The continuous barrier is a trenched system filled with a 

reactive material. Figure 2 schematizes the concept of continuous barrier where the 

contaminated plume moves unimpeded through the reactive zone.  

 

 
Figure 2 : Continuous PRB trenched system [12] 
 
It plays a fundamental role on the minimization of hydraulic disturbances by 

mitigating the impact on the groundwater flow conditions through the barrier, 

according to a hydraulic gradient that generates a natural flow velocity. However, 
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adequate implementation of the barrier is sufficient to cover and pick up a 

comparable volume in the cross section of the plume. The continuity of the barrier 

should ensure an easy drainage of groundwater. The residence time depends on the 

groundwater velocity in the aquifer and natural slope. However, to avoid overflow 

problem of contaminated groundwater, it is preferable that the hydraulic 

conductivity of the aquifer be less than that of the installed barrier and the thickness 

or reactive volume should be overdesigned and sufficient to ensure an effective 

treatment. 

 
 
2.2.2. Funnel and Gate system 
 
The Funnel-and-Gate technology allows the interception of groundwater and the 

direction of plume flow to the reactive medium. This barrier consists of two 

impermeable screens (clay, rock, etc) embedded in the rock layer (substrate); forming 

a funnel that plays a major role in flow changing and direction of the plumes to the 

permeable reactive gate (i.e. Sheet piling funnels direct the plume through the 

reactive gate). Figure 3 shows a prototype of Funnel-and-Gate system. In France, this 

type of treatment system was installed at AUBY in 1998 (COKERIE site) for the 

interception of Polycyclic Aromatic Hydrocarbons (PAHs) using activated carbon. 

The last PRB installation was at BREST (2002) to rehabilitate a hydrocarbon lagoon 

(Ballast lagoon) using activated carbon to prevent groundwater contamination by 

infiltration of heavy metals, phenol compounds and THC. The flow of groundwater 

with impermeable walls accelerates the flow of plume toward the reactive media. In 

addition, to minimize the restriction of water flow, the permeability of the reactive 

material must be equal or greater than the permeability of the aquifer. The large 

thickness of the reactive medium ensures complete purification of contaminated 

plume by the surface of contact and sufficient residence time. 
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Figure 3 :  Funnel and Gate configuration [12] 
 
Residence time, thickness of the reactive media and hydrological modeling are very 

important parameters in the choice of implantation milieu, configuration and design 

of the barrier. Clogging and saturation of the reactive media by precipitation of 

pollutants reduce the hydraulic performance (decreased permeability) and chemical 

performance (limited reactivity), and replacement, restoration or reconstruction of 

the barrier can be applied to make efficiency treatment of that system.  A new 

process for groundwater treatment is based on the collection of polluted 

groundwater (filters made of removable cartridges connected in series or in parallel) 

located at the permeable barrier. This process which is called Panel-Drain® (patented 

by Soletanche Bachy) has shown a great ability to decontaminate groundwater by the 

introduction of reactive materials in cartridges that target the retention of a specific 

pollutant. For comparison, the depth of the barrier is 15 to 20m, while the depth of 

the Panel-Drains is more than 50m [13]. 

 
 
2.3. PRB design 
 
The design of the reactive barrier depends on the nature of pollutants, the levels of 

contaminant concentrations and residence time [14]. It is often initiated by using a 

quantitative directed exploration (QDE) approach for the prediction of conditions for 

the placement, location and evaluation of performance of PRB [15]. It seems 

important to highlight the different physicochemical parameters helping to design a 

barrier such as evaluation of the contact time of polluted water depending on the 

specific surface area of reactive material and the rate of contaminants degradation. 
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The hydraulic parameters affecting the performance of the permeable barrier such as 

variations in the concentrations of pollutants in the upstream, the hydraulic gradient, 

direction of flow and hydraulic conductivity must be taken into account in PRB 

conception [16]. The velocity of groundwater through the reactive cell must always 

be greater than in an aquifer, i.e. hydraulic conductivity of the cell must be very 

uniform to ensure distribution of flow into reactive media. Performance evaluation 

treatability seems an important step in the analysis and selection of the reactive 

medium. Treatability tests provide information on the estimated half-life of 

degradation reaction and the evaluation of the lifetime of the barrier.  

 
The batch tests allow the choice of processing system. They rely on the contact of the 

reactive material with de-ionized water to analyze the compound concentrations as a 

function of time under defined conditions. However, these tests are used to detect 

the properties of heavy metals trapping by the reactive material; they can be faster 

and cheaper to carry out. Taking precautions in the extent of analysis for the 

interpretation and extrapolation of the results in terms of flow dynamics is needed to 

assess the reactive capacity. On the other hand, the evaluation of geochemical 

parameters is performed by the laboratory column tests.  

 
Figure 4 illustrates the typical system of column test. Column test is used to choose 

the design of PRB system under dynamic flow conditions. Highlighting the change in 

contaminant concentrations and inorganic compounds is based on the distance 

traveled through the reactive cell. The determination of specific concentrations at 

different point in the column is made by extracting volume samples across the 

different sampling ports present on the length of the column. To ensure good flow 

distribution through the reactive media, the establishment of a loose layer of sand or 

gravel at the top and bottom of the column is acceptable. Interpretation of results is 

done by analyzing the major inorganic cations such as Ca, Mg, Na, Fe, Mn and K, the 

major anions such as Cl, SO4, NO3 and NO2 and alkalinity (bicarbonate and 

hydroxide) influent and effluent. 
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Figure 4 : Schematic of the column-test  
 
The kinetic study of pollutants capture can be used for barrier designing and 

analyzes preliminary data of column test determines the degree of retention of 

reactive media versus residence time. The kinetic used for this assessment is first-

order kinetic: 

  
Cf = C0. e-kt [Eq.1] 
 
With Cf is the final concentration (mg.l-1), C0 is the initial concentration of the 

pollutant in question (mg.l-1), k is the degradation rate (rate of reaction, h-1) and t is 

Flow direction 
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the time (h). From this relationship, we can deduce the time required to reduce two 

fold the concentration of a pollutant to acceptable levels as follows: 

 

t = 
�����

�
	  

 

[Eq.2] 

The evaluation of the half-life represents the period required to reduce the average 

concentration of a contaminant can be estimated by the following equation [3]: 

 
t� �⁄ = �����

	  = �.���
	  

 

[Eq.3] 

The comparison between the half-lives allows the selection of the appropriate 

reactive material. The selection of reactive material must have a shortest half-life. The 

half-life can be estimated by batch or column tests. Determining the rate of reaction is 

based on the phenomenological Arrhenius law that takes into account two 

parameters independent of temperature, the activation energy EA expressed in 

kJ.mol-1 (initiate chemical reaction) and A is the frequency factor whose unity is that 

of k (h-1). The rate of reaction to an absolute temperature T (°C) is: 

 

k = A.e���� 
 

[Eq.4] 

It should be noted that the residence time increases at low temperatures and the rate 

of degradation can be written in a different way depending on the velocity and depth 

of the barrier. Indeed, the study by LUCEY (2006) [17] for the evaluation of dynamic 

properties of the permeable barrier proposes the use of the follow relationship to 

calculate the rate of reaction in PRB. 

 
k = �� (C0 – Cf) [Eq.5] 

 
Where k is the rate of reaction in mmol.l-1.day-1, Q is the flow in the barrier in m.d-1, P 

is the depth (height) (m); Cf is the final concentration in mmol.l-1 and Ci is the initial 

concentration (mmol.l-1). The width of the barrier can be defined as follows: 

 

W� = �.�  ² �!"
ρ#

  $���%
�&

�  W'() 
 

[Eq.6] 
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Where Wb is the width of the barrier in m; ρa is the surface concentration of the 

solution in m².l-1; Ci is the concentration of the influent; Cf is the concentration of the 

effluent and Wref is the reference width (it depends on the velocity of groundwater 

and studied pollutant). This relationship was developed for determining the width of 

a permeable reactive barrier based on ZVI [18]. The determination of the thickness of 

the barrier takes into account the determination of residence time and velocity of 

contaminated plume and groundwater. It is done either by column-test or by the 

hydrological modeling of the configuration. The length of the barrier depends on the 

depth of the aquifer and the expression of the thickness of the barrier that is as 

follows [19]: 

 
*+ = V. t. SF 
 

[Eq.7] 

Where Eb is the thickness of the barrier (m), V is the velocity through the reactive cell 

(m.d-1); t is the residence time and SF is the safety factor depends on the seasonal 

variation in the flow, changes in concentrations, groundwater velocity and flow 

direction. SF is determined by modeling the barrier taking into account the 

parameters mentioned above. 

 
 
2.4. Performance & monitoring 
 
The performance of PRB depends on two major factors that can lead to the type and 

amount of pollution present in the groundwater, flow velocity and hydraulic 

properties of the barrier. Hydraulic flow conditions that require further 

characterization of water regimes and adequate modeling of the aquifer level for the 

interception and perfect treatment of plumes of contaminated groundwater are the 

major factors influencing the hydraulic properties of the barrier. Moreover, 

performance evaluation of PRB is realized by determining the hydrological 

parameters such as hydraulic conductivity and geochemical parameters such as 

redox potential, pH, dissolved oxygen, alkalinity and heavy metals content on both 

sides of the barrier. The numerical simulation interpretation of geochemical 

parameters in advance at the laboratory scale is a major step in facilitating the design 
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of the barrier and optimizing processing performance. Sometimes these parameters 

are identified by performing tests on the body core of the barrier obtained by coring. 

Furthermore, the chemical parameters can be measured by the technique of 

piezometers analyzing water samples in the upstream and downstream of the 

barrier. 

 
The strategy for PRB monitoring includes evaluation of the potential of contaminants 

and harmful environmental by-products through reactive cell and potential effects 

on groundwater quality caused by the reactive media itself [16]. Indeed, studies in 

this direction show that biogeochemical conditions within the cell have a reactive 

role in determining the effectiveness of the barrier [20]. Nevertheless, the 

effectiveness of the barrier seems an important indication that changes over time, in 

other words, it is impossible to predict the durability and life cycle of reactive media 

without considering biogeochemical processes. Performance affectations of PRB by 

geochemical processes result in anaerobic corrosion (higher pH), the accumulation of 

carbonates (precipitation) and biological phenomena. These biogeochemical 

phenomena contribute explicitly to the progressive reduction of hydraulic 

conductivity, especially the growth of bacteria and the accumulation of gases 

(nitrogen and methane) in the pore volume of reactive material, which causes the 

decrease in available porosity and hydraulic performance and system deterioration 

by increasing the head loss. Obviously, the durability reduction of the barrier 

performances depends primarily on the mass flux of certain dissolved solids and 

secondly the recovery of reactive particles by dissolved precipitate solids. Moreover, 

technical analysis has often shown that the reduction in porosity is attributed to the 

precipitation of the hydroxides and carbonates at the surface of the reactive material 

in permeable barrier [21][22]. As a result, the life of a barrier depends on the reaction 

rates of reactive contaminants over time [23]. Hence, it seems important to regenerate 

and replace the exhausted reactive material, for the decontamination process to 

continue. The performance of the PRB is related to the different physicochemical 

events promoting the decrease in porosity, the change of flow direction and the 

preferential loss of hydraulic head control. The effects of geochemical parameters 
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and aquifer parameters on the reduction of barrier porosity are directly dependent 

on the type of reactive material used, influence of the concentration, velocity 

coefficients, uniformity and heterogeneity of aquifer and hydraulic conductivity of 

the barrier. However, the heterogeneity of the aquifer and the permeability of the 

barrier influence also the penetration of suspended solids and the formation of 

chemical compounds that precipitate later. Therefore, at a permeable barrier, 

reducing the pore volume caused by the precipitation of secondary minerals is 

generally estimated by the volume of these minerals based on stoichiometric 

calculations to assess the change in the concentrations on both side of the barrier [21]. 

It should be noted that the main objective of a monitoring program and performance 

monitoring of PRB is to ensure that the plumes are collected correctly and treated so 

that contaminant concentrations downstream were below the thresholds of toxicity. 

 
 
2.5. Advantages and disadvantages 
 
Table 1 summarizes the main advantages and disadvantages of permeable reactive 

barriers already worldwide installed. The main advantage of PRB relative to other 

conventional methods of treatment is to reduce operating costs and maintenance 

[24]. In addition, the major drawback of the PRB is the difficulty to estimate and 

determine the lifetime of the reactive material. 

 
Table 1 : Advantage and disadvantage of PRB 
Advantages Drawbacks 
In-situ and passive treatment, limited 
maintenance after installation;                                                                        
 

Limited to shallow plumes about 15m below the 
subsurface;                                                                  

No surface structure; Plume must be defined and well characterized 
despite the limited data on life cycle of the 
barrier;  
               

Contaminants treated in subsurface,                                      
Minimizing exposure to heavy metals ;      
 

Hydraulic heterogeneity around the barrier 
creates insecurity in passive treatment; 
 

Potentially cheaper than pump-and-treat                                                                                                      
system;                                                                                       
 

Pore clogging and fouling of reactive media; 
(Loss of permeability and hydraulic 
performances); 

Natural slope allows the flow of plume ;                           
 

 

No influence on groundwater regime flow;                             Need to replace the reagent after the exhaustion 
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of retain pollutants ability; 
 

Operating costs offset the construction cost                          
, i.e. acquisition costs and monitoring operations 
are low;                                          
 

Contaminated groundwater is treated,                                                                                                 
while the contaminated soil is not treated; 

Applicability in urban areas; Need to know the different hydrological 
information in the aquifer; 

 
 
3. Reactive materials versus contaminants 
 
The diversity of pollution of groundwater sources complicates the choice of suitable 

reactive media. In this second part we will talk at first, the main sources of pollution 

of natural environments that affect groundwater seepage through the soil. In a 

second step, we will discuss the different selection criteria and selection of the 

reactive media based on the descriptive parameters indicating the reactive capacity, 

the hydraulic performance and durability. 

 
 
3.1. Groundwater pollution 
 
3.1.1. Contaminant sources 
 
Pollution of groundwater by the different sources of pollutants is related to two 

categories identified as point sources and diffuse sources. Point sources are located in 

municipal landfills, sites of industrial waste disposal and environmental accidents or 

leaks in harmful products storage tanks, such as gas and oil derivatives. While 

diffuse sources target a large volume of groundwater through the use of fertilizers on 

the fields of agriculture and green spaces. In Europe, as the consequence of vast area 

of  agriculture plains, distribution of pollution caused by a source distribution 

appears to be the first factor of groundwater contamination by dissolved nutrients 

such as nitrates and perchlorates [25]. Sources of perchlorate contamination in water 

are ammonium perchlorates recently identified by the Environmental Protection 

Agency (EPA). However, contamination of groundwater is caused by the infiltration 

of urban wastewater (domestic and/or industrial) loaded with heavy metals (Al, Fe, 

Mn, Co and Mo), and pollution by Pb, Zn, Cd , Cr and Ba can be attributed to 

uncontrolled dumping of industrial wastes [24]. 
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3.1.2. Common polluants 
 
In the literature, several authors have investigated contaminant capture and 

purification of groundwater by the in-situ PRB process, or by testing at the 

laboratory scale. Among the contaminants commonly found in groundwater and 

where the treatment was designed by PRB, uranium [26], chromium [27], arsenic 

[28], Selenium [29], fluoride [7], cadmium [30], heavy metals such as Pb, Cd and Zn 

[31][3], Volatile Organic Compounds (VOCs), Chlorinated Aliphatic Hydrocarbons 

(CAH) [32] and Polycyclic Aromatic Hydrocarbons (PAHs) [33] like MTBE (Methyl 

Tertio-Butyl Ether) and monocyclic (HAM) like BTEX (Benzene, Toluene, Ethyl and 

Xylene). Human activities, mining and nuclear military operations contribute in a 

direct contamination of groundwater resources at very harmful magnitudes and 

dangerous radioactivity, especially uranium, strontium and their derivatives [34][35]. 

Groundwater can be contaminated by chromium in both forms Cr (VI) or Cr (III). Cr 

(VI) is the most soluble, mobile and toxic (mutagenic and carcinogenic effects). 

However, the Chrome in its trivalent state is much less soluble and almost immobile, 

and the elimination of this pollutant can be done by implementing a PRB-ZVI based 

[36]. 

 
As known, arsenic ion is present in two oxidation states, As (III) and As (V), and its 

elimination at the level of groundwater may be applied by the installation of a PRB-

ZVI [37] cited by [27]. Moreover, studies by BEAK et al. (2009) [28] show that the 

oxidation of As (III) to As (V) causes corrosion of the reactive iron grains reducing 

the degree of retention. Due to health effect of Arsenic presence in groundwater, the 

USEPA lowered the admissible ecotoxicity threshold to 0.01ml.l-1 in 2006.  

 
Chlorinated hydrocarbons such as trichloroethene (TCE), perchloroethylene (PCE) 

and 1,2 dichloroethylene (1,2-DCE) [20] are especially commercial solvents [8] and 

PAHs that can be eliminated by the bio-barrier based on the aerobic degradation and 

the first installation of PRB-ZVI to intercept plumes of VOC was conducted in 1996 in 

Colorado (United States) [38]. Studies by Skinner et al. (2006) have shown that the 

use of PRB consisting of anionic limestone drain and a bed of limestone supports the 
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reduction of sulfates and nitrates by denitrification mechanisms and bacterial 

processes such as the use of sulfur-reducing bacteria [39]. The experiments 

conducted by Guerin et al. (2002) and his colleagues on the interception of oil 

compounds using the system Funnel-and-Gate was based on the use of peat. It has 

been shown that biomass can ensure effective treatment of water contaminated with 

BTEX [40]. 

 
 
3.2. Selection criteria of the reactive medium 
 
The choice of suitable reactive material is based on the chemical description and 

extent of pollutants in the environment. Table 2 classifies different reactive materials 

based on their reaction mechanisms to trap pollutants. The importance of the 

chemical composition and the degree of harmfulness prove to be quite important 

parameters to consider when selecting reactive media. The compatibility of the 

reactive media with the environment is paramount. Furthermore, the chemical 

description should highlight the repercussions of reactive materials such as 

undesirable chemical reactions and by-products generated by the different 

interaction between reactive material and pollutants. The criteria in the selection of 

reactive material are:  

 
♣ Reagent showing no source of contamination of soil and groundwater; 
♣ Reagent with a large capacity and efficiency; 
♣ Stable Reagent, less soluble and available at low and reasonable costs; 
♣ Reagent promoting hydraulic performances (porosity and permeability); 
 
Table 2: Classification of reactive materials according to the mechanisms of 
interaction [41]                                                                                     
Mechanisms Reactive matters 
Adsorption or substitution (Inorganic 
compounds) 

Activated carbon, Activated alumina, bauxite, 
Exchange resin,Ferric oxide and hydroxide, 
magnetite, Phosphate, Zeolite. 
 

Precipitation (Inorganic compounds) Zero Valent Metal (ZVM), Limestone, Ferrous 
hydroxide, Ferrous carbonates, Ferrous sulfide, 
Lime, Fly ash, Biota,  [Mg�OH��, MgC.�, CaC/�, 
CaS.0, BaC/�],  
 

Degradation (Inorganic compounds) Biota, ZVM 
Adsorption  (Organic compounds) Zeolite, Activated carbon, Clay… 
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Degradation  (Organic compounds) 
 

Ferrous minerals, ultra-micro-bacteria,  ZVM, 
Aerobic environment 

 
 
Generally, the reactive media must meet the selection criteria mentioned above and 

enhance any of the decontamination processes yield. Main decontamination process 

adsorption, absorption, cation exchange (Activated Carbon, Zeolite, ...), precipitation 

and degradation. Precipitation process transforms the pollutants into insoluble solids 

deposited on the surface of the reactive particles and degradation of organic 

compounds process may be chemical or biological (aerobic or anaerobic). 

 
 
3.3. Reactive matters widely used 
 
The reactive material commonly used for groundwater treatment in installed reactive 

barriers has shown a great capacity to retain pollutants. However, it seems 

interesting to quote briefly the main in-situ used reactive materials, their impacts on 

groundwater in terms of treatment and efficiency as well as different advantages and 

inconveniencies.  

 
Globally, most PRB use ZVI material with regard of its efficiency treatment of 

polluted plumes. Furthermore, the purification of shallow water depends on two 

processes, reduction and degradation by the precipitation of inorganic compounds. 

However, ZVI immobilizes perfectly heavy metals such as Cr, Se, Pb, U, Co, Ca, Zn, 

Cu and Hg, anionic contaminants such as sulfate, nitrate, phosphate and the arsenic 

and organic compounds [9][20][27]. ZVI can be combined with other reagent such as 

red mud and fly ash in the treatment of acidic groundwater [42]. The major 

drawback that must be considered is the high cost of ZVI that can reach ≈400€.tonne-

1. Granular activated carbon is often used in PRB [2]. It is characterized by a 

relatively high adsorption capacity for organic and inorganic compounds due to its 

large specific surface area of about 1000m².g-1. It should be noted that activated 

carbon can be combined with biological treatment. Despite its effectiveness in 

polluted water treatment, its cost is relatively high (≈1300€.tonne-1) that minimizes its 

utilization chances in PRB. Calcite (CaCO3) used in PRB for pollutant elimination 
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such as fluoride present in groundwater [7] and reduction of acidity (generated by 

oxidation of sulfated residues and inorganic contaminants [43][44]) has 

demonstrated a high retention capacity. The peat (humic material) for the 

implementation of reactive window “Funnel-and-Gate” barrier was beneficial to the 

retention of petroleum hydrocarbons like HAM, BTEX dissolved phases and alkanes 

[40]. The addition of organic products such as pecan shells as sources of 

micronutrients and protein to promote biological treatment by the construction of a 

multi-barrier can be used to intercept pollutants in groundwater. 

 
 
4. Conclusion 
 
The PRB is currently considered as the most widely used passive technique for the 

treatment of polluted groundwater. The choice of the reactive media and the 

description of its performance to retain pollutants is an essential step for the design 

of a PRB. The ability, efficiency and longevity of the reactive material are essential 

parameters to master for the decontamination process to continue, and the 

exhaustion of the reactive power purification media which generates lower hydraulic 

performance requires rejuvenation and regeneration.  

 
Calcium phosphates have shown a great aptitude for the treatment of effluents and 

waste stabilization. This material will be considered in this study. 

 
 
II. Calcium phosphate (Apatite) 
 
1. Introduction 
 
Calcium phosphates are products widely used in many fields such as medicine, 

agriculture and food industries, and can also be used to trap and immobilize heavy 

metals and other pollutants. The first identification of the structure of calcium 

phosphates (apatite structure) as the minerals of human origin was revealed in 1926, 

based on XRD analysis. Indeed, calcium phosphates are extremely stable and have a 

significant useful life between 1000 to 100.000 years in different geological 

conditions. Moreover, specifically the apatite group is often composed of three forms, 
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hydroxyapatite, fluorapatite and chloroapatite, who are able to add half of the 

periodic table of elements in their atomic structures (i.e. trapping more than 99% of 

uranium [45], and immobilization of about 60 to 99.9%, 20-98% and 29-98% Pb, Cd, 

and Zn, with a retention capacity of 73 and 41mg.g-1, respectively [46]). Hence their 

interest and suitability for use in decontamination processes and wastewater 

treatment or contaminated groundwater. In addition, apatites can be used in 

permeable reactive barriers or mixed with soil or contaminated waste, and is 

intended also for heavy metals stabilization. 

 
The first application in a permeable reactive barrier (PRB) by introducing the Apatite 

II [Ca10-xNa(PO4)6-x(CO3)x(OH)2, where x < 1] (Apatite II23(commercial apatite) about 

100 tons) as reactive material was carried out in 2001 in Idaho [47][48]. Interest in the 

use of apatite in the PRB is due to its ability to admit a large number of ions in the 

crystal structure, chemical stability and low solubility in water (Ksp<10-20) depending 

on environmental conditions (Ksp<10-48, under alkaline conditions) [49][50]. 

Hydroxyapatite synthesis can be done by several methods based on the addition of a 

chemical compound containing calcium and other compounds containing adequate 

amounts of phosphate. 

 
 
2. Calcium phosphate 
 
Apatite compounds are commonly identified under the stoichiometric system 

M��(XO0��Y�, which has the general formula of apatites, where M is a divalent cation 

such as Ca2+, Cd2+ and Pb2+,  XO4 is a trivalent anionic group (PO43-, MnO43- and 

AsO43-) and Y is a monovalent anion (OH-, F- and Cl-). Moreover, they show a great 

fixation capacity of contaminants under different immobilization modes. Table 3 

shows the molar rate Ca/P for different groups of calcium phosphate and their 

structures. In this regard, the stoichiometric ratio Ca/P of 1.67 reveals the crystalline 

apatite structure from the chemical formula of calcium phosphates, the crystal 

structure of non-stoichiometric (non-apatitic) calcium phosphate complex is assigned 

to the Ca/P <1.67 for more soluble phosphate minerals. 
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In addition, the purity of hydroxyapatite depends on the ratio Ca/P. It must be 

greater than or equal to 1.67 and is a key indicator for predicting crystal properties 

(ie, uniform distribution of atoms in the crystal lattice) and characteristics of 

insolubility. Figures 5 and 6 refer to different forms of calcium phosphate and the 

change in Ca / P ratio as a function of time, temperature and solubility [51][52] 

during their synthesis or formation. 

 
 
Table 3: Apatitic and non-apatitic calcium phosphates 
Abbreviation Calcium  phosphate Chemical formula Structure Ca/P 
MCP Monocalcium phosphate hydrate Ca(H2PO4)2, H2O non-apatitic 0.50 

MCPA Monocalcium phosphate anhydrous Ca(H2PO4)2 non-apatitic 0.50 

DCP Dibasic calcium phosphate Ca(HPO4) non-apatitic 1.00 

DCPD Dicalcium phosphate hydrate Ca(HPO4), 2H2O non-apatitic 1.00 

DCPA Phosphate dicalcique anhydre CaHPO4 non-apatitic 1.00 

γ-CPP γ-Calcium pyrophosphate Ca2P2O7 non-apatitic 1.00 

CPPD Calcium pyrophosphate dihydrate C a2P2O7, 2H2O non-apatitic 1.00 

OCP Octacalcium phosphate Ca3H2(PO4)6, 5H2O non-apatitic 1.33 

α-β-TCP Tricalcium phosphate Ca3(PO4)2 non-apatitic 1.50 

ATCP Apatitic tricalcium phosphate Ca9(HPO4)(PO4)5(OH) Apatitic 1.50 

ACP Amorphous tricalcium phosphate Ca9(PO4)6, nH2O non-apatitic 1.50 

CDA1 Calcium-deficient apatite Ca��78□9(HPO0�8(PO0��78(OH��78□9  Apatitic 1.58 

Ca-HA Hydroxyapatite Ca10(PO4)6(OH)2 Apatitic 1.67 

Ca-HAT Tribasic calcium phosphate Ca5(PO4)3(OH) Apatitic 1.67 

TCPM Tetracalcium phosphate monoxide Ca4(PO4)2O Apatitic 2.00 

1 Chemical formula: □ lacuna and 0 < x < 2 
 
Different calcium phosphate phases such as OCP, CPPD and γ-CPP do not exist as 

geological mineral [53], and can be synthesized from carbonates and phosphates, by 

different methods detailed thereafter. The DCPD is present at low pH and the 

compound TCPM does not form in aqueous solution and, it transforms to Ca-HA by 

simple hydrolysis. Of course, hydroxypatite and phosphocalcic hydroxylapatite are 

the most stable phases in the calcium phosphate family. Their crystal structures allow 

the ionic substitution with heavy metals and radionuclides, and subsequently 

promote the different mechanisms of stabilization and trapping. 
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Figure 5: Calcium orthophosphate obtained by neutralization of phosphoric acid [51] 
 

 

Figure 6: a) Variation of the ratio Ca/P as a function of reaction time at 35°C, b) 
Formation time of pure Ca-HA as a function of temperature according to Lui et al 
(2001) [52] 
 
Formation of stable Ca-HA obeys to two main factors: time and temperature. From 

the first seconds of the synthesis reaction, the formation of MCP (more acidic and 

soluble compound) is obviously pronounced following the synthesis procedure (i.e. 

synthesis by neutralizing orthophosphoric acid described later), it crystallizes in the 

triclinic structure and turns into MCPA at a temperature of about 80°C under acidic 

pH conditions. DCPD precipitation occurs at room temperature in an acidic pH 

(4<pH<5.5) aqueous solution, and it crystallizes in the monoclinic structure. At 

temperatures above 80°C, it becomes DCPA triclinic structure, which plays a 

fundamental role in the synthesis of the intermediate phase, called calcium-deficient 

apatite (CDA). 
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OCP-like intermediate form during the precipitation of CDA is often characterized 

by an atomic arrangement similar to that of hydroxyapatite. It is an unstable 

compound with a Ca/P=1.33. Therefore, heat treatment allows the rapid 

decomposition of CDA to β-TCP with a ratio Ca/P=1.58, which in turn quickly 

transforms into ACP in water (amorphous tricalcium phosphate) with a Ca/P=1.50. 

The ACD is a transition phase arising during the precipitation of calcium phosphates 

in aqueous solution; it is characterized by a smaller surface area comparing it with 

that of OCP and hydroxyapatite crystal characterized by a more stable arrangement. 

 
The next step of the reaction results in the transformation of ACP in calcium-deficient 

hydroxyapatite (Ca10-z(HPO4)6(PO4)6-z(OH)2-z,n:�O where 0 ≤ z ≤ 1) in the presence 

of inhibitors such as carbonates and pyrophosphates. It is characterized by a poor 

crystalline structure, submicron size and specific surface area of about 25-100m².g-1. 

The compound β-TCP (it does not precipitate in an aqueous solution) obtained by 

calcination of the CDA, can be transformed into α-TCP at a temperature above 

1125°C, while the product α-TCP precipitates rapidly in an aqueous solution under 

calcium-deficient hydroxyapatite form. From 22h of reaction time at room 

temperature, precipitation and stabilization of DCP led to the formation of a stable 

Ca-HA stochiometrically equilibrated with a molar ratio Ca/P of 1.67. To conclude, 

we can say that when the reaction time reaches values above 24h or the temperature 

reaches over 600°C, the ratio Ca/P stabilizes (Figure 6). The temperature increase 

during the reaction could shorten the time of the formation of a pure Ca-HA. This is 

explained by the change in grain size which increases with temperature. To 

summarize, the process of precipitation at pH 10 to 11 of hydroxyapatite is as 

follows, OCP 
;<=>?@ABCCCCD ACPE Ca-HA [52]. 

 
The synthesized Ca-HA may be used for decontamination processes. Furthermore, 

the performance of apatite to stabilize and immobilize the metal ions were assessed 

by analysis taking into account the influence of pH, hardness, alkalinity and salinity 

of the interstitial solution. This has been widely reported in the literature. Indeed, 

several applications have been proposed to integrate the calcium phosphates in the 
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decontamination methods. In addition, the apatites can be used in the treatment of 

soil and/or groundwater. Figure 7 illustrates the different methods of application as 

a reagent using the calcium phosphate. 

 
 

 
Figure 7: Contaminated soil treatment methods using calcium phosphate [50] 
 
These methods result in the implementation of calcium phosphates in the soil surface 

to prevent infiltration of contaminants through the soil, direct injection by mixing 

them with soil and/or the formation of a PRB [50]. Moreover, the implementation 

can be done by injecting a solution containing sodium citrate, calcium chloride, 

calcium phosphate, ammonium nitrate and sodium fluoride in controlled conditions: 

pH (basic of about 8), concentration (the reaction between calcium and phosphate at 

a concentration below 10 mM), temperature and soil physicochemical properties. The 

analysis of the precipitate after separation of soil particles by using X-ray 

diffractometry (XRD) shows that it corresponds to hydroxyapatite [54]. For example, 

the injection of a solution of calcium citrate and a solution of sodium phosphate in 

soil gives the formation of apatite particles that form a thin layer on soil particles to 

react as an adsorbent for heavy metals [55]. Advantages promoting the use of 

calcium phosphates in the treatment of polluted areas are their availability in the 

environment and/or their ease of preparation, low cost (≈350€.ton-1), their high 

chemical stability and resistance to degradation in different geological conditions. 
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3. Properties and characteristics of apatite 
 
3.1. Some chemical characteristics 
 
Calcium phosphate particles characterization can be achieved by various techniques 

allowing the description of crystalline phases and the evaluation of thermochemical 

stability. Methods widely used for this description, X-Ray Diffraction (XRD), 

scanning electron microscopy (SEM) and Fourier transform infrared analysis (FTIR), 

have been widely discussed. In this regard, many authors have chosen ionic 

characterization that includes the identification of the atomic ratio Ca/P and 

determination of mineral phases and micro and poly-crystalline structure and 

determination of the amount and chemical nature of apatites. 

 
 
3.1.1. FTIR Spectrum 
 
Determination of the ionic functional group in the hydroxyapatite can be established 

by infrared spectroscopy.  

 

 

Figure 8: IR spectrum of hydroxyapatite calcined at different temperatures according 
to PADILLA et al (2005) [56] 
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Bands corresponding to the absorption frequencies of synthetic hydroxyapatite 

particles made by precipitation method are shown in Figure 8. OH- bands indicate 

the existence of vibrational modes of libration νL or symmetric valence νs, stretching 

bands PO43- group appear as stretching and/or deformation (symmetric or 

antisymmetric) and CO3 group vibrations indicate the substitution of phosphate ions. 

The characteristic bands of calcium phosphates are listed in Table 4. Hydroxyapatite 

calcinations (1100 and 1200°C) induce high crystallization degree. The IR 

observations showe the absence of CO32- ions which decompose as carbon dioxide 

CO2. High crystallinity leads to sharper band resolution. 

 
Table 4: IR bands corresponding to vibration modes and ionic arrangements  

IR Band (cm-1) Vibration energy Intensity Assignment 
3569 νs Shoulder Symmetric stretching vibration of OH- ions 
631 νL Shoulder Libration movement of OH- ions 
1092 ν3 Strong Antisymmetric stretching of PO43- ions 
1040 ν3 Strong Antisymmetric stretching of PO43- ions 
962 ν1 Medium Symmetric stretching of PO43- ions 
603 ν4 Strong Antisymmetric deformation of PO43- ions 
567 ν4 Strong Antisymmetric deformation of PO43- ions 
1472 ν3 Low CO3 group (occupying PO4 sites) 
1417 ν3 Low CO3 group (occupying PO4 sites) 

 
 
3.2. Mineralogical properties 
 
From the XRD analysis of hydroxyapatite investigated by different authors under 

different conditions [56][57][58], we can see that it consists of a crystalline phase 

composed mainly of Ca-HA, α-TCP and TCPM following the degree of calcination 

(i.e. calcination at temperature above 900°C). Britel (2007) work show that the XRD of 

precipitated apatite at room temperature followed by drying at 80°C reveals poorly 

crystalline apatite structure, while stoichiometric apatite calcined at 900°C for 2h 

remains in an apatitic structure without any additional phase such as tricalcium 

phosphate TCP or α β [59]. Figure 9 shows the diffractogram of the hydroxyapatite 

product obtained by the introduction of reactive phosphate (MCP purity 92% β-TCP 

obtained from apatite after calcination at 900°C for 3 h, and TCPM) in a 

hydrothermal reactor (heated in an oven at 200°C for 48 h) with 100 ml of deionized 

water. The cooling of the reactor was carried out blowing air at room temperature, 

and the final product obtained was dried in an oven at 50°C. Adding water to the 
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mixture of calcium phosphates leads to the formation of Ca-HA according to the 

reaction [R.1] [60]: 

 

x.Ca(H2PO4)2, H2O + (3 - 2x)Ca3(PO4)2+ (1 + 2x)Ca4(PO4)2O 
FGHBCD Ca10(PO4)6(OH)2 [R. 1] 

 

 
Figure 9: Diffraction pattern of hydroxyapatite after heat treatment [60] 
H is the tribasic calcium phosphate (Ca-HA), Ca 5(PO 4)3(OH), T corresponds to tricalcium 
phosphate (α-TCP), Ca3(PO4)2 and P is the tetracalcium phosphate (TCPM), Ca4(PO4)2O. 
 
