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Résumé 

L’objectif de cette thèse a été premièrement de réaliser des dispositifs passifs 

intégrés à base de lignes à onde lentes nommées S-CPW (pour « Slow-wave CoPlanar 

Waveguide ») aux fréquences millimétriques. Plusieurs technologies CMOS ou BiCMOS 

ont été utilisées: CMOS 65 nm et 28 nm ainsi que BiCMOS 55 nm.  

Deux baluns, le premier basé sur une topologie de rat-race et le second basé sur un 

diviseur de puissance de Wilkinson modifié, ainsi qu’un inverseur de phase, ont été réalisés 

et mesurés dans la technologie CMOS 65 nm. Les résultats expérimentaux obtenus se 

situent à l’état de l’art en termes de performances électriques. Un coupler hybride et un 

diviseur de puissance avec des sorties en phase sans isolation ont été conçus en technologie 

CMOS 28 nm. Les simulations montrent de très bonnes performances pour des dispositifs 

compacts. Les circuits sont en cours de fabrication et pourront très bientôt être caractérisés. 

Ensuite, une nouvelle topologie de diviseurs de puissance, avec sorties en phase et isolé a 

été développée, offrant une grande flexibilité et compacité en comparaison des diviseurs de 

puissance traditionnels. Cette topologie est parfaitement adaptée pour les technologies 

silicium. Comme preuve de concept, deux diviseurs de puissance avec des caractéristiques 

différentes ont été réalisés en technologie PCB microruban à la fréquence de 2.45 GHz. Un 

composent a été conçu à 60 GHz en technologie BiCMOS 55 nm utilisant des lignes 

S-CPW. Les simulations prouvent que le dispositif est faibles pertes, adapté et isolé. Les 

circuits sont également en cours de fabrication. Enfin, deux topologies de « reflection type 

phase shifter » ont été développées, la première dans la bande RF et la seconde aux 

fréquences millimétrique. Pour la bande RF, le déphasage atteint plus de 360° avec une 

figure de mérite très élevée en comparaison avec l’état de l’art. En ce qui concerne le 

déphaseur dans la bande millimétrique, la simulation montre un déphasage de 341° avec 

également une figure de mérite élevée. 

 
Mots-clés : Ligne à ondes lentes S-CPW, facteur de qualité, technologies CMOS, 

balun, rat-race, inverseur de phase, diviseur de puissance, coupleur hybride, déphaseur, 

bande millimétrique, bande RF, figure de mérite, miniaturisation. 
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Title 

New topologies of power dividers, baluns and phase shifters in RF and millimetre-

wave bands, based on microstrip lines and slow-wave coplanar waveguides technologies. 

 

Abstract 

The first purpose of this work was the use of slow-wave coplanar waveguides 

(S-CPW) to achieve various passive components with the aim to show their great potential 

and interest at millimetre-waves. Several CMOS or BiCMOS technologies were used: 

CMOS 65 nm and 28 nm, and BiCMOS 55 nm. 

Two baluns, one based on a rat-race topology and the other based on a modified 

Wilkinson power divider, and a phase inverter, were achieved and measured in a 65 nm 

CMOS technology. State-of-the-art results were achieved. A branch-line coupler and an in 

phase power divider without isolation were designed in a 28 nm CMOS technology. Really 

good performances are expected for these compact devices being yet under fabrication. 

Then, a new topology of in phase and isolated power divider was developed, leading to 

more flexibility and compactness, well suited to millimetre-wave frequencies. Two power 

dividers with different characteristics were realized in a PCB technology at 2.45 GHz by 

using microstrip lines, as a proof-of-concept. After that, a power divider was designed at 

the working frequency of 60 GHz in the 55 nm BiCMOS technology with S-CPWs. The 

simulation results showed a low loss, full-matched and isolated component, which is also 

under fabrication and will be characterized as soon as possible. Finally, two new topologies 

of reflection type phase shifters were presented, one for the RF band and one for the 

millimetre-wave one. For the one in RF band, the phase shift can reach more than 360° with 

a great figure-of-merit as compared to the state-of-the-art. Concerning the phase shifter in 

the millimetre-wave band, the simulation results show a phase shift of 341° with also a high 

figure-of-merit. 

Key words : Slow-wave CPW, quality factor, CMOS technologies, balun, rat-race, 

phase inverter, power divider, branch-line coupler, reflection type phase shifter, millimetre-

wave band, RF band, figure-of-merit, miniaturization. 
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Introduction 

Nowadays, 21st century, progress and innovation in science and technology are jaw-

dropping. Wave propagation is directly impacted by the technology developments in 

several domains and applications. More particularly, millimetre-waves have concentrated 

much and much interest since more than ten years. Two main advantages, as compared to 

radio frequencies (RF, a few GHz), make millimetre-waves attractive today, (i) the wide 

bandwidth and (ii) the antennas small size. In current systems, the bandwidth is more or 

less proportional to the working frequency; except for the particular case of Ultra-Wide-

Band dedicated to short range low data-rate communications, the relative bandwidth is 

limited to a maximum of 10 to 15 %. Hence, for a given relative bandwidth, increasing the 

working frequency increases the bandwidth. The antennas size is also a key issue. It is 

obvious that smaller antennas lead to smaller systems, but the main interest stays the 

possibility to achieve large antennas arrays allowing focused beams, which is mandatory in 

order to address consumption issues for autonomous systems. Antennas arrays also enable 

to carry out beam-steering and/or beam-forming systems by using phased antenna arrays. In 

a more general point of view, millimetre-waves antenna arrays lead to an improved 

efficiency, as compared to RF systems, for the same area of the antenna system.  

High-data-rate communications, radars, security, and medical applications are 

concerned by the development of millimetre-wave systems. In order to ensure data rates 

greater than a few Gbit/s, the most suitable solution has been to operate in the millimetre-

waves. In the vicinity of 60 GHz, in particular, a common 5 GHz band between 59 and 64 

GHz was defined for unlicensed use in the countries where the consumer electronic market 

was the most developed. This spectrum is an attractive option for very high data rate 

wireless local area networks (WLANs) or wireless personal area networks (WPAN). 

Moreover, this millimetre-waves radiation is capable of penetrating clothing while being 

partially reflected by human skin. As the reflection pattern of metals, but also plastics, 

ceramics and liquids are readily detectable for radiation at these frequencies, millimetre-

waves imagers have been considered as a superior alternative as compared to traditional 

metal detectors. Hence, the security domain constitutes one of the major areas for 

millimetre-waves imaging systems. The frequencies better suited to this use are 35, 94, 140, 

and 220 GHz, which correspond to the atmospheric propagation windows, e.g. to the 

minima observed in terms of atmospheric attenuation. In the past, 94 GHz systems were 

usually adopted, but higher frequencies, leading to even better spatial resolutions, are under 

study. Recently, significant technological advances in the automotive industry have taken 

place for improving vehicles safety. The radar system can detect and track objects in the 

frequency domain triggering a driver warning of an imminent collision and initiate 

electronic stability control intervention. For long range radar there is a certain international 

consensus regarding the 76-77 GHz band whereas for short range such as anti-collision and 
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handheld radars for parking assistance, pre-crash sensing, obstacle avoidance and blind spot 

detection the working frequency was fixed to 79 GHz. Here again, high spatial resolution is 

required and obviously the smallest antennas as possible.  

All these millimetre-waves applications are commonly recognized to belong to and 

to lead to a smart society because they will facilitate the communications between people, 

inside or outside homes and offices, and from building to building (backhauling), avoiding 

heavy civil engineering infrastructure. They will also increase safety in transports, with 

improvement of traffic and parking. Nonetheless, they will also be sustainable because they 

will not consume much power, will have a small area and high performances level. 

CMOS and BiCMOS technologies are addressed to fabricate low cost millimetre-

wave devices. Indeed traditional monolithic microwave integrated circuits (MMICs) with 

Gallium Arsenide (GaAs) can provide high-performance millimetre-waves devices due to 

the higher electron mobility of GaAs, higher breakdown voltage, and good insulating 

properties. However, GaAs technology is expensive even in mass production, which results 

in systems with prohibitive costs for consumer applications. This is why CMOS/BiCMOS 

technologies are preferred for mass production.  

Such applications convey high innovation. They will also permit a large part of the 

microelectronic industry in developed countries to pursue its activities. 

As discussed above, for some applications beam-steering systems are required either 

to achieve specific functions (e.g. radars) or to improve point-to-point transmissions 

efficiency. The beam-steering approach gives spatial agility, locating and concentrating the 

emitted/received energy in the direction of the receiver/emitter. This allows a longer 

communication range and an improvement of the system capability, leading to a more 

secure communication, and also to the detection of mobile blind spots. In that case, the 

system will quickly establish a new communication path, using for example, beams that 

reflect off the walls. It is a significant technological challenge to achieve such goal in a 

compact, cost-effective and energy-efficient solution. Mechanical beam-steering has been 

used with the advantage of a wide field of view and no signal processing requirement; but 

its manufacturing complexity, size, weight and scanning rate are not appropriate for low-

cost consumer applications. Nowadays, few techniques have been developed for beam-

steering. It can be performed by changing the phase of the local oscillator at the millimetre-

wave mixers level but high power consumption is induced because one mixer is necessary 

for each antenna element of the antenna array. Other realizations have shown monolithic 

millimetre-waves antenna array front-ends, with digitally processed phase shifting for each 

antenna. Here again, the main drawback of such approach is linked to its very high power 

consumption, which is not compatible with mobile applications where autonomy is 

mandatory. The phase shifting in the millimetre-waves path would ensure low power 

consumption. The system could be very simple, with simple power splitters feeding phase 

shifters controlling each antenna of the antenna array. The key issue is then to improve the 



Introduction 

15 
 

devices performance while decreasing their surface area in order to decrease the fabrication 

costs. A great challenge! 

To improve the performances and reduce the area of the passive components needed 

in the millimetre-waves range, slow wave transmissions lines have proved to be good 

candidates and particularly the slow-wave coplanar waveguides (S-CPWs). It has been 

shown in [1] and [2] that the phase constant (β) increases while keeping the same 

attenuation constant (α) than a classical microstrip transmission line, leading to a quality 

factor (Q) defined as: � = �2� 

about two to three times higher than the classical transmission line. With such transmission 

lines not only performances can be improved but also the compactness of the devices. 

The performances of the integrated tunable devices are usually related to the tuning 

elements used to vary the phase. The utilization of varactors induces high insertion loss 

level because of the low quality factor of the varactors, particularly at millimetre-wave 

frequencies. Until no varactors with better performances are achieved, all the tunable 

topologies developed at RF frequencies have to be studied again in order to reduce the 

insertion loss or should be modified in order to substitute the varactors. Ferrites could be 

used for this purpose but they suffer from high cost and lead to large size components. 

Liquid crystal (LC) appears to be a promising tunable dielectric, since its losses decrease 

with frequency. Thus, it is ideally suited for high performance millimetre-waves 

applications. At these frequencies, LC features low dielectric losses and continuous 

tunability. The main drawback of LC-based devices is the response time (tenths of ms) and 

the length of the devices due to a low tunability of the dielectric constant of about 25 %. 

BST material is a good candidate at RF frequencies, but suffers from high dielectric losses 

at millimetre-waves. Finally, microelectromechanical systems (MEMS) have the potential 

to be inexpensive, low loss, with high quality phase-shifting capability. However, all the 

above technologies are not compatible with CMOS unless performing a post-process. 

Hence, in parallel of the study of these hybrid solutions, it is still important to continue to 

study fully integrated solutions and try to develop high-quality factor tunable elements. 

The purpose of my thesis work was thus to explore the possibilities to use S-CPWs 

in order to achieve high-performance passive devices at millimetre-waves. Power dividers, 

baluns and phase shifters were realized in CMOS or BiCMOS technologies. Efforts were 

carried out towards the study of new topologies in order to improve both performance and 

compactness. Some devices were first realized at RF in a PCB technology as a proof-of-

concept, but also for some of them because their development at RF frequencies was 

interesting for RF systems. 
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In the first chapter, the principle of planar dividers/combiners with their most 

important striking evolutions and applications in the RF range are given. Baluns are 

considered as an application of certain power divider type devices. Then, the reflection type 

phase shifter topology is explored. The common miniaturization techniques for all the 

presented components are also listed. Finally, the state-of-the-art, at millimetre-waves, for 

phase shifters and power dividers is developed. 

In the second chapter, in order to highlight the great interest of slow-wave coplanar 

waveguides at millimetre-waves, baluns achieved by the use of power dividers and a 

wideband phase inverter were designed in the 65 nm CMOS technology and measured. 

Also, power dividers with in phase (modified Wilkinson power divider) and in quadrature 

(branch-line coupler) were designed in the 28 nm CMOS technology. 

The third chapter presents a new topology of in phase power divider, which is 

compact and flexible, perfectly adapted to millimetre-waves. Two power dividers and two 

antennas array feeding circuits were realized in PCB technology, as a proof-of-concept, and 

then characterized. Next, the simulation results of such a power divider with slow-wave 

coplanar waveguides designed in the 55 nm BiCMOS technology are given. 

Finally, the last chapter describes a new topology of reflection type phase shifter 

(RTPS) in RF with a high figure-of-merit as compared to the state-of-the-art. This topology 

is based on lumped varactors together with transmission lines as a reflexion load and was 

achieved after a careful study of the most suitable topologies and a new optimization 

procedure. A second solution of reflection type phase shifter was developed for millimetre-

waves in the 55 nm BiCMOS technology. As a reflexion load, a slow-wave coplanar 

waveguide loaded with distributed capacitive switches is used. This phase shifter was 

achieved thanks to the development of a new switched capacitor showing improved quality 

factor as compared to the varactors available in the design kit. Designs carried out showed 

that high performance reflection type phase shifters could be realized thanks to this new 

topology.
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Chapter I : Power dividers/combiners and Reflection 
Type Phase Shifter presentation 

With the fast development of multifunctional technologies and the need for 

miniaturization in wireless communication systems, compact microwave components and 

circuits—especially microwave integrated circuits with system-level performance—have 

become increasingly popular. Those considerations stay available whatever the considered 

frequency range and topology, i.e. radio frequency (RF) in advanced PCB technologies, or 

millimetre-waves (mmW) compatible with CMOS and 3D integration techniques.  

Among the large number of microwave integrated passive circuits, power dividers 

and phase shifters are fundamental, powerful and necessary, device building blocks. For 

wireless communication purpose, they are full part of the front-end transceiver. They can 

also be used independently to make analog active circuits more performing: power 

amplifiers or local oscillators are common example. 

In this chapter, after a brief overview of the already existing solutions in terms of 

planar dividers/combiners, we will remind the principle of the commonly used components 

with their most important evolution and recent applications in the RF range. In a second 

time, solutions for phase shifting will be explored, focusing on the theory of the Reflection 

Type Phase Shifting, the most appropriate technique to combine high phase shifting and 

port matching in the meantime. Various topologies are compared and explained. Then, we 

will list, illustrate and comment miniaturization techniques; most of which are similarly 

used to miniaturize both components: power dividers and phase shifters. Finally, we will 

draw the state-of-the-art, at millimetre-waves, for phase shifters, power dividers, and baluns 

(one application among many of power dividers). 

I.1 Planar dividers/combiners 

Power dividers are usually considered to be a family of devices. They can be found 

in many applications, including power division and combination, modulation and 

demodulation, balanced mixing, balun for power amplification, Butler matrices, and 

feeding network of antenna arrays, among others. A reciprocal divider can provide an equal 

or unequal power split between two or more channels. Thanks to reciprocity, and assuming 

that input signals to be combined should be coherent and of equal magnitudes, this circuit 

may also be employed to combine a number of oscillators or amplifiers towards a single 

port. 

The major parameters used to define and compare the dividers/combiners in RF and 

microwave integrated circuits are bandwidth, power division, relative phase difference, 
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phase and magnitude imbalance, insertion loss, matching or return loss, isolation, number 

of inputs/outputs, integration level and cost. The performances concerning these parameters 

have been improved over time, either developing new topologies or with the help of more 

advanced techniques and methodologies. Consequently, more than one hundred different 

types of dividers/combiners have been developed over the past four decades.  

I.1.1 Overview 

Dividers/combiners can be classified according to numerous characteristics. The 

most common ways are: distributed, lumped-element, or combination of both, number of 

ports, equal or unequal power division, fixed or tunable power division, bandwidth and 

relative phase difference. Hereby this is the last criterion which is chosen as a parameter so 

that the graph in Figure I.1 shows the main planar dividers/combiners classified according 

to the relative phase difference. Outputs can be in phase (�	 = 0°), in quadrature 

(�	 = 90°) or out-of-phase (�	 = 180°). 

 

 

 

 

Figure I.1: Main types of planar dividers/combiners 

This study concentrates on the Wilkinson power divider/combiner, the branch-line 

coupler and the rat-race. They are the three mostly used dividers/combiners among the ones 

of their phase difference category. 

I.1.2 Wilkinson power divider/combiner 

I.1.2.1 Presentation 

The lossless Wilkinson divider/combiner developed in 1960 [3], shown in Figure 

I.2, is composed of two quarter wave transmission lines (TLs), of characteristic impedance 
�√2, with 
� being the ports impedance. It is a really efficient component in terms of 

matching and isolation. Indeed, it can be matched at all ports simultaneously, while keeping 

isolation, thanks to a unique lossy element 
 connected between the two output ports. The 

branch between the output ports is named isolation branch. Theoretically, the resistance 
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equates 2 � 
�. However, this resistance limits the ability to combine any signals of higher 

power than that developed in the isolation branch, which is usually rated for several watts.  

 

Figure I.2 : Wilkinson power divider 

Because of the quarter wave TLs, its relative bandwidth under 20 dB of return loss 

is limited to 20 %. For the applications requiring broadband one possibility consists to 

cascade the dividers. Obviously, not only the bandwidth increases but the insertion loss and 

the complexity of the device as well. The real divider characteristics deviate from the ideal 

ones, due to manufacture tolerances, losses, discontinuities, mismatching of the 

terminations, as well as the physical quality of the resistance. The influence of these 

different factors on the parameters of the divider was examined by Paral and Moynihan in 

1965 [4]. The ideal [S] matrix has the following form: 

 ��� = ��√2 �0 1 11 0 01 0 0� (I-1) 

I.1.2.2 Evolution  

The first modified Wilkinson divider/combiner with unequal power-split ratio was 

presented in [4] (see Figure I.3 and equations (I-2)). The electrical lengths of the four TLs 

are 90° at the working frequency. The properties of full-matching and isolation at the 

working frequency are observed. 

 

Figure I.3 : Wilkinson power divider with arbitrary power division 
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However, when the power dividing ratio is higher than 3 (&� / 3), TLs with very 

high characteristic impedances are required. Some popular TLs with potentially very high 

characteristic impedances, such as microstrip or CPW, become too narrow to be realized 

practically. The high characteristic impedance can be realised by using a meander-shaped 

defected ground structure (DGS) [5]. Nevertheless, the increase of impedance in such a 

manner is limited. The rectangular-shaped defected ground structure is also effective for the 

realisation of high characteristic impedances [6]. In [7] the high characteristic impedances 

for a 5:1 unequal power divider were realized by suing offset doubled-sided parallel-strip 

lines (DSPSL). DSPSL-to-microstrip transitions have to be employed at the three ports, 

which inevitably introduces additional insertion loss and increases the circuit size. The 

grooved substrate microstrip method could be used to realize high characteristic impedance 

as in [8]. But this grooved substrate microstrip is difficult to be fabricated, compared to 

traditional microstrip. In [9] the high characteristic impedance TLs were replaced by T-

shaped structures, in order to decrease the characteristic impedances towards more suitable 

values. In the case of the 4:1 unequal divider designed, the highest characteristic impedance 

was 97 Ω and the lowest 43 Ω instead of 158 Ω and 35 Ω for the conventional unequal 

divider. 

I.1.2.3 Striking applications 

I.1.2.3.a Feeding network 

The Wilkinson power divider is the basic device for many applications. In [10] and 

[11], it was used as a feeding circuit for antenna arrays beam forming. In [10] one power 

divider feeds two antennas and used stepped-impedance open-circuited radial stubs to 

achieve good operation within a ultra-wide band. In [11] two power dividers in parallel 

were connected at the outputs of a first one to feed an array of four antennas as shown in 

Figure I.4. Phase shifters between the Wilkinson power dividers and the antennas enable 

beam-steering. In both cases, the measured input reflection coefficient (�!!) is 

below -10 dB, in the band 4-14 GHz for [10] and 1.8-2.1 GHz for [11], respectively. 

 

Figure I.4 : Electronic passive vertical beam scanning with Wilkinson dividers and phase shifters. 
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I.1.2.3.b Balun 

If a phase inverter is placed in series with one of the two quarter wave TLs of the 

Wilkinson power divider, as in Figure I.5, the 180° relative phase difference obtained 

between the two output ports makes its use as a balun possible. The output ports of the 

modified Wilkinson power divider stay close to each other. We will see soon this is a great 

advantage comparing to the rat-race balun. However, the resistance R, mandatory for 

isolation and output matching, must be removed. Indeed, the 180° relative phase difference 

between the outputs would create a permanent flowing current through the resistance and 

would increase considerably the losses. When removing this resistance, isolation and output 

ports matching are degraded in such a way that the component cannot be used anymore as a 

combiner. Nevertheless, it is still remarkably suitable for differential power amplification. 

This device, performed at the IMEP-LAHC, is totally novel. It has been designed and 

measured in a 65 nm CMOS technology and will be described in detail in chapter II. It is 

not referenced herein since the final version is an optimised case of Figure I.5. 

 

Figure I.5 : Modified Wilkinson divider with phase inverter for balun application. 

I.1.3 Branch-line coupler 

I.1.3.1 Presentation 

The branch-line coupler or 90° hybrid coupler is a particular case of a directional 

coupler. It is a four ports network where coupling factor is -3 dB and phase relationship 

between the output ports is 90°. The ideal coupler is lossless and matched at all ports. 

Compared to the Wilkinson power divider, it does not need any resistance for ports 

matching, but requires a fourth port. The branch-line coupler is composed by four quarter 

wave TLs of characteristic impedances 
� for the vertical TLs and 
� √2⁄  for the horizontal 

ones in a 
� system as shown in Figure I.6. Incident power at port 1 separates between port 

2 (the through port) and port 3 (the coupled port), but no power flows through port 4 (the 

isolated port). Similarly, incident power at port 2 will couple to ports 1 and 4, but not 3. 

Thus, ports 1 and 4 are decoupled, as are ports 2 and 3. The fraction of power coupled from 

port 1 to port 3, named coupling (C), is given by (I-3). The leakage of power from port 1 to 

port 4 is given by (I-4) and is named isolation (I). To conclude, the directivity (D), which is 

the ratio of the power delivered to the coupled port and the isolated port is defined as 

D = I – C (dB) or by (I-5). 
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 Coupling = 2 = �10345 �,�6 = �10345|�*!|� (I-3) 

 Isolation = 8 = �10345 �9�6 = �10345|��!|� (I-4) 

 Directivity = : = �10345 �9�, = �10345|��*|� (I-5) 

 

Figure I.6 : Branch-line coupler 

The bandwidth of this device is about 10-20 %. As for the Wilkinson power divider, 

by cascading dividers, the bandwidth is enlarged, leading unfortunately to an increase of the 

insertion loss and the complexity of the device. Scattering parameters demonstration is 

available in [12]. The ideal [S] matrix has the following form: 

 ��� = �1√2 ;0 �� 0 1 00 11 00 1 0 �� 0< (I-6) 

I.1.3.2 Evolution 

When the output ports of the hybrid coupler are connected to impedances different 

from 
�, an additional matching network is needed. To avoid the need for a supplementary 

network, [13] presented a device with both arbitrary termination impedances and arbitrary 

power division. By referring to the nomenclature in Figure I.7, the ratio of the scattering 

parameters |�!!| to |�*!| is that of =! to =�. The electrical TL lengths >!, >�, >*, and >� are 

all ? 4⁄  at the centre frequency, and the characteristic impedances 
!, 
�, 
* and 
� in 

Figure I.7 are expressed as: 

 


! = + A6#A6#$A##%
B
C   
� = A6A#%
C
D 
* = + A6#A6#$A##%
D
A   
� = A6A#%
A
B 

(I-7) 

where 
B, 
C, 
D, and 
A are the real impedances termination. For both =! = =� and 
B =  
C = 
D = 
A, the results are similar to a conventional 3 dB branch-line hybrid. 
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Figure I.7 : Branch-line coupler with both arbitrary termination impedances and arbitrary power division 

I.1.3.3 Striking applications 

I.1.3.3.a Coupling for frequency mixing 

Mixers are frequency translation devices. Thanks to a local oscillator (LO), they 

allow the signal conversion from a high frequency (RF) to a lower intermediate frequency 

(IF or baseband), and inversely. In down-conversions, hybrids as well as rat-races may be 

used as functional passives to bring the RF and LO signals towards the non-linear active 

component. In [14], a 138 GHz down-conversion mixer with a branch-line coupler was 

developed. It was based on a 90 nm CMOS technology. As shown in Figure I.8 the branch-

line coupler converts the separated RF and LO input signals into two RF-LO combined 

signals, which were injected into M1 and M2 that basically operate as independent mixers 

and generate the IF signals. Although at 138 GHz a quarter wavelength line, equivalent to 

one edge of the coupler, becomes shorter than 300 µm on silicon substrates, the size is still 

reduced with specific techniques such as capacitive open-stub loading (non-visible here). 

This miniaturization technique will be explained with more details further in this chapter. 

 

Figure I.8 : Down-conversion mixer with branch-line coupler 

I.1.3.3.b Reflection Type Phase Shifting 

When connecting the output ports 2 and 3 of a branch-line coupler by two identical 

reflective loads, a reflection type device is obtained between ports 1 and 4. If Γ is the 

reflection coefficient at ports 2 or 3, the phase shift between ports 1 and 4 is equal to the 

phase of Γ  plus 90°; such device is so called Reflection Type Phase Shifter (RTPS). Figure 

I.9 shows the block diagram of a typical RTPS with the impedance value of the reflective 
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loads denoted as 
F. If 
F is purely reactive, there is no power lost in the reflective loads so 

that the whole power is coupled to the output. The main advantage of this configuration is 

that input and output impedance matching is preserved, whatever the phase shifting is, as 

long as the coupler is terminated with identical reflective loads. Any load which can 

provide an impedance mismatch can produce reflections. However, to get better 

performance, which means high phase shifting with low loss, different kinds of modified 

loads were compared. In chapter IV, devices with optimised loads are achieved and 

measured in a PCB technology with state-of-the-art performances. Simulations in a CMOS 

technology show excellent performances, to be confirmed soon by measurements. 

 

Figure I.9: Block diagram of a RTPS  

I.1.4 Rat race coupler 

I.1.4.1 Presentation 

The rat-race coupler or hybrid ring directional coupler is a lossless reciprocal four 

ports network. The conventional circuit is schematized in Figure I.10. It comprises three 

90° branches and one 270° branch. The characteristic impedance of the ring branches 

should be √2 times the characteristic impedance of the ports terminations with the purpose 

of impedance matching at all ports.  

 

Figure I.10 : Rat-race coupler 

Historically, the first hybrid ring was described by Tyrrel in 1947 [15]. As a power 

divider, the rat-race coupler can be used for in-phase operation and 180° out-of-phase 

operation. However some of the components described herein are much more suitable and 

compact for in phase power division. Consequently, the rat race coupler is mainly used for 

180° out-of-phase. For this application, a signal injected at port 2 divides evenly between 

ports 1 and 4 with 180° phase difference, meanwhile port 3 keeps isolated. As a power 
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combiner, signals are simultaneously injected in phase at ports 2 and 3, summing at port 1, 

and subtracting at port 4. Consequently, ports 1 and 4 are referred to as Σ and ∆, 

respectively. By contrast, if signals injected at ports 2 and 3 have a 180° phase shift, sum 

and difference result inversely at ports 1 and 4. The bandwidth of this device is less than 

25 %; improvement can be obtained by the addition of a fifth port. Scattering parameters 

demonstration is available in [12]. The [S] matrix has the following form: 

 ��� = ��√2 ;0 1 1 01 0 0 �11 0 0 10 �1 1 0 < (I-8) 

I.1.4.2 Evolution 

In 1961, [16] gave the design equations of a rat-race coupler with any degree of 

coupling. These equations are detailed in (I-9) with J! and J� the normalized admittances 

and ai and bi the incident and reflected waves at port i, respectively, as in Figure I.11.  

