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Chapter 1 : Introduction

Chapter 1

Introduction

Fluid transfer and storage in porous medium andntieehanical response of the
porous solid to them are central in a variety afitegts both from the fundamental and the
industrial point of view: oil and gas productionO€ storage in petroleum engineering,
chromatography, membrane science, lubrication gngbal engineering processes, cement
paste and tight rocks in civil engineering, ete5[1This work aims at providing fundamental
information on some points of such a problematiough the numerical and theoretical
analysis of the transport properties and the poohiagics of simple fluids confined in slit
nanopores. This work is a part of a more globajgatonamed “Failflow” (ERC Advanced
Grant leaded by Pr. Gilles Pijaudier-Cabot) thatuges on fluid flow in low permeability
porous materials with evolving microstructure ire tbontext of geo-mechanics and civil
engineering applications.

In general, to deal with physical problems invotyia fluid in a porous medium, the
first requirement is to determine the behaviort{st@and dynamic) at the pore-scale, and then
using up-scaling techniques (analytically or nuwedly) to arrive to a macroscopic
formulation, see Fig. 1.1 [1-2, 6-10]. For porousdiim in which pores are sufficiently large,
i.e. typically pore diameters greater than 50nmdmgreater than the characteristic distance
of intermolecular interaction) and so-called mapoves [10], the characteristics of the fluid
in the pores are assumed to be the one in the loudddition, the fluid-solid interactions are
neglected [1-2] apart from low density conditionBene such effects are usually represented
by a “modified” boundary condition through a slgngth [4]. This assumption is reasonable
because in macro-pores the surface effects indogete solid-fluid interaction on the fluid
is much weaker that those from the fluid-fluid natetion (volume) itself [3, 5].

1
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Figure 1.1: Usual up-scaling schemes to descridduid in a porous medium from the

characteristics at the pore-scale [6-10].

When the size of the pores decreases, in partidatapores diameter smaller than
2nm called micro-pores, the situation becomes rooneplex. This is because in such narrow
pores the ratio of the surface to the volume iy Vegh, and so surface effects on the fluid
become dominant over the volume ones [3, 5]. Hetiee surface effects at the pore scale
must be elucidated before trying to build an udestacheme dedicated to the poromechanics
of microporous materials.

Sensitive microscopic experiments [the surfaceefapparatus (SFA), atomic force
microscopy (AFM), and friction force microscopy (¥l on a fluid between solid surfaces
have shown that the effective shear viscosity &aedibrmal pressure of the fluid are strongly
dependent on the distance between the solid sgtfaee Figs. 1.2a and 1.2b [11]. This may

lead for instance to macroscopically observablenpheena such as the swelling of some

2
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micro-porous materials, see Fig. 1.2c. Such obsensa can physically be understood
because in a region close to the solid surfacefiutltemolecules have a tendency to organize
themselves into layered structures parallel to $léd-fluid interface due to physical

adsorption and molecular packing, [3, 5]. Becaussuch surface effects at the pore-scale,
the behaviors of micro-porous medium are very diifé from those predicted from the

macroscopic theories developed to deal with usw@araporous medium [6-10, 12-13].
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Figure 1.2: (a) Variation with film thickness ofktleffective mean viscosity of OMCTS
confined between mica sheets (SFA experiments) [(d)] Normal force-distance profile
between mica sheets immersed in OMCTS is (SFA @xpets) [11]. (c) Volumetric strain
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Figure 1.3: Simulations techniques range of appliitg [15].

Although experiments on a fluid confined in narrggores can provide the
“apparent/effective” pictures, there exists no expental method that can provide yet the full
picture which is compulsory to test deeply the psgu theories. Thus, alternative methods
have been proposed to deal with such problems wdften rely on numerical simulations at a
molecular scale [14] ranging from quantum like ag@hes to mesoscale techniques, see Fig.
1.3. These methods have shown to be valuable {@old associated to limited costs) to
reproduce quantitatively the apparent propertiast, &#lso to predict the behavior for
extreme/dangerous situations which cannot be reddby experiments easily [3-5]. In such
numerical methods, the main difficulty is to be alb design “molecular” model at the
appropriate scale to encompass the key charaatsfishaviors of the real system while
keeping a sufficient simplicity to be tractable amanputable in a reasonable time.

In this work, we have employed atomistic methodscivrare based on a classical
representation of the system simulated at the matadescale, i.e. the system is represented by
a set of atoms interacting through effective postniore precisely, we have employed the

Molecular Dynamics (MD) technique that consistdallowing over time the trajectories of
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all atoms simulated using simply the classical Newgquations. One of the main interests of
such a numerical approach is that the (collectprgjsical phenomena that may emerge are
not postulated a priori and are a consequenceeoimiblecular description only (which is so
central in the approach). Thus, this approach canige “exactly” all information on the
physical properties of a given modeled system adfalva developing/testing molecular
models and molecular based theories following tlagsecal picture shown in Fig. 1.4 [14,

15].

;

| Real Systen.} IConstruct Modelsl

. Cany out Computer Construct Approximate
Perform Experiments Simulations Theory
[}
3
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) Results For Models For Same Models
8
Q.
E

Tests of Modeld Test of Approximate
Theories

Figure 1.4: The connection between experiment,rihaod computer simulation [14].

In what follows, is provided a brief overview ofetlexisting theories and simulations
results obtained in the literature on some speghgsical properties of highly confined

fluids. Details on the molecular simulation techreg are presented in the next chapter.

1.1. On the Apparent and Local Density of ConfinedFluid
Confirming what known experimentally [3], resultbtained from the molecular
simulations (Monte Carlo and Molecular Dynamics)}he Grand Canonical ensemble have

shown that the average density of a simple fluigfioed in slit pores can vary appreciably
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Figure 1.5: Density of fluids confined between dalurfaces separated by a distance obtained
from the molecular simulations and theories. (andity profiles obtained from the MD
simulations and the YBG theory [18]. (b) Densitpfdes obtained from the MD simulations

and the DFT using the Tarazona model [18].

with the size of the pore for width of the order affew nanometers (i.e., micro and
mesopores) [3, 5, 16-17]. This reflects the inhoemzgty of the fluid in the pores due to
physical adsorption and molecular packing, see Elg.It has been found that such behaviors
depend on the type of the fluid, the solid-fluideiraction and the thermodynamic operating
conditions [3, 16-17].

Beside molecular simulations, theoretical methaalsehbeen developed in which the
density profile is provided by numerically solvimgegral equations that are obtained from
the statistical mechanics [5, 16, 18-19]. Usudilyse integral equations are derived from:

* The distribution function theory: in this approable Liouville’s equation is integrated
over all coordinates and momentum of the fluid ipke$. The use of the Kirkwood’s
superposition approximation leads to the Born-Gréeon (BGY) equation that

relates the local density and the pair correlatiamction. To determine the local

6
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density from the BGY equation, the pair correlationction is usually taken as that of
a homogeneous fluid at some average density cowhjbytspatial coarse graining.

* The density functional theory (DFT): in this appbathe integral equations are
obtained from differentiation of the grand potehtiithe fluid in pores with respect to
the local density. This requires specifying theinsic free energy per atom or volume
at a given position. The usual approach consis@ssume it equal to the one of a
homogenous fluid at a bulk state corresponding kacally averaged density around
the given position. Various definitions of the ldgaveraged density (using different
weight functions) specify different forms of the DF
Results obtained from such theories all have shthahthe local density noticeably

varies with the position, see Fig. 1.5 [5, 16, B8-However, the theoretical results are not
always in a qualitative agreement with the simalatones, particularly for dense fluids. The
DFT with adequate assumptions on the weight functisually provides results in better
agreement with the simulation ones compared tcetibbsained from the distribution function

theory, see Fig. 1.5 [5, 16, 18-19].

1.2. Effective and Local Transport Properties

As found experimentally [3], apparent/effectivensport coefficients (shear viscosity
and mass diffusion) of strongly confined fluids)ce#ated during MD simulations using
different procedures have shown to vary apprecialily the pore size, see Fig. 1.6 [3-4, 20-
25]. In most systems studied in the literature, @ffective shear viscosity and the diffusion
coefficient of fluid in pore are higher and smalllean the ones of the bulk fluid, respectively,
these effects increasing when the pore size dexsed$ie trend of the noted variations is
often correlated to the one of variation in therage density. However, the use of the average

density cannot explain a dramatic increase of ffectve shear viscosity of fluid in very
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narrow pores observed in some non-equilibrium MbDwsations. In fact, the simulation
results have shown that the confined fluid may lextdifferent responses when the size of

pore changes, e.g. going from a liquid-like respaisa solid-like response, [3, 20].
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Figure 1.6: Effective transport properties of afowed fluid between solid surfaces obtained
from the MD simulations and theories. (a) Variatiothe effective shear viscosity with the

pore width [30]. (b) Variation in the effective fliion coefficient with the pore width [43].

Local transport coefficients (mass diffusion andeahviscosity) have also been
studied using MD simulations [22-23, 26-29]. Resuiave shown that the local transport
coefficients appreciably vary with the position hwitariations strongly correlated to the local
density ones, see Fig. 1.7. However the definitisalf of a local transport property may
sometimes leads to inconsistencies. Thus, in s@ses¢ the local shear viscosity computed
from non-equilibrium MD simulations using the class Newton’s law of viscosity can
correspond to unphysical (negative) values [29]s T$due to the fact that the inhomogeneity
of the fluid in pores may result to rapid variagoim the strain rate over a length typical of
intermolecular correlations. In such circumstantles,Newton’s law must be generalized by

a nonlocal constitutive equation [30].
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Figure 1.7: Local transport coefficients of fluicksnfined between solid surfaces. (a) The

viscosity and density profiles [26]. (b) The diffois and density profiles [23].

Most of the theoretical works for determining tihensport coefficients of a strongly
confined fluid are based on the generalized Enskkigietic theory [26-28, 31]. This theory
requires determining the pair correlation functishich can be done by using the spatially
coarse grained model as in the distribution fumctieeory. There also exists another theory in
which the main idea employed is similar to the OJfiE, i.e. the local transport coefficients at
a given position are heuristically assumed to beaktp those of a homogeneous fluid at a
bulk state corresponding to a locally averaged itleasound the given position [32-33]. This
approach is called the local average density m@deDM).

The transport coefficients obtained from these rilesoexhibit characteristics similar
to what observed in the MD simulations, i.e. thie@fve and local transport coefficients that
varies appreciably with the pore size and the mosiespectively, see Fig. 1.7 [26-28, 31-33].
However, comparisons between the MD simulationthaedretical results have indicated that
such theories cannot always predict quantitatittedytransport coefficients for different fluids

and different states. In addition, the use of shelories are not able to deal with the dramatic
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increase of the effective shear viscosity of flumdiery narrow pores as obtained in some non-
equilibrium MD simulations.

The effective and local transport coefficients lafd confined slit narrow pores are so
correlated to the effective and local densitied ¢(mt only) which are strongly influenced by
the fluid-solid interaction [3, 16, 20]. This meathsit for a given fluid the characteristics of
the solid surface have a significant effect on tifaasport coefficients [3-4, 34-35]. In fact,
other “apparent” quantities related to the transgoch as the slip length and the friction

force, are also strongly affected by the charasties of the solid surface [3-4, 35-36].

1.3. Swelling/Shrinkage

To better understand the well known swelling/shaigdx of some porous media (clay
minerals, coal seams, porous glass, etc.) due ¢o pitesence of fluids as observed
experimentally [1-2, 37], molecular simulations balyeen used to provide a microscopic
picture of such systems [37-43]. Results obtainenfthe molecular simulations at the
micropore scale have shown that the normal pressutdhe free energy of the fluid in pores
appreciably vary with the pore size, the fluid tyrel fluid-solid interactions, see Fig. 1.8 [1,
8-10, 37-38, 41-42]. In fact, such behaviors aréndirect consequence of the inhomogeneity
of the fluid in pores due to physical adsorptiom anolecular packing. In other words, the
swelling/shrinkage of such micro-porous mediumnduiced by the physical adsorption and
molecular packing at the pore-scale (in unchargstems).

The modeling of the swelling/shrinkage of poroudam requires thus in a first step
an accurate description of the thermodynamics efctinfined fluid [5, 40]. For mesoporous
medium, the thermodynamics of the fluid in poresmainly influenced by the physical

adsorption and can so be estimated thanks to theoha usual theory of adsorption [8, 44-

10
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Figure 1.8: Swelling of clay minerals obtained fréme MD simulations. (a) Variation in the
disjoining pressure with the size of the clay lageacing [38]. (b) Variations in clay swelling

free energy for different external pressures withgize of the clay layer spacing [38].

45]. In micro-porous medium, the thermodynamics t@nwell described by using the
distribution function theory or the DFT as mentidradove for simple fluids in simple pores,
however such approaches are not as efficient tbwiéa more complex systems involving
association, charges, etc. The second step iski itd#o account the influence of the
modification on the fluid thermodynamic to deal lwihe porous medium. To do so, among
possible approaches, modified poromechanics catiggtequations have been derived [1, 8-
10, 42]. They include additional quantities/varegblto take into account explicitly the
modifications in the apparent fluid and the flumlig interactions and they seem able to lead

to reasonable results in relatively simple situadicsee Fig. 1.9.
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Figure 1.9: Evolution of the volumetric strain wite bulk pressure obtained from
experiments and extended poromechanics. (a) Asamaple immersed in methane using
Brochardet al’s derived constitutive equations [10]. (b) Annbis charcoal in methane

using Pijaudier-Cabadt al's derived constitutive equations [9].

1.4. Organization of the Dissertation

The body of the dissertation is divided into 6 dieap

In chapter 2, a brief description of the theoriesrodel the fluid dynamics and the
poromechanics at the continuum scale are firstodhiced. Then, some details of the
molecular simulation methods developed in theditgmre are presented and discussed.

In chapter 3, two grand canonical-like moleculamaiyics approaches are first
presented. Then, the transient behavior of theisidh process associated with the migration
of one fluid into another one confined between leraolid walls is studied.

In chapter 4, the local shear viscosity of stronglifjomogeneous fluids (from the
hard-sphere to Lennard-Jones fluids) at differémid fstates is first studied by using the
molecular simulations. Then a tractable theoryegetbped to predict the viscosity profile in

such conditions from the density one.

12
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In chapter 5, different molecular dynamics scheomse] in the literature to study the
shear behavior of a confined thin film are presgérded discussed. The influence of the
choice of the molecular dynamics scheme of therspegerties (viscosity, friction, etc.) of
such thin film is then analyzed.

In chapter 6, the volumetric deformation (swellstginkage) of a simple saturated (by
a liquid) slit pore induced by solid displacememtthe direction parallel to the solid-fluid
interface is studied by non equilibrium moleculangations.

In chapter 7, the main results are summarized ardppctives associated to each

chapter are then provided.

13



Chapter 1 : Introduction

References

[1] O. Coussy, Mechanics and Physics of PorousdSpliohn Wiley & Sons, Chichester

(2010)

[2] O. Coussy, Poromechanics, John Wiley & Sonsci@ster (2004)

[3] J. Israelachvili)ntermolecular and Surface Forcge&cademic Press, Third Edition (2010)

[4] G. Karniadakis, A. Beskok and N. Aluru, Microfl's and Nanoflows, Springer (2004)

[5] J. Hansen and I. R. McDonald: Theory of simipdeid, Third Edition, Elsevier, (2006)

[6] M. J. Blunt, M. D. Jackson, M. Piri, P. H. Valtne, Advances Water Res. 25, 1069

(2002).

[7] Q. Cai, A. Buts, N.A. Seaton, M.J. Biggs, Chdeng. Sci. 63, 3319 (2008)

[8] M. Vandamme, L. Brochard, B. Lecampion and ©u€§sy, J. Mech. Phys. Solids 58,

1489 (2010)

[9] G. Pijaudier-Cabot, R. Vermorel, C. Miqueu édMendiboure, C. R. Mecanique 339,

770 (2010)

[10] L. Brochard, M. Vandamme and R. J. M. Pellehdylech. Phys. Solids 60, 606 (2012)

[11] J. Klein and E. Kumacheva, Science 269, 8B®5%)

[12] H. Kajiro, A. Kondo, K. Kaneko and H. KanomtlJ. Mol. Sci. 11, 3803 (2010)

[13] J. R. Levine, Geological Society, London, SpkPublication 109, 197 (1996)

[14] M.P. Allen and D.J. Tildesley, Computer Sintida of Liquids, Oxford University Press
(1989)

[15] K. E. Gubbins and J. D. Moore, Ind. Eng. Ch&mas. 49, 3026 (2010)

[16] M. Schoen, Computer simulation of condensealspl in complex geometries, New

series m: monographs, Lecture note in physics, (h293)

[17] J. Gao, W. D. Luedtke and U. Landman, J. Chehys., 106, 4309 (1997)

[18] T. K. Vanderlick, L. E. Scriven and H. T. Dayi]. Chem. Phys. 90(4), 2422 (1988)

14



Chapter 1 : Introduction

[19] P. Tarazona, J. A. Cuesta and Y. Martinez-Ral#ensity functional theories of hard

particle systems, Lecture note in physics, 753ri(gpr-Verlag, Berlin—-Heidelberg, 2008).

[20] M. H. Muser, M. Urbakh and M. O. Robbins, Ad¥hem. Phys. 126, 188 (2003)

[21] I. Bitsanis, S. A. Somers, H. T. Davis and Ntrell, J. Chem. Phys. 93, 3427 (1990)

[22] J. J. Magda, M. Tirrell and H. T. Davis, J.6din Phys. 83, 1888 (1985)

[23] J. Mittal, T. M. Truskett, J. R. Errington a&l Hummer, Phys. Rev. Lett. 100, 145901

(2008)

[24] J. Gao, W. D. Luedtke and U. Landman, Phys. Ret. 79, 705 (1997)

[25] J. Gao, W. D. Luedtke, D. Gourdon, M. RuthsNJ Israelachvili and U. Landman, J.

Phys. Chem. B 108, 3410 (2004)

[26] X. D. Din and E. E. Michaelides, Phys. FluRis3915 (1997)

[27] E. Akhmatskaya, B. D. Todd, P. J. Daivis, DE¥ans, K. E. Gubbins and L. A. Pozhar,
J. Chem. Phys. 106, 4684 (1997)

[28] L. A. Pozhar, Phys. Rev. E 61, 1432 (2000)

[29] K. P. Travis and K. E. Gubbins, J. Chem. Py, 1984 (2000)

[30] B. D. Todd, J. S. Hansen and P. J. DaivissPRev. Lett. 100, 195901 (2008)

[31] T. K. Vanderlick and H. T. Davis, J. Chem. Bh§7, 1791 (1987)

[32] I. Bitsanis, T.K Vanderlick, M. Tirell and H. Davis, J. Chem. Phys. 87, 1733 (1987)

[33] I. Bitsanis, T.K Vanderlick, M. Tirell and H. Davis, J. Chem. Phys. 89, 3152 (1988)

[34] A. Saugey, L. Joly, C. Ybert, J. L. Barrat dndBocquet, J. Phys.: Condens. Matter 17,

S4075 (2005)

[35] H. Berro, Phd thesis: A molecular dynamics rapgh to nano-scale lubrication. Institut

National des Sciences Appliquées de Lyon (2010)

[36] Bocquet and J.L. Barrat, Soft Matter 3, 686(2)

[37] E. J. M. Hensen, B. Smit, J. Phys. Chem. B, 126664 (2002)

15



Chapter 1 : Introduction

[38] R. M. Shroll and D. E. Smith, J. Chem. Phyk1,19025 (1999)

[39] D. D. Do, D. Nicholson, H.D. Do, J. Phys. Chein112, 14075 (2008).

[40] M. Jeffroy, A.H. Fuchs, A. Boutin, Chemical @munications 28, 3275 (2008)

[41] A. Botan, Phd thesis: Modélisation moléculaifargile en contact avec un réservoir de
CO,. UNIVERSITE PARIS 6 (2011)

[42] L. Brochard, M. Vandamme, R. Pellenq, T. F&€lgpng, Langmuir 28, 2659 (2012)

[43] V.T. Nguyen, D.D. Do, D. Nicholson, Journal @blloid and Interface Science 388, 209
(2012)

[44] G. Y. Gor and A. V. Neimark, Langmuir 26, 130@2010)

[45] G. Y. Gor and A. V. Neimark, Langmuir 27, 69¢®11)

16



Chapter 2 : Theory and Simulation

Chapter 2

Theory and Simulation

This chapter presents the theories and the simaktnethod which forms the basics
to determine the properties/behavior of a fluid angorous medium. The first two parts are
brief descriptions of the classical equations useddeal with the fluid dynamics and
poremechanics at the continuum scale. The subsegaéis detail the molecular dynamics

simulations approaches for exploring the propeufes fluid at the molecular scale.

2.1. Conservation Equations

At the macroscopic scale, a fluid is assumed toabeontinuum, i.e. it can be
subdivided into infinitesimal fluid elements [1].o¥ever, the fluid element should be large
enough to contain a huge number of fluid molecsteshat it can be viewed as a continuous
medium. This means that the length scale of thd #iement should be much larger than the
mean free path of the molecules composing the .fllndthis approximation, all physical
properties that characterize a fluid (i.e. dengtgssure, temperature, velocity etc.) are well
defined at any point in the fluid and at any time.

In that frame, to determine the behavior of thadfllone solves theonservation
equations associated to mass, momentum and energy conservahd subject to the
constitutive equationgioverning mass diffusion (Fick’s Law), momentuinsfer (Newton’s
Law), energy (Fourier’'s Law), etc. , together watthermodynamic equation of state [1].

So, in this section, we briefly introduce the camadon equations and the constitutive
equations which are generally employed to studyhbthleavior of a fluid at theontinuum

scale
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2.1.1. The Continuity Equation

The conservation equation for mass states thatirtiee rate of decrease of the mass
inside a finite control volumg fixed in space is equal to the net mass flow dulhe control
volume through surfacs , see Fig. 2.1 [2]. From this statement, by evatgathe variation
of the mass in the fluid control volume, it is pb$s to deduce the differential equation

associated to the local mass conservation as [2]:

%—'tO+D[ﬁp\7+M3):0 (2.1)
or
%+pﬂ@7+MDEﬁ:0 2.2)

wherep is the density of the quid\7 is the streaming velocityj is the diffusive flux per
unit time per unit area due to mass diffusion &amdis the molar mass. Egs. (2.1) and (2.2)
are thecontinuity equationsn which the former is in theonservative fornand the latter is in

thenon-conservativéorm [2].

Figure 2.1: Finite control volume fixed in spacg [2

2.1.2. The Momentum Equation
The conservation equation for momentum states tiwat deformation of a fluid

element submitted to a stress is governed by thetdies 2' law [2]. By analyzing the
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Figure 2.2: Infinitesimally small, evolving fluideament. Only the forces in thedirection are

shown [2].

evolution of a cuboidal fluid element as shown ig.R2.2, the differential equations on the

local velocity can be written as [2]:

or

d(pu)

9(pv)

ot

19

Du _ _6_p+OTXX +aryx +6TZX + pf, (2.3a)
Dt ox  0x ay 0z
Dv _ 6_p+ 0T, + or,, + A + pf (2.3b)
Dt | ay ox ay 0z Y
Dw = _6_p+ 07, + aTyZ 07, + pf, (2.3¢)
Dt 0z 0X ay 0z
— op  or, 0T, Or
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[(pu ) ( ox ox 9y 0z j A (2.49)
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where u,v,w are the components of in the X, Y,z directions respectivelyp is the
pressuref,; is the stress in thg direction exerted on a plane perpendicular toahaxis,

and f, is the body force per unit mass acting on thedfleiement in thexr direction. Egs.

(2.3) and (2.4) are themomentum equationsin which the former is in theon-conservative

form and the latter is in theonservativédorm [2].

2.1.3. The Energy Equation

The conservation equation for energy states thleatdte of change of energy inside a
fluid element is equal to the net flux of heat itite fluid element plus the rate of work done
on the fluid element [2]. Considering the variatiarthe energy of the fluid element having a
cuboidal geometry, as shown in Fig. 2.3, the dafifeial equation of the internal energy per

unit mass can be obtained as [2]:

2 ' ' '
,0R e+V— =| oq - 6qX+OQY+6qZ +pf IV +| - 9
Dt 2 ox o0y 0z 0x oy 0z

—_
e
o
~
+
2
<
o
~
+
D
—
=
o
~
N—

0x oy 0z 0x oy 0z
a(Wz-xz) a(WTyZ) + a(Wz-zz)
0x oy 0z

or

el afon s
(a(gixx) a(l;;yx)ﬁ(t;;zx)J (a(gixy)ﬁ(\é;w) a(gzy)j |
J{a(wrxz) a(wryz)+a(wru)ﬂ

) ay 0z
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wheree is the internal energy per unit mask= f& + f,6 + f,& in which &, is the unit

vector in thea direction, g’ is the rate of volumetric heat addition per unés® andq,, is

the heat transferred in th& direction per unit time per unit area by the thareconduction.
Egs. (2.5) and (2.6) are tlemergy equationsin which the former is in theon-conservative

form and the latter is in th@onservativédorm [2].

y
[ut,+(9(ut )/dy)dy]dxdz

ut, dxdy, )up+(6(up)/ax)dx]dydz
updyd | [ut,+(a(ut,)/0x)dx]dydz

I I S X
qdydzmsp dz + - [q,+(dq/0x)dx]dydz

[ut,+(d(ut,)/0z)dz]dxdy

Figure 2.3: Energy fluxes associated with an itdisimally small, evolving fluid element. For

simplicity, only the fluxes in th& direction are shown [2].

2.1.4. The Constitutive Equation

The different properties: density, pressure, teiapee and velocity, of a fluid can be
completely determined by solving these conservaumtions (+ an equation of states) if the
diffusive fluxes (mass, momentum and energy) aeeifipd.

We briefly present in what follows the usual congive equations that describe the

diffusive fluxes in a pure fluid.
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2.1.4.1. Fick’'s Law
The Fick's law for mass diffusion states that thiéudive flux per unit time per unit

area due to mass diffusion is proportional to theasite of the gradient in density [2]:

J= —Dm(ﬁj 2.7)

2.1.4.2. Newton’s Law
The Newton’s law states that the shear stresdluchis proportional to the time-rate-
of-strain, i.e. the velocity gradients. From thigtement, Stokes obtained [2]:

ou

I, = A0V + 2p (2.8a)
_ = ov

r, =A0N + 2,ua—y (2.8b)
— ow

r,=A0V + 2;15 (2.8¢c)

Ty =Ty ?—OZ %j (2.80)
ou  ow

lie =Ty = ILI(E +&j (288)
ow = ov

Iy,=Ty= E +Ej (2.8f)

where p is the shear viscosity coefficient amd is the bulk viscosity coefficient. Stokes

proposed the hypothesis that [2]:
2
A=-= 2.9
3 (2.9)

which is usually used in literature.
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2.1.4.3. Fourier's Law
The Fourier's law for heat diffusion/conduction teta that the time rate of heat

transfer per unit area through a material is propoal to the opposite of the gradient in

temperature [2]:

q. =k (2.10a)
ox
T

-k 2.10b

ay oy ( )

q, = k2L (2.10¢)
0z

wherek is the thermal conductivity of the fluid element.

2.2. Poromechanics

Similar to what have been presented for a purel flid determine the behavior of a
porous medium (composed of the solid phase anflutliephases) at the macroscopic scale,
i.e. theporomechanicof the studied system, requires:

* To construct differential equations associatedhéogorous medium as a whole.
* To establish constitutive equations [3-4].

To derive the differential equations, the porousimme is assumed to be a continuum
[3-4]. By doing so, the porous medium can be subdd into infinitesimal elements for
which the hypothesis of continuity and homogenaeity valid, i.e. the heterogeneities at the
microscopic scale (in an element) are ignored. @ens cuboidal porous element as shown

in Fig. 2.4, thanechanical equilibriumconditions leads to [3-4]:

0T, , 07y, 01, _ 0 (2.11a)
ox oy o0z '
or,, or, Or

2+ + 2 =0 2.11b
ox oy o0z ( )
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Solid Fluid

Figure 2.4: 2D view of porous medium. The red defgesent the solid phase. The blue

domain is the fluid phase.

or,, dr, Or
2+ + 2 =0 2.11
x oy oz (2.110)

where T is the stress on the surfaces of this element.

These stresses are composed of two parts: one whichused by the hydrostatic
pressurep of the fluid filling the pores, and the other linetaverage stress in the solid phase
[3-4]. It should be mentioned that the classicdinigon of p is inappropriate when the pore
size is very small or the order of the size offtb& molecule (this quantity is affected by the
porous medium itself) [5]. However, in this partr fsimplicity the equations introduced
corresponds to a porous medium in which the pae isi sufficiently large (macropores) so
that the definition of the hydrostatic pressureh&d and the fluid can be treated as a
continuum.

To describe completely the behavior of a porousiomedat the macroscopic scale
requires specifying the relations between the sé®sand the deformation of the porous

medium, i.e. the constitutive equations. In thig,p&e present the constitutive equations for a
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porous medium that possesses the following basigepties : (1) isotropy of the material, (2)
reversibility of stress-strain relations under firgguilibrium, (3) linearity of stress-strain
relations, (4) small strains, (5) the fluid contdnin the pores is incompressible, (6) the fluid
flows through the porous medium according to Daclaw [3-4]. In that frame, the

constitutive equationgire given as [3-4]:

T = ZG[EXX +£j —ap (2.12a)
T, = ZG(EW +1_V—‘z ~-ap (2.12b)
r, = 26(522 1_"‘;/ —ap (2.12¢c)
Ty =T =Gl (2.12d)
r,,=0,,=Cy,, (2.12¢)
r,,=1,=Gy, (2.12f)
¢:a5+% (2.129)

where, G,u, N anda are the shear modulus and Poisson’s ratio, theBamlulus and Biot
coefficient respectively, and is the increment of fluid volume per unit volunietioe porous

medium, or a porosity. The strain components ofdigfermation are defined as [3-4]:

i = ou (2.13a)
0X
ov
iy (2.13b)
£, = ow (2.13c)
0z
§=¢uté,y 14, (2.13d)
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ov ou
Vi ox oy ( )
ow ov
=2 UY 2.13
Vi dy 0z (2.130)
oW du
==+ = 2.13

where,t, v andw are the components of the displacement of theysoneedium in the x, y
and z directions respectively.
Substituting Eqgs. (2.12) and (2.13) into Eq. (2.1éxds to three equations for four

unknownst , v, w and ¢ . Therefore, an additional differential equatiors babe introduced

to have a closed system. To do so, using a cotyiike equation, one can obtain [3-4]:

9¢ __0u_ov_ow (2.14)

where the velocity components, v and w are determined from the classi€drcy’s lawas

[3-4]:
u=- % (2.15a)
0¢
V=—K— 2.15b
dy ( )
w=-— 99 (2.15¢)
0z

wherek is called the coefficient of permeability of therpus medium.

2.3. Molecular Dynamics Simulations

When one is dealing with a fluid element whose lerggales are comparable to the
size of the molecules composing the fluid, thengierious equations used at the continuum

scale are no longer always adequate. This is bedaas the fluid cannot be subdivided into
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infinitesimal fluid element that can be viewed astmuous medium, e.g. the fluid transport
properties are not precisely defined at any pairthe fluid and at any instant time (because
of fluctuations). In such situations, the fluid mbe treated as discontinuous, composed of
atoms, and obeys the equations of the statistiegahamics [1, 6-9]. However, most properties
of realistic fluids (in particular transport propes) at the molecular scale cannot be
determined by analytically solving the equationshaf statistical mechanics [1, 6-9]. In such
situations, molecular simulations have shown t@ b@luable tool to circumvent numerically
that difficulty.