 
3.3. Apatite dissolution 
 
The dissolution of apatite is controlled by transport of ions until the equilibrium 
between the substance and the solution is reached. It is considered among the factors 
predisposing pollutant removal during contact of an apatite particle with an aqueous 
solution.  
 
Table 5: Solubility of some apatite-metals                                                                                                                                  

Metal Solid Chemical form Ksp Reference 
Ca Hydroxyapatite Ca10(PO4)6(OH)2 10-120 (30°C) [61] 
 Fluorapatite Ca10(PO4)6(F)2 10-120 (25°C) [51] 
Pb Pyromorphite Pb5(PO4)3(OH) 10-76.5 [62] 
 Hydroxypyromorphite Pb10(PO4)6(OH)2 10-62.8 [63] 
 Fluoropyromorphite Pb10(PO4)6(F)2 10-71.6 (25°C) [64] 
 Chloropyromorphite Pb10(PO4)6(Cl)2 10-84.4 (25°C) [65] 
U Autunite Ca(UO2)2(PO4)6.10H2O 10-49 [64] 
Sr Strontium-apatite Ca6Sr4(PO4)6(OH)2 10-118.4 [66] 
Cd Cadmium-apatite Cd10(PO4)6(OH)2 10-42.49 [63] 

 

 
Intensity/Counts 

H 

H 
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Table 5 gathers the values of solubility product of metal-apatites at room 

temperature, measured by different authors in the literature. Stoichiometric failure of 

precipitated calcium phosphate product contributes in crystal structure changing and 

thus leads to solubility apparently more important than the well crystallized 

substance in thermodynamic conditions. Of course, hydroxyapatite is the most stable 

phase under physiological conditions defined beforehand. Undoubtedly, the specific 

surface area of apatite is always related to the dissolution. This solubility product 

depends on temperature and ionic strength. Furthermore, Ca-HA shows incongruent 

solubility.  

 
 
4. Mechanisms of pollutant retention 
 
The pollutant elimination in aqueous media by the use of calcium phosphates as 

reactive material proceeds through different physicochemical mechanisms as 

adsorption, chemical precipitation, ion exchange and substitution. Treatment of 

waste or contaminated water can be made by putting it in contact with a reactive 

material capable of maintaining the characteristics of pollutants trapping. Apatite 

pollutants capture capacity has been largely studied in literature. Main studied cases 

are the stabilization of heavy metals such as Pb, Cd, Zn, Cu and U through the 

creation of chemical bonds with phosphate and other minerals with low solubility. 

However, exchange between the apatite particles and the aqueous solution takes 

place at the contact interfaces. The reactivity of hydroxyapatite requires the presence 

of significant amounts of carbonates (carbonate apatite) to improve trapping by 

substitution and it depends on aptitude purity and crystallinity (nucleation sites). 

The main purpose of this section is to highlight the different mechanisms associated 

with apatite to immobilize heavy metals and metalloids. The retention capacity of 

hydroxyapatite to may be evaluated by different models.  

 
 
4.1. Adsorption capacity 
 
The Ca-HA adsorbent surface capacity allows the fixation of pollutants by simple 

interaction either electrostatic or chemical reaction. It can be manifested by two kinds 
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of adsorption, physisorption (physical adsorption) attributed to Van-Der-Waals 

forces, it’s a non-specific adsorption, and/or chemisorption (chemical adsorption 

surface) established by the chemical bonds between the particle and the pollutant, it’s 

a adsorption. Therefore, apatite can adsorb up to 5% of its mass by the mechanism of 

chemisorption [47]. However, the adsorption depends on the concentration of heavy 

metals in the solution, surface properties, particle size, degree of crystallinity and 

ions competing. It also depends on the intrinsic characteristics of the material and its 

equilibrium in the solution. The chimisorption includes surface complexation and ion 

exchange. Surface complexation takes place by the attraction of metal cation 

according to their hydrated radius by attractive forces through the development of 

electrostatic bonds. In this case, the specific adsorption is the establishment of a 

chemical bond between the donor electron atoms of the surface ions and acceptor 

electron atoms. Indeed, adsorption of pollutants by the electrostatic forces is not 

perfect, by comparing it with the specific adsorption, which forms a compound 

relatively stable and non-exchangeable. Apatite is an excellent material for non-

specific adsorption of cationic metal ions and the amount adsorbed at the surface per 

unit mass is calculated by the following relationship [66]: 

 
q = (C0-Ce) 

I
3 [Eq. 1] 

 
Where C0 is the concentration of the metal ion in the initial solution (mmol.l-1), Ce is 

the concentration of the metal ion at the equilibrium, V is the volume of the solution 

and M is the amount of introduced Ca-HA (g). The model of Langmuir adsorption 

isotherm is based on the following assumptions: the existence of a finite number of 

adsorption sites, all sites are equivalent and no interaction between adsorbed ions. 

This model is as follows: 

  
J&
K& = J&

KL + �
�KL [Eq. 2] 

 
Where, Ce is the concentration of the metal at equilibrium (mmol.l-1), qe is the amount 

of sorbed metal per unit mass of Ca-HA (mmol.g-1), qm is the maximum capacity of 

Langmuir adsorption (mmol.g-1) and b is the constant related to adsorption kinetics 

linked to energy of the adsorbate to the adsorbent. Several studies have shown the 
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ability of apatite to trap effectively heavy metals by adsorption [48][66][68]. The 

capacity of heavy metals retention can be evaluated by Freundlich-Langmuir model, 

it is a generalized nonlinear empirical equation described as follows:  

 

Rlf = Q0· NOPQR
"SOP

�T NOPQR
"SOP

 
[Eq. 3] 

 
Where Q0 is metal concentration on Ca-HA surface in equilibrium with the initial 

solution concentration (mg Metal.kg-1 Ca-HA), KFL is the adsorption parameter 

corresponds to the kinetic reaction (mg Metal.kg-1 Ca-HA), Ce is the equilibrium 

concentration of metal (mg.l-1) and nFL is the Freundlich-Langmuir constant. 

 
 
4.2. Dissolution/Precipitation 
 
Chemical precipitation occurs at saturation of solubility. it is the process by which a 

soluble substance turns into an insoluble/low soluble form by a reaction with the 

precipitating agent which can be hydroxide, sulfide, phosphate and carbonate under 

the conditions of pH, concentration and temperature. It is very beneficial to note that 

the precipitation of hydroxides occurs when the pH is basic to an optimum level for a 

specific metal.  

 
Solubility of hydroxides such as hydroxides of Pb, Cd and Ni is minimal when the 

pH varies between 7 and 9. Indeed, the increase in salinity and pH influence on the 

sorption of Cd, Co, and Zn by hydroxyapatite [69]. The presence of H2PO4- ions 

promotes the increase in pH, which alters the balance between the carbonates and 

bicarbonates and leads to the precipitation of various carbonates materials according 

to the following overall reaction: 

 
M2+ + HCO3- + OH-   E   M2CO3 + H2O; where M is a divalent cation [R. 6] 
 
Hydroxyapatite is characterized by rapid kinetics of precipitation above neutral pH 

values in the presence of heterogeneous nucleation sites suitable for the 

immobilization of heavy metals. The precipitation requires the formation of stable 

and insoluble nuclei, for example, precipitation of hydroxypyromorphite is followed 
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by a crystallization (nucleation and growth of the structure of 

hydroxypyromorphite). Indeed, nucleation is triggered by a diffusional gradient of 

dissolved phosphate ions, which enhances the trapping of ions Pb2+ by combining 

with the phosphate ions. In fact, there are two mechanisms of nucleation, 

homogeneous nucleation in Ca-HA and heterogeneous nucleation, which 

corresponds to the germination and the intrusion of the nucleus at the particle 

surface. In addition, the change in the crystalline structure is affected by the 

precipitation of the nucleated lead-phosphate compound on the surface of 

crystallized Ca-HA forming nuclei uniform distribution and homogeneous size. 

Precipitation of Pb2+ occurs following the reactions: 

 

Ca��(PO0��(OH���U� + 14 H�VK�T  
WXYY��Z[X��\CCCCCCD 10 Ca�VK��T  +  6 H�PO0�#]�

7  + 2 H�O [R. 7] 

10 Pb�VK��T  + 6 H�PO0�#]�
7  + 2 H�O 

�(_X`X[V[X��\CCCCCCCD Pb��(PO0��(OH���U� + 14 H�VK�T  [R. 8] 

 
Hydroxyapatite dissolution is strong and quickly established, which explains the 

presence of ions PO43-, OH- and Ca2+ ions. Indeed, the dissolution of Ca-HA increases 

the pH of the solution, allowing the precipitation of Pb2+ and other divalent heavy 

metals according to the above reactions.  

 
 
4.3. Substitution 
 
The substitution results from the replacement of one ion by another of the same sign 

but different electric charge. At the crystal structure of apatite, substitution occurs by 

replacing the Ca2+, PO43- and OH- sites. It should be noted that the ionic substitution 

in the apatite is particularly well illustrated by the geological apatite or in the 

biological apatite [53]. However, the coupled ion substitution is the major 

substitution. It takes place by maintaining the neutrality of the ionic charge (i.e. 

apatite neutralizes acidity by substituting PO43-, CO32- and OH-) or either by a second 

substitution with an opposite ion charge, or either by vacant sites presence in the 

crystal lattice (substitution of Ca2+ by Na2+). In this case, the substitution of carbonate 

decreases the lattice parameter "a" and increases the lattice parameter "c" in the 

apatite structure. The substitution sites of phosphate by carbonate is controlled by 
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the presence of cations (Na+ increases the rate of substitution of phosphates). The 

major drawback of this substitution is the decrease in crystallinity of the apatite and 

thus increasing the solubility. Local substitution can occur at high temperatures 

where the ions OH-, Cl- and F- can substitute each other in different chemical forms 

of apatite (hydroxyapatite, fluorapatite and Chloroapatite).  

 
 
4.4. Ionic exchange 
 
Ion exchange is based on the adsorption of protons and acid anions from a solution 

onto the apatite surface. For example, studies by Corami et al (2008) [66] on the 

sorption of heavy metals such as Cd, Pb, Zn, and Cu by hydroxyapatite have shown 

specifically that the elimination of cadmium by Ca-HA is due to a two-step 

mechanism. The first step is surface complexation of M2+ ions as shown by BAILLIEZ 

et al (2007) [70] for the retention of lead, and the second step depends on the diffusion 

of metal ions within the Ca-HA particles through ion exchange with Ca2+ ions. 

 
 
5. Conclusion 

 
Calcium phosphate occurs in different phases, the apatitic phase is the more stable 

stochiometric structure characterized by Ca/P ratio of 1.67 known as hydroxyapatite 

(Ca10(PO4)3(OH). The apatitic crystalline structure is also influenced by 

physicochemical parameters such as pH, temperature reaction, aging time and 

reactant concentrations. However, the synthesis of hydroxyapatite can be made by 

different methods. Stability of synthesized product is controlled by the solubility of 

product in aqueous solutions. The solubility product (Ksp) value of Ca-HA is around 

10-120. In addition, the solubility is also conditioned by pH, chemical composition and 

saturation index, and on the other hand is related to the morphological structure 

(particle size and surface structure). 

 
Chemical and physical sorption, surface complexation, dissolution-precipitation, ion 

exchange and substitution are the main mechanisms governing the heavy metals 

retention by hydroxyapatite. Many models were proposed to simulate the adsorption 
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of pollutants by Ca-HA such as Langmuir and Freundlich models. The use of apatite 

in PRB and soil treatment has gained attention in the last years. Especially, it has 

high capacities to remediate groundwater and wastewater. The main advantages to 

use synthetic apatite are the high stability, ease of preparation method and the low 

cost. 

 
 
III. Calcium sulfate  
 
1. Introduction  

 
Calcium sulfate is generally present in nature in the form of crystalline rock, is 

sedimentary gypsum, which is often characterized by a purity exceeding 90%. 

Industrial processes such as the preparation of phosphoric acid from phosphate rock 

(phosphogypsum), treatment of gas desulfurization using lime stone 

(desulfogypsum), the manufacture of hydrofluoric acid from calcium fluoride 

(fluoranhydrite), etc ... can also produce this material as a byproduct, with grades of 

mineral impurities (phosphate and other impurities combine with calcium sulfate). 

Consequently, the gypsum by-product containing levels of heavy metals, raises 

storage problem and provides a negative impacts on the environment. The 

valorization of phosphogypsum is an essential process and can be carried out by its 

use as a hydraulic binder, fertilizer and construction material (added to cement to 

modify setting properties). 

 
 
2. Calcium sulfate forms 

 
Calcium sulfate exists in three different forms, calcium sulfate dihydrate 

(CaSO4.2H2O, Gypsum, G), calcium sulfate hemihydrate (CaSO4.1/2H2O, Plaster, P) 

and calcium sulfate anhydrite (CaSO4). The change in the crystalline form depends 

on the calcination temperature following the method of dehydration (i.e. in air or 

water vapor). Figure 10 summarizes the treatment processes of gypsum for the 

formation of other phases of calcium sulfate and their crystalline structure. 
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The firing of gypsum at a temperature of 120°C allows hemihydrates formation. 

Dehydration under steam in an autoclave (2-7bars) gives α form well-crystalline and 

compact (monoclinic structure). This is due to the dissolution / re-crystallization of 

gypsum particles. The dehydration of gypsum in air by firing in kilns leads to the 

formation of β-hemihydrate form of less-crystalline structure. 

 

Figure 10:  Different phase of calcium sulfate after heat treatment 
 
The conversion reaction of dihydrate to hemihydrate is an endothermic reaction. The 

reaction of dehydration of gypsum at room temperature (CaSO4.2H2O → 

CaSO4,0.5H2O+ 1.5H2O) is controlled by the pressure of water vapor, which for 

pressures above 0.1013MPa, plaster formed is P(α) and at a temperature above 100°C 

and for pressures below 0.1013MPa, plaster β (P(β)) appears at a temperature below 

100°C. 

 
At temperatures above 200°C and according to firing mode, the structure of 

hemihydrate is converted to the anhydrite III following an endothermic reaction. 

Anhydrite III (α, β) Form is characterized by a hexagonal crystal structure (soluble 

anhydrite) known under their empirical formula CaSO4, εH2O with 0.06 ≤ ε ≤ 0.11, 

and absorbs water vapor easily to form hydrogen bonds and rebuild the 

hemihydrate structure. Above a temperature of 250°C, anhydrite III is transformed 

into anhydrite II (α, β) after an exothermic reaction. The crystalline form of anhydrite 

II (α, β) is orthorhombic; it is the most stable form is a natural anhydrite (molecular 

weight of 136.1g.mol-1). Anhydrite I is obtained using a high temperature following 
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an endothermic reaction. Crystalline structure is compact (molar mass of 136.1g.mol-

1). The anhydrite is unstable at room temperature. The stability of the phases formed 

from gypsum depends on the temperature and mode of treatment.  

 
 
3. Reactivity of calcium sulfate 

 
Reactivity of calcium sulfate is often illustrated by the hydration of hemihydrated 

particles which are characterized by a low mixing ratio of P(α) (water/powder ~ 0.4) 

[71] and anhydrite . Contact of CaSO4 particles with water causes their partial 

dissolution leading to the supersaturation of the solution by Ca2+ and SO42-. In 

addition, ions already present in the pore solution are adsorbed on the surface of the 

particles to form a covering layer. Once the thickness of the adsorbed layer reaches a 

limit state, it ends up forming cracks facilitating the passage of water that comes into 

contact with a fresh surface of the particles, allowing the formation of nuclei of 

gypsum precipitates on the particle surface [72][73]. Consequently, control of 

hydration scenario of calcium sulfate is correlated to the dissolution of P(α), the 

nucleation and growth of gypsum. The hydration of calcium sulfate is assessed by 

the conductivity of the supernatant solution, or by scanning electron microscopy 

(SEM) and by analysis of the specific surface area (BET method). However, the 

conductivity of 2 to 2.5mS.cm-1 indicates that the solution is saturated in a steady 

state with the formation of the solid phase of gypsum, and a conductivity greater 

than 5.2mS.cm-1, the solution is supersaturated with a metastable gypsum state 

(gypsum formation is initially incomplete) [74]. 

 

 
Figure 11 : Crystal morphology of gypsum [75] 



53 
 

 
Studies by Finot, et al (1997) [76] using atomic force microscopy to assess the stability 

of the different faces of calcium sulfate dihydrated under the influence of relative 

humidity, show that the precipitation of sulfate calcium is supposed to have the 

composition of the fraction present in the anhydrite gypsum. However, the 

formation of gypsum is due to the precipitation on the (010) crystalline face (Figure 

11). Face (010) is the most responsive and provides guidance on the change in 

mechanical properties depending on the relative humidity (10-35%). The faces (1b01) 

are characterized by a neutral and weak attractive links with other faces (-H 

bonding) attributed to water molecules. The density charge of the sides checks the 

creation of charged surfaces that characterize the ability of adsorption and varies 

from one area to another. Following the comparison between the charge densities of 

the faces references, the face (120) is considered the densest and sticking on easily 

with the other sides by strong interactive links [77]. 

 
 
4. Conclusion 
 
The calcium sulfate may be found as dihydrated (gypsum) , hemihydrated (plaster) 

and anhydrite forms. The gypsum and plaster have a monoclinic structure. Their 

crystalline structure is influenced by dehydration process. Plaster hydration obeys to 

dissolution/precipitation mechanism and gypsum formation take place by growth of 

(010) crystalline face. 

 
 
IV. Hydraulic performances 
 
1. Introduction 
 
Granular and reactive materials have a high capacity to retain dissolved pollutants 

containing heavy metals. For example, the soil plays a very interesting role in the 

infiltration and percolation of runoff, leaching of garbage in landfills or industrial 

processes. These waters are continuing their infiltration in the various soil layers, 

until reaching groundwater. However, the prediction of the flow rate of polluted 

water is indispensable to assess the transfer of contaminants from groundwater and 
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provides information on the hydraulic conductivity that’s considered as an essential 

parameter in the characterization of the infiltration rate. 

 
The geometric factors of the material structure allowing infiltration of fluids through 

porous media are porosity (pore size), geometry of the pores and thickness of the 

porous medium. The fluid passing through the porous media obeys to the inlet 

pressure which allows the passage of a predetermined volume of fluid through the 

porous sample (capillary forces related to surface wettability). Therefore, the 

determination of permeability is based on two essential parameters, flow and 

hydraulic gradient resulting in the ability of the porous material to let through the 

fluid. The values of permeability allow the classification of permeable materials, 

semi-permeable and impermeable.  

 
Permeability and porosity parameters are essential to the location of implantation 

sites, the design of permeable reactive barriers and prediction of its hydraulic 

performance. In this case, multiple relationships, models and theoretical methods 

describe the evolution of permeability based on the geometrical structure of 

macroscopic and microscopic levels (particle size) of the material and on the 

assimilation at the porous network to cylindrical channels and are related to material 

properties such as specific surface area. The conditions for the evaluation of 

hydraulic parameters depend on the state parameters such as pressure (hydraulic 

head), temperature and viscosity of the fluid used in contact with the porous 

material. 

 
 
2. Porous media characterization 
 
2.1. Porous structure 
 
Porous material structure has a component that includes three parts, gas (air), liquid 

(adsorbed or free water) and granular skeleton. The void volume consists of occlude 

air and water. Figure 12 illustrates a simplified model of the various components of a 

porous medium.  
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Figure 12 : Main components of a porous solid 
 
The porous medium is formed by the non-empty interconnected open voids, 

interconnected open voids and closed voids. The continuous space shows the 

interconnected pores that ensure surface contact and facilitates the transport 

mechanisms of matter with surrounding environment, unlike connected voids that 

contribute to fluid diffusion and transport. The category that has closed pores 

(occluded) porosity is isolated and does not allow access or fluid communication 

with the external environment, it is the residual porosity. Indeed, the apparent 

volume brings together solid volume Vs, Vo open void volume and the closed void 

volume Vf. However, the pore distribution depends to water physical connections 

between solid grains of porous matrix. Water in the solid interstices may be capillary, 

gravity or retention and Figure 12 shows the different phases of water particles in the 

porous medium.  
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Porosity classification depends also on the pore water nature present in the pores 

and mobile water that characterizes the macroporosity (open porosity) by the free 

flow once porous solid is saturated. Water in the microporous structure is adsorbed 

water which binds to the surface of grains in the form of thin layers of dipole water. 

The retention water is attracted by surface tension on article surface. Mobile water is 

available in the macroporous, it is easily removable and replaceable. 

 
 
2.2. Porosity 
 
Void geometric complexity requires its decomposition into a single element, the 

pores, which are used in solid porosity (c) determination. The relationship between 

the void volume and the volume of the solid is as follows:  

 
Va: Apparent volume = Vs + Vv and the porosity relationship is: c = Id

I# [R. 1] 

 
The distinction between different porosities is not only geometric, but refers to 

contents of void phase. Therefore, the porosity term is distinguished by the volume 

of fluid occupying the micro and macroscopic and inter-granular interstices. 

However, the effective porosity term is defined as gravity water volume in saturated 

porous media reported to its total volume. The effective porosity is also called 

drainage porosity. The movement of water in interconnected pores following 

pressure gradient characterizes the filtration ability. Available porosity depends on 

saturation degree.  

 
 
2.3. Porosity determination 
 
Porosity calculation or measurements are made by several methods. However, the 

total porosity is composed of connected porosity and closed porosity. Typical 

methods for porosity measurement gives total porosity (porosity accessible to water) 

or microporosity (by gas expansion and mercury injection). Porosity can be 

quantified by image analysis obtained from the actual scanning electronic 

microscopy (SEM). Studies carried out by Wantanaphong et al (2006) [78] to quantify 
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pore clogging of PRB test body obtained by coring, shows the possibility to 

determinate total porosity by SEM and finally to assess barrier life cycle.  

 
 
2.4. Permeability 
 
The permeability of a material is its ability for a fluid to pass-throughout. It also 

depends on the macro and microstructural morphology and saturation degree of 

materials. The hydraulic conductivity K (m.s-1) (coefficient of permeability or 

kinematic permeability) depends on the intrinsic permeability of the porous medium 

(permeability geometric) k (m²) and the kinematic viscosity η (m.s-1). The relationship 

between intrinsic and kinematic permeability is following:  

 
K = e.f.g

h  [R. 2] 

 
With µ is the dynamic viscosity of the fluid (Pa.s); g is the gravity (m.s-²) and ρ is the 

fluid density (kg.m-3). Unit widely used in hydrology field is "Darcy" (DARCY1856), 

it is the intrinsic permeability of a material when a fluid (µ = 1cPo, water at 20°C) 

displaces at a velocity of 1cm.s-1 according to 1atm.cm-1 pressure gradient (1Darcy = 

10-12m² = 10-5m.s-1). Darcy's law discussed later allows the calculation of permeability 

as a function of stationary flow rate and hydraulic head. Existence of factors affecting 

the permeability such as compaction (i.e. permeability decreases by increasing 

confining stress) and anisotropy associated to confining stress, increased aggregates, 

texture and size distribution (heterogeneity of density) do not allow evaluation of a 

precise value of the permeability at the laboratory scale. However, determination of 

permeability from the grain size is possible, where the permeability rises as the 

aggregate size increases. The heterogeneity associated with a confining stress often 

affects the permeability [79], and permeability decrease is attributed to the reduction 

of voids caused by compaction when it depends on an isotropic confining stress and 

large. Table 6 tabulates the values of the permeability coefficient of different soils. 

The permeability of clay and silt is less important than the permeability of the sand 

and gravel; this is due to the size distribution of each material and the inter-granular 

porosity of solid particles. 
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Table 6: Soil permeability  
 
 
 
 
 
 
 

 
Empirical expressions of permeability differ according several parameters such as 

structural morphology of the material particles, porosity, surface area and water 

content. Among the models often used for the macroscopic and/or microscopy 

description of a porous medium and to estimate the in situ permeability of soil, the 

Hazen formula (1892) based on the size of the material pores [80]. Hazen formula is 

generally limited to 0.01cm<d10<0.3cm [81][82], involving only the grain diameter, is 

expressed by the following equation 13: 

 
k = C.d���  [Eq. 3] 
 
With k is the geometric permeability (cm²); C is a dimensionless constant (Hazen 

empirical coefficient) and d10 is the maximum diameter of the finest grains whose 

weight 10% of the total weight of the material used (cm). The empirical correlation 

between geophysical parameters is described below. The permeability can be 

evaluated from the arrangement and size, by assimilating particles to spherical 

structure, the relationship established by Schlichter was used to estimate the 

permeability from the structural geometry of the solid grains by following 

relationship: 

 
k = C.d��� .c3.3 [Eq. 4] 
 
Where k is the intrinsic permeability; C is a constant; d is the diameter of grains 

presenting 10% of material total weight and c is the porosity.  

Brinkmann model is based on the macroscopic properties of the porous medium. The 
model considers pore walls as barriers to fluid flow [83]; this model is expressed by 
the following relation: 
 

Soil Permeability (m.s-1) 
Clay 1.0×10-7  -  1.0×10-6 
Loam 1.0×10-6  -  1.0×10-5 
Fine sandy 1.0×10-5  -  5.0×10-5 
Medium sand 5.0×10-5  -  2.5×10-4 
Coarse sand 
Gravel 

2.5×10-4  -  1.0×10-3 
1.0×10-3  -  1.0×10-2 
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k = j �
�k (�

0(1-c))2/3 (3 � 0
�7 l j 3m k

�7 l�, with c is the porosity. [Eq. 5] 

 
 
3. Microstructural morphology 
  
The pore architecture is a fairly complex structure; it is defined following pores 

distribution of material volume. Indeed, the pore distribution determines the classes 

of porosity within the material and provides its ability to be crossed by a fluid 

according to pore connectivity and total volume of the material. In this section, we 

describe the main properties and parameters related to porous materials such as pore 

size, connectivity and tortuosity. 

 
 
3.1. Pore size 
 
Distribution of pore size depends on the structure of the porous medium in terms of 

texture correlated with surface area and particle size distribution of grains. However, 

classification of material pore size includes three categories, macroporosity, 

microporosity and mesoporosity. Table 7 classifies pore size following structural 

morphology. The microporosity has a fundamental role in the flow of water 

saturated medium. 

 

Table 7 : Classification of pore size   
Macroporosity (nm) Microporosity (nm) Mesoporosity (nm) 

rp>50 rp<2 2<rp<50 
 
The determination of the pore size distribution can be made by mercury porosimeter 

and thermoporometry analysis. Pore radius (rp) determines the class of porosity vis-

a-vis pore volume (Vp), it is identified from the curve: Vp = f (rp). Thompson-Katz 

(1987) [84] relationship consists to evaluate intrinsic permeability k from the critical 

radius (rc) corresponding to maximum pore volume by mercury intrusion method. 

Hydraulic radius (rh) can be deduced from the spectrum of the pore radius of a 

sample. The average size of porous medium can be correlated to the physical 

condition of the fluid entrapped in the pore volume. 
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3.2. Hydraulic diameter 
 
Average hydraulic diameter is used to describe the tortuosity of a porous material 

considering that the flow in the pores follows a non-circular dimension. Indeed, it 

may be a function of porosity and particle diameter and is defined as:  

 
dh = 4 In [Eq. 6] 

 
Where V is the pore volume and A is the wetted surface. The relation dh = 4 ( l

�7l )(
�

VU); 

with c is the porosity, and as is the particle surface relative to volume (in the case of 

spherical particles of diameter d, as = 6.d-1), it is used in Kozeny-Carman formula for 

calculating permeability as a function of porosity thereafter described. 

 
  
4. Darcy’s low 
 
4.1. Definition 
 
Darcy's law (1856) describes the flow of a fluid through a layer of porous material 

and determines the permeability from the application of a constant hydraulic head at 

a constant laminar flow (pressure gradient is proportional to the flow velocity in the 

pores). This law is a differential form in a single direction [85] (vertical or horizontal) 

and is written as follows: 

 
V = - K opqrsssssssssst Ψ [Eq. 7] 
 
Where V is the flow velocity (m.s-1), K is the permeability (m.s-1) and Ψ is the 

hydraulic potential which has the sum of capillary and gravitational components (Ψ 

= P + ρ.g.z) with P is applied pressure (Pa), ρ is the water density, g is the gravity 

(m.s-2) and z is the traveled distance (m). For vertical flow, Darcy's law is written: 

 
 Wθ
W[   = - K WΨ

Wu  [Eq. 8] 

 
Where θ is the water content (%) and t is the travel time along the z axis (s), the 

introduction of the expression of Ψ in the equation: 
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 Wθ
W[   = - K ( W�

Wu + ρ.g) [Eq. 9] 

 
Verification of Darcy's law studies by Vachaud (1966) [86] show that each material 

obeys to law for a one-dimensional horizontal flow used for the determination of 

capillary conductivity. Generalized Darcy's law along the horizontal axis is: 

 
q = - K(θ)Wψ

W8  [Eq. 10] 

 
With, q is the unit flow rate of water corresponding to the volumetric water content 

θ, K is the capillary conductivity coefficient and ψ is the capillary potential (capillary 

suction). Generalizing Darcy's law in three dimensions is written as follows: 

 
v=ssst  = he wst + ρot [Eq. 11] 

 
Where wst is the average velocity of flow, k is the intrinsic permeability of the porous 

medium and v=ssst is the pressure gradient on both sides of the porous medium. 

 
 
4.2. Integral form of Darcy's law 
 
The flow rate q is constant over time in steady state and is written as follows: 
 
q = - K(h) ( Wx

Wu + 1) [Eq. 12] 

 
With K is the hydraulic conductivity (m.s-1), h is the piezometric head (m) and z is 

the traveled distance (m). The fluid flow rate q traveled a distance L between two 

points z1 and z2 along the vertical axis z, the integration of the relationship gives the 

traveled distance according to the piezometric head upstream (h1) and downstream 

(h2) of the sample: 

 

L = Z1 – Z2 = y ?z
��T {

|�}��
zG

z"  [Eq. 13] 
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4.3. Relationship between porosity and permeability 
 
Granular material description in terms of particle size and pore distribution in 

porous matrices is based on formula that takes into account the porosity and 

permeability. The Kozeny (1927) [87] formula is: 

  
k = J .W².l³

��7l�²
 [Eq. 14] 

 
Where k is the permeability, c is the porosity (%) C is an empirical constant which 

takes into account the form and tortuosity of the porous channel (0.5 (circle), 0.562 

(Square), 0.597 (triangle)) and d is the particle size (diameter) [85]. Experiments 

conducted by Fair and Hatch (1933) on the assessment of factors influencing the flow 

of water [85] were based on replacing the parameter d by the factor V/A, where A is 

the total area of a representative sample of particles whose total volume is V. 

Developing the formula of Kozeny by Fair and Hatch (1933) by assimilating the 

porous structure to a hypothetical structure such as capillary tubes of radius r 

[88][89]. The structural formula is based on Poiseuille's equation (1839). 

 
 
4.3.1. Poiseuille’s equation 
 
The cylindrical Poiseuille flow of a fluid through a channel of radius r subjected to a 

pressure gradient obeying Poiseuille's equation is defined as: 

 

Q = ̟'~
kh

��
�R  [Eq. 15] 

 
With Q is the volumetric flow rate (m³.s-1), r is the radius of the channel, ∆P is the 

pressure gradient (Pa) and Le is the effective length of the channel. The model of 

porous structures (n identical straight cylindrical pores) is treated as a network of 

parallel capillaries of radius r, the modeling of fluid flows in a material of the same 

characteristics based on flow determination in the material and flow in the porous 

network. 
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The flow in the material is: Q = 	
µ

A ∆�
$  ; and flow in a pore is the following: q = ̟'~

kµ
∆�
$  

and knowing that Q = n.q; with n the channel number. The permeability associated 

to this model is:  

 

k = n ̟'~
kn  [Eq. 16] 

 
 
4.3.2.  Tortuous channels model 
 
This model is based on the correction approximate straight-channel model by a 

tortuous channel through the material with an effective length Le greater than the 

total length L of the material. The porosity in the apparent volume of the material (n-

channel radius "a" and length Le) is estimated by the following relation: 

 
c = n.̟.a².τ [Eq. 17] 
 
With n is channels number, “a” is channel radius and τ is the tortuosity. Flow in each 

capillary channel is defined by Poiseuille’s equation bellow. Filtration velocity 

through the porous body taking into account that the porosity is active (c/3) is 

following: v = n.q = l.V²
�0µτ²

∆�
$  and permeability associated to this model is:   

 
K =  l.V²

�0µτ²
 [Eq. 18] 

 
 
4.3.3. Kozeny-Carman model 
 
Kozeny-Carman modeling is based on Kozeny (1927) relationship modified by 

Carman (1937) [90]. The modification considers the porous material as a collection of 

capillary tubes. Moreover, the relationship between permeability, specific surface 

area and porosity of the material is as follows: 

 
k = J.�

µ�ρ�
 l³
�U² ��7l�²��G

 [Eq. 19] 

 
With, k is the hydraulic conductivity (permeability coefficient) (m.s-1), A is the 

section of sample, constant C depends on the shape and tortuosity of the pores (often 
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C=0.2 by considering that the water does not move in straight channels but around 

irregularly shaped solid particles); µw is the dynamic viscosity (Pa.s) ρw is the density 

of water (kg.m-3), c is the porosity, Ss is specific surface area (m².kg-1) and Dr is the 

specific weight of solid (ρs/ρw). The Kozeny-Carman model is consistent with the 

development of Fair and Hatch (1933) [85], it is based on four assumptions: 

 
♦ The volume of inter-granular voids is treated as a channel of constant section and 
length; 
♦ The volume of inter-granular voids is equal to the volume of the channel; 
♦  The lateral surface of the channel is equal to the outer surface of the grains; 
♦  The flow regime is laminar solid particles are relatively compact [89]; 
♦  The electrochemical reactions between the solid particles and water are negligible, 
 
 
Kozeny-Carman formula can be used in evaluating the hydraulic conductivity of a 

permeable reactive barrier to predict the reduction of porosity and hydraulic 

performances in general. LI et al, (2006) [91] have used this model to explain the 

reduction of permeability as a function of porosity in a PRB-ZVI based, using the 

following equation: 

 

k = �
��UG

 (
ρ��

µ
) l�

��7l�G [Eq. 20] 

 
Where k is the hydraulic conductivity (m.s-1), SS is the specific surface area per unit 

volume of reactive material particles (1/m) (ratio of surface area and bulk volume), 

ρw is the water density; g is the gravity (m.s-2), c is the porosity of the material (%) 

and µ is the absolute viscosity of water. The evaluation of the permeability of a 

permeable barrier at time t can be performed using the following equation: 

 

k[ = k� [
l�7 ∆��

l� ]³ / [
�7 l�T ∆��

�7 l� ]² [Eq. 21] 

 
Where K0 is the initial hydraulic conductivity (m.s-1), c� is the initial porosity; ∆l� is 

the reduction of the porosity at time t. It should be noted that the reduction of the 

porosity is not linearly related to the reduction of hydraulic conductivity of the 

barrier [91]. However, these two parameters influence the performance of the flow. 
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The material is modeled by porous channels of "a" section; the constant flow is given 

by the following relation: 

 

Q = '�G
z�h q ��

�R  [Eq. 22] 

 
Where rh is the hydraulic radius (ratio of the volume of the pore and the lateral 

surface of the pore); 

 
rx = V$R

 U�U  = ��
����

  �
���!��� = l

ρU�U��7l� [Eq. 23] 

a . L� = V� = c.VV = c.A.L; where:   a = l.n.$
$R  [Eq. 24] 

 
Comparing this relation with Darcy's law relationship, we obtain the expression of 

the permeability: 

 
K = l³

��7l�²
 �
ρU�U²

 �
x   (*)    [Eq. 25] 

 
With: h = h0.τ, where h0 = 2 is a constant depending on the geometry and tortuosity τ 

is defined above. Another Kozeny-Carman model is based on the development of the 

relationship of permeability depending on the specific air tubes and tortuous 

porosity. Indeed, the specific surface area of tortuous tube is as follows: AY = 2̟.n.a.τ 

and total porosity of the material of n tortuous tubes is as follows, c = n.̟.a².τ, 

where: 

 
AY = �l

V  [Eq. 26] 

 
The expression of the permeability according to (*) is described by the relationship: 
 
K = l³

� nU².τ²
 [Eq. 27] 

 
 
5. Permeability determination 
 
The permeability of materials can be evaluated at laboratory scale and/or in-situ 

with respect to the soil profile. Therefore, the methods to be applied in the laboratory 

can be composed with simple devices easy to handle, such as permeameters gas 
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(oxygen, nitrogen), the constant head permeameter and variable head permeameter. 