 

Figure I.11 : Rat-race with any degree of coupling 

 

J!� ( J�� = 1 K*K� = �J�J! K!K� = J�J! 

(I-9) 

In 2007, Mandal and Sanyal proved that there is more than one solution in terms of 

electrical lengths and characteristic impedances to bring to a lossless, isolated and full-

matched component. Indeed, in [17] it is shown that an infinite number of solutions exist 

for coupler design at a given frequency. For all the solutions, characteristic impedances are 

less than the conventional 
�√2. Theoretically, the characteristic impedance of the ring can 

be chosen between 0 and 70.7 Ω in a 50 Ω system. For each value, two ring electrical 

lengths are addressable, one giving a total ring electrical length higher than 1.5 λ and one 

lower. The drawback is the bandwidth strengthening further and further with the decrease 

of the total electrical length. 
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I.1.4.3 Application 

The main application of the rat race coupler is the balun function, used for instance 

in balanced mixers as in [18]. The single balanced mixer gets use of a microstrip rat race 

hybrid and two GaAs Schottky diodes, in the configuration given in Figure I.12. The LO 

and RF signals are mixed in these diodes and are isolated by the rat-race. The IF port is 

isolated from both the RF port and the LO port by the low-pass filter. The RF chokes 

provide a tuning mechanism and prevent the RF signal from leaking into ground. 

Measurement results show that conversion loss is less than 13.5 dB from 90 GHz to 

97 GHz. Such mixer can be widely used in communication and radar systems in the mmW 

range. 

 

Figure I.12 : Configuration of the rat-race balanced mixer [18]. 

Another application of the rat race as a balun is the differential measurement as 

presented in [19]. The purpose is to measure the gain and noise performances of differential 

amplifiers by using single-ended measurements. Ideally, the input balun B1 shown in 

Figure I.13, equally splits the signal along two 180° out-of-phase branches. The behaviour 

of the output balun B2 is equivalent, although combining the output signals from the 

amplifiers A. Baluns to characterize a differential amplifier allow the use of conventional 

two ports measurement equipment. 

 

Figure I.13: Measurement procedure of a differential amplifier using baluns. 
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I.2 Reflection Type Phase Shifter 

I.2.1 Principle and theory 

The first Reflection Type Phase Shifter (RTPS) was proposed in 1960 by Hardin et 

al. [20]. The RTPS is composed by the branch-line coupler given in Figure I.7 with equal 

power split loaded by two identical varactors as in Figure I.14. The usual input and 

isolation ports of the branch-line coupler alone, ports 1 and 2 in Figure I.14, have a port 

impedance of 
�, whereas the usual through and coupled ports have a port impedance of 
�. The input signal is divided into two parts. Each part is reflected by a reflective load, to 

finally combine at the last port.  

 

Figure I.14 : RTPS loaded by varactors 

The calculation of the transmission parameter ��!	with the S matrix of the branch-

line coupler loaded by the variable impedances 
FLLL easily brings to:  

 ��! = �ΓL (I-10) 

with ML the reflection coefficient between the outputs of the branch-line and the loads 

defined as: 

 ML = 
FLLL � 
�
FLLL ( 
� (I-11) 

Considering the load 
FLLL as an ideal varactor 1 �2N⁄ , the magnitude of the transmission 

parameter ��! is 1, which means that all the power is transmitted, while the phase depends 

on the reflection coefficient ML and so, on the load 
FLLL. The principle of the RTPS is 

demonstrated. Intentionally, the two following sub-parts which detail the theoretical 

equations for loss and phase shift are not referenced. To our best of knowledge, the analysis 

throughout the literature was not enabling to enlighten the compromise between minimized 

losses and maximized phase shift. The following demonstrations are thus totally novel. 

I.2.1.1 Insertion loss 

In practice the load is not ideal and leads to losses. To represent losses, a resistance 

R representing the loss was connected in series with 1 �2N⁄ . 
FLLL can be written as: 

Port 1 +-.�-O�  , 90° 


� , 90° 
� , 90° 
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�  
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FLLL = 
 ( 1�2N = 
 1 ( �/��/� = 
'1 � ��) (I-12) 

with Q (I-13) the quality factor of the varactor. 

 � = 1
 ∙ 2 ∙ N (I-13) 

Under these conditions, the reflection coefficient ΓL is: 

 ΓL = 
FLLL � 
�
FLLL ( 
� = 
'1 � ��) � 
�
'1 � ��) ( 
� = 1 � 
�
 � ��1 ( 
�
 � �� = 1 � R � ��1 ( R � �� (I-14) 

with R = -O� .  

The magnitude of ��!is thus given by: 

 |��!LLLL| = |ΓL| = ST1 � 
�
 U� ( ��T1 ( 
�
 U� ( �� = V'1 � R)� ( ��'1 ( R)� ( �� 	= S1 ( T1 � R� U�1 ( T1 ( R� U� (I-15) 

According to (I-15), R has to be much greater or much lower than 1 to get |��!LLLL| close to 1 

and so to reduce the insertion loss. If 
� = 
� (for the conventional branch-line coupler), 

since 
� and R are both fixed values, this condition cannot be met for lossy varactors with 

the simple configuration given in Figure I.14. Looking at R = -O� , it is straightforward that 

by increasing 
�, the condition R ≫ 1 is roughly met and therefore the insertion loss is 

reduced. In accordance with the formulas given in (I-7), 
� may take any desired value 

while the branch-line coupler given in Figure I.14 would keep equal split and matched ports 

1 and 2. 

I.2.1.2 Relative phase shift 

According to (I-10) and (I-14) the phase of the transmission parameter ��! of the 

RTPS is: 

 
XY#6 = Z2 ( [\5'ΓL) = Z2 ( [\5 ]1 � R � ��1 ( R � ��^= Z2 ( [\_`abc��/'1 � R)d ( [\_`abc�/'1 ( R)d (I-16) 

Among the two possible solutions for minimizing the insertion loss, the only one 

leading to a variable phase according to Q and so to C, is a R much greater than 1. Indeed, 

with R ≫ 1	: 
 XY#6 ≈ Z2 ( 2 ∙ [\_`ab'�/R) = Z2 ( 2 ∙ [\_`ab ] 1
f ∙ 2 ∙ N^ (I-17) 
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We named 2ghi and 2gBj the minimum and maximum values of the varactor. The 

relative phase shift calculated as XY#6'klmn) � XY#6'klop) is: 

 ∆X ≈ 2. s[\_`ab ] 1
� ∙ 2ghi ∙ N^ � [\_`ab ] 1
� ∙ 2gBj ∙ N^t (I-18) 

Theoretically, if the condition R ≫ 1	is checked and if the varactor varies between 0 

and +∞, �X could reach 180° without insertion loss. However, varactors have a limited 

range so that only a maximum relative phase shift may be reached corresponding to a fixed 

value of 
�. The equation (I-18) is derived according to 
� and fixed equal with 0 in order 

to find the value of 
� leading to the maximal �X. The obtained equation is given in (I-19), 

and is consequently the condition to respect to get the maximal �X, considering that R ≫ 1.  

 1 = + 12ghi. 2gBj. N� .
�  
(I-19) 

To reduce the insertion loss, 
� has to be as high as possible whilst to get the 

highest relative phase shift the equation (I-19) has to be verified. For a given varactor, two 

different criteria have to be met by only one variable. In consequence, it is not possible to 

benefit simultaneously from the lowest loss with the highest relative phase shift. A 

compromise between these two characteristics has to be found. The next part illustrates this 

case with a practical example. 

I.2.1.3 Practical example with non-ideal varactor 

Let’s choose a varactor with a capacitor value C in the range [1-5] pF with a 

parasitic resistance R of 2 Ω at 2 GHz. According to (I-19) 
� has to be fixed to 35.6 Ω to 

get the maximal relative phase shift. Table I.1 sums up the calculated performances of two 

RTPS realized with ideal hybrid couplers, taking into account only the parasitic resistance 

R of the load. For one RTPS 
� = 35.6 Ω, chosen to get the maximal relative phase shift, 

and for the other one 
� = 100 Ω, chosen as high as possible to respect R ≫ 1	while taking 

into account standard technology limitation.  

ZT  

(Ω) 
κ 

Approximate uv 

according to (I-18)  

(°) 

Exact uv 

according 

to (I-16) 

(°) 

Max. insertion loss 

according to (I-15) 

(dB) 

FoM 

(°/dB) 

35.6 17,8 80.57 83.53 0.81 75.3 

100 50 58.79 58.94 0.34 92.1 

Table I.1 : RTPS performances with simple capacitive reflective load. 

The figure-of-merit (FoM) of a phase shifter is defined as the relative phase shift 

over the maximum insertion loss. It would not be accurate to calculate the FoM only taking 

into account the loss due to R, if we consider that these circuits were fabricated on a 
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dielectric substrate with tan δ = 0.0027, the insertion loss added by the branch-line coupler 

is estimated to about 0.3 dB. So the FoMs presented here take also into account the 

insertion loss induce by the branch-line coupler. 

With 
� = 35.6 Ω, the relative phase shift is about 83° with 0.81 dB of insertion 

loss leading to a FoM of 75.3 °/dB. As expected, with 
� = 100 Ω the insertion loss is 

lower with 0.34 dB but the relative phase shift as well with 59°. The FoM is higher with 

92.1 °/dB. We can notify that the criteria R ≫ 1	is respected in both cases, because the error 

between the approximate �X and the exact one is less than 4 %. 

I.2.1.4 Conclusion 

The ideal RTPS is lossless and has a phase controlled by the loads connected at the 

branch-line output ports. Due to the limited range and the parasitic resistance of the varying 

loads, the performances of the phase shifter are getting worse. With the flexible output port 

impedance of the branch-line coupler, it is possible to find different values than the 

classical 50 Ω in such a way that performances can be improved. It will be a compromise 

between the relative phase shift and the loss level. However, in this configuration the 

maximum relative phase shift stays modest and not high enough for some applications. In 

order to get more degrees of freedom than the only 
� for better performances and 

compromise, networks may be placed between the output ports of the branch-line coupler 

and the varactors. As we have seen, the purpose is to get a value of 
� different from R, so 

the added network can be called a mismatching network. The next part introduces the most 

usual modified reflective loads including mismatching network. 

I.2.2 Modified reflective load 

I.2.2.1 Serial inductance 

A modified reflective load can be designed with one, two or even more varactors 

depending on the targeted phase shift. As a general rule, the more varactors, higher the 

phase shift. The simplest modified reflective load used as a mismatching network is a series 

inductance with the varactor, also named series-resonating load. We will first explain the 

advantages of this widely used reflective load before presenting mismatching networks 

with or without inductance, but of higher complexity.  

If the reflective load consists in a fixed inductance L in series with an ideal varactor 

C as in Figure I.15, the reflective load becomes: 

 
F = �{N ( 1�2N (I-20) 
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Figure I.15 : RTPS with inductive load. 

The minimum and maximum values of 
F are reached for the extreme values of the 

variable C. For this study, C and L are ideal, e.g. without loss, and C can reach any value in 

the [0;+∞] range.  

For 2 = 0:  
F = �{N � �∞ = ��∞  (L has no influence) 

For 2 = (∞: 
F = �{N ( !$}~ = �{N  if { = (∞, 
F = (�∞ 

So �X = 2. �[\_`ab T�}~-. U � [\_`ab T$}~-. U� = 2.(90 + 90) = 360°. 

When adding a series inductance the maximum relative phase shift increases up to 

360° as long as its value tends to be (∞. In practice the value of C and L are limited. 

Hence the relative phase shift is much lower, so that a compromise should be found 

between phase shift and insertion loss. This is shown in the state-of-the-art. 

I.2.2.2 State-of-the-art at RF frequencies 

I.2.2.2.a Reflective load with lumped inductance and one varactor 

With an lumped inductance in series with a capacitor, a relative phase shift of 97° 

with 1.5 dB of maximum insertion loss was measured at 2 GHz in [21]. The varactor range 

value is [1.4-8] pF with a parasitic resistance of 2 Ω. The insertion loss variation for the 97° 

is 0.4 dB. The relative phase shift is much below the 360° theoretical maximum one 

calculated above. This is due to the limited range of values of the varactor and the finite 

inductance value. Moreover, there is a compromise to make between the insertion loss and 

the insertion loss variation. The outputs ports impedance 
� of the branch line coupler is 

50 Ω, leading to an impedance transforming ratio \- = 
� 
�⁄ = 1. Still in [21], another 

RTPS with the same reflective load was measured, but with 
� = 12.5 Ω, e.g. \- = 4. In 

that condition the relative phase shift is now 240° with 3.8 dB of maximum insertion loss 

and an insertion loss variation of 2.2 dB. In counterpart of the increase of almost 150 % of 

the relative phase shift, both the maximum insertion loss and the insertion loss variation 

expanded. To reduce the insertion loss variation, a resistance 
� of 82 Ω was connected in 

parallel with the load, as shown in Figure I.16. 

Port 1 
-.√� , 90° 

-.√� , 90° 


� , 90° 
� , 90° 


�  

Port 2 
�  


F  


�  


�  
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Figure I.16 : Reflective load proposed in [21]. 

This resistance smoothes the loss at its maximum value but does not modify the 

relative phase shift. Indeed, concerning the device with 
�, the maximal insertion loss is 

still 3.8 dB but the variation of this characteristic dwindles as low as 0.1 dB. The return loss 

is better than 20 dB. Figure I.17 shows the measured reflection coefficient of the three 

presented RTPSs at 2 GHz. 

 

Figure I.17 : Reflection coefficient of the three types of reflective load at 2 GHz. 

These results confirmed that it is not possible yet to get a relative phase shift of 360° 

with only one varactor in series with an inductance, due to their limited range. Other 

variable reflective loads have been enfaced with several varactors in order to increase ∆X. 

Some of them include a series inductance. 

I.2.2.2.b Reflective load with lumped inductance and several varactors 

In [22], a varactor was added before the reflective load previously presented in 

Figure I.15, leading to a Π-shape as described in Figure I.18(a). The simulation Figure 

I.18(a) shows that the impedance variation of 
�� is not centred anymore on the Smith chart 

real axis. Consequently the relative phase shift is really small. Therefore, an impedance 

transformation was added. On the Smith chart in Figure I.18(b), it can be seen that the 

simulated relative phase shift becomes higher than 360° with the impedance transformation. 


F  
�  

�  
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Figure I.18 : Simulated Impedance trajectory on the Smith chart. (a) Π-shape load without impedance 
transformation. (b) Π-shape load with impedance transformation. 

This RTPS was implemented in a 0.18 µm CMOS technology at 2.45 GHz. The two 

varactors have a capacitance range of [0.52-1.4] pF and [1.9-5.4] pF, resulting in a 

measured relative phase shift of 340° with a maximum insertion loss of 12.6 dB and a loss 

variation of 4 dB. With this topology the simulated relative phase shift shown that 360° can 

be reached but the measurement result was limited to 341°. 

In [23], the reflection loads are composed by two inductances in series with 

varactors, interconnected by a quarter-wavelength TL, as shown in Figure I.19.  

 

Figure I.19 : Reflective load proposed in [23]. 

Here again the resistance 
� was used to smooth the insertion loss, and \- was 

modified and fixed to 1.25. The measured maximum relative phase shift is 407° and the 

insertion loss is 4.6 dB at 2 GHz with a variation of 0.4 dB. The phase shifter was realized 

with silicon varactors of a [1.4-8] pF capacitance range and an average 2 Ω resistance. 

I.2.2.2.c Reflective load without lumped inductance 

It is also possible to get 360° of relative phase shift with a reflective load without 

inductance. The reflective load suggested in Figure I.20 by [24] consists in two shorted 

transmission-line stubs connected in series with the varactors. Those two parallel arms are 

interconnected with a quarter-wave TL. It increases both the total amount and the linearity 

of the phase shift. The phase shifter showed a total phase shift of 380° and a maximum 

insertion loss of 5.3 dB with a variation of 1.6 dB at 10 GHz. The high insertion loss is 

mainly due to the GaAs beam-lead varactor diodes which exhibit a 5.5 Ω parasitic 

resistance. 

(a) (b) 
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Figure I.20 : Reflective load proposed in [24]. 

In [25], 6 varactors were used in each reflective load. 
F is shown in Figure I.21. 

Each one of the seven TL is 50-Ω quarter-wavelength arms with a varactor diode at every 

node. All the varactors are similar, with a [0.2-1.1] pF capacitance range. The relative phase 

shift is really high with 500°. The maximum insertion loss is 3.5 dB with 2.5 dB of 

variation. The main drawbacks of this topology are the big area needed due to the numerous 

quarter-wavelength TLs and the cost with the use of 12 varactors for one RTPS. 

 

Figure I.21 : Reflective load proposed in [25]. 

I.2.3 Branch-line coupler substitution 

The above literature review showed that all of the papers that dealt with the RTPS 

assumed by default that the coupler, which is the backbone of the phase shifter, is a branch-

line coupler. However, the Lange coupler or quarter-wavelength coupled lines coupler can 

be used instead, particularly in order to increase the bandwidth. The RTPS presented in [26] 

consists in a CPW Lange coupler with 3-dB coupling and, as a reflective termination, a 

combination of two interdigital capacitors in series with an inductor. The relative phase 

shift is 95° at 2.5 GHz with a 96 % relative bandwidth determined for an input return loss 

better than 10 dB, whereas it is about 10-15 % for a RTPS using a branch-line coupler. 

[27] shows that a RTPS can be designed using less than one tenth of a wavelength 

coupled structure if the mode impedances of that structure are chosen properly. At 2.2 GHz, 

the relative phase shift is 373° with a bandwidth of 36 % under 10 dB of input return loss. 

To achieve the maximum possible phase range across the required bandwidth, the odd-

mode impedance of the short coupled structure needs to be around 10 Ω, whereas the even-

mode impedance needs to be around 200 Ω. Thus, the optimized short-section design 

requires higher even-mode impedance and lower odd-mode impedance than the values 

needed in the traditional design method. To realize such extreme impedances, slotted 
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ground plane was used, which results in a reduction in the even-mode capacitor and, thus, 

an increase in the even-mode impedance. Concerning the requirement for a range of low 

odd-impedance values, it can be achieved by connecting a chip capacitor between the 

middle points of the coupled lines. This capacitor has no effect on the even-mode circuit. 

However, it increases the equivalent odd-mode capacitor of the coupled structure and thus 

decreases the odd-mode impedance. 

I.2.4 Applications 

Phase shifters are used to adjust transmission phase in a system; they can be fixed 

digital phase shifters or analogue variable types. They are key elements in phased arrays, 

especially tunable phase shifters. They can be used to perform adaptive beam-forming or 

beam-steering; they enable multi-beam operation and are also used in phase-modulation 

communication systems. Recently, the demand for phased array systems operating at 

millimetre-wave bands has increased owing to the applications of security, imaging, radars 

(automotive), military surveillance and satellite communication. The RTPS is praised as a 

low control complexity device (only one control voltage), owing good stability against 

temperature changes and low sensitivity to process tolerances. Nevertheless, its main 

advantage stays the independency between ports matching and phase tunability thanks to 

the recourse of a four-port coupler which leads to design simplicity and high electrical 

performance.  

I.2.5 State-of-the-art review 

 

Table I.2 : State-of-the-art of the RTPS in PCB technology. 

Freq.
(GHz)

Phase 
shift
(°)

Average 
insertion

loss
(dB)

Insertion 
loss

variation
(dB)

Varactor
range
(pF)

Parasitic
resistance

(Ω)

Lumped
inductance

Return
loss 
(dB)

10 dB 
return loss
bandwidth

(%)

Max. 
insertion 

loss in the 
BW
(dB)

Nb. of
varactors

Type of 
RTPS

FoM
(°/dB)

2 237 3.75 ±0.05 1.4 - 8 2
Yes

(2.7 nH)
-21 >10 >4.6 2

Branch-
line

62.4

2 407 4.4

±0.1 for 
360°

±0.2 for 
407°

1.4 - 8 2
Yes
(-)

-20 >10 >5.8 4
Branch-

line
88.5

10 380 4.5 ±0.7 0.16 - 2.9 5.5 No -10 - - 4
Branch-

line
73.1

2.05 500 2.2 ±1.25 0.2 - 1.1 2 No -12 >10 >3.5 12
Branch-

line
142.9

[26] 2.5 95 1.6 ±0.4 1.35-4.2 <1
Yes

(2.2 nH)
-15 96 3.8 4

Lange 
coupler

47.5

[27] 2.2 373 2.5 ±0.75 0.6-4.8 2
Yes

(1.7 nH)
-13 36 4 2

Lange 
coupler

116.6

Ref.

[21]

[23]

[25]

[24]
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Table I.2 summarizes the electrical performances and important characteristics of 

the RTPS in PCB technology. The RTPS presented in [25] has the highest FoM with 

142.9 °/dB but suffers from serious drawbacks as the big surface, the cost due to the 

numerous varactors and a big variation loss. Other phase shifters reached high phase shift 

as in [23] with 407° but it is worth to insist that there is no practical need for phase shift 

over 360°. Some phase shifters have very small loss variation as in [21] but a high level of 

loss and are not optimized to decrease it, leading to low FoMs. 

I.3 Miniaturization techniques 

Size reduction is an old but very important topic that runs throughout the design 

procedure of microwave components from the first to the last stage. To get low cost and 

competitive components, the shrinking of the occupied circuit area is essential and pressing 

especially when considering integrated technologies like CMOS. Many efforts are carried 

out to miniaturize the components. Among them, TLs miniaturization is one of the research 

topics of major interest in the microwave range. TLs are the basis of any passive distributed 

device and therefore proportional. Nevertheless, attention has to be paid to other 

miniaturization techniques in parallel to TLs improvement. Thus in this section, several 

techniques dedicated to exploiting miniaturization are described. The use of high-K 

dielectrics was not addressed in this section, because it relates to specific substrates, and 

cannot be transferred to integrated technologies. 

Although other performances improvement such as harmonic suppression, 

broadband or multiband techniques does not focus specifically on miniaturization, most of 

them involve it, and, thus, should be included also in this discussion. Finally, it is worth 

mentioning that striking references that illustrate the numerous solutions for miniaturization 

mainly focus on the Wilkinson power divider, the rat-race coupler and the branch-line 

coupler, that is to say the components studied during this thesis for power division, power 

combining and reflection type phase shifting purposes. 

I.3.1 Shunt-stub-based artificial transmission lines 

The most promising strategy for miniaturization may be the shunt-stub-based 

artificial TL. As an example, it has been developed as the T- and Π-shaped open-stubs in 

[28]. The shunt-stub-based artificial TL which consists of series high-impedance microstrip 

and bilateral low-impedance shunt stubs, as shown in Figure I.22(a), can be replaced by 

shunt stubs with two sets of high-impedance branch-type stubs to become more flexible to 

utilise the folding technique, as shown in Figure I.22(b). Thanks to the slow-wave effect 

generated by the shunt stubs, this artificial TL can replace the ? 4⁄  TL of any device, with 

an equivalent 90° electrical length at centre frequency, which results in a significant 

miniaturization.  
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Figure I.22 : (a) A conventional TL and its π- equivalent shunt-stub-based artificial TL, (b) compact 
structure. 

In [29], [30] and [31] this strategy was applied a Wilkinson power divider, a branch-

line coupler and a rat race coupler, respectively. [29] occupies 14.7 % circuit size compared 

to the conventional structure, [30] occupies 8 % and [31] only 3.9 %. The drawback of this 

feature is the stubs characteristic impedance that can be high with non-reachable values in 

an integrated technology. In the previous papers the characteristic impedance may be as 

high as 110 Ω. In integrated technologies, values above 70 Ω are unattainable when 

considering microstrip TLs. 

I.3.2 Meander and Fractals 

The space-filling behaviour of the folding technique has proven to be beneficial in 

the design of small size devices. It is somewhat similar to the space-filling nature of 

meanders [32] and fractals [33], applied to a rat-race and a branch-line coupler. Fractal 

geometry is an essential and typical technique with its simple miniaturization mechanism 

arising from the high degree of meandering and segment compression introduced during the 

space-filling process. The performance of fractal-shaped devices has been demonstrated 

without any performance deterioration in various publications. However, it should be 

highlighted that the small fractal segments encountered in the second- or even higher-order 

iterations deserve consideration [33]. 

I.3.3 Phase inverter 

The 270° TL needed with the conventional rat-race coupler is the main reason for its 

big surface. In 1968, in [34], March replaced the three-quarter wavelength section by a pair 

of equilateral and broadside-coupled segments of microstrip TL with an electrical length of 

90°, having diametrically opposing short-circuited ends, thus creating a phase-reversing 

network. Its purpose was to broaden the frequency band meanwhile reducing the rat-race 

dimensions. In 1994 two 180° phase shifters were developed, one with coplanar striplines 

in [35] and one with a CPW-slotline transition in [36]. In 1999, [37] showed a phase 

inverter in a CPW topology with bonding wires. All these phase inverters are efficient in 

the framework of the fabrication of uniplanar structures although their need for bonding 

    

°equivalent 

High-impedance 
Branch-type stub 

(a) (b) 
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wires, but they are inefficient for non-uniplanar ones. Later, the concept was developed for 

non-uniplanar structure as in [38] for a microstrip-CPW transition and even for microstrip 

TLs in [39]. In [40], a phase inverter in a CPW topology was integrated in a CMOS back 

end of line (BEOL). Figure I.23 shows two possible phase inverters in a CPW topology 

compatible with CMOS BEOLs. The symmetrical one is represented in Figure I.23(a) and 

the asymmetrical one in Figure I.23(b).  

 

Figure I.23 : (a) Symmetrical and (b) asymmetrical CPW phase inverter. 

I.3.4 Capacitor loading 

To minimize the physical size of any device, lumped capacitors can load each port 

as in [41] or distributed capacitors can be placed along the TL as in [42] for a Wilkinson 

power divider, in [43] for a branch line coupler or in [44] for a rat-race coupler. [42] shrinks 

the area to 47 % that of the conventional structure, [43] to 38 % and [44] to only 8 %. 

Furthermore, the capacitor loading has good harmonic suppression performance due to its 

intrinsic low-pass behaviour.  

I.3.5 Stepped-impedance 

The stepped-impedance is also a really popular method to reduce the size of a TL. In 

[45] a periodic stepped-impedance was applied to a rat-race coupler. The reached relative 

circuit size was only 21.5 % that of the conventional one. In [28], the concept was adapted 

to a Wilkinson power divider. The conventional quarter-wave transformers were replaced 

by a constant VSWR-type transmission-line impedance transformer (CVTs). Stubs can be 

added at one or two extremities of these CVT in order to get a modified constant-

conductance-type transmission-line impedance transformer (MCCT). According to the 

chosen topology, strong miniaturization can be obtained. It is possible to have CVT or 

MCCT with electrical lengths smaller than the 90° needed in the classical Wilkinson power 

divider. However, in that case, more complex isolation circuit is required to keep perfect 

isolation and matching at the outputs. The same author describes several design of isolation 

circuit in [47]. 

I.3.6 Slow-wave transmissions lines 

The main drawbacks of the classical TL such as the microstrip TL or the coplanar 

TL in integrated technologies are their big surface and poor quality factor. Many different 

Vias 

(a) (b) 
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approaches have been studied for miniaturization, for instance the use of high relative 

permittivity substrates or the use of lumped or semi-lumped components with interesting 

results at RF frequencies [48]. However these approaches cannot be transferred to CMOS 

technologies, especially in the mmW range. In conventional CMOS processes, classical 

coplanar waveguides typically suffer from significant losses (1-2 dB/mm at 10 GHz) 

mainly due to dielectric loss effects in the low-resistivity silicon substrate.  

Slow-wave coplanar waveguides (S-CPW) are based on conventional CPW with a 

patterned floating shield, consisting in floating metallic strips underneath the line as shown 

in Figure I.24.  

         

Figure I.24 : S-CPW topology. 

Considering a classical S-CPW configuration, geometric parameters can be 

classified in two groups: one linked with the main CPW and one with the added floating 

strips. 