The basic idea of the molecular simulation is tvesmumerically the equations of the
statistical mechanics to sample efficiently theegmtls of the configurations of a system
composed of atoms by either tiMonte-Carlo (MC) or the Molecular Dynamics (MD)
approach [1, 6-9]. In other words, the moleculanigdations approaches allow exploring
numerically the possible configurations of the sgstusing two different approaches (they are
“equivalent” if ergodicity is respected) as shownkig 2.5:

By following a stochastic process obeying probapildistribution laws of the
statistical mechanics for the MC method,
* By solving the deterministic equations of motionatif atoms in the system for the

MD method.

Although the MC method requires usually less CHuetithan the MD method, the
MD method is the most widely used among the twsttmly the behavior of the fluids [1, 6-
9]. This is because the states/configurations iiansin the MC method is completely
stochastic, i.e. the dynamics of the systems isexglicitly described. Whereas the MD
method describes these transitions that are goddipdhe classical equations of motion of

all the atoms and so gives access to the dynamiiceo$ystem. In fact, the MC approach is
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very efficient when dealingvith static properties of relatively largegnd complexsystems at
equilibrium.
In the followingparts areintroduced some details tdie MD methos that are usually

used to study the properties of a fluid at the male® scale.

Molecular dynamics

X a physical (Temporal evolution)
property 105-107 timesteps (At ~ 1 ns)
Asetof N |9 0 © ®op0 0%
, . o ) o
Interact/ng C K] e @ @ () e |+>
) ° o o o ©_ o
particles e®o XX 0”9
Yl
] <X>m=_IX(t)dt
Monte Carlo |® ¢ 0 JAYS
(Statistica| o® © oo Average over time
evolution) |e oo 1<&
n (~ 106-108) Y <X >MC :_ZXI
. . o niq
configurations © 0 ) .
L P ° Average over configurations
o
00%o0
V =/ Ergodic Theorem <X >MC =<X >MD

Figure 2.5The two usual molecular simulation approar

2.3.1. Equations of Motior
First, let start considerincn isolated fluid system composed ®f atoms interacting

via a total potentialu , in which the coordinate of atori is denoted byr; and the

configuration is denoted bIS/N :{l’l,rz,- . -,YN} [6].
The Lagrangian of the systenrL which allows describing the dynamics of tN

interacting atoms depends ol andr'™ where:

N
(N :%:{%,%,...,%}:{ri,ré,_,,,r;ﬂ} (2.16)
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More precisely, the Lagrangian form of the equabbmotion of an aton in the system is:

d

a(aL/aur;)— (oL/ar,)=0 (2.17)

The generalized momentum conjugate td'; is defined as:

N .IN
P =w (2.18)
TheHamiltonian is defined as:
H(pN,rN):Zri'mJi —L(rN,r’N) (2.19)

and the Hamiltonian form of equations of motioranfatomi in the system is given by:

r :%;,r”) (2.20a)
o =-9H (g:’rN) (2.20b)

If I, represents the Cartesian coordinate of atattme Lagrangian of the system is simply:

L(rN,r'”)zi“Z%rnri;,2 —U(rN) (2.21)

i=l a
where M is the atomic mass of atoim and the indexa runs over the differen(xy,z)
components.
Substituting Eq. (2.21) into Eq. (2.17), leadsltagragian form):
mr=-1 U (2.22)

and substituting Eqg. (2.21) into Egs. (2.19) an@@2leads to (Hamiltonian form):

r_ pi
ri - 2.23
m (2.23a)
p=-0U (2.23b)
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It is worthy to notice that the Lagrangian and Héwnian equations of motion are
fully equivalent. From the mathematical point ofwi the difference between the Lagrangian
and the Hamiltonian equations of motion is thatftvener is composed ofNBsecond-order
differential equations while the latter is compos®#doN first-order differential equations.
From the mechanical point of view, solving the laggian equation of motion, i.e. Eq.
(2.22), allows to obtain the evolution of the canades of the atoms with the time only, while
the Hamiltonian one, i.e. Eq. (2.23), provides woly the coordinates but also of the
momentum over time. In fact, from the evolutiontleé coordinates with the time obtained

from the Lagrangian equation of motion, one carudedhe momentum of the atoms.

2.3.2. Ensembles

From the information at the microscopic level, aéomic coordinates and velocities,
so-calledmicrostates the fluid macroscopic thermodynamics, i.e. inérenergy, pressure,
temperature etc., can be fully determined [6-9toMection of microstates in each of which
the same macroscopic thermodynamic restrictionsrapesed, is defined asmicroscopic
ensemblg6-7]. An ensemble is so specified by the choitca set of constrained macroscopic
thermodynamic variables.

During MD simulations, if the microstates of a uare generated from Egs. (2.22) or
(2.23), both density and the total energy (E) aagntained. This situation corresponds to the
micro canonical ensembléNVE). However, to directly compare results of MiPnulations
to experiments, one has to use an adequate ensdrbleonstrain the same macroscopic
thermodynamics variables during MD simulationshesdnes imposed in an experiment [6-7,
10].

For comparison with experiments, the ensemblesateatvidely employed in the MD

simulations consist of theanonical ensemblgNVT), the isothermal-isobaric ensemble
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(NPT) and theggrand canonical ensembl@uVT). The first corresponds to a constant number
of atomsN, volumev , and temperatur@ during simulations. In the seconn,, pressure

P, andT are held constant. In the last the chemical paikepti, v andT are kept constant
[6-7].

The canonical ensemble is the most widely used gntbese ensembles, which is
probably due to its easy implementation comparedtih@r ensemble and because often the
properties of the fluids are described as a funatibtemperature and density. When dealing
with fluids in which it is desired to constrain themperature and pressure, as it is generally
the case in experiments, the MD simulations muspéxormed in the isothermal-isobaric
ensemble. This ensemble is usually used to elidaperimental behavior or to predict
some results that are difficult to obtain by expemts. The MD simulations in the grand
canonical ensemble are suitable to investigateoperi” fluid that is in equilibrium with a
reservoir. In the laboratory, such situation uguetirresponds to studies on a fluid in contact
with a solid surface or confined in a porous medium

In what follows are briefly introduced the way theatural” equations of motion are

modified such that some macroscopic thermodynaaregonstrained.

2.3.2.1. Constant Temperature

To maintainthe temperatureof a system one needglermostat Before describing
thermostats that are usually used in the MD sinanat it is worthy to mention that for a
system of a fluid confined between solid surfacestadied in this work, to dissipate any heat
generated in the fluid, for example by the viscdissipation, thermostat can be applied on
the fluid or the solid (or on both). In fact, thater, usually namebloundary thermostaf11],
is probably more realistic. However, to do so, oeeds to consider the realistic motions of

the solid atoms, which is CPU time consuming. Fenrtiore, it seems that the approach based
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on a thermostat applied on the fluid only providesults similar to those obtained from the
boundary thermostat when the shear rate is noigdo[h1-13]. Thus, in this work we have
employed the thermostat on the fluid particles awwlymaintain the temperature around a

constant value.
The average temperature of a fluid is related to the average kinetic energy of the

fluid K as [6]:

K=(K)=ZkgN,T (2.24)

where N; is the number of degrees of freeddkg,is the Boltzmann constar(t}denotes the

average value, anH is the instantaneous kinetic energy that is ddfes

1 N
== mr” (2.25)
23

Substituting Eqg. (2.25) into Eq. (2.24), we obtthia average temperature:

A T
T—<kaBZmri > (2.26)

while the instantaneous temperature is defined as:

1 &
T= mr, (2.27)

Since the temperature of a fluid is directly refat® the velocity of the atoms,
maintaining the temperature constant during MD &athons requires imposing some
modifications on the equation of the velocity (itee kinetic energy) compared to the

classical one, i.e. Eq. (2.23b). To do so, thaflaigenerally assumed to be in “contact” with
a heat bath at the target temperatuge, Different thermostats describe different “consact

between the fluid and the heat bath, i.e. diffed®dcriptions of the kinetic energy exchanges

between the fluid and the heat bath [14].
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From Eq. (2.26), it is possible to maintain the penature constant by constraining the
instantaneous temperatuTe at the value of the desired olg. However, thermostats using
this idea usually generate an unrealistic dynarhib@ fluid [14]. To improve the description
of the dynamics, other strategies to maintainhave been proposed that correspond to

constrain an average temperature over a timesoabe tequal tol,, i.e. the instantaneous

temperature is allowed to fluctuate aroumg [14]. It should be noted that the timescale

chosen should be smaller than the time of the MBukitions, but longer than the time
separating atomic collisions.

In this part, we briefly describe some thermosthtst are usually employed when
performing MD simulations.
Instantaneous thermostats

In the instantaneous thermostats, the idea is iotena the instantaneous temperature

T equal to the desirable temperatufg, From Eq. (2.27), we have:

N

1 "2
T= r' =T 2.28
kaB;m =T, (2.28)

Making derivative with time for this equation, oc&n obtain:

T _a 1 & .
a9 r'’2 =0 2.29a
ot at(kaB;‘m' ] ( )

T(t=0)=T, (2.29b)
The Hamiltonian equations of motion for the instar@ous thermostats are generally

written as:

r=Pi (2.30a)

p=-HU+ap, (2:30b)
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where &; is a parameter that is determined from the comdétamposed by Eq. (2.28) or
(2.29). These types of thermostats generate a ehanghe momentum that is smooth,
deterministic and time-reversible [14].

Combining Eq. (2.28) with Eq. (2.30), we obtain:

N
ZDriU mi

a, =-=L——— 2.31

T N KT, (2.31)

This is usually referred to as thWWoodcock thermostafl5]. This thermostat rigorously
maintains the instantaneous temperature and preduwgrectly the distribution of
configurations of a fluid at a constant tempergtusat does not provide the correct
momentum. Additionally, the dynamic of the fluid talmed from this thermostat are
unrealistic [14].

When the constraint of Eq. (2.29) is employed, we deduce that:

N

ZDriU mi
ap = (2.32)

;p?/ m

This thermostat is called thddoover-Evans thermostat[16]. The distribution of

configurations of a fluid generated from the Hoelz®ans thermostat is correct, but it is not

the case for the momentum. Furthermore, becalyseéloes not appear explicitly in the

equation of a;, the temperature actually drifts during simulatidone to the numerical

inaccuracies. In addition, this thermostat may mlewnrealistic dynamics of the fluid [14].
Average thermostats
In contrast to the instantaneous thermostats, isgantaneous temperature in the

average thermostats is allowed to fluctuate, brgquires that its average over a timescale of

I; is equal to the target temperature, i.e.:
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TTT:<T>TT:< L ZN:mri'2> =T, (2.33)

ka i=1

To constrain the average temperature over a tineesdadersen [17] proposed that
the atoms of a fluid are conditionally stochasticablliding with a heat bath such that:
* First the momentum of an atom after the stochastitision is chosen from the
Maxwell-Boltzmann distribution
» Second the stochastic collisions suffered by amatocur accordingly to a Poisson
process
» Third the times at which different atoms experienbe stochastic collisions are
statistically uncorrelated.
In this thermostat, usually referred to as Arelersen thermostatr thestochastic coupling

thermostaf the Hamiltonian equations of motion can be wniths:

P,

r="t 2.34a

m (2.34a)

p|, = _DriU +i t _iti,mj[p)ik,n _pi] (234b)
n=1 m=1

Whel’e{ti‘n|n = Lz,...} is the series of intervals without stochasticismhs for atomi, and

p?n is the momentum after the stochastic collisiothatn™ interval. The fluid evolves so in

accord with the classical Newtonian motions, intpted by small energy jumps
corresponding to each stochastic collision. The eksen thermostat leads to a non-
deterministic and time-irreversible change in motaen Moreover, it has the disadvantage
that the momentum of an atom is not-smooth wherstbehastic collision occurs, which may
interfere with the natural dynamics of the fluidowever, the Andersen thermostat with an
adequate stochastic collision frequency can gemeradrrectly the distribution of

configurations and momentum of a fluid at a constamperature [14].
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To constrain the average temperature over a tifeeseach atom of a fluid can be
assumed to be stochastically colliding (withoutretation) with light atoms composing the
heat bath [18]. So, the motions of atoms are gacehby the following Hamilton equations of

motion:

(2.35a)

lII
3|

pi =-0,U-yp, +R (2.35)
where J; is the atomic friction coefficient anR; is the stochastic force. This thermostat is

referred to as théangevin thermostaf18]. Clearly, in this thermostat the fluid is naly
globally coupled to the heat bath, but is alsollga@upled to the heat bath, i.e. not only the
global temperature is maintained, but the local ais®. The change in the momentum
obtained from this thermostat is smooth, non-deit@stic and time-irreversible. However,
this thermostat with an adequate atomic frictiorefioient can generate correctly the
distribution of configurations and momentum of aidl at the temperature constant and
provide realistic dynamics of the fluid [14].

From the Langevin thermostat it is possible to isga global coupling on the fluid
with minimal local disturbances induced by the Bastic coupling, instead of imposing the
local coupling [19]. By doing so, the temperatuféhe entire of the fluid can be maintained,

but not the local temperature. This prescripticadieto the following Hamiltonian equations

of motion:
=P (2.36a)
m
pi =-0U+ap, (2.36h)
T, 1 (T,
=yl o-q|==|loq 2.36
o V'[T j ZTT(T j (2:359)
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where T, :(214)_1. This thermostat proposed by Berendseml. [19], is referred to as the

Berendsen thermostatThe change in the momentum generated from thesmtbstat is
smooth, deterministic and time-irreversible. In iidd, this thermostat produces realistic
dynamics of the fluid. However, the distribution afnfigurations and momentum generated
from this thermostat is not rigorously demonstrdtetie correct [14].

As long as the temperature of a fluid is propowicto the square momentum of the
atoms, it is possible to control the temperaturadjysting the rate of the heat flow between
the fluid and the heat bath during the evolutiorthef simulation. The rate of the heat flow
should be adjusted so that the distribution of igomations and momentum generated is kept
correct [7]. To achieve this prescription, Nosépmsed an extended system that consists of

the fluid and an external system, in which theelait characterized by a degree of freeddom
to control the rate of the heat flow (the conjugatementum ofs is p,) [20-21]. More
precisely, the additional variabEplays a role to rescale the time unit so as torobttie rate.

To do so, Nosé introduced a virtual time variablthat is related to the real onehrough <

as:
df = sdt (2.37)

The Hamiltonian equations of motion in this virttiahe are written as:

dr. o}
1 =_"1 2.38a
dt  ms? ( )
-y (2.38b)
of |
N 2
[Z P (N +1)kTJ
2 f B'0
?j% SANEAL - (2.38d)
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where Q is a parameter of dimensidanergy time’ and behaves as a mass for the motion
of S. It should be noted that the dynamical quantibéghe fluid is explicitly related to
P, =p./s, not to p,. Nosé demonstrated that the distribution of camfigons andp™

generated from Eq. (2.38) is correct [20-21]. Ttheymostat is usually referred to as Mesé
thermostator theextended-System thermostdthe change in the momentum generated from
Eq. (2.38) is smooth, deterministic and time-reNées However, the use of the virtual time is
not very intuitive, and the sampling at uneven teak intervals is rather impractical for the
investigation of the dynamical quantities of theidl To avoid this problem, Hoover

reformulated these Hamiltonian equations of motioterms of the real variables as [22]:

r=— (2.39a)

p=-0U-pp, (2.39b)

(2.39¢)

This thermostat is usually referred to as Nwsé-Hoover thermostatt should be mentioned
that in these real variables dynamical quantitiegbe fluid are explicitly related t@;.

In summary, we have briefly described some therateghat are commonly used in
MD simulations. In fact, the Hamiltonian equatioofsmotion of these thermostats can be
reformulated to reduce the disadvantages. Fornostao improve the conservations in the
Langevin thermostat, thBissipative-Particle-Dynamic thermostdtas been proposed [23].
The Nosé-Hoover chain thermostdR24] and theNosé-Poincaré thermostd5] have been
given for improving the ergodic behavior in the Bdsoover thermostat for special fluids.
However, these thermostats are usually developesbfoe peculiar MD simulations and their

implementations are rather complicated, so theyatevidely employed in MD simulations.
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More generally, the choice of a thermostat showgettd on the characteristics and the

guantities of fluid that we want to explore and léneel of accuracies required.

2.3.2.2. Constant Pressure

The way to maintain thpressureof a system is called lzarostat Before introducing
barostats that are usually employed in MD simutatjcone should mention that for a fluid
confined between solid surfaces it is sometimesiireq to control the normal pressure
exerted on the solid surface due to inter-atomicef® between the fluid and the solid atoms
[12-13]. To do so, the solid surface is commonlsuaised to possess a mass, and is allowed to
move accordingly to the forces due to the fluideaiteraction for a given constant external
pressure. This barostat is usually referred tohadltictuating wall barostat[26]. In fact,
since the pressure in the fluid in the directiomnmal to the solid surface is equal the one
acting on the solid surface due to inter-atomicésrbetween the fluid and the solid atoms, it
is possible to maintain the normal pressure exeotedhe solid surface by controlling the
pressure in the fluid [5, 27].

The average pressure of a fluRlcan be derived from the virial theorem and then

defined thanks to the temperatifeand the internal virialv' as [6]:
P =Nk, T +W (2.40)

In which, the internal virial is written as:
— 1
W = <W> = <§rij [ﬁ— Drij U )> (2.41)

where, I;; =I; =I';. From Egs. (2.40) and (2.41), it is consistentédine the instantaneous

pressure as [6]:

= :Vi{kaBT +Nz_li%r” [ﬂ—D,iU)} (2.42a)

i=1 j-i
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or

P =\% NkT+3 S 2ol (2.42b)

i=1

i
j>i

Wl

wherev is the volume of the fluid ang(r, )= r, du /dr, .

From Egs. (2.40) and (2.42), it appears that tarobnhe pressure of a fluid it is
possible to impose a variation in the number ofretdf the volume is constant or in contrast a
variation of the volume if the number of atoms @stant. Clearly, to employ the former
requires the insertion/depletion of the atoms oubbf the fluid, which is not suitable to deal
with dense fluid and to calculate the dynamical &athsport properties. So, the choice of
volume changes is usually employed in MD simulaioihis requires imposing some
modifications on the equation of coordinates cormgao the conventional one, Eq. (2.23).

Similarly to what has been described in the thetatasection, the pressure of a fluid
can be maintained by constraining the instantanpoessure or the average pressure over a
timescale. So in what follows, we briefly introdute barostats in the same manner as for the
thermostats.

Instantaneous barostats

In the instantaneous barostats, the instantane@ssuyreP is constrained to be equal

to the target pressurf@. From Eq. (2.42), we can obtain:

N-1 N

PV = PV :{kaBT+ZZ

i=1 j>]j

Wk

okt 243
This equation can be rewritten as:

RV’ =[kaBT'+§ > Mr@ (2.44)

=L )i drij

The Hamiltonian equations of motion for the instangous barostats are generally written as

6, 28-29]:
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r = Py asr, (2.45a)
m
P =-0,U -a.p (2.45b)
V'=3Va, (2.45c)
wherea, is deduced from the constraint of Egs. (2.43) @44) as

N N-1 N )

ZZpﬂrlU /m - Z(]/m )z (rij pij )Q(rij )/rij
ap =—— T (2.45d)

where Q(r): rde/dr. This barostat was first proposed by Evans andrisI§28-29] and is

called theconstraint barostatThe change in the volume and coordinates gertefaim this
barostat is smooth, deterministic and time-revésilHowever, this barostat generate
incorrectly the distribution of configurations, acdnstraining the instantaneous pressure may
lead to an inadequate description of the dynami2§e29].
Average barostats

Before introducing the average barostats that aed un MD simulations, it is
interesting to mention that reiochastic coupling barostateems to have been proposed in
the literature. This is probably due to the facttihe temperature is a function of the
individual properties of one atom, whereas the qumes is a function of the collective
properties of all atoms. So, the development of ¢hechastic barostat may be more
complicated than the ones for the temperature. Mewesimilar to the idea that has been
employed to develop the stochastic coupling thetatssit is probably feasible to propose
that at intervals the volume is stochastically geghin accord with a probability distribution

function that is derived from the theory of theaxsated statistical mechanism.
In the average barostats, the average pressureadiraescaler,, is constrained to be
equal the desirable pressufgi.e.
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Pr, =(P), :<3[kaBT +§§N:%w(ru )}> =P, (2.46)

i=1 j>i
Tp

Based on the idea similar to the Langevin thermipsitat Kolb et al. [30] developed a
Langevin barostatin which the variation in the deformation of visla of the fluid with the
time is governed by the Langevin dynamics in theemeaded Andersen system [30]. Later,
Quigley et al. [31] reformulated the Hamiltonian equations of imotbased on Martyna et

al.’s correction on the Hoover equations of theeeded Andersen system as]31

I_pi p)(
=ty Dxp 2.47
oA (2.47a)
3\p
‘= U-|1+-2 | X p 2.47b
p| ri [ ij /\ p| ( )
3
v =Py (2.47¢)
A
. 3 (wpf d
P, =V(P-R)+—| > |- yep, + R (2.47d)
N, (= m

where ), is a “barostat” friction coefficient an& is a stochastic “force” which acts on the
barostat. This barostat is smooth, non-determmeastid time-irreversible. However, Quigley
and Probert [31] demonstrated that this barostaieigges correctly the distribution of
configurations.

Similar to what has been developed for maintairtimg temperature, to introduce a
constraint on the pressure, Berendstral. [19] supposed that the fluid is coupled to a

constant pressure bath Bt This leads to the following Hamiltonian equatiarisnotion:

r = by agr, (2.48a)
p;=-0,U (2.48b)
V' =3V (2.48¢c)
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a, = —,8( R - PJ (2.48d)

3r,
where g is the isothermal compressibility. This barostat usually referred to as the
Berendsen barostaf19]. The change in the volume and coordinates igeéee from this
thermostat is smooth and deterministic. Howevas, ltlarostat is not time-reversible and has
not rigorously been proven to provide correctly dnsribution of configurations [19].
Similar to theextended-system thermostat, an extended systerstafire introduced
to constrain the pressure of a fluid. It is complskthe fluid and a piston, in which the fluid

is assumed to be compressed by a piston that esl &gt an external pressure equal to the

target pressuré’ [6-7, 17]. The coordinate of the piston plays ke rto scale the coordinates
of the atoms, and is represented by the volumbeofluid v, i.e. the coordinates of atoms

are replaced by scaled coordinatess:

Fo=_| (2.49)

Fr= m?/i = (2.50a)
5=V > P, dubv's,) (2.50b)
| Gty df
V':% (2.50c)
12 wp e dufvr)
= Pty PV il 3py (2.50d)
w[v”ézm lejz' dr, 0

where A is a parameter of dimensianass<lengthi* and behaves as the mass of the piston.

It is worthy to note that the dynamical quantitedsthe fluid is explicitly related tg, /v**,
and not top,. This barostat was originally proposed by Ander§en] and calledthe
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extended-system barostat Andersen barostatAndersen proved that this barostat produces
correctly the distribution of configurations [17[he change in the volume and coordinates
generated from Eq. (2.50) are smooth, determiniatid time-reversible. However, the

equations of motion are written in term of the edavariables, so it can be inconvenient to
calculate the properties. To circumvent this prohléloover reformulated these equations in

terms of the real variables as [32]:

P By
rh=—+-Ar, 2.51
m A (2.51a)
f P,
p=-0,U-"xp (2.51b)
' N
v =3Py (2.51¢)
N
p,=3v(P-P,) (2.51d)

However, when this barostat is coupled to the tlstats to constrain both the temperature
and the pressure of a fluid in NPT ensemble, It fea correctly generate the NPT ensemble
[33]. To overcome this problem, first Melchionmd al. [33] modified these equations.
Nevertheless, the modified equations have not leéely employed due to the fact that they
involve constraining the center of mass of thedfliiience, Martyna&t al. [34] proposed the

Hamiltonian equations of motion:

r_ pi p)(
p=—+—r (2.52a)
m A
o, =-0,U —[1+Nij%pi (2.52b)
f
3
v =>Pry (2.52¢)
A
o 3 (& pf
B = (PR (z HJ (2.52d)
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Martynaet al. demonstrated that these equations generate dyiteetphase-space, and when
they are coupled to the thermostat provide coyab# NPT ensemble [34]. This barostat is
usually referred to as thEloover barostat[34]. However, this barostat is applicable to
simulation boxes that have cubic form and isotromptume fluctuations. To overcome this
problem, the scaled coordinates of atoms are difsg35]:

f =hr, (2.53)

whereh is a3x3 matrix and is formed from the edges vectad,c), i.e. h=(ab,c). The

volumev is given byV :CXb[a:de(h). Similar to what have been developed for a flfid o

the cubic form and isotropic fluctuations, the Hiomian equations of motion are derived as

[34]:
P Py
r'==—+-Xr 2.54
: m A" (2.54a)
p=-0U _&p_ _iMp_ (2.54b)
| ri /\ I Nf /\ I
p
h'=—%h 2.54
A (2.54c)
1 Gp!
p. =V(P-PI)+| —SE | (2.54d)

wherel is the3x3 identity matrix, P is the stress tensop,, is a3x3 matrix, andtr(A) IS

the trace of the matrixA. The main idea of this barostat was originally pmsed by
Parrinello and Rahman, so it is called ®&rinello and Rahman barostabr thechanging
box-shape barostdB5].

All these barostats rely on separating the desongt of the equations of the
coordinates of the atoms and the variation in tbieime with the time. In fact, there exist

some alternative barostats in which the volumex@essed in accord with the coordinates
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[36-37]. However, these barostats cannot be cordhbivith periodic boundary conditions, so

they are not commonly used.

2.3.2.3. Constant Chemical Potential

In contrast to the temperature and the pressutedmabe directly determined from the
evolution over time of the coordinates and the muona of atoms, i.e. the phase-space
trajectory, the chemical potential is related soiittegrals, i.e. the phase-space volume [6, 8].
So, to maintain the chemical potential requiresasipg some modifications on the phase-
space volume. To do so in pure fluids, the numlbetams of a fluid can be allowed to vary
with the time when the volume of the fluid is fixeal the volume can be varied when the
number of atoms is fixed. Usually the former is égpd since the MD simulations with a
constant chemical potential are carried out to @epkthe phenomena where interface are
present which makes desirable to fix the volume.

The change in the number of atoms of a fluid mehas the fluid is coupled to a
matter reservoir. MD simulations at a constant adhahpotential can so be performed using
two approaches, one including the matter resemxplicitly and the other one including it
implicitly. The variation in the number of atomsadks to the fact that it requires introducing
an equation associated to the evolution of the munad atoms. This equation is directly
obtained in the explicit approach and needs todvved in the implicit one. In what follows,

we first present the methods using the former ¥odld by the ones using the latter.

Explicit matter reservoir
The idea of these methods consists in simulatiqi@tty the fluid in contact with a
matter reservoir maintained at a constant chenpiotgntial, i.e. the simulation box contains

both the fluid and the reservoir [38-43]. So, tlssemnce of these methods is to transfer the
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constraint of the chemical potential of a complgstam, e.g. a confined fluid, to the one of a
simple system, i.e. the matter reservoir. Sincetbhemodynamics of the matter reservoir
behaves as bulk one, i.e. the chemical potentialbeadeduced from the pressure or density
for a pure fluid, it is possible to constrain theemical potential of the reservoir by controlling
it rigorously or through other thermodynamics pmbies. To maintain the chemical potential,
grand canonical MC simulations in the reservoir baremployed, which is usually referred to
as the control volume grand canonical molecular dynamicéCV-GCMD) [38-41].
Otherwise, to maintain other thermodynamics progef the matter reservoir, e.g. pressure,
the methods that we have described above can blg[4@€l3]. These methods are called the
Gao GCMD

These methods introducing explicitly a matter reserare convenient to explore the
properties of dense fluids, the transient behaviansl the non-equilibrium properties.
However, because it needs simulating the matterves, such MD simulations are usually

very CPU time demanding [38-43].

Implicit matter reservoir

The chemical potential of a fluid is defined asg8,

=-k,T In[ (N/V)E31<kBT>3/2 <(kBT)3*2 ex;{—NLkJM (2.55)

where= is the thermal de Broglie wavelength.

Instantaneous chemical potential

To obtain the equation of the number of atoms ftbenconstraint of an instantaneous
chemical potential requires defining the instantarsechemical potential in terms of the
instantaneous number of atoms. One of the difiesilis that the number of atoms is regarded

as integer value and so it is impossible to deteenthe derivative of the “instantaneous”
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chemical potential with respect to the number ttambthe equation of variation in the
number of atoms. However, if the number of atonmissidered as a real value, as mentioned
later, it is perhaps possible to obtain the equatibvariation in the number of atoms. This
suggestion is left as a future work.
Average chemical potential constant

From the idea that has been used to propossttiohastic couplinghermostat, it is
consistent to assume that the change in the nuaflzoms can be obtained by stochastically
coupling the matter reservoir, i.e. atom creatiepldtion attempts are accepted with a
probability that is deduced from the classical tlgenf statistical mechanism. Using this idea,
two methods to constrain the chemical potentiakehagen proposed. In the first, the number
of atoms is an integer value, which leads to tlo¢ tlaat the variation in it is discontinuous.
This method is usually referred to as the methodupkowski and van Swol [44]. Because of
the discretisation of the variation of the numbératoms, it may lead to an unrealistic
dynamics of the fluid. As an improvement to thistiheoel, Boinepalli and Attard proposed a

continuous variation in the number of atoms [45].db so, the number of atoms in a fluid is
characterized as a real varialﬁb in which its integer part is the actual numbeatafm in the
fluid N and its fractional par? is assumed as an “additional” atom [45]. The maguoif the
presence of this additional atom is that whers 0 the number of the actual atoms is
unchanged, and whem =1 it increases by one. The physical presence ofathistional atom

is described by a peculiar interaction poteniabetween it and actual atoms and mass
According to this convention, it is clear that wher=1, ¢ is the same as the interaction

potential between actual atoms and is the same as the mass of actual atom, otherwise
when ¢ =0, both ¢ and m, are zero. The fractional part is randomly chanbgdthe

trial/move attempts in which the acceptance orctiga is followed by a condition deduced

from the theory of the statistical mechanics. Thesethods are non-smooth, non-
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deterministic and time-irreversible. However, samilto what is demonstrated for the
thermostats, they can generate correctly the kigtan of configurations of fluid at a
constant chemical potential [45].