In this case, these methods allow the determination of accurate values of the 

permeability under controlled conditions of pressure and temperature. In addition, 

in-situ techniques are carried out by direct field testing, among these techniques is 

found, the TRIMS permeameter, the GUELPH permeameter and standardized 

devices such as blower door opened and the double ring type single-ring 

infiltrometer closed. This section highlights the major parameters related to all the 

methods mentioned earlier, with emphasis on application conditions and relations 

for the calculation. 

 
 
5.1. Laboratory scale 
 
This section highlights the major indices related to the laboratory methods 

mentioned earlier, with emphasis on application conditions and relations for the 

calculation. 

 
 
5.1.1. Constant head permeameter 
 
Constant head permeameter is a device for determining permeability of coarse-

grained materials such as sand (permeable materials). Figure 13 shows the simplified 

process of permeameter. The calculation of permeability following Darcy's law 

applied to a thickness L of the sample, limited each side by two porous stones of a 

higher permeability than that of the sample. The sample and the porous layers are 

placed in a column section "A" fulfills its part of a greater volume of water.  

 
The column is connected to a tube of radius smaller than that of the water column, 

infiltrated water through the sample is poured into a graduated tube at time t equal 

to the given flow rate Q in the system (i.e. flow rate Q through the sample equals the 

volume collected versus time t for the collection). 
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Figure 13: Simplified schema of a constant head permeameter 
 
Flow rate expression is as follows:  

 
Q = A.v.t, with, v = k.i and i=H/L  [Eq. 35] 
 
Where “i” is the hydraulic gradient and H is the piezometric head (m) between the 

water level in the column and collection tube, the expression of permeability (m.s-1) 

(hydraulic conductivity) of the sample is as follows: 

 
k = �$

nx[ [Eq. 36] 

 
 
 
5.1.2. Variable head permeameter 
 
This method is used to measure the permeability of fine grained materials such as 

clays, silt, i.e. it is recommended for materials with low permeability. Figure 14 

shows the schematic device of this permeameter. Therefore, this assessment method 

for soil permeability is based on the introduction of the sample in a column of section 

"A", a tube (pipette) of section "a" is brought into contact with the sample to ensure a 
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steady flow, the transit time of h1 to h2 in the water through the pipette used to 

calculate the flow rate q. 

 
Figure 14: Simplified schema of a variable head permeameter 
 
Flow rate in the column: 
 
q = A.v = A.k.i = n.	.x

$   = - V.Wx
W[  [Eq. 37] 

 
By integrating from h1 to h2, the permeability is as follows:  
 
k = V.$

n.[ �� �x"/xG� or k = 2.3 V.$
n.[ ��� �x"/xG�   [Eq. 38] 

 
It should be noted that measures of permeability in laboratory by using the constant 

head or variable head only provide punctual and unidirectional estimation. 

 
 
5.2. In-situ permeability calculation 
 
The identification of soil profile led on permeability value is a easy step in 

geotechnical and civil engineering field. Several developed methods used to evaluate 



69 
 

in-situ permeability mostly permeable layers such as sandy and sandy-loam textures.  

In addition, in-situ techniques are carried out by direct testing to the field, among 

these techniques, TRIMS permeameter [92], GUELPH permeameter [93][94] and 

standardized devices such as double-ring opened infiltrometer [95]  and single-ring 

closed infiltrometer [96].  

 
 
6. Conclusion 
 
This chapter has highlighted the main characteristics of PRB. The various chemicals 

used have been described. A particular focus is made on the determination of the 

porosity of the formulate PRB. The methods widely used in civil engineering to 

characterize the porous structure are porosity accessible to water and mercury 

porosimeter, which give values of total porosity and pore radius of the medium 

(tortuosity). Nevertheless, porosity is a necessary parameter to evaluate the 

permeability following the geometry, the grain structure and pore distribution. The 

fluid flow through the thickness of a material obeys Darcy's law and follows a 

hydraulic potential at a laminar flow regime (the application of pressure to measure 

the permeability). However, verification of Darcy's law applies by considering the 

flow in a material is one-dimensional and depends only on the capillary and the 

water content. The relationship between porosity and permeability materialized by 

the Kozeny-Carman model is based on the assimilation of a pore network model to 

evaluate the theoretical permeability of a material with reference to the specific 

surface of grains and tortuosity. In general, the assessment of hydraulic performance 

when designing a permeable barrier (i.e. the reactive material) is performed by 

percolation tests at constant head and the value of the permeability obtained 

depends on the supporting environment so that the permeability of the reactive 

media must be higher than that of the aquifer. 
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Chapter II 
Materials & Characterization procedures 

 
This chapter focuses on the main techniques to determine physical and chemical properties of 
calcium sulfate (support material) and calcium phosphate (hydroxyapatite, Ca-HA). Material 
characterization procedures were described in detail and were based on the use of different 
techniques aiming at the determination of the density, the surface area and particle size 
distribution as well as the mineralogical phases present in the samples of calcium phosphate 
and calcium sulfate.  
 
I. Materials 
 
1. Calcium sulfate 
 
This study was performed on calcium sulfate dihydrated (G) and hemihydrated P(α) 

provided by PRAYON® (Belgium). Calcium sulfate was obtained by a hemihydrates 

process 2 (HP2) as shown in Figure 15. The process is based on the production of 

phosphoric acid by mixing sulfuric acid (H2SO4, 98%) and phosphate. α-

Hemihydrated particles was produced by precipitation in the first step of process.  

 

 

Figure 15: Calcium sulfate (α-hemihydrates and gypsum) manufacturing process 

(PRAYON®) 

 
The second step consists in the rehydration of produced calcium sulfate 

hemihydrated to obtain calcium sulfate dihydrated (i.e. this operation purify the 

hemihydrated particles by reducing the content of the unreacted P2O5 acid and co-

crystallized in gypsum. The last step describes the conversion of gypsum to plaster 

under steam followed by filtration and washing to get a pure product. 

 

Steam 
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2. Calcium phosphate (Hydroxyapatite Gel, Ca-HAGel) 
 
Calcium phosphate was prepared from calcium carbonate (CaCO3, 98% purity) and 

calcium phosphate (NH4H2PO4, purity 99.4%) by wet process. The reaction between 

the two compounds is stoichiometric with a Ca/P molar ratio of 1.67, and the 

amount of distilled water added is three times higher than the amount of calcium 

carbonate. Ca-HA particles synthesis was produced by the ammonium phosphate 

(NH4H2PO4) dissolution in de-ionized water by preliminary stirring (helical ribbon 

Stainless Steel) of 350rpm for 30 minutes in an open Pyrex® reactor (working volume 

1L and inner diameter 10cm). After NH4H2PO4 solution has been prepared, calcite 

was added. The reaction was maintained for 48 hours to ensure homogenization 

under room conditions of temperature and pressure to obtain Ca-HAGel as follows:   

 
10CaCO3 + 6NH4H2PO4 E Ca10(PO4)6(OH)2 + 10CO2 + 2H2O + 6NH4OH [R.1] 
 
Compounds reaction is accompanied by a release of CO2 and the Ca-HA product 

precipitates at a basic pH of 8.3. For example, production of 1kg of Ca-HA, over 438g 

of CO2 is released. Verwilghen et al (2009) [1] have reviewed that the reaction and 

maturation time are correlated to temperature. Ca-HA to be characterized was rinsed 

with distilled water to eliminate unreacted phosphate.  

 

 
 

Figure 16: Ca-HAGel synthesis process  
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Ca-HAPowder was obtained by drying Ca-HAGel at temperature of 105±0.5°C during 24 

hours in accordance with EN 14346 [2]. Figure 16 shows the experimental set up 

developed for the synthesis of Ca-HAGel. 

 
 
II. Characterization techniques  
 
1. Physicochemical properties 
 
1.1. Helium Pycnometer (bulk mass) 
 
Sample densities were measured using Micrometrics ACCUPYC 1330 helium 

pycnometer. This kind of pycnometer provides a more accurate determination of 

density in comparison with the liquid pycnometer (risk of swelling of the material). 

The principle of this apparatus is based on measuring the volume of sample from a 

known mass. The sample is introduced into a cell which consists of a sample holder 

(3.5cm3 or 1cm3) and a given volume calibrated chamber. A known sample mass of 

about 3g is introduced into a cell of 3.5cm3 inserted into the sample chamber. Helium 

explores the pores of the material at a pressure, which determines the volume of the 

vacuum in the sample compared to the pressure in the chamber calibrated. The 

measurement takes about 30 min and the value of density was obtained after five 

repetitions of the automated measurement until the results reach indicative average 

values (g.cm3). 

 
 
1.2. Specific surface area (BET method) 
 
BET method (Brunauer, Emmett and Teller) is a technique for measuring powders 

specific surface area (Ss) by assuming that the adsorption of gases takes place in 

multimolecular layers. In this thesis, the specific surface area of materials was 

determined using a device GEMINI (MICROMETRICS). The general principle of the 

method involves the adsorption of nitrogen at its liquefaction temperature (-196°C) 

on the surface of a material to be studied by keeping a cell adsorption. A sample 

mass of about 300mg was introduced into a tube and degassing is carried out for 6 

hours at 105°C under vacuum. The sample is subjected to five different pressures of 
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nitrogen at the temperature of liquid nitrogen. The adsorption isotherm is identified 

by the nitrogen pressure, which allows deducing the volume of adsorbed gas from 

the gas pressure P and its saturated vapor pressure P0 and so deducing the specific 

surface m².g-1. 

 
 
1.3. Particle size distribution 
 
Granular material extent used in this study was determined by a laser particle sizer 

Mastersizer Hydro 2000-2000 (Malvern Instruments) at size interval of 0.02-2000µm. 

Determining the sample size using the laser particle size is based on the introduction 

of particles in ethanol as a dispersant. The suspension is subjected to ultrasonic 

shacking for one minute and the analysis is performed after stopping ultrasound The 

suspension is introduced into a cell with a circulation pump. Within the cell, a laser 

beam passes through the suspension before being projected onto the photodiode 

measurement result of the interaction between the laser and particles. The results are 

discussed based on the Mie theory assimilating particles to spheres of equivalent 

volumes. This method allows the identification of the particle mean diameter 

compared to a mass percentage. For example, the mean diameter d10 corresponding 

to the particle size whose mass represents 10% of the total mass of the sample. From 

a geotechnical standpoint, the determination of diameters such as d50 (average 

diameter), d60 and d30 facilitates the description of the material composition and the 

determination of physical properties. 

 
 
2. Microstructural analysis  
 
Scanning electron microscope (SEM) is used to characterize the morphology and 

chemical compounds of materials. The apparatus used is Philips XL 30 ESEM FEG. 

The observations was coupled to EDX chemical microanalysis to analyze the 

composition of materials. The samples were metalized with gold by vacuum 

evaporation with sputter coater Polaron Range. 
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3. Chemical properties 
 
Preparation of solutions for element concentrations analysis in the various materials 

is a preliminary and important step. 

 
 
3.1. Mineralization  
 
Mineralization according to NF X31-151 [3] is one of the methods often used in the 

chemical characterization of material composition. It applies by the dissolution of 

particles by adding a mixture of hydrochloric acid (HCl) and nitric acid (HNO3) 

(aqua regia) with a concentrated ratio (volume) of HCl/HNO3 = 3 (3.75ml of HCl and 

1.25ml of HNO3). The dissolution of particles was done on SCP DigiPREP Jr 

mineralization device by heating samples on heating block (coated graphite Teflon®) 

at temperature of 90°C. 

 
 
3.2. Leaching test 

 
Leaching test standardized method allows the characterization of soluble ionic 

elements removable by dissolution in contact with a solvent at a given time. The 

standard for leaching test (EN 12475-2) [4] is widely used for identification of 

environmental impacts of a raw material. This is a test with a unique batched with a 

liquid/solid ratio (L/S) of 10; the leaching solution was de-ionized water (100ml) and 

the solid aggregate of less than 4mm (10g) was used. The contact duration between 

solid and solvent is 24 hours under rotary stirring of 120rpm at room temperature. 

After stirring, the suspension was filtered using a filtration system average pore 

diameter of 0.45mm and analyzed using ICP-AES and ion chromatography. The 

soluble fraction was determined by drying of about 40ml of eluate solution at 

103±2°C filtered at 0.45mm and weighing the dry residue. 

 
 
3.3. Hydrogen potential (pH) / particle surface charge 
 
Hydrogen potential of the materials was determined using the French standard X31-

103 [5]. The principle of pH measurement was based on the dissolution of 10g of 
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material in 25 ml of de-ionized water by stirring suspension during 60min in an 

ambient temperature of 20±5°C. After stirring, the mixture was left at rest for 2 hours 

and the measurement was performed using a pH meter. 

 
The charge of the particle surface was characterized by evaluating the pH point of 

zero charge pHpzc. This is the pH of a material in aqueous solution in a neutral 

electric potential and its determination is based on electrochemical titration and 

involves placing 50cm3 of NaCl solution (0.01M) as electrolyte in closed vials and 

adjust initial pH following values between 2 and 12 by adding NaOH or HCl (0.1M). 

A mass of 0.15g of material was added to each vial (the vials were closed to avoid 

CO2 absorption) and final pH was measured after stirring for 48h at room 

temperature. The value of pHpzc was obtained when initial pH is equal to final pH 

(the intersection between the bisector curve without adding material and 

pHfinal=f(pHinitial) curve). Mass titrations were carried out by suspending amount of 

material in 50ml of KNO3 0.01M solution under N2 atmosphere at lab temperature. 

The pH measurements were done after equilibration and pHpzc values were 

evaluated by plotting the pH as a function of the added amount of material. 

 
 
3.4. Metal element analysis  
 
Inductively Coupled Plasma (ICP) has been used for metal element analysis. This 

technique is based on the separation and ionization of atoms by ions in a hot flame 

(injection into argon plasma), the identification and quantification of ionic elements 

that constitute a sample is done according to their mass. In this research project, we 

will focus on the determination of major and minor elements in the eluates liquids 

such as Al, Ca, Cd, Cr, Cu, Fe, K, Na, Pb, Si and Zn with a detection limit in mg.l-1 

(ppm or ppb). For sample preparation, 20ml of distilled water are introduced to the 

leachate. This corresponds to the dilition rate of 3. The apparatus used is our 

ULTIMA-2 (HORIBA Jobin Yvon). 
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3.5. Ion analysis 
 
Anion (PO43-, SO42-, Cl- and F-) concentrations in solution was performed using the 

ionic chromatography (DIONEX ICS 3000 device with a AS19A anion column (4mm) 

connected to a AG19A pre-column (the self-suppression is provided by a ASRS-II 

suppressor). The analysis protocol relies on the injection of the solution (prepared by 

mineralization or leaching) to be analyzed in a 10µl injection loop at a flow rate of 

1mL.min-1. The unit is led by a self-generator eluent KOH to a concentration gradient 

between 18 and 40mmol.l-1 for about 23min, to keep the pH constant at 13. 

 
 
3.6. Loss on ignition (LOI) 
 
Loss on ignition was determined following the EN196-2 standard [6]. Materials 

calcination was carried out in oxidant atmosphere (air) in an oven at 975±25°C 

during 24hours by introducing 5.0g of material into alumina crucible. LOI was 

calculated by mass difference before and after treatment. Water and carbonic gas 

were eliminated and oxidisable elements eventually present were oxidized. 

 
 
4. Rheological behavior 
 
The rheological tests were used to determine elasticity and viscosity of the materials. 

The viscosity and elasticity of the samples were determined using a rheometer. The 

rheometer used in this study is a Rheo RheoStress RS 150 (Haake). Two kinds of tests 

were performed, a simple flow testing on the Ca-HAGel and on all the formulations; 

and dynamic oscillatory tests for the Ca-HAGel at different stages of synthesis. The 

tests were performed by varying the shear rate from 0.01 to 500s-1 at a constant 

temperature of 20±5°C for 300s. The measurement was made after an 

homogenization by recording three successive tests to ensure the reproducibility of 

the measurements. As for the tests in oscillatory mode, we set the shear stress at 50 

Pa and vary the frequency from 1 to 50Hz at a temperature of 20±5°C during 300s. 
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5. Zeta potential 
 
Zeta potential (ζ-potential) is an essential parameter for the interpretation of the 

interactions between particles and the prediction of their stability. The general notion 

of ζ-potential measurement is summarized in the determination of a potential 

difference between the boundaries of the diffuse layer. The value of ζ-potential is 

derived by measuring the electrophoretic mobility µe. The assumption made is that 

the particles are spherical and non-conductive, the charge q of the solvent is 

considered as a uniform charge. Electrophoretic mobility is based on the 

electrophoresis technique of measuring the movement of charged particles 

suspended in a liquid under the influence of an electric field. Electrophoretic 

mobility µe is calculated from the following relationship: 

 
µe� �

�  et E= �$ [Eq.1] 

 
With, v is the average velocity of particles (m/s); E is the electric field (V.m-1), U is 

the potential difference (V) and L is the length of the cell (m). The ζ-potential 

measurements were performed with a micro-electrophoresis apparatus Zetasizer 

3000 HSA (Malvern Instruments Ltd). Test samples were dried and the suspension 

was prepared by the introduction of about 5g of sample mixed in 25ml of distilled 

water with a syringe in the measuring cell. The apparatus is equipped with a helium-

neon laser (He-Ne) of 10mW emitting a polarized light beam of wavelength 633nm, 

and an avalanche photodiode as a receiver. The electrodes apply an alternating 

voltage of the suspension in the measuring cell, allowing the movement of particles 

along a gradient of potential. Particle velocity is evaluated by measuring the 

temporal fluctuation of the intensity scattered by the particles moving in the network 

interference (detection of electrophoresis is performed by a laser Doppler). 
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6. Thermo-gravimetric analysis (ATG-DSC) 
 
Thermo-gravimetric technique is based on the determination of mass changes of a 

material due to changes in chemical phases by thermal and physicochemical 

transformations during heat treatment. It consists in the introduction of a few 

milligrams of powder sample in the process chamber by keeping in platinum 

crucibles or alumina. The heat rate used is 20°C.min-1. The temperature was 

programmed between ambient and 1000°C. Differential thermal analysis shows the 

nature of the physical or chemical transformation by quantifying the energy 

absorbed or released by the material during processing. Thermogravimetric and 

calorimetric data were collected in a dynamic air atmosphere (flow rate of 10cm3.min-

1). The apparatus used in this study was SDTQ600 and the masses of samples were of 

about 20mg. 

 
 
7. Phase determination – X-ray diffraction 
 
X-ray diffraction is a basic technique for characterization of mineral phases and 

crystalline materials. The sample is placed between an X-ray source and detector. The 

general method involves bombarding the sample with x-rays and watching the X-ray 

intensity is distributed according to the orientation in space and following the 

diffractograms between 10 and 80°2θ with a step of counting of 0.02°2θ and a 

counting time per step of 3s. The detection intensity is recorded as a function of the 

deflection angle of the beam 2θ. The device used was a SIEMENS D5000 

diffractometer (Power 40mA, 45kV, Copper anticathode Cu, Kα (λ = 1.540Å) and a 

nickel filter to remove the Kβ line of Cu). 

 
 
8. Raman spectroscopy analysis 
 
The analysis principle of Raman spectroscopy is based on scattering of a laser photon 

by a sample molecule and loses (or gains) of energy during the process. The amount 

of energy lost is seen as a change in energy (wavelength) of the irradiating photon. 

This energy loss is characteristic for a particular bond in the molecule. This technique 
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can even provide information on physical characteristics such as crystalline phase 

and atoms orientation. The Raman spectroscopy was used to analyze the Ca-HA 

under its gel and solid forms, as well as gypsum and plaster for comparison. The 

analysis method was a punctual analysis where the sample was placed in platinum 

crucible of 90µl and the analysis was carried out under 400mW external cavity 

stabilized by Invictus NIR diode laser at 785nm is used for sample illumination by 

scattering the laser photon. 

 
 
9. Infrared Analysis (FTIR: Fourier Transformed Infrared) 
 
Infrared spectroscopy is a characterization technique based on the absorption of 

infrared rays by the material to be analyzed. The principle is based on the absorption 

of molecules of a light beam as energy with a wavelength close to their energy 

vibration. Consequently, the intensity of reflected or transmitted by the molecules 

decreases. The absorbed energy is illustrated by absorption bands which depend on 

the electronegativity of atoms and mass. The field of vibrational energy between 

molecules is 4000 and 400cm-1 and the apparatus used is FITR-8400 (SHIMADZU). 
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Chapter III 
Physicochemical and mineralogical properties of initial materials 

 

This chapter is focused on the characterization of materials by application of different 
procedures described in chapter II.  
 
 
Introduction 
 
The first section of this chapter was devoted to the physicochemical characteristics of 

materials. Morphological characterization gives indications concerning sample 

structure such as bulk density, specific surface area, particle size and textures. 

Chemical characterizations may allow identification of chemical nature and chemical 

environment of elements present in hydroxyapatite and calcium sulfates samples. 

Surface charge of particles has been studied in detail and results are summarized. 

Mineralogical properties were investigated by using X-ray diffraction. Raman 

spectroscopy and Infrared techniques have been used to improve the understanding 

of the chemical structure; a comparison between methods used is also proposed.  

 
 
I. Physicochemical characterization 
 
1. Bulk density and specific surface area 
 
Table 8 summarizes the various results of physical characterizations. The density of 

the plaster is slightly greater than that of gypsum and the specific surface area of 

hydroxyapatite particles is higher. This indicates the reactive capacity to integrate a 

large number of pollutants. Difference in calcium sulfates specific surface area values 

can be due to the hydration process that influences particle size.  

 
Table 8: Physical properties of materials  
 Pα 

(Powder) 
G 
(Powder)          

Ca-HA 
(Powder) 

Ca-
HA(Gel) 

Bulk density (g.cm-3) 2.81 2.25 2.58 1.23 
Specific surface area* 
(m².g-1)                             

72.81 26.27 138 - 

* BET method 
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From the density of calcium sulfate particles, it is possible to determine the content of 

gypsum and plaster by volume in the samples compared to the density of pure 

gypsum and pure plaster (α) (ρG = 2.32g.cm-3 and ρP =2.80g.cm-3 respectively) by the 

following relationships: 

 

G = 
ρ ¡ 7ρ¢
ρ 7ρ¢

  and P = 
ρ¢¡ 7ρ 
ρ¢7ρ 

 [Eq.1] 

 
Where ρ£

_  is the measured density of gypsum (g.cm-3) and ρ�
_  is the measured density 

of plaster (α) (g.cm-3). We found that plaster is partially hydrated; it contains 11% 

v/v of gypsum. The bulk density of Ca-HAGel was calculated as a function of volume 

of powder mass.  

 
 
2. Particle size distribution (PSD) 
 
Material PSD was illustrated in Figure 17.  Materials geotechnical designation allows 

the texture classification and identification (Table 9). The class of grains of plaster 

and Ca-HAPowder seems to have the silty sand texture and for gypsum particles 

having a diameter less than 1 mm have a sandy-loam texture. Ca-HAGel is identified 

as silty texture. 

 

 

Figure 17: Particle size distribution of gypsum (<1mm), plaster, Ca-HAPowder and Ca-

HAGel 
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Table 9: Granulometric and textural classification       
 Granulometric distribution 

(µm) 

 Granulometric fraction (%) 

 d(0.1) d(0.5) d(0.9)  Sand Silt Clay 

Gypsum(<1mm) 6.5 27.74 246.59  79.6 18.7 1.7 

Plaster(α) 11.86 61.69 138.99  48.9 49.0 2.1 

Ca-HAPowder 4.05 30.82 548.62  43.4 51.7 4.9 

Ca-HAGel 4.59 14.69 52.92  9.0 88.0 3.0 

 
 
 
3. Microstructural analysis 
 
Crystalline morphology were identified by Scanning Electron Microscopy (SEM). 

This section is focused on the description of the microstructure of calcium sulfate α-

hemihydrates (plaster), calcium sulfate dihydrate (gypsum) and hydroxyapatite 

dried and heated at 105°C and 1000°C (10h), respectively. SEM (Energy Dispersion 

Analysis by X-rays, EDAX) was used to analyze crystalline and morphology of 

hydroxyapatite particles dried at 105°C. Environmental SEM (ESEM) was exploited 

to observe the chemical structure of studied materials and morphological data was 

analyzed conventionally to recorded images. Ca-HA samples were observed 

indirectly after thermal treatment. 

 
 
3.1. Plaster microstructure 
 
Crystalline structure of α-plaster is monoclinic with microscopic needle-like crystals. 

Figure 18 represents images of calcium sulfate hemihydrates obtained by SEM. 

Pictures were analyzed at an accelerating voltage of 8 kV and elemental composition 

was made using EDAX.  Calcium sulfate hemihydrates (α) consist of well formed 

transparent idiomorphic crystals with sharp crystal edges [1]. Scanning electron 

microscopy pictures illustrated in Figure 18, show that α-plaster consists of two 

forms of crystallographic structures. The first one (Figure 18, a) - point A)) is 

assimilated to flower-like arrangement structured by crystalline sheets interrelated 
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together to form a spherical geometry. The second one (Figure 18, a) - point B)) 

presents an irregular structure characterized by elongated needle readily cleavable 

and plate shaped prismatic crystals with variable slenderness that fit around sites of 

heterogeneous nucleation leading to gypsum crystals entanglement. SEM chemical 

analysis carried out on plate shaped surface crystals shows the presence of basic 

compounds and impurities such as strontium. 

 

 

Figure 18 : SEM pictures of plaster (α) (10-50µm) 
 
From EDAX spectra, it can be observed a quite few carbon element coming from 

organic emulsion on the crystal surface. Atomic Ca/S ratio of plaster is about 0.92, it 

is the same ratio that have been obtained in the case of gypsum indicating that the 

calcium sulfates elemental composition is homogeneous.  
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3.2. Gypsum microstructure 
 
Gypsum contains hydrated particles less than 1mm size consisting of two Ca2+/SO42- 

layers. These layers are bounded by ionic interaction forming growth slice separated 

by H2O layers [1]. Figure 19 represents a SEM analysis of gypsum at an accelerate 

voltage of 30kV. 

 

 

Figure 19 : SEM picture and EDS analysis corresponding to gypsum (<1mm) (20µm) 
 
From Figure 19, the disappearance of crystalline needle shape can be observed, this 

can be explained by dissolution of crystals due to the second filtration according to 

HP2 process (Chapter IV, § I.1. Calcium sulfate). Gypsum particles behave as 

massive deposit and have a roughly spherical morphology which clusters together 

into large units. 

 
 
3.3. Ca-HA microstructure 
 
Morphology of Ca-HA particles is pseudo-spherical. SEM analysis were carried out 

by applying an accelerating voltage of 20kV. Figures 20 and 21 show microstructure 

of Ca-HA dried at 105°C for 24h. SEM picture obtained at 2µm provides that Ca-HA 

particle are recovered by superimposed crystalline layers as can be seen through 

Figure 20 b).  
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Figure 20: SEM images of Ca-HA dried at 105°C for 24h  
 
 

 

Figure 21 : ESEM of Ca-HA dried at 105°C (5-20µm)  
 
Figure 21 and 22 illustrate both dried and calcined Ca-HA recorded using SEM and 

environmental SEM. The pictures show that the surface texture of calcined Ca-HA is 

rough as can be seen in Figure 22 a). Environmental SEM analysis of Ca-HA particles 

a) b) 

a) b) 



96 
 

reveals a structure characterized by a porous cylindrical structure. Pores are 

distributed on surface with different slenderness. Comparing SEM micrograph of Ca-

HA dried at 105°C (Figure 21 a)) and that of Ca-HA calcined at 1000°C (Figure 22 a)), 

change in the surface of Ca-HA particles due to the high temperature treatment can 

be observed. Analysis by Environmental SEM has revealed the porous structure of 

calcined Ca-HA (Figure 22 b)). EDS surface chemical analysis marked in red 

illustrated in Figures 21 and 22 showed that the major elements for both Ca-HA 

dried and/or calcined were Ca, P, C and O and Ca/P molar ratio is around 1.68 and 

1.61 respectively.  

 

 

Figure 22 : ESEM micrograph of Ca-HA particles calcined at 1000°C from 10h and the 
respective Energy Dispersion Spectroscopy (EDS) spectrum 
 

EDS analysis of calcined Ca-HA corroborate the results of Ca/P stochiometric ratio 

obtained by ICP as discussed in the second section (II. Chemical properties). It 

a) b) 
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should be noted that the EDS chemical analysis depends on the analyzed surface and 

Ca/P molar ratio that may change by changing the surface topography. 

 
 
II. Chemical properties 
 
1. Elemental analysis 
 
The chemical analysis of materials done using ICP-AES and ion chromatography 

showed that calcium sulfates contain non-negligible amounts of ores basic heavy 

metals. Plaster pH is very acidic (pH=2.88). This is due to the high amount of leached 

phosphorus (15%) in the solution, which provides an indication of the presence of a 

phosphoric acid fraction in leached solution. Ca/P stochiometric ratio was assessed 

for Ca-HA dried and calcined, and results are listed in Table 10. For both dried and 

calcined Ca-HA, Ca/P ratio is about 2.27 and 2.07, respectively, indicating that the 

Ca-HA synthesized is apatitic with calcium excess since the obtained values are 

higher than the stoichiometric rate of Ca/P = 1.67.  

 

Table 10: Ca/P ratio of dried and calcined Ca-HA 

 Ca-HA dried at 105°C for 24 hours Ca-HA calcined at 1000°C for 10h 

Ca/P ratio 2.25 2.28 2.28 2.07 2.08 2.07 

Average  2.27±0.02 2.07±0.01 

 

The main difference between dried and calcined Ca-HA was that the later showed 

higher Ca/P ratio than the dried Ca-HA. The Ca/P molar ratio remains 

approximately constant when Ca-HA was calcined at 1000°C for 10 hours. The 

calcination of Ca-HA transforms the calcium phosphate phases from amorphous to 

crystalline. Figure 23 presents the Ca/P molar ratio in function of time and pH. The 

Ca/P molar ratio was followed during 6 months after Ca-HA synthesis. After 48h, 

Ca/P molar ratio is 2.4. The maturation time influence on the Ca-HA synthesis 

without stirring.  
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Figure 23: Maturation of Ca-HA after 48h of synthesis 
 
The decrease of Ca/P molar ratio versus of time indicates that the apatitic Ca-HA 

synthesis reaction continues. The Ca/P molar ratio decreases as pH increases (Figure 

23). The increase in pH justifies the precipitation of calcium phosphate phases. 

 
Gypsum pH is basic (pH=8.44). Hydration that fixes 1.5 of constitution water 

molecules, is the main cause of the basicity indicating the presence of precipitated 

alkalis such as hydroxides and carbonates. Hydroxyapatite pH is basic, 7.85 and 8.41 

for Ca-HAPowder and Ca-HAGel, respectively. The difference in Ca-HA-pH values can 

be attributed to the preparation procedure of powder, and pH value of gel is related 

to the presence of unreacted phosphate. The Point of Zero Charge (PZC) was 

assessed by titration as previously described (Chapter IV, § II-1-1.3). Figure 24 

represents the titration curves of the particles of calcium sulfate (gypsum plaster) and 

hydroxyapatite powder.  
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Figure 24: Hydrogen potential at point of zero charge of different materials, a) NaCl 
0.01M as supporting electrolyte, b) KNO3 0.01M as supporting electrolyte, (--�-- 
bisectrix curve (pHi=pHf), ––□–– Plaster, ––○–– Gypsum, ––∆–– Hydroxyapatite) 
 
As shown in Figure 24, the pH at the end of the titration increases by increasing 

initial adjusted pH of supporting electrolyte (NaCl 0.01M solution). The interest to 

determine pH at point zero charge (pHpzc) was to evaluate the net neutral surface 

charge of particles. Hydroxyapatite and gypsum are characterized by a pH region 

(natural equilibrium pH) approximately between 6 and 10 where the final measured 

pH remained constant. The stabilization of pH is related especially to H+ 

consumption due to dissolution reaction and to neutralization effects. At lower initial 

pH values (below pre-neutralization region) a sharp increase of final measured pH was 

observed. The increase in pH is due to the sharp decrease of H+ ions which reacts 

with the dissolved ions in the bulk solution. In fact, H+ consumption results 

particularly to the enrichment of particle surface due to adsorption-fixation revealing 

a positively charged surface. For pH values above 10, final measured pH indicating 

the deprotonation of hydroxyapatite and gypsum particles accompanied by H+ 

release (i.e. pH decrease shows the presence of OH- on the surface with release of 

H+). 

 
Plaster has shown a particular case; not characterized by a neutralization region, this 

can be directly related to the presence of phosphorous compounds which tend to 

acidify the suspension. Through Figure 24, pHpzc corresponds to the intersection of 
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bisector straight line with titration curves. The pHpzc values of hydroxyapatite, 

gypsum and plaster were estimated equal to 7.6, 7.4 and 3.4, respectively, when 

using NaCl as supporting electrolyte. The acid-base properties in case of KNO3 

selection as supporting electrolyte of materials were investigated at lab conditions. 

The PZC of plaster, gypsum and Ca-HA are about 2.0, 6.8 and 8.6, respectively. 

Those results may be interpreted by the fact that the surface of hydroxyapatite and 

gypsum particles was protonated leading to H+ ions adsorption. Point zero charge of 

hydroxyapatite changes by changing supporting electrolyte solution. Surface 

exchange of Ca2+ by Na+ does not cause any surface charge modification leading to 

pHpzc lowering. Surface of gypsum and plaster particles are negatively charged as 

pH<pHpzc, in the other side, hydroxyapatite surface is positively charged as though 

pH>pHpzc.  

 

 

Figure 25: pH as a function of the added amount of Ca-HA (KNO3 0.01M as 
supporting electrolyte), a) case of dried Ca-HA (105°C), b) case of calcined Ca-HA 
(1000°C), ––– Modeling was assessed by PHREEQC code software using 
stochiometric hydroxyapatite (Ca5(PO4)3OH).  
 