• Parameters regarding the CPW: 

W: signal strip 

G: signal to ground gap 

Wg: ground planes width 

• Parameters regarding the floating strips: 

SL: floating strips length 

SS: floating strips space 

h: dielectric thickness between floating strips and CPW 

The two parameters SL and SS are chosen as the minimum allowed by the 

technology. Concerning SL, this enables to reduce the eddy currents that take place in the 

floating strips. Meanwhile the conventional conductive loss along these strips increases. Up 

to now, it appears that an optimum between eddy currents and conductive losses is reached 

for a SL lower than the minimum authorized by the technology [1]. Concerning SS, it has to 

be smaller or equal to h so that the patterned floating shield acts as an electric wall. The 

electric and magnetic fields propagation modes are shown in Figure I.25 assuming that any 

substrate is replaced with vacuum. The signal strip is centred, with the ground strips on its 

sides. The horizontal strip is the floating strip. In a 3D view, the length of the structure is 

equal to a period SS+SL which is much smaller than a wavelength. This enabled to perform 

     

SS 

SL 
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the simulation with Flux 3DTM, a 3D quasi-static electric and magnetic solution software. 

The electric field, given in Figure I.25(a), is concentrated between the CPW and the 

floating strips so that the capacitance per unit length 2� is greatly enhanced. Moreover, 

there is no field underneath the floating shield, which let us think there would be no electric 

field neither if the substrate were the lossy silicon. On the contrary, the magnetic field, as 

shown in Figure I.25(b), passes through the patterned ground, so that the inductance per 

unit length {� is quite unchanged and stays similar to that of a conventional CPW.  

 

Figure I.25 : Cross-section of the (a) electric field and (b) magnetic field of a S-CPW. 

In this context, the phase velocity �	 given in (I-21) decreases for the S-CPW as 

compared to the CPW one. This explains the name: slow-wave. In the same manner, 

according to (I-22) a high relative effective permittivity is reached. 

 �	 = 1 %{� . 2��  (I-21) 

 ����� = 2��. {� . 2� (I-22) 

The quality factor, defined in (I-23) by [49] express the loss per degree of phase. 

This definition is used all along this manuscript. 

 � = �2� (I-23) 

In practice, the quality factor of slow-wave TLs carried out in CMOS/BiCMOS 

technologies is about 2 to 3 times higher than the classical TL one, as we will see further in 

chapter II, and the characteristic impedance can reach 100 Ω, that is simply impossible with 

other TLs, with a limitation of about 70 Ω. In [50] an efficient electric model was proposed 

for S-CPWs. More details about this S-CPW are given in [1] and [2]. 

A classical dual behaviour resonator (DBR) filter was realized in [51] by associating 

two different parallel open-ended stubs built with S-CPW. This topology of TL was also 

used to realize matching networks in a power amplifier PA at 60 GHz in [52], fabricated in 

the BEOL of a 65 nm CMOS technology. Power dividers were fabricated in [53] at 56 GHz 

Electric field 

Magnetic field 

(a) 

(b) 
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and 71 GHz without isolation and in [54] at 67 GHz with isolation. In [54] the authors did 

not deal with a floating shield but applied toward the CPWs periodical loading stubs and 

elevated signal conductors. The performances of those two power dividers are discussed in 

the next section focusing on the state-of-the-art review at mmW. 

I.4 State-of-the-art in millimetre-waves 

With increased bandwidth and speed requirement for the wireless access and data 

transfer, much effort has been carried out to extend the exploration of silicon-based passive 

components to mmW applications. Commercially available silicon technology presents a 

cost-effective option to realize highly integrated systems for applications such as local 

multipoint distribution system (LMDS) at 36 GHz, multi-gigabit short range applications at 

60 GHz, but also at 77 GHz for high performance long (76–77 GHz) and short (77–

81 GHz) range automotive radars, and future emerging RF-imaging applications above 

100 GHz. 

60 GHz radio has proved growing interest because of the worldwide availability of 

unlicensed 9 GHz bandwidth. The major drives for commercial applications of 60 GHz 

radio are SiGe BiCMOS and CMOS technologies. With further down-scaling and accuracy 

of fabrication, it is expected that the CMOS/BiCMOS technologies may become an 

alternative solution for circuits and systems implementation at millimetre-wave frequencies 

and even towards terahertz. 

I.4.1 Power divider with in phase outputs 

Distributed passive components such as power dividers/combiners, which are used 

extensively to split or combine power at board level are not considered practical at RF 

frequencies to be used on a chip because of chip size limitations and cost factors. However, 

in the mmW range, the wavelength becomes much smaller. With a relative permittivity of 

about 4-4.2, the dimension of a quarter-wave length TL approximates the 650 µm at 

60 GHz. As it is the case for any distributed passive component, the miniaturisation at 

mmW is a mandatory topic to get low cost devices. Obviously, the size reduction should 

maintain high level performance to keep highly competitive dividers/combiners. 

Table I.3 summarize the state-of-the-art for power dividers at mmW frequencies. In 

[55], a Wilkinson power divider was developed using asymmetrical shunt-stub and 

meander-line leading to an ultra-compact device. In [54], the design was based to a slow-

wave elevated coplanar waveguide. The area was smaller than the one in [55] but its 

working frequency is higher, with 60 GHz instead of 45 GHz in [55]. The worst value of 

the input reflection coefficient �!! of the power divider using this technique is -8 dB. Hence 

matching is poor. Also in [54] 2.3 dB of extra insertion loss (that is to say excluding the 

theoretical 3-dB power dividing ratio) were measured whereas only 0.9 dB were added in 
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[55]. The simple meander technique applied in [56] leads to a bigger surface but with only 

0.5 dB of insertion loss at 60 GHz. The meander-line associated with a floating defected 

ground structure in [57] induced 1.5 dB of extra loss with a middle area compared to the 

other devices. 

 

Table I.3 : State-of-the-art of power divider around 60 GHz. 

Isolation is often desired in order to avoid reflected signals to propagate to other 

paths in the system. In [55], [56] and [57] the isolation reaches respectively -19, -22 

and -21 dB. In [54] isolation is only of -12 dB. 

I.4.2 Power divider with quadrature outputs 

At mmW frequencies, power-efficient quadrature generation based on a passive 

approach has been widely adopted in I/Q direct-conversion transceiver, in the radio front-

ends of wireless systems, amplifiers, balanced mixers, and vector modulators because of 

their versatile use. The realization of these couplers requires a large area because of the 

utilization of quarter-wavelength TLs. Thus, it is essential to reduce the couplers size, 

which significantly lowers the fabrication costs, keeping low insertion loss and good return 

loss and isolation. 

Table I.4 compares the state-of-the-art in terms of power dividers with quadrature 

outputs at 60 GHz. The simple branch-line coupler with meandering in [58] adds the least 

insertion loss with 1.5 dB, induces the best return loss and isolation but is much less 

compact than the other topologies. Branch-line couplers with modified CPWs are studied in 

[59] and [60]. The Lange coupler [40] leads to the most compact device with an area of 

0.048 mm2. The difficulty with coupled lines, as in the Lange coupler, is that high even 

characteristic impedance 
�� is needed. Values are usually unreachable in silicon 

technology. In [40] a Thin Film MicroStrip TLs (TFMS) is used. The magnitude imbalance 

between the outputs is less than 1 dB for any of these power dividers. 

S11

(dB)
S22 & S33

(dB)

[54]/90 nm 
CMOS

60
slow-wave 

elevated coplanar 
waveguide

-5.3 -8 -11 -12 -5.3 -6 -10 -11 0.051

[55]/90 nm 
CMOS

45
asymmetrical shunt-

stub and
meander-line

-3.9 -21 -15 -19 -4.2 <-13 -14 -15 0.06

[56]/0.13 um 
BiCMOS

60 meander-line -3.5 -19 -17 -22 -3.7 <-17 <-17 -18 0.12

[57]/0.18 µm 
SiGe BiCMOS

60
floating defected 

grounding structure
and meander-line

-4.5 - -16.5 -21 -4.3 - -16.5 -19 0.09
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Min.
isolation 

(dB)

Area

(mm2)

In 20 % bandwidthReturn loss 

Return loss Freq.
(GHz)

Topology
Insertion 

loss
(dB)

S11

(dB)
S22 & S33

(dB)
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Table I.4 : State-of-the-art of power divider with quadrature outputs at 60 GHz. 

I.4.3 Power divider with out-of-phase outputs 

In the RF domain, both active and passive baluns are commonly used. For mmW 

frequencies, nevertheless, the use of active structures becomes more troublesome as the 

delay introduced by the transistors yields to a significant negative effect on the phase 

balance of the balun output. Among passive circuits’ solutions, they can be realized with 

lumped coupled inductors or transformers, or with distributed TL's based circuits. The key 

issue for CMOS RFICs is the chip area. While in RF, say until one tenth of GHz, the use of 

transformers is obvious and easy to implement, and on the other hand distributed circuits 

are size consuming, the situation becomes different when dealing with frequencies of 60-

100 GHz and above. The design of the transformers becomes more difficult because of the 

low efficiency of the coupled inductors, the insertion loss increases and the phase and 

magnitude imbalance becomes difficult to control. This lumped approach needs the 

development of very accurate electrical models taking into account all the parasitic 

elements, in particular the capacitors. On the other hand, the design of TLs is made easier 

because of less parasitics, and they are well suited for millimetre-wave devices. 

Among the TL based baluns, two main structures are prominent: the Marchand 

balun [61], [62], and the rat-race balun [40] and [63]. Marchand baluns combine two pairs 

of coupled λ/4 lines, one of which is open-ended and the two others are shorted. Rat-race 

baluns, adapted from rat-race couplers, are set by 4 ports in a circular disposition with a 

total length of 3λ/2. Table I.5 compares the performances of several baluns realized with 

the main structures. 

[40]/0.13 µm 
SiGe BiCMOS

60
Lange couper

with TFMS TLs
5.5 19 (only S11) 15 1 0.5 0.048

[58]/0.13 µm 
SiGe BiCMOS

60 meandering 4.5 20 (only S11) 25 0.35 1.3 0.28

[59]/90 nm 
CMOS

60
elevated-center 

coplanar 
waveguide

5.5 15 17 0.7 2 0.10

 [60]/90 nm 
CMOS

60
slow-wave 
coplanar 

waveguide
6.2 12 25 0.8 0.3 0.083

Ref./Tech.
Area

(mm2)

Freq.
(GHz)

Topology

Max. 
insertion 

loss
(dB)

Worst return 
loss at any port 

(dB)

Isolation
(dB)

Magnitude
 imbalance

(dB)

Phase 
imbalance

(°)



Chapter I  
 

44 
 

 

Table I.5 : State-of-the-art of the baluns at 60 GHz. 

I.4.4 Phase shifter 

Phase shifters can be active or passive in nature. Active ones can be located in the 

high or low frequency path of a transceiver. Phase shifters in the low frequency path tend to 

be more complicated with larger surface area and higher power consumption. In this 

approach, power consumption is a major concern as it can range from 20 mW to almost 

1 W. 60 GHz active phase shifters limit the linearity of the front-end and may be prone to 

saturation in presence of interferers or jammers and therefore passive designs are 

preferable. 

The passive phase shifter can be classified among three main types: the reflection 

type, the switched-network approach, and the loaded TLs. The varactors allow the RTPS to 

have a continuous and accurate variation of the phase. Nevertheless, the low quality factor 

of the silicon varactors at mmW makes this kind of RTPS really lossy, as high as 7.5 dB for 

180° in [65]. The use of lumped MEMS can improve the insertion loss, however, they still 

remain high with 5.5 dB for only 135° of phase shift as reported in [66]. The switched-

network approach consists on switching different delay networks to obtain the required 

phase delay. In [67] and [68], these networks were composed of simple TL sections. 

Switched-path type phase shifters are inherently digital, and quickly become cumbersome if 

a large number of phase states are desired. Devices such as phased arrays often require high 

resolution in phase control, which would lead to a large and lossy digital phase shift 

system. Another solution for the reflective network consists on periodically loading a high-

impedance TL with MEMS variable (or switched) capacitors [69] or varactors [70]. The 

phase shift of the loaded line can be controlled by varying the capacitance of each period 

(or a set of periods). Here again the varactors induce high loss, 12.5 dB for 156° in [70] 

instead of 3.6 dB for 337° with MEMS. Table I.6 compares more in detail the performances 

of the discussed phase shifters. 

Through Coupled

[61]/0.18 µm 
CMOS

16.5-67 Marchand balun <-6 - -7 to -5 -8 to -5 180±5 0.06

[62]/0.18 µm 
CMOS

25-65 Marchand balun <-7 - -10 to -7 -9 to -6 180±10 0.55

[40]/0.13 µm 
SiGe BiCMOS

48-80 Rat-race <-10 <-18 -5 to -4 -6 to -5 184±2 0.11

[63]/0.13um
BiCMOS

57-71 Rat-race <-14 <-16 -7.5 to -5.5 -6 to -4.5 180±30 0.28

[64]/0.13 µm 
CMOS

55-65 Transformer - - 180±5 0.05-7.5 to-4.5

Isolation
(dB)

Phase
imbalance

(°)

Area

(mm2)

Magnitude 
imbalance

(dB)Ref./Tech.
Freq.
(GHz)

Architecture
Return

loss
(dB)
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Table I.6 : State-of-the-art of phase shifter around 60 GHz. 

The maximum FoM of the phase shifters presented herein is about 90 °/dB for [67] 

and [69]. However, the areas of these two devices are respectively 4 and 9.45 mm2 on a 

quartz substrate which is unacceptable for a simple phase shifter in integrated circuit, even 

in an interposer type technology with 3D integration. Such surface, and so such cost, will 

eliminate these solutions for most of the applications. Among the moderate areas, the FoM 

dramatically decreases down to around 25 °/dB for a maximal phase shift of 180° for RTPS 

and 360° for switched-network approach. 

I.5 Conclusion 

The Wilkinson power divider/combiner (in phase), the branch-line coupler (in 

quadrature) and the rat-race coupler (out-of-phase) has been selected and described because 

of their efficiency and their popularity among the designers. They were first defined for 

equal power split and 50 Ω ports impedance loading, but later on, their definition was 

generalized to arbitrary termination impedances and/or arbitrary power division leading to 

more freedom for their applications. The reflection type phase shifter, based on branch-line 

coupler, is also explained and different types of reflection loads are compared. The state-of-

the-art is given at RF. The shrinking of these circuits area is an essential topic to get low 

cost and competitive components, and it is even more pressing when considering integrated 

technologies like CMOS. Shunt-stub-based artificial and S-CPWs, folding technique, phase 

inverter, capacitor loading and stepped-impedance are usual ways to reduce the size of the 

power dividers but also of any circuits using TLs and can be available to both PCB and 

Ref./Tech.
Freq.
(GHz)

Architecture
Phase 
shift
(°)

Average 
insertion

loss
(dB)

Insertion 
loss

variation
(dB)

Return
loss 
(dB)

Return loss 
over a 

10 % BW
(dB)

Area

(mm2)
FoM
(°/dB)

[65]/130nm 
SiGe

60
RT Varactor 

MOS
180 5.85 ±1.65 - - 0.18 24

[66]/quartz 
substrate

60 RT MEMS 135 4.25 ±1.25 -14 -13 3.15 24.5

[67]/quartz 
substrate

60 SL MEMS 269.2 2.5 ±0.5 -13 -12 4 89.7

[68]/90nm 
CMOS

60
SL without 
small-size 
capacitor

360 12.5 ±2 <-10 <-10 0.28 24.8

[69]/quartz 
substrate

65
CPW Loaded 

MEMs
337 2.8 ±0.8 -10 -10 9.45 93.6

[70]/65nm 
CMOS

60
Differential 
TL loaded 

MOS 
156 9.25 ±3.25 -13 -11 0.2 12.5
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silicon technologies. Finally, the state-of-the-art of the presented power dividers and phase 

shifters working around 60 GHz is given. 

It is really difficult to associate compactness, low insertion loss level and low 

phase/magnitude imbalance at millimetre-wave frequencies for power dividers. In chapter 

II the S-CPWs are used to design two baluns comprising a phase inverter, a branch-line 

coupler and a Wilkinson power divider. Design is performed at 60 GHz in order to 

highlight their potential as passive circuits. Among the various power divider applications: 

balun, mixing, differential measurement…, feeding circuit for antenna arrays beam-steering 

attracted our attention because of its structure. It is usually composed of Wilkinson power 

dividers and reflection type phase shifters which are themself based on branch-line coupler. 

Both Wilkinson power divider and reflection type phase shifter face limitations in CMOS 

technology at millimetre-wave frequencies. The first one needs an isolation resistance in 

order to work as a combiner but the latter induces unwanted parasitic and coupling, 

moreover it suffers from a lack of characteristic impedance flexibility. A new solution is 

proposed in chapter III, first on a PCB technology as a proof of concept and then at 60 GHz 

in a CMOS technology. The second one does not offer high FoM which means high 

insertion loss level. In chapter IV two solutions are provided, one in RF on a PCB 

technology and another one at 60 GHz in a CMOS technology. All the proposed passive 

devices at millimetre-wave frequencies were achieved with S-CPWs in order to improve 

performances and compactness. 
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Chapter II  : S-CPW applications 

Performance and compactness are extremely important requirements for 

components design, especially in integrated circuits where performance is limited by the 

technology and costs are directly linked to the surface area. Many miniaturization 

techniques, with their impact on the performance, have already been listed and described in 

the chapter I. Here we are interested in the Slow-wave CoPlanar Waveguide (S-CPW). This 

topology of transmission line (TL) has been under study for about six years in our 

laboratory IMEP-LAHC and already proved its great interest, [50] to [53], and [71], to [73]. 

Its low insertion loss leads to quality factors between 2 and 3 times higher than the classical 

TL one. Many development steps have been overcome: simulation, de-embedding, 

parameters extraction, topology optimisation, physical circuit model and realisation of 

simple circuits. The continuity of this development is now to enlarge the use of this type of 

TL in more complex microwave passive circuits in order to improve their performances and 

compactness. 

A phase inverter in S-CPW, also presented as a miniaturisation tool in chapter I, was 

simulated, fabricated and measured. To prove its broadband and compactness benefits, two 

power dividers for balun application making requirement of a phase inverter were designed 

and measured. These circuits were realized in the 65 CMOS technology by 

STMicroelectronics. 

In order to cover all the types of power dividers that had been considered in chapter 

I, the slow-wave technique was also applied to two power dividers with in phase and in 

quadrature outputs. The circuits are still under fabrication while writing my dissertation, so 

only the simulation results are shown. The technology involved for those ones is the 55 nm 

BiCMOS by STMicroelectronics. 

At the beginning of this chapter, the simulation tool used for designing the TLs and 

devices is mentioned and the de-embedding methods applied to the measured TLs, two 

ports and four ports devices is explained. The performances and dimensions of the 

simulated and/or measured TLs needed for the devices are presented and gathered 

according to their back end of line (BOEL). 

II.1  Simulation tool 

The simulation results of the TLs were obtained thanks to the industry-standard 

simulation tool HFSSTM provided by ANSYS. This software is a 3D full wave frequency 

domain electromagnetic field solver based on the finite element method (FEM). HFSS 

automatically generates mesh and solves Maxwell equations at several nodes of the 

meshing. A big amount of random access memory (RAM) and long simulation time are 
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needed, particularly with our structures because of the huge difference between the smallest 

and the biggest dimensions. 

II.2  Calibration & De-embedding 

The whole TLs and devices presented in this report were measured at the IMEP-

LAHC laboratory with a two ports 110 GHz vector network analyzer (VNA) ME7808C by 

Anritsu or with a four ports 67 GHz VNA 8510C by Agilent Technologies. The first step of 

a RF S-parameters measurement consists in calibrating the VNA, before placing the RF 

probes on the circuit pads. In addition to the correction of the errors associated with the test 

setup, the calibration step fixes the measurement reference planes. The LRRM (Line 

Reflect Reflect Match) calibration method was applied because of its accuracy concerning 

S-parameters until 110 GHz [74]. However, the calibration method does not correct the 

interconnects parasitics (pads, TLs, tapers…) of the device under test (DUT). Considering 

the high working frequency and the size of the device compared to the size of the pads, it is 

mandatory to correct these parasitic effects by another step, named de-embedding, in order 

to extract rightly the parameters of the DUT, the intrinsic device.  

II.2.1 Two port devices 

II.2.1.1 Transmission Line 

To reduce the influence of the pads and eventually of the interconnects from pads to 

TLs, the two lines method proposed by Mangan in [75] was applied in this work. To 

compute de-embedding, two identical TLs of different lengths must be measured (3! / 3� 

for instance). The purpose is then to deduce the ABCD matrix (or transfer matrix) of a 

fictive TL of length 3! � 3� from the raw results of the two TLs. This matrix can be written 

as: 

 [�2:'�6��#) = ]['�6��#) �'�6��#)2'�6��#) :'�6��#)^= ] cosh	��'3! � 3�)� 
D sinh��'3! � 3�)�sinh��'3! � 3�)� /
D cosh	��'3! � 3�)� ^ (II-1) 

From (II-1), it is then easy to extract the characteristic impedance 
D and the 

propagation coefficient � with equations (II-2) and (II-3). 

 
D = V�'�6��#)2'�6��#) (II-2) 

 � = � ( �� = arccosh	'['�6��#))3! � 3�  (II-3) 



Chapter II  

49 
 

One advantage of this de-embedding method is that the parasitics from the pads and 

interconnects do not need to be known or approximated by a lumped-element network. On 

the other hand, as all the TLs that have to be de-embedded have to be fabricated twice with 

two different lengths, this method results in a big area. 

II.2.1.2 Devices 

Concerning the devices, the applied de-embedding principle is explained in Figure 

II.1. Contrary to the S-matrix, the ABCD matrix offers the advantage of being chained. So 

the purpose consists in calculating the ABCD matrices of the global device with pads and 

interconnects (indexed as raw), and the pads and interconnects alone (indexed as pad and 

TL, respectively). In our work, the used interconnects are TLs. Then, the raw ABCD matrix 

can be written as in equation (II-4):  

 �ABCD���� = �ABCD����. �ABCD�f . �ABCD�¡¢f	. �ABCD�f . �ABCD���� (II-4) 

The determination of the ABCD matrix of the interconnects relies on the 

aforementioned two lines method. The TL ABCD matrix is expressed as in (II-5) with the 

parameters 
D and � extracted thanks to the Mangan method. 

 ] cosh	'�{) 
D sinh'�{)sinh'�{) /
D cosh	'�{) ^ (II-5) 

The pads are usually modeled by a lumped elements circuit, those elements are 

determined thanks to a shorted �!!_¤¥¦�§ and an open �!!_¦��i pads measurements. Then the 

ABCD matrices of the pads are determined from their lumped elements equivalent circuits. 

In our specific case, with the pad dimensions and the considered frequencies below 

110 GHz, the open measurement alone is enough to elaborate the model of the pad effect. 

As the pad is considered as a one port circuit, with the reflection coefficient M = �!! 
between the probes and the pad, it is easy to deduce the impedance of the pad thanks to the 

equation: 

 S!! =	 
�BA	– 	
�
�BA (	
� (II-6) 

where 
� is the impedance of the probes, here 50 Ω. The values of  
�BA show a 

capacitance effect. Consequently, the matrix of the pad has the form of a parallel 

capacitance as: 

 s 1 01/
�BA 1t (II-7) 

The raw S-parameters are simply converted to ABCD matrices [12]. The final 

equation to calculate �ABCD�¡¢f with pads and TLs as interconnects is: 
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 �[ �2 :�¡¢f = ªcosh'�{) 
D sinh'�{)sinh'�{)
D cosh'�{) «f 
�! ∙ ª 1 01
�BA 1«���

�!

∙ 	 �[ BC D���� ∙ ª 1 01
�BA 1«���
�!

∙ ªcosh'�{) 
D sinh'�{)sinh'�{)
D cosh'�{) «f 
�!

 

(II-8) 

Then, it is easy to convert the ABCD matrix into a S matrix. 

 

Figure II.1: De-embedding principle for two ports devices. 

II.2.2 Four port devices 

Concerning the de-embedding of a four ports device, the principle is similar to the 2 

ports method except that classical S to ABCD and ABCD to S matrices conversion 

formulas cannot be directly used since they are consistent only for two ports devices. These 

formulas have thus been modified involving matrices instead of complex numbers. The 

�¬­®¯�°±² = �¬­®¯�³±´. �¬­®¯�µ¶. �¬­®¯�¯·µ	. �¬­®¯�µ¶. �¬­®¯�³±´   (II-4)

 Cascade of [ABCD] matrices 

 Matrices inversion and 

calculation 

�¸�¯·µ
 Conversion [ABCD]  

to [S] 

 

 Zc (II-2) & γ 
(II-3) [75]   

 [ABCD] pad (II-7)   [ABCD] TL  (II-5)    [ABCD] raw  

 Pad : 
S11_open 

Interconnects : 
TL l 1  & TL l 2 

Global device 
[S]raw  

 Measurement of [S]  

Conversion [S] 

to [ABCD]  
 Z pad (II-6)  

  

�¬­®¯�¯·µ	 (II-8)
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measured parameters of a four port S matrix are gathered in such a way that a two ports 

matrix is created where the four parameters are not algebraic coefficients but matrices of 

coefficients, as expressed in (II-9). 

 ������ = ;�!! �!� �!* �!���! ��� ��* ����*! �*� �** �*���! ��� ��* ���< = s��!!���� ��!��������!���� ��������t (II-9) 

with 

 ��!!� = s�!! �!���! ���t ��!�� = s�!* �!���* ���t���!� = s�*! �*���! ���t ����� = s�** �*���* ���t (II-10) 

The equations between the voltage and current used in the ABCD matrix definition 

(¹i, ºi) and the power waves of the S matrix definition (ai, Ki) are rewritten as follows: 

• For [S] to [ABCD] conversion: 

 �[1� = �¹1� ( 
0�81�2√
0

																					�[2� = �¹2� � 
0�82�2√
0

 

��1� = �¹1� � 
0�81�2√
0

																						��2� = �¹2� ( 
0�82�2√
0

 

(II-11) 

• For [ABCD] to [S] conversion: 

 �¹1�=	√
0'�[1�	(��1�)																				�¹2� = √
0'�[2� ( ��2�) �	81�=		 �[1� � ��1�√
0

																												�82�=	 ��2� � �[2�√
0

 
(II-12) 

In both cases �[1� = �a1a2
�, ��1� = �K1K2

�, �¹1� = ��1�2
�, �81� = �º1º2� and �[2� = �a3a4�, ��2� = �K3K4�, �¹2� = ��3�4�, �82� = �º3º4�. 
� is the common port termination, it is an algebraic value. 

Therefore, the conventional development to calculate the conversion equations [S] to 

[ABCD] or [ABCD] to [S] can be applied, paying attention to the matrices properties, as 

the non-commutability. Thus equations (II-13) and (II-14) are derived: 

• For [S] to [ABCD] conversion: 

 �[� = 12 c'�8d� ( ��11�)��21��!'�8d� � ¼�22½) ( ��12�d ��� = 
02 c'�8d� ( ��11�)��21��!'�8d� ( ¼�22½) � ��12�d �2� = 12
0
c'�8d� � ��11�)��21��!'�8d� � ¼�22½) ( ��12�d 

(II-13) 
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�:� = 12 c'�8d� � ��11�)��21��!'�8d� ( ¼�22½) � ��12�d 
• For [ABCD] to [S] conversion: 

 ��12� = ¾¿�[� ( ���
0 À�! ( '�2�
0( �:�)�!Á�!Â¿�[� ( ���
0 À�! ¿�[�
� ���
0 À � '�2�
0 ( �:�)�!'�2�
0� �:�)Ã 

��21� = 2 ]�[� ( ���
0 ( �2�
0 ( �:�^�! 
��!!� = '�2�
0( �:�) ]�[� ( ���
0 ( �2�
0 ( �:�^�! ]�[� ( ���
0 � �2�
0� �:�^ '�2�
0 ( �:�)�! 
��22� = ]�[� ( ���
0 ( �2�
0( �:�^�! ¿��[� ( ���
0 � �2�
0 ( �:�À 

(II-14) 

�8d� is the identity matrix of the second order. The �ABCD���� matrices of the interconnects 

and pads are obtained as previously explained, then cascaded and combined in order to get 

only one matrix (pad + interconnect) for each port. After that, these matrices are re-

arranged into two �ABCD���� matrices to be cascaded with the four ports global device 

matrix. If the ports of the four ports matrix are named Ä!, Ä�, Ä* and Ä�, the ports of the two 

ports equivalent device are Å! (including Ä! and Ä�) and Å� (including Ä* and Ä�), as 

described in Figure II.2. 