The idea of thé.angevin dynamicsas been used to propose methods for constraining
the temperature and pressure [18, 30],frmmethodusing this idea has been developed for
the chemical potential. From the extended-systerthogls proposed by Cagin and Pettitt [46-
47] for the chemical potential that will be intrashd latter, we think that it is feasible to
propose d.angevin methodor the chemical potential. In the Langevin fotime Lagrangian

equations of motion of the fluid containing theumdtatoms and the additional atom could be

written as:
mr'=-0,U-0¢ (2.56a)
0
mrr=-0 o-20 (2.56b)
! ot
n a¢ 1 amf 12 a(/l 1]
7" =—-——L+= r-—-——-y9+R 2.56¢C
09 299 " a9 VT (2.56¢)

where ¢ is the total potential energy due to interactibasveen the additional atom and the

N
actual atoms, i.eSD:Z(l{f , 1, Is the coordinate of the additional atom, is a parameter
i=1

and behaves as a mass for the motio® pfy is a potential function related to the desired
chemical potentiali,, y, is “chemical potential” friction coefficient ang, is a stochastic

“force” which acts on the chemical potential. Thain problems of this method at the time

being are to specify, andR,, are left as a future work. This method would ®sth, non-

deterministic and time-irreversible in the variatiof number of atoms. However, it could
provide correctly the distribution of configuraterof the fluid at a constant chemical

potential.
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Although the thermostat and barostat using the mle@osedBerendsen et alare
widely used [19]no methodusing this idea for the chemical potential hasnbg®posed in
the literature. We think that it is probably fedsibb develop such a method. In the Berendsen

form, the fractional part of the equation of vaoatcould be written as:

19':ZAK[u(rN,r'N,rf,r},:?)—,uo]k (2.57)

where A s a constant angu is an unknown function of (rN,r'N,rf,r;,zS’) that can be

interpreted as an “instantaneous chemical poténtiie Langrangian equations of motion of

the actual and additional atoms are given by E356@) and (2.56b). The main problems of
this method at the present time are to spedfyand u, which is left as a future work.

Similarly to the Berendsen thermostat and barog@j, this method would be smooth,
deterministic and time-irreversible.

From the idea used in tlextended-system methogsoposed for the temperature and
the pressure, Cagin and Pettitt first developed apmgroach for constraining the chemical
potential [46-48]. The extended system consisttheffluid and an additional atom, in which
the latter represents the coupling of the fluidtiie matter reservoir. The presence of this
additional atom is represented by the fractional paas mentioned above.

During the simulationsg varies with the time and is governed by an equatat is

derived from the Langrangian of the extended system

mr’=-0,U-0® (2.58a)
9
m,rt = -0, - g:f r (2.58b)
9
79 =00 10 . 0¢ (2.58¢)

09 299 ' a9

The problems of this method are to defime m, andy and to insert/delete an actual atom

when# =1or 0. In the original study, Cagin and Pettitt [46-4l€fined these variables as:
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¢=35u (2.59a)
m, =9m, =... =Im, (2.59b)
Y =3, (2.59¢)

where u is the potential between actual atoms. Wisea1 the current additional atom is
considered as a actual atom, and a new additidoal & inserted to the fluid at the position
where the local density of the fluid is minimalhetwise wheng = 0 the current additional
atom is deleted, and a current actual atom whasstikiand potential are the closest the ones
of the additional atom is switched to a new addaicatom. In more recent works, Lynch and
Pettitt [49] reformulated the definition @f to include the ideal gas behavior and various
partitioning of ideal and excess chemical potestial order to correctly incorporate this
method with thermostats. This method is smootherdahistic and time-reversible. Cagin
and Pettitt rigorously demonstrated that this metgenerates correctly the distribution of
configurations [47].

The subsequent studies have used the same Lagraegiations of motion with

modifications on the definitions ofe®  m, and ¢, and on insertion/deletion in order to

improve the applicability of the method [50] orremove the local density-bias search [51].
In particular, Shroll and Smith [52] reformulateldetLagrangian equations of motion to
include umbrella sampling. By doing so, the efincg of the atom insertion/deletion is
improved.

It is clear that implementations of the conventlobd simulation with a constant
number of atoms, e.g. the MD simulations usingrtfustats or barostats, are simpler than
those with a dynamically variable number of atorasrathe previously described methods.
Based on this advantage, some methods for comgothie chemical potential have been

proposed, in which MD simulations with a constamtnber of atoms are performed [53-54].
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For instance, for investigating properties of adlgonfined between solid surfaces and in
equilibrium with a reservoir, i.e. the chemical gatial of atoms of the confined fluid is equal
to that of the reservoir, Wang and Fichthorn [58$waned that the parallel pressure of the
confined fluid is equal to the one of the reserv8o instead of constraining the chemical
potential, they constrain the parallel pressur@gisi barostat [53]. However, in the present
work we have found that the parallel pressure obrdined fluid is not equal to the bulk one
when the separation between the solid surfacesadl.s
Another alternative is to perform parallel sets aanventional MD simulations

corresponding to different numbers of atoms offthel. Then, an adequate combination of
chains of configurations generated from these dakMD simulations is selected according
to the prescription of a probability distribution bbtain the fluid at a constant chemical
potential [54]. This method has a certain disadvg&t many classical MD simulations
corresponding to different numbers of atoms arei@stpd to reflect correctly the change in

the number of atoms of a fluid at a constant chahmotential.

2.3.2.4. Equations of Motion in Ensembles

The methods to constrain the temperature, pressuwtechemical potential separately
have been introduced. The equations of motion ofd#bulations in theanonical ensemble
are the ones presented in subsection 2.3.2.2. Tanothe equations of motion of the MD
simulations in thasothermal-isobaric ensembland thegrand canonical ensemblene has
to combine the ones constraining different macrpgcthermodynamic variables. Here we
present some combined equations of motion in tiserables that have commonly been used
in MD simulations.
The isothermal-isobaric ensemble

In the Berendsen form [19], the equations of motmacombined as:
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r=Piigr (2.60a)
m

p;=-0,U +ap, (2.60Db)
V' =30V (2.60c)

m (T,
a.=—|2-1 2.60d
! 2TT(T j ( )
- _ I:’o -P 2.60e
e i

In the extended-system form [34], we can obtairettpgations of motion as:

r_Pi 4 Py
=Py By (2.61a)
m A
p, =-0,U —(1+N1J%pi -%pi (2.61D)
f
V' :3%\/ (2.61¢)
N 42 2
(] i p
P= 2 (N ke, (2.61d)
i=1
2
p, =3v(P- Po)+i(ifn—ij ‘% P (2.61e)
f i=1

The grand canonical ensemble

In the extended-system form [47], the equationsofion are combined as:

n_ 1 _ _ _ i' U
mri _S_Z[ DriU Driq)] Zm < ri (262&)
=20 o] T - am, Sy 2.62b
mfrf_s_z_Dr,q) _Frf_sz;rf (2. )
N N, +1
&' =) ms?+msi’ - fs KT, (2.62c)
i=1
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0
79" = _%Jrlﬂr;z _oy (2.62d)
09 2 049 09

As introduced and discussed previously, the chofca method for constraining the
macroscopic properties depends on many factorshidrwork, since most of results focus on
the dynamic of various systems, for simplicity mplementation we have used the Berendsen
thermostat and barostat [19] in the MD simulatiamsthe canonical and the isothermal-
isobaric ensembles. In addition, we have emploledrethod of the explicit matter reservoir

to deal with the grand canonical ensemble usingshe approach [42-43].

2.3.3. Finite Different Methods

As mention previously, in MD simulations, the mawopic properties of a fluid are
determined from its microstates that are obtaineddiving the classical equations of motion
of atoms. The finite different methods are usuaiyployed to obtain solutions of these
equations [6-9]. The main idea of the methods iattempt to determine the microstate at a
time t+ &t from the one at previous timewith a sufficient accuracy [6-9]. By doing so, the
microstate is completely specified at any timeasglas the initial microstate is given. The
choice of & depends not only on the method used, but also enyfhical time taken for an
atom to travel over its own lengtlat(should be decreased when the temperature incjeases

There have been many methods proposed and reviewsdlve the equations of
motion in MD simulations [6-9]. Here we do not dethe advantages and disadvantages of
such methods. However, it is worthy to note thasuwccessful” method should possess the
following characteristics [6-9]:

Mathematical point of view:.The method should be stable and accurate, and tpermi

the use of a long time step
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Computer point of viewThe method requires little memory, is simple imicand
easy to implement. In particular, it does not regjgomputing the forces many times at each
time step.

Physical point of view:The macroscopic and microscopic properties obthinem
the microstates are realistic and satisfy the laftbe thermodynamics.

Here we briefly introduce the methods that arerofised in MD simulations [6-9].

For simplicity, only the real coordinate variabtdsatomsr; are provided, other “coordinate”

variables of “extended-system”, eg.and 9, can easily be obtained in the same way.

Verlet method

2
,0°r

rt+&)=2r(t)-r(t-a)+a& atzi (t) (2.63)
Leap-Frog method
or 1
= 2.64
rt+a&)=r ()+dat (t+2dj (2.64a)
or or(, 1 1,07
t+=& -=a& [+=a—It :
at( j at( 2] Saz ) (2.64b)
or, 1| dr, or,
—~(t+da t——d —Llt+=a :
o tra)= 2{&( j+6t(+ ﬂ (2.640)
Velocity Verlet method
o d)=r )+ a2i()+ a2l (2.65a)
' ' ot 2 ot?
ar, or, &Y 1 .o, a°r,
hal§ el P i Z i 2.65b
" (1 )= 2 (t+2j+2d[at2 0+ 2" (mx)} (2.65b)

Fifth-Order Gear Predictor-Corrector method

The prediction step:

b or ,0°r, 3 0%, 1.,0% 50°r,
| M)+ = 2 kel = 2,
FETIEIFLANEPILAAAREY SANINE PRANIRNE PRANINAS
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I v a)= L) ali@)rtar L0 2o L)+ 2t 2) (2.660)

ot ot ot? 20 ot® 3 ot 4 ot°
0°rF o°r, % 1,0, ! 5 0°r
i _ NATES (1) + = 2.66
%" 0°r, a'r, 1 .,0°r
e (t+ )= e L)+ & e (t)+5ci F(t) (2.66d)
a'rP a’r 0°r
. SLAn o 2.66
(e @)= 2 )+ @S () (2.66¢)
5. P 5
"’atr (t+&)—%—5(t) (2.66f)
The error in the prediction step:
_On | e o’ o’ 2.67
p=2t [ri +a1), 20 (ua)} " +a) (2.67)
The corrector step:
2
r (t+d):rip(t+d)+a0Ax2|d (2.68a)
P 2
%(Hd)Xd = a(;t (t+d)><d+a1Ax2!d (2.68b)
1 0%, o%rf Ax&?
o (t+&)x&2 = = i (t+X)x&A*+a, 5 (2.68¢)
3 3. P 2
ia—tr;(ua)xas :a—ris(t+ci)xci3+agAx2!d (2.68d)
1 64ri 64rip A X X2
VT (t+&)x&* = e (t+a‘t)><a't4+a4T (2.68e)
10°r, 65 P A X X2
a?(ﬁd)xcif’ L (t+&)x & +a, ; (2.68f)

wherea,_.; are parameter.

In addition, the use of the Verlet method usuadguires computing the velocities that

can be obtained from [6-9]:
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%= L ltr@)-rk-a) (2.69)

whereas other methods involve the determinatiahisfderivative. The order of this equation
is dt?, and so, when velocity is needed the accurachef\erlet method is significantly
smaller than the one of the other methods [6-9].

Among the methods having a good accuracy, the Wgld@rlet method provides the

velocity in a completely satisfactory manner at,t+d,t+24&,... not at
t,t+12&,t+&,t+3/25,t +20... as in the Leap-Frog method, and is seemingly e&sie
implement than the Fifth-Order Gear Predictor-Catoemethod [6-9]. This method is widely

employed in MD simulations and provided realisgsults. Therefore, in this work, we have

used the Velocity Verlet algorithm to solve the &tipns of motion.

2.3.4. Periodic Boundary Conditions

Using finite different methods as in section 2.83solve the equations of motion
given in section 2.3.2, the motions of atoms are completely determined. However, a
problem hidden in MD simulations is to impose auisgment on the motions of the atoms
crossing the boundaries of the given voluméfinite size) of the simulation box. To do so,
first one could imagine that the surfaces of theime are container walls. Nevertheless, the
presence of the container walls has significanéat$f on the motions of atoms near the
surfaces, i.e. so-called the surface effects [lficlware not desirable. To achieve the finite
size simulations requirement without walls effgutiodic boundary conditions (PBC) can be
employed [6-9] so as to mimic an infinite systermgs finite number of atoms.

When the PBC are applied to a systenNoatoms contained in a volunwe, so-called
a primary box, the primary box is replicated thrioogt space [6-9]. These replicas are called

image boxes. By doing so, at any time of the sitmiathe positions and momenta of atoms
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in the image boxes are exactly the same than timo8e primary box. In the course of the
simulations, as an atom moves in the primary bieximmage in other image boxes moves in
exactly the same way. Hence, as an atom leavagritinary box at one boundary, one of its
images simultaneously enters through at the opptsitindary, see Fig. 2.6 [6-9]. However,
imposing the artificial periodicity into the primabox by the use of the PBC can affect some
simulated quantities [6-9]. Usually, to reduce BC effects, the primary box should initially
be set up to be sufficiently large, which dependsh@ range of the inter-atomic potential, the

state of the substance of interest, the quantitleumvestigation and the used computer [6-9].
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Figure 2.6: A 2D periodic system. Atoms can entef lgave each box across each of four

boundaries. The shadowed box is the primary box [6]

2.3.5. Force Evaluation
To solve completely the equations of motion as dlesd previously requires

specifying the gradient of the total potential gyeof a systen, U . Accuracy and reality of
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the simulation results crucially depend on the dpg8on of the total potential which
represents the interaction between the atoms cangpthe system.
2.3.5.1. Force Field

Considering a system containimg atoms, the total potential of the system is define
to be the sum of individual interactions each ofchhis characterized by the coordinates of

individual atoms, pairs, triplets etc. [6]:

U :Z (ri)+22u2(ri,rj)+ iz;us(ri,rj,rk)... (2.70)
i=1 i=1 j>i i=1 j>ik>j

where ul(ri) represents the effect of an external field andrédmaining terms are particle

interactions in whichu, (r,,r, ) is the pair potential and, r,,r ,r,) is the triplet potential, etc.

i1
In this work, we only focus on studying simple flsithat are composed of spherical atoms

without bonds between atoms. The total potentialszabe rewritten as:

N N-1 N

U :Zul(ri)"'Zzuz(ri’rJ) (2.71)

i=1 i=1 j-i
It is worthy to notice that the pair potential dege only on the magnitude of the pair
separationy =|r, —r [, i.e.u,(r,.r;)=u,(r)=uly).

In this work, three simple spherical fluids: Lenshdiones (LJ) fluid, Weeks-Chandler-
Andersen (WCA) fluid and Soft fluid, are considergd9]. The three corresponding pair
potentials are the followings:

The Lennard-Jones potential:

o)) 3]
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The WCA potential:
(2.73)

The Soft potential:

ulr,)=¢, (ﬂJ (2.74)

in which, n is a parameter that determines the potential sts=p

The two “atomic” parameters, and g, are defined in term of the diameters and the

potential depths of individual atoms as:

g =—— (2.75a)

e =k. |e€&. (2.75b)

where g and & are the diameter and the potential depth of ateespectively, and; is a

classical pre-factor to modulate the cross intevadbetween different species. It should be

note that wherk, =1, Eq. (2.75) is the standard Lorentz-Berthelot cioinig rules.

2.3.5.2. Efficient Calculation of Forces

When the PBC is applied to a system contaimingtoms, an atom in the primary box
interacts not only with the\ -1 remaining atoms in this cell but also with thenagoin the
image boxes [6-9]. This leads to a total energydpen infinite sum, which is of course
impossible to compute in practice and may inducehysical self-correlations [6-9].
Fortunately, the pair potentials used in this wark short-range ones. It is so possible to
restrict the number of atoms interacting with aegivatom by neglecting atoms that are
beyond some distanog from the given atom. This means setting the pafemtial u(r, ) to

60



Chapter 2 : Theory and Simulation

zero for I 2I;. 1. is called the cutoff radius. This is usually reéer to as the method of

truncation of pair potential[6-9].

However, the use of the truncation of pair poténtiduces two problems. First, the
potential and its derivative, i.e. force, are bdtscontinuous afj; =I;, which can result in

perturbations. Second, the long range contributiees neglected, i.e. the contributions to

properties of the system due to interactions betvegems separated by distance greater than
r. are not taken into account. To circumvent thesblpms, shifted potential and force are

sometimes employed [6-9]. However, the use of suthpproach may change the properties
compared to the ones of the full potential.

In this work, we chose the cutoff radius to be isightly large so that the
discontinuous of the potential and force Rt=I; remains small [6-9]. Additionally, to

compensate for the missing long range part of thtergtial, the properties are corrected by

adding long-range terms to the simulated ones ferghe energye,, =E and

Simulation + E LRC

- I:)Simulation

+P

LRC

for the pressurep in which E . and E . are the long-range terms that

full

are defined as, in the bulk [6-9]:

E,nc= Zzzoju (r )rdr (2.76a)
PLRC:—ézwzjrd:—(rr)rzdr (2.76b)

fe

Since the potentials used are short-range onesutiodf radius is usually smaller the

size of the primary box that is rather large tdriesthe PBC effects, i.ef; < mif{'-x, L, |7)

where (Lx, Ly, |7) are the dimensions of the primary box in the, z directions respectively.

This leads to the fact in the course of the MD dation an atom in the primary box can
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interact only with the(N —1) remaining atoms in this box and their images i dldjacent

boxes [6-9], i.e.

(2.77)

Whereu:(ax,ay,az) and L :(LX,LV,Q). Eq. (2.77) indicates that the atdntan interact
with the atomj in the primary box and its own images in the agljadoxes (but only one of
the 27 terms has a separatipp—aL‘ less thanl/2). Therefore, whenlL/2~r_, which

should be satisfied during MD simulations, Eq. {3.Gan be rewritten as:

0U= —i 0, u(minﬂrij ~all,(a,=-1+1a,=-1+1a, = ~1:1))

j#i

(2.78)

This is usually called theninimum image conventionsee Fig. 2.7.

Figure 2.7: The minimum image convention in a 2Btem. The yellow box contains atoms

that contribute to the forces acting on the grdema
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To determine the force on an atdnusing Eq. (2.78), at each time step of the MD
simulations, requires computing inter-atomic dists between this atom and tI(ubl —1)
remaining atoms, i.e. even taking into accountdms beyond the cutoff radius from the
atomi. This is clearly a lost of CPU time because suoma do not contribute the force on
the atomi. To restrict the number of atoms beyond Verlet [55] proposed a bookkeeping

scheme. In a first step, a list composed of alhmestdying within a distance, > r, of the

atomi is constructed, wherg is called the list radius, see Fig. 2.8, [6-9,.9%]e same list is
used in the force evaluation over several conseetitne steps. The list will be updated once
one of theN atoms has travelled from a distan(rg—rc)/Z from its position at the time of

the last update. This method is usually referreasttheVerlet neighbor lis{6-9, 55].

Figure 2.8: The cutoff and the neighbor list speem®und the green atom.
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At each timestep the list is updated and the usthefVerlet neighbor list requires

examining all the pair distances. This is reallgfiicient to systems containing many atoms
as long as all pair distances larger than theréidius I, are not necessary to be taken into

account. To circumvent this problem, the primary e divided into a regular lattice of

M, xM xM, cells, wherem M ,m, are the number of lattices in they,z directions

respectively, such thaltnif{LX/MX,H/MY,Q/MZ)>YL, and all the atoms are sorted into

their appropriate cells. Therefore, the list of @om i located in a corresponding cell is
reconstructed by searching all atoms only in tlei$ &nd its adjacent cells that lie within the

list radius of the atom, instead of in the entire primary box [6-7], seg.2.9. This is called

the cell sub-division
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Figure 2.9: The cell list method in 2D. The primaox is divided intoM, XMyceIIs. The

size of cells exceeds the list radiys

The use of the methods described in this sectialetermine the forces can save much
CPU time, and it is then possible (few days of cotapon) to perform MD simulations of
systems containing a number of atoms around 5000nbnone processor. However, when
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dealing with bigger systems the use of only one@ssor limits the possibilities due to the
requirements on the CPU time and memory [7]. Tourtivent this problem, the code can be
parallelized, i.e. the computation of all the faraa all atoms is divided into several parts
which are concurrently carried out on different ggssors [7, 56-58]. This is called the
parallel computation

To be efficient, an algorithm of parallel computatishould possess the following
characteristics [7, 56-58]:

* An equilibrated number of calculations and memagds on every processor,
* Alimited amount of information exchanges betwew®nprocessors

A non-negligible number of algorithms for paratkétig MD simulations have been proposed
to achieve such characteristics [57-58]. Here weflgrintroduce only the two main basic
algorithms that can equally distribute the evalradiof the forces on the processors and that
are not too complex to implemeim@omain DecompositiorandFunctional Decomposition

In the domain decomposition algorithmthe space of the primary box is equally
divided into cells, each of which is assigned toracessor, see Fig. 2.10. Each processor is
responsible for computing the forces on its owmetoSince the neighbor list or at least the
truncation of potential are usually used for thecéocalculations, each processor needs
information of atoms from other cells within thetlradius or the cutoff radius, see Fig. 2.10.
The main advantage of this algorithm is that it loet require all the information of all
atoms to be exchanged among all processors. @t effieient for systems containing a large
number of atoms when ran on a large number of gsmrs. However, the implementation of
this algorithm is not straightforward in inhomogens systems (as in this work) as it is rather
complicated to divide the primary cell such thae thbove requirements of the parallel

computation are achieved. Therefore, this algorithnmot used in this work.
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Figure 2.10: The domain decomposition algorithr@ln Each processor calculates the forces

on its own atoms, i.e. processor 9 is responsdlatoms within the blue cell, but needs

information of atoms from other cells within thelnas listr, in yellow, when updating the

In the functional decomposition algorithmas the potentials used in this work are pair

66

ones, it is possible to define a force ma(rihkx N) that is composed of:

(2.79)

where fij =E|,ijU(rij) is the force on atonidue to atomj. From the third Newton’s law:

N N
f; ==f;, it is clear that the total force on atomf, =—ZDriU(rij)=zfij is completely

j# j#

determined as long as the upper triangular portbmatrix is given. To equilibrate the
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charge, the calculations of afljl are distributed over the processors as following: processor

0 is responsible for the determination of the fiN{2n) and the last\N/(2n) rows of the upper
triangular portion; processor 1 is from roW/(2n)+1 to row 2N/(2n) and from row

N -2N/(2n)+1 to row N = N/(2n) and so on.

Although this method requires exchanging the infaion of all atoms among all
processors, i.e. it is inefficient for systems eamig a large number of atoms and a lot of
processor, it is rather simple to implement ardbis not depend of the inhomogeneity of the
system. Thus, we have used this algorithm in tlikwhen dealing with systems containing

a number of atoms greater than 7000.

2.3.6. Transport Coefficients

In this part, we briefly introduce how to compute transport coefficients of a system
from its information at the microscopic level. Gaally, transport coefficients are defined in
terms of a (linear) response of a system to a (3ipatturbation [6-9]. Hence, to obtain such
coefficients, the response of the system to a g&tion is evaluated and compared with the
corresponding macroscopic constitutive equationingJMD simulations there exist two
possibilities to deal with that problem [6-9]:

 The perturbation corresponds to the ones alreadgti|mx due to the natural
fluctuations (that may be artificially enhancedgqilibrium.

* The system is put out of equilibrium by applyindgaege external perturbation while
keeping the system still in the linear respons@medbut the transport coefficient can
vary with the perturbation).

Thus, transport coefficients can be determinedeeiftom the equilibrium state or the non-

equilibrium state.
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Since a large part of this work focus on momentuamgport, only the techniques
dedicated to compute the shear viscosity are mmeedion this section. For other transport
properties, there exist equivalent techniques [6-9]
2.3.6.1. Equilibrium Molecular Dynamics Simulations

During equilibrium MD simulations, the shear vistépsan be obtained by invoking
either the Green-Kubo formula or the Einstein reftaas follows [6-9]:

The Green-Kubo formula

1= (3,5 (03, 0)ct (2.80)

where a, 8 indicate the directions, i.ex, y, z, <> is the average over different original times

and over the directions. The oppositeib,fﬁ is the element of the stress tenshyy( that is

given as:
‘Jaﬂ Vi(lzzl pla L +Z rla |ﬁj (281&)
or
1 plﬂ | Y
30 :\7@ Peba 53, “[,J (2.81b)
The Einstein relation
_V B 2
2u —kB—T<(Qaﬁ(t) Q,(0) > (2.82)
where
Qg VZr.a Pis (2.83)

In fact, Eqgs. (2.80) and (2.82) are fully equivaléfhe use of such techniques at equilibrium
allows avoiding the effects of a large perturbatiom the shear viscosity that may be

unwanted [59-60]. Nevertheless, as we are inteddsyelocal properties in inhomogeneous
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systems and by the out of equilibrium behaviorew# in particular) these techniques have

not been employed in this work.

2.3.6.2. Non-Equilibrium Molecular Dynamics Simulatons

When an external perturbation is applied to a systbe system is out of equilibrium.
The response of the system to the perturbatiohaa tomputed and using an appropriate
macroscopic constitutive equation, the correspanttiansport property can be obtained. For
shear viscosity the perturbation can be eithestiear rate or the shear stress (and vice-versa
for the response) and the constitutive equatidheNewton’s equation.

Here we briefly introduce some techniques to aplgonvenient perturbation to a
system that are widely employed in direct Non-BQuiim MD simulations.
The boundary driven algorithms

The main idea of the boundary driven algorithmsoismpose different velocities to
the different boundaries of a given system. Thigesponds generally to a Couette like
configuration in a parallepipedic simulation bokor a system in which the boundaries are
solid walls, it is easy to impose a shear rate lpwving the solid walls at the desirable
velocities [61]. However, the situation becomes endifficult to manage when the system
contains no solid walls at the boundary and empPBE. In such situations, imposing a
velocity at the boundaries of the primary box candone by moving the adjacent image
boxes, see Fig. 2.11. It should be noted that thvamg velocities of the adjacent image boxes
must be different from the boundary velocities. &ging so, when an atom crosses the
boundary of the primary box, its velocity must bedified to be consistent with the boundary
velocities. In other words, imposing velocitiesd#terent boundaries can be achieved while

keeping PBC, which was proposed by Lees and Edwarddss so-called theees-Edwards

PBCI6, 62].
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Figure 2.12: A 2D scheme view of the boundary drigggorithm proposed by Miiller-Plathe.

An alternative and efficient technique to impostegies at boundaries was proposed
by Miiller-Platheand is called th&®everse Non-Equilibrium MD63]. In this approach, first
a primary box is duplicated in the direction pembenlar the flow to construct a bi-periodic

system, see Fig. 2.12. Then, the boundaries gbrih@ary box are driven by propelling atoms
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within a small region adjacent to the boundariesd® so, the bi-periodic box is divided into

Ng., Slabs parallel the flow that needs to be gener@tethex direction in our example, see

Fig. 2.12). Then, at a given number of time-steqygapping time), the atoms located in the

A h
slabs that will induce the shear flow are looked fo the slabsi"and |\E,al, the two atoms

with the largest momentum component in thex direction are found. Likewise, in the slabs

(N/Z)th and (N/2+1)th, the two atoms with largest momentum componenthi + X

direction are found. Finally, the momentum of thegems in slabsl™ and N" are

exchanged with those in sldbV/2" and (N/2+1)", respectively. By doing so, the boundary
velocities depend strongly the interval choseneldgzm the momentum exchanges, i.e. using
different intervals yields different shear rateth®lugh the use of this technique requires
doubling the primary box, this technique is easyiniplement, keep the total energy and
momentum of the system and does not require maodjfthe PBC.
The external force algorithms

The main idea of the external field algorithmsoigpply a perturbation on all atoms of
a system. By doing so, the equations of motionhef @atoms must be modified by adding
terms corresponding to the perturbation, which gghemakes the system easier to interpret
theoretically than what obtained from the bounddriven algorithms [6]. For a system
containing solid walls at the boundaries, the pbdtion is applied to the system simply by
adding auniform “gravitational” force on each atom [64], corresponding generally to a
Poiseuille like configuration. This technique isdefy used to study of the flow/shear
viscosity of a fluid confined between solid surfecé&or systems without solid walls at
boundaries, to maintain the PBC the velocity figeherated from the perturbation must be
spatially periodic. This requires applyingspatially periodic forceon each atom which is

often chosen to be a spatially sinusoidal functsa® Fig. 13 [6, 65-66].
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An alternative technique was proposed by Hoateal. [67] and later modified by
Evans et al. [68-69], and is called the SLLOD.His technique, the conventional equations of
motion are modified to represent the motions ofret®f a system with Bnear streaming
velocity To do so, the “laboratory” velocities of atom® alecomposed into the “peculiar”
and streaming ones, in which the latter is ingiglven and the former is governed by the
modified equations of motion. The use of this tegha requires the use of Lees-Edwards
PBC. Since the streaming velocity is generated bgifying the equations of motion of all
atoms, this technique allows speeding up the sitmouls compared to the boundary driven

one using the Lees-Edwards PBC alone.

Figure 13: A schematic representation of spatiadsiodic force applied to the simulation box

[6]

Transport coefficients of Inhomogeneous systems

For homogeneous systems, external field algorithresoften more suitable than the
boundary driven algorithms due to the more traetdieoretical analysis of the results [6, 68-
69]. When dealing with strongly inhomogeneous systéas in this work) in which the shear

viscosity may vary spatially, the computation of tbcal shear rate may be needed [64]. The
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use of the external field algorithms implies thelagation of a local perturbation and so the
local shear viscosity obtained may differ signifitg from the “true” ones. The use of the
external field algorithms induces variations in tiskear rate that result from the
inhomogeneity of the system and the local pertushatvhereas it is due to only the former
when using the boundary driven algorithms. Furtteeanfor systems in which the shear rate
varies rapidly over a length typical of intermoligwcorrelations, the classical local Newton’s
law of viscosity must be generalized by a nonlamaistitutive equation, i.e. the local shear
viscosity cannot be defined as the ratio betweerldbal shear stress and the local shear rate
[70-71]. In fact, these problems could be compjeteloided if the streaming velocity is fully
linear over the entire system [71]. However, ituiegs modifying the equations of motion and
the boundary conditions, which is obviously morenpticated in inhomogeneous systems
than that in homogeneous ones.

For all these previous reasons, we have used B whrk the boundary driven
algorithms to determine the flow properties/lochlear viscosity of an inhomogeneous

system.
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Chapter 3: GCMD Simulation: Mass Diffusion

Chapter 3
Grand-Canonical Like Molecular Dynamics Simulations
Application to Anisotropic Mass Diffusion in a Nangorous

Medium”

* This chapter has been published in J. Chem. PI8&. 184702 (2012)

DOI: 10.1063/1.4712139

Abstract:

In this work, we describe two grand canonical-likelecular dynamics approaches to
investigate mass diffusion phenomenon of a simmaniard-Jones fluid confined between
solid surfaces and in direct contact with resesidin the first method, the density is used as
the controlling variable in the reservoir wherebs tis the pressure in the second method.
Both methods provide consistent results, howewverctinstant density approach is the most
efficient with respect to the computational timedamplementation. Then, employing the
constant density approach, we have studied thei&ainbehavior of the diffusion process
associated with the migration of one fluid into #me one confined between parallel solid
walls. Results have shown that the evolution ofanddaction of the invading fluid follows
roughly a 1D diffusion model when the solid phas&eakly or moderately adsorbent with a
characteristic time increasing when the pore witbrease. However, when the adsorption is
high and the pore width small (i.e. below ten molacsizes), the apparent mass diffusion in
the adsorbed layer is reduced compared to théteircénter of the slit pore. Hence, this mass
diffusion process becomes a two-dimension phenomehat must take into account an

effective mass diffusion coefficient varying logall
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3.1. Introduction

Behaviors of fluids in contact with and confined mmicroscopic spaces by solid
surfaces have gained increasing attention recghl. Such specific behaviors are central in
a variety of contexts both from the fundamental tredindustrial point of views: lubrication,
adhesion, coating, chromatography and membrarfactnin region close to the surfaces, the
fluid molecules have a general tendency to orgamte layered structures parallel to the
surfaces [5-6]. Furthermore, in such highly condirsystems, the ratio of the surface to the
volume is very high, which leads to a strong impaicthe layered structures on the global
behaviors of the fluids. As a consequence, sucectffcan induce unusual experimental
behaviors of both equilibrium and non-equilibriurfieetive properties of the fluids e.g.
oscillatory solvation forces between confining dddiurfaces, transition between liquid-like
and solid-like behavior as solid surfaces get closkective shear viscosity several orders of
magnitude higher than the bulk value, etc. [6-1ih]. addition to these experimental
approaches, molecular simulations mainly based @Gnaad-Canonical Monte Carlo scheme,
have shown to be a valuable tool in such confingstesns since they can provide a
microscopic picture of the confined fluids in caimaiis mimicking experimental ones [12-
18].