The substitution of Ca2+ by Na+ on the particle surfaces (in the supporting electrolyte 

bulk solution) can be considered the main cause of the surface charge. Adsorption of 

H+ and Ca2+ substitution lead to the formation of species such as HPO42- and 

NaHPO4- following the hydrolytic reactions described below. Bell et al. (1973) have 

reported that the point zero charge of synthesized hydroxyapatite is about 8.5 using 
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titration method and PZC value is unaffected by the surface area. This result is in 

accordance with (Ca-HA)-PZC value obtained in this study. 

 
Figure 25 shows titration curves of Ca-HA, gypsum and plaster particles. Ca-HA 

particles in electrolyte solution are not influenced by added H+ when pH ranges from 

6 to 10. Dissolution and hydrolytic reactions occurring in Ca-HA particle suspension  

electrolyte aqueous solutions, i.e. NaCl or KNO3 (0.01M) are as follows: 

 

Ca5(PO4)3(OH) ↔ 5Ca2+ + 3PO43- + OH-  [R.1] 

Ca2+ + OH- ↔ CaOH+  [R.2] 

CaOH+ + OH- ↔ Ca(OH)2(aq)  [R.3] 

Ca2+ + PO43- + 2H+ ↔ CaH2PO4+  [R.4] 

Ca2+ + PO43- + H+ ↔ CaHPO4  [R.5] 

Ca2+ + PO43- ↔ CaPO4-  [R.6] 

Na+ + PO43- ↔ NaPO42-  [R.7] 

Na+ + PO43- + H+ ↔ NaHPO4-  [R.8] 

Na+ + PO43- + 2H+ ↔ NaH2PO4   [R.9] 

K+ + PO43- ↔ KPO42-  [R.10] 

K+ + PO43- + H+ ↔ KHPO4-  [R.11] 

K+ + PO43- + 2H+ ↔ KH2PO4  [R.12] 

PO43- + H+ ↔ HPO42-  [R.13] 

PO43- + 2H+ ↔ H2PO4-  [R.14] 

PO43- + 3H+ ↔ H3PO4  [R.15] 

 

Skartsila et al (2007) [3] have reported that it is possible to quantify the number of H+ 

ions reacted noted henceforth H+dissolution with the dissolved species in the bulk 

supporting electrolyte KNO3 0.01 M solution from reactions [R. 1], [R. 2], [R. 4], [R. 5] 

and equilibria for [R. 11] to [R. 15]. Through reactions, calculation of H+dissolution may 

be performed by summing the number of H+[R.4, R.5, R.(11-15)]  ions consumed for 

the formation of CaH2PO4+, CaHPO4, H2PO4- and H3PO4, H+[R.2] ions consumed for 

the neutralization of the OH- ions released from the dissolution of the CaOH+ species 
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and H+[1] ions consumed for the neutralization of the OH- ions released in the bulk 

solution in the case of dissolution of hydroxyapatite. Determination of all H+ ions 

consumed requires a good identification of species at the equilibrium and can be 

calculated by the following relationships [3]: 

  

H+[R.1] = 1/5 (CJV�,) j CJV�,X��V  [Eq. 2] 

H+[R.2] = (CCaOH+,in – CCaOH+,f)V [Eq. 3] 

H+[R.4, R.5, R.(11-15)] = ∑ �X Ci,f – Ci,in)V.yi  [Eq. 4] 

 

Where CJV�,) is the final concentration of calcium at equilibrium, CJV�,X� is the initial 

concentration of calcium, V and yi are the volume of the suspension and the 

stoichiometric coefficient of H+ at the respective equilibrium. From results showed in 

Figure 25 of dried and calcined hydroxyapatite mass titration, we have found that 

the obtained pHpzc values are different. This can be explained by the fact that Ca-HA 

dried at 105°C contains amounts of non-apatitic phases such as Brushite 

(CaHPO4.2H2O) and Monetite (CaHPO4); precipitation of acidic calcium phosphates 

is considered the major mechanism that influences the Ca-HA surface and then 

neutral charge value modification. Ca-HA heated at 1000°C corresponds to stable 

apatitic structure with Ca/P=1.67 ratio characterized by high pH value that can reach 

12.10. A Phreeqc model can have been used to explain the experimental value of PZC 

obtained. The model allows the calculation of pH in function of added amount of 

stochiometric Ca-HA. The model gives 12.25 as PZC value corresponding to pH 

stabilization. Higher pH values prove the absence of species like H3PO4, H2PO4- and 

non-apatitic phases content are negligible. It seems probable that the release of H+ 

indicates only pure hydroxyapatite precipitation. In this case, number of H+dissolution 

can be concluded from relationships 2 and 3. 
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Figure 26: The pH as a function of the added amount of gypsum and plaster (KNO3 
0.01M as supporting electrolyte) 
 
Figure 26 represents PZC values of gypsum and plaster obtained by mass titration 

method. PZC values correspond to the plateau where pH was remained constant.  

Mass titration reveals that pHpzc of gypsum is about 8.35 and pHpzc of plaster is 2.94. 

Dissolution and hydrolytic reactions occurring in gypsum suspension in supporting 

electrolyte (NaOH or KNO3 0.01M) aqueous solutions are as follows: 

 

CaSO4.0.5H2O ↔ Ca2+ + SO42- + 0.5H2O  [R.20] 

CaSO4.2H2O ↔ Ca2+ + SO42- + 2H2O  [R.21] 

SO42- + H+ ↔ HSO4-  [R.22] 

SO42- + 2H+ ↔ H2SO4  [R.23] 

Na+ + SO42- ↔ NaSO4-  [R.24] 

K+ + SO42- ↔ KSO4-  [R.25] 

 

The point zero charge values are different in analyzed material and could be 

correlated to the nature of supporting electrolyte and solid purity. Table 11 

summarizes PZC values of Ca-HA, plaster and gypsum and those obtained in 

literature.  

 

 

 

Gypsum

Plaster

pHpzc=8.35

pHpzc=2.94

0

2

4

6

8

10

0 200 400 600 800 1000 1200

pH

Calcium sulfates in electrolyte solution (g.l-1)



104 
 

Table 11: PZC values of materials  
Material Supporting 

electrolyte 
Equilibration time 
(hr) 

PZC PZC (MT) 

Ca-HA NaCl 48 7.6 - 
 KNO3 48 8.6 8.36a, 12.30b  
Gypsum NaCl 48 7.4 - 
 KNO3 48 6.8 8.35 
Plaster NaCl 48 3.4 - 
 KNO3 48 2.0 2.94 

a Ca-HA dried at 105°C for 24h, b Ca-HA calcined at 1000°C for 10h, MT mass 
titration 
 
 
Table 12: Carbon amount in Ca-HA, gypsum and plaster (g) 
 Total carbon (TC) Inorganic carbon (IC) 

Ca-HA* 1.29±0.06 1.28±0.03 

Gypsum n.d n.d 

Plaster (α) n.d n.d 

* Dried at 105°C for 24h, n.d non-detected  

 

Table 12 summarizes total carbon (TC) and inorganic carbon (IC) present in calcium 

sulfate material and in Ca-HAPowder. Obtained results prove the absence of carbon in 

both calcium surface structures, even ATG-DSC analysis discussed later justifies 

these results.  

 
 
1.1. Composition of calcium sulfates 
 
Plaster and gypsum wastes mineralization reveal the presence of a significant 

amount of heavy metals. Table 13 summarizes the anionic metals occurring in 

plaster and gypsum by-product. The total amounts of sulfate present in plaster and 

gypsum are 73% and 70% respectively in regards to the total mass. The total amounts 

of phosphate present in plaster and gypsum are similar and do not exceed 1.2%. 

Table 14 tabulates the cationic elements present in plaster and gypsum wastes. The 

alkaline elements (Al, Ca, Fe, K, Mg and Na) present in plaster and gypsum samples 

have a total percentage amount of 32.42% and 39.02% respectively. The total minor 

elements (Cd, Cr, Cu, Pb and Zn) represents 3.19% and 2.79% regarding to the 
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elements presents in gypsum and plaster respectively. The percentage of Ba, Ni and 

Sr in gypsum and plaster is higher than 2%. These metals may be present in the 

gypsum as Barite (BaSO4), Celestine (SrSO4) and Nickel sulfate (NiSO4.6H2O). 

 

Table 13: Anionic metals present in calcium sulfates by-product 
 Hemihydrated calcium sulfate 

(Plaster) 
Dihydrated calcium 
sulfate (Gypsum) 

Elements mg.kg-1 mg.kg-1 
SO42- 766237 846295 
PO43- 11600 14022 
 

Table 14: Elementary composition analysis of both industrial calcium sulfates  
 Hemihydrated calcium sulfate 

(Plaster) 

Dihydrated calcium sulfate 

(Gypsum) 

Elements mg.kg-1 (%) mg.kg-1 (%) 

Al 5055±110 0.95 4984±81 0.78 

As 14±8 0.00 64±7 0.01 

Ba 31304±481 5.88 30824±299 4.85 

Ca 134772±25569 25.33 214543±2151 33.75 

Cd 3810±149 0.72 3956±84 0.62 

Co 5021±197 0.94 5222±105 0.82 

Cr 4714±168 0.89 4977±100 0.78 

Cu 2102±97 0.40 2188±42 0.34 

Fe 5119±116 0.96 5627±111 0.89 

K 6772±372 1.27 7016±117 1.10 

Mg 15978±14152 3.00 10706±134 1.68 

Mn 5137±202 0.97 5332±111 0.84 

Na 4840±406 0.91 5242±1829 0.82 

Ni 14229±470 2.67 15455±316 2.43 

P 3783±81 0.71 4573±26 0.72 

Pb 2442±104 0.46 2691±51 0.42 

S 255752±17860 48.07 282474±4852 44.43 

Sb 25±15 0.00 84±8 0.01 
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Se 515±36 0.10 696±22 0.11 

Si 129±27 0.02 746±300 0.12 

Sr 26571±2822 4.99 24269±4437 3.82 

V 52±10 0.01 79±7 0.01 

Zn 3849±128 0.72 3994±83 0.63 

Total 531995 100.00 635752 100.00 

 

 

1.2. Leaching analysis (French standard)  
 
The leaching tests were carried out according to European standard EN 12457-2 [4]. 

Leached quantity obtained by extraction after 48 hours was analyzed using ICP-AES. 

Therefore, leached samples were compared to thresholds of waste acceptance criteria 

(WAC) summarized in Appendix 3. Table 15 presents the results during the leaching 

test of calcium sulfates by-products (Gypsum and Plaster). Solubility products of 

plaster and gypsum are KPlaster=6.22×10-4, KGypsum=2.0×10-3 respectively. The plaster 

leaching test reveals that the Pb amount is very high comparing to the WAC. The 

leaching test carried out on gypsum shows that the behavior of Cadmium, Nickel, 

Antimony and Selenium are hazardous. 

 

Table 15: Amount of leached elements from gypsum and plaster according to EN 
12457-2 standard 
  Gypsum <1mm  Plaster 

Elements mg.kg-1 (%) 
Rate of 

release (%) 
mg.kg-1 (%) 

Rate of 

release (%) 

Al 98±3 0.54 1.97 574±1 2.75 11.36 

As 18±0 0.06 28.64 10±0 0.05 70.20 

Ba 25±0 0.07 0.08 3±0 0.01 0.01 

Ca 6754±345 48.99 3.15 8939±28 42.85 6.63 

Cd 33±0 0.08 0.85 2±0 0.01 0.06 

Co 34±0 0.07 0.67 N.A — — 

Cr 38±0 0.11 0.78 3±0 0.02 0.07 
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Cu 48±0 0.10 2.22 2±0 0.01 0.06 

Fe 40±0 0.07 0.72 9±0 0.05 0.45 

K 440±9 1.40 6.28 244±0 1.17 3.62 

Mg 122±1 0.19 1.15 85±0 0.41 0.54 

Mn 40±0 0.11 0.75 N.A — — 

Na 1040±42 6.07 19.85 1077±3 5.16 22.25 

Ni 100±0 0.09 0.65 0±0 0.00 0.00 

P 40±1 0.18 0.89 1528±4 7.33 40.40 

Pb 28±3 0.56 1.06 61±0 0.29 2.51 

S 14670±278 39.45 5.19 7959±25 38.15 3.11 

Sb 21±1 0.14 25.52 2±0 0.01 10.09 

Se 51±0 0.12 7.35 9±0 0.05 1.87 

Si 21±4 0.65 2.86 95±0 0.46 73.26 

Sr 312±5 0.76 1.29 243±0 1.17 0.92 

V 5±0 0.06 7.42 N.A — — 

Zn 33±0 0.11 0.85 4±0 0.02 0.12 

Total 24025 100 120 20797 100 247 

 

 

III. Mineralogical analysis 
 
1. TG-DSC 
 
Thermogravimetric analysis (TGA) was intended to quantify the content of impurity, 

gypsum, and plaster in industrial calcium sulfate samples during treatment process, 

and to evaluate the mass loss due to dehydration of hydroxyapatite particles (dried 

at 105°C for 24 h). Differential scanning calorimetry (DSC) allowed the identification 

of thermal transition of materials. Heating treatments were performed at 5°C.min-1 

from ambient temperature to 1000°C in air with flow rate of 100cm3.min-1. Residual 

moisture present in calcium sulfates products are about 5.0 and 20.0% in plaster and 

gypsum respectively. Figure 27 shows the heat flow versus temperature. Platinum 

crucibles (90µl) were used and calcium sulfate samples were introduced as received 
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without prior treatment using sample of 32.098mg, 34.344mg and 19.012mg of 

gypsum, plaster and hydroxyapatite, respectively.  

 

 

Figure 27 : Differential scanning calorimetry of calcite, gypsum, plaster and Ca-
HAPowder 
 
The DSC curves (Figure 27) for the dehydration of gypsum show two peaks, the first 

one is located at ≈60°C due to initial gypsum transformation, the second endothermic 

peack is observed at 133.02°C indicating gypsum dehydration. Gypsum 

transformation begins at ∼60°C with apparition of a very small quantity of 

hemihydrates (CaSO4.0.5H2O) which corresponds to the mass loss of 1.23mg of water 

molecules. At 180°C, the amount of hemihydrates increases and is accompanied by 

anhydrite apparition. Above 200°C, anhydrite mass seems to be constant, as it can be 

seen from Figure 28.  
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Figure 28: Thermogravimetric analysis of calcite, gypsum, plaster (α) and Ca-
HAPowder 
 
Industrial gypsum product is characterized by a dehydration heat of 987.8J.g-1 

concluded from the gypsum DSC curve. Studies by Hudson-Lamb et al. (1996) have 

investigated that the heat of dehydration of natural gypsum is 147-205J.g-1 and 394-

500J.g-1 for pure calcium sulfate dihydrate. Difference in heat of dehydration values 

obtained in the present study is higher than those reported by Hudson-Lamb [5]. This 

can be explained by the presence of a non negligible amount of impurities in 

gypsum. Plaster DSC pattern exhibits that particles belong to α-form, this can be 

highlighted by the fact that the presence of the endothermic peak at 137.52°C 

(544.2J.g-1) followed by an exothermic peak at 184.70°C. Figure 28 illustrates the mass 

loss of samples after heat treatment (5°C.min-1. 0-1000°C). For calcium sulfate 

samples, the mass loss describes the change in the structure due to the extraction of 

crystal water molecules at the beginning of the heat treatment. In addition, the 

transformation of dihydrated particles to anhydrite is correlated to the mass loss of 

18.7% at a temperature of ≈200°C; and the transformation of hemihydrated particles 
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to anhydrite is characterized by a mass loss of 7.4%. Natural gypsum is characterized 

by a mass loss of 7.39% and the mean weight loss for calcium sulfate dihydrate is 

19.2% [5], and calcium sulfates mass loss obtained in this work are in accordance. 

 
In general, gypsum dehydration proceeds via two mass loss stages. The first mass 

loss (ML1) is a partial dehydration of a small amount of gypsum leading to 

hemihydrates formation. The second mass loss (ML2) corresponds to the complete 

dehydration of plaster according to the following stoichiometric endothermic 

reactions: 

 

CaSO4.2H2O 
~���°QBCCCD CaSO4.0.5H2O+1.5H2O (mass loss of 15.70%)  [R.26] 

CaSO4.0.5H2O 
���°QBCCD CaSO4+0.5H2O (mass loss of 6.2%)  [R.27] 

CaSO4.2H2O 
���°QBCCD CaSO4+2H2O (mass loss of 20.93%) 

 

[R.28] 

 
Apparent inert content I corresponds to residue percentage present in calcium 

sulfates. Gypsum contains ∼89% of the total calcium sulfate hemihydrates 

corresponding to apparent inert content. The same content was obtained from 

gypsum and plaster densities relationships (§ I.1.). The percentages of formed 

products during heat treatment by the following relationships [6]:  

 
G = ML1/0.1570 [Eq.5] 
P = ML2/0.062 - G [Eq.6] 
I = 100 – (G + P) [Eq.7] 
 
With G and P are the weight percentages of calcium sulfate dihydrated and 

hemihydrated respectively in the sample and I is the mass percentage of inert 

residues in the sample. The mass loss during the thermal analysis is: ML = (0.062×P+ 

0.2093×G) [6]. Table 16 summarizes the percentages of the compounds. Purity of 

gypsum is about 96.45%. 

 
Table 16:  Percentages of products in Gypsum 
%Gypsum %Plaster %Impurity %ML 

7.83 88.62 3.55 21.8 
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After calcium sulfates heat treatment, the hydration degree (α) can be calculated as 

follows: 

 
α = w0/(w1-w0)×100% [Eq.8] 
 
Where w0 and w1 are the non-evaporable water contents of plaster and calcium 

sulfate dihydrate (gypsum), respectively. The hydration degree of hemihydrated 

calcium sulfate is about 74.12%.  

 
Calcium phosphates are characterized by two mass losses due to evaporation of 

bound water molecules present in the Brushite compounds (CaHPO4.2H2O, 0.23mg) 

and to the decomposition of carbonate above 600°C. This analysis would allow 

evaluating the conversion rate of carbonate by referring to the thermogravimetric 

analysis of calcium carbonate (purity 98%). The calculation of the conversion rate of 

carbonate was evaluated by quantification of the initial and final mass of calcium 

carbonate in the Ca-HA sample. Knowing that the calcite (calcium source) exhibits a 

mass loss characterized by endothermic peak localized at 753°C (1238J.g-1) 

corresponding to its decomposition (decarbonatation) between 600-800°C 

temperature of 42% (10.83mg). Ca-HA decarbonatation occurs at decomposition 

temperature between 600 and 750°C with endothermic peak at 688°C (231J.g-1) 

exhibiting a loss mass of about 8.6% (1.647mg); the decrease in mass loss reveals 

calcite reaction with ammonium phosphate leading to carbonate conversion rate of 

≈85%. 

 
 
2. X-ray diffraction 
 
Analysis by X-ray diffraction on Ca-HA particles after heat treatment (calcination at 

1000°C during 10hours) shows the existence of the crystalline phase illustrated by 

stoichiometric hydroxyapatite (Ca/P=1.67). Figure 29 includes the analysis of Ca-HA 

by XRD. Synthesized Ca-HA is characterized by ten main peaks (interrecticular 

distance) similar to the peaks of a synthesized Ca-HA product [7].  
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The X-ray diffraction patterns of gypsum and plaster reveal the presence of five 

characteristic peaks corresponding to diffraction angles 11.62°, 20.72°, 28.98°. 31.09° 

and 33.26° 2θ with respect to the crystal structure of gypsum, and 14.68°, 25.67°, 

29.56°, 31.81° and 49.29° 2θ for α-plaster. The presence of a peak of anhydrite (25.67° 

2θ position: 3.47Å) in the hemihydrated sample shows his first appearance following 

an endothermic reaction at the beginning of heat treatment.  

 

 

Figure 29: X-ray diffraction of gypsum (*), plaster (^), Anhydrite (°) and Ca-HA 
calcined at 1000°C (10h) (Ca-HA, Hydroxylapatite (+) and Hydroxyapatite (×)) 
 
Study by Mandal et al. (2002) [8] shows that heat treatment of the gypsum at 90°C 

and 350°C for 10 h indicates the presence of two types of water molecules, loosely 

held water molecules and strongly held water molecules. This difference is well 

illustrated by analyzing the infrared spectra of both materials (see Figure 33). Heat 

treatment influence on the monoclinic crystal structure of gypsum (172.2g.mol-1) a 

loss of 3/2 of water molecules so that it can turn into hemihydrate (145.1g.mol-1) 

characterized by hexagonal structure. 

 

 

Ca-HA 

Plaster (α) 

Gypsum 
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3. Raman spectroscopy analysis 
 
The Raman spectra of both plaster and gypsum show differences that suggest 

structural variations. Difference and systematic shifts in Raman peaks of both 

gypsum and plaster can be interpreted by the variation in the structure of covalent 

bounded ion group and its environment. The fundamental vibration modes of 

gypsum and plaster (α) were assigned to the peaks in Raman spectra and were 

illustrated in Figure 30. Strongest peaks in Raman spectra of plaster (α) by-product 

analyzed as received, were observed at  1230, 1313, 1603 and 1705cm-1 which indicate 

no identical intensity as those from natural product. Consequently, high intensities at 

1200-1800cm-1 Raman-shift region can be explained by the presence of impurities 

where a considerable band broadening meaning incorporation of foreign anions 

leading to crystalline lattice disorder causing by substitution and vacancies, and in 

the other side to the decrease of hydration degree regarding to gypsum.  

 

 

Figure 30 : Raman spectra of gypsum and plaster (α) under ambient conditions 
 
As can be seen from gypsum spectra (Figure 30), broadening and non 

distinguishable bands reveal amorphous and poor crystallinity structure. 

Crystallinity is more correlated to the atoms arrangements and compact structure. 
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Water anion bounding with sulfate anions lowered the symmetry. Table 17 tabulates 

the main Raman peaks revealing detected sulfate groups. 

 
Frequency of Raman band of gypsum corresponding to sulfate tetrahedron (SO42-) 

symmetric stretch (ν1) found at 1007cm-1 is less than Raman band of plaster found at 

1014cm-1, this can be explained by the decreasing of hydration degree. Sulfate groups 

corresponding to ν2 are characterized by doublet exhibiting symmetric bending and 

detected at (415, 493cm-1) and (428, 488cm-1) for gypsum and plaster respectively. The 

peaks at 1152cm-1 in gypsum and 1164cm-1 in plaster are assigned to ν3 

antisymmetric stretch vibration modes. The doublet peaks at (620, 670cm-1) and (628, 

667cm-1) of gypsum and plaster respectively are assigned to ν4 antisymmetric bend 

vibration modes. Calcium sulfate peaks are consistent with those listed in literature 

[9]. Raman analysis carried out by PRASAD et al. (2001) [9] reveal doublet presence 

(1152, 1174cm-1) in plaster Raman spectra. Comparing this result with doublet peak 

obtained in this work, it was a shift meaning that sulfate ion in hemihydrates is 

bounded to anionic water by hydrogen bonding leading to the formation of small 

quantity of gypsum. This explanation may be corroborated by X-ray diffraction 

analysis, where gypsum is detected in plaster XRD spectra. 

 

Table 17 : Observed Raman band position (cm-1) of sulfate group in calcium sulfate 
products 

Calcium sulfates ν1 ν2 ν3 ν4 

Gypsum a 1007 415; 493 1152 620; 670 

Gypsum b 1008 420; 494 1141 623 

Plaster a 1014 428; 488 1164; 1230 628; 667 

Plaster b 1014 421; 490 1152; 1174 630; 680 

a Present study, b From PRASAD et al. (2001) [9] 

 
As shown in Figure 31, strongest observed peak in hydroxyapatite at 958 and 960cm-1 

for gel and powder respectively. Principal peaks observed in this study are consistent 

with those in previous literature [10][11]. However, higher intensity of principal 

peaks is attributed to (ν1) symmetric stretch corresponding to PO42-. In both 
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hydroxyapatite spectra, very strong vibration mode appears at 1085cm-1 attributed to 

ν3 phosphate mode which is related to symmetric bend. Table 18 summarizes found 

Raman band position of phosphate group occurring in Ca-HA samples.  

 

 

Figure 31 : Raman spectra of both hydroxyapatite gel and powder (heated at 105°C) 
 
Energy bands of both synthetic hydroxyapatites (powder and gel form) are observed 

at 280cm-1 in both cases and assigning Ca-PO4 lattice modes and due to local 

impurities [11]. Peaks observed at 424 and 431cm-1 from Ca-HA Raman spectra 

corresponds to υ2 PO4 bending mode. Common strong peaks appeared at 712 and 

864cm-1 are due to the carbonate substitution and local impurities can be assigned to 

the υ4 CO3 and HPO42-. The band at 280cm-1 is attributed to the Ca-OH and Ca-PO4 

lattice modes [12]. 

 

 

 

 

 

 

Ca-HAGel 

Ca-HAPowder 



116 
 

Table 18 : Observed Raman band position (cm-1) of phosphate group in synthesized-
Ca-HA 
Calcium phosphate ν1 ν2 ν3 ν4 

Ca-HAGel a 985 424 1085 580 

Ca-HAPowder a 960 431 1085 582 

Carbonated Ca-HA b 

Commercial Ca-HA c 

962 

954; 963 

431; 440; 449 

448; 489; 550 

1031; 1048; 1076  

1092 

581; 592; 608 

574; 601 

a Present study, b From de MUL et al. (1986) [10], c From ANTANOKOS el al. (2007) 

[11] 

 
Raman shift region between 1300 and 1800cm-1 is characterizing by asymmetric 

broad band and ascribed to the presence of carbonate corresponding to the υ3 CO3 

mode. 

 
 
4. Infrared analysis 
 
Interpretations of infrared spectra of materials have allowed us to identify the phases 

and the arrangements of anionic constituent crystal lattices. The products of calcium 

sulfates are characterized by absorption bands of water in two distinct regions. 

Figure 32 illustrates a proposed skeleton of gypsum structure representing bounds 

between calcium, sulfate and water. Figure 33 shows the infrared spectra of Ca-HA 

(Powder), plaster and gypsum.  

 

 

Figure 32 : Proposed structure of gypsum according to Mandel et al. (2002) [9] 
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Figure 33: FTIR of gypsum, plaster, Ca-HA dried at 105°C (24h) and Ca-HA calcined 
at 1000°C  
 
The water in the gypsum is detected at 1620 and 1680cm-1 and 3350, 3397 and 

3516cm-1. The first region is explained by the presence of deformation modes of shear 

type which indicates the existence of two types of water molecules, loosely held 

water molecules at 1680cm-1 and strongly held water molecules at 1620cm-1 [9]. 

Consequently, water molecules in calcium sulfates are asymmetric. In the other side, 

spectral region between 1600 and 1800cm-1 indicates H—O—H bending vibration. 

From proposed gypsum structure, loosely held water molecule is identified as 

attached to calcium and strongly held water molecule is characterized by hydrogen 

bounding with sulfate. The low intensity absorption band observed at 1620cm-1 

corresponds to anionic water present in the plaster. Indeed, plaster got only strongly 

held water. In addition, the absence of water molecules in the absorption region 

(3800-3100cm-1) in the hemihydrate samples is due to heat treatment.  

 
The sulfate group determines the symmetry with respect to the water molecules and 

is a high symmetry tetrahedral structure. In the case of gypsum, sulfate fundamental 

peak is detected at 1105cm-1 and for the hemihydrate it is detected at 1088cm-1; both 

absorption bands are symmetric stretching bands (ν3). Doublet peaks appearing at 

Ca-HA (1000°C) 

OH- 

CO3
2- 

CO3
2- 

PO4
3- 

OH- 
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SO4
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598 and 660cm-1 and at 600 and 667cm-1 in IR-spectra of plaster and gypsum 

respectively are assigned as bending vibrations (ν4). The difference between the two 

intensities indicates that the symmetry is weakened by bounds with the water 

molecules. 

 
From the Ca-HA spectrum (Figure 33), the absence of OH- bands at high frequencies 

(3571cm-1). Bands PO43- occurring in dried and calcined HAP are detected at 1020cm-1 

and at 1024cm-1 respectively; these bands characterize phosphate structure and are 

attributed to symmetric stretching (ν3). Table 19 tabulates observed IR modes of 

calcium phosphate and their assignments. The presences of broad band at 1450cm-1 

and at 1456cm-1 in both Ca-HA samples indicate the substitution of PO43- by CO32- 

ions. Peaks located at 872 and at 877cm-1 of dried and heated HAP respectively 

indicate hydroxide and/or phosphate substitution. IR studies conducted by 

Verwilghen (2006) [7] on the characterization of carbonated Ca-HA calcined at 1000°C 

for 15h reveal the presence of carbonates groups at 1414cm-1.   

 

Table 19 : Observed IR band position (cm-1) of phosphate group in synthesized-Ca-
HA 
Calcium Phosphate ν1 ν2 ν3 ν4 

Ca-HAPowder a 962 N.O 1020 552 

Ca-HAPowder b 

Ca-HAPowder c 

Ca-HAPowder d 

962 

961 

965 

N.O 

N.O 

473 

1024; 1088 

1042; 1090 

1044; 1095 

563; 598 

569; 602 

575; 603 

a, b Present study, c From VERWILGHEN (2006) [7], N.O No observed 
a Powder dried at 105°C for 24h, 
b Powder heated at 1000°C for 10h,  
c Powder heated at 1000°C for 15h, d Powder heated at 900°C for 2h,  
 
Substitution of phosphate by carbonate leads to the formation of calcium carbonate 

hydroxyapatite. In addition, heat treatment may influence the crystal structure of Ca-

HA particles by the decomposition of CO32- ions and the release of CO2, arrangement 

of PO43- ions which has the main band with a very high intensity. This can be 

observed from Ca-HA (1000°C) IR-spectra, apparition of phosphate group indicates 

the carbonate ions substitution. The substitution of CO32- sites by the PO42- group 
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causes the symmetry decreases what consequently decrease the of the apatite 

structure stability [13]. 

 
 
Conclusion 
 
This chapter describes the physico-chemical and mineralogical characteristic of 

hydroxyapatite and calcium sulfate dihydrate and hemihydrate. The particle size 

classification showed that the hydroxyapatite particles have a loamy gel texture. 

Calcium sulphate hemihydrate (plaster) texture is identified as silty-sand and 

calcium sulfate dihydrate (gypsum <1 mm) is characterized by a sandy-loam texture.  

 
The heat treatment have shown that calcium phosphate and calcium sulfate 

dihydrate are characterized by two mass loss due to endothermic reactions indicating 

the presence of hydrated calcium phosphate and the dehydration of calcium sulfate 

respectively. Analyses by X-ray diffraction and infrared Fourier transformed carried 

out on materials have revealed the presence of peaks and characteristic bands of 

apatite and calcium sulfates. Fundamental vibration modes of both dihydrated and 

hemihydrated calcium sulfates were assigned to the peaks in Raman and FTIR 

spectra; the assignment of main peaks of sulfates revealed symmetric stretch. 

Leaching according to EN 12457-2 shows that by-products of calcium sulfate is in 

compliance with the admission requirements and acceptation waste criteria. 
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Chapter IV 
Ca-HAGel – Gypsum and Ca-HAGel – Plaster formulations 

 
I. Introduction 
 
The main purpose of this chapter are threefold: 

 

• The formulation of binary (water/plaster, water/gypsum, Ca-HA/plaster, Ca-

HA/gypsum) and ternary (Ca-HA/(water/plaster) and Ca-

HA/(water/gypsum) blends. 

 
• The study of their physicochemical characteristics. 

 
• The investigation of the interaction between the calcium sulfate and calcium 

phosphate. 

 
 
II. Binary formulations  
 
1. Water/Plaster – Water/Gypsum blends 
 
The water/plaster (W/P) and water/gypsum (W/G) (gypsum used in this study has 

particle diameter less than 1mm) blends were made by mixing either plaster or 

gypsum with de-ionized water following L/S (liquid/solid) ratio ranging from 0.2 to 

1.4. The calcium sulfate amount added was about 100g for all mixtures. Mixing 

procedure was carried out according to following steps: 

 
♦ Calcium sulfate was powdered into water during 30 s; 

♦ Mixture was left 1 min at rest to ensure perfect particle wetting; 

♦ The blend was stirred during 30 s with helicoidal stirrer; 

♦ Blend was maintained at rest 30 seconds; 

 
Mixtures were used in rheological tests whose results are discussed in the Chapter V. 

Table 20 summarizes the added amount of water, gypsum and plaster in W/G and 

W/P blends and their density and solid concentration. The solid concentration ΓB1 of 

blends was calculated using the following relationships: 
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ΓB1 = IU

IU¨ ©�
   ;   ª£  = � 7Г«

ρ Г«    ;   ª�  = � 7Г«
ρ¢Г«   [Eq. 1] 

 
Where Vs is the volume of solid phase, Vw is the volume of water and ρ£ and ρ� are 

the densities of gypsum and plaster respectively. 

 

Table 20 : Concentrations of blends based on Water/Gypsum and Water/Plaster 
W/G Blends Water(ml.cm-3) Gypsum (g.cm-3) Density (g.cm-3) ΓB1 (Gypsum) 
0.4 47 53 100 0.53 
0.6          66                             51 117 0.44 
0.8          100 56 156 0.36 
1.0          107 47 154 0.31 
1.2          145   54 199 0.28 
1.4          146 46 192 0.24 
 

W/P Blends Water(ml.cm-3) Plaster (g.cm-3) Density (g.cm-3) ΓB1 (Plaster) 
0.4 51 46 97 0.48 
0.6          82                             49 131 0.38 
0.8          97 43 140 0.31 
1.0          121 43 164 0.26 
1.2          134 40 174 0.23 
1.4          160 41 201 0.21 
 
The solid concentration of both blends increases by decreasing the amount of water 

in the blends. Thereafter, the influence of solids were investigated in the rheological 

trails by measuring the viscosity. Added water to plaster leads to the hydration of 

plaster particles and has otherwise no influence on gypsum (almost hydrated 

particles). The properties of plaster as binder material used in this study to stabilize 

Ca-HAGel structure (for different formulations) have been studied. 

 
 
2. Plaster hydration 
 
The contact of plaster particles with water molecules leads to their hydration. The 

hydration follows the stoichiometric reaction: 

 

 
The plaster hydration obeys to the dissolution-crystallization model, where plaster 

particles transforms to gypsum. Plaster hydration occurs at an alkaline pH.  

 

CaSO4, 0.5H2O (solid) + 1.5H20(aqueous) → CaSO4.2H2O (solid) [R. 1] 
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Figure 34:  Diagram of calcium sulfate solubility [1] 
 
Hydration mechanisms depend to thermodynamic and kinetic reactions. However, 

plaster hydration begins in such a way that the free enthalpy of the system is always 

kept negative during the reaction. Figure 34 shows the equilibrium phases between 

plaster dissolution and gypsum precipitation. The curve of hemihydrate solubility 

curve is illustrated by dotted line (βP=1) and gypsum solubility curve illustrated by 

continuous line (βG=1). Hemihydrates particles equilibrium solubility is defined the 

following reaction: 

 
CaSO4. 0.5H2O(solid) ↔ Ca2+(aqueous) + SO42-(aqueous) + 0.5H2O(aqueous) [R. 2] 
 
Apparent solubility product of plaster dissolution is: 
 
Kp = a(Ca2+). a(SO42-) 
 
Where a(Ca2+) and a(SO42-) are the apparent activities of calcium and sulfate ions 

respectively. Ionic concentration of hemihydrates is more important that gypsum 

dissolution. Figure 34 represents different zones of solution state based on saturation 

degree and evolution of calcium and sulfate ions activities. Saturation degree β 

corresponds to the variation of dissolution free enthalpy is described as follow: 
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β = 

¬
¬      with KG = a(Ca2+)equilibrium. a(SO42+)equilibrium [Eq. 2] 

 
Where KG is the solubility constant of gypsum and, a(Ca2+)equilibrium and 

a(SO42+)equilibrium are activities of calcium and sulfate ions in equilibrium phases with 

gypsum respectively. Plaster or gypsum saturation index delimits three zones 

defined as shown in Figure 34: 

 

♦  βG < 1, under-saturated solution with respect to gypsum 

♦ βG>1 and βP<1, supersaturated solution with respect to gypsum and under-saturated 

with respect to hemihydrates 

♦ βP>1, supersaturated solution with respect to hemihydrates (hemihydrate apparent 

solubility is limited, from where the present situation is impossible to achieve) 

 
 
 
3. Water consumption by plaster 
 
Water consumption decreases by increasing W/P ratio. As shown in Figure 35, W/P 

ratio of 0.2 corresponding approximately to stoichiometric ratio consumes about 90% 

of water. However, water requirement indicates the non complete hydration of 

particle where amount of water is below the necessary amount to trigger dissolution 

of calcium and sulfate ions. 