 

Figure II.2 : Schematic of a four ports device measurement. 

The �ABCD���� matrix of the pad with interconnects at port number n is: 

4 ports DUT 

Port p1 

Port p2 

Port p3 
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b
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b
2
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3
 

a
4
 

Measurement reference 
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 s[�i ��i2�i :�it (II-15) 

If there is no coupling between ports Ä! and Ä�, neither between ports Ä* and Ä� the �ABCD���� matrix of the pads with interconnects at port Å! is: 

 �[�2:��! = ÆÇÇÇ
Ès[�! 00 [��t s��! 00 ���ts2�! 00 2��t s:�! 00 :��tÉÊÊÊ

Ë
 (II-16) 

and the �ABCD���� matrix at port Å� is: 

 �[�2:��� = ÆÇÇÇ
Ès[�* 00 [��t s��* 00 ���ts2�* 00 2��t s:�* 00 :��tÉÊÊÊ

Ë
 (II-17) 

If the interconnects are similar, all Ì�i are equalled with X referring to A, B, C or D. 

  

Figure II.3: De-embedding principle for four ports devices. 

Conversion 
[ABCD]
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        (II-16) (II-17) 
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On the basis of the previous theory, it is now possible to follow the process 

described in Figure II.3. 

II.3  Stacks 

The simulated and fabricated components in this report involve three different Back 

End Of Lines (BEOL) from STMicroelectronics company: the 65 nm and 28 nm CMOS 

technologies and the 55 nm BiCMOS technology. Figure II.4(a) compares the various 

stacks and Figure II.4(b) is a SEM (scanning electron microscopy) picture of the 65 nm 

CMOS technology BEOL by STMicroelectronics, from [76]. In those BEOLs at least three 

thick metal layers (M6, M7 and Alucap) are available at the upper levels, which have for 

purpose to decrease the resistive loss. In the 55 nm technology, an eighth level (M8) of very 

thick metal is even added before the aluminum cap. In the lower levels (between levels M1 

and M5) the dimensions significantly decrease in terms of thickness and authorized small 

widths for metallic paths. The decrease of the metal layers thickness also leads to smaller 

dielectric thicknesses, and concludes to thin metallic layers closer to the lossy substrate 

which decreases the quality factor of the passive components built in these layers. 

   

Figure II.4 : (a) Comparison of the STMicroelectronics BEOL stacks used during this work. (b) SEM picture 
of the 65 nm CMOS technology BEOL from STMicroelectronics [76]. 

II.4  Simulated and measured transmissions lines 

As it was the first time that S-CPWs were realized in these BEOLs, it was important 

to study the influence of the different available stack configurations. This enabled to, 

firstly, select TLs with the best quality factors, and, secondly, to measure the TLs further 

used in the devices in order to verify their characteristics and compare them with the 

simulation. In the 65 nm CMOS technology, devices composed of S-CPW and microstrip 

TLs were fabricated and measured. In the 28 nm CMOS and 55 nm BiCMOS technologies, 

(a) (b) 
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components with S-CPW were also designed and simulated but the chips containing them 

are still in the fabrication chain which compels us to present only the simulated results. 

II.4.1 Study of the quality factor of the S-CPW in the 65 nm CMOS 
technology 

The characteristic impedance 
D = %{� 2�⁄  and the effective relative permittivity ����� of a TL depend on the capacitance per unit length 2�, and so depend on their signal 

width W. The influence of W is even more significant in the case of S-CPWs because of the 

high value of 2�. When W increases, 2� increases, leading to the increase of the insertion 

loss in the floating strips, whereas the series resistance decreases leading to the decrease of 

the insertion loss in the signal strip. Hence both effects act oppositely. Therefore it is not 

easy to fix the right W. It is also not easy to determine which stack configuration and 

dimensions lead to the best compromise � / �����. In this part, three stack configurations 

are compared at 60 GHz for S-CPW in the 65 nm technology, the CPW part is respectively 

simulated in M7, M7-Al and Al layer, as shown in Figure II.5. To make the study easier, 

the floating strips (FS) level is fixed to M5 layer for all configurations. 

 

Figure II.5: Compared stack configurations for S-CPWs. 

The de-embedding method applied here is the one of HFSS with 15 µm of CPW 

feeding. First simulations, not reported herein, showed that the quality factor Q increases 

with the gap G and so with the total width of the TL. However the total width cannot be too 

large otherwise the physical length saved with the high ����� would be wasted by a too 

wide TL. This is why the maximal width was fixed to 100 µm. The width of the ground 

strip was fixed to 12 µm because of design constraint. When the ground is enlarged, there is 

only a small variation in the characteristic impedance. Figure II.6 gives the effective 

relative permittivity, the insertion loss and the quality factor versus the characteristic 

impedance 
D for the three different stacks and different dimensions, for a total width equal 

to 100 µm. The shape of the symbols indicates the stack configuration and the colour the 

dimensions of the TLs. The characteristic impedance range is 38-100 Ω. 
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Figure II.6 : Parametric study for three stack configurations. (a) Effective relative permittivity, (b) insertion 
loss and (c) quality factor versus characteristic impedance.  

For each couple of W-G, the CPW in Al layer shows a higher 
D and a lower �����,  

as shown in Figure II.6(a), and a lower insertion loss, as shown in Figure II.6(b). Indeed, 

there is a greater distance between the floating strips and the ground strips and so a lower 

capacitance per unit length as shown in Figure II.7(a). 
D and ����� are slightly shifted for 

the stack configurations M7 and M7-Al whereas the capacitances per unit length are 

similar, as shown in Figure II.7(a). The inductance per unit length is however reduced when 

the Al layer is stacked with M7 as shown in Figure II.7(b) and has for consequence to 

decrease 
D and �����. With the stack M7-Al the insertion loss is lower than with M7 

because the series resistance is decreased. As shown in Figure II.6(c), whatever the stack is, 

an optimal value of 
D concluding to a maximal value of Q can be found. The highest Q is 

reached for a CPW in M7-AL level for a 
D standing between 40 and 50 Ω. 

As expected from the theory of electromagnetism, the inductance decreases when 

the metal stack increases with a stack composed of M7 and Al layers, as shown in Figure 

II.7(b). 
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Figure II.7 : (a) Capacitance and (b) inductance per unit length for three stack configurations 

II.4.2 Transmission lines in the 65 nm CMOS technology: measurement 
versus simulation results 

II.4.2.1 Microstrip 

 

Figure II.8 : Simulation / measurement results comparison for miscrostrip TLs in the 65 nm technology. 
(a) Characteristic impedance, (b) effective relative permittivity, (c) insertion loss and (d) quality factor versus 

frequency. 

 Two different microstrip TLs were simulated, fabricated and measured, one with a 

characteristic impedance of 45 Ω and W = 6.2 µm in M7-Al (TL1) and one of 70 Ω with 
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W = 3.8 µm in Al (TL2). The comparison between the simulation and measurement results 

are shown in Figure II.8. The measured parameters fit very well with the simulation, except 

for the insertion loss which is under estimated by the software tool leading to a measured 

quality factor lower than expected. The measured effective relative permittivity is about 

3.5. The measured quality factor reaches 6 to 9 at 60 GHz 

II.4.2.2 S-CPW 

Two S-CPWs were also measured, one with W = 20 µm, G = 25 µm, Wg = 12 µm 

with floating strips in M5 (TL1) and one with W = 7 µm, G = 31 µm, Wg = 12 µm with 

floating strips in M4 (TL2). In both cases the stack configuration of the CPW strips is 

M7-Al. For all the S-CPWs designed in this work, the floating strip width (SL) was chosen 

close to the smallest feasible value fixed by the technology and the floating strip space (SS) 

large enough in order to respect the density rules. Figure II.9 shows the comparison 

between the simulated and measured parameters.  

 

Figure II.9 : Simulation / measurement results comparison for S-CPWs in the 65 nm technology. 
(a) Characteristic impedance, (b) effective relative permittivity, (c) insertion loss and (d) quality factor versus 

frequency. 

The measured parameters fit well with the simulation, but here again the insertion 

loss was under estimated in simulations, leading to a lower quality factor in practice. The 
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effective relative permittivity. In the case of the microstrip TLs no resonance appeared 

because of effective relative permittivity low value.  

The measured effective relative permittivity is about 8.4 and 12.3 for the 45 Ω and 

70 Ω characteristic impedance, respectively. The measured quality factor is greater than 20 

at 60 GHz. 

II.4.2.3 Results synthesis 

Table II.1 gathers the physical parameters and performances of the measured TLs in 

both topologies, microstrip and S-CPW, at 60 GHz. 

Topology 
Zc  
(Ω) 

Signal  
stack 

Floating 
strips 
layer 

Dimensions Performances 

W 
(µm) 

G 
(µm) 

Wg 
(µm) 

SL 
(nm) 

SS 
(nm) 

Ereff 
Insertion 

loss 
(dB/mm) 

Q 

S-CPW 45 M7-AL M5 20 25 12 100 550 12.3 0.78 24 

S-CPW 70 M7-AL M4 7 31 12 100 550 8.4 0.76 21 

µstrip 47 M7-AL - 6.2 
Ground plane in M1 

3.5 1.55 6.5 

µstrip 70.7 AL - 3.8 3.5 1.05 9.6 

Table II.1 : Characteristic and performances of the measured TLs in the 65nm technology at 60 GHz. 

The Q factor slightly depends on the characteristic impedance. It reaches 24 and 21 

for the 45 Ω and 70 Ω TLs, respectively. In the worst case, measurements show a Q factor 

at least 2.2 times higher for the S-CPW, as compared to the microstrip lines. 

II.4.3 Transmission lines in the 28 nm CMOS technology: simulation 
results 

Table II.2 summarize the physical parameters and performances of the simulated 

TLs in both topologies, microstrip and S-CPW, at 60 GHz in the 28 nm technology. 

Because of design constraints, the width of the ground strip was fixed here to 

10.8 µm.Three different characteristic impedances were targeted, 35 Ω, 50 Ω and 70 Ω, 

with both types S-CPW and microstrip. The maximal characteristic impedance reachable in 

microstrip topology is limited to 65 Ω but it is still close to 70 Ω. The effective relative 

permittivity of the microstrip TLs is 3.7 whereas it is between 10 and 12 for the S-CPWs. 

As for the 65-nm technology, the Q factor of the S-CPW type should also be in the worst 

case 2.2 higher as compared to the microstrip one. The highest Q is reached for a 50 Ω 

characteristic impedance. 
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Topology 
Zc  
(Ω) 

Signal  
stack 

Floating 
strips 
layer 

Dimensions Performances 

W 
(µm) 

G 
(µm) 

Wg 
(µm) 

SL 
(nm) 

SS 
(nm) 

Ereff 
Insertion 

loss 
(dB/mm) 

Q 

S-CPW 36 M7-Al M5 32 18 10.8 50 450 11.4 0.5 37 

S-CPW 50 M7-Al M5 16 31 10.8 50 450 11.9 0.43 44 

S-CPW 70 Al M5 7 35.5 10.8 50 450 10.3 0.44 40 

µstrip 35 Al - 15 

Ground plane in M1 

3.7 0.61 17 

µstrip 50 Al - 7.6 3.7 0.64 16 

µstrip 65 Al - 3.6 3.7 0.7 15 

Table II.2 : Characteristic and performances of the simulated TLs in the 28 nm technology at 60 GHz. 

II.4.4 Transmission lines in the 55 nm BiCMOS technology: simulation 
results 

The physical parameters and performances of the simulated TLs in both topologies, 

microstrip and S-CPW, at 60 GHz in the 55 nm technology are summarized in Table II.3. 

The maximal total width of the S-CPW was fixed here to 124 µm, with 12 µm of ground 

strip width. 

Topology 
Zc  
(Ω) 

Signal  
stack 

Floating 
strips 
layer 

Dimensions Performances 

W 
(µm) 

G 
(µm) 

Wg 
(µm) 

SL 
(nm) 

SS 
(nm) 

Ereff 
Insertion 

loss 
(dB/mm) 

Q 

S-CPW 23 M8-M3 M1 32 34 12 16 64 36.6 1.2 27.5 

S-CPW 50 M8-M7 M1 26 37 12 16 64 10.4 0.46 38 

S-CPW 83 M8 M5 6 47 12 16 64 8.5 0.5 31 

µstrip 26 M8 - 26 

Ground plane in M1 

3.8 1.01 10.5 

µstrip 49 M8 - 8 3.86 1 11.2 

µstrip 72 M8 - 2 3.9 1.1 9.1 

Table II.3 : Characteristic and performances of the simulated TLs in the 55 nm technology at 60 GHz. 

The three targeted characteristic impedances were 23 Ω, 50 Ω and 83 Ω (72 Ω for 

microstrip), for both types S-CPW and microstrip. It could be possible to reduce the signal 

width of the 72 Ω microstrip TL in order to get higher characteristic impedance but the 

insertion loss would increase as well. Indeed W is really thin, equal to 2 µm. Lower values 

would lead to very high series resistance and high insertion loss. The effective relative 

permittivity of the 23 Ω S-CPW is 36.6. This value is really high thanks to the stack M8-

M3 of the CPW and leads to a strong capacitance per unit length. The drawback is the high 

level of insertion loss, 1.2 dB/mm, but in spite of that, the quality factor is still 2.6 times 
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higher as compared to the microstrip TL with the same characteristic impedance. The 

highest Q factor is still obtained for the 50 Ω TL. 

II.5  Phase inverter 

As the phase inverter is an important component which was used in two devices 

fabricated in the 65 nm technology, it has been simulated and characterized alone. Figure 

II.10(a) shows the symmetric 3D view from HFSS and Figure II.10(b) the layout of the 

measured phase inverter. The topology is based on a symmetrical design. The floating 

strips are on M1, the top branches on M7 and the bottom ones on M6. The wider the 

overlap between signal and ground conductors at the cross point, the bigger its parasitic 

capacitor value. Thus, the narrowest width allowed by the technology was used in order to 

minimize the parasitic capacitor.  

 
Figure II.10 : (a) 3D symmetrical design and (b) layout picture of the phase inverter. 

 
Figure II.11 : Simulation and measurement results of the phase inverter in the 65 nm technology. Magnitude 

of (a) ��!, (b) �!!, and (c) phase of ��!. 
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Figure II.11 gives the comparison between the simulated and measured 

S-parameters. The magnitude of the measured transmission ��! and reflection �!! 
parameters are slightly different from the simulated ones. At 60 GHz, measured ��! 
is -1.28 dB and �!!, -18 dB. The return loss is better than -11 dB from DC to 100 GHz. 

Simulation of such device is a real issue because of its physical length which is really 

small, 50 µm, and seems not long enough to enable the propagating mode to be properly 

established. However, the measured phase of ��!, 198° at 60 GHz, fits well with the 

simulation. This value is greater than 180°, due to in-out inductive parasitic effects, and the 

capacitive loading when ground and signal strips are overlapping. If better accuracy of the 

simulation tool could be reached, the phase inverter could be optimized in such a way to 

improve the performance of the whole device in which it takes place. Other phase shifters 

are currently under fabrication with different widths for the TLs at the overlap in order to 

better understand this component in the future. Also special attention has been paid to the 

interconnects to be de-embedded. 

II.6  Baluns 

II.6.1 Rat-race coupler balun 

A rat-race coupler working at 60 GHz was designed, fabricated and measured in the 

65 nm technology. The design was divided in several blocs simulated individually with 

HFSS. Then, the S-parameters were all gathered to be simulated thanks to the circuit 

simulator ADS. As already mentioned in chapter I, in [17], it is reported that an infinite 

number of electrical lengths exists for the design of a 3-dB hybrid coupler. Whatever the 

arms characteristic impedance is, below the conventional value of 
�√2, the ring electrical 

length may be less than 1.5 λ. This is very interesting, because the rat-race ring can be 

shortened, and the characteristic impedance of the S-CPW can be chosen in order to reach 

the highest quality factor. Moreover, in order to reduce even more the ring physical length, 

to equate the insertion loss, and to improve the phase imbalance between the two output 

ports, a phase-inverter was inserted in the longest arm of the rat-race. Figure II.12 gives the 

rat-race topology. The selected TL for the rat-race ring exhibits a characteristic impedance 
D = 45 Ω with W = 20 µm and G = 25 µm, with the CPW stack in M7-Al and floating 

strips in M5. As shown in Figure II.6(c), this stack configuration and characteristic 

impedance leads to the highest reachable quality factor in this technology. According to 

[17], considering a 45 Ω characteristic impedance, the electrical lengths of the rat-race 

paths become 52° and 232° instead of 90° and 270° for the conventional topology, 

respectively. Thus, while choosing the TL with the highest quality factor, not only the rat 

race will present better loss performances but it will also be miniaturized. 
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Figure II.12 : Schematic of the rat-race balun 

II.6.1.1 Design and layout 

Because of the high memory computing needs due to the presence of the very thin 

thickness and width of the floating strips, the T-junctions based on S-CPWs are heavy to 

simulate and to optimize with a full-wave simulation tool. In a T-junction of S-CPW, the 

floating strips placement is problematic and absolutely not obvious. Hence, to avoid errors 

due to inaccurate simulation results, T-junctions were designed in a microstrip technology, 

much more easy to simulate. The characteristics of the microstrip TL used were previously 

presented in Table II.1 and exhibit a characteristic impedance 
D = 47 Ω. The 

S-CPW/microstrip transition brings about 0.11 dB of insertion loss at 60 GHz with a very 

good return loss (�!! equal to -28 dB in simulation). The T-junction model was taken into 

account in the whole rat-race model. Figure II.13 is a picture of the rat-race layout, its 

dimensions and the different elements are pointed out. The highlighted phase inverter is the 

one presented before. The main disadvantage of the rat-race when integrated in a CMOS 

process is that the orientation of the device is limited to only two positions in quadrature. 

As a consequence the output ports are far from each other and need non-symmetric 

interconnects towards the next circuit. Non-symmetric interconnects mean different 

induced insertion loss which is problematic for applications dealing with differential 

systems. 

 

Figure II.13 : Layout of the circuit 
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II.6.1.2 Simulation versus measurement results 

Measurements were carried out from 10 GHz to 67 GHz on a four-ports VNA. The 

four ports de-embedding method presented above was applied with open pad measurements 

including the tapers as explained in the section discussing the de-embedding method. 

Figure II.14(a) compares the simulation (solid line) and measurement (dash line) results. 

The return loss �!! and ��� of the measurements show a shift of the working frequency of 

8 GHz; indeed the best matching is reached around 67 GHz with -12.5 dB and -20.5 for �!! 
and ���, respectively, instead of -22 dB at 59 GHz for the simulation. The transmission 

coefficient �*!, through the branch without phase inverter, fits well with the simulated one 

and reaches 4.6 dB, which means 1.6 dB of added losses beyond the theoretical 3 dB. ��!, 
the transmission through the phase inverter is 7.2 dB, that is to say 4.2 dB of added losses. 

The transmission parameters are robust with very flat curves. With a bandwidth defined by 

considering a return loss better than -10 dB, and a working frequency centred at 67 GHz, a 

minimum of 15 % is obtained by symmetry of the measured result at 67 GHz (between 

62 GHz and 72 GHz minimum). A measurement till 110 GHz may confirm this 

assumption. Isolation �*� is better than -23 dB over a very large frequency band, at least 

from 10 GHz to 67 GHz. Figure II.14(b) shows a phase difference centred around 185° 

with a phase imbalance of ±1° between 32 GHz and 67 GHz or 185.5 ±0.5° between 

62 GHz and 67 GHz which is excellent in comparison to the state-of-the art. This result is 

clearly obtained thanks to the use of the phase inverter, because its phase does not vary with 

frequency, leading to an equivalent phase shift for the rat-race branches over the frequency. 

There is a shift of 5° compared to the perfect phase imbalance, but it is very flat over the 

whole bandwidth. 5° is easy to overcome thanks to TL length readjustment in a second run. 

Finally, the chip is compact with an area equal to 0.085 mm2. 

• How to explain the discrepancies? 

The simulated microstrip and S-CPWs of the rat-race have small electrical lengths, 

and we noticed afterwards that the S-parameters of such small lengths obtained with HFSS 

were not right, leading to an inaccurate estimation of the TLs effective relative permittivity. 

This comes from an un-established propagating mode when considering small-length TLs. 

However, this error could be easily corrected. As shown above, simulation and 

measurement results of the TLs characteristic parameters fit really well, and hence could be 

used for the design of a second set of rat-race baluns.  
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Figure II.14 : S-parameters for measurements and (a)-(b) simulation, (c)-(d) first retro-simulation and 
(e)-(f) second retro-simulation. 

A comparison between the measurement results and retro-simulation is shown in 

Figure II.14(c) and (d), where the S-parameters blocs of the TLs were replaced by 

equivalent TLs with the parameters 
D, ����� and � determined from the measurements 

results. The S-parameters of the phase inverter from HFSS simulator were kept. The return 

loss �!! and ��� of this retro-simulation show a good fitting of the centre working frequency 

with the measurement results, at 67 GHz (Figure II.14(c)). The phase difference is kept flat 

and is 177.1° at 67 GHz, as shown in Figure II.14(d). The matching is improved because in 

this retro-simulation the microstrip/S-CPW transitions were not taken into account. If now 

the S-parameters bloc of the simulated phase inverter is replaced by the measured phase 

inverter bloc, the curves shown in Figure II.14(e) and (f) are obtained. The return loss �!! 
containing a branch connected with the phase inverter is degraded compared to the ��� 
which does not contain any branch with phase inverter, as shown in Figure II.14(e). The 
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effects of the phase inverter are here highlighted. �*� is also degraded and gets closer to the 

measurement result. Finally the simulated insertion loss �*! increases up to 5.2 dB. 

II.6.1.3 Further improvements 

The method consisting in simulating the TLs with their real lengths and taking their 

S-parameters in a circuit simulator does not work in our case because of the really small 

physical lengths. Equivalent TLs have to be used in the circuit simulator with the 

parameters obtained from HFSS simulation with long enough physical lengths.  

The phase inverter has a strong effect on the rat-race balun performances. In order 

to get better performances, the S-parameters magnitude of the phase inverter has to be 

better simulated in order to allow an accurate optimization. With the measurements of the 

different phase inverters upcoming soon, we should better understand the influence of the 

parasitics induced by the overlap. Special attention has been paid to the future de-

embedding procedure for these phase inverters. Moreover, it could be possible to replace 

the CPW phase inverter by a microstrip type to avoid the use of really short S-CPW. In that 

case all the TLs between ports 1 and 2 of the rat-race would be of a microstrip type. 

II.6.2 Power divider balun 

A new topology of balun has been tested out: it is a classical ? 4I  power divider in 

which a phase inverter was inserted in one branch to get 180° of phase difference between 

the two output ports. The isolation resistance R used in the Wilkinson power dividers must 

be removed, otherwise the 180° relative phase difference would increase considerably the 

losses. Removing this resistance, this topology cannot be used anymore as a combiner 

because isolation and output ports matching are degraded. This balun was fabricated and 

measured in the 65 nm technology on the same chip as the rat-race balun presented above. 

The layout with the dimensions is given in Figure II.15.  

              

Figure II.15 : Layout of the power divider balun 
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As for the conventional Wilkinson power divider, the characteristic impedance of 

the TLs is 70 Ω with 90° electrical length. The characteristics of the microstrip and 

S-CPWs used in this design were presented in Table II.1. The main advantage of this 

topology compared to the rat-race balun is the proximity of the two output ports. The input 

port was placed in such a way that the outputs are at the same level with a phase of ��! and �*! equal to 90° and 270°, respectively. In that case, a good matching at port 1 and 180° of 

phase difference should be obtained. 

The design method is the same as for the rat-race balun. TLs, S-CPW/microstrip 

transitions and phase inverter were simulated with HFSS to get the S-parameters, and then 

gathered in ADS to simulate the whole device.  

II.6.2.1 Simulation versus measurement results 

Measurements were carried out from 10 GHz to 67 GHz. The same four ports de-

embedding method as the rat-race balun was applied. Figure II.16 compares simulation and 

measurement results. The return loss �!! resonance was shifted towards a lower frequency 

with a down step of 7 GHz, as shown in Figure II.16(a). The best matching is -43 dB at 

53.3 GHz instead of 60 GHz. However, the matching is still equal to -20 dB at 60 GHz. ��! 
and �*! equal -4.3 dB and -3.6 dB, respectively. The phase difference is 173°, as shown in 

Figure II.16(b). 

 
Figure II.16 : Simulation and measurement results of the power divider balun in the 65 nm technology. 

(a) Magnitude and (b) phase difference. 

The simulation of the transmission coefficients shows that ��!, through the phase 

inverter, should have less insertion loss than �*! along a long lossy microstrip TL. That is 

to say that the simulation of the basic components erroneously indicates lower insertion 

loss due to the phase inverter than to the microstrip TLs. The measured results, on the 

contrary, clearly show that ��! is higher than �*!. We already discussed about the high 

insertion loss added by the phase inverter and the complexity to simulate it. Despite that, ��! and �*! were measured at -4.4 dB and -3.6 dB at 53 GHz, which are really good results. 

The difference of magnitude between ��! and �*! is also due to impedance mismatch seen 

from the input port. The phase inverter acts as a stepped impedance creating a discontinuity 
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for the signal between ports 1 and 2. The relative bandwidth centred at 53 GHz satisfying a 

-20 dB return loss reaching 25 % (between 46.5 GHz and 60 GHz). In this band the phase 

difference is 173.5°, e.g. a discrepancy of 6.5° as compared to the targeted 180°. However 

it is really flat since the phase imbalance is only ±0.4°. ��! varies from -4.64 dB to -4.31 dB 

and �*! from -3.72 dB to -3.56 dB. The area equal to 0.1 mm² is bigger as compared to the 

rat-race balun (0.085 mm²). This directly stems from the output ports position which was 

adjusted to fit with the RF probes (in order to avoid extra connection TLs and to simplify 

the de-embedding). The TLs could be designed closer from each other and would decrease 

the surface area of at least 25 %. Even though the design method was the same as for the 

rat-race balun, here no problem occurred because of an eventual misestimating of the TLs 

effective relative permittivity. Indeed, the simulated TLs are longer, and so, long enough 

for their propagation mode to be well established and their simulation to be accurate. 

II.6.2.2 Further improvements 

The mismatch due to the phase inverter slightly shifts the working frequency. With 

shorter TLs and better adjustment, the working frequency and the phase difference could be 

improved. Moreover, a study of the position of the phase inverter in the branch could lead 

to an optimised position. 

II.6.3 Comparison with the state-of-the-art 

The Table II.4 compares the measument results of the two topologies of baluns with 

the state-of-the-art of power divider with out-of-phase presented in Chapter I. 

 

Table II.4 : Comparison of this work with the state-of-the-art. 
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II.7  Branch-line coupler 

A branch-line coupler with -3 dB at each output port for 50-Ω system characteristic 

impedance was designed in the 28 nm technology at the working frequency of 60 GHz. 

Only the simulated results are presented here. The vertical TLs have a characteristic 

impedance of 35 Ω and the horizontal ones of 50 Ω. 50 Ω microstrip feeding lines connect 

the pads to the input/output ports of the branch-line, as shown on the layout in Figure II.17. 

These feeding lines and pads will be easily de-embedded thanks to the method described 

above.  

 
Figure II.17 : Layout of the branch-line coupler with S-CPWs in the 28 nm technology. 