When dealing with transport properties, one needsniploy Molecular Dynamics
(MD) simulations instead of Monte-Carlo (MC) ond®]. However, the Grand-Canonical
Ensemble (GCE) which is the most suitable in mases to deal with confined systems, is
not easy to implement within a MD scheme eveneéféhhave been a non negligible number
of algorithms proposed in literature to deal witha@-Canonical-like MD (GCMD) [15, 17,
20-25]. The algorithms described in Refs. [20, 23], proposed schemes based on extended
system Hamiltonians of the confined systems toqgoerf MD simulations at a constant

chemical potential. The approaches proposed in. [@s 24] assumes that a constant parallel
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component of pressure of the confined systems (dquiaulk pressure) leads to equivalent
results to those coming from a GCMD scheme. Theagmhes proposed in Refs. [15, 17, 25]
consists in simulating explicitly the confined sysis in contact with reservoirs maintained at
a desired state. It is worth noticing that eachosrtigm has individual advantages and
disadvantages. The first algorithms [20, 21, 23jehidne advantage that the chemical potential
is fixed (GCE), but the disadvantage that the ti®@ideletion of particles is not always easy
to deal with in dense systems. The second appred@Re 24] are rather easy to implement
and is not computationally demanding, but the agéiam that a constant parallel component
of pressure for different pore width is equivalemta GCE is more than questionable. In our
opinion the last algorithms [15, 17, 25] are a osable compromise even though they require
significant CPU time, a disadvantage that is pregikely reducing due to advances in high
performance computing [19].

In this last family of Grand-Canonical-like Moleaul Dynamics algorithm [17],
systems are usually simulated at a constant nurobeparticles, N, a constant total
temperatureT, and a constant pressure in the reser®g, To controlP,.s they extended a
changing box-shape method proposed by Parrinelld Bahman [26], in which the
Lagrangian equations were modified in order toudel some constraints. In this work, we
propose a slightly modified and simpler versioriha$ algorithm in which the thermodynamic
state in the reservoir is controlled through axai@mn scheme of the type proposed by
Berendsen et al. [27]. More precisely, we presemb talternatives to control the
thermodynamic state of the reservoir (i.e. the dbhahpotential), one based on pressure and
one based on density.

As mentioned earlier, highly confined fluids hasated a lot of attention during the
last two decades. One of the main aspects is detatehe mass diffusion process in such

situations which is a problem that is usually duii to tackle experimentally in dense fluids.
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There exist a lot of theoretical studies of suchegal problem [2, 28-31] indicating a strong
impact of both the confinement and the nature efflinid-solid interactions in micro-pores (<
2nm). However, in our opinion, a perfect model dnesexist in dense fluids despite recent
progress in the modeling of this phenomenon [32-35]

MD is one of the tools employed to deal with difus at the (nano)-pore scale
compared to what occurs without confinement. Unifoately some of the works done are not
performed using GCMD (or GCE + MC) approaches wihetd to a difficult interpretation of
the results obtained. Furthermore most of the stutiave been devoted to pure fluids (i.e.,
self-diffusion) and not mixtures (i.e. mutual dgfan). Among the interesting results using
GCMD simulations, it has been noticed that thegpant properties are generally not strongly
influenced by the confinement in systems with peidth larger than 10 times the size of the
molecules [5, 14, 16]. However, to the best of éuowledge there is no study that
investigates the transient behavior of mass diffusif simple binary mixtures confined in slit
pore. This is rather surprising as such configamatmay enrich the analysis of the mass
diffusion process in mixtures compared to whatdyibl/ equilibrium or even steady state
simulations. Thus, in the present work, using theppsed GCMD scheme we have studied
the transient behavior of the mass diffusion preaasone fluid into slit pores, of varying
adsorptions and widths, filled by a second fluid.

This paper is organized as follows. In Sect. 3&ttho GCMD scheme proposed are
presented. In Sect. 3.3 the methodology and theeriaah details associated to both schemes
are described. Then, in Sect. 3.4, some resull®ttf GCMD approaches are provided and
compared together and with the literature. In SBd, some results on the transient mass
diffusion in nanopores using the proposed GCMD sthare presented. Our conclusions are

summarized in Sect. 3.6.
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Figure 3.1: Side view of the simulation cell usedhe Grand Canonical like Molecular

Dynamics proposed in this work.

3.2. Methods

In this section, we present two alternatives tdgeer grand canonical-like molecular
dynamics simulations of a pure fluid confined irsimple porous medium. The presented
methods are similar to the ones proposed by Gadb §t7], i.e. the explicit simulation of a
“bulk” fluid reservoir controlled to maintain a g state in direct contact with the porous
structure. A typical sketch of the simulation baxshown in Fig. 3.1, it consists of five
regions: two reservoir regions, two transient ragiand one sampling region.

The control of the thermodynamic state (i.e. thencsical potential) of the reservoirs is
achieved by means of the relaxation scheme propbgeBerendseret al. [27]. The first
method uses the pressure and the temperature aslibog variable, called in the following
“constant pressure GCMD” method, and the secondhadetemploys the density and
temperature as controlling variables, named “constiensity GCMD” method in the

following.
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For both methods, to maintain the temperature tatget valuel,, we have used the
Berendsen thermostat [27]. According to this methatdeach time step the velocities are

scaled by a quantity:

AT=1+2AT';(%—1) (3.1)

where At is the time stepr is the time constant, afidis the instantaneous temperature.

3.2.1. The Constant Pressure GCMD Method
The pressure of the reservoir is maintained atralelsi value by coupling to an
external bath with constant pressure, i.e. pressatte The change in pressure can be written

as:

G (3.2

dt Tp
where, Py is the target pressure, the pressure time constant afgs is the instantaneous

pressure in the reservoir regions defined as folgw

1 2 1
Pres - 3Wyes [Ziereservoir m;v; + EZiereservoir Zj l‘ijfij (33)

where, V. is the total volume of the reservoing; is the mass of"

particle,v; Is the
velocity of i particle,r;; is the distance between particieandj, f;; is interaction force
betweeni™ andj™ particles. The pressure change can be accomplishe@rying the virial
through a concomitant scaling of the interpartiiltances in thg direction and the volume

of the reservoirs. As described Berendsen et @l, [Bey coordinates of the particles in the

reservoirs and thie, lengths of the reservoir in tlyedirection are scaled by the quantity:
_ (PO_Pres)
Ap =1— pAt—= (3.4)

Tp

where,f is the isothermal compressibility.
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3.2.2. A Constant Density GCMD Method

The reservoirs could be maintained at a given tbdgmamic state by controlling their
instantaneous density (and temperature), insteadheir instantaneous pressure (and
temperature) of one. Hence, we propose a secopoagh in which the density of the
reservoirs is maintained using the Berendsen €1884) scheme [27], i.e. the reservoirs are
supposed to be in contact with a controlling baith wonstant density, i.e. density bath. For

that purpose, we define the density change as:

d —
( pres) — Po—Pres (3 5)
at Jpath Tp

where,p, is the instantaneous density in reservoir regignsis the target density, ang is

the density time constant. The density change caibesaccomplished by concomitantly
scaling the dimension of the reservoirs and therdinate of the fluid molecules in the
reservoirs in the direction. Using mathematical substitutions simitathe ones described by

Berendsen et al. [27], the density scaling constantbe expressed as:

u, =1 _ At po—pres (3.6)

Tp Pres

3.3. Simulation Procedure

From the above descriptions of the GCMD methodsp@sed in this work, the
constant pressure scheme should be more CPU timaraing than the constant density one
as long as it needs the determination of the itsteous pressure which requires more
computation than the estimation of the instantasedensity. However, since the time
constant has an impact on the fluctuations of stmenodynamic properties, i.e. pressure
and density, and on the number of the time stegsined to equilibrate the system, we have
performed a systematic comparison of the two methma very simple configurations to

obtain further information on the relative advamsgf each method.
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3.3.1. Particle Modeling

To be as simple as possible, all solid and fluidetules have been modeled as
spherical ones. All interactions are described biaasical truncated Lennard-Jones (LJ) 12-6
potential between pairs of particle:

12 6
Uy = {46 [(%) B (%) ] if r=r (3.7)
0 if r>r,

wherer is the distance between the two partickess the potential depthy is the particle
diameter, andcris the cut-off diameter (=3c5in this work). To analyze the impact of the
adsorption, the parameters in the interaction betvkiid and solid molecules are modulated
by using a classic&l pre-factor asos_s = o¢_f = 0 ande;_g = &_¢ = ke.

In the following variables are usually expressectlassical LJ dimensionless units

noted with a star as superscript.

3.3.2. Simulation Box

The simulation box, as shown in Fig. 3.1, contdiath fluid and solid particles, with
periodic boundary conditions extending the systéintheee directions. The solid molecules
are arranged in a faced centered cubic (FCC) dattith a size of the lattice = 1.60, i.e.
corresponding to a solid denspy,;;; = 0.98, to form two solid walls. The solid blocks are
placed at the middle of the simulation cell in yheirection. In thex direction, the blocks are
separated by a distand#/(, defined as the distance between two innermgsbsipg atomic
solid layers, that defines the width of the gapficomg the fluid. The solid blocks are of finite
size in thex andy directions, whereas, they are extended throughwhae cell in thez
direction. The remaining space of the simulatidhisdilled by the fluid molecules, so-called

the fluid space.
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To describe the solid walls, each block consists »fN, ,, X 8 lattices in the, y andz
direction, respectively. The value used M, depends upon the bulk state and is chosen to
get a sufficient statistics on the data collectethe sampling region, i.e. for a dilute fluig,,
is taken larger than for a dense fluid.

To perform the measurements, the simulation calivigled into three different types
of regions: sampling, transient and reservoir,lKge3.1:

* The reservoir region corresponds to the area wifieré¢hermodynamic condition®,(

T or p, T) are imposed to the “bulk” fluid.

» The transient regions are regions where the datanatr collected as they correspond
to regions which are neither “bulk” neither fullyrdined, i.e. boundaries effect
(because of the finite size of the solid walls)iamportant.

* The sampling region is the one employed to comfhée¢hermodynamic properties of
the confined fluid in contact with the reservoikorling effects due to the finite size
of the walls.

Thus, the sizes of the sampling and transient regie fixed, whereas the size of the reservoir
region is varied dynamically. To do so, during @ienulations, they coordinates of the
molecules in the reservoir region and theize of this region are scaled at each time step
thanks to the two schemes previously described.

To avoid as much as possible the effects due térilie size of the two solid walls on
the sampling region, its dimension has been tatqealeto(N,,y — 4)a on the y direction, i.e.
fluids in ending regions of the confined spaceheytdirection that are strongly influenced by
the finite pore size effects are discarded. YhBmension of each ending region is equal to
2a = 3.2a0, which has been found to be sufficient to obt#iat tthe variation of the fluid

density in they direction in the sampling region is not affectgdtbe pore end effects. The

positions of boundaries of the reservaoirs, L?‘f”ht andL%,eft see Fig. 3.1, are chosen to be
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larger than a “critical” distance defined as thstaince from the walls for which the influence
of the walls is noticeable on the fluid densityditiation due to adsorption). This critical
distance is of the order of a few times the diametehe fluid particle [36]. In this work, we
have chosen the critical distance to bes4abd 6 for respectively the supercritical and the
liquid states studied in Sect. 3.4. In fact, thestes have been determined by testing
different distances and their influence on the cwd density obtained.

The initial values of the dimensions of the twoeresirs region in thg direction have
been chosen to be sufficiently large, so that lilne fn the reservoir satisfies the equilibrium

hypothesis of the bulk fluid [17, 36] and also systis equilibrated rapidly.

3.3.3. Numerical Details

To perform the MD simulations, we employed a nucarcode of our own, already
employed to deal with diffusion in confined situets [37-39]. The motion equations of the
fluid molecules are solved using the Verlet velpdatgorithm with a time stept'=0.002,
whereas the solid molecules are fixed at theirssileo compute the force on each fluid
molecules effectively, we have combined the peddabbundary conditions (PBC) and the
neighbor list [40]. The systems are equilibrated 6°~2 x 10° time steps followed by a

simulation period of x 10°~10° time steps, during which the samplings are cawied

3.4. Preliminary Results

3.4.1. Comparison of the Two Schemes

To evaluate the impact of the time constant onréselts for both GCMD methods,
simulations have been performed with different tiooastants and for two target bulk states
in the reservoirspg,;x = 0.75, Pz = 0.619, Tg,ix = 1 (a liquid state) andpg,;, = 0.3,

Pk = 0.524, Tz, = 2 (a supercritical state). The potential depth betwéhe fluid and
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solid molecules iss_g = &_f = €. To analyze the transient behavior, we have gésera
initial configurations such that the density of fi@d is slightly different from the targeted
“bulk” density. For the liquid state we have usgf; = 0.7 and for the supercritical state
Pini = 0.25.

Results in Figs. 3.2 and 3.3 show that for bothhwds and for both states theize of
the reservoirly, evolves with time relatively monotonously to #guilibrium value. The
corresponding pressure and density evolve to theililegum pressure and density
respectively with fluctuations that are similar footh schemes and of the order of those at
equilibrium. In addition, it can be noticed thaetkhorter the time constant, the shorter the
equilibrium time and the larger the fluctuationstbal, size of the reservoir [27].

The results in Figs. 3.2 and 3.3 exhibit two inééirey additional features. First, the
order of the equilibrium time is slightly largeratt the order of the time constant, which can
be understood from the fact the fluid in the systeranly partly coupled with the bath (only
the fluid in the reservoir region). Second, theildguum times provided by the two methods
are very similar, which indicates that the methads of the same efficiency with respect to
the equilibrium time.

The first objective of the methods outlined preglguis to estimate the average
density of the confined fluids extracted from tl@ngling region at equilibrium. As can be
deduced from Table 3.1, for a time constant (fahBCMD schemes) varying in the range
T = 10~200, the results indicate that the average densitiesralependent upon the time
constant within the statistical uncertainty for teeidied range of values. The statistical
uncertainty represents the standard deviation arestimated by employing the sub-blocks
average method [40]. In addition, the results shioat both GCMD methods yield the same

average density and uncertainty.
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Figure 3.2: Effect of the time constant on the atioh of the system towards the equilibrium
for the liquid statepg,,;, = 0.75 and Tg,,;, = 1. The left figure corresponds to the constant

pressure GCMD method and the right one to the eohstensity GCMD method.

To confirm further that both methods provide themeastatic properties of the
confined fluids, we have estimated the densityif@®ffor different widths of the gap, using
T = 100. As can be deduced from Fig. 3.4, both methodsraexcellent agreement (with
deviations below 1%) whatever the state and the padth and provide results consistent

with what known for confined LJ fluids [6, 36].

90



Chapter 3: GCMD Simulation: Mass Diffusion

Ty 18
T 180 |4 & b
Ty 1800

66

63

0 Time constant Pl g
increases

A ey AN A AR A e s A

| ”""‘V stk WA M aA

1 L 1 1 I I
] 1000 ZUEU 3000 4000 o 1000 2?90 3000 4000

0.32 T T T

r‘-'! vl;h”lwfﬁ Ay -.lﬂl
HF."} W _ﬁf'ql |1p|wﬂ”|‘. |

0.28

[aid

0.26

024

1 L 1 L 1 1
i} 1000 ZOEO 3000 4000 0 1000 2%{20 3000 4000
t

07

0.7

. HII} lﬂ*ﬂ; \,‘““I.IWH hulb ’(" F|||| \'||| ,*u.l . . g 'N | Hfl‘-l‘,\‘l I|U|| -.!"'“‘1'”'

04 04

0 10'00 zo'oo 30'00 4000 03 10'00 20'00 30'00 4000
i t*
Figure 3.3: Effect of the time constant on the atioh of the system towards the equilibrium
for the supercritical stateg,;, = 0.3 and Tg,;, = 2. The left figure corresponds to the

constant pressure GCMD method and the right otfeetconstant density GCMD method.

Thus, taking into account that both methods provite same results with the same
order of uncertainties for a given time constangnsidering the CPU time and
implementation needed by both approaches, we aaclumte that the constant density GCMD

proposed in this work is the preferable option agihe two.
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Time Constant ConstaRtGCMD Constanip GCMD
Piute = 0.3, T = 2 7 = 18.0 Pave = 0.2951 + 0.0021 | pape = 0.2985 + 0.0021
" =180 Pave = 0.2991 £ 0.0021 | py,e = 0.3002 £+ 0.002
Piuk = 0.75, Tgux = 1 8 =12.0 Pave = 0.6274 £ 0.0044 | pyye = 0.6329 + 0.0045
" = 120 Pave = 0.6325 + 0.0045 | pape = 0.6293 + 0.0044

Table 3.1: Effect of the time constant on the ageraquilibrium density obtained by the two

GCMD schemes.

W*=3 W+*=3

0.8 1
1.5F A

0.6 1

pL
-
T
1
pC

0.5 A
0.2 1

15

Figure 3.4: Density profiles for different pore whdiW* = 3; 5 and 9. Left figures:pg, ;i =
0.75 and Tz, = 1, right figures:pg,,;x = 0.3 and Tz, = 2. Solid lines correspond to the
results provided by the constant pressure GCMD atet®pen symbols corresponds to the

constant density GCMD results.
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3.4.2. Validation vs GCMC Simulations

To further validate the results provided by the mods described previously, we have
compared results provided from our constant denSIBMD simulations using, = 200
with some coming from Grand-Canonical Monte CaHowever this comparison should be
even if it is always difficult to compare propefyD and MC simulations of discontinuous
potentials (like the truncated LJ potential usethia work) [41-42]. The comparison has been
done by choosing the data provided in Scheeml's GCMC study [5] corresponding to
Pruk = 0.6965, Ppuk = 0, Tguik = 1, Psoria = 0.98, andes_g = g;_¢ = ¢ respectively. Since
each solid wall consists of only one atomic layertheir work, instead of using full solid
blocks as in Fig. 3.1, only the first layer of thalid atoms in contact with fluid have been
included to perform the comparison, as shown in Fig(a).

Figure 3.5(b) depicts the variation of the averdgesity of the confined fluid with the
distance between the two solid surfaces from thé&1G®y Schoeret al. [5] and from our
simulations. The figure shows that there is ratimyd agreement between results provided
from the GCMC and our method, despite the diffeesnio the methodologies. In particular,
our method predicts that a phase transition ocatig* ~ 2.3 which is the same value as the
one that is obtained by Schoehal Furthermore, the absolute deviation betweernresults
and those of Schoen et al. is below 5 %. Thusgtwoal agreement with the results provided
by a GCMC scheme indicates that the constant de@@MD presented in this work is
consistent.

Nevertheless, there are expected slight differebetseen the results from our study
and the one of Schoet al. [5]. These differences are due to two main reaspast from the
fact that the two methodologies are completelyedéht. First, in Schoen’s simulation, they
employed systems 080 X 8¢ in the y and z directions respectively, whereas in our

simulations the sampling region of the confineddfllbias dimensions @.40 X 12.80 in they
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andz directions, respectively. Second, and even moportant, we have used a truncated LJ
force, while Schoen et al. took a truncated LJ mmdé combined a very simple (but only

approximate) long-range corrections (LRC) on theptal.
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Figure 3.5: A comparison of the constant densityMBXOmethod and the GCMC. a) The
configuration of the solid used in simulationsMaiation of the average density with the
distance between solid surfaces. Full symbols:temmslensity GCMD results, open symbols:

GCMC results given in Schoen al. [5]. The solid curve serves as a guide for the eye

3.5. Transient Mass Diffusion in Nanopores

In this section, we present an application of thlestant density GCMD method to the
analysis of the transient behavior of the masausifin process into a slit nanopore. More
precisely is studied the invasion (by mass diffakiof one fluid, named fluid 2, into a slit
pore filled by another fluid, called fluid 1, forfiérent adsorption characteristics and various
widths of the pore. For that study the thermodymastate of the reservoir fluid has been
fixed at a supercritical staté’ = 2 andp™ = 0.5.

To simplify as much as possible the system studremolecular parameters of both
fluids have been taken equal; = 0, = o and &;=¢,= ¢ ), except their masses which have

been chosen to ba, = 10m,, i.e. the fluid region is composed of two “isotepeThe main
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interest of choosing such a fluid system is thahbspecies are fully equivalent from a
thermodynamic point of view, i.e. they have the sgthase diagram in reduced units and the
same adsorption isotherms in reduced units. Tlagife allows starting the simulation from
an equilibrated situation without any artifactsatetl to the construction of an initial system
composed of two species which differs in size agnergy. More precisely to construct a fully
equilibrated initial system as described in Fi§(8), two steps are needed:
» The system is assumed to contain only one speciethe fluid phase, and is
equilibrated by using the constant density GCMDhuoét
* The fluid particles being out of the pore are tfamaed to become fluid 2, i.e. the
mass of these particles out of the pore becomeal ¢gqun, and their velocities are
rescaled in order to keep the temperature unchanged
Then, the simulation of the transient mass diffngmwocess of fluid 2 into fluid 1 can be
performed by using the constant density GCMD method
In the case of a bulk fluid phase with a similanfoguration, the evolution of the
molar fraction can be described by an approximade gerfectly valid in the short time limit)

solution to a one dimension (1D) diffusion equatien43-44]:

¥ g (-t) (3.8)

X2 _Stat

wherex; is the instantaneous molar fraction of the fluidt2he time’, X, saris the stationary
molar fraction of the fluid 2, and is the mass diffusion characteristic time. Whealidg
with confined fluids the situation is more compleecause:
* The geometric confinement leads to a mass diffusmefficient which is no longer
isotropic [1, 2, 5, 30-31, 45] (diffusion perpendar to the walls becomes very small)
and that may vary with the pore width dependindgh@nnature of the walls [5, 33, 37,

39, 45].
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Figure 3.6: (a) Snapshot of the invasion of on&f{in blue) into the slit pore (in red) filled
by another fluid (in green). (b-d) Effect of thaifl-solid interaction on the density profile in
the pore. (b) Low fluid-solid interaction. (c) Inteediate fluid-solid interaction. (d) High

fluid-solid interaction.

* The physical adsorption and confinement leads &irangly inhomogeneous fluid
close to the walls in the direction which may modify the transport propdidgally

[30, 34-35, 46].

So, to study the impact of the confinement anddfiahomogeneities on the transient
diffusion process described in Fig. 3.6(a), we hasttmated the evolutions & over time
(averaged over 100 time step) in two different laegions of the central slab (of a width of
oneo) in they direction. One region is adjacent to the solidgghand extent over a distance
of 1.50 from the nearest solid surface which correspondhe region of the first adsorbed
layer. This region is named “boundary region”. Haeond region is located in the centre of
the central slab with dimension of onein the x direction and named “central region”. In
addition we have estimated the evolutionxgfin the entire central slab, named “global

region” in the following.
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For a given thermodynamics state of the resertioér, density inhomogeneities of the
confined fluid are influenced by the fluid-solidenaction and width of the gap [5-6]. So, we
have investigated the possible effects of densityimogeneity on the evolutions xf over
time by determining them for different fluid-solidteractions and for various pore widths.
The behavior at very short time has not been dssmisn the following as it may leads to
specific problems [47]. In order to reduce theist@aal uncertainties, the results provided in

the following correspond to an average over 2Q@ddft independent runs.

3.5.1. Effect of Fluid-Solid Interaction

The effect of the fluid-solid interaction has bemmsidered by using three different
types of solid-fluid interactionsis= ¢, low adsorptiong;s= 2.%, intermediate adsorption and
&ts =4, high adsorption. The gap (width of the poremimetn the two solid walld*, has
been taken equal to 9. Figures 3.6(b)-3.6(d) shHmvdensity profiles of the fluid 1 at the
equilibrium state for the three solid-fluid intetians. As expected, results indicate that the
density vary appreciably with distance from theidsaslurface for all the interactions with a
classical damped oscillation shape [5-6], in whité amplitude is increasing with the solid-
fluid interaction.

Figure 3.7 shows the evolutions»afin the three regions analyzed (boundary, central
and global, see Fig. 3.6) for different fluid-solidteractions. One interesting result is
observed for the low adsorption case, for whichdahelutions ofx, for the three regions are
nearly superposed. This is rather surprising sihedluid is noticeably inhomogeneous in the
x direction as shown in Fig. 3.6(b). However, thlasuit is consistent with the ones found by
previous authors [14, 48-49], which confirms thdtew both the fluid-solid interaction and
the fluid density are not very large, local diffsicoefficient in the plane parallel the solid

surface does not vary significantly, even if lodahsity appreciably oscillates. Another
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Figure 3.7: Evolution o, in the central fluid layer (perpendicular to thalls) fort™ varying

from 0t01400Q (a) Low adsorption. (b) Intermediate adsorpti@h.High adsorption: Inset is
the evolutions fot*=1400+3000. Solid red curves: global region, dashed green surve
boundary region and long-dashed blue curves: deeyan. Black curves: fitted curves

using Eg. (3.8).

interesting result is that the profiles obtained for the low adsorption case barvery well
fitted by employing Eq. (3.8), see Fig. 3.7(a). sThonfirms, as assumed in most works, that
the evolutions ok, in such systems can be well described by a sihpldiffusion equation
with one effective diffusion coefficient despiteetiensity inhomogeneities.

When the fluid-solid interaction increases (intedmé and high adsorption cases),
the evolutions ok, in the three regions clearly departs from eaclemtbee Figs. 3.7(b) and
3.7(c). Interestingly, the evolution o in the boundary and central regions can be well
described by a simple 1D diffusion equation, segsF8.7(b) and 3.7(c), with an effective
diffusion time depending on the position and thedflsolid interaction, see Table 3.2. More
precisely, the evolution in the central region ®iceably faster than that in the boundary
region, a trend which is particularly obvious i thigh adsorption case, see Fig. 3.7(c). Thus,
these results indicate that the effective massusidh coefficient in the adsorbed layer is
smaller than in the central region and tends taedse when the fluid-solid interactions

increases. It is worth to notice that such trendte effective mass diffusion coefficient is
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Adsorption Region (6*/1400)71 R-square
Low Global 8.304 0.9899
Central 8.372 0.9714
Boundary 8.296 0.9813
Intermediate Global 5.493 0.9937
Central 6.073 0.9694
Boundary 4.621 0.9859
High Global 3.128 0.8824
Central 6.516 0.9582
Boundary 0.8972 0.9748

Table 3.2: Mass diffusion characteristic time toe tifferent cases using Eg. (3.8). R-square

represents the correlation coefficient of the fiEq. (3.8).

sometimes interpreted as a result of the modibeatif the fluid-solid friction when changing
fluid-solid interactions [33].

Another interesting result, see Figs. 3.7(a)-3,7)that the evolutions of; in the
central region tends to be slower when the adsorgticreases, even if the density in this
region is uniform and the same for all adsorptiases, see Figs. 3.6(b)-3.6(d). This can be
understood by the mechanism described briefly @ Bi6(a). In fact, the evolution & in
the centre of the pore (parallel to the walls)astér than that in the region close to the walls
which leads to a mass flux (along tkedirection) of the fluid 2 from the centre to the
boundaries in the pore. So, because of this mass tthe time need for fluid 2 to reach the
central region (perpendicular to the pore walld) lag increased.

Concerning the global region, as clearly shown ig. B.7(c), the evolution ok,
cannot be described anymore by a simple 1D diffusiguation in the high adsorption case.
This not surprising as the characteristic timeshm boundary and the central region are so
different that the global mass diffusion processsuth case cannot be 1D phenomenon

anymore.
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All these results clearly lead to the conclusionatthwhen the densities
inhomogeneities are large, the mass diffusion gddeally noticeably within the pore width.
More precisely its amplitude decreases strongltheadsorbed layer compared to the centre
of the pore (parallel to the wall). Because of éhéscal variations of the mass diffusion
coefficient, the diffusion in a slit nanopore irethigh adsorption case does not correspond
anymore to a one-dimension configuration and shbeldlescribed by a 2D mass diffusion
equation including a mass diffusion coefficient ipoa dependent (in the direction), a
problem that cannot be solved analytically.

In order to confirm these findings visually, we baneasured the relative local density
of the fluid 2, i.e.p3/p*, over the simulation box at various time. Figur8 3hows the
distribution of the relative local density at seleiinstants for the three fluid-solid
interactions. Two interesting features can be edtion these figures. First, the invading
surface of the fluid 2 is roughly a plane for tl&vIfluid-solid interaction, which means that
the evolution at any position is a 1D diffusion gges. Second, for the intermediate and high
fluid-solid interaction the invading surface hasighly a parabolic form in early stages. This
shape of the diffusion front is consistent with #igove explanations and the mechanism

described in Fig. 3.6(a).
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Figure 3.8: Distribution of the relative local degpof the fluid 2,p5/p*, at various times.
Left figures: low adsorption, middle figures: inteediate adsorption, right figure: high

adsorption.
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3.5.2. Effect of Width of the Gap

To further study the mass diffusion problem in ygtonfined situation, the effect of
the width of the gap on the evolutions »fin the local regions and the global region is
presented. To do so, we have measured the evaubion, keepinge;s = 2.5 but changing
the pore widthW* using values ranging from 4 to 15. Figure 3.%hypws the effect of the
width on the density profiles. One interesting featis that the confinement, in this case, has
only a weak effect on the first density peak closé¢he walls. Thus, we can expect that the
local mass diffusion in the boundary regions wélrearly independent of the pore width.

Results provided in Fig. 3.9 indicate that, inratjions, the diffusion of, tends to be
faster when the pore width increases, particuldhlg evolutions in the boundary are
unexpectedly different despite the same for dermitfiles in all the widths in this region.
This is due to the 2D effect that there existsriass flux of the fluid 2 from the centre to the
boundaries in the pore, as mentioned above. Howevieen the pore width is sufficiently
large, i.e. wher* is approximately larger than 10, tkeprofiles are nearly independent of
the pore width. This last trend can be understopdhle fact that when the pore width is
sufficiently large, the mass flux of species 2 frthma center of the pore (parallel to the walls)
to the boundary becomes sufficient to yield an egmadiffusion in the boundary region
which seems to be independent of the pore width.