 

Figure 35: Stoichiometric water consumption of plaster particles  
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The pastes are difficult to handle due to high viscosity. From 0.4 W/P ratio, water 

consumption decreases by 50% leading to the beginning of particle hydration. 

Concerning blends with W/P ratio ranging from 0.6 to 1.4, water consumption 

decrease seems steady with about 80% of water reduction. Excess water is favorable 

to start dissolution-precipitation process, and influences particle hydration when 

crystal are formed by nucleation and/or germination mechanisms. Jaffel et al [1,2] 

have reported that stoichiometric and experimental water consumption (obtained by 

normalization of magnetization signal NMR (Nuclear Magnetic Resonance) 

relaxometry) are similar for blends worked according to ratio above 0.8. The 

difference between stoichiometric and experimental consumption water for blends 

with W/P ratios below 0.8 is due to the high viscosity of pastes.   

 
 
4. Porosity of plaster  
 
The porosity is a very important parameter to evaluate the durability for PRB 

application. It also correlated to the particle’s bounds and arrangement. The porosity 

of plaster after 28 days of dissection was determined according to the accessible 

water porosity test. The method is based on the saturation of specimen solid body in 

water (in a vacuum desiccators) under aspiration pressure ensured with a vacuum 

pump. The experimental set-up is presented in Figure 36. This procedure allows the 

determination of the accessible porosity. The dimension of specimen bodies was of 

2cm (diameter) / 5cm (height).  

 

 

Figure 36 : Water porosity test 

Valve 
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The total porosity of plaster was calculated following the relationship: 

 
ØT = ®�7®¯

®�7®° [Eq. 3] 

  
Where Ma is the mass in air (g), Mw is the mass in water obtained by hydrostatic 

weighing (g) and Md is the dried mass at 105°C (24h) (g). The porosity of plaster 

paste was calculated by evaluating the compactness of formulations. The 

compactness Φ relationship is as follows: 

 
Φ = �

�Tf±²
±

 with Ø= 1 – Φ [Eq. 4] 

 
Where Ø is the porosity, ρP is the bulk density of the plaster (g.cm-3), W is the added 

water (g) and S is the plaster amount (g). Figure 37 shows the calculated porosity 

values of W/P blends before and after dissection. The porosity of plaster increases in 

function of W/P ratio. The difference between plaster paste and solid plaster 

corresponds to the free water; the increase of porosity in solid plaster body is 

explained by the evaporation of free mixing water during dissection period and 

creation of voids. 

 

 
Figure 37 : Porosity of paste and solid plaster after molding 
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5. Capillary rise 
 
Capillary rise provides indication on the porous structure and capacity of porous 

solid material to absorb the water. From the total porosity of the solid, the capillary 

rise capacity can be evaluated. The plaster blended at W/P ratio ranged from 0.4 to 

1.4 were used after 28 days of desiccation. The mass of absorbed water was then 

calculated with the following relationship: 

 
Mw = h(t). Ø.A.ρw [Eq. 5] 
 
Where Mw is the mass of absorbed water, h(t) is the height of absorbed water at time 

t (s), Ø is the porosity, ρw is the bulk mass of water at lab temperature and A is the 

section of the specimen solid body. The dimension of sample was 5 cm height and 2 

cm diameter. The samples were placed in water and heights of water displacement 

were recorded. Figure 38 shows the absorbed mass as a function of time square. The 

maximum adsorbed mass increases by increasing the W/P mass ratio. The solid 

bodies blended with 1.2 and 1.4 W/P mass ratio achieve the saturation 

(approximately 0.05 kg and 0.06 kg of adsorbed mass respectively) after 6 and 8 min.  

 

 
Figure 38 : Adsorbed mass in plaster specimen body as a function of time square 
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Samples with W/P mass ratio ranging between 0.6 to 1.4 may absorb a higher 

amount of water. This result can be correlated to void and number of capillary 

radius. Concerning the sample with 0.4 W/P mass ratio, the saturation was achieved 

after 3 h approximately. The amount of absorbed water at saturation was about 0.03 

kg. 

 
 
6. Ca-HAGel/Plaster – Ca-HAGel/Gypsum blends 
 
The blends were mixed according to the procedure described for calcium sulfates 

blends. Table 21 tabulates the added amount of Ca-HAGel, plaster and gypsum in the 

Ca-HAGel/(Calcium sulfate) blends. The following Ca-HAGel/(Calcium sulfate) 

blends were considered: 80%/20%, 70%/30% and 60%/40% 

 

Table 21 : Concentration of Ca-HA/(calcium sulfate) considered blends 
Ca-HA/G Blends Ca-HA Water (ml.cm-3) Gypsum (g.cm-3) Ca-HAGel (g.cm-3) Density (g.cm-3) ΓB2 (Ca-HA/G) 

80%/20% 101 16 56 72 0.23 

70%/30% 108 29 60 89 0.27 

60%/40% 90 38 50 88 0.30 
 

Ca-HA/P Blends Ca-HA Water (ml.cm-3) Plaster (g.cm-3) Ca-HAGel (g.cm-3) Density (g.cm-3) ΓB2 (Ca-HA/P) 

80%/20% 142 18 79 97 0.21 

70%/30% 102 22 56 79 0.24 

60%/40% 89 30 49 79 0.28 

 

The solid concentration of binary blends (ГB2) containing either gypsum or plaster 

(calcium sulfate powder) with Ca-HAGel was calculated as follows: 

 

ΓB2 = 
Iµ�

Iµ�T I¶�
 [Eq. 6]  

With  V��= VJV7Fn¢·�¸&�+ VJ�¢·�¸&� and Vª� =  VJV7Fn¶#�&� 

 
Where ¹º» is the total volume of solid material equal to the sum of Ca-HAPowder 

volume (VJV7Fn¢·�¸&�) and calcium sulfate powder volume (¹Qº¢·�¸&�), and ¹¼» is the 

total water equal to Ca-HA water volume (VJV7Fn¶#�&�). The solid concentration 

increases by increasing the amount of calcium sulfate in the blends. Concentration of 
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ternary blends is directly correlated to the substituted amount of Ca-HAGel by 

gypsum (or plaster). Adding gypsum or plaster to Ca-HAGel leads to the 

concentration increase.  

 
III. Ternary blends 
 
1. Ca-HAGel/(Water/Plaster) – Ca-HAGel/(Water/Gypsum)  
 
The ternary formulations characterized in this thesis are made from an initial mixture 

of hemihydrated calcium sulfate, water and dihydrated calcium sulfate with 

proportions varying from 0.2 to 1.4. The initial mixtures were prepared following the 

same procedures described in the section 1. Mixtures containing Ca-HAGel were 

formed by adding Ca-HAGel to previously prepared water/plaster or water/gypsum 

blends. The ternary phase diagram showed in Figure 39 summarizes the different 

blends composition. The rheological tests were done on these formulations to 

evaluate their rheological behavior and to study the influence of water on the 

structure changes. 

 

Figure 39: Ternary phase diagram showing different mixtures of Ca-HAGel, Gypsum 
(<1mm) and plaster  
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The solid concentration of ternary blends (ГB3) containing either water/gypsum or 

water/plaster with mass ratios ranging from 0.2 to 0.6 (calcium sulfate powder) with 

Ca-HAGel  was calculated as follows: 

 

ΓB2 = 
Iµ�

Iµ�T I¶�
 [Eq. 7]  

With  V��= VJV7Fn¢·�¸&�+ VJ�¢·�¸&� and Vª� =  VJV7Fn¶#�&�+ Vwater 

 
Where ¹º» is the total volume of solid material equal to the sum of Ca-HAPowder 

volume (VJV7Fn¢·�¸&�) and calcium sulfate powder volume (¹Qº¢·�¸&�), and ¹¼» is the 

total water equal to Ca-HA water volume (VJV7Fn¶#�&�) and amount of added water 

(Vwater).  

 
 
2. Factors influencing the flow  
 
The water dosage and plaster dosage are the main factors influencing the flow of 

formulations and characterize the optimal water amount leading to plaster hydration 

and consistency adjustment. 

 
 
3. Water dosage 
 
The water dosage is the amount of free water occurring in Ca-HAGel and added to 

hydrate plaster. As known, the water dosage adjusts the consistency of formulations 

and can affect the stability and homogeneity. The water dosage (Wd) in ternary 

blends is maximum at 0.2 W/P mass ratio and calculated according to the 

relationship: 

 
Wd = ¼»

��½T Q<7¾¿ÀRÁ� [Eq. 8] 

 
Where WT is the total water amount (water of Ca-HAGel and added water) (g), P* is 

the hydrated plaster amount (g) and Ca-HAGel is the introduced hydroxyapatite gel 

amount (g). The amount of water occurring in Ca-HAGel hydrates plaster particles 

and the added water amount regulates the maniability and consistency of blend 
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pastes. Figure 40 shows the correlation between water dosage and W/P ratio in Ca-

HA/(W/P) formulations. 

 

Figure 40: Water dosage of different W/P ratio ranged from 0.2 to 1.0 
―□― 80%Ca-HA/20%(W/P) Theoretical, - -□- - 80%Ca-HA/20%(W/P) Experimental 
―◊― 70%Ca-HA/30%(W/P) Theoretical, - -◊- -  70%Ca-HA/30%(W/P) Experimental 
―∆― 60%Ca-HA/40%(W/P) Theoretical, - -∆- - 60%Ca-HA/40%(W/P) Experimental 
―○― 50%Ca-HA/50%(W/P) Theoretical, - -○- - 50%Ca-HA/50%(W/P) Experimental 
―+― 40%Ca-HA/60%(W/P) Theoretical, - -+- - 40%Ca-HA/60%(W/P) Experimental 
―×― 30%Ca-HA/70%(W/P) Theoretical, - -×- - 30%Ca-HA/70%(W/P) Experimental 
 
For all formulations, the optimum water dosage was located at 0.2 W/P mass ratio. 

At 0.4 W/P mass ratio, water amount leading to plaster hydration is constant. It 

indicates that from this W/P ratio, the water dosage controls the plaster hydration 

and adjusts the consistency. 

 
 
4. Plaster dosage 
 
Plaster dosage (Pd) was calculated for all considered blends using the following 

equation: 

 
Pd = �½

��½T Q<7¾¿ÀRÁ� 
[Eq. 9] 

 
Where P* is the  hydrated plaster amount (g). Figure 41 illustrates the plaster dosage 

in the blends in function of W/P mass ratio. 
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Figure 41: Hydrated plaster dosage in function of W/P ratio  
―□― 80%Ca-HA/20%(W/P) Theoretical, - -□- - 80%Ca-HA/20%(W/P) Experimental 
―◊― 70%Ca-HA/30%(W/P) Theoretical, - -◊- -  70%Ca-HA/30%(W/P) Experimental 
―∆― 60%Ca-HA/40%(W/P) Theoretical, - -∆- - 60%Ca-HA/40%(W/P) Experimental 
―○― 50%Ca-HA/50%(W/P) Theoretical, - -○- - 50%Ca-HA/50%(W/P) Experimental 
―+― 40%Ca-HA/60%(W/P) Theoretical, - -+- - 40%Ca-HA/60%(W/P) Experimental 
―×― 30%Ca-HA/70%(W/P) Theoretical, - -×- - 30%Ca-HA/70%(W/P) Experimental 
 
The plaster dosage increases by increase W/P ratio and, remains constant at 0.4 W/P 

mass ratio. Plaster dosage increases as a function of W/P ratio in the blends. The 

blends with 0.4 W/P mass ratio presents a good consistency. These results are in 

agreement with the rheological tests described in the Chapter V. 

 
 
IV. Characteristics of formulations 
 
1. The pH of formulations 
 
The pH of the formulations were measured after rheological tests according to 

European standard. Figure 42 shows the recorded pH of considered ternary 

formulations. As known, the pH of plaster is acidic and the pH of Ca-HA is basic. 

The addition of Ca-HAGel changes the pH of the blend. A reaction between plaster 

and Ca-HA was observed and explains undoubtedly the final pH values.  
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Figure 42 : The pH of blends a) Ca-HA/(W/P) and b) Ca-HA/(W/G) 
---◊--- W/P=0.2 (or W/G=0.2), ---□--- W/P=0.4 (or W/G=0.4), ---∆--- W/P=0.6 (or W/G=0.6 
 
The pH of Ca-HA/(W/P) blends becomes basic indicating the reaction between 

dissolved calcium and sulfate with free phosphate leading to the precipitation of new 

compounds. The addition of water/plaster mass blend to Ca-HA led to the pH 

decrease. The decrease in pH is due to the dissolution effect. The pH of formulation 

based on Ca-HA/(W/G) was basic and increases slightly by increasing the 

proportion of water/gypsum.    

 
 
2. Effect of hemihydrates substitution on Ca-HA non-evaporable water 
 
In order to highlight the influence of the calcium sulfates added amount, the non-

evaporable water (NEW) in Ca-HAGel/(W/P) and Ca-HAGel/(W/G) was evaluated 

by considering that the loss mass in samples at temperature ranging from 105 to 

450°C is due to evaporation of chemically bound water which is combined with 

calcium sulfate. The samples were initially dried at 105°C for 24 h.  
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Figure 43: Non evaporable water and rate of decarbonatation as a function of Ca-HA 
proportions. (a) Ca-HA/(W/G=0.4), b) Ca-HA/(W/P=0.4)) 
 
The present relationship allows the determination of the amount of non-evaporable 

water (NEW) amount present in blends: 

 
N.E.W = ¼"�Â°Ã7¼~Â�°Ã

¼~Â�°Ã
 [Eq. 10] 

 
Where W105°C and W450°C are evaporated water at 105°C and 450°C respectively. 

Figure 43 illustrates the NEW and sample decarbonatation in the Ca-HA/(W/P=0.4) 

and Ca-HA/(W/G=0.4) formulations. The NEW decreases by increasing the amount 

of Ca-HAGel in the formulations. The NEW present in Ca-HA powder, gypsum and 

plaster are about 4, 23 and 7% respectively. For formulations containing Ca-HA and 

water/gypsum mass ratio equal to 0.4, the NEW remains constant at 6% for the 

substitution rate ranging from 50% to 80%. It has been observed that, for the 

formulations containing Ca-HA and water/plaster mass ratio equal to 0.4, the NEW 

decreases dramatically as a function of the amount of Ca-HA. This difference can be 

explained by the effect of plaster hydration and reaction between plaster and Ca-HA 

leading to the cohesion between particles. As known, the unreacted calcite in the 

synthesized Ca-HA is about 14% and gypsum and plaster do not contain calcite as 

observed in the ATG analysis described in the Chapter III. Decarbonatation increases 
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by increasing the proportions of Ca-HA in the formulations. The decarbonatation 

decreases of about 43 and 35% when 20% of either W/P or W/G was added to 80% 

Ca-HA respectively. The decrease of carbon amount is related to the reaction of 

calcium sulfates with Ca-HAGel. The amount of released calcium from gypsum (or 

plaster) reacts with the free phosphate in Ca-HA promoting the continuation of 

calcium phosphate-sulfate hydrate precipitation (see XRD analysis in the Chapter 

VII).  

 
 
3. Microstructure of the formulation 
 
The structure of considered formulation was observed using SEM and environmental 

SEM (ESEM) to identify the microstructure and surface analysis.  

 
Figure 44 : SEM micrographs of formulation containing a) 80%Ca-HA/20%(W/P) 
and b) 50%Ca-HA/50%(W/P) with W/P=0.4 
 
The crystalline structure of plaster is characterized by needles readily cleavable. On 

the other hand, the gypsum is known to be composed of elongated needle-shape 

particles (Chapter III). Blending the gypsum with Ca-HA leads to the modification of 

its crystalline structure. Figures 44 and 45 show the crystalline structure of 

formulation blended with Ca-HA, water and plaster with W/P mass ratio of 0.4 

recorded using SEM and environmental SEM. The picture shown in Figure 44 a) 

illustrates the cohesion between plaster and Ca-HA particles. The interlocking 

between the deposited irregular-shaped Ca-HA particles and the gypsum. The 

incorporation of Ca-HA particle in the gypsum crystalline needles causes the 

a) b) 
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modification of its structure. The Ca-HA particle tangles on the needles of gypsum 

forming a heterogeneous structure (Figure 44 b)). Studies carried out by Greish 

(2011) have shown that the Ca-HA influences on the growth kinetics of gypsum and 

causes its deformation [3]. 

 

 
Figure 45 : Environmental SEM of 80%Ca-HA/20%(W/P=0.4) formulation 
 
EDA analysis carried out on localized surface of Ca-HA particle reveals that the 

Ca/P molar ratio is about 1.72. The presence of sulfur on the surface of Ca-HA 

indicates the adsorption of sulfate as discussed in Chapter V. The interaction 

between Ca-HA and plaster may produce new compounds such as calcium sulfate 

phosphate hydrate. For further information on crystalline structure see chapter VII 

(XRD analysis). 

 
 
V. Ca-HA/(Water/Plaster) reaction 
 
The reaction between Ca-HAGel and plaster was confirmed after rheological tests 

where bubbling gas was observed. Figure 46 shows the considered formulations after 

rheological tests. For formulations (in red color), the bubbling gas has been observed 

leading to an heterogeneous structure and generation of pores. No reaction was 

observed in formulations without added water. 
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Figure 46: Pictures showing the reaction between Ca-HAGel and plaster after 
rheological tests  
 
This results show a strong interaction between particles when water is added. 

Specially for formulations with 0.6 W/P ratio containing 50%Ca-HAGel/50%(W/P), 

40%Ca-HAGel/60%(W/P) and 30%Ca-HAGel/70%(W/P). For these, a bubbling 

release was observed. The apparance of important voids is probably due to release of 

gas produced by reaction between unreacted calcite and phosphorus released from 

hemihydrates and free phosphate in the Ca-HAGel suspension in contact with acidic 

water. To quantify the amount of CO2 released, the experimental set-up illustrated in 

Figure 47 was proposed. The procedure is based on the fixation of the released CO2 

in NaOH (0.1M). The chosen formulation was 50%Ca-HA/50%(W/P) with W/P=0.6. 

The blend was made by introducing 50g of sample (31.3g and 18.8g of Ca-HAGel, 

plaster and water respectively) in a three-necked round flask. The round flask was 

connected to N2 to avoid any reaction with air and to facilitate the passage of CO2 to 

the NaOH solution. The stirring speed was set up at 450 rpm and the pressure of N2 

was of 0.2 bar. The reaction was maintained for 90 minutes to ensure homogenization 

under laboratory conditions (temperature and pressure). The sampling was carried 

out by extracting 10ml every 5 minutes. The extracted samples were analyzed using 

SHIMADZU TOC.   

(without added water) (20% of added water) 

 (40% of added water)  (60% of added water) 
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Figure 47: Mounting used to quantify the released dioxide Carbone during the Ca-
HA/calcium sulfate reaction  
 
Figure 48 shows the concentration of released CO2 versus time. In the beginning of 

the reaction, the released CO2 increases rapidly to achieve a constant value of 0.1mg.l-

1 after 45 minutes of reaction.    

 
Figure 48 : Amount of released CO2 as a function of time  
 
The qualitative analysis have shown that the released gas is evidently CO2. This 

result is in accordance with those obtained from ATG analysis, where the decrease in 

the decarbonatation is due to the reaction between Ca-HA and plaster. 
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VI. Conclusion 
 
Plaster hydrates following the stoichiometric W/P ratio of 0.2. Above 0.4 W/P mass 

ratio, plaster particles hydrate perfectly. Water consumption decreases by increasing 

the W/P mass ratio. The porosity of plaster increases as a function of amount of 

mixing water. The amount of adsorbed water in plaster solid blended with W/P 

mass ratio ranging from 0.4 to 1.4, increases with increasing W/P ratio. It was 

difficult to evaluate the total porosity and the capillary rise of samples based on Ca-

HA-Plaster, this could be due to the frequent dissolution and destruction of solid 

body in water. Concerning the formulations containing Ca-HA, plaster and water, 

the amount of water dosage and plaster dosage was identified at W/P mass ratio of 

0.4. The hydration of plaster according to W/P of 0.4 in Ca-HAGel controls the 

consistency of the blends. The reaction between plaster and Ca-HA were observed 

for each formulations. The reaction led to an heterogeneous structure. The 

heterogeneity is due to the release of CO2. However, the release of CO2 indicates that 

the unreacted calcite reacts with phosphate (free phosphate of Ca-HAGel and 

dissolved phosphate provided by the plaster) to produce calcium-phosphate-sulfate 

hydrates.  
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Chapter V 
Rheological behavior of gypsum, plaster and hydroxyapatite gel blends 

 
The results discussed in this chapter were published in the Journal of Industrial & 
Engineering Chemistry Research. (Raii, M., Escudero Sanz, F.J., and Nzihou., 2012, 
Rheological behavior of gypsum, plaster and hydroxyapatite gel blends, 
dx.doi.org/10.1021/ie301154d | Ind. Eng. Chem. Res)  
 
 
Introduction 
 
Calcium phosphate is a well-known biomaterial frequently used  in the medical 

domain and as an agricultural fertilizer. It can come from natural sources such as fish 

or cow bones or as a result of a synthesis process using calcium and phosphate 

compounds. Calcium phosphate has been investigated as a reactive material, 

especially in its thermodynamically stable structure with the stoichiometric ratio 

Ca/P = 1.67 (hydroxyapatite, Ca-HA), to determine its usefulness in treating 

contaminated water or as a stabilizing agent for hazardous waste [1-3]. Many studies 

have also shown the capacity of Ca-HA to remediate soil and groundwater [4,5]. 

Gypsum can have two origins: natural gypsum and synthetic gypsum. Natural 

gypsum, characterized by a high purity, is an anionic mineral with a C�x�  space 

group. This gypsum is a rock resulting from the evaporation of water from saturated 

calcium sulfate and geological sedimentation. Synthetic gypsum is a byproduct of 

industrial activities. It is obtained from a reaction between sulfuric acid and 

phosphate rock to produce phosphoric acid (H3PO4). The precipitate, usually named 

phosphogypsum (PG), is dihydrated calcium sulfate. This gypsum contains a 

significant amount of impurities and is considered to be a waste product. The 

environmental impact associated with PG storage and disposal, as reviewed by 

Tayibi et al., is negative on the surrounding land, water, and air [6]. Valorization 

seems to be by far the best way to reuse this hazardous material. Industrial PG can be 

valorized as a material for soil stabilization. It can be added to Portland cement or to  

reactive materials such as fly ash to enhance the mechanical  properties of the soil 

and to reduce the plasticity index, moisture, and water content [7]. It can also be used 

as a hydraulic binder in the design of calcium sulfoaluminate cement [8]. The calcium 
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sulfates used in this work are industrial gypsum (CaSO4·2H2O) and plaster 

(CaSO4·0.5H2O). They are by-products of phosphoric acid production and are 

washed to eliminate the residual fraction (phosphate, fluor, sodium, radionuclides, 

etc.). 

 
There are three anhydrous or anhydrite forms produced by  sintering of 

hemihydrates or gypsum: the compact form α-CaSO4 or CaSO4-I, obtained at 1200 °C 

and characterized by a crystalline structure; the stable form β-CaSO4 or CaSO4-II,  

obtained at 400 °C, which is a natural insoluble anhydrite; the  metastable form γ-

CaSO4 or CaSO4-III, obtained at low  temperature between 130 and 200 °C, which is a 

soluble  anhydrite [9]. The stability of gypsum is also influenced by the relative 

humidity (RH). At 10−35% RH, the migration of water  molecules takes place toward 

the crystals, while at 100% RH,  the migration takes place in the opposite direction 

[10,11]. The crystalline structure of the gypsum, characterized by a perfect  cleavage 

orientation (010), results in the circulation of water,  leading to dissolution on the 

surface (010) [11,12]. The blending of hemihydrates with water gives a rigid and 

compact solid  body, due to the hydration process.  

 
The main purpose of the work presented in this chapter is to investigate the  

rheological behavior of water/gypsum, water/plaster, Ca-HA/ gypsum, and Ca-

HA/plaster blends. This is a preliminary step  in a project devoted to the formulation 

and characterization of  a Ca-HA-based permeable reactive barrier. The evaluation of  

the rheological behavior of a mixture of gypsum and plaster on Ca-HAGel aims to 

better understand the development of the  matrix microstructure and, consequently, 

to assess its workability. 

 

I. Materials and methods 
 
1. Calcium sulfates 
 
The gypsum (G, CaSO4·2H2O) and the plaster calcium sulfate (Pα, CaSO4·0.5H2O, 

prepared by the wet method) used in this work are industrial byproducts of a  

phosphoric acid (H3PO4) preparation from phosphate rock  (PRAYON, Belgium). 
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The plaster was used as received, and gypsum was sieved to under 1 mm and the 

larger fraction discarded. 

 
 
2. Hydroxyapatite-Gel (Ca-HAGel)  
 
Ca-HAGel was obtained by the reaction between calcite (CaCO3; 98% pure, Fisher 

Scientific) and ammonium phosphate (NH4H2PO4; 99.4% pure, Fisher Scientific) at 25 

°C with a molar ratio of Ca/P = 1.67, and the amount of demineralized water is 3 

times  higher than that of calcite. The equation below describes the overall reaction 

pathway for the synthesis of Ca-HA. During the formation of Ca-HAGel, bubbling 

corresponding to the release of CO2 gas was observed. 

 
10CaCO3 + 6NH4H2PO4 + 2H2O → Ca10(PO4)6(OH)2 + 6NH4OH+ 2H2O + 10CO2 [R. 1] 
 
At the beginning of the reaction, the pH value increased gradually from 6 to 8 and 

then stabilized after 12 h of synthesis. The stabilization of the pH revealed the 

formation of an ammonium hydroxide buffer and the consumption of calcium 

carbonate. Ca-HAPowder was prepared by drying Ca-HAGel at 105 °C for 24 h to obtain 

a powder with monomodal particle size distribution. The water content calculated 

after drying at 105 °C was 70%. Ca-HAGel, destined to be used for chemical 

characterization, was filtered and rinsed with deionized water to dissolve any 

unreacted phosphate. 

 

3. Physical and chemical characterization 
 
Powder densities were measured using a helium pycnometer (AccuPyc 1330 

V2.04N). The specific surface areas of the materials (G, P, and Ca-HA) were 

determined on a Micromeritics Gemini 2360, by surface analysis using the 

Brunauer−Emmett−Teller method, and the measurements were performed by 

nitrogen absorption at liquid-nitrogen temperature followed by desorption 

(adsorption gas N2; heating temperature 150 °C). The particle-size distribution was 

determined by LASER granulometry using a Malvern Laser Master Sizer Hydro 2000 

instrument (with ethanol as a dispersant shaken by ultrasound). The pH 
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measurements were made after dispersion of 10 g of powder materials in 25 mL of 

deionized water and stirring for 1 h at room temperature, with the measurement 

being carried out after 2 h. The particle charge was evaluated relative to the net 

charge on the particles’ surfaces by evaluation of the pH point zero charge (pHPZC). 

This determination is based on the electrochemistry and involves the introduction of 

50 cm3 of a NaCl (0.01 M) solution in closed vials and adjustment of the initial pH to 

values between 2 and 12 by the addition of  NaOH or HCl (0.1M). A mass of 0.15 g 

was added to the vials, and the final pH was measured and recorded after stirring for 

48 h at  room temperature. The pHPZC value corresponds to the intersection point of 

the titration curves obtained at one ionic strength for the suspension (pHinitial) and 

blank solution (pHfinal). 

 
Zeta potential measurements were performed on a ZETASIZER 3000 HSA (Malvern 

instruments Ltd). 

 
The rheological measurements were performed using a Rheostress (HAAKE RS 150 

Rheometer). The rheological behavior and viscosity η(Pa.s) were evaluated for shear 

rates ranging from 0 to 500s-1 at constant temperature (20±5°C). The sample was 

placed in a cylindrical vessel and the strain was applied by a double helical ribbon 

impeller. Samples were homogenized before measuring the shear stress τ(Pa) and the 

viscosity versus the applied shear rate ÄÅ(s-1). The dynamic trails applied on Ca-HAGel 

were performed with the same apparatus using oscillation mode with a preselected 

constant shear stress of 50Pa and a frequency ranging from 1 to 50Hz. The loss and 

storage module measurements were recorded for 300s at room temperature.  

 

4. Formulations 
 
Rheological tests were carried out on pure Ca-HAGel, on binary water/gypsum 

(W/G) and on water/plaster (W/P) blends. Binary blends were prepared by mixing 

the selected material with de-ionized water according to different mass ratios 

ranging from 0.4 to 1.4. Solid concentrations of binary blends (ΓB1) and water/gypsum 

and water/plaster mass ratios were calculated as follows: 
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ΓB1 = IU

IU¨ ©�
   ;   ª£  = � 7Г«

ρ Г«    ;   ª�  = � 7Г«
ρ¢Г«  [Eq. 1] 

 
Where Vs is the volume of solid phase, Vw is the volume of water and ρ£ and ρ� are 

the densities of gypsum and plaster respectively. The Ca-HAGel content considered 

was from 0 to 50wt% Ca-HAGel. The rheological behaviors of water-free formulations 

(Ca-HAGel/G and Ca-HAGel/P) with mass ratios of 50/50, 40/60 and 30/70 were not 

considered, as the pastes obtained are very thick, and almost solids). The solid 

concentration of binary blends (ГB2) containing either gypsum or plaster (calcium 

sulfate powder) with Ca-HAGel was calculated as follows: 

     

ΓB2 = 
Iµ�

Iµ�T I¶�
 [Eq. 2] 

V��= VJV7Fn¢·�¸&�+ VJ�¢·�¸&� [Eq. 3] 

Vª� =  VJV7Fn¶#�&� [Eq. 4] 

 

Where ¹º» is the total volume of solid material equal to the sum of Ca-HAPowder 

volume (VJV7Fn¢·�¸&�) and calcium sulfate powder volume (¹Qº¢·�¸&�), and ¹¼» is the 

total water equal to Ca-HA water volume (VJV7Fn¶#�&�). 

 
 
II. Results and discussion 
 
1. Characteristics of the materials 
 
The results of bulk density, specific surface area and pH of materials are given in 

Table 22. It can be seen that the bulk densities were used to calculate the solid 

concentration in the blends. The specific surface area of plaster is three times higher 

than that of gypsum. The specific surface area of Ca-HAPowder indicates the surface 

reactivity of the particles. The net charge of the materials can be evaluated by 

referring to the pH of the aqueous solutions with the metal surface in a neutral 

electric state and pHPZC. The hemihydrated calcium sulfate and Ca-HA particles are 

positively charged (pH<pHPZC) and dihydrated calcium sulfate particles are 

negatively charged (pH>pHPZC). 
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Table 22: Physicochemical characteristics of materials 

  Gpowder Ppowder Ca-HAPowder Ca-HAGel 
Bulk density ρ(gcm-3) 2.3 2.8 2.58 1.23 
Surface specific area SSA(m²g-1) 26.3 72.8 138 - 
pH 8.5 2.9 7.9 8.4 
pHPZC 7.5 3.3 8.1 - 
Residual Moisture 105°C (%) 20 5 - 67 
Loss on ignition (at 1000°C) (%) 22 8 59 - 
Granulometric fraction (%) 

Sand       
Silt 
Clay 

 
79.6 
18.7 
1.7 

 
48.9 
49.0 
1.7 

 
43.4 
51.7 
4.9 

 
9.0 
88.0 
3.0 

 
The classification and identification of materials following the geotechnical 

designation reveals that plaster and Ca-HAPowder seem to have a silty-sand texture, 

while gypsum, having a diameter less than 1mm, is sandy-silt and Ca-HAGel is 

identified as silty (see Table 22).  

 
 
2. Rheological behavior 
 
2.1. Steady rheological properties of Ca-HAGel 
 
Apatite gel is characterized by a specific texture caused by absorption of water and 

interaction between fine particles. The identification of the behavior and the structure 

Ca-HAGel requires an understanding of the influence of parameters such as material 

deformation, strength and stability. Studies published by KNOWLES et al (2000), 

have shown that the rheological behavior of a Ca-HA suspension (from 

Tetrahydrated Calcium Nitrate and Ammonium Phosphate) at 60°C and commercial 

products have a shear-thinning behavior while Ca-HA synthesized at 80°C has a 

Newtonian behavior. This behavior evolves towards shear thickening (dilatants) 

when dispersant agents are added in excess [13]. 
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Figure 49: Rheological behavior and viscosity of Ca-HAGel after 48h of synthesis, a) 
τ�f(�Å ); b) log(τ)� f(�Å ) (—×—Shear stress (Pa), —+—Viscosity (Pa.s)) 
 
As shown in Figure 49, the shear stress increases with the shear rate when the stress 

exceeds a threshold value τ0 (1.425Pa), indicating that Ca-HAGel exhibits a shear 

thinning, or, specifically, a viscoplastic behavior. Viscosity reaches an apparent value 

of (η∞=0.144Pa.s) above ÄÅ=200s-1. The critical shear rate corresponding to the Ca-HA 

dispersion is characterized by an extrapolated maximum yield stress τ0e (2.289Pa) 

and minimum yield stress τ0 (1.425Pa), related to the response of the gel to the 
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deformation. The viscosity of Ca-HAGel is of 0.144Pa.s at a higher shear stress, and 

above this value the suspension flows. The increase in the shear stress leads to the 

disruption of the gel structure, and when the shear stress stops, the suspension tends 

to recover its original structure (i.e. the flow is reversible). Viscosity does not only 

depends on the shear rate but it is also correlated to the duration of the applied 

stress. The internal structure of Ca-HAGel undergoes an initial homogenization at low 

shear rate values corresponding to low levels of plasticity. The constraint force is too 

small to disorganize the structure; it requires an increase in the magnitude of applied 

force for the flow to occur. Beyond the shear stress threshold, with an increasing 

shear rate, the flow is enhanced by the gradual dispersion of particles, promoting the 

separation effect which causes the decrease in viscosity. The viscosity (apparent 

viscosity) value stabilizes at high shear rates. Once the apparent viscosity is reached 

there is no further modification observed for the structure of Ca-HAGel.  

 
 
2.2. Dynamic rheological properties of Ca-HA 
 
To explain the viscoelastic behavior observed for the Ca-HAGel, dynamic oscillatory 

tests were carried out to investigate the internal structure and response of the gel 

during the Ca-HA synthesis.  

 
The dynamic rheological (oscillatory) test aims to determine the storage (G’) and loss 

(G’’) modulus. Figure 50 represents the results of the frequency-sweep response of a 

Ca-HA suspension after 12, 24, 48 and 72 hours of synthesis. During the synthesis, 

the storage and loss modulus (G’, G”) rose with the increase in the frequency and 

their values decreased with the aging of the gel. 