The simulated performances of the S-CPW and microstrip TLs used in this device 

have been summarized in Table II.2. Here again the T-junctions were designed in a 

microstrip technology to simplify simulations and layout design. To simulate the full 

device, equivalent TLs on ADS were modelled with the parameters 
D, ����� and �, the 

attenuation loss. All the parameters were determined previously thanks to HFSS. The 

S-CPW/microstrip transitions were considered as perfect, which means that the equivalent 

TLs were directly and ideally connected in the circuit simulator. The simulated results are 

shown in Figure II.18. The S-parameters correspond to the ports number according to their 

position in the device, which means that pads and 50 Ω feed lines were not taken into 

account in the simulations. 
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Figure II.18 : Simulation results of a branch-line coupler with S-CPWs in the 28 nm technology.                        

(a) Magnitude and (b) phase difference. 

At 60 GHz, the return loss is -28 dB and the transmission coefficients ��! and �*! 
are respectively -3.67 dB and -3.48 dB, as shown in Figure II.18(a). The device has two 

symmetry axes, vertical and horizontal, so the return loss parameters are similar at all ports. 

The isolation between ports 1 and 4, ��!, is -30 dB. The bandwidth determined with a 

return loss better than -20 dB reaches about 12 %, between 57 GHz and 64 GHz. Over this 

bandwidth ��! is constant and �*! varies between -3.48 and -3.68 dB, so the maximal 

magnitude imbalance is 0.19 dB. The variation of �*! is less flat than the variation of ��! 
because the electrical length between ports 1 and 3 is 180° and only 90° between ports 1 

and 2, so the narrow band effect of the TLs is consequently stronger for �*!. The phase 

difference is 90.2° at 60 GHz and between 89.6° and 91° in the bandwidth, which means a 

phase imbalance of ±0.7°, as shown in Figure II.18(b). The TLs were not placed in a 

configuration to optimize the device area, leading to a surface of 0.252 mm2. In order to 

reduce the surface area, it could be possible to meander the TLs by using the free space in 

the middle of the device. 

II.8  Power divider 

A power divider was designed in the 28 nm technology to be used at 60 GHz. The 

layout is presented in Figure II.19. No resistance was placed between the two output ports, 

hence it was not realized a Wilkinson power divider. In CMOS technology the resistance 

dimensions are really small and the S-CPW width quite large (around 100 µm) so that long 

interconnects were needed between the S-CPW signal strip and the resistance which leads 

to a strong inductive effect. As it is really difficult to simulate and estimate this parasitic 

effect, the isolation resistance was removed. Obviously this has for consequence to limit the 

use of this device as a power divider only. A 40-µm long 50 Ω microstrip feed line was 

inserted between the pad at port 1 and the T-junction. Same feed lines were used for output 

ports 2 and 3. Then 65 Ω microstrip TLs connect this T-junction to the 70 Ω S-CPWs. The 

minimal allowed width and the highest distance h (between the ground and the signal strip) 

were fixed for the microstrip topology to get the maximal possible impedance, which is 
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only of 65 Ω. The equivalent TLs modelled with the parameters 
D, ����� and � given in 

Table II.2 were ideally connected, without S-CPW/microstrip transition equivalent 

electrical model. 

          
Figure II.19 : Layout of the Wilkinson power divider with S-CPWs in the 28 nm technology. 

Figure II.20 shows the magnitude of �!!, ���, ��! and �*�. The circuit has horizontal 

symmetry axis so that ��� = �** and ��! = �*!. The return loss is really good with -44 dB at 

60 GHz. Using 65 Ω characteristic impedance instead of 70.7 Ω shifted the working 

frequency of 3 GHz towards the lower frequencies. This was corrected by adjusting the 

electrical length of the S-CPWs in order to reach a 60-GHz working frequency. By this 

way, the working frequency is centred with a total electrical length of 84° instead of the 

theoretical 90° between the input and output ports. Moreover, as the error is only 8 % on 

the characteristic impedance and as the electrical length of the 65 Ω microstrip line is small, 

21° among 84°, the device keeps an excellent matching. As expected, with no isolation 

resistance, the isolation and matching of the output ports are only -6.4 dB. The bandwidth 

determined with a return loss better than -20 dB reaches 40 % (between 48 GHz and 

72 GHz). Over this bandwidth, the transmission coefficients ��! and �*! vary 

between -3.35 dB and -3.28 dB. The surface area of the power divider is 0.12 mm2. As for 

the power divider balun, the output ports were adjusted to fit with the RF probes. With 

closer TLs the surface could be decreased of at least 25 %. 

 
Figure II.20 : Simulation results of a Wilkinson power divider without isolation branch, with S-CPWs in the 

28 nm technology. 
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II.9  Conclusion 

In this chapter, S-CPWs were used to realize several devices. The slow-wave TL 

combines high effective relative permittivity and high quality factor, and lead to compact 

and performing devices having low insertion loss. Even though for high characteristic 

impedances the quality factor decreases, S-CPWs can be designed to reach a 100 Ω 

characteristic impedance, with a simulated quality factor of 28 in the 65 nm technology. 

With microstrip type TLs, the maximal characteristic impedance is limited to about 70 Ω 

(the poorer case is 65 Ω only in the 28 nm technology). However, microstrip TLs are still 

needed, for the T-junctions for example, as S-CPW junctions are still complicated to design 

due to the floating strips. 

A phase inverter was fabricated and measured in the 65 nm technology. It is very 

wide band and strongly reduces the area of the devices in which it is inserted. Even if the 

phase of the transmission coefficient is well determined with HFSS, the magnitude is not 

well predicted. With more accurate simulations, it could be optimized in order to reduce the 

insertion loss. Based on this phase inverter, two baluns using S-CPWs were achieved in the 

65 nm technology at a 60 GHz working frequency. The first one was based on a rat-race. It 

exhibited good isolation and matching. The second one was carried out by a novel topology 

based on a power divider with close output ports but without isolation. They exhibit a 

surface area of 0.085 mm2 and 0.1 mm2, respectively. 25 % of surface area could be saved 

for the power divider balun without fitting the feed lines with the RF probes. Optimised 

surfaces would reach the state-of-the-art presented in chapter I in terms of miniaturization. 

The design method used in this work was not suitable for the rat-race and leaded to a shift 

of 8 GHz towards the higher frequencies. Moreover, the phase inverter degraded the 

insertion loss in both circuits.  

Then, a branch-line coupler and a power divider (without isolation) were simulated 

in the 28 nm technology. A design method with equivalent transmission lines characterized 

with the parameters 
D, ����� and �, obtained from HFSS and validated by the 

measurements, was applied. Really good performances are expected at 60 GHz. Also, de-

embedding methods are given for two ports devices and transmission lines, and for four 

ports devices. 

The devices designed in this chapter proved that the slow-wave transmission lines 

have a strong interest for the design of compact and low-loss passive devices at 

millimetre-wave frequencies. 

The applications of the power divider designed in the 28 nm technology are limited 

because of the lack of good matching at the output ports and the lack of isolation. However, 

despite the constraints of the isolation resistance and its access in silicon technology, it is 

important to develop fully matched and isolated power dividers for combiner applications. 
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In the next chapter a new topology of power divider is proposed to design and optimise 

such power dividers. 
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 : New type of power divider based on a Chapter III
Wilkinson power divider/combiner for millimetre-wav e 

frequencies applications 

This chapter focuses on the design, development, realization and test of a new type 

of power divider based on the Wilkinson power divider. This new power divider is intended 

to be further implemented in a feeding network system for antenna array beam-steering. At 

the beginning, the original Wilkinson power divider was designed for use in shielded 

coaxial systems at frequencies low enough not to take into consideration additional 

parasitic effects. Design complexity arises when dealing with millimetre-wave bands in 

planar technologies. Parasitics typically derived from undesired coupling between the two 

quarter-wave arms, or distributed effects introduced by the physical requirements, such as 

the stretching of the resistance between the two arms in IC’s, inhibit performances. This is 

most of the time not an issue at RF frequencies, but it becomes particularly troublesome at 

high frequencies.  

The Wilkinson power divider faces another issue in silicon technology which is the 

characteristic impedance limitation. Indeed, it is fixed by the BEOL and the design rules of 

the considered technology so that it may be not possible for the microstrip type TL to reach 

the 70.7 Ω characteristic impedance required in a 50-Ω system. 

As already mentioned in this thesis, miniaturization is an unavoidable topic, 

particularly for integrated circuits, due to the high cost. Some of the techniques given in the 

first chapter are really efficient and could be reused, such as the stub loading technique. By 

using a procedure comparable to Mandal’s optimization of the rat-race coupler, described in 

[17], we will see that many solutions are available (among which the original Wilkinson 

power divider), so that it becomes very easy by the end to compare one solution to another 

and to choose the most appropriate for our purpose: lower characteristic impedance or 

reduced area, or a compromise of both. 

Hence, in this chapter a new topology of power divider/combiner with in phase 

outputs is proposed. Our study shows that compactness and high-performance can be met 

simultaneously, with high flexibility thanks to several design solutions. The design consists 

in a modified Wilkinson power divider with added TLs to connect the isolation resistance 

to the output ports, in association with an open stub at the input port junction. While 

keeping very good isolation between output ports and matching on all ports, the proposed 

new power divider enables an optimal choice of the characteristic impedance of the TLs, of 

the output ports position with the best compromise between size and electrical 

performances. 
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This chapter focuses first on the design and the fabrication of the proposed power 

dividers at RF frequencies, carried out in a classical PCB technology, as proof-of-concept.   

1:4 antennas feeding circuit was fabricated and measured, one at 2.45 GHz and another one 

at 5.8 GHz. The second one is associated to integrated slot-array antennas on a single 

substrate, taking advantages of small size, low profile, and low cost. 

Based on the same technology demonstrated at RF frequencies, a 60 GHz power 

divider was designed in the 55 nm BiCMOS technology (by STMicroelectronics). S-CPWs 

were used in order to reduce the TLs’ length and hence improve both compactness and 

performance. 

III.1  Issues for Wilkinson power dividers in silicon technology 

III.1.1  Isolation resistance 

The undesired coupling between the two quarter-wave arms, or the distributed 

effects introduced by the physical requirements when stretching the resistance between the 

two arms can be devastating for the performances of the circuit at millimetre-wave 

frequencies. In order to connect the isolation resistance to the outputs using the smallest 

footprint as possible, the typical solution involves the wrapping of the quarter-wave arms 

into rounded shapes converging briefly to the resistance placement [77]-[78]. Another way 

is the use of interconnects between the isolation resistance and the signal strips [79], but 

their physical length is long as compared to the resistance dimensions so that they cannot 

be neglected. It is also worth mentioning that in practice it is really difficult to perfectly 

model the effects of these interconnects because of the vias, bends and contact resistance 

parasitics. 

III.1.2  Characteristic impedance flexibility 

The 70.7 Ω characteristic impedance of the quarter-wave arms fixed in the 

conventional Wilkinson power divider may be not reachable in all CMOS BEOL. We have 

seen for instance that in the 65 nm technology a maximum of 65 Ω can be obtained with 

microstrip TLs. If such a 65 Ω TL is used to build a power divider, the electrical lengths 

have to be adjusted to compensate for the characteristic impedance mismatch, so the design 

is more complex, and the return loss will be unavoidably degraded. In the case of S-CPWs, 

70.7 Ω is easily reachable, but the corresponding S-CPW exhibits a lower quality factor as 

compared to the one with a characteristic impedance around 45 Ω. Hence, flexibility for the 

choice of the characteristic impedance could permit to choose the TLs exhibiting the 

highest quality factor. Moreover, if different characteristic impedances leading to full 

matched, isolated and low loss power divider could be found with electrical lengths shorter 

than those of the conventional 90°, solutions would conclude to a more compact device. 
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III.1.3  State-of-the-art of the solutions 

In [80], the authors added extra TLs for connecting the isolation resistance to the 

output ports as shown in Figure III.1. This avoids parasitic coupling between the two output 

ports and in the same time allows the isolation resistance access to be taken into account. 

Nevertheless, the proposed power divider suffers from higher surface as compared to the 

classical Wilkinson one because of the link between the two electrical lengths, 

e.g. >! = >� + 90°. More recently, a general model was developed in order to give design 

rules for the synthesis of these additional TLs [81]. The characteristic impedances depend 

on the power ratio between the two output ports. 

 

Figure III.1: Modified power divider with resistance access proposed in [80]. 

In [82], the conventional quarter-wave length of the impedance transformer arms 

were miniaturized thanks to open stubs and step impedances as shown in Figure III.2. This 

also enhanced flexibility in the choice of the TLs characteristic impedance, even though all 

the solutions cannot be applied in a CMOS technology. In counterpart, this topology leads 

to a complex transformation instead of the classical real one. Since the phase delays of the 

modified TLs are arbitrarily greater than -90° the isolation circuit does not only consist in a 

resistance but also a series capacitance for compensating the imaginary part. Moreover, 

these topologies do not bring any solution concerning the feeding lines. 

 

Figure III.2: Modified asymmetric impedance transformer proposed in [82]. 
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III.2  Study of a new solution 

III.2.1  Topology presentation 

Figure III.3 gives the proposed power divider topology. Compared to the one 

presented in [80], an open stub of characteristic impedance 
�	and electrical length >�	was 

added at the junction between input port 1 and the arms joining output ports 2 and 3. The 

characteristic impedance and electrical length of the latter were named 
!	and >!, while 
*	and >* characterize the arms connecting the output ports to the resistance. The new 

solution is thus a combination of [80], Figure III.1 and [82], Figure III.2. As will be seen, 

this combination offers a very high flexibility. 

 

Figure III.3: Modified PD with open stub and resistance feeding lines. 

III.2.2  Theory and design equations 

It is easy to show, by an even-odd modes analysis, that adding the open stub (
�,>�) 

alone, without TLs (
*,>*), deteriorates the matching of the conventional Wilkinson 

topology. However, when both TLs (
*,>*) and open stub (
�,>�) are used, good matching 

and isolation can be achieved. They are slightly degraded as compared to the classical 

Wilkinson topology, but the corollary will be an extended bandwidth as demonstrated by 

Fano in [83]. For simplicity, all the characteristic impedances were normalized to the 

system characteristic impedance 
�, e.g. Ïh = 
h/
�. An even-odd mode analysis was 

carried out considering the circuit symmetry, as illustrated in Figure III.4. The open stub 

was replaced by two parallel open stubs with a characteristic impedance of 2Ï�. Similarly, 

port 1 impedance was doubled. The line of symmetry crosses the middle of the resistance r 

so that it should be replaced by two series resistances with a value \ 2⁄ . For given ports 

conditions and a given r, the two circuits, corresponding to even- or odd-mode analyses, 

totalize six unknown parameters corresponding to the three TLs (Ïh ,>h), so that six 

independent equations are required to find the solutions. 
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Figure III.4: Half of the normalized topology shorted within the odd-mode and open within the even-mode. 

III.2.2.1 Even-mode analysis 

For even mode excitation, the voltages at ports 2 and 3 have similar magnitude and 

phase. No current flows through the resistance \ 2⁄  which is open circuited. The value of 

the impedances Ï���_� and Ï��*_� looking towards the open stubs (Ï�,>�) and (Ï*,>*), in 

Figure III.4, are: 

 Ï���_� 	= 	��2Ï�_4Ð'>�) (III-1) 

 	Ï��*_� 	= 	��Ï*_4Ð'>*) (III-2) 

Impedance Ï���_� is in parallel with port 1. The equivalent impedance Ï�Ñ!_� of their 

combination is given by equation (III-3): 

 Ï�Ñ!_� =	 2Ï�Ï� (	�Ðab'>�) (III-3) 

The impedance Ï���_� is then derived as follows: 

 Ï���_� 	= 	 Ï! Ï�Ñ!_� 	( �Ï! Ðab'	>!)Ï! ( �Ï�Ñ!_�Ðab'>!)  (III-4) 

Impedance Ï���_� is in parallel with Ï��*_� and should be equal to port 2 impedance in order 

to get a matching condition at port 2, leading to equation (III-5): 

 
1Ï��*_� ( 1Ï���_� = � Ðab'>*)Ï* ( Ï! 	( �Ï�Ñ!_� Ðab'>!)Ï!Ï�Ñ!_� ( �Ï!�Ðab'>!) = 1 (III-5) 

From (III-5), the real and imaginary parts of the two members of the equation were split in 

two equations. Equation (III-6) was obtained by equating the real parts while equation 

(III-7) corresponds to equating the imaginary parts. 
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Ï!	Ï�*Ï* � 3Ï!�Ï��Ï*	Ðab'>!) Ðab'>�)( Ï!�Ï*	Ðab'>!) Ðab'>�)* =� Ï!Ï�	Ï*	 Ðab'>�)�� 4Ï��Ï*	 Ðab'>!) Ðab'>�) 		� 4Ï!	Ï�� Ðab'>�) Ðab'>*)� Ï!�Ï�* Ðab'>!) Ðab'>*)( 3Ï!�Ï�	 Ðab'>!) Ðab'>�)� Ðab'>*) 
(III-6) 

 

Ï!	Ï��Ï* Ðab'>�) ( Ï!�Ï�*Ï*	Ðab'>!)� 3Ï!�Ï�	Ï*	Ðab'>!) Ðab'>�)� =Ï!Ï*	 Ðab'>�)*( 2Ï�*Ï*	 Ðab'>!) � 	2Ï�	Ï*	 Ðab'>!) Ðab'>�)�( 2Ï!	Ï�* Ðab'>*) � 	2Ï!	Ï�	 Ðab'>�)� Ðab'>*)� 3Ï!�Ï�� Ðab'>!) Ðab'>�) Ðab'>*)( Ï!� Ðab'>!) Ðab'>�)* Ðab'>*) 
(III-7) 

In the same manner, impedance Ï��*_� looking towards the TL (Ï*,>*) is in parallel with 

port 2 impedance, thus the equivalent impedance named Ï�Ñ�_� becomes: 

 Ï�Ñ�_� =	¿1	 (	 1Ï��*_�À�! 	= 	 ��Ï*_4Ð	'>*)1 �	�Ï*_4Ð'>*) (III-8) 

Impedance Ï��!_� is the input impedance of TL (Ï!,>!) loaded by Ï�Ñ�_�, given by (III-9): 

 Ï��!_� =	Ï! Ï�Ñ�_� 	( �Ï! Ðab'>!)Ï! ( �Ï�Ñ�_� Ðab'>!)  (III-9) 

The combination of Ï��!_� in parallel with Ï���_� should be equal to port 1 impedance in 

order to obtain a matching condition at port 1, leading to equation (III-10): 

 
1Ï��!_Ó ( 1Ï���_Ó = Ï! 	( 	 �Ï�Ñ�_� Ðab'>!)Ï!Ï�Ñ�_� ( �Ï!� Ðab'>!) ( � Ðab'>�)2Ï� = 12 (III-10) 

By developing and equating the real and imaginary parts of the two members of equation 

(III-10), equations (III-11) and (III-12) were derived: 

 

Ï!	Ï* Ðab'>�) _4Ð'>*) � Ï!� Ðab'>!) Ðab'>�) ( 2Ï!Ï�( 2Ï�Ï* Ðab'>!) _4Ð'>*)= 	 Ï!� Ï�	Ï*	 Ðab'>!) _4Ð'>*) (III-11) 

 Ï!	Ï* Ðab'>!) Ðab'>�) _4Ð'>*) �	 Ï�Ï* _4Ð'>*) = 	 Ï!Ï� Ðab'>!) (III-12) 

Finally, the even-mode analysis leads to four different equations, (III-6), (III-7), (III-11) 

and (III-12). 
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III.2.2.2 Odd-mode analysis 

For the odd-mode analysis, the voltages at ports 2 and 3 have the same magnitude 

and are 180° out-of-phase. The voltage is consequently equal to zero along the line of 

symmetry of the circuit which can be thus short circuited in its middle part. The impedance 

looking towards the circuits from port 2 can be calculated by means of the impedances Ï��*_¦ and Ï���_¦: 

 Ï��*_¦ 	= 	 Ï* \ 2I 	( �Ï* Ðab'>*)Ï* ( � \ 2I Ðab'>*) (III-13) 

 Ï���_¦ = �Ï! Ðab'>!) (III-14) 

The combination of these two impedances in parallel should match port 2 impedance, 

which leads to the following equation (III-15): 

 
1Ï��*_¦ ( 1Ï���_¦ = Ï* 	( 	� \2 Ðab'>*)Ï* \2	( 	�Ï*� Ðab'>*) � 	� _4Ð'>!)Ï! = 1 (III-15) 

Equations (III-16) and (III-17) are obtained by equating the real and imaginary parts of 

equation (III-15), respectively: 

 Ï* _4Ð'>!) Ðab'>*) =	 Ï! T\2 � 1U (III-16) 

 �Ï* _4Ð'>!) _4Ð'>*) = Ï! ]2\ Ï*� � 1^ (III-17) 

Equations (III-16) and (III-17) are the two missing equations over six independent 

equations, which is the necessary condition to solve a problem with six unknown 

parameters. Next, equation (III-16) is substituted into (III-17) in order to get: 

 >* =	 Ðab�!ÔÕÖ
� \2		( 		1	2Ï*�\ 	� 		1×Ø (III-18) 

which implies the following condition on the value of the resistance r according to the 

value of the characteristic impedance Ï*: 

 if	\ < 2, then Ï* / +�� or if \ / 2, then Ï*	 < +�� (III-19) 

Moreover, equation (III-16) can be rewritten as follows: 

 >! =	 Ðab�!ÂÏ* Ðab'>*)Ï! T	\2 � 1UÃ (III-20) 
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From equation (III-20), it is obvious that the value of r cannot be lower than 2, which 

would lead to a negative value of the electrical length >! or an electrical length longer than 

a quarter wave length which is not acceptable. Thus, the right condition among the two 

suggested in (III-19) is: 

 \ / 2 with z* < +�� (III-21) 

Meanwhile equation (III-12) can also be rewritten as follows: 

 >� =	 Ðab�! ] Ï�Ï* _4Ð'>*) 	( 	 Ï�Ï! Ðab'>!)^ (III-22) 

Finally it is remarkable that equation (III-18) gives >* versus \ and Ï* only, equation 

(III-20) gives >! versus \, Ï!, Ï*	and >*, and equation (III-22) gives >� versus Ï!, Ï�, Ï*, >! 

and >*. 

III.2.3  Design procedure 

With an adequate procedure, it seems thus possible to find, in that order, the TLs’ 

electrical length >*, >! and >� which depend on the values of the characteristic impedances Ï!, Ï�, Ï* and resistance r. However, the three equations (III-6), (III-7) and (III-11) are too 

complex to be solved in an algebraic way with (III-18), (III-20), and (III-22). Consequently, 

for equations (III-6), (III-7), and (III-11) delta error functions, respectively named �!,��, 	�*, were defined as: 

 ÜÝÞÝKÞ\	4b	ÐℎÞ	\º5ℎÐ � 	ÝÞÝKÞ\	4b	ÐℎÞ	3ÞàÐ	ÝÞÝKÞ\	4b	ÐℎÞ	\º5ℎÐ Ü (III-23) 

A solution consists in a set of four values Ï!, Ï�, Ï*, and r. The electrical lengths >!, >�, and >* uniquely depend on the solution set. A set is solution of the circuit if the three 

delta error functions are simultaneously equal to 0. A careful study showed that this 

condition cannot be reached, except for the particular solution >� = >* = 0, e.g. without 

open stub neither resistance feeding lines, leading to the conventional Wilkinson power 

divider. As an example, Figure III.5 shows the delta error functions versus 
!	for two sets 

of values, set 1 (in black):	
� = 25 Ω, 
*	= 25 Ω, R = 105 Ω and set 2 (in red): 
� = 25 Ω, 
*	= 49 Ω and R = 105 Ω, respectively. 
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Figure III.5: ����¦� of (III-18), (III-20) and (III-22) for two sets of values. 

For set 1, the delta error �� reaches 0 for 
!	 = 84 Ω, whereas delta errors �! and �* 

are not equal to zero for the same characteristic impedance. In the same manner, 

considering set 2, �!, �� or �* are equal to 0 for three different values of 
!, e.g 67 Ω, 

57 Ω and 65 Ω, respectively. However, it is obvious that the average of the delta errors is 

smaller for Set 2 if 
!	is chosen near 60 Ω. Hence, even if a perfect set of characteristic 

impedances cannot be found, there exist some sets that enable to be close to the ideal 

solution. These “approximate solutions” can be obtained thanks to the use of a simple 

algorithm. 

However a question remains which is how to rely the delta errors calculated from 

equations (III-6), (III-7) and (III-11) to the knowledge of power divider mismatch, isolation 

and insertion loss. A solution could be to link, in an algebraic way, the delta errors to some 

specific goals on the power divider S-parameters. Such relationship cannot be carried out 

easily. Another way could be to calculate directly the aforementioned S-parameters and to 

compare them to the power divider specifications, as a condition for the algorithm to end. A 

far simpler solution was used. As it is proved below, a single condition solely based on the 

scattering parameter ��� as close to zero as possible is sufficient to ensure a good matching 

at the three ports as well as a high isolation between the two output ports. 

III.2.3.1 Demonstration of the good matching and isolation according to the value of áÒÒ 

Statement is valuable for any three ports network as long as (i) the symmetry 

condition between ports 2 and 3 is verified (balanced network) and (ii) there is no loss in 

the equivalent even-mode circuit (which means no resistive element in the even-mode 

circuit). Those conditions are fulfilled by the power divider given in Figure III.3. Due to 

condition (i) the latter can be redrawn as the four ports network in Figure III.16(a). 
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Figure III.6: a) Normalized representation as a four ports network of the power divider in Figure III.3, 
b) odd-mode schematic and c) even-mode schematic. 

Based on those considerations, the network can be analysed by an even-/odd-mode 

approach. If an input power wave a! is considered at port 1, the following equations hold 

for the relationship between the power waves defined in Figure III.16, where “e” means 

even-mode “o” means odd-mode, respectively: 

 

a� = a�_� ( a�_¦  K� = K�_� ( K�_¦ a = a�_� � a�_¦  K = K�_� � K�_¦ a! = a!_� ( a!_¦	  K! = K!_� ( K!_¦ 

(III-24) 

Similarily, if an input power wave a� is considered at port 2, the following equations 

occur: 

 
a� = a�_� ( a�_¦  K� = K�_� ( K�_¦ a* = a�_� � a�_¦  K* = K�_� � K�_¦ 

(III-25) 

III.2.3.1.a Odd-mode analysis 

As port 1 is shunted, see Figure III.6(b), it is obvious that no transmission may 

occur between ports 1 and 2. Consequently, the general form of the odd-mode scattering 

matrix ��¦� is written as: 
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 s�!!_¦ 00 ���_¦t (III-26) 

With no resistive element in the network, |�!!_¦| = |���_¦| [12]. With the presence 

of a resistance in the network, as in the conventional Wilkinson power divider or in Figure 

III.6, necessarily ê�!!_¦ê ≠ ê���_¦ê. Moreover, because of the shunt, power waves a!_¦ and K!_¦ are equal in the odd-mode to zero: 

 a!_¦ = 0  K!_¦ = 0 (III-27) 

III.2.3.1.b Even-mode analysis 

The even-mode scattering matrix ���� takes the form below: 

 s�!!_� �!�_��!�_� ���_�t (III-28) 

The even-mode network being lossless, the two following equations hold: 

 
ê���_�ê = ê�!!_�ê 

and �!!_�� ( �!�_�� = 1 
(III-29) 

Moreover, power waves a!_� and K!_� may be expressed as: 

 a!_� = √2 ∙ a�_�  K!_� = √2 ∙ K�_� (III-30) 

III.2.3.1.c Discussion on the scattering parameters 

Using the equations (III-24) to (III-30) linking even, odd and global power waves, 

the demonstration given in Appendix-A leads to: 

 �!! = �!!_� (III-31) 

 �!� = �!�_�√2 = �!* = ��! = �*! (III-32) 

 ��� = ���_� � ���_¦ = �** (III-33) 

 ��* = ���_� ( ���_¦ = �*� (III-34) 

In order to design a three ports device, a parametric study is often necessary. The 

convergence of the design process can be ensured by means of conditions on the scattering 

parameters. Various possibilities can be enforced.  
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1) Condition |�!!| = 0 

This condition leads to |�!!_�| = 0 (III-31), implying |�!�_�| = 1 (III-29), and hence �!� = 1 √2⁄  (III-32). This is sufficient as long as output ports matching is not required. 

However, such condition is not enough for the use of a power divider as a combiner where 

isolation is required.  