Additionally, as shown in Fig. 3.9(d), one can petthat the evolution of; in the
global region can be well described by a clasdi€atiffusion (Eg. (3.8)) equation for all gap
tested with a characteristic time increasing whengore width decrease as expected for such
a solid surface [33]. Thus, if the effective magtudion coefficient is made dependent to the
pore width and fluid-solid interactions, as in tine@del of Saugey et al. [33] for instance, it
should be possible to reproduce the results oldtaméhis work using a simple 1D diffusion

equation. However, as shown in Sect. 3.5.1, wheriltid-solid interaction increases and the
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pore width decreases the mass diffusion proceasslit pore cannot be longer described by a
1D equation and needs a 2D mass diffusion equatittna mass diffusion coefficient varying

in space similarly to what done for transverse mmaion@ transfer [46, 50].
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Figure 3.9: (a) Effect of the pore width on the signprofiles close to the walls. (b-d) Effect
of the pore width on the evolutionsxf (b) Central region. (c) Boundary region. (d) Glbb

region. Smooth black curves on (d): fitted curvemg Eq. (3.8).

3.6. Conclusions

In this work, we have introduced two Grand Candnld@ Molecular Dynamics
methods to investigate the properties of Lennareeddluids confined in a slit pore. The basic
idea of the two methods is to simulate explicithg tconfined fluid directly connected to a
reservoir fluid. In order to maintain the reservibirid at the target thermodynamic state, we
have employed the relaxation schemes of the typheBerendseet al. [27]. In the first
method, the reservoir fluid is coupled with a dgndiath, so-called the constant density
GCMD method, whereas it is with a pressure batthénsecond method, named the constant

pressure GCMD method.
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Results for two different states and different pevelths have shown that both
methods provide the same average density and ggmefiles of the confined fluid and yield
consistent results compared with GCMC simulatidmsddition, the order of the equilibrium
time provided by the two GCMD methods has been dotm be very similar. Thus,
considering the CPU time and implementation needgdoth approaches, the constant
density GCMD method proposed in this work is prdpahe preferable option among the
two.

Then, the constant density GCMD method has beenlogneg to investigate the
invasion (by mass diffusion) of one LJ fluid intcsl& pore filled by another LJ fluid. To do
so, the evolution of the molar fraction has beemmoated in different regions of the center of
the pore (perpendicular to the walls) and compasgth a 1D diffusion equation. The
influence of the fluid-solid interaction (adsorptjaand pore width has been investigated.

Results have shown that the evolution of the mdélaction of the invading fluid
follows roughly a simple 1D diffusion model wheretbolid phase is weakly or moderately
adsorbent despite the fluid inhomogeneities. Initedd it has been noticed, that the
characteristic time of diffusion is increasing witee pore width decreases if the pore width
is smaller than 18 However, we have found that, when the physicabgation is strong, the
evolution of the molar fraction in the center oé thore (perpendicular to the walls) cannot be
described anymore by a one dimension mass diffusgomation. In fact it has been found that
the phenomenon becomes a two-dimension diffusioegss due to local variations of the
effective mass diffusion coefficient perpendicufaid the walls. More precisely, it has been
found that, in highly inhomogeneous fluids, thefudifon coefficient close to the walls is
smaller than in the central part of the pore (pakr&b the walls) and tends to decrease when

adsorption increase.
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Chapter 4

Local Viscosity of Innomogeneous Fluids

In this chapter, using non-equilibrium molecularndsnic simulations, we have
explored the local shear viscosity of strongly imogeneous fluids. The chapter is divided
into three parts. The first part is dedicated te study of the local shear viscosity of a
Lennard-Jones fluid subject to a sinusoidal extdrela and undergoing a bi-periodical shear
flow. It has been found that the viscosity profisstrongly inhomogeneous fluids can be
correctly described if one considers separatelystedional and configurational contributions
to the shear viscosity together with a simple kaakke theory for the former and the local
average density model combined with an adequatghtvéinction for the latter. Then, using
this simple scheme, the local shear viscosity efltennard-Jones fluid confined in narrow
slit pores and undergoing boundary shear is ingat&d in the second part. In the last part, we
have proposed a more general but tractable schdrmae yields quantitatively the
configurational viscosity profile of strongly inh@geneous dense fluids of various types

going from the Hard-Sphere to Lennard-Jones fluid.
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Part 1

Shear Viscosity of Inhomogeneous Fluids

* This part was published in J. Chem. Phys. 138902 (2012)

DOI: 10.1063/1.3696898

Abstract:

Using molecular dynamics simulations on inhomogesedluids induced by a
sinusoidal external field, we have studied the @$feof strong density inhomogeneities of
varying wavelengths on the shear viscosity compudedlly. For dense fluids, the local
average density model combined with an adequatghiv&inction yields a good description
of the viscosity profiles obtained by simulatiokwever, for low density inhomogeneous
fluids, the local average density model is unabl@escribe correctly the viscosity profiles
obtained by simulations. It is shown that this wesds can be overcome by taking into
account the density inhomogeneity in the localdlaional contribution to the viscosity using

a density gradient like approach.
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4.1.1. Introduction

With the growing interest on fluids confined in mamano-sytems, the modeling of
the behavior of inhomogeneous fluid flows has gainensiderable attention [1-4]. Due to
strong surface effects in such systems, the flardsgenerally strongly inhomogeneous in the
direction normal to the fluid-solid interfaces (g of the molecules of the fluid because of
adsorption and molecular packing) [5]. To desctilbese inhomogeneities, classical density
function theory (DFT) combined with molecular simtibns have shown to be efficient to
provide reliable predictions for density profile simple confined fluids [6]. However, the
problem is still open when dealing with the locahnisport properties of strongly
inhomogeneous fluids, even if some attempts eledtdre generally based on an Enskog-like
kinetic model and Molecular Dynamics (MD) resuléee for example Refs [7-19]. This is
probably due to the lack of a comprehensive theorgescribe the transport properties of
dense fluids [20] together with difficulties in assing the results from an experimental point
of view.

Among proposed approaches based on local thermodgseconditions to predict
local viscosity of inhomogeneous fluid, the locaéege density model (LADM) is one of the
most popular [7, 19, 21]. Although, LADM seems torlwwell to describe velocity profile of
Couette flow of inhomogeneous fluids [7, 14], tleewracy of the approach is still questioned
[19]. In particular, velocities of fluid flow adjeat to solid surface provided from MD
simulations and the model are not always in goaeéeagent [7, 19, 21], mainly because of
surface effects. Furthermore, previous studiesimgalith the LADM were restricted mainly
to dense fluids [19].

So, to improve our understanding of the viscositgtoongly inhomogeneous fluids,
we have performed Non-Equilibrium Molecular DynasmiNEMD) simulations on mono-

atomic Lennard-Jones (LJ) fluids in moderately awely dense conditions without
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confinement. To do so, we apply an external sirdaddield on a LJ fluid to generate density
inhomogeneities and then shear it bi-periodicatlyshown on Figure 4.1.1. By doing so, it is
possible to study the local shear viscosity of rargjly inhomogeneous pure fluid without
geometric confinement and surface effects. Themguthe viscosity profiles provided by
NEMD simulations for two different states, we haested directly the efficiency of some
approaches to describe these profiles accuratelydimg a new one.

The outline of the paper is as follows: the detais the methodology used are
presented in Sect. 4.1.2. Then the results obtanegrovided in Sect. 4.1.3 together with a
discussion of the validity of the approaches aimatgdescribing the local viscosity of

strongly inhomogeneous fluids. Finally, the conduas are drawn in Sect. 4.1.4.

U,~=-Ucos(2mx/L)

ext

\/ |

—
—

Ly

|\

Figure 4.1.1: A 2D sketch of the system simulatethe case=2.

4.1.2. Model and Theory
4.1.2.1. Inhomogeneous Fluid
In this paper, the interaction between fluid (m@tomic) particles is described by

using the usual truncated Lennard-Jones potential:
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12 6
i) )]
Uy = glri,- ) | Tu=Te (4.1.1)

0 if T'i]' >T'C

whererj is distance between the particieandj, ¢ is the potential deptls, is the “molecular”
diameter and. the cut-off radius (taken equal to 3.5 this work). In the following the
variables have sometimes expressed in usual LIndioress units, noted with a star as
superscript.

To induce the density inhomogeneities, see Figl4dwe have applied to all particles
of the simulation box a Sinusoidally Varying ext@rrPotential (SVP)/, cxe, In the X

direction:

Uy ext = —Upcos (Znn Li) (4.1.2)

X

wherelLy is the dimension of the simulation box in thelirection,Uy the amplitude of the
SVP andn the wavelength parameter. In this studyaries from 2 to 12 to test different
inhomogeneities wavelength. The amplitudes of th®,3Jo, have been chosen so that the
order of magnitude of the difference between makema minimal local density for a given
state is roughly the same for all wavelengths andfithe order of 25 % of the average
density. More precisely, varies from 0.25 to 0.48 for the dilute state &och 1.4 to 2.4 for
the dense state.

It is worth to emphasize that, when using the S\P induce the density
inhomogeneities, the effects on transport properésulting from a geometrical confinement

and surface effects [9], as in the case of a fluid slit pore, are avoided.

4.1.2.2. NEMD Scheme

To shear the inhomogeneous LJ fluid, the NEMD sahgmoposed by F. Muller-
Plathe has been employed [22]. In this methodsiimelation box is divided intdls slabs (32
in this work) along thex direction and the fluid is sheared using a neharge of the linear
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momentum along thg direction everyNswaptime steps. This exchange is performed between
the central part of the simulation bdXy/2 andNg2+1, and the edge slabs, 1 dglto keep

the periodic boundary conditions in tke&lirection, see Fig. 4.1.1. At the stationary stties
NEMD scheme induces a bi-periodical velocity pefin the simulation box. Such an
approach yields a constant shear stregg,over nearly the two halves of the simulation box,
see Figs. 4.1.2(b) and 4.1.3(b), which simplifies problem studied. However, in and close
to the regions where the exchange is performedbtted shear stress is no longer equal to the
imposed onefimp, [22, 23], see Figs 4.1.2(b) and 4.1.3(b), andhese regions have been

discarded to perform the study.

4.1.2.3. Simulation Details

All simulations consist of three steps. In a fissép, the fluid subject to a SVP is
equilibrated during a run of $@imesteps to induce the density inhomogeneitié®nTin a
second step, the NEMD scheme is applied to sheafluld. In a last step, once the steady
state reached, which is ensured by monitoring tlwdugon of the velocity profile with time,
the samplings were performed during at least 0%3if@® steps.

Two different states have been studied in this worle moderately dense Bt =2.5
andpni =0.17 (that is named “dilute” in the following) ande very dens&y =0.8, gn =0.9
(that is named “dense” in the following). In allrsilations, L} x L}, X L} dimensions of the
simulation box have been chosen to be equal8x 10.5 X 10.5 respectively. Classical
periodic boundary conditions were applied in allediions. The velocity Verlet algorithm
[24] has been applied to integrate the equationmafion with a time-stepX =0.002. A
Berendsen thermostat [25] is used wrand z velocity components during the NEMD
simulations, and on all three velocity componentsy(and z) during the equilibrium MD

simulations.
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To compute the local quantities, the simulation bas been divided into slabs along
the x direction so that the size of each sk&b* = 0.1. To avoid shear thinning [23] and
ensure a good signal to noise ratio in the lineaponse regime, values chosenNgy,, are
larger than 150 and 70 respectively for the diarid dense states. It has been verified that the
velocity profiles scaled by the maximal value oflooty are superposing. To reduce
statistical uncertainties, results presented infdlewing correspond to an average over both

halves of the bi-periodical simulation box.

4.1.3. Results and Discussions
4.1.3.1. Preliminary Results
At the steady state, the momentum conservationtequéor a fluid, in which each
particle is subject to an external fielg,; in thex direction and undergoing a bi-periodical
shear flow in the direction, is defined as following [26, 27]:
0=—-Vt—Vp—p(x) X VU, (4.1.3)
where p is the hydrostatic stress tensor andhe stress deviator tensor. In the Cartesian

coordinate system, as used in this work, Eq. (}daB be rewritten as:

— _ api _ % . . .
0= o p(x) X S in the x direction (4.1.4)
and
0= % in the y direction (4.1.5)

Using the method of plane [27], the local pressuren thex direction and the shear

stressr,,, in thex-y plane are defined as functions of theoordinate:

1 1 xfoo1 —x; X=X
P (x) = VSZimviz,x §(x; —x) — ;[Ziqr—i; UL]WQ (x . ) 0 < ])] (4.1.6)

xij xij

Ty () = g Zimvie (vig = 14y, (0) 8 =0 = 5 [£i, 2240, 0 (S2) 0 (22)] - @17)

xij xU
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whereVs is the volume of a slab} = L, X L, is the area of thg-z plane of the simulation
box, mis the mass of a molecule,, is thea component of the velocity of moleculau,(X) is
the streaming velocity; is thex component ofjj, dis the Kronecker symbol art(x) is the
Heaviside step function.

Results shown in Figs. 4.1.2 and 4.1.3 confirm thatbehavior of the inhomogeneous
fluids studied in this work satisfies the previalassical theory, i.e. Egs. 4.1.4 and 4.1.5 are
respected. In particular, the local shear stresomstant over both halves of the simulation
box except in regions where the momentum exchasgeeiformed, see Figs. 4.1.2(b) and

4.1.3(b), even if the density is not constant [28]

0.2

oP,
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-0.2
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Figure 4.1.2: Local properties of inhomogeneouslffar p*=0.17, T*=2.5. (a) Gradient of

hydrostatic pressure in tixeirection (symbols) and gradient of external puesg(x) %

(line). (b) Ratio between computational shear stegsl imposed one. (c) Viscosity profiles

for two different momentum exchange rat¥gyap, =350 (full symbols) antllswap=150 (open

symbols).
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Figure 4.1.3: Local properties of inhomogeneouslftar p*=0.9, T*=0.8. Legend is the same

as on Fig. 2. (Nswap=120 (full symbols) antllswap,=70 (open symbols)

It is worth to notice that, when the shear rateegarapidly over a length typical of
intermolecular correlations, the classical locaiMidm’s law of viscosity must be generalized
by a nonlocal constitutive equation [17, 29], tlee classical definition of the local viscosity
can be inappropriate [30]. However, in the Coubkieflow simulated in this work, the effect
of the variation in strain rate induced from theamogeneity of the fluid on the local shear
stress remains rather limited in all cases stutie. To confirm this statement, we have
performed NEMD simulations with two different montem exchange rates (i.e. different
shear strain) for a given system to compare th@teebetween them. As shown in Fig. 4.1.4,
the velocity profiles are superposing (when scdlgdthe maximum velocity) for the two

different momentum exchange rates tested for atles studied here.
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Figure 4.1.4: NEMD velocity profiles (scaled by meximum value) for two different
momentum exchange frequencies and two differetesstaith the corresponding density
profiles (long dashed curve in the inserts): (a) @) forp*=0.9, T*=0.8 andn=12 (symbols
for Nswag=70 and curve foNswap=120). (b) and (d) fop*=0.17, T*=2.5 andn=12 (symbols

for Nswap=150 and curve fdNsya,=350).

In addition, the local viscosity profiles deducedni NEMD simulations combined

with the Newton'’s laws, i.e.

u(x) = ( Ty () (4.1.8)

indicate that the viscosity profiles of a giventsys are independent upon the momentum
exchange rate, as shown in the Figs. 4.1.2(c) a@n@8(4) for two both dilute and dense states.
This result confirms that, for the systems studiietk, the response is linear.

So, based on these preliminary results, we haveidered in the following that the
use of the classical Newton’s law can be considasedonsistent for the cases studied here.
Thus, in this work, the local shear viscosity hagrbdeduced from the NEMD simulations
using the Newton’s laws, Eq. (4.1.8), in which deater finite difference is used to compute

the local shear rate.
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4.1.3.2. Viscosity Decomposition

When using Eq. (4.1.8) combined with Eq. (4.1.7)sitpossible to separate the
viscosity in two contributions [11, 23] which isucial to describe the local viscosity in
inhomogeneous fluids as we will see later. The fesm on the right hand side of Eq. (4.1.7)
represents the translational contribution and #eosd term the configurational contribution
to the local shear stress. Thus, the local sheaosity estimated from the NEMD simulations
can be expressed as the sum of two terms:

pu(x) = pe(x) + pc(x) (4.1.9)

where u; is the local translational shear viscosity deducech :

1
7= Zim o (viy—uy ()8 (x—2)
pe(x) = = ity (%) (4.1.10)

dx

and. the local configurational shear viscosity evaldatenks to:

XiiVij . X—Xi XX
~34|Zi<r UL |x1i -|@<x_u>@< xif]>]
e(x) = Ty ) e

dx

In a homogeneous fluid, it has been shown thattrdneslational viscosity of an LJ
fluid is, to a very good extent [23], equal to tiaero-density” viscosity o, deduced from a

classical Chapman-Enskog approach for a LJ fluig, [i3e.:

* * 5 T*
Ui Uy = 16!2,,\/; (4.1.12)

whereQ, is the collision integral.
To deal with dense fluids for whicpr >> 14, have been developed an empirical
formula [32] that allows, usin@* and p* as inputs, to estimate accurately the residual

viscosity, equal tou - Lo, from:

p = (@ -1)r (@ ~1)+ (& -) (4.1.13)
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in which the numerical parametets, have been adjusted on extensive MD results [32].
When Egs. 4.1.12 and 4.1.13 are combined, the labae so defined allows to obtain the
viscosity of a homogenous LJ fluid with a maximubs@ute deviation below 5 % compared
to direct MD results for & p <1.275and 0.6 T <86.

It is worth to notice that the above definitiongignthat in a homogeneous fluid:

Uy ~ (4.1.14)

4.1.3.3. Local Shear Viscosity Modeling

So, using approach described in section 4.1.2, axe hestimated from NEMD
simulations the local viscosity of two fluids usiEg. (4.1.8), one in a dilute stateTa =2.5
and g, =0.17 and other one in dense stat&at=0.8, an =0.9. As can be deduced from the
velocity profiles in Fig. 4.1.4 and shown expligith Figs. 4.1.5 and 4.1.6, it appears clearly
that the local viscosity deduced from NEMD simwas strongly varies with position (i.e.
density inhomogeneities) for both states. Moreowasr,expected, the viscosity profiles are
strongly correlated to the density ones for the states studied here, see Figs 4.1.4(b),

4.1.4(d), 4.1.5(b) and 4.1.6(b).

A. The van der Waals model
To model the local viscosity profiles obtained biEMD simulations shown in Figs.
4.1.5 and 4.1.6, we have first tested the sim@egroximation, the van der Waals model.
This approach consists in considering that theogig profile can be deduced directly from
the local thermodynamic conditions;) andp(x), i.e.
Myaw (%) = o(T(0)) + 1 (T(x), p(x)) (4.1.15)
where the two viscosity contributions on the ridgtand side of the relation (4.1.15) are

estimated using Egs. (4.1.12) and (4.1.13).
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Figure 4.1.5: Local viscosity profiles for the derstate Kswa=70): p*=0.9, T*=0.8: (a) n=2,
(b) n=12. (Red color) Full circles: the NEMD daf@reen color) long-dashed curyg;;y

(Eq. 4.1.15), (Blue color) dash-dot curyg;p, (EQ. 4.1.18) with the generalized Hard-Rod
model (Eq. 4.1.19), (Pink color) dashed cupvg;py (Eq. 4.1.18) with the Tarazona (Eq.

4.1.20), (Black color) solid curvers,,;; (Eqg. 4.1.26) with the Tarazona model.

As shown in Fig. 4.1.5, such an approach is applkcanly for a slowly varying
density profile, i.e. when the wavelength of dgngithomogeneities is large compared to the
molecular interaction range. This clearly confirthe limitations of a purely local description
based on local thermodynamics properties (to desdocal viscosity) which is obviously
inadequate for inhomogeneous fluids where the tewnaries noticeably over a length of the
order of one molecular size. Furthermore, a vetgrasting feature is that for the densest
state, Eq. (4.1.8) tends to largely over-prediet\thriations of the local viscosity, whereas it

is the contrary for the dilute state, see Figs.54ahd 4.1.6.

B. The LADM
A further improvement to model the NEMD viscositpfies is to use an approach of
the type of the Local Average Density Model prombbg Bitsaniset al.[7, 21]. For simple

fluids, it is well-known that using a coarse-gralriecal density method can provide a good
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0.4

0.2

X* X*
Figure 4.1.6: Local viscosity profiles for the déwstate Nswa=250):p*=0.17, T*=2.5: (a)

n=2, (b)n=12. Legend is the same as on Fig. 4.1.5.

description of the thermodynamic properties ofr@mmogeneous simple fluid [6]. The main
idea of these methods is that a local (excess)eprp@ (x) of an inhomogeneous system can
be written as:
Fx) =F(p(x)) (4.1.16)

where

p(x) = [ w(lx — x|) p(x)dx (4.1.17)
andw(|x — x|) is a weight function. Thus, and this is the badéa of the LADM [7, 14, 21],
it is assumed that this approach can be applietsaribe local transport property, i7e.can
represent a transport property.

In this work, and it will become clearer in theléoling, instead of applying the
LADM scheme to the total viscosity as usually d¢riel4, 21], we propose to apply this
approach to the local configurational (residuadceaisity only. Thus, the local viscosity based
on this modified version of the LADM is assumed&described by:

Hrapm (%) = po(T (X)) + p(T(x), p(x)) (4.1.18)
where the two viscosity contributions are estimatsitig Eqgs. (4.1.12) and (4.1.13) apx)

is computed from Eq. (4.1.17) combined with a wefghction.
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There exist various forms of the weight functioraed in Eq. (4.1.17) that have been
proposed to deal with thermodynamic properties3@, In this work, we have selected two
well known different forms of the weight function:

A first one independent of density, the generalidadd-Rod model [33] in which

(D) = £[(2)" = xD?] when x| <
{w x1) =3 X when [x| < 2 (4.1.19)
w(|x]) = 0 elsewhere,
and a second one density dependent, the Tarazoshel ,nadnich writes as
w(x]) = wo(lx]) + w1 (Ix]) X p(x) + w1 (|x]) x p(x)? (4.1.20)

wherew;_-,(|x|) are given in Ref. [33].

When the LADM, Eg. (4.1.18), is combined with badttard-Rod and Tarazona
models, the viscosity profiles obtained are coesistvith NEMD ones for the dense state
whatever the density inhomogeneity wavelength,/3ge4.1.5. More precisely for the dense
state at short wavelength, see Fig. 4.1.5(b), thelHRod model tends to slightly overestimate
the local viscosity variations whereas it is thentcary for the Tarazona model. In fact,
because the configurational viscosity is the domirtarm in the dense state, in whigh
=0.98y, these results indicate thatf(T(x), p(x)) yields a reasonable estimate mof(x)

computed by NEMD simulations using Eq. (4.1.11).

C. The full model
Despite the good results for the dense state ofLkieM, Eq. (4.1.18) is clearly
inappropriate for the dilute state, see Fig. 4H).6¢lore precisely, because of the good results

obtained in dense fluids, we can suspect that #ekness of the approach for the dilute state,
in which 24 = 0.85, is due to the fact that, (T (x)) is not a good approximation to describe

correctly u,(x) of inhomogeneous fluids. In fact, it has been cuati that the local
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translational viscosity deduced from Eq. (4.1.10)iny the simulation is strongly positively
correlated to the local density as can be deduced Fig. 4.1.4(d).

This correlation between the local translationadcesity and the local density is
opposite to what found in homogeneous LJ fluidg [@8 which the translational viscosity
decreases slightly when the density is increadttayvever, this unexpected behavior can be
understood by looking to the physical meaning o thanslational viscosity. In facj
represent the contribution to the momentum tranafgoss a plane by the displacement
(diffusion) of molecules, see Eq. (4.1.10). Thiaass guantity is connected to the local number
of molecules and the local mobility of each molecuih other wordsi4 is related to the local
density and the local insertion probability. Asan inhomogeneous fluid, the local insertion
probability seems to be positively correlated te lical density [16] this can explain that the
correlation between the local translational vistyoand the local density should be positive in
an inhomogeneous fluid.

To quantify this correlation between the local #slational viscosity and the local
thermodynamic conditions, the idea is to estimate ratio between the local translational
viscosity computed using Eq. (4.1.10):(x), and the translational viscosity of a

(homogeneous) fluid in a state corresponding to theal thermodynamic state,
u:(p(x), T(x)). To do so, we have assumed that:

w@ _ fexp(B9(p0) 1))
ue(pGO.T(0)) f(exp((ﬁﬁ(x)))

(4.1.21)

whered is the chemical potential arids a function of the insertion probability. In diilch
[23], taking into account the fact that for low egh densityu,(p(x), T(x)) = uo(T(x)),

and assuming that the functibrs such that, in a first approximation:

pex) f<e"p(ﬁl9(p(x)'T(x)))> (4.1.22)

Ho(T(x) exp((B9(x))
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To quantify the local chemical potential(x), appearing in Eq. (4.1.22), we have
chosen a very popular approach used in inhomogeniaids, the one is called the density
gradient theory [34]. In such approach the loc&ngital potentiab(x) of the inhomogeneous

fluid subject to an external field is described[84:

9(0) = 9(pC,TCO) + Uewe +7 P/ (4.0.23)

wherec is the influence parameter that can be deduced the direct correlation function
accessible by the MD simulations [35]. It shouldnoticed that the need of the estimation of
the influence parameteris considered to be one of the main shortcominthefuse of the
density gradient theory.

Thus, using Egs. (4.1.22) and (4.1.23), we can ckethat:

pex)
PRCIES) fX) (4.1.24)

wherex = exp (—ﬁ

62
Uext + ¢ p/(')xZD'

To test the relation (4.1.24), first we have coreduthe influence parametey, using
the procedure given in Ref. [35]. Using this praged the influence parameter is rather
sensitive to the determination of the radial dmttion function and its long-range part. To
reduce uncertainties induced by such sensitivineshave carried out different independent
molecular simulations and performed averages.drdilute state, we have obtaingd= 2 +
0.3. Then, NEMD simulations have been carried out ddferent SVP wavelengthsn(
varying from2 to 12 in Eq. (4.1.2)) in the dilute state am(k) profiles have been deduced

from Eq. (4.1.10) during the simulations.
As clearly shown on Figure 4.1.7(a), the ra% is independent of the
0

wavelength when expressed in functioXand thus Eq. (4.1.24) is verified which support
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Figure 4.1.7: Correlation betweap(x) andX for the dilute state (using values fovarying
from 2 to 12 in Eq. (2)): Deltas=2, Gradient$=4, Right Triangle$=6, Left Triangles=8,
Diamondsn=10, and Circles=12. (a) Decimal scaling. (b) Logarithm scalingtba vertical

axis.

previous assumptions. Interestingly, see Fig. 4], all data collapse on a power law master

curve. From this result, it is possible to dedum:t

5 1)
He(x) ~ o n" x X, (4.1.25)

wherea is an empirical parameter (fitted to 1.75 in thése). It is worth to note that the

empirical parameten is dependent upon the determination of the infteeparametec

which is difficult to obtain accurately as mentidr@eviously.

Thus, to describe accurately the local viscosityanfinhomogeneous fluid for both

dilute and dense states, we propose to use:

Pran(x) = %-Qv TT(x) X X+ . (T(x), p(x)) (4.1.26)

As shown on Figs. 4.1.5 and 4.1.6, the relatioh.?4) is able to provide a very good

estimate of the local viscosity from the local thedynamic conditions for both dilute and

dense states.
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4.1.4. Conclusions

Using molecular dynamics, we have studied mono-atdrannard-Jones (LJ) fluids
(moderately dense and very dense) subject to armatsinusoidal field inducing density
inhomogeneities of various wavelengths and undegg@ bi-periodical shear flow. By
performing these NEMD simulations, it is possibtestudy the local shear viscosity of a
strongly inhomogeneous pure fluid without geometonifinement and surface effects. For
the systems studied and the conditions employethisawork, it has been verified that a
nonlocal constitutive equation was not required Hrat the Newton’s laws can be used to
define a local viscosity.

As expected, the local shear viscosity has beendfda be strongly dependent to the
density inhomogeneities of the fluid for both ssat€o understand how the local viscosity of
inhomogeneous fluid is related to the local therymadinic properties, we have first tested
two well known approaches: the van der Waals aral lthcal Average Density Model
combined with two popular weighted functions. NEM&3ults showed that the vdW model is
unable to deal with local shear viscosity of stignghomogeneous fluids (for both states) i.e.
when the density varies noticeably over a lengttheforder of one molecular diameter. The
LAMD (combined with an adequate weight functionpisimple but efficient approach for all
wavelengths when the fluid is sufficiently dense, when the translational viscosity is small
compared to the configurational viscosity.

However, when dealing with low density and moddyadense inhomogeneous fluids,
the LADM is unable to describe correctly viscogiyfiles. This is due to the fact that the
local translational contribution to the viscosiyhich is not negligible is such thermodynamic
conditions and considered as constant in the Ushl2M, is strongly affected by the density
inhomogeneities. To take into account this effeat, propose a description of the local

translational viscosity in inhomogeneous fluidsdzh®n a density gradient like approach.
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When this approach is combined with the LADM, weééound that it is possible to describe
correctly the local viscosity profiles of strongighomogeneous fluids for the two states

studied in this work.
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Part 2

Local Viscosity of a Fluid Confined in a Narrow Poe

* This part was published in Phys. Rev. E 86, 021&D12)

DOI: 10.1103/PhysReVvE.86.021202

Abstract:

In this paper, molecular dynamics simulations ofsimple Lennard-Jones fluid
confined in narrow slit pores and undergoing shemare been performed. The aim is to
investigate the effects of density inhomogeneitieshe fluid-solid interfaces on the shear
viscosity profiles. It has been found that the logacosity was varying strongly with the
distance from the solid walls for both dilute arehse fluid states with oscillations correlated
to the density ones. To describe the computed sigcprofiles, we propose a scheme that
uses the local average density model, combined anttadequate weight function, for the
configurational viscosity and a semi-empirical mott the translational viscosity. It is
shown that the proposed approach is able to prowgdesity profiles in good agreement with
those coming from simulations for different porelthis and for different fluid states (dilute to

dense).
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4.2.1. Introduction

Fluids confined between solid surfaces are genesatbngly inhomogeneous in the
direction perpendicular to the fluid-solid interéscbecause of surface effects (layering of the
molecules of the fluid because of adsorption andeoubar packing) [1]. This induces local
variations of equilibrium and transport propertigsghe confined fluids [1-4]. Understanding
such variations plays an important role in fundaraleand applied researches for nano- and
micro-fluidics, which has led to an extensive antoainliterature on that topic over the past

30 years [1-6].

Classical density functional theory (DFT) has bedmown to be able to provide
reliable prediction for strongly inhomogeneousdhijie.g. density profiles in narrow slit pore
[3]. However, the situation is more complex wheralahg with the transport properties of
inhomogeneous fluids even for simple fluids [6-13]his is due to the lack of a
comprehensive theory to describe the transporteptigs of non dilute fluids [14] together
with difficulties in assessing the results from experimental point of view. Some attempts
exist to deal with that problem. They are mostlgdthon Enskog-like kinetic model and
molecular dynamics (MD) simulations results and ocaumghly explain the behavior of the
viscosity of inhomogeneous fluids [8, 10-11, 15-1Hpwever, none of them are able to

accurately describe the variation in viscosity efyvconfined fluids [10-11, 15].