 
At low frequencies, the 12h age dispersion (Figure 50 a)) seems to have a 

heterogeneous structure at the beginning of the periodic oscillation application. It is 

observed that G’ is greater than G’’, which corresponds to an elastic behavior. 

Therefore, when the frequency is increased, the module values increase strongly due 

to the dispersed state of the particles.  
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Figure 50: Frequency-sweep curves of Ca-HA as a function of synthesis time 
(—∆— , storage modulus G’, —□—  loss modulus G’’). The description of the 
behavior of Ca-HAGel is based on two conditions if G’> G’’, elastic behavior, and if  
G’< G’’, the behavior is viscous. 
 
For 24h age dispersion (Figure 50 b)), the value of the storage and loss modulus is 

almost zero below 15Hz. The strain response at constant stress after 24h of synthesis 

is delayed compared to the 12h age dispersion measurement. This change in 

behavior, identified at low frequencies, is due to the evolution of the reaction. This 

response is related to the precipitation of the Ca-HA suspension occurring when the 

pH value buffers around 8, leading to the formation of a colloidal suspension. The 

behavior remains elastic at high frequency values.  

 
After 48h of synthesis (case c)), we observe a complete change in behavior at low 

frequencies; for frequencies below 25Hz, G’ and G’’ increase exponentially at low 

stress. Below 25Hz, G” is greater than G’, indicating viscous behavior. This simply 
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means that the suspension follows a constant structural deformation where the stress 

is proportional to the strain rate. When the frequency reaches values higher than 

25Hz, G” becomes smaller than G’, indicating an elastic behavior: the stress is 

proportional to the deformations (Figure 50 c)). However, the viscosity increases 

progressively, indicating the agglomeration of colloids and the formation of gel-paste 

calcium phosphate. This result is important since it shows the transition between a 

suspension and pasty behavior. As demonstrated by KNOWLES et al [14] and BAO 

et al [14], the mutual approach of particles in solution is correlated to the positive 

charge of the Ca-HA surface. The behavioral changes show the formation of gel 

particles or gel-paste structures after 2 days of reaction, exhibiting a viscoelastic 

behavior. The dynamic rheological properties study carried out by LIU et al (2006) 

[15] on calcium-phosphate cement slurry (a composite of equimolar tetracalcium 

(TECP) and dicalcium phosphate anhydrous (DCPA)) under the condition of a 2.0 

Powder/Liquid ratio and a 1% strain showed that at the range of low strain and low 

frequency, the slurry behaved to yield behavior when frequency increases. The slurry 

began to flow and presented a shear-thinning behavior. 

 
For the 72h age dispersion (case d)), the loss modulus values are higher than the 

storage modulus values, thus revealing a viscous behavior. Nevertheless, when the 

frequency increases and the strain exceeds the yield strain, the viscosity decreases. 

The decrease in G’ and G’’ values is due to gel aging and stirring, which cause a large 

deformation of the gel structure. The disruption of extractible water molecules 

caused by bonds between particles leads to flow and demonstrates that the Ca-HAGel 

exhibits a shear-thinning behavior.  

 
 
2.3. Rheological behavior of binary blends 
 
The viscosity of the binary matrix was measured and plotted versus the 

concentration of added powder, as illustrated in Figure 51 and Figure 52. W/G and 

W/P blends exhibit shear-thinning behavior.  
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Figure 51: a) Viscosity of W/G and W/P blends at different mass ratios, b) 
Concentration of gypsum and plaster at different mass ratios 

 
Figure 51 shows that the viscosity of W/G blends decreases with a decreasing 

gypsum concentration until achieving an almost constant apparent viscosity for 

W/G ratios above 0.6. The viscosity plateau reveals no influence of water on the 

particle surface of gypsum and shows that the grains undergo the action of gravity 

and buoyancy (characterized by an apparent density of 1.25g.cm-3 in the cylindrical 

vessel).  

 
Hydrated gypsum particles present similar double-electric layers of a common 

charge (negatively charged) which generates electrostatic repulsion between particle 

surfaces (due to the overlap of the electrical double-layers theory). Gypsum grains 

are mainly negatively charged and surrounded by a diffuse layer of positive average 

charge. This positive charge layer stabilizes the dispersion through particle 

repulsion, avoiding particle aggregation. At rest, particles tend to precipitate. If a 

stress is applied, the suspension is dispersed leading to a decrease in viscosity. The 

gypsum concentration controls the dispersed state; the repulsive forces tend to 

stabilize the suspension, because the particles are negatively charged. The apparent 

viscosity is obtained at a high shear rate where gravity forces are negligible. It can be 

seen that above a 0.6 W/G ratio, inter-particle distance is large enough to make 

apparent viscosity independent of gypsum content.  
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With regards the plaster blends (W/P), the viscosity decreases with decreasing 

plaster concentration. The hydration of hemihydrate particles, requiring 1.5 water 

molecules, leads to crystallization. In general, the contact of plaster particles with 

water triggers dissolution, which induces the saturation or supersaturation of the 

solution in Ca2+ and SO42-, leading to the formation of gypsum nuclei [16]. 

Consequently, the hydration controls scenario is correlated to the nucleation and 

crystal growth mechanism [17,18].  

 
The high specific-surface area of plaster particles plays a major role in the 

multiplication of inter-granular links. Interaction between plaster particles occurs by 

electrostatic forces (i.e. the spread of ions in an extended diffuse layer) and attractive 

forces (Van der Waals) responsible for adhesion. Furthermore, adhesion is described as 

the formation of two Ca2+/SO42- layers bound together by ionic interaction 

constructing a growth slice [16]. The predominance of reactive sites on the grains 

attracts cations which form a rigid network that surrounds the layer of adsorbed 

water molecules. It is also known that the attraction of plaster particles requires 

cohesion between atoms to form the contiguous flakes. The development of this 

structure (agglomerated structure or plaster paste) depends on the amount hydration 

water. According to the stochiometry, the α-hemihydrates require a W/P ratio higher 

than 0.186 to be transformed into gypsum. To improve the consistency of the blends, 

the hydration rate was chosen from a range of 0.4 to 1.4. In the dynamical study in 

the linear viscoelastic domain published by FINOT et al (2001), the time-sweep test at 

0.015% (ω=10rad.s-1), carried out on W/P=0.7, indicates that the rise in the storage 

modulus reflects the hydration and setting process. This reveals an increase in the 

level of crystallized gypsum [19]. Obviously, the viscosity decreases steadily with an 

increasing amount of water, and the application of shear stress destroys the links 

between particles, facilitating the decoagulation of the structure and leading to flow.  

Plaster hydrates during viscosity measurement under stress. The plaster viscosity 

value depends on the volume fraction of the solids (solid concentration ΓB1), particle 

size and water excess (free of water after full plaster hydration). At a high shear rate, 

it is possible to measure the apparent viscosity of the dispersion of agglomerated 
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hydrated particles. The apparent viscosities of W/G blends are lower than those of 

W/P blends. Because plaster hydration held the measurement long, the difference 

observed in apparent viscosity between W/G and W/P cannot be solely attributed to 

hydration. The difference observed in a specific-surface area may provide an 

explanation.  

 
Figure 52 show that the viscosity increases when the solids concentration (ГB2) 

increases, the latter being calculated relative to the water (by wt %) present in the Ca-

HAGel. It should be noticed that the formulations having Ca-HAGel /G or Ca-HAGel 

/P ratios higher than 1.5 are solids, and their rheological properties were not 

characterized. 

 

Figure 52: Viscosity of Ca-HA/G and Ca-HA/P formulations  
 
The water content in Ca-HA is more than sufficient to hydrate calcium sulfate 

hemihydrate particles. In this case, an almost solid paste is formed. Replacing 20% of 

Ca-HAGel by gypsum or plaster produced little influence on viscosity, indicating that 

for this blend there is little influence of calcium sulfate on the rheological properties 

of Ca-HAGel. As regards the already-hydrated gypsum particles, increasing the 

gypsum concentration in the blend up to 40% produced a slight increase in viscosity. 

Blends containing more than 40% of gypsum are almost solids. The addition of 

plaster to Ca-HA requires a high stress to cause the flow. Plaster particles in contact 

with Ca-HA water cause plaster hydration, creating strong bonds that encompass the 
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Ca-HA particles and make difficult the flow of the blend. Hydrated plaster strongly 

increases the viscosity of Ca-HAGel by its own weight.  

 
Figure 53 shows the thixotropic behavior of binary blends containing a mass ratio 

blend of 80% of Ca-HA and 20% of plaster and a mass ratio of 80% of Ca-HA and 

20% of gypsum, indicating that the blends recover their initial structure. In this case, 

viscosity values increase slightly compared to the viscosity of Ca-HAGel while 

keeping their flow characteristics.  

 

 
Figure 53: Example of thixotropic hysteresis loop of composites 80%Ca-HA/20%(G) 
and 80%Ca-HA/20%(P) (--*--Ca-HAGel (η∞= 0.144Pa.s),--×-- 80%Ca-HAGel/20%(P) 
(Γ=0.369; η∞= 0.348Pa.s), --+--80%Ca-HAGel/20%(G) (Γ=0.384; η∞= 0.318Pa.s) 
 
 

2.4. Interaction between particles 
 
The interpretation of interactions between these compounds is complex. The zeta 

potential (ζ-potential) has been considered as a mean to understand the interactions, 

based on the net charge of particles, and hence to describe the suspension structure. 

The ζ-potential indicates the repulsion forces between particles promoting dispersion 

stability. Figure 54 shows that the Ca-HA particles are characterized by a negative ζ-
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potential, indicating that particles are positively charged (≈-20mV) [13] and the 

gypsum particles are negatively charged (≈20mV) [20]. The Ca-HA ζ-potential value 

indicates the instability of the gelled particles. Adding gypsum to Ca-HA leads to 

charge modification. High ζ-potential values prevent the presence of repulsive forces 

and indicate colloidal dispersion. These results support the assumption of sulfate 

attraction on the Ca-HA surface, indicating the dispersion of particles. However, 

sulfate adsorption changed the charge distribution, generating the change from 

positive to negative charge. 

 

 
Figure 54: Zeta potential of Ca-HA/(G) and Ca-HA/(P) formulations without added 
water (–– ζ-potential of gypsum (≈20mv), –·–·– ζ-potential of plaster (≈5mv), –··–··– ζ-
potential of Ca-HA (≈-20mv), —□— ζ-potential of Ca-HA /G formulations, —∆— ζ-
potential of Ca-HA /P formulations) 
 
The adsorbed amount of anionic sulfate on Ca-HA particles is equal to the Ca-HA 

electrical charge sites and the coating of gypsum sulfate Ca-HA particles is the main 

reason for the modification of ζ-potential. The surfaces of plaster particle are 

characterized by a positive charge, and hydration changes the surface charge to 

negative. The formation of a plaster solid body is explained by the cohesion between 

particles and is illustrated by a low ζ-potential value. 

 
Figure 54 represents the ζ-potential of formulations containing Ca-HA and different 

proportions of the W/P ratio. With the increase of the amount of plaster, the ζ-
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potential remains constant (with similar values to the plaster at the beginning of the 

hydration process), and the surface charge of Ca-HA changes. The nucleation process 

of hemihydrated particles starts by the formation of Ca2+/SO42- bound double layers, 

and the concentration of sulfate decreases, indicating that it is consumed during the 

hydration. However, the fixation of remaining sulfate in solution on the Ca-HA 

surface leads to the change in the charge.  

 
 
Conclusion 
 
The rheological test carried out reveals shear-thinning and the thixotropic behavior 

of Ca-HAGel for formulations considered. The internal structure of Ca-HAGel exhibits 

to viscoelastic behavior after 48h of synthesis. 

 
The negatively-charged gypsum particles cause the repulsion of particles (repulsive 

forces) and the viscosity of W/G (0.2–1.4) blends remains constant. Plaster is 

characterized by attractive forces and the particles are positively charged. The 

hydration of plaster leads to cohesion between particles, which explains the increase 

in viscosity of W/P blends compared to W/G blends. The ζ-potential of Ca-HA is 

negative and the dissolution of calcium-sulfate particles saturates the solution in 

sulfates ions (SO42-); the charge of particles becomes positive, due to the fixation of 

SO42- on the Ca-HA surface. The adsorption of sulfate on the Ca-HA particle surfaces 

influences the structure of formulations and explain why the viscosity is independent 

of Ca-HAGel content. Plaster hydration plays a major role in the Ca-HAGel 

stabilization structure. The modification in ζ-potential can affect retention capacity, 

reactivity and mechanical resistance. These aspects will be the subject of later study.  

 
This study has led to the understanding of the rheological and physicochemical 

behavior on water/calcium sulfates and hydroxyapatite/calcium sulfate blends. 

These results will be useful in the formulation of permeable reactive barrier. 
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Chapter VI 
Rheological behavior of Water—Calcium sulfate—Hydroxyapatite-Gel 

ternary blends 
 
 
Introduction 
 
The formulation of a stable matrix from various initial materials requires a better 

understanding of the mixture and interaction between the components. The 

assessment of the rheological behavior may help to understand the flow mechanisms 

such as forces between inter-particles affecting the stability and the workability. Ca-

HA was used in the formulation as metal ion stabilizing agent and both plaster and 

gypsum were used as support materials to enhance the stability of the structure and 

hydraulic performances of the formulations. The main purpose of this work is to 

investigate the rheological behavior of blends containing Ca-HAGel, water/gypsum 

and/or water/plaster with different proportions. The rheological tests aim to 

evaluate the influence of added water on the rheological properties of Ca-HAGel. This 

is a preliminary step in a project devoted to the formulation and characterization of a 

Ca-HA based permeable reactive barrier. The evaluation of the rheological behavior 

of a mixture of water/gypsum and water/plaster on the Ca-HAGel aims to better 

understand the development of the matrix microstructure, and consequently to 

assess its stability and workability. 

 
 
I. Ternary formulations 
 
Ternary blends were obtained according to material dosages listed in Table 23. 

Rheological tests were carried out on pure Ca-HAGel, on ternary Ca-

HAGel/(water/gypsum) and on Ca-HAGel/water/plaster blends.  

 

Table 23: Proportions of ternary blends (Ca-HA/(W/P) – Ca-HA/(W/G)) 
Blends W/P=0.2 W/P=0.4 W/P=0.6 Blends W/G=0.2 W/G=0.4 W/G=0.6 

C
a-

H
A

/(
W

/P
) 80%/20% 80%/20% 80%/20% 

C
a-

H
A

/(
W

/G
) 80%/20% 80%/20% 80%/20% 

70%/30% 70%/30% 70%/30% 70%/30% 70%/30% 70%/30% 
60%/40% 60%/40% 60%/40% 60%/40% 60%/40% 60%/40% 
50%/50% 50%/50% 50%/50% 50%/50% 50%/50% 50%/50% 
40%/60% 40%/60% 40%/60% 40%/60% 40%/60% 40%/60% 
30%/70% 30%/70% 30%/70% 30%/70% 30%/70% 30%/70% 
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Ternary blends were prepared by mixing binary blends (W/G or W/P according to 

different mass ratios ranging from 0.2 to 0.6) with Ca-HA. Solid concentration of 

ternary blends (ГT) was calculated as follows:  

 

ΓT = 
Iµ�

Iµ�T I¶�
 [Eq. 1] 

  
V��= VJV7Fn¢·�¸&�  + VJ�¢·�¸&� [Eq. 2] 
  
  
Vª� = VÆ + VJV7Fn¶#�&� [Eq. 3] 
 
Where ¹º» is the total volume of solid material equal to the sum of Ca-HAGel volume 

(VJV7Fn¢·�¸&�) and calcium sulfate powder volume (¹Qº¢·�¸&�), and ¹¼» is the total 

water content which includes water amount of added water (¹Ç� and the Ca-HA 

water volume (VJV7Fn¶#�&�). 

 

II. Results and discussion 
 
1. Rheological behavior of ternary blends  
 
This section reported the results obtained with ternary blends. Figures 55 and 56 

illustrates rheological steady test results Ca-HAGel/(W/G) and Ca-HAGel/(W/G) 

(wt%/wt%) blends. 

 
Ternary blends formulations containing Ca-HAGel and water/gypsum blends, having 

W/G ratio ranging from 0.2 to 0.6 (wt %), display a non-Newtonian behavior. The 

results show that the sample structure depends mainly on binary blend (W/G) 

composition rather than on Ca-HAGel/(W/G) mass ratio. Solid concentration of Ca-

HAGel/(W/G) samples varies depending on W/G mass ratio. For samples having 

W/G mass ratio below 0.4, solid concentration (Г) increases when decreasing Ca-

HAGel amount. Above 0.4 W/G mass ratio, solid concentration decreases. 
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Figure 55: Variation of viscosity of Ca-HA/(W/G) mixtures at different mass ratios 
(—— Ca-HAGel (0.144Pa.s), —□— Ca-HA/(W/G=0.2), —○—Ca-HA /(W/G=0.4), —∆—Ca-
HA/(W/G=0.6)) 
 
Decreasing W/G ratio to 0.4-0.2 induces an important changes in blends aspects and 

viscosity. The formulations with 0.4 W/G mass ratio have viscosity values almost 

similar to Ca-HAGel. For 0.2 W/G mass ratio blends, viscosity increases by increasing 

the concentration of total solids. Blends with W/G ratios of 0.6 behaved as low 

viscosity suspension. It can be seen from Figure 55 that formulations based on a 

W/G ratio of 0.6 provides indications of the transformation to liquid phase; viscosity 

values are similar, exhibiting no influence of added water on rheological behavior 

and hence on blends workability.  

 
It seems that gypsum interacts with Ca-HA; this can be due to the difference in net 

charge. Gypsum net charge is negative while Ca-HA has an overall positive charge. 

Interaction between particles is due to the existence of attractive forces that depends 

strongly on the creation of low-energy bonds (i.e. Van Der Walls forces). The partial 

dissolution of gypsum in water produces sulfate anions and calcium cations. The 

sulfate anions (SO42-) are attracted to the surface of Ca-HA particles where they get 

adsorbed. Chemical adsorption seems to be the important process leading the 

observed phenomena. The attraction of sulfate group can be then explained by its 

substitution in apatite lattice replacing phosphate group and chemisorption process 

that occur by inner sphere complexation on surface sites of apatite minerals through 
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covalent bounding. Consequently, the substitution of phosphate decreases the 

stability and chemical structure of apatite [1].  

 
As sulfate molecules surround Ca-HA particles, the attractive process leads to the 

neutralization of Ca-HA particles which are stabilized by interaction effects. 

However, the charge of Ca-HA becomes negative indicating that the potential of 

surface reached a maximum of anions adsorption leading to surface saturation that 

inhibits the attractions effect and provides the decoagulation of particles by 

electrosteric effects [12]. This electrostatic repulsion effect of gypsum on Ca-HA turns 

gypsum into a dispersing agent.  

 

 
Figure 56: Variation of viscosity of Ca-HA/(W/P) mixtures at different mass ratios  
(—— Ca-HAGel (0.144Pa.s), —□—Ca-HA/(W/P=0.2), —○— Ca-HA/(W/P=0.4), —∆— Ca-
HA/(W/P=0.6)) 
 

As shown in Figure 56, the viscosities of Ca-HAGel/(W/P) blends are similar or 

greater than that for Ca-HAGel what is not always the case of Ca-HAGel /(W/G) 

formulations. For blends with W/P mass ratio varying from 0.2 to 0.6, viscosity 

mainly depends on W/P mass ratio and little on Ca-HAGel/(W/P) mass ratio. For 

0.4-0.6 W/P mass ratios, the system is quite stable and viscosity is almost 

independent of Ca-HA /(W/P) ratio. Plaster hydration takes place during the binary 

blend preparation, and its mixture with Ca-HAGel has little influence on gel structure. 

For 0.2 W/P mass ratio with different substitutions of Ca-HAGel, the increase in the 
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solids concentration generates the increase in viscosity (Figure 56). Adding of Ca-

HAGel to 0.6 W/P mass ratio blend gives an apparent viscosity of formulations 

surrounding the viscosity of Ca-HA, despite the increase of the solids concentration.  

 
 
2. Interaction between particles 
 
The interpretation of interactions between these compounds is complex. The zeta 

potential (ζ-potential) can help to better understand the phenomena observed, based 

on the net charge of particles. The ζ-potential indicates the repulsion forces between 

particles promoting stability. Figure 57 represents the ζ-potential of formulations 

containing Ca-HA and different ratio W/P. Figure 57 shows that the Ca-HA particles 

are characterized by a negative ζ-potential, indicating that particles are positively 

charged (≈-20mV) [3] and the gypsum particles are negatively charged (≈20mV) [4].  

 
The Ca-HA ζ-potential value indicates the instability of the gelled particles. Adding 

gypsum to Ca-HA leads to charge modification. High ζ-potential values prevent the 

presence of repulsive forces and indicate colloidal dispersion. These results support 

the assumption of sulfate attraction on the Ca-HA surface, indicating the dispersion 

of particles. However, sulfate adsorption changed the charge distribution, generating 

the change from positive to negative charge. The adsorbed amount of anionic sulfate 

on Ca-HA particles is equal to the Ca-HA electrical charge sites and the coating of 

gypsum sulfate Ca-HA particles is the main reason for the modification of ζ-

potential. The surfaces of plaster particle are characterized by a positive charge, and 

hydration changes the surface charge to negative. The formation of a plaster solid 

body is explained by the cohesion between particles and is illustrated by a low ζ-

potential value. 
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Figure 57: Zeta potential of (a) Ca-HA/(W/G) and (b) Ca-HA/(W/P) formulations  
(––- gypsum (≈20mv), –·–·– plaster (≈5mv), –··–··– Ca-HA (≈-20mv), —□— Ca-HA 
/(W/G=0.2) or Ca-HA/(W/P=0.2), —○— Ca-HA /(W/G=0.4) or Ca-
HA/(W/P=0.4), —∆— Ca-HA /(W/G=0.6) or Ca-HA/(W/P=0.6)) 
 
 
It can be seen from Figure 57, the ζ-potential remains constant with increase of 

plaster content, (with similar values to the plaster at the beginning of the hydration 

process), and the surface charge of Ca-HA changes. The nucleation process of 

hemihydrated particles starts by the formation of Ca2+/SO42- bound double layers, 

and the concentration of sulfate decreases, indicating that it is consumed during the 

hydration. However, the fixation of remaining sulfate in solution on the Ca-HA 

surface leads to the change in the charge.  

 

Conclusion 
 
The rheological test carried out reveals shear-thinning and the thixotropic behavior 

of Ca-HAGel for the formulations considered. The negatively-charged gypsum 

particles cause the repulsion of particles (repulsive forces). Plaster is characterized by 

attractive forces and the particles are positively charged. The ζ-potential of Ca-HA is 

negative and the dissolution of calcium-sulfate particles saturates the solution in 

sulfates ions (SO42-); the charge of particles becomes positive, due to the fixation of 

SO42- on the Ca-HA surface. The adsorption of sulfate on the Ca-HA particle surfaces 
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influences the structure of formulations and explain why the viscosity becomes 

independent from Ca-HAGel content. Plaster hydration plays a major role in the Ca-

HAGel stabilization structure. The modification in ζ-potential can affect retention 

capacity, reactivity and mechanical resistance. These aspects will be the subject of 

later study.  
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Chapter VII 
Leaching behavior of calcium sulfate by-product and stabilization using 

synthesized hydroxyapatite-gel (Ca-HAGel) 
 
I. Introduction 
 
Soil and groundwater contamination are the major environmental problems linked to 

abusive uses of chemical products. Consequently, the presence of heavy metals and 

toxic contaminants contributes to the contamination of groundwater by infiltration of 

pollutants trough the soil. The stabilization of waste materials using a reactive 

material is now of interest to predict their storage conditions and reutilization. 

Currently, the elimination of heavy metals present in water and soil using reactive 

materials (i.e. pollutants immobilization and/or transformation) such as, active 

carbon, zero valent iron, zeolite, calcite, and apatite, has became of interest in 

environmental  monitoring. It depends on two important factors, the solution-solid 

equilibrium phase and solubility product of solid phase. Furthermore, precipitation, 

adsorption, ion exchange, substitution and surface complexation are important 

mechanisms leading the removal of contaminants depending on chemical properties 

and affinities.  

 
The assessment of stability is based on leaching test, which categorizes the disposal 

in landfills and the classification conditions. The management of environmental risks 

is based on standard protocols to facilitate not only the tests for the characterization 

of pollutants, but also their application in surveillance, monitoring and protection the 

natural environment. The EU Landfill Directive prescribes waste acceptance criteria 

(WAC) based on leaching of metals and inorganic species from a granular waste 

sample (i.e. solid particles size less than 4mm) leach tested using a leaching 

procedure based on liquid/solids (L/S) ratio of 10 [1] (NF EN12-457-2). The guidance 

document classifies the waste material in three categories, inert waste, non-

hazardous waste and hazardous waste as a function of the amount of leachable 

heavy metals. The criteria for the selection of reactive material used for the PRB 

technology requires that the reactive media does not represent any source of 

contamination of soil and groundwater, it must be stable, available at low and 
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reasonable costs and have a large capacity, efficiency and longevity in intercepting 

pollutants. The main purpose of the preliminary environmental assessment study 

was to verify the absence of risk of calcium sulfate by-product as support material in 

reactive media destined to PRB process and to compare or prioritize the actions 

based on indicative threshold concentrations to reveal significant environmental 

behavior.  

 
The aim of this work was therefore to determine whether calcium sulfate industrial 

by-products (plaster and gypsum) could be safely used for PRB. The effect of several 

leaching parameters on the leachability from calcium sulfate by-product was 

investigated. The aptitude of hydroxypatite to stabilize the calcium sulfate waste was 

studied. The interest in the use of waste calcium sulfate was its valorization as 

support material in PRB. 

 
 
II. Experimental procedure 
 
1.  Samples  
 
The hydroxyapatite-Gel (Ca-HAGel) synthesis method is described in the Chapter II. 

The Ca-HA used in this work is stochiometric with the molar ratio Ca/P=1.67, the 

more stable phase (Ca10(PO4)6OH2). The main advantage of the synthesis method is 

Ca-HA high quality [2]. The raw materials used in this work are a commercial by-

product of phosphoric acid fabrication (PRAYON®, Belgium) (Gypsum (dihydrated 

calcium sulfate) and Plaster (α) (hemihydrated calcium sulfate)). The raw gypsum 

was sieved to obtain different fraction sizes ranging from 1 to 4mm (i.e. dp<1mm, 

1<dp<2mm and 2<dp<4mm).  

 
 
2. Formulations  
 
The considered formulations studied in this work are summarized in Table 24. They 

are based on plaster containing water to ensure plaster hydration up to W/P 0.4 

mass ratio.  
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Table 24 : Gypsum, plaster and Ca-HAGel considered formulations 

Products Formulation 
1 

AWP 

Formulation 
2 

AG 

Formulation 
3 

AWPG1 

Formulation 
4 

AWPG2 
Ca-HAGel (%) 80 80 64 56 

Plaster (%) 14.28 0 11.43 10 
Water (%) 5.72 0 4.57 4 

Gypsum (dp<1mm) (%) 0 20 20 0 

Gypsum (1-2mm) (%) 0 0 0 10 

Gypsum (2-4mm) (%) 0 0 0 20 

 

The formulations were proposed to evaluated the reactivity of Ca-HAGel to stabilize 

the calcium sulfates wastes and to select the adequate formulation leading to PRB 

assessment. 

 
 
3. Characterization Methods 
 
The chemical composition of used materials was obtained using the mineralization 

method in accordance with French standard procedure NF X31-151 [3] described in 

Chapter II. The pHPZC was determined according to the method described in Chapter 

II. The Ca-HA powder was destined to physicochemical characterization and 

obtained by drying at 105°C for 24h after filtration and washing with de-ionized 

water to eliminate the unreacted phosphate and ammonia. The chemical analysis of 

both calcium sulfates and hydroxyapatite were carried out using inductively coupled 

plasma spectrometry (ICP-AES) to determine the impurities contents and to verify 

the Ca/P stoichiometric ratio of Ca-HAGel, respectively. ICP-AES analyses were 

performed on a ULTIMA-2 (JOBIN YVON HORIBA). Soluble fraction was 

determined by filtering of 40ml of eluate at 0.45µm and the dry residue was assured 

by eluate dehydration in a heated sandbox at 103±2°C. Samples intended for infrared 

spectroscopy and DRX analysis were prepared by heating them at 105°C to eliminate 

residual moisture and to facilitate characterization conditions. The presence of 

functional groups in the different materials is confirmed by infrared spectroscopy 



168 
 

using SHIMADZU FTIR (Fourier Transformed Infrared)-8400S spectrometer (Figure 

63).  

 
 
4. Leaching tests 
 
The leaching tests are currently considered as a necessary tool leading  to the 

environmental prediction and assessment of the long-term leachability behavior of 

wastes and by-products. Consequently, the identification of soluble species 

promoting the release of pollutants is achieved. In this work, the leaching behavior 

was carried out on materials and evaluated with two leaching procedure normalized 

tests (NF EN12-457-2 [4] and acid-base neutralization capacity test (ANC) [5]. These 

leaching tests have been chosen to study the physicochemical stability of calcium 

sulfate raw materials and formulations containing Ca-HAGel as stabilizer reactive 

material to investigate the relationship between leachability and L/S ratio, particle 

size, and leachate pH by comparing the two leaching test methods. Two samples 

were leached and concentration values correspond to average value. All samples 

were kept after filtration trough 0.45µm in a plastic flask (10ml of eluate diluted 3 

times with de-ionized water) and were acidified with 1% nitric acid to avoid any 

metal precipitation. The trace metal element concentrations investigated in this work 

are As, Pb, Cu and Zn. The soluble fraction was expressed as the dry weight of the 

leached sample accumulated values obtained by weighing the dry residue of each of 

three leachates.    

 
 
4.1. NF EN12457-2 description 
 
French environmental characterization standard (EN12457-2) consists in contacting 

waste material with de-ionized water on a vertical rotary shaker (7rpm). The calcium 

sulfate (Gypsum and Plaster) and formulations with Ca-HAGel samples were 

subjected to an agitation period of 48 h (24 hours was added to ensure the metal 

concentration stabilization) at room temperature according to a Liquid/Solid (L/S) 

ratio of 10 l.kg-1 dry matter and liquid extraction was carried out by filtration through 

a 0.45µm pore size membrane filter. The leaching duration was investigated for raw 
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calcium sulfate samples. This method of leaching was used for the first set of 

experiments where plaster and gypsum with three particle size fractions (dp<1mm, 1-

2mm and 2-4mm) were used for different leaching durations (72 hours). The second 

set was dedicated to investigate the effect of L/S (20/1, 40/1, 60/1, 80/1 and 100/1 

l.kg-1 dry matter) ratio on the leachability of heavy metals from calcium sulfates 

materials. 

 

4.2. Acid-base neutralization capacity test (ANC) 
 
The behavior and availability of pollutants present in gypsum and plaster have been 

studied using the ANC test. The test based on the evaluation of the buffering 

capacity of materials uses an acid or base attack [5]. Samples of material were 

introduced in solutions of nitric acid and sodium hydroxide for different 

concentrations with a weight ratio L/S of 10. Concentrations were adjusted so as to 

obtain the desired pH value. The equilibrium of suspensions has ensured by 

agitation during 48 hours and the final pH value was measured. The suspensions 

were filtered throughout 0.45µm and the filtrates were analyzed. 

 
 
III. Results and discussion  

 
1. Physicochemical characterization 
 
The samples were prepared by drying at 105°C from 24 hours and grounded after 

leaching tests. The samples were destined to FTIR and XRD analysis. The results are 

summarized in Table 25. 

 
Table 25: Chemical analysis of calcium sulfate waste material 
Elements Plaster  

(mg.kg-1 DM) 
G (<1mm) 
(mg.kg-1 DM) 

G (1-2mm) 
(mg.kg-1 DM) 

G (2-4mm) 
(mg.kg-1 DM) 

Al 5055 4984 3196 3375 
As 15 65 65 65 
Ca 134773 214544 211307 211700 
Cd 3810 3956 3660 3671 
Fe 5119 5627 4338 4359 
K 6773 7016 7234 9460 
Mg 15979 10707 9757 10038 
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Na 4841 5243 3760 5100 
P 3783 4573 4969 5581 
Pb 2442 2691 2236 2228 
SO4 766237 846295 602523 710884 
Sr 26572 24270 13981 27695 
Zn 3849 3994 3400 3410 
pH 2.88 8.44 9.57 9.64 
pHPZC 3.30 7.50 7.50 7.50 
Particle 
charge 

Positive Negative Negative Negative 

ρ (g.cm-1) 2.81 2.25 2.18 2.18 
Textural class Silty-sand Sandy-silt Sandy Sandy 
DM: dried materials 
 
It could be seen from these results that the samples considered contain a significant 

amount of heavy metals such Al, Cd, Fe, Pb, Sr and Zn. Bulk density of gypsum (1-

2mm) and gypsum (2-4mm) are similar. 

 
 
1.1. FTIR analysis 
 
FTIR carried out on pure products (Ca-HA, plaster and gypsum) were shown in 

Chapter III. Figure 58 illustrates the FTIR analysis of formulations containing Ca-HA. 

Infrared spectroscopy analyses were carried out on all considered formulations. The 

infrared analysis observations show similar spectra. The IR analysis of the AWP and 

AG formulations both showed the main peak of phosphate at 1022 cm-1. As expected, 

sulfate peak intensity increases when the plaster concentration in the formulations 

increases [6].The decrease of the intensity of phosphate bands indicates that the 

concentration of phosphate decreased by the effect of sulfate substitution. The 

increase in wave number and decrease of intensity of phosphate band ranging from 

1020 to 1035 cm-1 by increasing gypsum quantity provide some indications on the 

apatite arrangement structure modification by the formation of modified 

hydroxyapatite type calcium phosphate sulfate hydrate. The present interpretation 

agrees with XRD analysis described hereafter. For blends containing Ca-HA, gypsum 

and plaster (AWPG1 and AWPG2), the band displacement by increasing gypsum 

concentration spanning from 1089 to 1085 cm-1 and at 1109-1111 cm-1 region 
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absorption band, indicate the presence of phosphate and sulfate groups characterized 

by overlapping broad bands.  

 
On the other hand, the intensity of sulfate bands increases as plaster amount 

increases at frequencies varying from 1020 to 1035 cm-1 procures the phosphate sites 

substitution and reduction of its symmetry. Increasing the concentration of gypsum 

in composites leads the appearance of two bands corresponding to water. The same 

group is detected at region wave numbers of 1620-1618 cm-1 and reveals the presence 

of strongly held water. Broad absorption band with intensity decrasing as 

concentration of gypsum increases is attributed to unreacted calcite also present in 

synthesized Ca-HAGel. 

 

Figure 58 : Infrared spectra of materials and considered formulations 
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1.2. DRX analysis 
 
Figure 59 represents the XRD analysis of Ca-HA, plaster, gypsum and considered 

blends. Synthesized Ca-HA is characterized by ten main diffraction peaks 

(interrecticular distance) similar to the spacing peaks of a synthesized Ca-HA 

product [7].  