2) Condition |���| = 0 

Two solutions exist. The first one consists in equating ���_� to ���_¦ keeping them 

different from 0 (III-33), however this solution is not satisfactory for our power divider. 

Indeed, according to (III-34) if ���_�	= ���_¦ ≠ 0, �*� is not equal to 0 which means a bad 

isolation. The second solution is equivalent to having at the same time matching for both 

even- and odd-modes at port 2: 

 ���_¦ = ���_� = 0 (III-35) 

Consequently:  

• Matching at port 1 is realized: 
Considering (III-29), ���_� = 0		 implies: 

 �!!_� = 0 (III-36) 

Considering (III-31), �!!_� = 0		 implies: 

 �!! = 0 (III-37) 

• -3 dB ratio between ports 1 and 2 is reached: 
Considering (III-29), �!!_� = 0 implies: 

 �!�_� = 1 (III-38) 

Considering (III-32), �!�_� = 1 implies: 

 �!� = 1 √2⁄  (III-39) 

• Perfect isolation is realized: 
Considering (III-33), ���_¦ = ���_� = 0 implies: 

 ��* = 0 (III-40) 

Hence, a matching condition on the scattering parameter ��� alone holds for the four 

conditions on ���, �!!, �!� and ��* as long as the power divider stands symmetrical and 

lossless (except for the isolation resistance R). 

III.2.3.2 Procedure for finding solutions 

In practice, the algorithm described in Figure III.7 was used to find close solutions, 

based on the port 2 matching condition alone. Matlab software was used. 
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Figure III.7: Algorithm for finding solutions. 

First, r must be fixed to the desired value and Ï!, Ï� and Ï*	to the minimum 

achievable characteristic impedance given by the technology. Included in the three 

overlapping loops of z!, z�, and z* (symbolized with only one block in the algorithm), the 

three electrical lengths >*, >!, and >� are calculated in this order, according to equations 

(III-18), (III-20) and (III-22). Then ��� is compared to the initial goal. Typically, it is a 

good choice to start the procedure with ���_gBj = -35 dB. If after any combinations of Ï!, Ï�, and Ï*, ��� stays higher than ���_gBj, this means that the goal is too ambitious. 

Consequently, ���_gBj  should be slightly increased. The poorer the conditions concerning ���_gBj, the worst the isolation and matching of the power divider. In practice, the choice 

of ���_gBj is deserved to the designer, depending on the specifications related to the 

application. 

Finally, additional conditions concerning >h and/or Ïh ranges, may lead to conditions 

on the device maximum size and/or quality factor for the TLs (in particular if integrated 

technologies are targeted). The designer thus can choose a compromise between the power 

divider electrical performance and size by electing the appropriate values of the 

characteristic impedances and electrical lengths. 
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III.3  Circuits design and experimental results 

Two power dividers with two different values of R were fabricated as a proof-of-

concept to illustrate and validate the method previously described. As shown in (III-21), r 

should be strictly bigger than the normalized value 2, e.g. 
 / 100 Ω when considering a 

50-Ω system characteristic impedance. One power divider has a value R = 105 Ω and 

another one R = 150 Ω. 

III.3.1  Power Divider with R = 105 Ω 

The targeted condition for ��� was fixed to -35 dB. The characteristic impedances’ 

range of variation was fixed to [25-100] Ω, except for 
* which is limited to 51 Ω from 

(III-21). A step of 2 Ω is a good compromise between time simulation and impedance 

resolution for the construction of the design graphs.  

Figure III.8 shows the solutions in terms of electrical lengths >!, >�, and >*, 

according to the characteristic impedances 
!, 
�, and 
*, respectively. Figure III.8(a) 

shows the electrical length >* map versus 
*. >* varies between 14° and 38°. Figure 

III.8(b) gives the electrical length >! according to 
! and 
*. The colour scale indicates that 

the smaller the characteristic impedance 
*, the smaller the electrical length >!. 

Consequently, in this example, a strong miniaturization could be reached with the choice of 
* = 25 Ω and >* = 14.4°. With such a solution, several values for 
! and >! are available. 

It may be noticed that the bigger 
!, the smaller >!. 
! = 81 Ω appears to be a good 

compromise to avoid too high characteristic impedances, which leads to >! = 57.7°. Lastly, 

Figure III.8(c) gives the electrical length >� versus 
! and 
�, for various achievable values 

of 
*. Many possibilities exist for the pair (
�,>�). Based on 
* = 25 Ω and 
! = 81 Ω, a 

wide range remains possible but when taking into account design constraints this choice 

gets reduced. In particular, >� should be chosen short enough to avoid parasitic coupling 

between the TLs (
*,>*) and (
�,>�). 
� = 39 Ω, leading to >� = 35.2° is a good couple. 
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Figure III.8: Design graphs for R = 105 Ω. 

Calculi are based on theoretical equations only and do not consider junctions 

electrical models neither bends nor parasitic coupling that in practice contribute to degrade 

the performances. The electromagnetic simulation of the power divider with the chosen 

characteristic impedances and electrical lengths, including junctions, bends and coupling, 

showed that the working frequency was slightly shifted and the return loss a little bit 

degraded, consequently a tuning on these values was necessary. The final characteristic of 

the TLs after tuning are the following (original values are given between brackets): 
! = 84 Ω (81 Ω), >! = 56° (57.7°), 
� = 39 Ω (39 Ω), >� = 30° (35.2°), 
* = 30 Ω (25 Ω), >* = 14.9° (14.4°). 

The circuits were fabricated on the dielectric substrate Rogers RO4003C, of relative 

permittivity 3.38 and thickness 813 µm. All circuits are working at the frequency of 

2.45 GHz. A SOLT calibration was carried out on an 8720 Vector Network Analyzer. 

Figure III.9 compares the S-parameters obtained from electromagnetic simulations 

[Momentum by Agilent Technologies] and measurements, respectively. A very good 

agreement was obtained. While keeping the previous sets of (
h,>h), the SMD resistance R 

placed in the fabricated circuit was measured equal to 100.2 Ω. As expected the power 

divider is very low loss with 0.13 dB of insertion loss only at 2.45 GHz, partially due to 

SMA RF connectors. The available bandwidth, defined by �!! below -20 dB, reaches 14 %, 

from 2.26 GHz to 2.6 GHz. Considering this bandwidth, the output port return loss ��� and 

(a) 

(b) 

(c) 

ð æ=Í
ñ	Ω 

ð æ=Í
ó	Ω 

ð æ=Í
æ	Ω 

ð æ=æ
ó	Ω 

ð æ=æ
å	Ω 

ð æ=Ò
éΩ 



Chapter III  

89 
 

the isolation �*� are better than -24 dB, and reach -26 dB and -34 dB at 2.45 GHz, 

respectively. Remember that ��� was fixed to -35 dB as an input condition for the 

convergence of the design algorithm. Even if this value was reached in the optimization 

process in theory [Matlab], here again, since calculi do not take into account junctions 

models nor parasitic couplings, the return loss is degraded. Moreover, the value of R was 

5 % below the right value. However, let’s emphasize that -26 dB as a measured return loss 

constitutes excellent conditions for a large majority of applications. 

 

Figure III.9: Simulation [Agilent ADS Momentum™] and measurement results of the proposed topology with 
measured R = 100.2 Ω (theoretically 105 Ω). (
!,>!) = (84 Ω, 56°), (
�,>�) = (39 Ω, 30°), (
*,>*) = (30 Ω, 

14.9°). (a) Insertion loss and input return loss. (b) Isolation and output return loss. 

Figure III.10 is a viewgraph of the fabricated power divider compared to the 

modified power divider early proposed in [80]. To design the latter, the value of R was 

fixed to 95 Ω in order to get an electrical length of the TLs equal to 12.6° between the 

output ports and the resistance, which is close to the 14.9° of the topology presented here. 

The TLs’ characteristic impedance was fixed to 69 Ω, with an electrical length between 

ports 1 and 2 (or 3) equal to 102.6° (90° + 12.6°). These values lead to a surface of the 

proposed circuit that is 24 % smaller as compared to the one proposed in [80]. 

 

Figure III.10: Measured circuits. (a) Proposed design. (b) Power divider from [80]. 

To conclude, these results suggest that the proposed power divider is low loss, with 

really good matching and isolation. It is smaller and more flexible than the one proposed in 

[80] whilst keeping similar advantages such as the limitation of the parasitic coupling 

between the output ports thanks to the TLs connecting the resistance. In terms of simplicity, 
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miniaturization and performance, this design is also clearly well suited to further circuit 

integration considerations. 

III.3.2  Power Divider with R = 150 Ω 

Another power divider was achieved and measured with R fixed to 150 Ω. As for 

the previous one the maximum value of ��� was fixed to -35 dB for the initial design, the 

characteristic impedances still varied between 25 Ω and 100 Ω, and 
* was limited to 61 Ω. 

Figure III.11 gives the graphs of the electrical lengths >!, >�, and >* versus the 

characteristic impedances 
!, 
�, and 
*. The electrical length >* varies between 44° and 

69° with 
*, Figure III.11(a). Comparing the graphs in Figure III.8(a) and in Figure 

III.11(a) when R is fixed to 105 and 150 Ω, respectively, we notice that when R increases 

the maximal reachable value of >* increases and 
* needed to obtain this maximal value of >* increases as well. With R equal to 500 Ω, the maximal value of >* is 77° for 
* = 100 Ω. 

With higher resistance value, higher >* can be obtained but 
* is beyond our characteristic 

impedances’ range. The solution >* = 49°, 
* = 49 Ω, >! = 60° and 
! = 65 Ω enables high 

flexibility in terms of power divider shape with a relatively long TL connecting the output 

ports to the resistance. In counterpart, particular attention was paid on the electrical length >! that should be longer than >* to avoid meandering of the TL '
*, >*). The open circuit 

stub (
�,>�) was designed in a T shape in order to fit free space in the power divider loop. 

In order to get more flexibility and reduce the length of the stub, the TL, chosen as 
�	= 41 Ω and >� = 53°, was realized by a stepped-impedance structure, as shown in Figure 

III.12, with 
�6= 125 Ω, >�6 = 3.5°, 
�# = 35 Ω, and >�# = 41°, respectively. Finally, the 

TL with the lower characteristic impedance was divided in two parallel TLs of similar 

electrical length but with a characteristic impedance multiplied by 2, so that 
�# becomes 

now equal to 70 Ω. Here again a tuning was needed to adjust the performances of the power 

divider in order to take into account the junctions parasitics, bends and couplings. The final 

characteristics of the TLs after tuning are given herein with the original values between 

brackets: 
! = 65 Ω (65 Ω), >! = 58° (60°), 
�6= 130 Ω (125 Ω), >�6 = 5.8° (3.5°), 
�# = 88 Ω (70 Ω), and >�# = 39° (41°), 
* = 51 Ω (49 Ω), >* = 47° (49°). 
�6 can be 

considered as a high characteristic impedance, but such value is still achievable in a 

classical PCB technology and its shortness should not bring too much loss. 
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Figure III.11: Design graphs for R = 150 Ω. 

 

Figure III.12: Steps to design the open stub (
�,>�) in order to fit the free space in the power divider (before 
tuning and between brackets after tuning). 

Figure III.13 gives a picture of this proposed power divider. 

 

Figure III.13: Proposed design with R = 150 Ω. 
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Figure III.14 compares the S-parameters obtained from electromagnetic simulations 

[Momentum] and measurements. The agreement between simulation and measurement 

results is very good. The insertion loss is 0.23 dB at 2.45 GHz and the bandwidth reaches 

4.5 %, from 2.37 GHz to 2.48 GHz, see Figure III.14(a). The return loss at the output port ��� is better than -17 dB and the isolation �*� is better than -21 dB in the defined 

bandwidth. They reach -19 dB and -29 dB at 2.45 GHz, respectively, see Figure III.14(b). 

This power divider is only slightly smaller (6 %) than the one presented in [80] but its 

topology proves a huge shape flexibility which can, by the end, save much space in a global 

system. Here, the cost of such flexibility is a reduced bandwidth. The longer >*, the 

narrower the bandwidth. 

 

Figure III.14: Simulation [Momentum] and measurement results of the proposed topology with measured 
R = 150 Ω.  (
!,>!) = (65 Ω, 58°), (
�6,>�6) = (130 Ω, 5.8°), (
�#,>�#) = (88 Ω, 39°), (
*,>*) = (51 Ω, 47°). 

(a) Insertion loss and input return loss. (b) Isolation and output return loss. 

An application of the fabricated power divider is illustrated in section III.5 where a 

4-antenna feeding circuit was realized as a proof-of-concept. But before this, the influence 

and the potential in terms of harmonics suppression of the added TLs to our power divider 

are compared to the classical one. 

III.4  Harmonics suppression 

In [84] and [85] modified power dividers contain resistance feed lines and additional 

TLs or open stubs in order to suppress harmonics. These structures seem quite similar to 

ours, but they are exploited only for harmonics suppression and not for miniaturization or 

characteristic impedance flexibility. Their given procedures lead to power dividers with big 

area because of the several stubs of low characteristic impedances (equivalent to large 

widths) which make the meandering technique complex to apply. It is thus interesting to 

study the capability of our topology in spurious suppression. 

In [84], the structure looks like the one presented in Figure III.3 but another open 

stub was added, named (
ö;ξ), see Figure III.15. The electrical lengths δ (equivalent to >� 

in our design), ψ (equivalent to >*), and ξ create three transmission zeros. The first step of 
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the design procedure in [84] consists in fixing their values according to the harmonics to 

suppress thanks to the formulas (III-41). In a second step, the other characteristic 

impedances and electrical lengths were chosen or calculated with extra formulas (given in 

[84]).  

 

Figure III.15: Circuit configuration of the power divider proposed in [84] for spurious suppression. 

Figure III.16(a) shows the wideband ideal electric simulation of our power dividers 

with R = 105 Ω, and Figure III.16(b) with R = 150 Ω, respectively. Circuit simulations were 

performed with perfect TLs, perfect junctions and the TLs characteristics deduced from the 

optimization process. For the power divider with R = 105 Ω the transmission ��! shows two 

transmission zeros occurred at 6.26 GHz and 15.3 GHz, respectively. They correspond to 

the theoretical values calculated with (III-41), à! = 6.26 GHz (÷ = >� = 35.2°) and à� = 	15.3 GHz (ø = >* = 14.4°). For R = 150 Ω the two transmission zeros occurred at 

4.16 GHz and 4.5 GHz which correspond to à! = 4.16 GHz (÷ = >� = 53°) and à� = 4.5 

GHz (ø = >*	= 49°). So, as explained in [84] and demonstrated with our design, >� and >* 

create two predictable transmission zeros. This should be confirmed by electromagnetic 

simulations. Figure III.16(c) and (d) show the electromagnetic simulations [Momentum] of 

the two power dividers for R = 105 Ω and R = 150 Ω, respectively. For the latters, 

junctions, bends and coupling were taken into account. In that case, with R = 105 Ω (see 

Figure III.16(c)), the resonances occurred at 6.8 GHz instead of à! = 7.35 GHz (>� = 30° 

after tuning) and 15.8 GHz instead of à� = 14.8 GHz (>* = 14.9° after tuning). For 

R = 150 Ω (see Figure III.16(d)), the resonances occurred at 3.4 GHz instead of à! = 	4.16 GHz (the open stub in T-shape after tuning is equivalent to >� = 53°) and 

4.9 GHz instead of à� = 4.7 GHz (>* = 47° after tuning). 

 

à! = Z2÷ ∙ à� 

à� = Z2ø ∙ à� 

à* = Z2ú ∙ à� 

(III-41) 
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Figure III.16: Electric simulation of the power dividers with (a) R=105 Ω and (b) R=150 Ω and 
electromagnetic simulation on Momentum with (c) R=105 Ω and (d) R=150 Ω. 

The junctions, bends and unwanted coupling obliged us to tune the TLs parameters. 

The modifications of >� and >* had for consequence to change the resonance frequencies. 

Despite the values of the electrical lengths after tuning are used to calculate the theoretical 

resonances, a mismatch persists between the calculation and the electromagnetic simulation 

due to the parasites. 

The electrical lengths >� and >* create transmission zeros that can be used for 

spurious suppression. In the case of strong miniaturization solution of the power divider as 

it has been achieved with R = 105 Ω, these electrical lengths are really small and induce 

resonances at much higher frequencies as compared to the working frequency harmonics. 

Hence the interest for harmonics suppression is low. However, when R = 150 Ω is 

considered, it is possible to take profit of these resonances. The drawback of the proximity 

of the first resonance is a smaller bandwidth. With the purpose of harmonic suppression, 

first R must be fixed, then >� and >* can be calculated with (III-41). After that, the other 

parameters can be chosen thanks to the design graphs as presented before. An 

electromagnetic simulation is needed at the end to precisely tune the resonance frequencies. 

Theoretical resonances: 
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III.5  Antennas array feeding network application 

III.5.1  2.45 GHz working frequency 

The power divider with R = 150 Ω was used as a 1:4 feeding network to be applied 

in a 4-antennas array. Two power dividers were connected in parallel at the outputs of a 

first one thanks to TLs, called (
�,>�), in such a way that each output stays equidistant from 

its neighbours. 
� and >� were fixed after a tuning procedure. The choice of a characteristic 

impedance 
� different from 50 Ω offers the opportunity to slightly increase the bandwidth, 

as compared to the single power divider bandwidth. 
�	and >� were taken equal to 45 Ω 

and 165°, respectively. 

     

Figure III.17: 1:4 feeding circuit.  

Figure III.17 shows the fabricated circuit and Figure III.18, the comparison between 

simulation and measurement results, respectively. The agreement is very good. The 

insertion loss is 0.48 dB above the ideal value of 6 dB at 2.45 GHz. The bandwidth, defined 

by �!! below -15 dB, reaches 15 %, from 2.26 GHz to 2.63 GHz, as shown in Figure 

III.18(a). In the considered bandwidth, the return loss at the output port ��� is better 

than -15 dB. The isolation ��*, which is the one between two outputs of the same power 

divider (i.e. between output ports 2 and 3, or 4 and 5, respectively) is better than -15 dB, 

while the isolation ��� which is the one between two outputs from different power dividers 

is better than -23 dB, as shown in Figure III.18(b). At 2.45 GHz, �!!, ���, ��* and ��� are 

equal to -17 dB, -18 dB, -21 dB and -35 dB, respectively. It would be very easy to improve 

the network return loss thanks to the tuning of the TLs (
�,>�). This would lead, in 

counterpart, to the reduction of the bandwidth.   

Thanks to the particular shape of the proposed circuit, it is possible to save more 

surface area compared to what would be obtained with conventional Wilkinson type power 

dividers. It is easy to reach both flexibility in the topology and electrical performances. As 

in an antenna array the distance between the output ports is a major point to address, with 

our topology we can first fix this distance, then miniaturize the PD to match as far as 

possible the topology conditions whilst miniaturizing the device and finally play on (
�,>�) 

for the best compromise between bandwidth and input matching. 

1 

2 3 4 5 

(Z4, θ4) 
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Figure III.18: Simulation and measurement results of the 1:4 feeding circuit at 2.45 GHz. (a) Magnitude of 
S21, S11 and S22. (b) Magnitude of S23 and S24. 

III.5.2  5.8 GHz working frequency 

Another 1:4 feeding network with four-by-eight integrated slot-array antennas [86] 

was designed and fabricated at 5.8 GHz on the same dielectric substrate Rogers RO4003C, 

as shown Figure III.19. Before showing the measurement results of the full circuit, the 

feeding network alone is studied. 

 

Figure III.19: Fabricated slot array antenna with its feeding network.  

III.5.2.1 1:4 feeding network  

The resistance R of the single power divider was fixed to 150 Ω. The design graphs 

in Figure III.11 were used once again. The solution with >* = 52°, 
* = 51 Ω, >! = 66°, 
! = 58 Ω, and the couple >� = 53°, 
� = 41 Ω, was chosen. Here again the open circuit 

stub (
�,>�) was designed in a T shape with stepped-impedance structure, as in Figure 

III.12. After tuning, the final TLs parameters became: >* = 47°, 
* = 58 Ω, >! = 60°, 
! = 56 Ω and 
�6= 75 Ω, >�6 = 14.7°, 
�# = 59 Ω, and >�#  = 18.4°. 
�	was taken equal to 

50 Ω. Figure III.20 shows the comparison between electromagnetic simulation and 

measurement results of the 1:4 feeding circuit without the antennas. The insertion loss is 

1 dB above the ideal value of 6 dB at 5.8 GHz. The bandwidth, defined by �!! 
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below -15 dB, is 9.3 %, between 5.46 and 6 GHz, as shown in Figure III.20(a), which is 

large enough for this application. In the considered bandwidth, the return loss at the output 

port ��� is better than -18 dB. The isolation ��* (between two outputs of the same power 

divider) is better than -15.8 dB, while the isolation ��� (between two outputs from different 

power dividers) is better than -20.5 dB, as shown in Figure III.20(b). At 5.8 GHz, �!!, ���, ��* and ��� are equal to -17.2 dB, -20.1 dB, -23.9 dB and -25.8 dB, respectively. 

 

Figure III.20: Simulation and measurement results of the 1:4 feeding circuit at 5.8 GHz. (a) Magnitude of S21, 
S11 and S22. (b) Magnitude of S23 and S24. 

III.5.2.2 1:4 feeding circuit with antennas 

In [86], a four-by-eight substrate integrated waveguide (SIW) slot array antenna was 

proposed at 10 GHz. Next, a two-by-eight was developed at 5.8 GHz in [87]. They are 

composed of longitudinal slots and via holes. The volume in the substrate integrated 

waveguide, delimited by the rows of the via holes (w) and the height of the substrate, acts 

as an equivalent rectangular waveguide. In our application a four-by-eight SIW slot array 

antenna at 5.8 GHz was fabricated and measured. 50 Ω microstrip feeding lines were used 

with tapered transitions to match impedances between the output ports of the power divider 

and SIW guides [88]. The dimensions of the antennas array given in Figure III.19 and in 

Figure III.21 were optimized with the 3D electromagnetic simulation software CST. 

 

Figure III.21: Configuration of the on-substrate integrated slotted-waveguide synthesized using metallized 
via-hole arrays from [86]. 
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The return loss of the SIW slot array antenna was measured from 4 to 7 GHz. The 

results are shown in Figure III.22. The return loss shows a 5.65 GHz working frequency 

instead of 5.8 GHz, which means a shift of 150 MHz. At 5.65 GHz it is -18 dB and less 

than -10 dB within a bandwidth of 43 MHz. 

 

Figure III.22: Return loss of the 1:4 antennas array. 

The measured E-plane pattern at 5.65 GHz is compared with the simulated pattern 

in Figure III.23(a), and the measured and simulated H-plane patterns in Figure III.23(b). At 

0° the measured gain reaches 10.1 dB instead of 13.5 dB in simulation, and 10.3 dB instead 

of 13.5 dB for H-plane and E-plane, at 5.65 GHz, respectively. 

 

Figure III.23: Simulated and measured (a) E-plane and (b) H-plane radiation pattern at 5.65 GHz. 

The measurement of the feeding circuit alone showed good results, with the 

expected working frequency and good matching, so the discrepancies of the full circuit are 

caused by the antennas array. They are certainly due to the inaccuracy of the fabrication 

process: indeed the via holes plating and slots dimensions are critical. 

III.6  Millimetre-wave application 

The study of the new power divider in PCB technology shows that such a circuit 

meets all the requirements needed for a silicon technology and is ready for integration. 

Thus it was designed in the 55 nm BiCMOS technology described in chapter II, for a 
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working frequency at 60 GHz. It is still under fabrication meanwhile the writing of this 

manuscript, so only the simulation results are presented herein.  

III.6.1  Design and simulation 

For the TL (
!,>!) between the input and output ports, S-CPW were used, whereas 

microstrip TLs were chosen for the open stub and the resistance feed lines because they are 

narrower. Here again the bends and junctions were realized with microstrips. The value of 

the resistance R was fixed to 105 Ω; so the design graphs given in Figure III.8 were used to 

choose a solution. The resistance is a polysilicon type. Two ways for selecting a design 

were possible: 

• Considering that the quality factor is quasi-constant for the microstrip TLs but that 

it depends on the characteristic impedance for the S-CPW, the optimal solution can 

be achieved by fixing first 
! with the characteristic impedance leading to the best 

quality factor of the S-CPW. Then, other parameters can be determined with the 

design graphs. 

• The TLs’ parameters can be simply fixed by the electrical lengths leading to the 

smallest component. In that case the characteristic impedances leading to the best 

quality factor S-CPW are not used. Moreover the characteristic impedance of 

microstrip lines is limited in integrated technologies. 

A study comparing these two methods showed that the second one leads to a smaller 

power divider area. Indeed, for lower 
! (better Q for S-CPWs), >! and >* increase (Figure 

III.8), and despite a higher Q, the total loss gets higher than with smaller >h with lower Q. 

Consequently, the second method was finally applied. This circuit was fabricated on the 

same chip than the branch-line coupler which will be presented in chapter IV. To avoid 

having too many different TLs to characterise, the same 26 Ω microstrip TL used in the 

branch-line coupler were used as the stub and the resistance feeding lines. Finally the 

selected solution was 
! = 83 Ω, >! = 59°, 
� = 26 Ω, >� = 24°, 
* = 26 Ω and >* = 15°. 

Figure III.24(a) shows the schematic of the power divider and gives its dimensions. The 

83 Ω characteristic impedance cannot be achieved with a microstrip TL in the 55 nm 

BEOL, so a value of 72 Ω was used. Because of this lower value, the length of the S-CPWs 

needed to be shortened by 5 µm (corresponding to 1°) to shift back the working frequency 

to 60 GHz while the microstrip stub was shortened by 13 µm (corresponding to 1.8°) in 

order to improve the input port matching. The simulation was carried out with equivalent 

TLs with the parameters given in chapter II, with perfect S-CPW/microstrip transitions, 

R = 100 Ω, and without the 50 Ω feeding lines. The layout with the differential pads is 

given in Figure III.24(b) and the results are given in Figure III.25. At 60 GHz, the 

transmission coefficient ��! shows only 0.55 dB of added insertion loss above the 3 dB. 

The return loss at any port is lower than -28 dB. The isolation �*� is -26.6 dB. For an input 

port return loss �!! better than 20 dB, the bandwidth is 20 % (between 53 and 65 GHz), the 
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isolation is better than 19 dB, and the output ports return loss better than 25 dB. The added 

insertion loss reaches a maximal value of 0.62 dB in this bandwidth. The surface area of 

this circuit is 0.104 mm², and according to the layout, we see that it could be reduced with 

narrower S-CPWs. With a width of 100 µm instead of 124 µm the total surface could be 

lower than 0.09 mm². 

 

Figure III.24: Modified power divider (a) schematic with dimensions (not at scale), and (b) layout in the 
55 nm BiCMOS BEOL. 

 

Figure III.25: Simulation result at 60 GHz. 

The Table III.1 compares the results of this power divider with the state-of-the-art 

presented in Chapter I. 
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Table III.1 : Comparison of the simulated power divider with the state-of-the-art. 

III.6.2  Sensitivity to the resistance value 

In CMOS technology, the polysilicon resistances as the one used here exhibit a 

variation of ± 20 % around the nominal value. It is thus important to verify the impact of 

such variation on the power divider performances. As the resistance determines only the 

isolation and the output ports matching, only ��� and �*� are modified with R. Figure 

III.26(a) and Figure III.26(b) shows ��� and �*� for the lowest and greatest possible values, 

80 Ω and 120 Ω, respectively. Still in the bandwidth between 53 GHz and 65 GHz, 

determined with a return loss �!! better than 20 dB, the isolation is in the worst case better 

than 18 dB and ��� is better than 19.8 dB. 

 

Figure III.26: Output port ��� and isolation �*� simulated at 60 GHz with (a) R = 80 Ω and (b) R = 120 Ω. 

The resistance variation degrades the isolation and the output ports matching but 

simulated results show still acceptable performances. The polysilicon resistance of 100 Ω 

has also been designed alone on the same chip in order to extract its exact value. 
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III.7  Conclusion 

A new topology of power divider was studied. It leads to more flexibility and better 

compactness as compared to the classical Wilkinson power divider. Hence, it is well suited 

for a fabrication in silicon technology at millimetre-wave frequencies. Design rules were 

carried out thanks to design graphs, and a simple method of optimization.  