Beside the attempts based on the kinetic theodetarmining the spatial variation in
transport properties of inhomogeneous fluids, treetists another simpler method, which is
very easy to implement [6-7]. This method heurahc assumes that a local transport
property of an inhomogeneous fluid at a given parsiis equal to the value of the property at
a bulk state corresponding to a locally averageukithe around the given position. This
approach is called the local average density mgadDM). The LADM reasonably describes

the velocity profiles of fluids confined betweenlidosurfaces and undergoing boundary
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shears [7, 19]. However, the accuracy of such gmoagh is still questionable as long as an
explicit comparison of the local transport propepipvided by the LADM with the one

directly deduced from the MD simulation data does always exist. Furthermore, previous
papers dealing with the LADM were mainly restricteddense fluids, and it seems that the

model cannot be applied to dilute fluids [6, 20].

So, this paper aims at improving the descriptionthe@ local transport properties,
limited here to shear viscosity, of strongly inhaaneous fluid confined in a narrow slit
pore. To do so, we employ Non-Equilibrium Moleculzynamics (NEMD) simulations on
fluids confined in narrow pore and undergoing bargdhears, as shown in Fig. 4.2.1. Then,
we determine the local viscosity (separated intandlational and configurational
contributions) of the confined fluid, and evalu#éte efficiency of some known models, e.g.
the van der Waals (vdW) model and the LADM combimgith various weight functions. By
doing so, we can directly evaluate the limitatimfsthese models in predicting the local
viscosity based on the local thermodynamics praggert=inally, using the results from a
previous paper on inhomogeneous fluids without ioemfient [20], we propose a heuristic-
like simple method that can overcome the weaknesfstt®e classical LADM for low density
fluids.

The outline of the paper is as follow: Details tre tmethodology are presented in
Sect. 4.2.2. Then, the results are provided in.Se2t3 together with a discussion on the
validity of the models aimed at describing the logacosity of strongly inhomogeneous

fluids. Finally, the conclusions are drawn in Sdc?.4.
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Figure 4.2.1: Scheme of the simulation box usealinpaper.

4.2.2. Model and Theory
4.2.2.1. Fluid and Solid Models
In this paper, we study the shear viscosity of $enffuids confined between solid
walls. Interaction between fluid particles and dhgiolid particles are described by a usual
truncated Lennard-Jones (LJ) potential [21]:
oij 12 oij of .
Uy(ry) =+ [(E) _(r_,)l iy = (4.2.1)
0 if ;>

where rjj is the distance between particlesand j, ¢; is the potential depthg; is the

“molecular” diameter and is the cut-off radius (taken equal to @;n this paper).

The scheme of the simulation box is shown in Fig.4 in which each wall is made
of four atomic layers distributed on a faced cezdecubic lattice with the size of the lattice
a = 1.6a,, i.e. a number density of the solid wall ~ 0.98/¢3.. The solid particles are

fixed at their sites.

Inhomogeneities of the fluid are induced by intémacs between fluid and solid
particles. To control these inhomogeneities, thalfsolid interactions are modulated using a

classicak pre-factor as:
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sz = keff = ke (422)
Osf = O =055 =0 (4.2.3)
By tuning the amplitude d&, one can adapt the magnitude of the first adscith&tllayer.

In the following, we express the variables in disienless units by using the LJ
reduced units. The reduced temperafliredensityp’, stressP” and viscosity:” are, thus,

defined as [21]:

kgT Nro3 Po3 o2
* _ B * . INT * *
I'=— p=—7 P =— Wo=u

£ 74 £ Vvme

(4.2.4)

wherekg is the Boltzmann constaiy is the total number of atoms contained in the nau

V, andm s the mass of the fluid particle.

4.2.2.2. NEMD Scheme

The confined fluid is sheared by moving the wallsopposite parallel directions at a
constant velocity, see Fig. 4.2.1. At the statigretate, this scheme yields a constant shear
stress in the fluid phase (this point will be cheatkn the following). It is important to note
that the chosen magnitude of the velocity of thdlsashould be sufficiently large to obtain a

high signal-to-noise ratio but must also satisit tthear thinning is avoided [20].

4.2.2.3. Simulation Details

All simulations consist of three steps. First, tomfined fluid is equilibrated during a
run of 16 time-steps. Then, the NEMD scheme is applied &msthe confined fluid. Finally,
once the steady state is reached, which is ensiyreaonitoring the evolution of the velocity

profile with time, the samplings are performed dgi3 to 10 x 107 time steps.
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The solid walls are composed of a latticel 6fx 10 unit cells in they andz directions
respectively, which corresponds to a number of waiticlesN,, = 1600 and dimensions of
the simulated boX’, = 16 andL; = 16. To provide a high signal-to-noise ratio, the walle
moved with a high velocity on the order of 0.5 @duced units. However, we have verified
that the velocities used in the present paper Isidt to a linear response without shear
thinning (see Sect. 4.2.3.1).

We have used an in-house code to perform the MDulalions. The equations of
motion of the particles are solved by employingWeelet velocity algorithm with a time step
At'=0.002. Classical periodic boundary conditions applied in all directions [21]. To
compute interaction force efficiently, we used Werlet neighbor list [21]. A Berendsen
thermostat [22] is applied to the and z velocity components [23] during the NEMD
simulations with the time constant, = 0.2, and to all three velocity components \ andz)
during the equilibrium MD simulations with* = 1. To compute the local quantities, the

simulation box is divided into slabs along thdirection using\x* = 0.11.

4.2.3. Results and Discussions
4.2.3.1. Preliminary Results

First, to test the proposed methodology, we haveaechout MD simulations on a
rather dense fluid confined between solid wallsasafed by * = 10. To generate the initial
configuration we have employed the grand-canoniit@d molecular dynamics scheme
described in Ref. [24]. In that approach, the psreimulated in contact with two “bulk”
reservoirs maintained at a given staigy and psui). Then, once the equilibrium is reached,
the average density in the centre of the pore igmeted and is used to generate the initial
configuration of the fluid confined within the spbre as shown in Fig. 4.2.1. The fluid state

employed to perform the preliminary test corresgota a bulk fluid atr’* = 2 and p* =
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0.625, i.e. a dense supercritical fluid. Thepre-factor chosen is equal to 0.387 (moderately
adsorbent walls), which provides a maximum of #auced local density roughly equal to 1,

see Fig. 4.2.2(a).

As mentioned previously, during the NEMD simulagothe Berendsen thermostat
was employed on the& and z velocity components. So, it is important to chetle
temperature profile over thedirection (not thermostated), as shown in Fig.2{l. Two
interesting features are observed. First, temperatin both directions (perpendicular and
along the flow) are constant across the entirelfl§iecond, the temperature in thdirection
is equal to the expected one, even if the thermesia not applied in this direction. This can

simply be understood as a consequence of the eqitign theorem [21, 23].

The momentum conservation equation for a fluid @t in a narrow pore, i.e. at low
Reynolds number, and experiencing a boundary sheathe y direction (Couette
configuration) should lead to constant shear anchabstresses over thxecoordinate [9, 20].
From the Irving-Kirkwood definition for the pressutensor, the normal stregs, and the

shear stress,, across a plane parallel with the solid surfaces, they-z plane, can be

deduced as functions of tkeoordinate of the plane [9] using

2. s —x;
Po(x) = 2T 00— 1) = & [50 B2 Lo (EX) 0 (£H)] @25)

xij xij

1 1 xiiyij 0U 1 X—xj X—X;
Toy(X) = Zzimvi,x (vl-,y - uy(x)) §(x; —x) — ﬁ [Z- LU — g ( - )0 ( ij])] (4.2.6)
whereVs is the volume of a slak} = L, X L, is the area of thg-z plane of the simulation
box, mis the mass of a moleculg,, is thea component of the velocity of moleculeuy(x) is

the streaming velocity; is thex component ofjj, dis the Kronecker symbol aré(x) is the

Heaviside step function.
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Figure 4.2.2: Preliminary results for the stafgix=0.625 andr*=2. (a): Density profiles:
inverted triangles for equilibrium simulations atmigles for non-equilibrium simulations. (b)
Temperature profiles: inverted triangles and triasdor the temperature perpendicular to and
along the flow direction. (c) Normal stress prdfileénverted triangles for the normal stress at
equilibrium and triangles during non-equilibriunmsilations. (d) Shear stress profiles:
Diamonds, triangles and inverted triangles fortttal, configurational and translational shear
stresses, respectively. (e) Velocity profiles: diaals wherV,;,; = 0.3, triangles when
v

w

au = 0.6. (f) Shear viscosity profiles: diamonds whgjy,;; = 0.3, triangles wherv,,,;; =

0.6.
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To compute the local pressure tensor during the $#bulations, we have employed
the volume average method which is simply a diszagon of Egs. (4.2.5) and (4.2.6) and is
equivalent to the method of planes if a sufficigriithe discretization is employed [25]. So, to
divide the simulation box in small slabs perpentdicto thex axis, we have used the width of
each slal\x* ~ 0.11, which is consistent with what is proposed in R2%] and is sufficient
to obtain the normal and shear stress profilesin@adependent ofAx*. It is worth pointing
out that such a formulation of the pressure tensgs. (4.2.5) and (4.2.6), implies that the
kinetic contributions are assigned to the locatiomkere the particles are and the
configurational contributions are equally distribditbetween the particlésandj considered.
Additionally, we have compute@,. andz.a Which are normal and shear stresses acting on
the walls due to intermolecular forces betweerflthid and the solid molecules.

Results shown in Figs. 4.2.2(c) and 4.2.2(d) camtinat the behavior of the confined
fluid studied in this paper satisfies the momentonservation equation. It is worth noting
that even if the density is not constant, see #ig.2(a), the local shear stress is constant in
the whole fluid and is equal Q.

Equation (4.2.6) is composed of two contributidhe: first term on the right hand side
is the translational contribution and the secongintés the configurational one. Rather
surprisingly, the translational contribution incsea and the configurational contribution
decreases when the local density increases, sse £R2(a) and 4.2.2(d). Such a trend is
contradictory with what occurs in a homogeneougl fluhere the translational contribution
decreases with increasing density [26]. Howevas, ¢An be explained by the fact that, in an
inhomogeneous fluid, the number of particles pduwme unit increases with density, but,
contrary to what occurs in a homogeneous fluid, mability of the particles does not
decrease [20, 27]. This can be understood becausentomentum transport occurs

perpendicular to the dense layer (and the flow)rastcparallel to it.
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In addition, to test the influence of the sheartloa static properties of the confined
fluid, we have compared the density and normalsuresprofiles at equilibrium with those
during non-equilibrium simulations. Results depicte Figs. 4.2.2(a) and 4.2.2(c) indicate
that, for the shear rate used in the present p#peishear has a negligible effect on the local
density and normal pressure.

It is worth pointing out that, when the strain raggies rapidly over a length typical of
intermolecular correlations, the classical localMimn’s law of viscosity must be generalized
by a nonlocal constitutive equation [28]. Howevarthe Couette configuration simulated in
this paper, the variation in the gradient of thaistrate is small in the region from the pore
centre to the first adsorbed layer. This meanstti@effect of the variation in the strain rate
induced from the inhomogeneity of the fluid on tbeal shear stress can be neglected in this
region [29]. It should also be noticed that the aenmg region in which the gradient of the
strain rate is non-negligible, is rather small, smaller tharw/2. So, one can expect that this
effect remains rather limited. To confirm this etaent, we have performed NEMD
simulations with two different velocities of thelisowalls, V., = 0.3 andV,,,, = 0.6, to
compare the results between them.

As shown in Fig. 4.2.2(e), the velocity profile® auperposing (when scaled by the
velocity of the solid walls) for the two differeft,,;; 's tested. This is more obvious when

looking at the local viscosity profiles deducednirdNEMD simulations and using the

Txy (x)

velocity of the solid walls. Thus, in the following local shear viscosity has been computed

Newtonian law, i.eu(x) = . As shown in Fig. 4.2.2(f), they are independdrthe

using the Newtonian law in which the center findiference is used to compute the local

shear rate, i.edu, (x)/dx.
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It should be mentioned that we have also perforsmmilar checks for a “dilute” state,
ie. T*=2 and p* =0.291. All the previous findings on the dense state haeen

confirmed for the dilute state.

4.2.3.2. Viscosity Decomposition
When using Eg. (4.2.6) combined with the Newtonequation it is possible to

separate the viscosity in two contributions whistciucial to describe the local viscosity of

inhomogeneous fluids as we have shown in a prepaper [20]. The first term on the right

hand side of Eq. (4.2.6) represents the translati@ontribution and the second term

represents the configurational contribution to ltteal shear stress [26]. Thus, the local shear

viscosity estimated from the NEMD simulations canelxpressed as the sum of two terms,
p(x) = pe(x) + pc(x) (4.2.7)

where u; is the local translational shear viscosity comgidtem :

1
7z Zimvix(viy—uy () (xi—x)
pe(x) = z ity (%) (4.2.8)

dx

and. the local configurational shear viscosity evaldatenks to:

1[ XijyijaUL] 1 X—x; x—Xj
Zi<i - e s Q( - )0< - )]
24 a

I ‘C(’C) - ’r;-‘lll:l;c(ljxl) ~ - (4-2.9)

dx

From a physical point of viewy; correspond to the momentum transfer associated
with the displacement (diffusion) of the partickesd . corresponds to the contribution due
to (interaction) collision between particles. Thius,a dilute statey, will be the dominant
mechanism of momentum transfer whereas it wilkpo#r a dense state.

In a homogeneous fluid, the translational viscosityan LJ fluid is, to a very good
extent [26], equal to the “zero-density” viscosipy, deduced from a classical Chapman-

Enskog approach [30], i.e.,
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* * 5 T
He ®Ho = 16!2”\/; (4.2.10)

in whichQ,, is the collision integral.
In addition, the configurational viscosity of a hdmogenous fluid can be described

accurately by the correlation developed by Galliral. [31] usingT* andp* as inputs:

e corr (T, p)~ (eP2P" — 1) + by(eP+?” — 1) + (:f)z (ebsf” — 1) (4.2.11)

where the numerical parametebs, have been fitted on extensive MD results. Whes. Eq
(4.2.10) and (4.2.11) are combined, the correlasiorbuilt yields an estimate of the shear
viscosity of a homogenous LJ fluid with a maximubs@lute deviation below 5 % compared

to MD results for &< p <1.275and 0.& T <6.

4.2.3.3. Local Shear Viscosity Modeling

So, using the approach described previously, we lsamputed the viscosity profiles
of two different fluids using NEMD simulations, orie a dilute state afgux =2.0 and
Osui =0.291 and other one in a dense stafe @i=2.0, 0 sux =0.625, confined in a pore of a
width W*=10. Thek pre-factor (related to adsorption) in Eq. (4.2ha¥ been taken equal to
0.387 so that the local density remains in theduslirange of the LJ shear viscosity
correlation, Eq. (4.2.11).

The local viscosity in Fig. 4.2.3 clearly indicatbat the local viscosity deduced from
NEMD simulations strongly varies with position (iwith density inhomogeneities) for both
states Moreover, the viscosity profiles are strongly etated to the density ones for the two
states studied here, a result which is consistetit previous findings on inhomogeneous
systems [20]. To better understand the influenageofity inhomogeneities on the local shear
viscosity, in the following, we separately considére effects on the two viscosity

contributions.

144



Chapter 4: Local Viscosity of Inhomogeneous Fluids
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Figure 4.2.3: Shear viscosity profiles (solid cwrwe the insets: the corresponding density
profiles). (a) and (bYgux =2.0 andosux =0.291, (c) and (dJzui =2.0 andasui =0.625.

Circles for the NEMD simulations results, dashenreygreen color) for the vdwW model,
solid curve (cyan color) for the LADM + F-M modelptted curve (black color) for the

LADM + H-R model, dashed-dotted curve (blue cofor)the LADM + Tarazona model,

dashed-dotted-dotted curve (black color) for ER.@PR).

A. Configurational viscosity

By using Eg. (4.2.9), we have computed the conéiianal viscosity profiles for both
states during the simulations. As shown in Fig.44.the configurational viscosity varies with
the distance from the solid surface similarly te ttensity profiles. So, as assumed in the DFT
approaches for static properties, we have testeshioh extent the NEMD configurational
viscosity profiles computed using Eqg. (4.28)(x), can be deduced from:

ue(0) = 1 corr (T (), page(x)) (4.2.12)

where u; .o iS estimated using Eq. (4.2.11) apgy is an effective density profile that
satisfy the equality in Eq. (4.2.12). Thus, the mailestion is hovp¢(x) should be related
to the density profiles obtained during MD simuwas, i.e.p*(x)?

To answer that question, we have first tested itih@lest approach, called the van der

Waals model [20, 32], that is defined by:
petr(x) = p(x) (4.2.13)
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Figure 4.2.4: Configurational viscosity profilea) T su=2.0 ando gux =0.291. (b)

T suk=2.0 ando ‘sui =0.625. The legend is the same than in Fig. 4.2.3.

Figure 4.2.4 shows that the vdwW model leads torangt overestimation of the
variations inu; induced by the density inhomogeneities for botatest This result is
consistent with the fact that the configurationacesity is not only affected by the local
thermodynamic properties but also is affected by srrounding density, i.e. non-local
effects are expected. Hence, as the vdW model ctsg®n-local effects, it also fails to yield
a good estimate oft:(x).

To include non-local effects, we have then used@ggthes based on the local average
density model proposed by Bitsaeisal. [7],

Peit(x) = [ w(lx — x|, {p}p(X) dx (4.2.14)
where w(|x|,{p}) is a weight function. There exist various formsteé weight function
appearing in Eq. (4.2.14) that have been propasdedl with static properties [32-33]. In this
paper, we have selected among them three well-kmtifferent forms. The first one, which is

density independent, is the Fischer and Methfé¢gs®) model [33] in which:

1 x| <2
w(|x]) = {a X1=3 (4.2.15)
0 elsewhere

The second one, also density independent, the gjezeet Hard-Rod (H-R) model [33], is

defined as:
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w(lx]) = {ai [(%)2 - (|x|)2] when |x| <7 (4.2.16)

0 elsewhere

The last one, which is the most efficient amongttiree to describe the static properties of
confined fluids [33], the Tarazona model, is defirmes:

w(|x = £, pege(x)) = wo(Ix — £]) + w1 (Ix — 2D pege(x) + wa (Ix — £])pege(x)? (4.2.17)
wherew;_q-,(|x|) are given in Ref. [33]. It is worth to precisettlt@e length over which the
non-local effects are taken into account is equoad tfor the first two weight functions,
whereas it is equal t2o for the last one [32-33].

Figure 4.2.4 shows the results obtained when uBimg(4.2.12) combined with Eq.
(4.2.14) with the three weight functions testedhis paper. From these figures it is clear that,
when non-locality is introduced using Eq. (4.2.1é}ults can be largely improved compared
to the simple vdW model. However, rather surprikinthe two firsts weight functions (that
introduce non-locality over a distance equabjoyield better results than the Tarazona one
(that introduce non-locality over a distance equal20), see Fig. 4.2.4. This finding is
probably related to the fact that thermodynamicngjtias are more strongly dependent on
long-range interactions than transport proper@s3d5]. Such an assumption is supported by
the fact that hard-sphere approaches are used timags viscosity with a reasonable
efficiency [14], whereas, such a fluid model isdamentally inadequate for thermodynamic
properties. Another form of support for that asstiampcomes from the fact that viscosity is
only weakly dependent on the cut-off radius [31;33¢, whereas, thermodynamic properties
are strongly affected by a small cut-off radiusueg]21, 38].

It should be noted that among the weight functienth the non-locality over a
distance equal to the generalized H-R function is a more consistaoice because the F-M
function, Eq. (4.2.15), is strongly discontinuouso® whereas the H-R is not. Thus, in the

following, the H-R weight function is employed.
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Figure 4.2.5: Translational viscosity profiles Tagux=2.0 ando” guk =0.291. (bJT guk =2.0

ando” suk =0.625. Circles for NEMD simulations results, datirves for Eq. (4.2.21).

B. Translational viscosity

Similar to what was performed for configurationaoosity, the translational viscosity
profiles for both states have been computed duhegNEMD simulations. As shown in Fig.
4.2.5, the translational viscosity varies apprdgiatith the distance from the solid surface,
i.e. with the densities inhomogeneities. Such aabiehn is contradictory with Eq. (4.2.10)
which implies a translational viscosity independehthe density. Furthermore, the obvious
correlation between the local translational visigoand the local density is opposite to what
found in homogeneous LJ fluids for which the tratishal viscosity decreases slightly when
the density is increasing [26]. This point has adie been discussed in Ref. [20] for
inhomogeneous fluids without confinement. As expdi in this papew;(x) is connected to
the local number of molecules and the local mgbdit each molecule, in which the latter is
also correlated positively to the local density.

To quantify this correlation between the local #slational viscosity and the local
thermodynamic conditions, the idea is to quantihe tratio betweenu;(x) and the
translational viscosity of the bulk fluigh; ., i.e. the translational viscosity of the fluid in

the bulk reservoir in contact with the porous mediiat the same chemical potential than the
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one of the confined fluid). For that purpose, weuase that the translational viscosity is a

function of the density and of the insertion prabgl{20], which leads to:

we@  9(pG)xf(p@)exp(B9(p(0)T(x))))

Heputk  g(Ppu)Xf (PBulk'exp(B 9 (pBulk'TBulk)))

(4.2.18)

where 9 is the chemical potentia a function of the density andis a function of the

insertion probability. From the thermodynamic eiipmilm condition we can write that:

9(p(x), T(x)) = 9(Ppuiic Toun) (4.2.19)

Then, from Egs. (4.2.18) and (4.2.19), we can dedas a first order approximation,

that —*“® i a function of 2% only. It should be mentioned that such an
#t(PBulk TBulk) PBulk

approximation is valid only when the variationsféfl are not too large, i.e. when the fluid-
Bulk

solid interactions are not too strong. Startingrfrthat assumption, using the NEMD results
obtained, we have found that a simple power lasui§icient to provide reasonable results,

see Fig. 4.2.6, i.e., the local translational véstyocan be well described by:

Y
e () = e e X (£2) (4.2.20)

PBulk

wherey is a parameter function of the bulk statex 3 for the dilute state and~ 1.4 for the

dense state). Again, it should be pointed that télistion will remain valid only when the

variations in;(—x) are not too large, i.eg,(—x) between 2/3 and 3/2.
Bulk Bulk

To estimate the relation betwegrand pg,x and Ty, We have performed NEMD
simulations for 30 different systems, keeping 0.387, on a large range of bulk stat&§ (i,
varies from 1.5 to 4 and;, . varies from 0.2 to 0.7) and various pore widths Yaries from

5 to 10). Results indicate thatincreases with decreasing bulk density and inangasulk

temperature. In other words, the local viscositjn@re strongly correlated (%&) at higher
Bulk

bulk temperature and lower bulk density. Basedhasé results, we propose a correlation for

Ys
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exp (0.022XTE k) (4.2.21)

PBulk

y = 0.8 X

As shown in Fig. 4.2.5, Eqgs. (4.2.20) and (4.2&®%)able to yield a reasonalplgx) profiles

based on the local thermodynamic properties.
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Figure 4.2.6: Correlation betwe@p(x)/ i gy andp*(x)/pguix in the dense state using

different pore widths from&to 10o.

C. Local viscosity

Thus, to quantitatively describe the local visgpsit pure fluids confined in not too

adsorbent narrow pores over a large range of thdynamic conditions, we propose to use:

\/@ % (p(x) )y + te.corr (T (), pes(x)) (4.2.22)

PBulk

5
ulx) = oo,

in which, p.¢ is deduced using Eq. (4.2.14) with the H-R weifyhtction defined by Eq.
(4.2.16) andvis obtained by Eq. (4.2.21).

As shown in Figs. 4.2.3, 4.2.7 and 4.2.8, the letsdosities predicted from the local
thermodynamic condition using Eq. (4.2.22) are tast with the ones provided by NEMD
simulations for different thermodynamic conditiqitso temperatures and two densities) and

various pore widths.
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Figure 4.2.7: Viscosity profiles for various poréliihs (with corresponding density profiles
in the insets). Left: dilute state. Right: densdestCircles for NEMD simulations and curves

for Eq. (4.2.22).
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Figure 4.2.8: Viscosity profiles for various poréltts for T gu=4.0 ando sux =0.291. The

legend is the same than on Fig. 4.2.7.

4.2.4. Conclusions

In the present paper, we have investigated thd Biear viscosity of Lennard-Jones
fluids confined in narrow slit pores by using malke dynamics simulations of a Couette like
configuration. It is shown that, when using suchnfmguration with the appropriate
parameters, the variation of the gradient of tiharstrate is small in the region from the pore
centre to the first adsorbed layer. The remainiegian, in which this variation is non-

negligible, is limited to regions close to the wdlhat are smaller tham2. So, it is consistent
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to define a local viscosity from the classical Nemis equation and a non local constitutive
equation is not required in this case.

The local shear viscosity has been found to vapngty with the distance to the walls
and to be dependent on the density inhomogeneitidge fluid. To quantitatively understand
this behavior, we have decomposed the local viscasio configurational and translational
contributions. Interestingly, it has been found thath contributions vary with the distance to
the walls.

NEMD results showed that the local average densibgel provides a reasonable
estimate of the local configurational viscosity wheombined with the appropriate weight
function which seems to be the Hard-Rod one forsiystems studied here. However, it has
been found that this approach is insufficient teld/igood results of the viscosity profiles in
the dilute state, i.e. when the configurationatesty is small compared to the translational
Viscosity.

Based on extensive simulations, we have propossithple relation to describe the
translational viscosity profiles starting only fraire density profiles. Thus, when this relation
is combined with the LADM + H-R model for the camfirational viscosity, we have found
that it is possible to quantitatively determine siear viscosity profiles of a confined LJ fluid
for different pore widths (five to ten molecule ez and for different fluid states (dilute to

dense) when the solid walls are not too adsorbent.
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Abstract:

The way to model adequately the non-local contrimst due to the interactions of
particles separated by a given distance into tloallghear viscosity of dense strongly
inhomogeneous fluids composed of spheres is explior¢his work using Non Equilibrium
Molecular Dynamics simulations. It is shown thaimple local average density model with
state independent weight functions is able to ygeldd results for a fluid composed of quasi-
hard spheres. However, when going to smoothly sgilpotential, such an approach must
be completed by taking into account that the distions of the normalized contributions
depend on their interaction potential and on timeperature but not on the density. Finally,
using a simple perturbation scheme, it is shown tooextend the approach to model the local
shear viscosity of dense strongly inhomogeneousnd&ehJones fluids starting from the

density profile.
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4.3.1. Introduction

An accurate description of fluid flows through nanmicro-materials and the design
optimization of nano-, micro-devices rely on thegse knowledge of the transport properties
of strongly confined fluids [1-2]. In such systentise fluids are generally strongly
inhomogeneous because of surface effects and gaorm@hfinement [3]. To deal with such
systems, most works have been dedicated to Engked<netic models combined with
molecular dynamics (MD) simulations [4-7] as a .tésbwever, such approaches are rather
difficult to employ compared to what exists to death static properties [3] and exhibit
deficiencies in some cases because of the intrimsitations of an Enskog like approach to
deal with dense fluids.

A longstanding question is how to construct an aagh similar to what has been
successfully developed for the static propertiesirdgfomogeneous fluids, the density
functional theory (DFT), to deal with transport peoties [3, 8]. This domain was pioneered
by Bitsanis et al. [9] who proposed the local agerdensity model (LADM). In this method
it is heuristically assumed that a local transpooperty of an inhomogeneous fluid at a given
position is equal to the value of the property irbik state corresponding to a locally
averaged density around the given position. Howethes approach, combined with usual
DFT weight functions [3, 13], does not always léadh good estimate of the local viscosity
[8, 10-12].

Thus, this paper aims at providing a general tkdetascheme able to yield
guantitatively the viscosity profile of stronglynomogeneous dense fluids of various types
starting from the density profile. To do so, emphgyNon-Equilibrium Molecular Dynamics
(NEMD) simulations, we propose to study the locaicusity of three types of fluids, the

qguasi-Hard Sphere (HS), the Weeks-Chandler-Andefd&DA) and the Lennard-Jones (LJ)
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fluids, subject to an external sinusoidal fieldinduce density inhomogeneities as shown in
Fig. 4.3.1.

The outline of the paper is as follows: the detaifs the methodology used are
presented in Sect. 4.3.2. Then, the results olataane provided in Sect. 4.3.3 together with a
discussion of the validity of the approaches aimatgdescribing the local viscosity of

strongly inhomogeneous fluids. Finally, the coniduas are drawn in Sect. 4.3.4.

U,=U, cos (2mx/L,

A f=ARRRRRAAAA44,
VRV SR

N : 0 O 0 ¢ : Qo
()
X (@) 065 5 10 15

Figure 4.3.1: (a) A 2D sketch of the simulated eyst(b) Density profiles of the

2— R~
22—~
22—~
22—~
2—
22—
22—~

-—

inhomogeneous fluids fgr,; = 0.9. Line : quasi-HS fluid, diamonds : LJ fluids anctles :

WCA fluids. Open symbolsT.* = 0.8 and full symbols T* = 2.0.

4.3.2. Molecular Simulations
4.3.2.1. Fluid Models

As mentioned in the introduction, we study in thierk the local viscosity of three
types of simple inhomogeneous fluids composed diegs interacting through different
potential. The quasi-HS fluid is described by aeriaction potential such as:

rij

144
Uquasi—HS(rij) =& (_) (4.3.1)

g
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whererj is distance between the particleand], ¢ arec are the energy and the “molecular”
diameter respectively. The choice of a repulsivpoeent equal to 144 ensures that the
simulated fluid possesses characteristics sindlahat of a hard sphere fluid with a diameter
equal too [14-15] while keeping the potential continuous.
The LJ fluid interactions are described by:
o 12 o 6
Uy (ry) =1 [(E) - (r_,) l ity <7 (4.3.2)
0 if rj>r
wherer the cut-off radius (taken equal to 2.1 this paper).

The WCA fluid interactions are described by:

o 12 o 6
—) —(—) l+£ if r; <2V

4e [(
Uwea(rij) = Tij rij (4.3.3)

0 if rij > 21/60'
In the following, variables noted with a star apenscript correspond to classical reduced

guantities.

4.3.2.2. Inhomogeneous Fluid
To induce the density inhomogeneities [11], see &i8.1(a), we have applied to the

simulation box a Sinusoidally Varying external Rai& (SVP),U.,,;, in thex direction:

Upyr = —Uycos (27m Li) (4.3.4)

P

wherelL, is the dimension of the simulation box in theélirection,U, the amplitude of the
SVP andn the wavelength parameter. In this wolkk, is chosen to be equal 1&g, andn
equals to 2 and 12 to test different inhomogensdyelengths. It should be noted that the set
of L, = 180 and n = 12 leads to variations of the density profiles ovetigtance typical to
what occur in confined fluids. Thus, starting fradhe same initial densityp;,; = 0.9, for

n = 12 we have generated density profiles that are sogarg by tuningU,: one for the
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quasi-HS T7* =1), two for the WCA " = 0.8and 2) and two for the LJ fluid T* =
0.8 and 2), see Fig. 4.3.1(b); fat = 2, the amplitudes of the SVB,, have been chosen so
that the order of magnitude of minimal local densg roughly the same for = 12. In
addition, another initial density has been congdefor the quasi-HS fluid apy,; =

0.75 (and T* = 1).