 

 
Figure 59 : X-ray diffraction of gypsum (*), plaster (^), Anhydrite (°), Ca-HA (Ca-HA, 
Hydroxylapatite (+) and Hydroxyapatite (×)) and considered formulations (□ Calcium 
Sulfate carbonate hydrate (Ca2SO4CO3.H2O), ∆ Ardealite (Ca2SO4HPO4OH.4H2O), ◊ 
Calcium phosphate sulfate hydrate (Ca(HPO4)x(SO4)1-x.2H2O), ♦ Strontium apatite 
(Sr5(PO4)3OH) 
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The X-ray diffraction patterns of gypsum and plaster have been discussed in Chapter 

III. The XRD analysis of formulations based on Ca-HA, plaster and gypsum mixtures 

with different size fraction reveals the apparition of new compounds. The XRD 

patterns illustrated in Figure 59 reveal the presence of modified Ca-HA. The main 

peak in the formulations XRD patterns was also hydroxyapatite as its high 

proportion in the blends. It should be noted that no sign of gypsum in the XRD 

patterns of formulation has been detected. The apparition of a new peak in the XRD 

patterns of formulations proves the formation of a new compound. Calcium sulfate 

carbonate hydrate was located at 14.7°2θ in the four formulations indicating that 

unreacted carbonate reacts with sulfates dissolved from gypsum and plaster. 

Calcium phosphate sulfate hydroxide hydrate (Ca2SO4HPO4OH.4H2O; Ardealite) 

have been found at 41.2°2θ and at 23.8°2θ in all blends. Calcium phosphate sulfate 

hydrate (Ca(HPO4)x(SO4)1-x.2H2O) has been located and at 29.5°2θ revealing the 

formation of double salt phase [6]. The presence of dissolved ions such as Ca2+, PO43- 

(non reacted phosphate from Ca-HA synthesis) and SO42- contribute to the formation 

of calcium phosphate sulfate hydrate. Strontium apatite has been identified at 72.7°2θ 

indicating that the strontium released from gypsum and plaster has been retained by 

Ca-HA during the leaching test. 

 
 
2. Influence of pH 
 
2.1. Acid-base neutralization capacity 
 
The chemical behavior of heavy metals is also controlled by the pH. The influence of 

pH on the leachability of salts and cations was evaluated by ANC test. Figure 60 

presents the curve of ANC of gypsum and plaster, illustrated by the pH variation as 

a function of added amount of H+ (0.1 M) and added amount of OH- (0.1 M). The pH 

decreases with increasing volume of acid. 
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Figure 60: Acid-base neutralization capacity of a) gypsum (—×—) and b) plaster (—
+—) 
 
The natural pH of gypsum determined in demineralized water is about 8.44. As 

shown in Figure 60 a), without added amount of acid or base, the value of pH is the 

same. By adding the amounts of acid, the pH shifted to pH below 8. The gypsum was 

characterized by an inflexion point localized at natural gypsum pH (pH=8.44). The 

plaster (see Figure 60 b)) is characterized by a plateau in the region of basic pH (10-

12) indicating the presence of lime. The inflexion point was observed at pH of 7.4. 

The inflexion point is shifted to 0.1 meq (OH-).g-1 of plaster. This result can be 

explained by the presence of small amount of phosphoric acid that modify the pH. 

For two materials, the acid neutralization was not achieved. Figure 61 shows the 

ANC curve of Ca-HA. The pH decreases with increasing added acid volume. The pH 

of Ca-HA was 8.25 corresponding to inflexion point. 
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Figure 61 : Acid-base neutralization capacity of Ca-HA 
 

A plateau was observed towards pH ranging from 4 to 6, corresponding to the 

dissolution of carbonates ions that neutralizes the added acid. It should be noticed 

that Ca-HA is characterized by a high neutralization capacity or buffer effect.  

 
 
2.2. Chemical elements availability 
 
The availability of alkaline and metal elements depends on the pH and their 

solubility. The ANC allows the determination of the leaching behavior and the rate of 

release of waste material at different pH values. The present leaching test (ANC) 

depends also on the material pH, the buffering capacity of the material and the pH of 

solution in contact with the material. The following elements, Al, Ca, Mg, Fe, P, SO4, 

Cd, Sr and Zn were selected and their concentrations were plotted against pH. The 

Figures 62 and 63 illustrates the release curves of selected elements. 
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Figure 62 : Amount of released elements from gypsum as a function of pH 
(The bold line represents the total amount occurring in the gypsum) 
 
The results of ANC test were expressed in mg.kg-1 of dried matter to evaluate the 

availability of chemical elements. The calcium increases by increasing the pH of 

leaching solution. The increase of calcium concentration in leached solution was also 

correlated to the released concentration of sulfate anions. The release rates of calcium 

from gypsum and plaster were about 1 and 3% respectively. The plaster hydration 

takes place at basic pH, hence the concentrations of calcium and sulfate were 

remained constant revealing that the pH change has no influence on the solubility of 

plaster. The magnesium concentration decreases with increasing the pH of leaching 

solution. In the case of gypsum, the magnesium was characterized by a rate of release 

passes from 5% to 2%. The rate of release of magnesium in the case of plaster 
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decreases from 5 to 1%. In basic region, the magnesium precipitates as hydroxide 

(Mg(OH)2). The amount of released phosphorus decreases with increasing the pH of 

the leaching solution and remains constant for pH higher than 6. The rate of release 

of phosphorus from gypsum was 2% and from plaster was 1%. The phosphorus can 

be combined to calcium to form calcium phosphate. Concerning the leaching 

behavior of major elements such as Al and Fe, the rate of release was different in acid 

and basic regions for Al and no influence of pH was observed for Fe. In acidic 

environment, the Al was more released with a rate of release ranging from 7 to 9% 

for plaster and 4 to 2% for gypsum, and its amount was decreased in neutral region 

where the rate release was 1%. The precipitation of Al(OH)3 in neutral milieu 

explains the decrease of Al amount. The release rate of Fe was remained constant in 

both regions of pH for gypsum and plaster with 1 and 2% respectively. The Zn is 

present in the both gypsum and plaster as Goslarite (ZnSO4.7H2O). In aqueous 

medium, the Zn only exists in divalent oxidation state (Zn(II)). Its released amount 

was localized under 100 mg.kg-1 of gypsum. No influence of leaching solution (i.e. 

pH of the solution) on Zn availability has been observed; it can be considered that Zn 

is also stabilized by its interaction with sulfate. The formation of zinc sulfate in 

aqueous phase or solid phase controls the Zn availability. The release rate of Zn from 

gypsum and plaster was 2 and 1% respectively. Cadmium is also associated to zinc, 

because they have a similar ionic structure and close electronegativity. Cadmium is 

classified as a chalcophile element. It can be present as sulfide compounds such as 

Greenockite (CdS(s)) and cadmium sulfate. The behavior of cadmium in the gypsum 

and plaster is slightly controlled by the pH. Whether in acidic or basic conditions, the 

released amount was the same. As known, the hydrolysis of cadmium begins at high 

pH and its concentration is limited by different solid phases as a function of pH, 

redox potential and leaching solution. The more stable predominant solid phase in 

oxidizing conditions is the combined phase sulfate/hydroxide in alkaline pH. 
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Figure 63 : Amount of released elements from plaster in function of pH 

(The bold line represents the total amount occurring in the plaster) 
 

The rate of release of cadmium from gypsum and plaster was 2 and 1% respectively 

regarding the total amount in the materials. The strontium occurs in gypsum as 

Celestine (SrSO4). It’s an alkaline metal and its solubility is pH independent and it is 

controlled by its availability. Strontium was released from gypsum and plaster up to 

1 and 2% levels respectively. 

 
The ANC was carried out on washed, filtered and dried Ca-HA. As known, the Ca/P 

molar ratio of Ca-HA after 48 hours of synthesis is about 2.36. Figure 64 shows the 

ANC results of Ca-HA. The leached amount of both calcium and phosphorus are 

relatively stable at pH ranging from 2 to 4. As observed from ANC carried out on Ca-
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HA, Ca-HA particles dissolves totally in acidic solution (pH less than 4). However, 

the dissolution of Ca-HA particles in acidic solutions leads to the total availability of 

calcium as Ca2+ hyxahydrate [Ca(H2O)6]2+ and phosphate as H3PO4 and H2PO4-. 

 

 

Figure 64 : Amount of calcium (—+—) and phosphorus (—×—) released from Ca-HA 
powder (dried at 105°C during 24 h) 
 
The rates of release of calcium and phosphorus were about 60 and 40% respectively 

in acidic region (pH less than 4). From pH higher than 4, the amount of calcium and 

phosphorus decrease slightly. At 6-8 pH region, phosphorus was not released 

revealing its insolubility near neutral pH. 

 
 
3. Effect of leaching duration 
 
The effect of leaching duration on the release of calcium, sulfate, phosphorus and 

strontium from gypsum and plaster was studied during leaching test. The Figure 70 

illustrates the metal concentrations in the leachate as a function of leaching duration. 

The leached amount of metals from gypsum was constant during the leaching test 

(Figure 65 a)). The pH of leachate increases slightly and achieves a constant value of 

8.8 at the end of leaching test.   
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Figure 65 : The effect of leaching duration on the leachability of calcium (—□—), 
sulfur (—∆—), phosphorus (—◊—) and strontium (—×—) from a) gypsum and b) 
plaster (···+··· pH, —+— Conductivity (mS.cm-1)) 
 
The phosphorus occurs in the leachate contains HPO42-. The rate of release of 

calcium, sulfate, phosphorus and strontium from gypsum were 3, 5, 1 and 1% 

respectively. In the case of plaster, the concentrations of calcium and sulfate decrease 

with increasing leaching duration and remain constant after 48 hours of tumbling. 

The hydration of plaster is the main process governing the leachability of calcium 

and sulfate. The release rates of calcium and sulfate from plaster were 7 and 3% at 

the equilibrium. Otherwise, the concentration of leached phosphorus and strontium 

increases in the beginning of the leaching test and reach a constant value at the 



181 
 

equilibrium (after 48 hours of leaching). The hydration of plaster may play a major 

role on the stabilization of metals. The leachate pH of plaster was acidic indicating 

that the leached solution contains phosphorous in form of H3PO4. The release rates of 

phosphorus and strontium from plaster was about 40 and 1% respectively.  

 
 
4. Effect of particle size 
 
In order to study the effect of particle size on leaching, three fraction of gypsum 

waste, less than 1mm, between 1 and 2mm and between 2 and 4mm have been 

prepared.  

 

Figure 66 : Leachability of calcium and sulfate from plaster, gypsum (<1mm), 
gypsum (1-2mm) and gypsum (2-4mm) as a function of the leachate pH (after 48 h of 
tumbling at 7 rpm) and soluble fraction (SF) 
 
Figure 66 shows the concentration of calcium and sulfate in the leachate as a function 

of particle size range of plaster and gypsum. It was found that the amount of sulfate 

leached from plaster is higher than the leached amount from  considered fractions of 

gypsum. The release rate of sulfate from gypsum with particles size less than 1mm, 

between 1 and 2 mm and between 2 and 4 mm was 2%. The concentration of leached 

calcium from gypsum was remained constant despite the increase of the gypsum 

size. The release rate of calcium from all fractions of gypsum was between 3 and 4%. 

In the case of plaster, the concentrations of calcium and sulfate were slightly higher 
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than those observed for gypsum fractions with rate of release ranged from 2 to 3% 

for both elements. The leaching results of plaster and gypsum at different particle 

size ranges are presented in Figure 67. 

 

Figure 67 : The amount of As, Cd, Pb and Zn in the leachate as a function of calcium 
sulfates particle size range tumbled at a speed of 7 rpm for 48h 
 
Calcium sulfate hemihydrated in contact with de-ionized water lead to particles 

hydration. Plaster powder contains higher amount of heavy metals. Acidic pH of 

plaster in de-ionized water triggers leaching of As, Cd, Pb, and Zn. In fact, the 

leached amount is controlled by a higher solubility of metals, the plaster solubility is 

9g.l-1. The hydration process plays a major role in heavy metals 

solidification/stabilization process. Particle size has little influence on Zn 

concentration in the eluate. However, for Cd, Pb and As, concentration decreases 

with decreasing particle size. The progressive dissolution of gypsum particles 

reduces the contact surface leading to heavy metals release, beforehand stabilized 

and solidified by hydration process. Indeed, during the hydration of calcium sulfate, 

the metals could be retained and sequestered in the gypsum lattice by nucleation and 

growth of gypsum particles.    
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5. Effect of Liquid/Solid ratio 
 
5.1. Gypsum leaching test 
 
The effect of liquid to solid ratio (L/S) on the leachability of calcium and sulfate 

using demineralized water is shown in Figure 68. The amount of leached calcium 

and sulfate from gypsum increases proportionally with increasing the L/S ratio. The 

pH was basic and increased slightly and decreased after achieved 9.2 at 40 L/S mass 

ratio. The decrease in the pH value for L/S more than 40 l.kg-1 was explained by the 

dilution effect (the increase in the volume of demineralized water).  

 

 

Figure 68 : Leached amount of calcium and sulfate in gypsum (<1mm) at different 
L/S ratios  
 
The influence of the water dilution is the main mechanism leading to the increase of 

the concentration of calcium and sulfate in leachate. Figure 69 illustrates the Ca/SO4 

ratio versus L/S ratios ranging from 10 to 100 l.kg-1. The Ca/SO4 ratio increases with 

increasing L/S ratio and achieves a constant value at 60l.kg-1 L/S ratio.  
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Figure 69 : The Ca/S and Ca/SO4 ratios in function of L/S ratio 
 

 
Figure 70 : Leachablity of As, Pb and Zn  from gypsum (<1mm) (mg.kg-1) at different 
L/S ratios  
 
The increase of Ca/SO4 was mainly due to the dissolution of water on gypsum 

particles leading to the modification of gypsum structure. The stabilization of 

Ca/SO4 at 60 L/S mass ratio indicates that the buffering mechanism was reached as 

demonstrates by the pH values. The influence of liquid to gypsum solid (L/S) ratio 

on heavy metals leaching behavior is shown as leachable contents in Figure 70. 

Leachability of gypsum depends also on the solubility. The pH value increases 
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constantly and remained constant at ≈9.2 as the L/S ratio increases from 40/1 to 60/1 

l.kg-1. For L/S ratio more than 60/1 l.kg-1, the leachate pH decreases. The leachable 

content in gypsum dihydrated increases with increasing L/S ratio; this is due to the 

de-ionized water dilution. Otherwise, these increased concentrations was correlated 

and influenced by the stability of pH value.  

 
 
5.2. Plaster leaching test 
 
The results obtained on the influence of L/S ratio in the leaching capacity of calcium 

and sulfate from plaster are similar to those obtained for gypsum. Figure 71 shows 

the leached amount of calcium, phosphorus and sulfate from plaster against L/S 

ratio.  

 

Figure 71 : Leached amount of calcium and sulfate in plaster at different L/S ratios  
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Figure 72 : The Ca/S and Ca/SO4 ratios in function of L/P ratio 
 
The released amount of calcium and sulfate increases with increasing L/S ratio. The 

released amount of phosphorus was negligible. The pH value of leachate was acidic 

at different L/S ratios. As shown in Figure 72, the ratio Ca/SO4 was constant for L/S 

above 20 l.kg-1 indicating that the dissolution of plaster is controlled by the hydration 

and the 20 L/S ratio may procure indications for the availability and the behavior of 

heavy metals leachability.  

 

 

Figure 73 : Leachability of As, Pb and Zn from plaster (mg.kg-1) at different L/S 
ratios 
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The influence of L/S ratio on the leachability of heavy metals from plaster may be 

illustrated by plotting the leached amount of selected heavy metals in function of 

L/S ratio. The Figure 73 exhibits the leached concentration of As, Pb and Zn from 

plaster industrial product. From results given in Figure 73, acidic leachate pH 

increases slightly with increasing L/S ratio. Therefore, it can be explained as a buffer 

effect of de-ionized water. The Pb concentration in plaster leachate is below the 

detection limit (matter was undetected, this results indicates that Pb remains fixed as 

Pb-hydroxide when L/S is more than 20/1 l.kg-1. Leached concentration of Zn from 

plaster hemihydrated particles increased by increasing liquid to solid ratio (L/S) and 

remains constant at L/S ratio more than 80/1 l.kg-1. Acidic leachate pH plays a major 

role in alkalinity changes and then influences the leachability of As.  

 
 
6. Comparative study (Ca-HA – Plaster – Gypsum formulations) 
 
To study the influence of Ca-HAGel on the stabilization of sulfate and strontium from 

calcium sulfate wastes, obtained results of leaching tests on the formulations cited in 

Table 24 were discussed. Figure 74 presents the leaching test carried out on AWP 

blend. At the beginning of the test, the leached amount of phosphorus decreases in 

function of leaching time. The amount of leached sulfate increases slightly and 

achieves a relative stable concentration after 3 hours of leaching. 

 
The pH was neutral during leaching test indicating that the leachate may contain 

phosphorous in form of H2PO4- or HPO42-. The leachable phosphorus is unreacted 

phosphorus remaining in the Ca-HA suspension and the leachable amount occurring 

in plaster. The decrease of phosphate indicates the formation of calcium phosphate 

sulfate hydrate as confirmed by XRD analysis. Ca-HA stabilizes about 70% of 

released sulfate from plaster. In one hand , phosphate was substituted by sulfate 

anions in the Ca-HA structure. In the other hand, sulfate may react with free 

phosphate and calcium leading to calcium sulfate-phosphate hydrate formation. 

After 50 hours of leaching, phosphorus was relatively constant up to 5%. 
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Figure 74 : Leachability of calcium, phosphorus, sulfur and strontium from AWP 
formulation (—◊— Phosphorus, —□— Calcium, —∆— Sulfur, —×— Strontium, --+-- 
pH and --*-- conductivity (mS.cm-1)) 
 
The release rates of total calcium (plaster and Ca-HA calcium) and sulfate from AWP 

blend were 0.3 and 5% respectively. The hydration of plaster when blended with Ca-

HA suspension leads to the formation of hydrated gypsum and explains the decrease 

of calcium and sulfate quantities in the leachate. This reveals that the hydration of 

plaster controls the leachability of sulfate from AWP matrix. The strontium release 

rate was 0.01% indicating that the released amount was totally adsorbed on Ca-HA 

particles. The strontium release rate decreases in comparison this release rate to the 

release rate obtained in the case of plaster leaching test (1%). 

 
Figure 75 shows the concentration obtained for calcium, phosphorus, sulfur and 

strontium released from formulation based on Ca-HA and gypsum (<1mm) as a 

function of the leaching time. The released amount of calcium and sulfur increase 

dramatically in the beginning of the leaching test and remain relatively constant after 

150 minutes indicating the equilibrium. The pH of leachate was basic revealing the 

presence of H2PO4- or HPO42- as phosphates. The release rate of calcium and sulfur 

from AG blend were 2 and 32% respectively. 
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Figure 75 : Leachability of calcium, phosphorus, sulfur and strontium from AG 
formulation (—◊— Phosphorus, —□— Calcium, —∆— Sulfur, —×— Strontium, --+-- 
pH and --*-- conductivity (mS.cm-1)) 
 
Ca-HAGel plays a major role in the stabilization of released sulfate. In the case of AG 

blend, about 30% of sulfate was stabilized by adding Ca-HAGel. The released amount 

of phosphorus and strontium was neglected as far as the high leached amount of 

calcium and sulfur is concerned. Their release rate from AG blend were 0.3 and 0.4% 

respectively. Strontium amount released from gypsum was stabilized and retained 

by Ca-HA. However, more 70% of released strontium was stabilized by Ca-HAGel. 

The stabilization of strontium may be due to the reaction with phosphate and 

calcium in the leachate to produce a new compound or to the 

dissolution/precipitation mechanism. Strontium-hydroxapatite may be presented as 

Ca9Sr(PO4)6(OH)2 and Ca3Sr7(PO4)6(OH)2 depending on the availability of strontium 

[8]. Figure 76 presents the results of leaching test carried out on blend containing Ca-

HA, plaster and gypsum (<1mm). The amounts of calcium and sulfate were 

maintained constant during the leaching test at neutral pH and the release rates of 

calcium and sulfate from AWPG1 matrix were 2 and 17%.  
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Figure 76 : Leachability of calcium, phosphorus, sulfur and strontium from AWPG1 
formulation (—◊— Phosphorus, —□— Calcium, —∆— Sulfur, —×— Strontium, --+-- 
pH and --*-- conductivity (mS.cm-1)) 
 
The rate of release of phosphorus and strontium from AWPG1 blend were 0.3 and 

0.1%. The small released amount of phosphorus indicates its combination with 

calcium and sulfate in the leachate to generate precipitated compounds. The amount 

of released strontium decreases when the Ca-HA was added to AWPG1 blend 

revealing its good stabilization.  

 

 

Figure 77 : Leachability of calcium, phosphorus, sulfur and strontium from AWPG2 
formulation (—◊— Phosphorus, —□— Calcium, —∆— Sulfur, —×— Strontium, --+-- 
pH and --*-- conductivity (mS.cm-1)) 
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As shown in Figure 77, the leached amount of sulfate was higher than at for calcium 

with Ca/SO4 molar ratio of 0.3. The quantities of calcium (released from Ca-HA, 

plaster and all gypsum fractions) and sulfate increase with increasing the leaching 

time. However, the release rates of calcium and sulfate were 2 and 16% respectively. 

The amount of phosphorus decreases with increasing leaching time and has a 

concentration ranging from 100 to 500  mg.kg-1 of AWPG2. The release rate of 

phosphorus at the end of leaching test was 0.3% indicating that the phosphate 

occurring in solid-suspension was reacted with dissolved gypsum and Ca-HA 

calcium. According to the constant leachate pH, the precipitation of calcium 

phosphate and calcium sulfate-phosphate hydrates plays a major role to stabilize the 

AWPG structure and governs the leachability of major elements. The strontium was 

characterized by a release rate of about 0.03%.  

 
The comparison between formulations in term of released elements was based 

assuming equilibrium during the leaching test. Table 26 recapitulates the 

concentrations of released element. The low value of the conductivity at the 

equilibrium shows that the leachate from materials and formulations contains less 

soluble elements. In the case of AWP blend, using Ca-HAGel led to stabilize above 

80% of sulfur. The decrease in the amount of calcium released was explained by the 

hydration process and the formation of calcium phosphate – sulfate hydrate. The 

amount of released phosphate was increased in comparison to the amount released 

from plaster. This could be explained by the presence of free phosphate in Ca-HAGel. 

The concentration of released strontium (3 mg.kg-1 AWP) from AWP blend indicates 

its retention by Ca-HA particles and/or its reaction with free phosphate leading to 

strontium apatite precipitation. Strontium amount released from plaster was higher 

than those released from AWP blend; this result proves that Ca-HA particles and free 

phosphate play a primordial role in the stabilization of released strontium. 
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Table 26 : Summary of release of elements at equilibrium from materials and 
considered blends  
 pH Conductivity 

(mS.cm-1) 
Ca 
(mg.kg-1) 

S  
(mg.kg-1) 

P  
(mg.kg-1) 

Sr 
(mg.kg-1) 

Plaster 2.4 3.6 10000 10000 2000 200 
G 1mm 8.8 2.1 7000 14000 40 300 
G 1-2mm 8.1 2.1 5000 6000 4 100 
G 2-4mm 8.6 2.1 5000 6000 8 100 
AWP 7.0 10.6 200 1600 4000 3 
AG 8.4 8.0 3000 11000 200 85 
AWPG1 7.2 7.7 4000 11000 30 300 
AWPG2 6.7 8.5 6000 14000 200 100 
 
 
The calcium and sulfur released from the formulation AG were less than those 

released from gypsum (<1mm). Substituting 80% of gypsum by Ca-HA leads to 

decrease of calcium and sulfur amount released (i.e. about 60 and 20% of calcium and 

sulfur were stabilized). The stabilization of calcium and sulfur is essentially due to 

the re-precipitation of gypsum and the formation of calcium sulfate phosphate 

hydrate. The phosphorus amount released from AG was five times higher than the 

released amount from gypsum (<1mm). This can be related directly to free 

phosphate available from Ca-HAGel. Released strontium was stabilized by Ca-HA 

particle (above 70% of released strontium was retained). For formulations blended 

with both plaster and gypsum with different fraction sizes, the total amount of 

calcium, sulfur, phosphorus and strontium was calculated as a function of plaster 

and gypsum proportions. Increasing the amount of gypsum in AWPG1 and AWPG2 

formulations leads to the increase of leached calcium and sulfur. The amount of 

released phosphorus decreased, it is correlated to the proportion of Ca-HAGel 

introduced and the released amount from plaster. It is difficult to compare the 

released amount of studied elements from AWPG1 and AWPG2 to those released 

directly from plaster or gypsum with different fractions. Amount of released 

strontium from AWPG1 and AWPG2 formulations was approximately similar to 

amount of strontium released from plaster or gypsum. Nevertheless, this results is 

commonly related to the amount of gypsum added.  
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7. Stabilization of hazardous pollutants 
 
In this present section, the stabilization of cadmium, lead and zinc will be briefly 

discussed. The leaching results are illustrated by the release rate of heavy metals as 

presented in Figure 78. The release rate of heavy metals from all considered blends 

was negligible (<0.3%). The release rates were calculated in function of the total 

amount of selected heavy metals presents in plaster and gypsum with different grain 

size. The leached amount of cadmium was less than the leached amount of lead and 

zinc in AWP blend. The rate of release of lead in both AWP and AG blends was 

higher than that calculated for AWPG1 and AWPG2.  

 

 

Figure 78 : The release rate of Cd, Pb and Zn in the leachate as a function of 
considered formulations 
 
The results obtained in the section 3.4 (effect of grain size) have shown that 

increasing the gypsum fraction, the leached amount of lead increases. Adding Ca-

HAGel to plaster, gypsum (particle size between 1 and 4mm) according to AWPG1 

and AWPG2 formulations leads to the stabilization of leached selected heavy metals. 

Adsorption, cation exchange and precipitation are the main mechanisms of heavy 

metals stabilization by Ca-HAGel.  

 

 

 

Cd
Cd

Cd Cd

Pb
Pb

Pb Pb

Zn
Zn

Zn Zn
0.00

0.05

0.10

0.15

0.20

0.25

0.30

AWP AG AWPG1 AWPG2

R
at

e 
of

 r
el

ea
se

 o
f h

ea
vy

 m
et

al
s 

(%
)

Formulation



194 
 

8. Conclusion 
 
Different formulations considered in this chapter were characterized by XRD and 

FTIR. XRD analysis have shown the formation of new compounds like calcium 

sulfate carbonate hydrate, calcium phosphate sulfate hydroxide hydrate and calcium 

phosphate sulfate hydrate. FTIR analysis have revealed that the decrease of the 

intensity of phosphate bands indicates that the symmetry of phosphate decreased 

because of the effect of sulfate substitution. The increase in wave number and 

decrease of intensity of phosphate band provide some indications on change of 

apatite structure. The availability of chemical elements released from Ca-HA, 

gypsum and plaster was studied using ANC standardized method. Concerning Ca-

HA powder particles, calcium and phosphorus were released at pH less than 4. The 

dissolution of Ca-HA takes place at acidic region. The released amount of calcium 

and phosphorus from Ca-HA remained constant and negligible indicating that Ca-

HA are stable at basic pH zone. The stability of Ca-HA is promoted by the formation 

of precipitated hydroxide. For gypsum and plaster by-products, the behavior of 

leached heavy metals depends also on the pH and the solubility. Leaching tests have 

shown that the leaching duration, particle size and L/S ratio influence the release of 

calcium, sulfate and selected heavy metals from plaster and gypsum fractions. 

Leaching tests carried out on considered formulations have revealed that Ca-HAGel 

and plaster hydration control sulfate release and the amount of released strontium 

from plaster and gypsum fraction. Ca-HAGel stabilized heavy metals released from 

both plaster and gypsum and AWPG1 and AWPG2 have shown a low heavy metals 

release rate. The selection of favorable formulation will be based on the 

determination of hydraulic performance discussed in the Chapter VIII. 
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Chapter VIII 
Percolation test and hydraulic performances of hydroxyapatite  
(Ca-HAGel)/plaster/gypsum permeable reactive barrier (PRB) 

 
I. Introduction 
 
The Environmental Protection Agency (EPA) defined the Permeable Reactive Barrier 

(PRB) as a subsurface emplacement of reactive materials perpendicularly to the 

groundwater flow following a natural hydraulic gradient. PRB performances depend 

on the pollutant quantity, flux velocity of groundwater and hydraulic properties 

recognized as durability index. Permeability and porosity are considered the 

important parameters characterizing the barrier hydraulic capacity and allowing the 

flux of water and solutes through a geometric reactive media. They are also affected 

to the PRB performances. Several relationships between permeability and porosity 

could be used to simulate their evolution based on macro and microscopic 

morphologies and specific surface areas of materials. The PRB implementation 

requires that reactive material permeability be sufficient (i.e. permeability coefficient 

(K) of 10 to 10-4 cm.s-1) and more permeable than aquifer permeability to facilitate the 

drainage and ensure the flux continuity. The permeability is correlated to the 

porosity and particle size representing the porous structure. Consequently, Kozeny-

Carman model (1937) based on the assimilation of porous media as an assembly of 

capillary connected tubes takes into account the porosity and specific surface area of 

particles to estimate the intrinsic permeability.  

 
The main purposes of this chapter are to evaluate the hydraulic performances 

(permeability and porosity) of formulations containing hydroxyapatite gel (Ca-

HAGel) and both hemihydrated and dihydrated calcium sulfate. The percolation test 

will be carried out to evaluate the capacity of Ca-HA to stabilize calcium sulfate 

wastes. The influence of formulations composition on the physical, chemical and 

durability performance were investigated. 
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II. Materials and methods 
 
1. Calcium phosphate / Calcium sulfate Formulations 
 
The considered formulations studied in this work were prepared by mixing Ca-

HAGel and plaster (plaster was blended with water according to W/P mass ratio of 

0.4 to ensure its initial hydration) and, Ca-HAGel and gypsum with proportion of Ca-

HAGel of 80% and 20% of calcium sulfate respectively. Ca-HA used in this work was 

characterized by Ca/P atomic molar ratio of 2.3. The formulations AWPG1 and 

AWPG2 were bended with W/P mass ratio of 0.4. Table 27 summarizes the 

considered formulations. The formulation AWPG2 was blended with 10% of gypsum 

(1-2mm) and 20% of gypsum (2-4mm) to investigate the influence of gypsum particle 

size dissolution in the presence of Ca-HAGel.  

 

Table 27 : Gypsum, plaster and Ca-HAGel considered formulations 
Products Formulation 

1 
AWP 

Formulation 
2 

AG 

Formulation 
3 

AWPG1 

Formulation 
4 

AWPG2 
Ca-HAGel (%) 80 80 64 56 

Plaster (%) 14.28 0 11.43 10 
Water (%) 5.72 0 4.57 4 

Gypsum (dp<1mm) (%) 0 20 20 0 

Gypsum (1-2mm) (%) 0 0 0 10 

Gypsum (2-4mm) (%) 0 0 0 20 

 

The formulations were proposed to evaluated the reactivity of Ca-HAGel to stabilize 

the calcium sulfates wastes and finally to select the adequate PRB formulation to be 

assessed. 

 
 
2. Characterization procedures 
 
The chemical analysis of both calcium sulfates and hydroxyapatite were carried out 

using inductively coupled plasma spectrometry (ICP-AES) to determine the impurity 

content. ICP-AES analyses were performed on a ULTIMA-2 (JOBIN YVON 

HORIBA).  
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3. Water absorption capacity  
 
Water Absorption Capacity (WAC) determination was made following the ADEME 

procedures’ (Agence de l’Environnement et de la Maîtrise de l’Energie; Environment and 

Energy Management Agency). Absorption capacity represents stored water amount 

in the structure of particles. This method describes the behavior of surface exchange 

between water and surface of particles. It gives indications concerning the amount of 

water needed to reach a perfect plaster hydration and the influence of gypsum 

particle size on the retention capacity of water molecules. Water Absorption Capacity 

(WAC) was determined by a static method consisting in contacting 10g of matter 

with de-ionized water according to Liquid to Solid (L/S) ratio of 10. The WAC is 

based on mass loss affected to solubilization and corrosion of particles, volume of 

stored water and mass of cake after filtration have been determined. Hence, soluble 

fraction percentage was evaluated by filtering the suspensions and collected water 

was dehydrated in sandbox heated at 103±2°C and the dry residue was weighed.  

 
Operating mode is described in details as follows: 

 
♦ Weighting the sample (m0); 

♦ Introducing sample in de-mineralized water (L/S=100ml.10-1g-1); 

♦ Contact during 15min in a closed container to prevent evaporation of water; 

♦ Separating sample from water by draining and weighing the wet sample 

(m15min); 

♦ Filtration of collected water, weighing the filter cake (G15min),   

♦ Determining the soluble fraction in the water (SF) by dehydration at 105±2°C 

and weighing the dried residue. 

 
WAC (wt%) of samples was calculated according to: 
 
WAC = 

 "ÂLÈÉ!ÊL��"!µË�! "ÂLÈÉÌ
Ê ���7�Í�7£"ÂLÈÉÌ  [Eq.1] 
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4. Durability index 
 
4.1. Permeability 
 
Permeability assessment was made using an experimental device illustrated in 

Figure 79 to carry out the percolation test. Butterfly valves were installed to control 

air pressure and water flow. The cell volume of 343.36cm3 was filled by tested sample 

and applied pressure was a differential pressure attained by compressed air varying 

from 1.1 to 1.5bars relative pressure. Flow rate was derived by mass of filtered water 

during 1h of filtration (i.e. to achieve laminar flow). The permeability value (intrinsic 

permeability, K) was calculated by using Darcy’s relationship:  

 
K = �n

F
∆�ρg [Eq.2] 

 
Where Q is the flow rate of filtered water (cm3.s-1); A is the cross section of sample 

test (cm2); H is the length of sample test (cm); ∆P is pressure difference (P2-P1) (P1 is 

the applied pressure of inlet water (Pa) and P2 is the pressure of outlet water equal to 

atmospheric pressure (1.013MPa)); ρ is the density of water considered equal to 

1.0g.cm-3 and g is the gravity constant (9.81m.s-2).  

 
Figure 79: Constant head permeability test, a) permeability device schema for 
material presenting a high head loss b) permeability device schema destined to 
evaluate permeability of grain size above 1mm (V.1 Air pressure valve; V.2 Water flow 
control and purge valve; V.3 Water flow control valve) 
 

a) b) 
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The method (a)) has been chosen to evaluate the permeability of Ca-HAGel and Ca-

HAGel with calcium sulfates, i.e. for material presenting a high head loss, and method 

(b)) was applied to measure the permeability of gypsum grains (1-2mm and 2-4mm). 

 
 
4.2. Porosity 
 
The porosity was calculated by evaluating the compactness of formulations. The 

compactness Φ relationship is as follows: 

                                                                                                        
Φ = �

�TfÎ²
�

 with Ø= 1 – Φ [Eq.3] 

 
Where Ø is the porosity, ρB is the bulk density of the solid (g.cm-3), W is the Ca-HAGel 

water (g) and S is the total amount of solid (g). For binary blends, ρB is the weighted 

average of solid densities with YCa-HA, YP and YG are the proportions of Ca-HAPowder, 

plaster and gypsum in the blends respectively (ρB= YCa-HA. ρCa-HA + YP.ρP or ρB= YCa-

HA. ρCa-HA + YP.ρG with YCa-HA + YP =1 and YCa-HA + YG=1).  

 
 
5. Percolation test (French standard) 
 
The percolation test was carried out according to NF CEN/TS 14405 French standard 

[1] to determine the dynamics of release of the materials under standard conditions. 