Two power dividers were realized at 2.45 GHz in a PCB technology as proofs-of-

concept, with different characteristics. They proved the high level of flexibility offered by 

the new developed topology. Measurement and simulation results were in very good 

agreement and proved the efficiency of the design method. The two 1:4 antenna arrays 

feeding network achieved thanks to the flexible power divider, can minimize the surface 

area of these feeding networks.  

The simulation results and the surface area of the modified power divider designed 

at 60 GHz in the 55 nm BiCMOS technology confirmed that the new proposed topology is 

well suited for CMOS millimetre-wave power dividers. It ensures a low loss, full-matched 

and isolated component together with a small surface, thanks to the use of S-CPW with 

high quality factor. The measurement of this up-coming circuit should confirm the 

expectation. 

If we keep in mind beam-steering application, efficient feeding circuits for antenna 

arrays can now be achieved and only reflection type phase shifters (RTPS) with high FoM 

have to be performed yet. In the next chapter two topologies of RTPS are provided, one in 

RF in PCB technology and another one at 60 GHz in CMOS. 
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 : New topologies of Reflection Type Phase Chapter IV
Shifter for high figure of merit  

Phase shifters, used to adjust the phase of the wave, are widely used in radar phased 

array systems. They have to be compact, low loss, and low cost to enable consumer 

applications. 

As explained in the first chapter, among the three main types of passive phase 

shifters which are the switched-network approach, the loaded transmission lines (TLs), and 

the reflection type (RTPS), only the last associates continuous and accurate phase shift with 

good matching. Also, it has been shown that reflection type phase shifters reaching 360° of 

phase shift and/or with really small insertion loss variation can be realized in printed circuit 

board technology (PCB). Concerning integrated technology, the literature barely provide 

RTPS with phase shift higher than 200° at 60 GHz, and seems totally void for phase shift of 

360°. The referred devices exhibit high insertion loss leading to poor figures of merit 

(FoM). As already said in chapter I, the FoM is defined by the ratio of the maximal relative 

phase shift over the maximal insertion load. 

 û4ü = ÝaýºÝa3	\Þ3aÐº�Þ	ÄℎaþÞ	þℎºàÐ	'ºb	°)ÝaýºÝa3	ºbþÞ\Ðº4b	34þþ	'=�)  (IV-1) 

In this chapter, three RTPSs with design method are proposed in PCB technology in 

order to reach high FoM. The reflection loads are easy to design, composed of one 

transmission line with varactors, and without extra lumped element. For proof of concept, 

one RTPS was realized to achieve a maximal phase shift of 200° with a maximal FoM, 

while the others were designed to reach 360° of phase shift, but with a lower FoM. Special 

attention is paid to the insertion loss in order to keep it as constant as possible whatever 

phase shift. The background principle is explained, the design procedure is given and 

circuits design and experimental results are described. A very good agreement between 

measurement and simulation results was achieved. 

One RTPS in integrated technology was also designed at 60 GHz. Its reflection 

loads are based on a slow-wave coplanar waveguides (S-CPW) phase shifter with variable 

capacitors. The topology of this new phase shifter which is currently under study in our 

laboratory is explained. As the circuit is in-process, only the simulation results are 

presented. A phase shift of 341° is expected. 

Finally, a new concept of reflection load for RTPS is suggested as a perspective, 

mixing digital and analog control to reach 360° of phase shift, high FoM and compactness. 
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IV.1  Study of the topologies 

IV.1.1 Reflection load with one varactor 

Figure IV.1 shows the schematic of the proposed RTPS, which consists of a 3-dB 

branch-line coupler loaded by two identical networks. The network is composed of a 

transmission line of characteristic impedance 
! and electrical length >!, in series with a 

varactor of capacitance C and a resistance R representing the parasitic resistance of the 

varactor. 
�� is the input impedance of each load. The branch-line coupler presents a port 

impedance 
� at ports 1 and 2 and a port impedance 
� at the loaded ports. The 

relationships between the characteristic impedances of the transmission lines of the branch-

line coupler and its ports impedances were given in the first chapter and are rewritten in 

Figure IV.1. 

 

Figure IV.1: Proposed RTPS with only one varactor for each reflection load 

Without considering the loss of the transmission lines nor R, 
�� can be written as: 

 
�� = ��
! ( 
!� 2NÐab >!
!2N ( Ðab >!  (IV-2) 

Let’s consider first an ideal capacitor, e.g. with an infinite capacitance range [0;+∞[ and 
 = 0 Ω, ideal transmission lines without losses, and 
! in the range [0;+∞[. When the 

minimum value of the capacitor is faced, 2 = 0, the input impedance of the load, obtained 

from (IV-2), is: 

 
��	��� = � �
!Ðab >! (IV-3) 

When the capacitor maximal value is looked at, 2 = (∞, the input impedance of the load 

becomes: 

 
��	��$~ = �
! Ðab >! (IV-4) 
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It is easy to demonstrate from: 

 M =	
�� � 	
�
�� (	
� 	ab=	��! = �ΓL (IV-5) 

already given in chapter I, that the relative phase-shifting is: 

 �X = 2 sarctan ]
��gBjZf ^ � arctan ]
��ghiZf ^t. (IV-6) 

where 
��ghi = 8Ý'
��	��$~) and 
��gBj = 8Ý'
��	���). According to (IV-3), (IV-4) 

and (IV-6) the relative phase shift can be written as: 

 �X = 2 ;arctan� �
!Ðab >!
� �� arctan ]
! Ðab >!
� ^< (IV-7) 

In order to get a phase shift �X = 360° equations (IV.7) have to be checked: 

 arctan� �
!Ðab >!
� � = ±90°		and		 arctan ]
! Ðab >!
� ^ = ∓90° (IV-8) 

leading to: 

 
�
!Ðab >!
� =	±∞				and				 
! Ðab >!
� = ∓∞ (IV-9) 

 The first solution for (IV-9) is 
� = 0 Ω with 
! and Ðab >! having finite values 

different from 0, which means >! different from 0°. The second solution is 
! = (∞ with 
� and Ðab >! having finite values different from 0. As 
� and 
! have a limited value 

fixed by the technology, a relative phase shift of 360° cannot be reached. Once 
� and 
! 

are fixed, when plotting ∆X given by (IV-7) as a function of Ðab >!, it can be shown that ∆X varied between minimum and maximum values. By equalling to 0 the derivative of ∆X, 

the condition Ðab >!� = 1 is obtained. For >! ranging between 0 and 180° the two solutions 

of this condition are >! = 45° and 135°. They correspond either to a maximum or a 

minimum value of ∆X. A study about the sign of the derivative of ∆X showed that >! = 45° 

and 135° correspond to a maximum and a minimum value of relative phase shift in the case 
! / 
�, respectively. It is the opposite when 
! < 
�. 
! / 
� is the most attractive 

condition as the maximal relative phase shift is obtained with a shorter >!, 45° instead of 

135°. 

 The varactor capacitance variation is also limited, and a series parasitic resistance 

should be taken into account. Hence the practical results may differ from the theoretical 

ones previously presented for an ideal circuit. In order to point out the practical limitations, 

Figure IV.2 shows the performances of the RTPS versus 
!, with >! = 45°, C in the range 
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0.45-2.72 pF with 
 = 1 Ω, corresponding to practically available varactors, and with a 

conventional ideal branch-line coupler 
� = 50 Ω, at a working frequency equal to 2 GHz. 

The formulas necessary to calculate the insertion loss and the phase shift of the RTPS 

presented in Figure IV.1, and taking into account R, are given in (B-3), (B-4), (B-6) and 

(B-7) in the Appendix-B. 

 

Figure IV.2: RTPS performances versus 
! with one varactor for each reflection load. >! = 45°, 
C [0.45-2.72] pF, 
 = 1 Ω and 
� = 50 Ω, at 2 GHz. 

For the FoM calculation (IV-1), 0.3 dB of added losses were taken into account in 

order to consider the coupler insertion loss as estimated with ADS. Hence the FoM values 

are very realistic. As expected the phase shift increases with 
! (getting closer to the 

solution 
! = (∞), whilst the maximal insertion loss, and so it is for the insertion loss 

variation, decrease after a maximum reached for 60 Ω. For 
! = 120 Ω the maximal 

insertion loss is quite low, leading to a high FoM of 318 °/dB for a phase shift of 160°. 

Figure IV.3 presents the performances of the RTPS versus >!, with 
! = 120 Ω, for the 

same varactor and 
� than previously, at 2 GHz. For >! between 0 and 360°, two points of 

maximum phase shift are obtained, one for >! = 35° and one for >!	= 215° (e.g. 

35° + 180°), both leading to 168.6° of phase shift. As the capacitance range variation is 

limited, equation (IV-7) determined with C in the range [0;+∞[ is not valid anymore. Hence 

the condition >! = 45° with 
! / 
� leading to the highest phase variation is not strictly 

valid anymore. As a consequence, the optimal >! is 35° instead of 45°. Similarly, the two 

minimum relative phase shifts are reached for >! = 125° and 305° (i.e. 125° + 180°) 

instead of 135° and 315° (i.e. 135° + 180°) as determined previously. Further, the maximal 

values of the insertion loss and relative phase shift are not reached for the same >!. 

Consequently, >! giving the maximal FoMs are slightly shifted as compared to the ones 

giving the maximal phase variation. Finally, the FoM is maximal for >! equal to 45° (same 

point which has been found in Figure IV.2) and 225°, and reaches 318 °/dB for 160° of 

phase shift. 
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Figure IV.3: RTPS performances versus >! with one varactor for each reflection load. 
! = 120 Ω,  
C [0.45-2.72] pF, 
 = 1 Ω and 
� = 50 Ω, at 2 GHz. 

 In [21] it has been shown that by changing the output impedance 
�, it is possible to 

increase the phase shift. Figure IV.4 shows the performances of the phase shifter versus 
�, 

for 
! = 120 Ω and >! = 45°, at 2 GHz. 

 

Figure IV.4: RTPS performances versus 
� with one varactor for each reflection load. 
! = 120 Ω,	>! = 45°,  
C  [0.45-2.72] pF, 
 = 1 Ω, at 2 GHz. 

 When 
� decreases from 120 Ω to about 40 Ω, the phase shift increases faster than the 

insertion loss. Hence a higher FoM is obtained. With 
� below 40 Ω, it is possible to get 

phase shifts higher than 180° with a FoM higher than 300 °/dB. For an optimal 
� = 30 Ω, 

the maximum FoM reaches 345 °/dB with a phase shift equal to 211°. As we can see from 

the theoretical then practical point of views presented in this section, 
�, 
! and >! have to 

be adjusted to reach a compromise between the maximal insertion loss, the insertion loss 

variation and the phase shift. For the chosen varactor the maximal phase shift that can be 

reached is limited to 247°. The purpose of the topologies presented in the next sections is to 

increase the phase shift. 
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IV.1.2 Reflection load with two varactors 

 

Figure IV.5: Proposed reflection load with two varactors 

 The previous topology gives really promising performances in terms of insertion loss, 

insertion loss variation, and FoM, but does not achieve 360° of phase shift needed in some 

applications. In order to get higher phase shift, another varactor was placed at the beginning 

of the load network, between the branch-line coupler output and the transmission line 

(
!,>!), as shown in Figure IV.5. The theoretical input impedance when considering ideal 

circuits, and neglecting R, can be written as: 

 
�� = � �
! ( 
!� 2NÐab >!2
!2N ( Ðab >! �
!�2�N�Ðab>! (IV-10) 

 The structures proposed in [23] and [24] seem quite similar to ours. However, as shown 

in the first chapter, in [23], inductances and resistances were added and the varactors were 

connected in series with the transmission line. In [24], stubs were added between varactors 

and ground. Moreover, in both papers the electrical length of the transmission line was 

fixed to ? 4⁄ .  

 Considering an ideal capacitor, e.g. 
 = 0 Ω with a capacitance range [0;+∞[, and an 

ideal transmission line, e.g. without losses and with 
! in the range [0;+∞[, when the 

capacitor has the minimum value, 2 = 0 pF, the input impedance of the load obtained from 

(IV-10) is: 

 
��	D�� = � �
!Ðab >! (IV-11) 

When the capacitor has the maximal value, 2 = (∞, the input impedance of the load is: 

 
��	D�$~ = 0 (IV-12) 

With the solutions (IV-11) and (IV-12) it seems that the maximal possible phase shift 

according to (IV-6) is 90° with 
! =	(∞ and >! different from 0°. In practice, the 

variation of 8Ý'
��) with C is not monotonous as shown on Figure IV.6 so that the phase 

shift is greater than 360°, when considering an infinite variation of the capacitor. With a 

realistic variation of the capacitor, e.g. a varactor range of 0.45-2.72 pF as considered 

previously, the 360° phase shift cannot be reached, even after an optimization on 
!, >! and 
�. We will focus on that point more precisely by the following. 

R
!, >!   
C 
�� R  

C 
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Figure IV.6. 8Ý'
��) versus C for reflection load with two varactors, 
! = 120 Ω,	>! = 45°, 
 = 0 Ω, at 
2 GHz. 

IV.1.3 Reflection load with three varactors 

In order to get a 360° phase shift without complicating the topology of the load and 

with the same varactor without applying another bias voltage, a varactor was added in 

parallel of the second one, as shown in Figure IV.7. In that way, the value of the shunt 

capacitance is doubled. 

 

Figure IV.7: Proposed reflection load with three varactors 

The input impedance of this load without considering R can be written as: 

 
�� = � �
! ( 
!� 2NÐab >!3
!2N ( Ðab >! �2
!�2�N�Ðab>! (IV-13) 

 

Figure IV.8: 8Ý'
��) versus C for reflection load with three varactors, 
! = 120 Ω,	>! = 45°, 
 = 0 Ω, at 
2 GHz. 
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As for the load with two varactors, the variation of 
�� with C is not monotonous, in 

Figure IV.8. Moreover, for the particular values of 
!, >! and the variation of C chosen 

here, the extreme values of C lead to 
��	D��.� 	≈ 
��	D��.�� ≈ -18. Figure IV.9 shows the 

relative phase shift between the two extreme values of C with two and three varactors.  

 

Figure IV.9: Relative phase shift of the RTPS versus 
� with the loads of two or three varactors for each 
reflection load. 
! = 120 Ω,	>! = 45°, Cmin = 0.45 pF, Cmax = 2.72 pF, 
 = 0 Ω. 

It is clear that the addition of a third varactor leads to a higher phase shift. The phase 

shift obtained with the reflection load with three varactors is equal to 360°, whatever the 

value of 
�. This is due to 
��	gBj = 8Ý'
��	D��.� ) 	≈ 
��	ghi = 8Ý'
��	D��.��), 
introduced in (IV-6). As we will see further, with other values of 
!, >! it is possible to get 

phase shifts higher than 360°. 

Figure IV.10 gives the RTPS return loss versus 
� for the reflection loads with one 

and three varactors. The worst return loss in a 10 % bandwidth was considered. The lower 
� leads to the worst return loss. With 
� = 20 Ω, the return loss is 12.2 dB for the two 

kinds of reflection loads, whereas with 
� = 120 Ω it is 16.7 dB for the reflection load with 

one varactor and 17.4 dB with three varactors, respectively. This plot proves that the three 

varactors type reflection load allows the realization of a 360° phase shifter without 

scarifying the return loss, e.g. without any trade-off between the FoM and the return loss. 

 

Figure IV.10: Worst return loss versus 
� with loads carried out with one and three varactors for each 
reflection load. 
! = 120 Ω,	>! = 45°, C [0.45-2.72] pF, 
 = 1 Ω, at 2 GHz. 
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IV.2  Design procedure 

 The choice of the set of value >!, 
! and 
� results from a compromise between the 

maximal insertion loss, the insertion loss variation and the phase shift. An algorithm was 

used in order to select >!, 
! and 
� for each reflection load proposed here. It has been 

considered that the return loss should be always better than 10 dB in a 10 % bandwidth 

whatever the values of the parameters are. The algorithm is given in Figure IV.11. 

First of all, a varactor has to be chosen which gives 2ghi, 2gBj and R. The limits of 

the characteristic impedance 
!, e.g. 
!ghi and 
!gBj, and the hybrid output impedance 
�, e.g. 
�ghi and 
�gBj, are fixed by the technology. The insertion loss cannot be 

calculated only at the two extreme values of C because its variation may not be 

monotonous, so it has to be calculated for intermediate values. 2¤§�� was used as 

incremental value between 2ghi and 2gBj. Typically 2¤§�� = 0.01 pF is a good choice, with 

a good comprise between calculation time and accuracy. At the beginning, the maximal 

insertion loss 8{gBj, the maximal insertion loss variation �8{gBj, the minimum phase shift �Xghi and the working frequency freq have to be fixed. The maximal phase shift is 

calculated with equations (B-3), (B-4), (B-6) and (B-7) for a load with one varactor and 

with equations (B-3), (B-5), (B-6), (B-7) for two or three varactors, respectively, given in 

Appendix-B. If the calculated phase shift is lower than the targeted one, one of the three 

parameters >!, 
! or 
� is incremented, otherwise the insertion loss is calculated for the 

intermediate values of C to deduce 8{gBj and �8{gBj. If they are lower than the fixed 

criterions the solution is saved, else >!, 
! or 
� is incremented. If after all the 

combinations of >!, 
! and 
� any solution is found, this means that the goals are too 

ambitious and less constraints have to be applied in order to find a solution. At the end, the 

designer can select a solution among all the possible ones. 
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Figure IV.11: Algorithm for finding solutions 

IV.3  Circuits design and experimental results in PCB 

Three RTPS were fabricated to illustrate and validate the topologies and design 

methodology described in the last section, one with the reflection load presented in Figure 

IV.1, a second one with the reflection load presented in Figure IV.5 and cascaded with 

another phase shifter in order to reach 360° and finally a third one with the reflection load 

presented in Figure IV.7. In the three cases, the working frequency is 2 GHz and a SMD 

silicon hyperabrupt-junction varactor diode was used with 2ghi = 0.45 pF (20 V), 2gBj = 2.72 pF (0 V) and 
 = 1 Ω. The technology limits the characteristic impedances of 

the microstrip transmission lines between 20 and 130 Ω. The circuits were fabricated on 

Rogers RO4003 substrate, with relative effective permittivity 3.38 and thickness 813 µm. 

All the measurements were carried out with a TRL calibration and the bias voltage was 

applied directly from the VNA through SMA connectors soldered on the board. 
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IV.3.1 Reflection load with one varactor 

The optimisation procedure gives a maximal reachable phase shift of 270° with 
! = 130 Ω, >! = 35° and 
� = 20 Ω. R leads to an amount of 0.59 dB of insertion loss and 

0.53 dB of insertion loss variation. 0.3 dB of insertion loss were added in order to take into 

account the insertion loss of the branch-line coupler, leading to a total insertion loss equal 

to 0.89 dB. Hence the FoM of the RTPS was estimated to 303 °/dB. For a minimum 180° 

phase shift, a higher FoM with lower insertion loss could be reached. For example, an 

RTPS with 
! = 116 Ω, >! = 45° and 
� = 30 Ω achieves 211° of phase shift and gives the 

highest estimated FoM for a phase shift higher than 180°, with 346 °/dB. R adds 0.31 dB of 

insertion loss and only 0.2 dB of insertion loss variation.  

 

Figure IV.12: Simulated performances versus frequency, (a) insertion loss, (b) return loss, and (c) phase shift. 
Each reflection load is with one varactor, 
! = 116 Ω, >! = 45° and 
� = 30 Ω. 

Figure IV.12 shows the electrical simulation (with ADS) of this last RTPS, taking 

into account the losses due to the branch-line coupler. Simulations were carried out for the 

whole range of the varactors bias voltage, with a step of 2 V. The maximal insertion loss is 

0.65 dB at 2 GHz, as shown in Figure IV.12(a), which is close to the estimated insertion 

loss in the FoM calculus (0.31 dB + 0.3 dB due to the branch-line), and the 0.25 dB of 

insertion loss variation also fits with the 0.2 dB theoretically calculated. The maximal 

1,90 1,95 2,00 2,05 2,10
-1,5

-1,0

-0,5

0,0

 Vc = 0V       Vc = 6V       Vc = 12V      Vc = 18V
 Vc = 2V       Vc = 8V       Vc = 14V      Vc = 20V
 Vc = 4V       Vc = 10V     Vc = 16V

 Frequency (GHz)

 

|S
21

| (
dB

)

1,90 1,95 2,00 2,05 2,10
-45

-40

-35

-30

-25

-20

-15

-10

-5

 Vc = 0V       Vc = 6V       Vc = 12V      Vc = 18V
 Vc = 2V       Vc = 8V       Vc = 14V      Vc = 20V
 Vc = 4V       Vc = 10V     Vc = 16V

 Frequency (GHz)

 

|S
11

| (
dB

)

1,90 1,95 2,00 2,05 2,10
0

100

200

300

 Vc = 0V       Vc = 6V       Vc = 12V      Vc = 18V
 Vc = 2V       Vc = 8V       Vc = 14V      Vc = 20V
 Vc = 4V       Vc = 10V     Vc = 16V

 Frequency (GHz)

 

P
ha

se
 s

hi
ft 

(d
eg

)

(a) (b) 

(c) 



Chapter IV  
 

114 
 

insertion loss is reached for a bias voltage of 6 V. As expected, the return loss is better than 

10 dB over a 10 % bandwidth, as shown in Figure IV.12(b). It is better than 16 dB at 

2 GHz. The reached phase shift is equal to 203°, as shown in Figure IV.12(c), and was 

reached for the maximum bias voltage of 20 V, as expected. 

Figure IV.13(a) shows the viewgraph of the fabricated RTPS and Figure IV.13(b), 

(c) and (d) its measurement results. A very good agreement with the simulation results was 

obtained. As expected the RTPS is very low loss with 0.63 dB of maximal insertion loss 

and 0.18 dB of insertion loss variation. This means an average insertion loss of 0.54 dB 

with ±0.09 dB of variation for 201° of phase shift at 2 GHz. The FoM of this RTPS is 

318 °/dB. The return loss reaches 22 dB at the working frequency and remains better than 

10 dB over a 10 % bandwidth. 

 

Figure IV.13: (a) Realized circuit. Measured performances versus frequency, (b) insertion loss, (c) return 
loss, and (d) phase shift. Each reflection load is with one varactor, 
! = 116 Ω, >! = 45° and 
� = 30 Ω. 

IV.3.2 RTPS with reflection load with two varactors cascaded with a Π-
type phase shifter 

The simplest method to get 360° of phase shift with the RTPS loaded with reflection 

loads with two varactors consists in cascading another phase shifter at the output port of the 

RTPS as shown in Figure IV.14(a). A simple Π-type phase shifter was chosen, as shown in 
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Figure IV.14(b). Both phase shifters, RTPS and Π-type, need to be optimized to the lowest 

insertion loss because they will be added in the global circuit. The Π-type phase shifter has 

to be built with the same varactor as for the RTPS in order not to complicate the bias 

voltage circuit and to have only one voltage control. 

 
Figure IV.14: (a) RTPS cascaded with phase shifter. (b) Π-type phase shifter. 

IV.3.2.1 Choice of the RTPS 

The procedure presented in Figure IV.11 with the loads given in Figure IV.5, with 

the capacitor range 0.45-2.72 pF, R = 1 Ω and characteristic impedances ranging between 

20 and 130 Ω, proposes a RTPS with 0.66 dB of insertion loss due to R and 0.6 dB of 

insertion loss variation, with 
! = 130 Ω, >! = 35° and 
� = 20 Ω, at 2 GHz. The phase 

variation of such component is 335°. Figure IV.15 shows the electrical simulations (ADS) 

of this RTPS. The maximal insertion loss is 1.18 dB with 0.88 dB of insertion loss variation 

for 338° of phase shift at 2 GHz, leading to an expected FoM of 286 °/dB. Comparing to 

the theoretical calculation with the loss due to R alone, 0.52 dB of insertion loss are added 

by taking into account the extra loss due to the TLs and junctions of the branch-line. The 

insertion loss variation is increased as well. The simulated (ADS) return loss in a 10 % 

bandwidth is better than 10 dB.  
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Figure IV.15: Simulated performances versus frequency. (a) Insertion loss, (b) return loss, (c) phase shift. 
Each reflection load is with two varactors. 
! = 130 Ω, >! = 35° and 
� = 20 Ω. 

IV.3.2.2 Optimization of the Π-type phase shifter 

The characteristic impedance and the electrical length of the TL in the Π-type phase 

shifter, named (
�,>�) in Figure IV.14(b), has to be optimized to add minimal insertion 

loss, not to degrade the return loss and to complete the missing phase shift in order to reach 

360°. Figure IV.16 shows the performances of the Π-type phase shifter optimized with 
� =	130 Ω and >� =	20° at 2 GHz and the same varactors as used previously. The phase 

shift is 82°. With the 338° of phase shift simulated with the previous RTPS, the added Π-

type phase shifter will easily allow the designer to get 360°. The maximal insertion loss is 

0.73 dB with 0.66 dB of insertion loss variation, a return loss of 17 dB in the worst case at 

2 GHz, and 12 dB in the 10 % bandwidth. About 60 % of the phase variation is achieved 

between 0 and 2 V (among 20 V) which means a strong non-linearity. For this variation the 

level of insertion loss and insertion loss variation is high. 
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Figure IV.16: Simulated Π-type phase shifter performances versus frequency. (a) Insertion loss, (b) return 
loss, (c) phase shift. 
� = 130 Ω and >� = 20°. 

IV.3.2.3 Simulation of the RTPS with the Π-type phase shifter 

The simulation results of the global phase shifter (RTPS cascaded with the Π-type 

phase shifter) are shown in Figure IV.17. The maximal phase shift is 420° for a bias voltage 

between 0 and 20 V with a maximal insertion loss of 1.65 dB and 1.25 dB of insertion loss 

variation, leading to a FoM of 254 °/dB. As no more than a full cycle is needed, for a bias 

ranging between 1 and 20 V, about 360° of phase shift is obtained with 1.3 dB of maximal 

insertion loss leading to a better FoM of 277 °/dB. The insertion loss variation is reduced to 

0.9 dB. Also, starting the bias voltage from 1 V instead of 0 V improves the worst matching 

over the 10 % bandwidth, from 6 dB to 9 dB. 
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Figure IV.17: Simulated RTPS with Π-type phase shifter performances versus frequency. (a) Insertion loss, 
(b) return loss, (c) phase shift. 
! = 130 Ω, >! = 35° and 
� = 20 Ω, 
� = 130 Ω and >� = 20°. 

IV.3.2.4 Measurement results 

The measured circuit is pictured in Figure IV.18(a) and its performances are given 

in Figure IV.18(b), (c) and (d). A maximal phase shift of 393° was obtained for a bias 

voltage ranging between 1.5 V and 20 V, as shown in Figure IV.18(d), with 1.97 dB of 

maximal insertion loss and 1.34 dB of insertion loss variation at 2 GHz, as shown in Figure 

IV.18(b). Below 1.5 V the insertion loss strongly increases. Between 1.8 V and 20 V, 362° 

of phase shift is achieved for 1.7 dB of maximal insertion loss and 1.12 dB of insertion loss 

variation, which means an average value of 1.14 ±0.56 dB and a FoM of 213 °/dB at 

2 GHz. The worst matching at the working frequency is 11.1 dB. It is only 6 dB in a 10 % 

bandwidth, as shown in Figure IV.18(c). 

The technique consisting in cascading another phase shifter to the RTPS allows the 

phase shift to reach more than 360° leading to a FoM much higher than the state-of-the-art. 

However, the Π-type phase shifter deteriorates the return loss of the global phase shifter 

which was an advantage of the RTPS as compared to the other phase shifters topologies. 
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Figure IV.18: (a) Realized circuit. Measured performances versus frequency, (b) insertion loss, (c) return 
loss, and (d) phase shift. 
! = 130 Ω, >! = 35° and 
� = 20 Ω, 
� = 130 Ω and >� = 20°. 