4.3.2.3. NEMD Scheme

To shear the inhomogeneous fluids so obtainedNt&kID scheme proposed by F.
Muller-Plathe has been employed [16]. In this mdiitbe simulation box is divided intgs
slabs (32 in this work) along thedirection and the fluid is sheared using a neharge of
the linear momentum along tigelirection everyNswaptime steps. This exchange is performed
between the central part of the simulation %2 andNg2+1, and the edge slabs, 1 agl
to keep the periodic boundary conditions in xhdirection, see Fig. 4.3.1(e)swap iS chosen
such as the effect of the variations in the strate induced from the inhomogeneity of the
fluid on the local shear stress can be neglectdd {d avoid the need of a non-local
constitutive equation to quantify the local she@ceosity [17]. It is then possible to compute
locally the translational (kinetic) and configuratal (collisional) contributions to the shear
viscosity [11]. Thus, a local configurational she@cosity,u¢(x), has been computed using

the classical Newtonian law, i.e.

£y (0
ue(x) = % (4.3.5)
(")

whereu,, (x) the streaming velocity atand 75, (x) is the configurational shear stress:

5, (x) = _i [Z XyYiy OU 1 g (ﬁ) ) (x—x]->] (4.3.6)

xl-j xl-j

whereA = L, X L, is the area of thg-z plane of the simulation box. The volume average

method is employed to compute the local configareti shear stress in which the width of
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each slab idx* = 0.1 [18], and the center finite difference is usedpproximate the local
shear ratelu, (x)/dx. To reduce the statistical uncertainties, the astegp viscosity profiles
shown in Fig. 4.3.2 correspond to an average ofemindependent runs and the error bars
represents the standard deviation. In additiorprdg dense fluid will be dealt with in this
paper, we will not consider the translational cimittion to the viscosity which is negligible

for such states [11].

4.3.3. Results and Discussions
4.3.3.1. Classical LADM

To model the viscosity profiles shown on Figs. 2.8nd 4.3.3, as a starting point, we
retain the main idea of the LADM approach, i.e. thiscosity profiles of strongly
inhomogeneous fluid are related to non-local cbntions and a simple weighted average of
the local density over a given distance can bacseifit to take into account these effects. In
the original work, Bitsani®t al. suggested the use of the HR weight function [81 &
subsequent works Guet al. employed the Tarazona weight function [19-20]. yiehowed
that the use of such functions can lead to a gaedigtion for the velocity profiles of
inhomogeneous fluid. However, such weight functionsre originally developed for
equilibrium properties [21] and their applicatiolmsthe shear viscosity have not rigorously
been justified. In particular, in DFT approaches basic idea is similar to the LADM but is
applied to a quantity (the excess free energynpaecule [3]. Thus, we have considered that
the non-local contributions should be taken intocoant through the kinematic

configurational viscositysf© = 1/ p), a quantity per molecule, leading to a local
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Figure 4.3.2: Viscosity profiles of the inhomogeungdiuids for the slowly varying density,
l.e.n = 2. (a) Quasi-HS fluid witlp;,; = 0.9 and T* = 1. (b) Quasi-HS fluid withp;,;; =

0.75and T* = 1. (c) WCA fluid with p},,;, = 0.9 and T* = 0.8. (d) WCA fluid with p;,,, =

0.9and T* = 2. (e) LJ fluid withp,; = 0.9 and T* = 0.8. (f) LJ fluid with pj,;
0.9 and T* = 2. Circles: NEMD simulations. Dashed (blue) and é@astiotted-dotted lines
(red): LADM combined with the HR and Tarazona medetspectively. Solid (green) lines

proposed scheme, Egs. (4.3.7), (4.3.9), (4.3.18)43.15).
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configurational viscosity given by:
ue(x) = pt(In“(p) (4.3.7)
wheren®(p) is the kinematic viscosity of a bulk fluid at andéy p and :
pT(x) = [P(x — %, p)p(X) dk (4.3.8a)
p(x) = [w(x — %, p)p(x)dx (4.3.8b)
where, ¥ (x, p) andw(x, p) are weight functions of the position and the dgnsimilarly to
what used in classical DFT generalized approact@s [

To estimate the “bulkh® for the different densities in Eq. (4.3.7), we dawsed the
Sigurgeirsson and Heyes [22] relation for the qutS) direct MD simulations for the WCA
fluid and the Galliero et al. [23] correlation ftre LJ fluid. In homogeneous fluids, these
viscosity correlations are able to provide datdnini6% of the direct MD simulations results.

As shown in Fig. 4.3.2, for a slowly varying deggirofile, i.e.,n = 2, the viscosity
profiles provided from both models are in very g@guleement with those obtained from the
NEMD simulations whatever the type of fluid, thetied density and the temperature. This
clearly indicates that the approaches developedhirequilibrium thermodynamics of the
strongly inhomogeneous fluids are applicable tadioteon for the local viscosity when the
density profile is slowly varying. Otherwise, for sdrongly varying density profile, i.e.,
n = 12, the H-R model yields good result for the quasi#Hf& at p;,; = 0.75 and for the
WCA and LJ fluids wherl* = 2, but the viscosity variations are overestimatadlie other
systems, as shown in Fig. 4.3.3. The Tarazona mpuaelides reasonable results for the
quasi-HS fluid atp;,; = 0.9 and for the WCA and LJ fluids wheh* = 0.8 but tends to
noticeably underestimate the variations for othates. This confirms [8, 10-12] that usual
weight functions combined with Eq. (4.3.7) are dedb provide a quantitative estimation of

the viscosity profiles for different types of fluéhd different states.
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Figure 4.3.3: Viscosity profiles of the inhomogeungdluids for the strongly varying density,
l.e.,n = 12. (a) Quasi-HS fluid wittp;,; = 0.9 and T* = 1. (b) Quasi-HS fluid wittp;,; =
0.75and T* = 1. (c) WCA fluid with pj,;; = 0.9 and T* = 0.8. (d) WCA fluid with p,;; =
0.9 and T* = 2. (e) LJ fluid withp;,; = 0.9 and T* = 0.8. (f) LJ fluid with p},;; =

0.9 and T* = 2. Legend is the same than in Fig. 4.3.2.
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4.3.3.2. Towards a More General Scheme

To develop the general scheme proposed in this ,week will first show that is
possible to obtain good results for the quasi-H&lftaking into account a peculiarity of the
momentum exchange compared to what used to dealfieé energy. In a second step, we
will describe how it is possible to approximate whbacurs in a smoothly repulsive WCA
fluid by taking into account the influence of thermalized contribution to the shear viscosity
induced by the interactions of particles separated given distance. Finally, using a simple
perturbation scheme, we will show how it is possital obtain results for the LJ fluid starting
from the WCA fluid.

A. The quasi-HS fluid

To deal with the quasi-HS fluid, we start from faet that in some DFT approaches it
is assumed that the local properties should beneéfat the center of the colliding molecule,
e.g. the generalized van der Waals and TarazonaIs)at at the position of contact, e.g. the
HR model [21]. As the former approach, i(x) = 6(x), leads generally to better results
than the latter, we have retained it:

p*(x) = p(x) (4.3.92)

In addition, the configurational viscosity is inducby collisions between molecules
which occurs only at contact, i.e. wher= 0/2, in a quasi-HS fluid. However, contrary to
what is needed to deal with free energy as in US&aI, the exchange of momentum (i.e., the
configurational shear stress) depends on the athgleis formed between the colliding
molecules relatively to the direction of the flow taken into account in kinetic theories

developed to deal with that problem [4-7]. Hence, propose to model the average density
by:
50,0 = [, Pan(o, 1) d (L) (4.3.9b)

/2
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wherepyr (0, x) is the local average density obtained by usingtRemodel which relies on
the Fischer and Methfessel assumption [24]. As shiwFigs. 4.3.3(a) and 4.3.3(b), using
this simple approach, the configurational viscogitgfiles obtained for the quasi-HS fluids
are in very good agreement with NEMD results fathbsiates and provides better results than
those coming from the “usual” approaches. In addjtas shown in Figs. 4.3.2(a) and 4.3.2(b)
the proposed approach predicts quantitatively theogity profiles obtained from the NEMD
simulations for slowly varying density profiles.

B. The WCA fluid

When going to smoothly repulsive potentials (WCéid) one has to take into account
that the exchange of momentum between particlastisestricted to the contact position (i.e.
a distance equal o) as for the quasi-HS fluid. Thus, to analyze andniify the differences
between quasi-HS and WCA fluids, we have computedfdllowing relative quantity using
NEMD simulations on homogeneous (bulk) WCA fluids tlifferent thermodynamic states

(Pguk = 0.5to 1 andr' = 0.8 to 3):

1 0 (UE,WCA (T,,D,T))
Uﬁ/CA (p,T) or

fawea,p, T) = (4.3.10)

where,nt c4(r, p,T) is the contribution to the kinematic configuratibviscosity induced
by interactions between molecules separated- lyr less from each others. This allows
guantifying the distribution of the intermoleculatdistances that contribute to the
configurational viscosity. It should be noticedttfjareduces to a Dirac located at a distashce
= o for a quasi-HS fluid.

As shown in Fig. 4.3.4(af, wca is strongly peaked, with a position of the maximum
that decreases when temperature increases. A menesting feature of, ¢4 of the WCA
fluid is that it is not dependent on the densigg &ig. 4.3.4(a). Furthermore, as expected, the

distance range over whigh ¢4 is non-negligible increases when temperature ases.
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(b)

] . ® L & g
U °

Figure 4.3.4: Dependence gfwith: (a) Distancel™ and (b) Interaction potentiglUy,c,, for
different homogeneous states. Symbols: NEMD sirmariat(deltas fopg,;, = 0.5, diamonds
for pguk = 0.75, squares fopg,x = 0.9 and circles fopg, = 1.). Lines: Eq. (4.3.12b).

Red colorT* = 0.8. Green colorT* = 1. Blue color:T* = 2. Dark color:T* = 3.

This clearly indicates that the non-local contribns associated to the kinematic
configurational viscosity of a WCA fluid cannot Ipeoperly handled by a weight function
independent of temperature as usually assumeaibABDM approach [9].

To modelf, wca, Which is so independent on density but dependertemperature,
we start from the assumption that the region oveickvf, ¢, is not negligible is related to

the way the molecule explore the potential for eegitemperature. Sq, ;¢4 Should be
related tofUy,c4, Wheref = k—lT We have then estimated in homogeneous WCA flard f
B

different states the following quantity:

1 6(ngwcA(T,P'T)) — fT],WCA(r'T)
Mirca@ D 0(BUwea®) ~ BUjca(

fuwecaBUwca(r),T) = (4.3.11)

Very interestingly, as shown on Fig. 4.3.405,)fWCA is a unique function oBU, ., for all

states studied which strongly support the prevassaimptions.
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To describdnlfwc 4, We start from the fact that it quantifies whidrgs of a continuous
potential between two particles contribute the nmiogshe momentum exchange between the
particles. Sof;yca Must be related to the way the particles areibligtrd relatively to each
others, i.e. the radial distribution functiggr). Thus, if we assume thaiqf’WCA Is simply
proportional tog(r), we can deduce thgf},’{WCA should be proportional texp(—BUyc4) as
long asfanWCA is independent of density. Finally, as by defonit{ fnlfWCA d(BUyca) = 1, we
can deduce that:

fitwca(BUwca) = BUycae FUwea (4.3.12a)
and so:
fowea@ T) = B2UwcaUpcae PUwea (4.3.12b)
As clearly shown on Fig. 4.3.4(a), Eq. (4.3.12bjlde to describe very well the NEMD
results of homogeneous WCA fluids for all thermaatync states.

To quantify the local configurational viscosity af inhomogeneous WCA fluid, it is

rational to hypothesize that the contribution iretlicby the interactions of molecules
separated by a distandecan be determined analytically p¥(r)ng,c4(o(d, 7)) fpwea(d),
wherep®(r) andp(d, r) are described using Eqgs. (4.3.9a) and (4.3.9peotively. However,

the use of the molecular simulations to directlst tdis hypothesis is difficult due to the
associated statistical uncertainties. In termstegral this hypothesis can be re-stated as that
the contributions induced by the interactions otenoles separated by a distance less than
can be evaluated by (x) fodnﬁ,m(ﬁ(x’,x))f,,,WCA(x’)dx’. Using the NEMD simulations,

we have checked such hypothesis for several valugsResults shown in Fig. 4.3.5 indicate
that the hypothesis make sense. Thus, we can dé¢ldaicehe local configurational viscosity

of a WCA fluid is simply described by:

Mﬁ/CA(x) = p‘r(x) fnﬁ/CA(p_(x’, x))fn,WCA(x,) dx’ (4313)
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Figure 4.3.5: The contributions induced by theratéons of molecules separated by a
distance less thadiinto the local viscosity for the WCA fluid. Lefigure: pi,; =

0.9 and T* = 0.8. Right figure:p,; = 0.9 and T* = 2.0. Symbols: NEMD simulations.

d =~ ! ! !
Curves:p®(x) fo Myca(p(x rx))fn,WCA(x )dx'.

As shown on Figs. 4.3.2(c), 4.3.2(d), 4.3.3(c) &n8.3(d), it appears that such a
scheme is able to describe very well the NEMD tesialr the two studied initial states with
slowly and strongly varying densities. One shoudtiae that such an approach should de,

priori, valid for other repulsive potentials than the WG#e.

C. The LJ fluid

To take into account the attractive contributiontlod LJ potential, compared to the

WCA potential, we use a perturbation scheme in lvkhe reference chosen is the WCA fluid
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[3]. Thus, for a given bulk state, the ratio betwdle configurational viscosities of the LJ

fluid and the WCA fluid can be expressed as a fonabf the temperature only [25]:

c * *
ury(p5TY) 6
= o 1+ - (4.3.14)

where @ is a constant. To test Eqg. (4.3.14), we have pmdd NEMD simulations of the
WCA homogeneous fluid for various thermodynamicsditions. As shown on Fig. 4.3.6(a),

the relation (4.3.14) yields very good result inrfageneous fluids if one takés= 0.34. To

Cc
test further this relation in inhomogeneous coond#i, we have computed the raf{é% for
WCA

the two inhomogeneous states studied in this wpfk,= 0.90and T* = 0.8 and p,; =
0.90 and T* = 2. As shown in Fig. 4.3.6(b), EqQ. (4.3.14) seemkdlal very well locally even
in strongly inhomogeneous fluids. Thus, when EB.(#) is combined with Eq. (4.3.13), one
obtains for a LJ inhomogeneous fluid:
,uf](x) =ap*(x) fnﬁ/CA(p_(x,:x))fn,WCA(x,) dx’ (4.3.15)

As shown on Figs. 4.3.3(e) and 4.3.3(f), it is tpessible to get a very good estimate
of the local configurational LJ viscosity profile$ a strongly inhomogeneous fluid using Eq.
(4.3.15). It is worth to notice that the use of E43.15) also yields very good prediction for
the viscosity profiles for slowly varying densitiesee Figs. 4.3.2(e) and 4.3.2(f). The small
differences that appear mainly come from the istdrimitations of the simple perturbation

scheme employed, Eq. (4.3.14).
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Figure 4.3.6: (a) Configurational viscosity of th&homogeneous fluid. Lines: correlation

proposed by Galliero et al. [21]. Symbols: NEMDuiles of the WCA fluids multiplied byr.

Circles :T* = 0.8. Diamonds T* = 1. SquaresT* = 2. (b)% in inhomogeneous
WCA

fluids for the two studied states € 12). Straight lines: Eq. (4.3.14). Symbols: NENH3uIts.

Red circlesp,; = 0.90 and T* = 0.8 .Green squarepi,; = 090 and T* = 2.

4.3.4. Conclusions

In this work, we have studied how to predict quatirely the local viscosity of a
dense inhomogeneous fluid starting from the dengitfile. To do so, Non Equilibrium
Molecular Dynamics simulations have been performedhree types of fluids, the quasi-HS,
WCA and LJ fluids, subject to a Sinusoidally Varyiexternal Potential inducing the density
inhomogeneities.

It has been found that for a slowly varying densitgfile the local viscosity obtained
from the simulations can be well described by udimg Local Average Density Model
combined with weight functions developed for theiiglgrium thermodynamics of strongly
inhomogeneous fluids for all type of fluid, initidensity and temperature considered in this
work. However, for strongly inhomogeneous fluide.(important density variations over one
molecular distance) such schemes cannot providmod gstimation of the viscosity profiles
for different types of fluid and different states.
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To develop a general scheme able to tackle alesysistudied in this work, we have
first dealt with the semi-HS fluid. By taking intaccount the effect of the angle formed
between the colliding molecules relatively the dien of the flow on the collisional
viscosity, a simple weight function has been pregowhich combined with the LADM is
able to provide a good prediction of the local gsty of the semi-HS fluid whatever the
states and the inhomogeneities used in this wdnknTby analyzing the distributions of the
normalized contribution induced by the interactiofigparticles separated by a given distance
into the shear viscosity, we have developed a sehéat yields the WCA viscosity profiles
in good agreement with those obtained from the kitrams. It should be noticed that such a
scheme for predicting the shear viscosity of theAV¥IQid should be valid for other smoothly
repulsive potentials. Finally, it is shown that theal viscosity of a strongly inhomogeneous
LJ fluid can quantitatively be deduced from the afiehe WCA fluid by using a simple

perturbation scheme.
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Chapter 5
Shear Behavior of a Confined Thin Film: Influence & the

Molecular Dynamics Scheme Employed

* This chapter has been published in J. Chem. PI8&. 054707 (2013)

DOI: 10.1063/1.4789582

Abstract:

In this work, we have considered and compared tvatecular dynamics schemes
widely used when studying a thin fluid film confthéetween solid surfaces and undergoing
boundary shear. In the first approach, the nonlbguim simulations are performed on a
confined fluid explicitly connected to bulk reseimg In the second one, non-equilibrium
simulations are carried out on the confined flunlypin which the average density is deduced
from a prior simulation in the grand canonical enske. We have found that the apparent
properties (average density and effective viscpanfya strongly confined Lennard-Jones
liquid are significantly different using one scheorehe other when the solid surfaces induce
a strong structure in the whole fluid, i.e. for dnweparations between the solid surfaces.
Furthermore, the shear velocity dependence ofriboh force has been found to be as well
very sensitive to the approach chosen and can Weuwvderstood in terms of the fluid
structure which can even lead to a visco-plasti@bmr of the fluid in some cases. Finally, it
is shown that the first scheme is the only one lestbexplore the history-dependence of the

friction force as observed in experiments.
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5.1. Introduction

Solid surfaces separated by a thin fluid film afidisg from each other play an
important role in a variety of contexts both frone ttundamental and the industrial point of
views: friction, lubrication, wear, etc.[1-4]. Masyudies demonstrated that the thin fluid film
is the main origin of unusual experimental behaviarsuch systems, for examples the stick-
slip slide and the static friction [3-5]. So, thechanical and rheological properties of the thin
fluid film undergoing the shear have gained indregsattention recently. In fact, due to
adsorption and molecular packing, the fluid molesuhave a general tendency to organize
themselves into layered structures parallel testhiel surfaces. Such local structure in the thin
fluid film yields apparent physical properties tlae often different from those of the bulk
[6]. Experimental, theoretical and simulation wohave shown that the properties in such
systems depend on the nature of the fluid, thedfailid interaction, the operational
conditions (e.g. sliding velocity and temperatui)d the separation (e.g. distance between
the solid surfaces or the load) [3-4].

In such highly confined systems where the typiesgth is the nanometer or even
less, some dedicated apparatus have been deveatpedlyze experimentally their physical
properties [1]. However, they cannot provide diseell the properties of the thin fluid film.
To complement the experiments in such extreme ¢tiondi and to better understand the
various phenomena occurring in very thin film, noolar simulations [7] have shown to be a
valuable tool on idealized systems [2-6]. More @mely using molecular simulations, the
dependence of the properties of a simple thin flfilch confined between two walls
undergoing boundary shears has extensively bedorerpduring the last two decades [2-4].
It has been found that the effective viscosity éases with the width decreasing and are
always higher than that in the bulk [8], considiemtith experiments [1]. In addition, it has

been noticed that an increase in the strengtheofitind-solid interaction tends to decrease the
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slipping length of the fluid [9-10]. In particulaGlosli et al. [11] observed from molecular
simulations that the energy dissipation occurs ldisaontinuous or continuous mechanism
depending on the fluid-solid interaction stren@the effect of the sliding velocity of the walls
confining the film has also been explored by usmglecular simulations. It has been found
that the dependence of the friction force on thiecry follows a simple thermal activation
model, i.e. the friction coefficient in the Amon®taw is a function of the velocity [3-4, 11-
13].

A very important point concerning all these simwlias is related to the choice of the
technique employed as there exit a lot of diffem@alecular simulations types. The Monte-
Carlo (MC) simulation in the grand canonical (GQsemble has shown to be the most
suitable simulation type to provide the equilibripnoperties of thin fluid films [2]. However,
in the cases of sheared thin fluid films one needemploy Molecular Dynamics (MD)
simulations, more precisely Non-Equilibrium MD (NEMN simulations, instead of Monte-
Carlo ones [14]. The implementation of the MD siatidn in the GC ensemble is usually not
easy and requires much CPU time than GC-MC. Theist aevertheless a non negligible
number of algorithms proposed in literature [15-18] deal with equilibrium and Non-
Equilibrium MD simulations in a GC-like ensemblee(ia part of the simulation box, the
reservoir, is maintained at a given state), thatwllename GCMD in the following.

However, to study the properties of the thin fldildh undergoing boundary shear
most of the MD simulations have been performedhe following way: first, averaged
properties (often density) of the thin fluid filnh @quilibrium state are estimated from the MC
or MD simulations in the GC ensemble and then treasgaged properties are used as an
input (initial configuration) to NEMD simulations ithe NXT ensemble, where X=V if the
volume is kept constant and X=P if the pressur&ejgt constant, so-called the GC-NXT

scheme [2-3, 8, 20-24]. This two steps procedundiaitly implies, among others, that the
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number of the molecules of the thin fluid film issamed to be the same in and out of
equilibrium, which is a strong assumption in sonases. However, it is clear that the
implementation of the MD simulations using a GC-N¥dheme is simpler and requires less
CPU time than that of GCMD approaches. Furthermarepme cases, results provided from
such GC-NXT schemes can be consistent with thotsnga from experiments [3, 8]. It is
thus interesting to better quantify what the limdas of the GC-NXT scheme are as long as
most of the studies have been performed using @a&pproach [3, 8, 20-24].

Thus, in this paper we have performed MD simulaiosing the two approaches,
GCMD and GC-NVT, on a very thin fluid film composed Lennard-Jones spheres and
undergoing boundary shear. Then, we have comphedesults of the simulations together.
By doing so we will show that the choice of the mgech, GCMD or GC-NVT, may have an
explainable big impact on the estimated propeniea very thin simple fluid undergoing a
boundary shear.

This article is organized as follows. In Sect. 8dine details on the MD simulations
are described. Then, results obtained from the daltemes are presented, compared and

analyzed in Sect. 5.3. Finally, we summarize soighklighting results in Sect. 5.4.

5.2. Molecular Dynamics Simulations
5.2.1. Particle Modeling

For simplicity all solid and fluid molecules havedm modeled as spherical ones. All
interactions are described by a classical trunch&uhard-Jones (LJ) 12-6 potential between
pairs of particle:

g 12 g 6 .
Uy, () = {46 [(:) Bl (7) ] fr=r (5.1)

0 if r>r,
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wherer is the distance between the two partickess the potential depthy is the particle
diameter, and is the cut-off diameter (=3s5in this work). The potential depth and the
diameter of the solid-fluid interaction are defined term of the fluid-fluid interactions
respectively as follows:
Or_g = Op_f = 0 ande;_g = 2&;_¢ = 2¢ (5.2)

Such parameters correspond to a rather adsorbdnypea

In the following, we express the variables in disienless units by using the LJ
reduced units. The reduced tirtte temperaturd”, densityp , stress®” and viscosity: are

thus defined as [7]:

* t *_kB;T *_NTU3 *_E * 02
t_a\/m—/g, —syp—V;P—gu.U—Hm (53)

wheret is the timem the mass of the fluid particlkg is the Boltzmann constant aridi the

total number of atoms contained in the voluvhe

5.2.2. Simulation Schemes

In this paper, we have employed the constant de@s@&nd Canonical like Molecular
Dynamics method proposed by Hoang and Galliero [b5karry out all the molecular
simulations in the GC ensemble. It consists in $atmg explicitly the confined systems in
contact with reservoirs maintained at the desimsdy and temperature (which is equivalent
to maintain a constant chemical potential for aepflwid). Figure 5.1 shows a sketch of the
simulation box that contains both fluid and solidrteles. Periodic boundary conditions
(PBC) have been applied on all three direction®g 3tlid molecules are arranged in a faced
centered cubic (FCC) to form two solid walls. e thdirection, the solid walls are separated
by a distanceW/) that defines the width of the gap confining thedt The solid walls are of
finite size in thex andy directions, whereas, they are extended througlwtiwde cell in thez

direction.
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GCMD scheme GC-NVT scheme

Reservoir | 70 | | 76 | Reservoir Reservoir | 7o | | 76 | Reservoir

Figure 5.1: Sketch of the GCMD and GC-NVT schemdmve figures correspond to the
simulation system used to equilibrate the confisyggtem. Bottom figures correspond to the

NEMD simulations.

To maintain the density of the fluid in the reservat the desired value, thg
coordinates of the molecules in the reservoir nregod they size of this region are scaled at

each time step by the quantity [15]:

Ap=1—£(”° —1) (5.4)

Tp \Pres
where,p,. is the instantaneous density in reservoir regippss the target densityit is the

time step and, is the density time constant. To control the terapge, we have employed
the partial Berendsen thermostat, i.e. the tempersitof fluid in and out of the confined
space are independently maintained at the sameedegalue [25-26]. According to this

method, at each time step the velocities are sdptedquantity:

AT=1+2AT’;(%— ) (5.5)

where, 7, is the temperature time constafy is the target temperature afdis the

instantaneous tem perature.

182



Chapter 5: GCMD simulations: Shear behavior

As mentioned in the introduction, the NEMD simuwai on the properties of the
confined fluid undergoing the boundary shear capdséormed by using GC-NVT or GCMD
schemes. For both approaches first the system usitegted at a given temperature and
density in the reservoirs, see Fig. 5.1, then:

* For the GCMD approach, the two horizontal wallsrageved at the desired velocity to
induce the shear in the confined fluid while mamitey the reservoirs at the desired
temperature and density, see Fig. 5.1(a).

* For the GC-NVT approach, the averaged density e déntral part of the pore is
evaluated and is used as an input to constructwasiraulation box (with periodic
boundary conditions opandz directions) composed of the confined fluid andtihe
horizontal walls only without the reservoirs, seg.B.1(b). Then, this new confined

system is sheared by moving the two walls in ogpafirections.

5.2.3. Numerical Details

We have used an in-house code to perform the Mlaimons [15, 24]. The motion
equations of the fluid particles are solved by emwiplg the Verlet velocity algorithm [7] with
a time step\t =0.002, whereas the solid particles are fixed @it thites on a CFC lattice with
a size of the latticer = 1.60. In all simulations the state of the fluid in theservoir is
maintained ap* = 0.7 andT* = 1, which correspond to a liquid state in bulk coiudis for
the cutoff employed in this work [27]. Periodic molary conditions and neighbor list have
been applied [7].

The confined fluid in contact with the reservoirdguilibrated during2 x 10° time
steps followed by a simulation period »fx 10° time steps during which the sampling is
carried out to determine the equilibrium properti@ace the system has been equilibrated, the

NEMD simulations are carried out during x 10° time steps, discarding the firgtx 10°
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time steps to reach the steady state and samg@eTateduce the statistical uncertainties, the
results provided in the following correspond toaerage over 6 different independent runs,

exceptions noted, and the error bars representtdhdard deviation.

5.3. Results and Discussions

5.3.1. Width Dependence of Density and Apparent \e®sity.

In this section, we present some properties, deasid effective/apparent viscosity of
a confined fluid at the steady state obtained fiiwn two schemes described above, i.e.
GCMD and GC-NVT schemes. The density is an averageahtity over the full pore width
(i.e. overW). Shear stress has been estimated using the mitzmtar forces between the

confined fluid and the solid molecules [24]:

_ 1@Np wNs _ 0UL(rij) zij
Txz = AZ[: j=1 arij rij (56)

whereN; andN; are the numbers of fluid and solid particles respely, A is the area of the
y-z plane of the solid surface ang, is thez component ofr;;. Such a formulation yields
results which are the same than those obtained tisen Irving-Kirkwood formula averaged
over the space considered [24]. Then, from the Kkedge of the shear stress, the

effective/apparent viscosity of a confined fluichdze defined as:

* Txz Txz
=D 5.7
w

wherey* is the shear raté, is the velocity of the solid wall and/ is distance between the

two walls.
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Figure 2: Relative structural order between thesalrfaces. (a) Out-of-registry. (b) In-

registry.

Density

When the two walls are moved at a constant velptiky two solid surfaces alternate
(continuously) between an out-registry configunaticee Fig. 5.2(a), and an in-registry
configuration, see Fig. 5.2(b). So, we have fimhputed the equilibrium density for different
pore widths, ranging fror/'=1.9 andwW =10, for the two types of configurations. Averaged
densities are shown in Fig. 5.3.

As expected, results shown in Fig. 5.3 indicaté tha average density appreciably
varies (between 0.38 and 0.82 in reduced unit) whth width forW* < 7, and is nearly
constant for larger widths. This reflects the styathomogeneity of the confined fluid due to
physical adsorption and molecular packing [2, @]rtikermore, as well known [2], both
configurations (out of registry and in-registry) héxt important differences in terms of
density dependence on the pore width, wi&n< 6, see Fig. 5.3, because of the differences
in structural order they induce in the confinedidluThe out of registry configuration
undergoes first-order transitions #* ~ 2.1 and 3.8 and second-order ones #{* =
3.3 and 5.1, while the in registry configuration undergoesstfiorder transitions a/* =

2.9 and 4.8 and second-order oneslét = 2.5 and 4.2, see Fig. 5.3. It should be noted that,
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Figure 5.3: Variation in the average density with width. Diamonds and deltas correspond
to the densities obtained at equilibrium out-ofisey and in-registry configurations,
respectively. Circles are the densities from theMBCsimulation at the steady non-

equilibrium state.

for a width just above the first order transititime fluid behaves more like a solid phase than
a fluid one [2]; we will come on that point later.

These different density behaviors at equilibrium ba simply understood in terms of
the fluid structure in the confined space, see 5. The molecules in the first adsorbed layer
(boundary layer) of the confined fluid will prefétg form a commensurate layer being out-
of-registry with the solid surface. Then, this @ldayer induces other one that is also out-of-
registry with it and so on. For example, in theegistry configuration of the solid walls, the
formation of a third layer is facilitated by consttive interference of the two boundary
layers, whereas it is not the case for the forrmatibfourth layer, and so on [2]. Thus, the
confined fluid in the in-registry configuration wgrgoes a first-order transition for the widths
which corresponds to a change of the number ofr¢afyem even to odd and a second-order
one for the situations from odd to even, whereé&stiie opposite in the out-of-registry. These
different transitions are clearly exhibited by #wolution of the density profiles in the pore

versus width for both solid surface configuratiassshown in Figs. 5.4(a) and 5.4(b). More
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Figure 5.4: Density profiles for different poredths. (a) The out-of-registry configuration at
the equilibrium state. (b) The in-registry configtion at the equilibrium state. (c) GCMD

simulations at the steady non-equilibrium state.
precisely, a first order transition correspondsa tsudden appearance of one new central layer

(of large amplitude) when increasing the width whd second order correspond to a

continuous appearance of a new central layer (aflsmamplitude).
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To investigate how the boundary shear influenbesdensity of the confined fluid, it
is important to verify that the shearing velociysufficiently small such that the assumption
that the state of the system is completely re-dayatled at each time is satisfied. In other
words, the “non-equilibrium” average density congautluring GCMD has to be independent
of the velocity of the walls. It should be notedittthe out of registry initial condition has
been chosen to initialize non-equilibrium GCMD.