The test is applied to compact granular materials in a fixed bed. The column used in 

this study had a diameter of 90mm (granularity of waste is less than 4mm fraction 

<80%) and a height of 54mm. A sample fixed bed was prepared in five layers. The 

demineralized water follows an ascending flow using peristaltic pump following a 

constant flow rate of 20 ml.min-1. Figure 80 illustrates the percolation test according 

to predefined procedure. Filter paper was placed on filtration system to avoid the 

transport of Ca-HA particles. 
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Figure 80: Percolation test system (1: reservoir, 2: peristaltic pump, 3: filter system, 4: 
permeametric cell, 5: weighing) 
 
The test was stopped when the L/S ratio achieved 10 l.kg-1. The filtrate was 

recovered by fractions corresponding to 0.1, 0.2, 0.5, 1, 2, 5 and 10 l.kg-1 L/S ratio.   

 
 
III. Results and discussion 
 
1. WAC of materials 
 
The results obtained show that the absorption capacity of water by calcium sulfate 

particles was higher than 50% as shown in Figure 81. WAC of plaster was about 60%, 

indicating that the hydration process of hemihydrated particles is limited at W/P 

ratio below 10. 

 
Figure 81 : Water absorption capacity of plaster and gypsum grains 
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On the other hand, it can be concluded from gypsum stoichiometry that water 

consumption corresponding to W/P ratio of 10 is about 1.86%. This is explained by 

the influence of water amount on the hydration by the dissolution and buffering 

effect of water. Absorption capacity of already hydrated gypsum is influenced by 

particle size and agglomeration. Absorption capacity increases by increasing size of 

gypsum grains; this is expected to bring chemical bonds between hydrated particles 

leading to porosity creation. When all the open pores are completely filled with water, 

gypsum grains are saturated, and the stored water is estimated to water absorbed in 

the case of plaster. As known, present gypsum was obtained by plaster filtration 

using water to extract remained phosphorus content (phosphoric acid production); 

plaster filtration implies particle hydration and amount of water added controls 

porosity rate. Gypsum grains of size ranging from 1-2mm and 2-4mm in contact with 

water have tendency to absorb water into the void space created by water 

evaporation during hydration period.       

 
 
2. Permeability  
 
2.1. Material permeability  
 
The permeability of Ca-HAGel and Ca-HAPowder was determined according to the 

device illustrated in Figure 79 a). Figure 82 shows the flow rate as a function of the 

section (A) and hydraulic gradient (i). The slopes of the straights represent the 

permeability values of Ca-HAGel and Ca-HAPowder that are of 5.10-5 and 7.10-5 cm.s-1 

respectively.   
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Figure 82 : Permeability of Ca-HAGel (a) and Ca-HAPowder (b) 
 
Ca-HA is classified as impermeable. Silty texture of Ca-HA describes its 

impermeability, which is against a good drainage. Permeability using Hazen 

equation [2] based on d10 of Ca-HA particles agrees with the obtained permeability 

values (i.e. permeability of Ca-HA calculated using Hazen equation was 2.10-5 cm.s-

1). Figure 83 shows the flow rate against the section of gypsum and hydraulic 

gradient. 

 

 

Figure 83 : Permeability of gypsum (<1mm) 
 
Gypsum was classified as sandy-silt and characterized by a permeability of 2.10-4 

cm.s-1. Consequently, gypsum allows a good drainage of water and could be 

considered as a permeable material. Permeability test on plaster was not carried out 
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because the plaster hydration gives a solid with high head loss, making difficult the 

water flow throughout the solid body. The permeability of plaster was estimated 

using Hazen equation and its value is about 10-4 cm.s-1 and it classified as silt. The 

permeability of gypsum grains vary with particle size between 1 and 2 mm and 

gypsum grains with particles between 2 and 4 mm was evaluated using the device 

illustrated in Figure 79 b). Figure 84 shows the relationship between flow rate and 

permeability of gypsum grains as a function of peristaltic pump rotation. Flow rate 

increases linearly with the rotation velocity. Increasing the rotation velocity leads to 

the increase in the head pressure and at constant flow rate, permeability is constant.  

 

 
Figure 84 : Permeability of gypsum (1-2mm) (a) and gypsum (2-4mm) (b) 
 
Permeability increases constantly as a function of the pump rotation velocity (flow 

rate). However, the permeability value of gypsum grains was the average of 

determined permeabilities at different constant flow rates. The permeability values of 

gypsum (1-2mm) and gypsum (2-4mm) were 3.10-4 and 4.10-4 cm.s-1 respectively. 

 
 
2.2. Considered formulation permeability 
 
The permeability of considered blends was calculated from parameters evaluated 

from device shown in Figure 79 a). Figure 85 illustrates the flow rate in the outlet as a 

function of sample section and hydraulic gradient. Adding 20% of W/P (0.4) blend to 
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Ca-HAGel increases the permeability of Ca-HAGel. The permeability of AWP blend is 

9.10-5 cm.s-1.  

 

 

  
Figure 85 : Permeability of AWP, AG, AWPG1 and AWPG2 considered blends 
 
Increasing the amount and the grain size of gypsum in blends containing Ca-HAGel 

leads to the increase in the permeability. Substitution of gypsum with different 

fractions and plaster hydration govern the permeability and the stability of blends. 

The permeability of AWPG2 blend was 5.10-4 cm.s-1 suggesting a good drainage 

capacity.   
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formulations decreases by decreasing the amount of Ca-HAGel. The porosity of AWP 

formulation containing Ca-HAGel and plaster is higher than the porosity of 

formulation containing gypsum.  

 

 
Figure 86 : Calculated porosity of considered formulations  
 
The porosity of AWPG1 blended with gypsum (<1mm) is higher than the porosity of 

AWPG2 formulated with gypsum having particle size varying from 1 to 4 mm. 

Consequently, the increase in gypsum particle size leads to the decrease of blends 

total porosity. It seems that the porosity evaluation from the compactness of blend is 

not linked with the particle size and the intrinsic porosity but corresponds to the total 

bulk density of solids. Gypsum grains may absorb up to 50% of free water as 

determined by WAC method. However, the porosity of considered formulations is 

equivalent to the saturated water content.       
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free phosphate and calcium in Ca-HA suspension. Figure 87 shows the leached 

amount of calcium and phosphorus against time, conductivity and pH. The pH was 

basic and its value (pH ≈ 8) indicates the presence of HPO42- ions. The conductivity 

value decreases with increasing percolation time. 

 

 
Figure 87: Leached amount of calcium and phosphorus from Ca-HA as a function of 
leaching time, pH and conductivity (—◊— Phosphorus, —□— Calcium, --+-- pH and 
--+-- conductivity (mS.cm-1)) 
 
It can be noticed that the total amount of calcium and phosphorus percolated from 

Ca-HAGel were 400 and 8000 mg.kg-1 Ca-HAGel. The cumulated amount of calcium 

and phosphorus leached from Ca-HAGel increases with increasing leaching time. 

Their concentrations remain stable after 800 minutes (1h30) of leaching time. The 

release rates of calcium and phosphorus were 13 and 3% respectively. The 

percolation tests pointed out that there are free calcium and phosphorus, ions that 

could leached and later precipitate available metal ions in solution.  
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test, H3PO4 and H2PO4- are present in the filtrate, and after 600 minutes (10 h) of 

percolation experiment, only H2PO4- is present following phosphoric acid speciation.   

 

 

 
Figure 88: Leached amount of calcium (--□--), phosphorus (--◊--), sulfur (--∆--) and 
strontium (--×--) from column percolation test of plaster (a) and gypsum (<1mm) (b) 
in function of leaching time, pH (--+--) and conductivity (—+—) 
 
The pH of gypsum increases and remains approximately constant after 400 minutes 

of percolation test. The basic pH of gypsum is correlated to the presence of HPO42- 

ions. The conductivity in both cases decreases with the percolating time indicating 

the decrease of ionic content in the percolate. Cumulated concentrations increase 
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plaster which inhibits and limits the dissolution of calcium and sulfate by the 

formation of gypsum precipitate. The release of sulfate from plaster and gypsum is 

<50 000 mg.kg-1. According to waste acceptance criteria, these materials are 

considered non-hazardous. The release rates of phosphorus from plaster and 

gypsum were 12 and 5% respectively. For strontium, differences were observed for 

gypsum and plaster and a rational explanation can be given for these difference that 

the hydration of plaster stabilizes the strontium. The release rates of strontium from 

plaster and gypsum were 4 and 13%. 

 
 
4.3. Influence of gypsum particle size 
 
In order to explain the leachability of calcium, sulfur, phosphorus and strontium as a 

function of particle size, percolation test was carried out on gypsum with particle 

size ranging from 1 to 4 mm (1-2 mm and 2-4 mm). The percolating results are 

presented in Figure 89. The conductivity and pH achieve a constant value after 1 h of 

percolation test. The pH increases slightly at the beginning and remain constant 

afterwards. Neutral pH reveals the presence of H2PO4- and HPO42- in significant 

amount. The quantity of percolated calcium, phosphorus, sulfur and strontium 

increases with percolating time. Amount of calcium and sulfur percolated from 

gypsum 1-2 mm stabilize after 600 minutes of percolating time. Their release rates 

were 20 and 10% respectively. 
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Figure 89: Leached amount of calcium (--□--), phosphorus (--◊--), sulfur (--∆--) and 
strontium (--×--) from column percolation test of gypsum (1-2mm) (a) and gypsum 
(2-4mm) (b) in function of leaching time, pH (--+--) and conductivity (—+—) 
 
Otherwise, the amounts of calcium and sulfur percolated from gypsum (2-4mm) 

achieve a constant value after 800 minutes of percolation time with rates of release of 

18 and 11% respectively. The gypsum particle size has no influence on the percolated 

amount of calcium and sulfur at the end of percolation test, while the percolation 

time has. The release rates of phosphorus and strontium were 6 and 12% 

respectively.  

 
 
4.4. Leachability of considered formulations 
 
To study the stabilization of sulfate and strontium using Ca-HAGel, the percolation 

test was carried out on considered formulations. Figures 90, 91, 92 and 93 illustrate 

the cumulated released concentration of calcium, sulfur, phosphorus and strontium 

from different considered blends versus L/S mass ratio. The logarithmic plot was 

used to facilitate the interpretation of the results. The pH and conductivity values 

were measured to evaluate the ionic amount and element speciation in the percolate. 
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Figure 90 : Percolated amount of calcium (--□--), phosphorus (--◊--), sulfur (--∆--) and 
strontium (--×--) from column percolation test of AWP blend in function of leaching 
time, pH (--+--) and conductivity (—+—) 
 
Conductivity value decreases with L/S mass ratio and achieved a constant value at 5 

L/S mass ratio indicating that the free ions were percolated and extracted from AWP 

formulation. The pH value remained constant at 8.0 for different L/S mass ratio. As 

it can be seen from Figure 90, the concentration of phosphorus and sulfur increases 

as a function of L/S mass ratio. Their concentrations remained constant from 1 L/S 

mass ratio. The release rates of phosphorus and sulfate from AWP blend were 0.5 

and 0.1% respectively. The cumulated concentration of strontium and calcium 

increases with increasing L/S mass ratio. From Figure 91, the cumulated 

concentration of calcium, phosphorus and strontium stayed constant at 2 L/S mass 

ratio.  

 

For comparison, concentration of calcium released from AG blend was 

approximately 5 times higher than calcium released from AWP blend. This can be 

explained by plaster hydration and the precipitation of calcium sulfate phosphate 

hydrates. The release rate of phosphorus was 0.5 and the rate of release of calcium 

was negligible despite the high released cumulated concentration. The release rate of 

sulfate and strontium were 0.1 and 0.04%. 
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Figure 91 : Percolated amount of calcium (--□--), phosphorus (--◊--), sulfur (--∆--) and 
strontium (--×--) from column percolation test of AG blend in function of leaching 
time, pH (--+--) and conductivity (—+—) 
 
The obtained results demonstrate the capacity of Ca-HAGel to control the release of 

sulfate and strontium from gypsum wastes. Figure 92 shows the accumulated 

concentrations of calcium, phosphorus, sulfur and strontium from AWPG1 blend. 

Conductivity value measured on recovered filtrate decreases as a function of L/S 

mass ratio. At 2 L/S mass ratio, the conductivity value was constant revealing the 

total leachability of dissolved ions (i.e. phosphate and sulfate). The pH value was 

acidic and the phosphate may be present as H2PO4- and HPO42-.  

 
The cumulated concentrations of calcium, phosphorus, sulfur and strontium 

increases with increasing L/S mass ratio. The rates of release of calcium and 

phosphorus were 0.02 and 0.03% respectively. The rates of release of sulfate and 

strontium were negligible. Ca-HAGel stabilizes sulfate and strontium released from 

gypsum.  
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Figure 92 : Percolated amount of calcium (--□--), phosphorus (--◊--), sulfur (--∆--) and 
strontium (--×--) from column percolation test of AWPG1 blend in function of 
leaching time, pH (--+--) and conductivity (—+—) 
 
 

 
Figure 93 : Percolated amount of calcium (--□--), phosphorus (--◊--), sulfur (--∆--) and 
strontium (--×--) from column percolation test of AWPG2 blend in function of 
leaching time, pH (--+--) and conductivity (—+—) 
 
As it can be observed in Figure 93, the conductivity value decreases with increasing 

L/S mass ratio indicating the dissolution of Ca-HA particles and gypsum grains. The 

rate of release of calcium and phosphorus from AWPG2 blend were 0.01 and 0.04% 

respectively. Amount of released sulfate and strontium was decreased in the case of 

gypsum grains. The recovery of gypsum grains by Ca-HA particles stabilizes the 

blend structure. AWPG2 formulation presents adequate hydraulic performances 
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(50% porosity and 5.10-4 cm.s-1) and chemical properties and can be chosen to 

evaluate its reactivity and purification performance and soil stabilization.  

 
 
5. Pilot trails 
 
5.1. Reactivity of AWPG2 
 
Selected heavy metals (Cd(II) and Pb(II)) aqueous solutions were prepared by 

dissolving nitrate salts (Cd(NO3)2,2H2O, Pb(NO3)2) in de-ionized water (10 liter). The 

Pb(II) and Cd(II) multi-element system had an initial concentrations of 2000ppm and 

1000ppm respectively. The pH of initial solutions was determined. A single column 

lab-scale study was proposed to evaluate the capacities and capabilities of AWPG2 

formulation filter-reactive media to remove contaminants (Cd(II) and Pb(II)). The 

column in composed of a transparent cylindrical cell having 90 mm internal diameter 

and 30 cm of length, limited by porous plates closed with caps fixed by 4 screws and 

maintained vertically. The solution flows from the bottom to the top using 

WATSON-MARLOW 400 peristaltic pump following a constant flow rate of 0.2 

cm3.s-1. Flow rates were recorded as a function of experimental time using weighing 

coupled to computer. Figure 94 illustrates the pilot set up. 

 

Figure 94 : Picture of pilot experiment 
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Figure 95 shows the schema of pilot test. Filter paper was placed on filtration system 

to avoid the transport of Ca-HA particles. Filtration through AWPG2 porous media 

describes the flow of elements through total volume of 1907.55 cm3. The column test 

experiment was carried out by packing the AWPG2 blend in the cylindrical column.  

 

 
 
 
Figure 95: Experimental configuration of AWPG2 column test  
 
Percolation tests were programmed by flushing the AWPG2 reactive media with 

selected solution. Collected effluents were analyzed using the same techniques as 

described in the batch test studies. The pilot test was maintained 1 hour and filtered 

mass was recorded as a function of percolation time. The pH and conductivity values 

were determined during column test. Conductivity value indicates the ionic 

composition variation in the filtrate. The porosity and permeability of AWPG2 

considered formulation were 50% and 5.10-4 cm.s-1 respectively.  

 
 
5.2. Pressure head 
 
Pressure at inlet and outlet of the column was measured using differential pressure 

sensor (DPS, ASHCROFT 0.2 – 5 bars). Differential pressure sensor was coupled to 

computer to record the detected pressure value. It should be noticed that the 

AWPG2 
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pulsation of peristaltic pump may influence the pressure value. Figure 96 shows the 

head loss profile in the column at L/S mass ratio in function of percolation time.  

 

 
Figure 96 : Head loss as a function of time at different L/S mass ratio ranging from 
10 to 100 
 
Increasing cumulated L/S mass ratio, head loss in the column increases. The increase 

of head loss is directly related to the flow rate by the equation: 

 
L/S = t × Q [Eq.4] 
 
Where L/S is filtered volume on total solid (ml.g-1), t is the percolation time (s) and Q 

is the flow rate (ml.s-1). As known, the flow rate was maintained constant during the 

experiment, at the first hour of experiment (L/S=10) corresponds to the flux 

equilibration. The flux equilibration is correlated to the calibration of column cell and 

at L/S higher than 10, the head loss was increased explaining the elimination of the 

water quantity initially present in AWPG2 blend (added water and water 

constituting gelled particles) and compaction effect. From L/S higher than 60, the 

head loss is constant (≈ 5.10+4 cm) indicating that the structure of AWPG2 paste was 

stabilized.   
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5.3. Interaction with lead and cadmium 
 
To highlight the reactivity of selected formulation (AWPG2) to remove lead and 

cadmium heavy metals, the obtained results of the column test were illustrated in 

Figure 97 and discussed elsewhere. The conductivity value decreases with increasing 

L/S mass ratio and was characterized by two stabilized value regions. The 

encompassment of gypsum (gypsum particles and gypsum grains) with Ca-HA 

particles explains the first contact of lead and cadmium with Ca-HA particles was 

hypothesized. The first one was localized between 40 and 60 L/S mass ratio 

revealing the formation of hydroxypyromorphite (Pb10(PO4)6(OH)2) and cadmium 

apatite (Cd10(PO4)6(OH)2). The main mechanisms of the lead and cadmium retention 

are ions exchange, surface complexation and precipitation [3-5]. The interaction of 

both lead and cadmium with Ca-HA is the main mechanism leading to the removal 

of selected heavy metals.  

 
The second region was observed between 80 and 100 L/S mass ratio corresponding 

to the precipitation of cadmium sulfate. The pH was constant during the column test 

at basic value promoting the precipitation and adsorption mechanisms. At the 

beginning of column test, the amount of released sulfur increases dramatically in 

function of L/S mass ratio.  

 

 
Figure 97 : Concentration of calcium (—□—), phosphorus (—◊—), sulfur (—∆—), 
strontium (—×—), lead (—○—) and cadmium (—●—) in the filtrate at different L/S 
mass ratio (pH (--+--) and conductivity (—+—)) 
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The increase of sulfur concentration in the outlet of column is essentially due to the 

dissolution of gypsum particles. This amount achieves a maximum at 60 L/S mass 

ratio and decreases slightly at L/S mass ratio between 60 and 100 l.kg-1. However, 

the decrease of sulfur concentration is mainly related to the interaction with Ca-

HAGel (Ca-HA particles, free-phosphate and calcium) and both selected heavy 

metals. The release rate of sulfur from AWPG2 flushed with Pb-Cd multi-metal is 

0.03%. The quantity of released calcium was constant at L/S mass ratio between 10 

and 70 l.kg-1. The release rate of calcium determined at the end of column experiment 

is negligible (0.01%). The amount of calcium and sulfur released from AWPG2 blend 

(percolation test) and from AWPG2 blend (column test) flushed with lead and 

cadmium are similar (0.01% for calcium and 0.03% for sulfur). It can be hypothesized 

that gypsum does not intervene in the removal of lead and cadmium. Retention 

capacity of Pb and Cd was calculated at 100 L/S mass ratio (It has been considered 

that the equilibrium was achieved at this mass ratio). The concentration of Pb2+ in the 

effluent is negligible and the retention capacity of AWPG2 to stabilize Pb2+ is about 

99.8%. Retention capacity of Cd2+ is evaluated to 88%. The competitivity between 

lead and cadmium to be removed by Ca-HA particles was also reviewed in literature. 

The selectivity is also correlated to the exchange affinity and to lead and cadmium 

hydrated radius (Pb2+ (0.12 nm) and Cd2+ (0.097 nm)). As can be analyzed from lead 

and cadmium retention capacity results, the concentration of removed lead was 

higher than concentration of removal cadmium. The selectivity depends also on the 

reactive material composition, crystallinity, sorption capacities and specific surface 

area.  

 
 
IV. Conclusion 
 
This chapter highlighted the hydraulic performances of considered blends. Porosity 

of initial materials was estimated to water absorption capacity. Amount of added 

water leading to plaster hydration controls effectively porosity rate (porosity of 

hydrated plaster is 60%). Gypsum porosity differs as a function of grain size. 

Agglomerated gypsum (gypsum 1-2mm and gypsum 2-4mm) particles was 
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characterized by a porosity value about 60% indicating that volume of void space is 

similar. Porosity of considered blends calculated from solids compactness depends 

directly to the bulk density and solids proportions. Adding gypsum grains to blend 

containing plaster and Ca-HAGel leads to increase in the permeability. Hence, 

gypsum promotes hydraulic performances of blend. Results of percolation tests 

carried out on initial materials have shown that the release rates of calcium, sulfur, 

phosphorus and strontium are higher than those calculated for considered blends. 

Table 28 summarizes the release rate of calcium, sulfur, phosphorus and strontium 

calculated at 10 L/S mass ratio. The decrease of calcium, sulfur and phosphorus 

release rate is mainly due to the precipitation of calcium sulfate-phosphate hydrate 

as discussed in the Chapter VII. 

 
Table 28 : Release rate of elements calculated at 10 L/S mass ratio 
 pH Conductivity 

(mS.cm-1) 
Ca (%) S (%) P (%) Sr (%) 

Ca-HA 7.3 1.97 13 - 3 - 
Plaster 3.9 0.73 6 7 12 4 
G 1mm 8.2 2.19 12 8 5 13 
G 1-2mm 7.3 2.10 20 8 6 13 
G 2-4mm 7.3 1.97 18 8 11 12 
AWP 8.1 3.48 0.005 0.1 0.5 0.04 
AG 6.9 1.77 0.03 0.01 0.01 0.08 
AWPG1 6.4 1.48 0.03 0.02 0.01 0.001 
AWPG2 6.8 4.90 0.01 0.03 0.02 0.002 
 
The stabilization of strontium was totally ensured by Ca-HAGel. The retention 

capacities can achieve 99% and 99.4% for plaster and gypsum respectively. The 

release rate calculated for AWPG1 and AWPG2 was very low indicating its total 

stabilization. Column test carried out on AWPG2 flushed with solution containing 

lead and cadmium has shown that the adsorption of lead and cadmium is attributed 

to Ca-HA particles.  
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General conclusions & perspectives 
 

The main purpose of this thesis was the formulation of stable matrix based on 

calcium phosphate (Ca-HA) and the evaluation of its hydraulic performances and 

reactive capacity. Calcium sulfate was chosen to enhance Ca-HAGel suspension and 

different blends were considered.  

 
Bibliographic research highlighted the PRB configurations and its use to remediate 

groundwater, the main physicochemical properties of calcium phosphate and 

calcium sulfate and a description of porous media and the relationships leading to 

the determination of porosity and permeability. Particle size distribution has allowed 

the identification of material classification in the term of the texture. Ca-HA particles 

were identified as loamy texture and plaster and gypsum with particle size less than 

1mm were classified as silty-sand and sandy-loam texture respectively. 

Physicochemical characterization (DRX and FTIR) of initial materials has shown the 

same characteristic bands and peaks of phosphate and sulfate present in apatite and 

gypsum also discussed in literature. Raman and FTIR analysis carried out on initial 

materials have shown similar main peaks assignment corresponding to symmetric 

stretch. Calcium sulfate has shown a high capability to stabilize Ca-HAGel 

suspension.  

 
Hydration of plaster industrial product is perfect at W/P mass ratio of 0.4. The 

consistency of Ca-HAGel is controlled by the plaster hydration leading to Ca-

HA/(W/P=0.4) stabilization structure. Rheological tests carried out on all ternary 

considered formulations based on Ca-HAGel, gypsum and plaster with or without 

added water have exhibited a shear-thinning and thixotropic behavior. Shear-

thinning behavior and the thixotropy revealed the favorability of blends set up. 

Gypsum particles are negatively charged causing repulsion and improving stability. 

The positively-charged plaster particles play a major role in the structure 

stabilization by the attractive affect generated by hydration process. Interaction 

between Ca-HA and plaster (or Ca-HA and gypsum) leads to modification of Ca-HA 
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charge. The fixation of dissolved sulfate from plaster on Ca-HA particles explains the 

Ca-HA charge modification improving its stability. 

 
From rheological results, 4 formulations were considered to study their leaching 

behavior under paste form. The formulations containing plaster were blended with 

0.4 W/P mass ratio as the amount of plaster paste stabilizes Ca-HA structure at 

proportions less than 80%. Gypsum with different fraction size (Gypsum 1mm, 

Gypsum 1-2mm and Gypsum 2-4mm) was used to assess its stability by Ca-HA. 

Characterization of formulations carried out using XRD analysis has shown the 

formation of new compounds such as sulfate carbonate hydrate, calcium phosphate 

sulfate hydroxide hydrate and calcium phosphate sulfate hydrate. Environmental 

behavior of initial material has shown that the release of heavy metals is in 

accordance with waste acceptance criteria. The release of calcium, sulfate, 

phosphorus, strontium and selected heavy metals was also influenced by L/S mass 

ratio, particle size and leaching duration. Ca-HA stabilizes heavy metals released 

from gypsum and plaster in AWPG1 and AWPG2 blends. Porosity of considered 

blends was higher than 50%. Permeability of blends containing gypsum grains was 

increased 10 times that of Ca-HAGel permeability. Gypsum grains plays a major role 

in the enhancement of hydraulic performances of considered blends. The release rate 

of calcium, sulfur and phosphorus decreases in the cases of AWPG1 and AWPG2 

blends in comparison with initial materials. The AWPG2 blend was chosen as matrix 

presenting adequate hydraulic performances (porosity of 50% and permeability of 

5.10-4 cm.s-1) to carry out the column test. The results of column tests carried out on 

AWPG2 blend have shown that lead and cadmium were perfectly removed with 

retention capacity of 99 and 88% respectively. Surface complexation onto phosphate 

surface groups, ionic exchange in surface calcium sites and the 

dissolution/precipitation are the main mechanisms governing the removal of lead 

and cadmium. AWPG2 formulation may be applied as PRB to treat groundwater 

following the hydraulic performances and reactivity.  
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Further work would be interesting to be done on:  

• The determination of permeability can be carried out using oedometric trails. 

This test may provide same indications concerning the intrinsic porous 

structure and the influence of strain on the permeability value.  

 

• The long term column tests may be performed to describe the behavior of 

heavy metals through selected porous media and to monitor the principal 

phenomena governing solute transport and treatment of contaminated water 

and to model the flow of solute water.  

 

• The modeling could be applied using Phreeqc and Hydrus software. Several 

results could be obtained from transport modeling to facilitate the 

interpretation of different phenomena governing the heavy metals removal.  

 

• The clogging and saturation of reactive material is the main drawback of 

porous filters. It manifests itself by the precipitation of carbonate and 

hydroxide or the retention of suspended matter leading to the decrease of 

porous volume. To study the effect of clogging on the porous media 

performance, floating spheres model based on Kozeny-Carman equation 

allows the clogging and saturation prediction. 
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Appendix 
 

Appendix 1 : Granulometric characteristic of materials 
 
Interpretation of granulometric curves is based on the determination of dX defined as 

the diameter for which the underflow is X%. HAZEN coefficient (HC) also named 

coefficient of uniformity and defined by the follow relationship: HC = WÏ�
W"� where d60 

and d10 are the diameters corresponding to 60 and 10% of passing accumulated mass.  

 

CC = W��G
WÏ�.W"� 

Spacing = WÐ�7 W"�
WÂ�  

 
 HC CC Spacing d10 d30 d50 d60 d90 
Gypsum (<1mm) 01.16 00.58 02.50 17.13 14.10 231.77 19.94 597.30 
Plaster (α) 04.10 00.98 02.06 11.86 23.77 61.69 48.61 138.99 
Ca-HAPowder 13.91 10.77 17.67 04.05 49.55 30.82 56.32 548.62 
Ca-HAGel 19.81 15.34 03.29 04.59 80.05 14.69 90.95 52.92 
HC : HAZEN Coefficient; CC : Curvature Coefficient; S : Spacing 
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Appendix 2: Rheological behavior 
 
In general, the rheology is the study of matter flow behavior under constraint 

applied. As a result, the relative sliding of underlying layers on top of each other is 

the result of the application of shear stress, which makes the material deformable 

fluid without mass transfer. The constant friction between the molecules of the layer 

leads to a delay effect in the transmission of a relative motion to a second underlying 

layer, so the speed of the first layer decreases. Hence we can define the viscosity of a 

fluid such as a flow resistance of a material subjected to shear stress; in fact, it 

depends on the physicochemical composition of the material, temperature, pressure, 

velocity gradient and evidently the time. 

 
Shear stress results of pressure forces application on a surface; it is expressed by the 

following relation; Ñt = ?Òssssst
?º (Pa). Perpendicular forces to the surface layers are not 

involved in the movement of shear. Shear rate or shear rate γÅ  noted is determined 

when the shear strain is maximum, it is located at the upper limit of the moving 

plane, and contact with the fixed plane influence on the decrease of shear rate 

according to the displacement interval dn (Figure 98). Shear deformation is the 

displacement at a given time interval reported to travel; γ(n,t) = ?Ó�Ô,Õ�
?Ô  . The 

derivative of the shear strain γ is the shear rate, it is written as follows: ÄÅ  = ?Ö
?Õ  (s-1). 

The devices widely used to evaluate the behavior of liquefied materials, the 

rotational or coaxial viscometer (Rheometer) (cylinder-cylinder), with cone-plate and 

plate (plate-plate). 

 

Figure 98: Fluid flow in two parallel planes at a uniform speed 
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Dynamic rheology is based on the application of oscillatory mechanical stress for 

evaluation of the internal structure of the material. In principle, it is used to denote 

viscous or elastic behavior of materials and obeys Hooke's law, τ = G.γ where G is 

the dynamic modulus of viscosity which varies with time for the viscoelastic material 

and γ is the sinusoidal deformation. The application of a low amplitude sinusoidal 

deformation allows measure resulting sinusoidal stress measurement. The dynamic 

modulus of time-dependent viscosity noted G* is correlated with G '(storage 

modulus) characterizes the energy stored in the material as elastic and G''(loss 

modulus), which refers to the viscous property of the material and characterizes the 

energy dissipated in the material, the following relations : G’ = G*cos(φ) et G’’ = 

G*sin(φ), where φ is the phase difference or phase shift, as can be expressed by 

replacing G* modulus by the report σ0/γ0, with σ0 is the initial shear stress and γ0 is 

the initial shear rate. 

 

Rheological flow 
 
Graphical representation of the rheological behavior is reflected in the establishment 

of the relationship τ = f(γÅ ) is the flow curve. Figure 5 identifies the different 

rheological behavior. Newtonian behavior (exclusively linear viscous behavior) is 

deduced from the dynamic viscosity (or apparent viscosity) by the equation 

rheological µ = ×
ÖÅ  (Pa.s or Poiseuille), and it should be noted that µ is independent of 

shear rate. The constant value of µ obtained at different shear rates is the absolute 

viscosity, often denoted η. Moreover, when the viscosity is no longer independent of 

shear rate, it is useful to describe the mechanical behavior of materials based on the 

empirical law of viscosity or the power Ostwald law model τ = KÄÅ Ô with K is the 

consistency index and n is the flow index, and the value of n, we can characterize the 

nature of the behavior, which for n=1, the behavior is Newtonian, n<1, the behavior 

is shear-thinning (or pseudo-plastic) and n>1, the behavior is shear-thickening. 

 
Shear thickening and shear-thinning behaviors are not linear, this can be explained 

by the fact that lower applied stress causes the flow and the shear force is not always 

proportional to the shear rate (i.e. variation of viscosity for shear variables). 
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Another behavior (non-Newtonian) is defined when the flow occurs only through 

the application of shear stress to a value greater than the yield stress (the yield stress 

or plasticity threshold τ0). The representation of a material level, taking into account 

the plastic viscosity ηpl is independent of shear rate, resulting in the following 

relation, τ = Ñ� + Ø=@ÄÅ , is the Bingham behavior. The generalization of this power law 

model is written as follows τ = τ� + KγÅ �, allows the identification of the shear-

thinning behavior (or Casson behavior) (n <1) and thickening behavior (n> 1) (Figure 

99). Non-Newtonian fluids depends on the time, that is to say the duration of the 

flow is often correlated with the apparent viscosity of the fluid. 

 

 

Figure 99: Different flow curves for viscous and viscoelastic behavior 
 
The time index can then characterize the change in the structure into two distinct 

behaviors, thixotropy and rheopexy (antithixotropie), reversible modification or not 

of structure (disruption of the structure by shear) corresponding to the thixotropy 

when the viscosity apparent decreases with constant shear rate duration, and when 

the viscosity increases, we talk about the rheopexy (organization structure). 
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Appendix 3 : Thresholds of safe drinking water and waste acceptance criteria 
Waste Acceptance Criteria (mg.kg-1) 

  Water Potability (mg.l-1)  Gf  Inert Non-
Hazardous 

Hazardous 

WHO (2011) EC (1998)  (i) (nd) (d) 
Al 0.2 -  - - - 
As 0.01 0.01 0.5 2 25 
B 0.5 1.0 - - - 
Ba 0.7 - 20 100 300 
Cd 0.003 0.005 0.04 1 5 
Cr Total 0.05 0.05 0.5 10 70 
Cu 2.0 2.0 2 50 100 
Fe - 0.2 - - - 
Hg 0.006 - 0.01 0.2 2 
Mn 0.04 0.05 - - - 
Mo 0.07 - 0.5 10 30 
Na 0.4 - - - - 
Ni 0.07 - 0.4 10 40 
Pb 0.01 - 0.5 10 50 
Sb 0.02 0.005 0.06 0.7 5 
Se 0.04 0.01 0.1 0.5 7 
Sr* 4 - 18000 18000  
U 0.3 - - - - 
Zn 3.0 - 4 50 200 
Chloride - 250 800 15 000 25 000 
Fluoride 1.5 1.5 10 150 500 
Sulfate 500 250 1 000 20 000 50 000 
TOC - - 500 800 1 000 
SF 1200 - 4 000 60 000 10 000 
L.O.I - - - - 100 000 
pH 6.5<pH<9.5 - - >6 - 
TOC: Total Organique Carbone; SF: Soluble fraction; L.O.I: Loss on igniation 
 
WHO Word Health 2011.Organization. Guidelines for drinking water quality. Fourth 
Edition. ISBN 9789241548151. available on 
http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf. Pp472-475 
 
EC European Commission 1998. Directive 98/83/CE du conseil du 3 Novembre 1998 
relative à la qualité des eaux distinées à la consummation humaine. disponible sur 
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1998:330:0032:0054:FR
:PDF. Pp42-45 
 
*  ICDF The Idaho Comprehensive Disposal Facility, Complex Waste Acceptance 
Criteria, Norme A-1B ISO 19005-1, Pp A-10, Available on: 
http://ar.inel.gov/images/pdf/200910/2009100100577TUA.pdf 
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Appendix 4: Calibration of peristaltic pump and permeability device 
 

 
Flow rate as a function of rotation number of peristaltic pump 

 
 
 
 
Calibration for device used to determine the permeability of plaster, Ca-HAGel and 
Ca-HAPowder: 

 
Flow rate as a function of rotation number of peristaltic pump 
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Calibration for device used to determine the permeability of gypsum with different 
fraction sizes: 
 

 
Flow rate and head loss as a function of rotation number of peristaltic pump 

 
 
Calibration of column used for pilot trail  
 

 
Flow rate and head loss as a function of rotation number of peristaltic pump 
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