IV.3.3 Reflection load with three varactors 

The purpose was to achieve a phase shift higher than 360° with the topology 

described in Figure IV.7. The design procedure leaded to a phase shift of 373° for 0.87 dB 

of insertion loss and 0.8 dB of insertion loss variation due to the resistance R, according to 

the theoretical formulas given in the Appendix-B, with 
! = 120 Ω, >! = 40° and 
� = 30 Ω. Figure IV.19 shows the simulation results. The maximal insertion loss and 

insertion loss variation are 1.42 dB and 1.1 dB, respectively, as shown in Figure IV.19(a). 

The return loss is better than 11 dB over a 10 % bandwidth, see in Figure IV.19(b). The 

phase shift reaches 372°, Figure IV.19(c).  
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Figure IV.19: Simulated performances versus frequency, (a) insertion loss, (b) return loss, and (c) phase shift. 
6 varactors. 
! = 120 Ω, >! = 40° and 
� = 30 Ω. 

 Figure IV.20(a) shows the viewgraph of the fabricated RTPS and Figure IV.20(b), 

(c) and (d) its measurement results. Here again a very good agreement between 

measurement and simulation results was obtained. The insertion loss and insertion loss 

variation are 1.56 dB and 1.16 dB, respectively, at 2 GHz, as shown in Figure IV.20(b). 

This means an average insertion loss of 0.98 dB with ±0.58 dB of variation for 385° of 

phase shift, as shown in Figure IV.20(d). The FoM of this device is 246°/dB. The return 

loss is 13.4 dB at the working frequency and better than 10.9 dB over a whole 10 % 

bandwidth, as shown in Figure IV.20(c). It is worth mentioning that the bias voltage varied 

from 0.5 to 20 V. It was not necessary to use a bias voltage lower than 0.5 V because a 

phase shift greater than 360° was reached anyway. 
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Figure IV.20: (a) Realized circuit. Measured performances versus frequency, (a) insertion loss, (b) return 
loss, and (c) phase shift. Each reflection load is with three varactors, 
! = 120 Ω, >! = 40° and 
� = 30 Ω. 

IV.3.4 Results synthesis  

Total nb. 
of 

varactors 
/Topo. of 
the load 

Average 
insertion loss 

(dB) 

Insertion loss 
variation 

(dB) 

Phase shift  
(°) 

Return loss 
over a 10 % 

BW (dB) 

FoM 
(°/dB) 

Simu. 
(ADS) 

Measu- 
ment 

Simu. 
(ADS) 

Measu- 
ment 

Simu. 
(ADS) 

Measu- 
ment 

Simu. 
(ADS) 

Measu- 
ment 

Simu. 
(ADS) 

Measu- 
ment 

2/Figure 
IV.1 

0.525 0.54 ±0.125 ±0.09 203 201 10 10 312 318 

6/Figure 
IV.5+Π-
type PS 

0.85 1.14 ±0.45 ±0.56 360 # 362 ## 9 6 277 213 

6/Figure 
IV.7 

0.87 0.98 ±0.55 ±0.58 372 385 * 11 10.9 262 246 

#from 1V to 20V, ##from 1.8V to 20V, *from 0.5V to 20V 

Table IV.1: Sum up of the measured performances of the three achieved RTPS 

Table IV.1 summarizes the simulated and measured results of the achieved RTPS at 

2 GHz. Both fit really well for all the phase shifter. The simulated results are obtained 

thanks to circuit analysis on the basis of the topology characteristics determined by the 
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theoretical equations given in the Appendix-B and the design procedure explained 

previously. 

The proposed RTPSs exhibit very high FoM. However, the second solution, 

consisting in cascading a RTPS with a Π-type phase shifter, leads to a lower FoM with 

higher insertion loss and bad return loss as compared to the third solution which uses 6 

varactors too. Consequently, the last solution is better when a 360° phase shift is needed. 

For a phase shift lower than 200°, the first solution is more suitable, first because the FoM 

is much greater and also because only two varactors are needed which means a lower cost. 

IV.4  RTPS in integrated technology 

The insertion loss of the RTPS depends on the parasitic resistance of the varactor 

and on the loss of the circuit itself (transmission lines, junctions…). In [89], two RTPS 

were achieved at 2.45 GHz in a 0.18 µm CMOS technology. For the first one, with a series-

resonating load, it had been shown that 65 % of the 5.6 dB of insertion loss were due to the 

varactor load which had a minimal quality factor of 50. For the second RTPS, with a series-

resonating load in Π-shape as shown in the first chapter, 86 % of the 11.9 dB of insertion 

loss were due to the varactors. The two varactors used in the load had minimal quality 

factors of 33 and 8. No similar analysis has been found at millimetre-wave frequency, but 

the high contribution of the varactor for the insertion loss should be even more important 

because of lower varactors quality factors at 60 GHz. In [90] varactors were used with a 

minimal quality factor of 15 at 60 GHz thanks to the use of differential poly/n-well MOS 

varactors having a better quality factor as compared to a single-ended varactor. However, 

even with such varactors the insertion loss is very high, 12.5 dB of maximal insertion loss 

for a 156° phase shift (as shown in the first chapter). 

Here the purpose is to substitute the conventional reflection loads with varactors, by 

loaded line phase shifters carried out with S-CPW. In this case, it is possible to associate 

the performances of the loaded line phase shifter with the good matching of the RTPS. 

IV.4.1 Topology of the reflection load based on a distributed loaded line 
phase shifter 

The loaded line phase shifter was built with a S-CPW in which the capacitances 

between the ground and shielding strips can be periodically modified, as shown in Figure 

IV.21(a). The total physical length of the S-CPW was divided in eight similar segments 

where each segment is composed of ten groups of eight strips as shown in Figure IV.21(b). 

There is one variable capacitance per group of strips. 
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Figure IV.21: (a) Phase shifter based on capacitively switched S-CPW used as a reflection load.(b) Working 
principle. 

All groups of strips in the segments are connected between them according to their 

position, e.g. all the groups number one are connected together, all the groups number two 

are connected together too and so on… Each capacitance has two states, one with a low 

value and one with a high value. This new type of loaded line phase shifter is currently 

under study and will lead to a patent demand, so for confidentiality reasons, no more 

information about how this two states capacitor is realized in practice can be given. The 

groups of finger are driven by a thermometer code, starting from zero to ten, leading to 

eleven configurations. Thanks to the variation of these capacitances, it is possible to modify 

the global capacitance of the transmission line, and hence to modify its relative effective 

permittivity �����. As its physical length is fixed, when ����� increases, the phase of the 

S-CPW increases as well. The average characteristic impedance of this loaded line phase 

shifter is 22.5 Ω. This loaded line phase shifter was simulated at 60 GHz in the 55 nm 

BiCMOS technology by STMicroelectronics. Its expected performances for the eight 

suitable configurations giving the best linearity, among eleven possible configurations, are 

shown in Figure IV.22. 

 

Figure IV.22: Simulated performances of the phase shifter for eight configurations at 60 GHz with a 22.5 Ω 
system characteristic impedance. 
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By considering a 22.5 Ω system characteristic impedance, the maximal phase shift is 186° 

for 2.74 dB of maximal insertion loss and 1.5 dB of insertion loss variation. The return loss 

is better than 14.3 dB at 60 GHz. 

IV.4.2 Layout and simulation of the RTPS 

The loaded line phase shifter based on S-CPW is terminated by a short circuit to 

serve as the loading network of the RTPS. The output ports impedance 
� of the branch-

line coupler was tuned to get the best compromise between the insertion loss, the insertion 

loss variation and the phase shift. The best choice was 
� = 27 Ω. The 
� ports impedance 

was kept equal to 50 Ω. For these values of port impedance, the characteristic impedance of 

the two horizontal TLs and the vertical one between the loaded ports is 26 Ω. For the 

vertical TL between the ports 
�, the characteristic impedance is 50 Ω. The branch-line 

coupler was designed with S-CPW except the T-junctions which were designed with 

microstrip lines. The dimensions and simulated performances of these TLs have been given 

in the first chapter. 

The layout of the RTPS is shown in Figure IV.23. The relative effective permittivity 

of the TLs varies according to the characteristic impedance. Consequently, the physical and 

electrical lengths of the S-CPW and microstrip TLs have to be adjusted in order to get a 

square shape for the branch-line coupler. The DC pads allow the variable capacitors to be 

controlled with the digital code. 

 

Figure IV.23: Layout of the RTPS in the BiCMOS 55 nm technology.  

The simulation results, always for eight configurations at 60 GHz, are given in 

Figure IV.24. The maximal reachable phase shift is 341° with 6.44 dB of maximal insertion 

loss, 2.8 dB of insertion loss variation and a return loss better than 17.8 dB. This means an 
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average insertion loss of 5.04 dB with ±1.4 dB of insertion loss variation. The expected 

FoM is 53 °/dB. With one more segment in the S-CPW phase-shifter, the RTPS could reach 

360° of phase shift. The circuit covers an area equal to 0.68 mm2 without taking into 

account the DC pads. 

 

Figure IV.24: Simulated performances of the RTPS for eight configurations of the S-CPW phase shifter at 
60 GHz. 

IV.4.3 RTPS, loaded line phase shifter alone and state-of-the-art 
comparison 

Another loaded line phase shifter based on S-CPW was designed and simulated with 

a phase shift around 360°, not to be used as a reflection load but to be compared with the 

proposed RTPS. The comparison of the simulated results with the state-of-the-art presented 

in Chapter I is given in Table IV.2. The loaded line phase shifter alone exhibits lower 

average insertion loss and insertion loss variation for a phase shift higher than 360°, 

consequently the FoM is higher. However, here again its structure obliges the ports 

impedance to be 22.5 Ω, so if 50 Ω ports connexions are required, matching networks have 

to be added, and so the area which is currently three times lower, and the insertion loss, will 

increase. Moreover, as expected, the return loss achieved by the loaded line phase shifter is 

not as good as the one achieved by the RTPS. The FoM of the proposed RTPS is more than 

twice higher as compared to the one of the other reflection type topologies. 
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Table IV.2: Comparison of the simulated performance of the RTPS with the S-CPW phase shifter and the 
state-of-the-art presented in Chapter I. 

IV.5  Perspectives 

Another type of reflection load is presented here and is currently under study for RF 

applications in the 1 GHz-10 GHz frequency range. Its schematic is given in Figure IV.25. 

It consists in basic LC cells, where C is a varactor and L a TL short enough to be considered 

as a lumped element at the working frequency. In Figure IV.25, two cells are drawn but the 

optimum number has to be fixed by an optimisation procedure. The LC cells are connected 

with two PIN diodes (PIN1 and PIN2) in parallel. The diodes have complementary voltage 

control, when PIN1 is ON, PIN2 is OFF, and vice versa. PIN1 is ended by a short-circuit 

and PIN2 by a load Z, which is consider so far as an infinite impedance.  

 

Figure IV.25: New proposed topology of reflection load. 

Ref./Tech.
Freq.
(GHz)

Architecture
Phase 
shift
(°)

Average 
insertion

loss
(dB)

Insertion 
loss

variation
(dB)

Return
loss 
(dB)

Return loss 
over a 

10 % BW
(dB)

Area

(mm2)
FoM
(°/dB)

[65]/130nm 
SiGe

60
RT Varactor 

MOS
180 5.85 ±1.65 - - 0.18 24

[66]/quartz 
substrate

60 RT MEMS 135 4.25 ±1.25 -14 -13 3.15 24.5

[67]/quartz 
substrate

60 SL MEMS 269.2 2.5 ±0.5 -13 -12 4 89.7

[68]/90nm 
CMOS

60
SL without 
small-size 
capacitor

360 12.5 ±2 <-10 <-10 0.28 24.8

[69]/quartz 
substrate

65
CPW Loaded 

MEMs
337 2.8 ±0.8 -10 -10 9.45 93.6

[70]/65nm 
CMOS

60
Differential 
TL loaded 

MOS 
156 9.25 ±3.25 -13 -11 0.2 12.5

RTPS of this 
work

60
RT with 

loaded line 
phase shifter

341 5.04 ±1.4 17.8 - 0.683 53

S-CPW phase 
shifter

60
Loaded line 

with a 22.5 Ω 
system

370 4.04 ±1.27 10.6 - 0.234 70
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The purpose of the PIN diodes is to switch the cells from either an open or a short 

circuit. This leads to a great difference of phase shift whereas the varactors allow a 

continuous and accurate phase shift variation. A first electrical simulation (not presented 

here) has shown that the two available relative phase shifts obtained with C, when the short 

and open circuits are successively switched, are not continuous: a gap in the phase shift 

appears between the two configurations. In the case where PIN1 is ON and PIN2 is OFF, 

the reflection load is short-circuited so 
�� has the form: 

 
�� = �
DÐab'>) (IV-14) 

whereas when PIN2 is ON and PIN1 is OFF, 
�� has the form: 

 
�� = ��
DÐab'>) (IV-15) 

with 
D and > the parameters of the equivalent TL of the reflection load, without 

considering loss. It is obvious that the value 
�� is really different between these two cases. 

Hence a gap appears in the phase shift. To get closer values of 
��, Z should have a pure 

imaginary finite value. Its value has to be optimized. This load can be achieved by a 

lumped or distributed element. With finely optimized LC cells and Z, 360° of phase shift 

with high FoM should be achieved. 

The mix between digital control for high phase shift variation and analog control for 

accuracy makes this reflection load convenient in both PCB and integrated technology. For 

the latter, the varactors should be replaced by MEMS and PIN diodes built with transistors. 

For PCB technology, microstrip TLs should be used for LC cells instead of coplanar type 

usually used for loaded TLs. Indeed, really short TLs are expected, so with microstrip type 

TLs the varactors can be alternatively placed around the strip without touching each other. 

The varactors would be then connected to the ground through via holes. 

IV.6  Conclusion 

In all the topologies of RTPS, referenced in chapter I and using transmission lines 

with different manners, the authors fixed their electrical length to ? 4⁄ . In this chapter, it 

has been shown that this choice was not optimal, and for the devices optimised in a PCB 

technology a maximum of 45° of electrical length was used. In that case, a single 

transmission line in series with a varactor or between two or three varactors in parallel can 

lead to very high performances, as long as all the design parameters are optimized 

simultaneously.  

A procedure was given in order to optimize the RTPS according to the minimal 

targeted phase shift, the maximal insertion loss and the insertion loss variation, depending 

on the chosen varactor and fabrication technology limits, and for a given return loss over a 

given bandwidth. 
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Concerning PCB technology, the first RTPS, with only one varactor for each 

reflection load, achieved a really high FoM of 318 °/dB for a maximal phase shift of 200° at 

2 GHz. The second RTPS, with two varactors for each reflection load was optimized by 

simulation in order to get high FoM and phase shift close to 360°. However, it was not 

possible to reach 360° with this topology of reflection load with the chosen varactor. 

Hence, in order to get 360° of phase shift, a Π-type phase shifter was cascaded at the output 

port of the RTPS. The 213 °/dB of measured FoM for 362° of phase shift are really good 

but the return loss was sacrificed down to only 6 dB over a 10 % of bandwidth. Not to 

deteriorate the return loss and to keep the advantage of the RTPS comparing to other phase 

shifters topologies, a third RTPS with three varactors for each reflection load was achieved. 

It exhibited a phase shift higher than 360°, and a really high FoM of 246 °/dB was obtained. 

For the first and third RTPS the return loss over a 10 % bandwidth was better than 10 dB. 

The measured maximal phase shift, insertion loss and insertion loss variation showed very 

good agreement with the theoretical calculation prediction and electrical simulations, which 

demonstrates the efficiency of the proposed design procedure. 

In silicon based integrated technology, a new type of phase shifter, based on S-CPW 

with variable capacitances between the grounds and floating strips, was used as a reflection 

load of a RTPS. Its purpose was to substitute for the varactors which have really low 

quality factor in integrated circuits, leading to a high level of insertion loss. The branch-line 

coupler was designed with S-CPWs in the 55 nm BiCMOS technology, with an impedance 

of 27 Ω at the loaded ports. The simulated phase shift of the RTPS is 341° for a FoM 

achieving 53 °/dB . For the S-CPW loaded line phase shifter alone, the simulated 

performances are better, with 370° of phase shift and a FoM of 70 °/dB. However, the 

major drawback of the latter is its structure which necessitates a system characteristic 

impedance of 22.5 Ω, far from the commonly used 50 Ω. 

Finally a new concept of reflection load using digital and analog control was 

proposed in order to target a compact and accurate component, with high FoM for 360° of 

phase shift. This reflection load should be achievable in PCB technology as well as in 

integrated circuit. 

 



Conclusion  

129 
 

Conclusion 

Slow-wave coplanar waveguides were applied on several passive components to 

show their interest at millimetre-waves. Two baluns at the working frequency of 60 GHz, 

one with isolation based on a rat-race topology, and one without isolation based on a 

modified Wilkinson power divider, and a phase inverter alone, were realized and measured 

in a 65 nm CMOS technology. The measurement of the phase inverter proved that it is very 

large band. Moreover, it strongly reduces the area of the devices in which it takes place. 

However, concerning its simulation, more accuracy is needed for better prediction of the 

device performances. The areas of the rat-race and the modified Wilkinson power divider 

are 0.085 mm2 and 0.1 mm2, respectively. Without RF probes connexion constraints, the 

area of the latter can be at least 25 % smaller. Both components showed a shift of the 

working frequency that could be easily adjustable, but in their working bandwidth the phase 

imbalance was ±0.5° in the worst case, which is excellent in comparison to the state-of-the 

art. Then, a branch-line coupler and an in phase power divider without isolation were 

simulated at the working frequency of 60 GHz in a 28 nm CMOS technology. The 

simulation results were carried out with equivalent transmission lines characterized with the 

parameters 
D, ����� and � of the simulated S-CPWs. Really good performances are 

expected for these compact devices. 

Next, a new topology of in phase and isolated power divider was presented, leading 

to more flexibility and compactness. The input was loaded by a stub, and extra transmission 

lines for connecting the isolation resistance to the output ports were added. This component 

is perfectly suited to millimetre-wave frequencies. Two power dividers with different 

characteristics were realized in a PCB technology at 2.45 GHz as a proof-of-concept. They 

demonstrated the high level of flexibility and miniaturization. The simulation and 

measurement results are in very good accordance, showing the efficiency of the design 

method. Two 1:4 antenna arrays feeding networks were achieved at 2.45 and 5.8 GHz, 

respectively, in order to prove that thanks to the flexibility, the area of these feeding 

networks could be minimized. To confirm the efficiency of this new kind of power dividers 

in silicon technology, a component was designed at the working frequency of 60 GHz in a 

55 nm BiCMOS technology with S-CPWs. It is currently being manufactured. The 

simulations results showed a low loss, full-matched and isolated component corresponding 

to the state-of-the-art. 

Finally, two new topologies of reflection type phase shifters (RTPS) were presented, 

one for the RF band and one for the millimetre-wave one. As far as the RF band is 

concerned, the measurement results of a first version with only one varactor per reflection 

load exhibited a figure-of-merit of 318 °/dB for a maximum phase shift of 200°, which is 

much higher than the state-of-the-art. The insertion loss variation was only ±0.09 dB. In 
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another version with three varactors per reflection load, the measurement results showed a 

phase shift reaching more than 360° with a figure-of-merit of 246 °/dB, still much higher 

than the state-of-the-art. The insertion loss variation for this RTPS was ±0.58 dB. For the 

two versions of RTPS the return loss was better than 10 dB over a 10 % bandwidth. The 

RTPS topology in the millimetre-wave band was based on a slow-wave coplanar 

waveguide loaded line phase shifter used as a reflection load. The design of this phase 

shifter was achieved thanks to the development of a new switched capacitor showing 

improved quality factor as compared with the varactors available in the design kit. 

Simulations, carried out in the 55 nm BiCMOS technology, demonstrated that 341° of 

phase shift could be reached with higher figure-of-merit than the state-of-the-art. The 

expected average insertion loss is 5.04 dB with ±1.4 dB of insertion loss variation. The 

component is currently being manufactured. 

Several short-term prospects can be drawn. The measurement results of the power 

divider and phase shifter up-coming in the 55 nm BiCMOS technology at the working 

frequency of 60 GHz should confirm the good expected performances. With a longer phase 

shifter in the reflection load of the RTPS, it would be possible to reach 360° of phase shift. 

Thanks to the new flexible power divider at 2.45 GHz and the new RTPS topology leading 

to a great figure-of-merit in RF, it will be also possible to build a beam-steering system for 

Wifi applications, at 2.45 GHz. Topologies are easily transferable to 5.8 GHz. Also, the 

substitution of the branch-line coupler by coupled lines in the RTPS is currently under 

study in both PCB and silicon technology, in order to increase the bandwidth and to reduce 

the area of the devices. Moreover, a novel type of reflection load mixing analog and digital 

phase shift control is also under development to further reduce the surface. 

Mid-term prospects will concern the development of a complete beam-steering 

system by using the proposed devices in the millimetre-wave band. A hybrid integration of 

the antenna should be studied in order to get efficient and compact systems. A power 

balance approach will tell if power amplifier and low noise amplifiers should be added in 

the millimetre-wave front-end, after the transceiver. Differential phase shifters, which could 

be connected thanks to the developed baluns, could also be interesting in order to address 

the feeding of differential antenna arrays.  

Finally, demonstrations should be now carried out at frequencies higher than 

60 GHz in order to explore the potentialities of the 55 nm BiCMOS technology to address 

millimetre-wave imaging systems above 100 GHz. 
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Appendix-A 

This appendix aims at demonstrating the formulas (III-31) to (III-34) of the 

S-parameters. According to the Figure III.6 we can write K� as: 

 K� = K�_� ( K�_¦ = �!!_�	 ∙ a�_�	 ( �!�_�	 ∙ a�_�	 ( �!!_¦	 ∙ a�_¦	 ( �!�_¦		 ∙ a�_¦		 (A-1) 

From (III-24), it is easy to deduce: 

 a�_�	 = a�	 ( a 	2 	, a�_�	 = a�	 ( a*	2 	 , a�_¦	 = a�	 � a 	2 and	a�_¦	 = a�	 � a*	2  (A-2) 

Because of the shunt at the port 1: 

 �!�_¦	 = 0 and �!!_¦	 = �1 (A-3) 

So with (A-2) and (A-3), (A-1) can be rewritten as: 

 K� = �!!_�	 ∙ ]a�	 ( a 	2 ^ ( �!�_�	 ∙ ]a�	 ( a*	2 ^ � Ta�	 � a 	2 U (A-4) 

and then as: 

 K� = �!!_�	 � 12 ∙ a�	 ( �!!_�	 ( 12 ∙ a 	 ( �!�_�	2 ∙ a�	 ( �!�_�	2 ∙ a*	 (A-5) 

In the same way, K  can be expressed by: 

 K = K _�	 ( K _¦	 = �!!_�	 ∙ a _�	 ( �!�_�	 ∙ a*_�	 ( �!!_¦	 ∙ a _¦	 ( �!�_¦		 ∙ a*_¦		 (A-6) 

It can be deduced from Figure III.6 that: 

 a*_¦	 = �a�_¦	and	a _¦	 = �a�_¦	 (A-7) 

and that:  

 a�_�	 = a!_�	√2 = a _�	 (A-8) 

So that we can rewrite (A-6) as 

 

K = �!!_�	 ∙ a�_�	 ( �!�_�	 ∙ a�_�	 � �!!_¦	 ∙ a�_¦	 � �!�_¦		 ∙ a�_¦		= �!!_�	 ∙ ]a�	 ( a 	2 ^ ( �!�_�	 ∙ ]a�	 ( a*	2 ^ ( Ta�	 � a 	2 U= 	�!!_�	 ( 12 ∙ a�	 ( �!!_�	 � 12 ∙ a 	 ( �!�_�	2 ∙ a�	 ( �!�_�	2 ∙ a*	 (A-9) 

Then adding K� (A-5) and K  (A-9) we get: 

 K� ( K = �!!_�	 ∙ a�	 ( �!!_�	 ∙ a 	 ( �!�_�	 ∙ a�	 ( �!�_�	 ∙ a*	 (A-10) 
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With (III-24) and (A-8), and as a _¦	 = �a�_¦	(A-7), the addition of a� and a  can be 

simplified to: 

 a� ( a = a�_¦	 ( a�_�	 ( a _¦	 ( a _� = √2 ∙ a!_�	 = √2 ∙ a! (A-11) 

In the same way: 

 K� ( K = √2 ∙ K! (A-12) 

We obtain from (A-10), (A-11) and (A-12): 

 K! = �!!_�	 ∙ a! ( �!�_�	√2 ∙ a� ( �!�_�	√2 ∙ a*	 (A-13) 

Consequently, it is easy to conclude that: 

 

�!! = �!!Ó 	 �!� = �!* = �!�_�	√2  
(A-14) 

The three missing S-parameters can be calculated thanks to the equations at port 2 as 

the following: 

 K� = K�_� ( K�_¦ = ���_�	 ∙ a�_�	 ( �!�_�	 ∙ a�_�	 ( ���_¦	 ∙ a�_¦	 ( �!�_¦		 ∙ a�_¦		 (A-15) 

With (A-2) and (A-3), (A-15) is written as: 

 K� = ���_�	 ∙ ]a�	 ( a*	2 ^ ( �!�_�	 ∙ ]a� ( a 	2 ^ � ���_¦	 ∙ Ta� � a*	2 U (A-16) 

Finally, (A-11) and (A-16) are combined to get: 

 K� = �!�_�	√2 ∙ a! ( ���_�	 � ���_¦		2 ∙ a� ( ���_�	 ( ���_¦		2 ∙ a*	 (A-17) 

 The three others S-parameters can be now obtained: 

 

��! = �!�_�	√2  

��� = ���_�	 � ���_¦		2  

��* = ���_�	 ( ���_¦		2  

 

(A-18) 
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Appendix-B 

This appendix aims to give the formulas to calculate the insertion loss and phase 

shift of the RTPS as described in Figure IV.1, with the reflective loads of Figure IV.1, 

Figure IV.5 or Figure IV.7. Ideal transmission lines and branch-line coupler were 

considered, but the varactor series resistance R was taken into account. 
�� can be written 

as: 

 
�� 	= 	� ( �û�  (B-1) 

where E, F and G are variables depending on the load topology that are defined below. The 

reflection coefficient Γ can be written as: 

 M = 	
�� � 	
�
�� (	
� =	� � � � 
� ( �û� ( � � 
� ( �û (B-2) 

The transmission parameter ��! of a RTPS is by definition equal to jΓ, so the magnitude of ��! can be written as: 

 |��!| = |M| = 	V'� � � � 
�)� ( û�'� ( � � 
�)� ( û� (B-3) 

The phase shift is calculated with (IV-6) and (B-1). The equality of (IV-6) is not true 

anymore; it is about equal, exactly as it was the case in chapter I. This is due to the low 

value of R, leading to a real part of 
�� quite negligible as compared to its imaginary part 

and as compared to 
�. The variables E, F and G depend on the reflection load topology. 

• For the reflection load in Figure IV.1: 

 

� = 	[2 ( �: û = 	[: � �2 � =	2� (:� 

(B-4) 

• For the reflection loads in Figure IV.5 and Figure IV.7: 

 

� = 	[2
�� ( �:
����� ( [�
� ( [2
����� ( �:
��( ��
� û = 	��2
�� ( [:
����� � [�
��� � �2
����� ( [:
��� ��
��� � =	 '2
� � :
��� ( [)� ( '2
��� ( :
� ( �)� 

(B-5) 
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In both cases, the parameters A, B, C and D can be written as: 

 

[ = 	
!�
!� � 
!�
!��!� ( 
!� Ðab >!� � =	2
!�
!��! 2 = 	
!�
! ( 
!�
! Ðab >!� ( 2
!
!��! Ðab >! : =	
!�
!�! Ðab >!� ( 
!
!��!� Ðab >! � 
!
!� Ðab >!( 
!�
!�! ( 
!* Ðab >! 

(B-6) 

with 
! and 
� the parasitic resistances, and �! and �� the quality factor of the varactors at 

the end of the transmission line (
!,>!) and at the output port of the branch-line coupler, 

respectively. In Figure IV.5, R2 = R1 and C2 = C1 while in Figure IV.7, R2 = ½ R1 and 

C2 = 2C1. The quality factor is defined as: 

 �b = 1
b ∙ 2b ∙ N (B-7) 
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