Several wall velocities have been tested, seeseztion, but it has been found that for

a wall velocity corresponding to an effective shegtey* = 2VW/W* = 0.01 the average

density obtained was found to be the same ag/fot 0.0025, except for some widths
corresponding to first-order transition where aatige difference smaller than 3% was
noticed. Thus, the non-equilibrium results presgémethis section (both for GCMD and GC-
NVT) correspond toy* = 0.01. It should be noted that such a shear rate isavder of
magnitude lower than the shear rate associatedetshear thinning threshold of a bulk LJ
liquid [28-29].

As shown in Fig. 5.3, the average density durif@B simulations,oécump,
lies always between the equilibrium densities ot thut-of-registry and in-registry
configurations. This can be understood becausengl@CMD simulations, the density is
limited by the relative structural ordering induckg the in-registry and out of registry
configurations. In addition, it is interesting tota that the GCMD results in Fig. 5.3 indicate
that the confined fluid does not undergo any finster transition and only second-order
transitions occur at¥* =~ 2.5,3.3,4.1and 5.1. This behavior is seen from the nearly
continuous evolution of the density profiles (appeae of new central layer when increasing
width see above) in the pore versus width durindBGimulations, Fig. 5.4(c), compared to

the equilibrium ones, Figs. 5.4(a) and 5.4(b).
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Figure 5.5: Variation in the effective viscositytivthe width. Diamonds and circles
correspond to the effective viscosities obtaine@iB:NVT and GCMD schemes,

respectively.

Shear Viscosity

For the same systems than for density, the appahesair viscosity has been computed
using both GCMD and GC-NVT approaches usjig= 0.01. Both approaches have been
employed using an equilibration step made usinguarof-registry configuration of the solid
walls.

As clearly shown in Fig. 5.5, the two schemes ptevithe same values for the
apparent shear viscosity only when the width igigehtly large when* > 6 similarly to
what found for density. Furthermore, as well knolh shear viscosity in such confined
situation can be a lot larger than in bulk. Moreqgmsely, for the shear rate used, the apparent
viscosity reaches a value 25 times larger thanbtle one fi5,,;x = 1.23 [30]) using the
GCMD approach and is found to be nearly two ordéreagnitude larger than the bulk value
using the GC-NVT scheme. In addition, shear vig@ssican be noticeably different using
GCMD and GC-NVT schemes when the width betweertwizesurfaces decreases. In fact, it
appears from Figs. 5.3 and 5.5 that the shear sitse® so obtained follow more or less the

evolution of the average density. This is not sgpssing as long as in dense fluids the shear
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viscosity is positively correlated with density [8)] and tends to diverge when a solid like
phase appears. In fact, it appears clearly from bi§ that the first- and second-order
transitions found during equilibrium simulation® anoticeable on the viscosity as well. There
exist a “jump” in the viscosity alV* = 2.1 and 3.8, and a continuous increase I&t" =~

3.3 and 5.1 when employing GC-NVT approach while there is oalgontinuous increase at

W* = 2.1,3.2,4 and 5 when the GCMD scheme is used.

Thus, it appears clearly that both density and egpaviscosity computed using the
two different approaches do not always lead tosdmme results when the systems are very
confined (i.e. a thin fluid of a few molecular diatars). These differences are particularly
large when corresponding to a situation where angtrstructural order is induced in the

confined fluid by the relative configuration of thelid walls.

5.3.2. Sliding Velocity Dependence of the Averagei€tion Force

As exhibited by various study [3, 11-13], the agerdriction force, i.e. the shear
stress, is strongly dependent on the wall velagiie. the shear rate. So, the average friction
force has been computed for different wall velociging both GCMD and GC-NVT schemes
starting from an equilibrium situation corresporgdto an out-of registry configuration of the
walls. In addition, different width® * = 3.3, 3.9 and 4.5 have been explored. These values
have been chosen to correspond to different sitagtirom the structural order point of view,
see Figs. 5.4 and 5.8/ = 3.3 and 3.9 correspond to second-order and just above fidgror
transitions at the equilibrium state (out of registrespectivelyW™* = 4.5 corresponds to a
state for which equilibrium densities for both aftregistry and in-registry configurations of
the solid surfaces are similar, see Fig. 5.6. Ssitthations also correspond to equilibrium

average densities (out of registry)/at = 3.3 and 3.9 being smaller and larger than the non-
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Figure 5.6: Density profiles for various pore wislifv*=3.3, 3.9 and 4.5). Solid curves (red
color) correspond to the out-of-registry configuratat equilibrium, dashed curves (green
color) to the in-registry configuration at equiiilom and dashed-dotted curves (Blue color)

correspond to the GCMD results.

equilibrium GCMD densities at low shearing velocigspectively, and similar densities at
W* = 4.5, see Fig. 5.3.

Figure 5.7 shows the variation in the averageifncforce with the wall velocity for
different widths. It is clear from this figure th#tte two schemes may lead to different
behaviors of the dependence of the average friddore on the wall velocity. In particular,
results provided by the GC-NVT scheme indicate that average friction force increases
monotonously when the wall velocity increases fibrcases considered here, whereas the
average friction force obtained from the GCMD scheoan initially decreases (and then
increases whery* > 0.02) when the wall velocity increases in th&* = 3.9 case.

Furthermore, the amplitude of the average frictmmee can be completely different using one
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scheme or another as shown wiéh = 3.9. As in the previous section, these differences can
be rather well understood as we will show in tHefing.

Usually, to relate the average friction force witle wall velocity in the configuration
simulated in this work, a simple thermal activatimodel is employed [3, 11-13, 31]. In
previous studies, it was shown that the variatiorthie average friction force with the wall
velocity given by NEMD simulations is well describdy such model [11-13], i.e. the

dependence of the average friction force on theoisi follows an equation defined as:

(v,) =A <e<Bli;Z¥)) — e‘(%)) (5.8)

where,(v,) is the average velocityd andB are parameters that characterize the state of the
confined system. It is important to notice thatigt assumed that these parameters are
independent on the velocity in such studies [1]], E8r the system we study, we have

(Vz)~Vwan, SO:
Van =A(e(%) _(—)> (5.9

Results shown in Fig. 5.7 indicate that the avefaggon force computed during GC-
NVT simulations are well described using Eqg. (5(@jth A and B taken constant) for
W* = 3.3 and 4.5, whereas it is not the case ¢f* = 3.9. Concerning GCMD simulations,
such a modeling holds very well fdr* = 4.5 but is inadequate fd#/* = 3.3 and 3.9.

WhenW™* = 4.5, it should be recalled that such a wall gap cowedp to a state in
which in-registry, out-of-registry and non equilion GCMD densities are similar, see Figs.
5.3 and 5.6. Thus, when the fluid structure is tmb largely affected by the walls
configuration, this result confirms that Eq. (5.8)th A and B taken constant, gives good
results compared to NEMD simulations for all shiede explored.

It should be noticed however that when the sheavigigcity increases the GCMD

scheme leads to a slightly reduced friction forempared to the GC-NVT scheme. This is
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Figure 5.7: Variation in the average friction foregh the sliding velocity. Left figures: GC-
NVT scheme. Right figures: GCMD scheme. Symbolsespond to the results obtained from
the molecular simulations. Solid curves (Green ga@oee obtained using Eq. (5.9), and dashed

curves (Blue color) are obtained using Eq. (5.10).

probably related to the slight decrease of theagedensity with the shearing velocity in the
GCMD case, as shown in Fig. 5.8. In fact, the ayerdensity of the confined fluid during
GCMD simulations generally decreases with the skiekcity increase. This is mainly due
to the fact that the pressure of a fluid usuallgréases when the shearing velocity increases

[32], which induces a squeezing out of the confifteid from the pore space.
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ForW* = 3.9, a width just above a first order transition (ofiregistry), the behavior
using the GC-NVT scheme resembles to an activateckps but with a non null yield stress,
ast,, IS not vanishing whemy,,,; tends to zero, see Fig. 5.7. This means that dhéned
fluid behaves as a visco-plastic fluid [33] thahiwat be modeled simply by using Eqg. (5.9).
To model a visco-plastic fluid, the Herschel-Buikkquation is widely used as [33]:

Ty = To + kY™ (5.10)
where1, is the yield stressk andn are model parameters. As shown in Fig. 5.7, desr
that Eq. (5.10) (withk andn taken constant, ami< 1 indicating a shear thinning behavior)
describes better the shearing velocity dependeht®edriction force than Eq. (5.9) for this
situation.

The results obtained using the GCMD approachifér= 3.9, see Fig. 5.7 are even
more surprising. As for GC-NVT simulations thereaision null yield stress. However, when
the shear rate increases there is a noticeableakss of the shear stress followed by a more
classical activation type behavior whgh> 0.025. Furthermore, the friction force at high
shear rate is nearly one order of magnitude smé#ti@n during the GC-NVT simulations.
Hence, such a complex behavior cannot be deschideq. (5.9) or Eqg. (5.10), but can be
understood qualitatively. The decrease of the shass with the wall velocity increase at
low shear rates in GCMD simulations is induced by tact that the central layers of the
confined fluid reorganize themselves when the sheaapplied (and the density profile
becomes similar to that of the in-registry confafion, see Fig. 5.6, with a big decrease in the
average density, see Fig. 5.8), whereas it is hetdase when employing the GC-NVT
simulations, see Fig. 5.9. This explains these different behaviors in the GCMD and GC-
NVT schemes at low shear velocities. At higher shmates, the fluid changes insignificantly

with the shear increase (apart from a small deeseisthe average density, see Fig. 5.8)
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Figure 5.8: Variation ipyye/pgqui With the shear rate during GCMD simulations. Sgsar

(Red color) correspond W * = 3.3, diamonds (Green color) W* = 3.9 and circles (Blue

color) toW™ = 4.5.

while keeping a density profile very similar to tbquilibrium in registry configuration one
and so behave as a simple fluid-like system wedtdked by a thermally activated model.

In the case of#/* = 3.3, the shear velocity dependence of the averagtofri¢orce
obtained by the GC-NVT scheme is well describedhgysimple thermal activation model,
see Fig. 5.7. This is simply due to a central flleger at the initial out of registry
configuration of the solid surfaces which is nobsgly structured (corresponding to a second
order transition, cf. Sect. 5.3.1.). In additidme density is kept constant during the GC-NVT
simulations and so the central fluid layer remamo$ too strongly structured while being
sheared. It should be noted that in this situatioa,use of the Herschel-Bulkley equation also
yields a good description for the shearing velodé&pendence of the friction force using a
zero yield stress, see Fig. 5.7.

When employing the GCMD scheme in the casa/tf= 3.3, there is one main
difference with the GC-NVT results, see Fig. 5. hich is the appearance of a small yield
stress (a weak visco-plastic behavior). This is une fact that this width is not so far from

the first order transition (atV* = 2.9) for an in registry configuration. Therefore during
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GCMD simulations the confined fluid gain matterrfraghe reservoirs which leads to a slight
increase the average density compared to equitibkalue for low shear, see Figs. 5.6 and
5.8. Thus, in this case the variation in the fantiforce with the shearing velocity is better
modeled by the Herschel-Bulkley equation, Eq. (bth@n by a simple activation model Eq.

(5.9), see Fig. 5.7.

Figure 5.9: Density profiles & * = 3.9 for different shear rates. (a) GC-NVT scheme. (b)

GCMD scheme.

5.3.3. Time Dependence of Friction Force

The results presented in the previous section wereesponding to stationary state
conditions. However, it is clear from the previaesults that the (re-)organization of the
confined fluid under shear is what drives the ioictforce. It is so interesting to look at the
transient behavior for the different systems stdidie this work. In order to reduce the
statistical uncertainties, the results providedhis section correspond to an average over 20

different independent runs. Figure 5.10 shows #pmeddence of the friction force with time
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the periodic structure of the solid surfaces. kd@ngly, all results obtained using the GC-
NVT scheme exhibit this oscillatory behavior witbnstant amplitude after starting sliding
the solid surfaces. However, the amplitude of theillation is constant only fol* = 4.5
when employing the GCMD approach. More precisehe amplitude of the oscillation
increases slightly with time fd#/* = 3.3 and decreases noticeably whifi* = 3.9.

The behaviors shown in Fig. 5.10 are consistenh wrevious results. During GC-
NVT simulations the average density is constant thieddensity profiles are not affected by
the shear, see Fig. 5.9. Thus, the confined fladsdnot reorganize itself noticeably when
shearing and so the amplitude of the friction fooseillations is not time dependent. When
the GCMD scheme is employed the average densitggesa see Fig. 5.8, and the density
profiles can be strongly modified as shown on Fig6. and 5.9. The slight increase of the
oscillation amplitude fol/* = 3.3 is so simply due to a slight increase in the aye@ensity
see Fig. 8 and more precisely to an increase afeheral layer density, see Fig. 5.6. The large
decreases of the oscillation amplitude of the ibictforce with time found foi/* = 3.9 is
related to the strong reorganization of the cernéaytrs of the confined fluids, see Figs. 5.6
and 5.9, as already discussed.

It is interesting to note that experiments showt tthee friction force is history-
dependent [3]. Results shown in Fig. 5.10 cleartlidate that such characteristic of a system
can be observed using the GCMD scheme, whereas nioi the case during GC-NVT
simulations. For the systems simulated in this wailich behavior is induced only by
modifications (on the density profiles) in the doef fluid which can lead to an increase or a
decrease of the average density of confined flodireot by any change in the structure of the
solid walls. The use of the GCMD scheme shouldepreferred to the GC-NVT scheme to

look after such phenomena.
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Concerning the shape of these oscillations, Ghisdil. [11] estimated the dependence
of the friction force with time by performing GC-NVsimulations to explore the mechanisms
of energy dissipation of confined systems undem@irboundary shear. They observed that,
in a confined system, for a given width the enedggipation can occur by a discontinuous
“plucking” mechanism, i.e. the friction force rapidvaries from the maximum to the
minimum value, or a continuous “viscous” mechanism,the friction force smoothly varies.
They have shown that the type of energy dissipategime depends on the interaction
strength between the fluid and solid. It is cleanf the results shown in Fig. 5.10 that the
regime can be modified as well by changing the kvaftthe confined system. More precisely,
results obtained for both schemes indicate thatititernal energy is dissipated by the
plucking-like mechanism when the width is suffidignsmall, whenWW* = 3.3 and 3.9 (at
short time for the GCMD case whéh* = 3.9), see Fig. 5.10. In contrast, it is the viscosity-
like mechanism that is occurring fdf* = 4.5. In fact the mechanism of energy dissipation is
strongly related to the magnitude of the peaksefftiction force, i.e. energy barrier [3], as
shown by the GCMD results fov'* = 3.9. For high energy barrier the plucking-like regime

occurs while it is the viscous-like one that tagksce when the energy barrier is low.

5.4. Conclusions

To deal with static properties of highly confinddids between surfaces, the situation
is rather clear and molecular simulations in thar@Canonical ensemble are well adapted.
However, when the system is put out of equilibritrough a boundary shear to deal with
dynamic properties, there are two general moleaitaulation schemes used in the literature
to tackle such a problem. In the first approach,NEMD simulations are performed directly
in a GC-like ensemble (i.e. by connecting the duequilibrium studied system to “bulk”

reservoirs), so-called the GCMD scheme. In the m@&cone, NEMD simulations are
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performed in the NVT ensemble in which the statar(ber of molecules) is an input coming
from a prior GC simulation at equilibrium, namee t6C-NVT scheme. The latter scheme
relies on a hypothesis that the number of molediifesaverage density) is unchanged by the
boundary shear, which is questionable in some c&$asever, in terms of CPU time and
implementation needs, the GC-NVT approach is glganéferable as long as the hypothesis is
valid. So, in this work, we have applied these sghemes to a simple Lennard-Jones liquid
confined between two solid flat walls and undergoimoundary shear to quantify the
differences between what they are providing asiphlproperties.

First, we have explored the average density ofcthrdined fluid at a low shearing
velocity. Results have indicated that both schepreside nearly the same average density
only when the separation between the solid surfacssfficiently large enough, i.&/* > 6
for the system studied in this work. The differenceted for smaller widths are due to
significant effects of the relative structural aidg induced on the fluid by the solid surfaces
configuration at small separation which can leadirsi-order and second-order transitions.
The main difference between the two schemes cormoes the fact that the variation in the
average density of the GCMD scheme does not exim&titorder transitions but only second-
order transitions. Concerning the apparent shesosity computed for the same conditions,
the results have been found to be as well strodghendent on the scheme used for a small
separation between the surfaces with a behavigistent to what found for density.

Second, the shear velocity dependence of thedndiorce has been studied at three
different widths,W* = 3.3,3.9 and 4.5 corresponding to three different cases from thalfl
structure point of view. Both schemes have shovan fitr a width corresponding to an equal
average densityy/* = 4.5 the friction force is generally monotonously ireseng with the
increase in the wall velocity, which can be welkci&ed by a simple thermal activation

model. However, for the smaller widths correspogdio a stronger fluid structure, results
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may strongly differ between the GC-NVT and GCMDauies. In particular when using the
GCMD scheme foriW* = 3.9 the friction force can initially decrease with tiwvelocity
increase because of the possible exchange of nvaitterthe reservoirs. Interestingly, both
schemes have shown that the friction force is hesaygs vanishing when the shear velocity
tends to zero if the confined fluid is stronglyustiured. Thus, in some peculiar conditions, the
Lennard-Jones fluid studied in this work can behas/a visco-plastic one.

Finally, we have studied the time dependence offtletion force for the three
different widths mentioned above. It has been fotimat all cases exhibit an oscillatory
behaviour of the friction force, which is simply elio the periodic structure of the solid
surfaces. Furthermore, it has been confirmed thatshape of the oscillations are of two
types, plucking or viscous, and is strongly relatethe magnitude of the peaks in the friction
force (the energy barrier). For the larger widtlothb schemes provide nearly the same
constant oscillations in the friction force. Howevier small widths, while the amplitude of
the oscillations is nearly constant after starshding the solid surfaces when using the GC-
NVT scheme, it can change in some cases (decreaserease) when the GCMD scheme is
used. This means that the use of the GCMD schenpeeierable to explore the history-

dependence of the friction force as observed irrexpENtSs.
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Chapter 6

Shear-Induced Swelling/Shrinkage in Narrow Slit Poes

* This chapter is being prepared to be submittegdolication
Abstract:

In this work, using molecular simulations, we haplored the swelling/shrinkage
induced by shear of a simple slit pore immerged Ltennard-Jones liquid reservoir. First, at
equilibrium, it has been verified that the averagjative position of the two walls is the one
corresponding to a (stable) normal pressure incthdined fluid equal to that in the bulk
reservoir. Then, we have noticed that the poresvesll or shrink when the solid walls are
displaced in parallel with the fluid-solid interfacThis is due to the fact that the normal
pressure of the confined fluid appreciably varigdhhe relative structural ordering between
the solid (crystalline) surfaces for a given siZzéwus, when the solid walls are moved
parallelly at a constant velocity, the instantargepare size oscillates with time and yields, on

average, a shear-induced swelling/shrinkage.
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6.1. Introduction

Understanding the mechanical response of a tigilaysomedium in which pores are
filled partially or completely by a fluid and subjeo an external action, e.g. external stress or
change of the surrounding environment, plays anomapt role in many engineering
problems: low permeability reservoirs (Shale, C&dd Methane, etc.) in petroleum
engineering, activated carbons/zeolites in chemécajineering processes, cement paste in
civil engineering, etc. [1-4]. In such situationbeve the pore sizes are of the order of one to
ten molecular sizes, the main problem is how te iako account the solid-fluid interaction in
the mechanical response of the whole porous medmposed of the fluid and the solid

matrix [4-9].

For porous medium in which the pores are suffityelarge, typically macropores (>
50 nm), which are well described by the classicaitiouum theories, the local mechanical
response of an isotropic porous medium is goverbgdthe conventional constitutive

eqguations which are written as [10-11]:

&= Ké—bp (6.1a)
= be+p/N (6.1b)

where g is a confining stress is a volumetric strainp is a fluid pore pressureg is a
porosity, s;; is a deviatoric stresg;; is a deviatoric strain, ankl, b, N andG are the bulk

modulus, Biot coefficient, Biot modulus and sheadulus, respectively.

The problem becomes more complex, when the sizéheofpores decreases below
50nm (i.e. when micropores and mesopores are irddlin such porous medium, the surface

effects due to the fluid adsorbed on the solid amgfand the molecular packing due to
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confinement can be dominant over the volume effige®® 12-13] and can induce for instance
swelling in clays [4-9]. In other words, the effextthe solid-fluid interaction, in particular
the adsorption, cannot be neglected [1] and cheniaetd by simply introducing a modified
fluid pore pressur@ into the constitutive equations, i.e., in Eqslé.and (6.1b) [6-7, 9]. It
should be noticed that the effects due to the nuddeparking becomes significant as the size
of pores decreases to values of the order of tBeamte of molecular interactions (i.e.

micropores < 2 nm) [2].

To take into account the surface effect due to ddsorption in the volumetric
deformation of mesoporous solids, i.e. pores sim@® 2nm to 50 nm, during adsorption-
desorption hysteretic cycles, Gor and Neimark ja¢pduced the definition of the adsorption
stressas instead of the fluid pore pressuve, in which g is determined from the vapor
pressure using the Derjaguin theory. Such defimimoplies that the Biot coefficient is equal
to one. In a recent study on th@, swelling of coal and carbon adsorbents in whictops
medium are at the mesoscale, Vandamme et al. {ghd&d the conventional constitutive
eguations to additionally involve the effect of tha@sorption that is determined by using the
Langmuir adsorption isotherm. However, it is cléeat such approaches are insufficient when
a microporous medium is involved, i.e. pore sizéowe2nm, as long as in such highly
confined systems the structure in the whole flaigld not only in the vicinity of the walls) can
be strongly affected by the confinement itself [Phis confinement may lead for instance to a
structural order in the fluid which strongly affedll its physical properties [13, 15-18] and

may even lead even to phase transitions [12].

To deal with a microporous medium, one has to fake account both the surface
effects due to the adsorption and the moleculakipgc Pijaudier-Cabot et al. [7] used
molecular simulations on simple pores to demorestitzt such effects are responsible for the

volumetric deformation of the material. Then theyisited poromechanics in the context of
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microporous materials with a continuous pore simtridution. To account for the surface

effects, the constitutive equations were re-formadlady introducing an apparent porosity and
an interaction free energy that are related toGlos adsorption isotherm. In a recent study,
Brochard et al. [9] derived poroelastic constitatequations for a generic porous medium, in
which the surface effects are characterized bytheunt of fluid adsorbed that was shown to

depend on both the fluid bulk and pressure andtiiagn of the medium.

It should be noticed that the derived constituteggiations for microporous medium
have assumed that the adsorption stress, i.e otimeah pressure in the pore (sometimes called
solvation pressure), and the density of the flaidhe pore are independent on the deviatoric
strain. The volume of a pore is so assumed tonbbanged when the part of the solid phase
forming the pore is displaced in the direction Hatdo the solid-fluid interface. This can be
inadequate when dealing with microporous mediumwimich the solid phase is highly
structured and the solid-fluid interactions ar@sty. This is simply due to the fact that for a
given pore size, the relative ordering betweenstii@l surfaces has a significant effect on the

properties of the fluid in the pore [12, 18].

Thus, in this work using extensive molecular dyra(iMD) simulations we explore
the volumetric deformation of a simple saturateg gdliquid) slit pore induced by the solid
displacement in the direction parallel with theidgdluid interface. To do so, we analyze the
swelling/shrinkage (i.e. the gap between the twdsidue to a relative displacement of the

solid walls, see Fig. 6.1.

This article is organized as follows. In Sect. &@mne details on the MD simulations
technique employed are provided. Then, resultsiddafrom the molecular simulations are
presented and discussed in Sect. 6.3. Finally, wmensarize the highlighting results in Sect.

6.4 which forms the conclusion.
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Figure 6.1: (a): Side view of the simulation ceded in the Grand Canonical like Molecular
Dynamics. (b): A schematic representation of tHelshsplacement in the direction parallel

to the solid-fluid interface.

6.2. Model and Simulations

6.2.1. Pore and Fluid Models

All fluid and solid molecules have been modeledaserical ones. All interactions are
described by a classical truncated Lennard-JonBsl@-6 potential between pairs of particle:

U, (r) = {46 [(%)12 a (%)6] if r=r (6.2)
0 if r>r,

wherer is the distance between the two partickess the potential depthy is the particle
diameter, and. is the cut-off diameter (=3s5n this work).

The potential depth and the diameter of the sdlidHinteraction are defined in term
of the fluid-fluid interactions respectively aslts:

Of_s = O =0 ande;_g = &g =€ (63)
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The solid walls are formed by molecules arranged taced centered cubic (FCC) lattice and
it is assumed that their structures are unchangedglthe swelling/shrinkage, i.e. the Biot
coefficient in Eq. (6.1) is equal to one [10-11helwalls are separated by a distabigg, .

In the following, variables noted with a star apenscript correspond to classical LJ

reduced quantities, i.e. [19]:

t s _ kT . _Nrod . po?
o_\/m_/slT_Elp_ V!p_g (64)

t* =

wheret is the timem the mass of the fluid particlks is the Boltzmann constant aridi the

total number of atoms contained in the voluvhe

6.2.2. Simulation Schemes

The fluid in a porous medium is such that its fthemical potential is the same in
different pores which is as well the same chenpoééntial than the one of the fluid reservoir
(bulk) to which the system is connected. Therefar®lecular simulations in the grand
canonical (GC) ensemble on fluids confined in nargores are well adapted to study the

swelling/shrinkage [12, 16, 18].

Thus, to perform the MD simulations, we have emetbyhe constant density Grand
Canonical like Molecular Dynamics method proposgdHoang and Galliero [16] which is
similar to the one proposed by Gao et al. [20¢olsists in simulating explicitly the fluid in
the pore in direct contact with reservoirs mairgdirat the desired density and temperature
(which is equivalent to maintain a constant chempzaential for a pure fluid). Figure 6.1
shows a sketch of the simulation box that contdioth fluid and solid particles. Periodic
boundary conditions (PBC) have been applied onhadle directions. The configuration has
been chosen so that the fluid out of the pore spadeappreciably influenced by a small

change in the pore studied.
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To maintain the density of the fluid in the reserscat the desired value, the
coordinates of the molecules in the reservoir nregiod they size of this region are scaled at

each time step by the quantity [16]:

At
dp=1-1

(£—1) (6.5)

Pres

where,p,. is the instantaneous density in reservoir regippss the target densityit is the
time step and, is the density time constant. To control the terapege of fluid, we have
employed the Berendsen thermostat [19], i.e. ah @#we step the velocities of the fluid

molecules are scaled by a quantity:

Ap = 1+2ATtT(%—1) (6.6)

where, 7, is the temperature time constafy is the target temperature afdis the
instantaneous temperature.

To study the swelling/shrinkage of the pore, thidsealls forming the pore are not
allowed to move in the/ direction but only in thex direction during the simulations,
exceptions noted. To model the solid displacemenhe direction parallel to the solid-fluid
interface, the walls are prescriptively moved ig #idirection, see Fig. 6.1. The equation of
motion of the centers of mass of the solid wallghien x direction is governed by the classical

equation of motion as:

N Ns _aUL](rij)ﬁ (6 7)

Nemgis = 3,5} j=1 ori;

Tij

whereNs, mg and xg are the number of solid molecules, the mass ofid solecule and the
coordinate of the center of mass in ¥irection for each solid wall respectively. To alvas
much as possible the effects due to the finite afzée two solid walls in thg direction, Eq.

(6.7) is only applied to the solid molecules in Haenpling region as described in Ref. [16].
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6.2.3. Numerical Details
We have used an in-house code to perform the MODulations, in which the
calculation of force on each molecule is paraledidy using the functional decomposition
algorithm [21-22]. The motion equations of the diyparticles are solved using the Verlet
velocity algorithm with a time stept =0.002 [19], whereas the solid molecules are fiaed
their sites on a CFC lattice with a size of théidata = 1.60. In all simulations the state of
the fluid in the reservoir is maintained@t= 0.7 andT* = 1, which correspond to a liquid
state in bulk conditions for the cutoff employedtlms work [23]. To compute the force on
each fluid molecules effectively, we have combirteed minimum-image criterion and the
neighbor list [19]. As mentioned previously PBGrédeen applied on all directions.
Before the moving the two walls, the systems analibgated in an out-of registry
configuration, which is done in two steps:
 First, the simulations are performed with the solials fixed in space fot0° time
steps.
« Second, the walls are let free to move overxtldérection using Eqg. (7) fot0° time
steps.
Once the system has been equilibrated, the solid diaplacement is done by moving
the solid walls in the direction. Then the simulations are continuousdyried out during
2 x 10 — 3 x 10° time steps, discarding the firtx 10° — 2 x 10° time steps to reach the

steady state or re-equilibrate and sample data.
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6.3. Results and Discussions

6.3.1. Preliminary Results
6.3.1.1. Normal Pressure

At equilibrium, for the systems studied, i.e. atBioefficient equal to one [10-11], the
constitutive equations, Eq. (6.1), implies that goge size is equal to a value for which the
normal pressure exerted on the solid wall due ¢octimfined fluid is equal to the one due to
the fluid outside the pore. Hence, the pore widtlequilibrium can be estimated a priori, if
the dependence of the normal pressure (of thermahfiluid) with the pore size is determined
[24]. It should be noticed that, at the moleculeals, because of the fluctuations, the size of
pore will in fact fluctuate around this averageigguum distance.

So, using MD simulations, we have first determirted variation in the normal
pressure of the confined fluid with its size foetbut-of registry configuration. As well
known [2], results shown in Fig. 6.2 indicate ttie¢ normal pressure noticeably oscillates for
the smallest pore for small wall gap, ilg,, < 7 for the system studied in this work. The
amplitude is increasing when the pore decreasesisamgarly constant and equal to the
pressure of the fluid in the reservoir for the &rgvidths. Such behavior simply reflects the
strong inhomogeneity of the fluid in the pore i tirection perpendicular to the solid-fluid
interface due to physical adsorption and molecpéaoking [12-13]. It is important to notice
that, for such configuration with a fixed distanoetween the walls, the variations in the
normal pressure with the size of the pore exhihitsstable” regions in which the normal
pressure increases with the size increasing.

As mentioned previously, to avoid possible distadzainduced by the surrounding
fluids, a sufficiently large fluid system should &mployed. As shown in Fig. 6.2, the normal

pressure in a pore is nearly constant when theditlee pore is large, i.d,, > 7 for the
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system explored in this work. Hence, in the follogyi the distance between the slit pore and

its replica over th& direction (because of PBC) is initially choserb&oequal td 6¢.

<9
i adid
\'\
f’

_2:””|‘ PRI 1 RN A T AR I I RN ARRN M
L

Gap

Figure 6.2: Variation in the normal pressure widp gize. The shadowed regions represent
the “unstable” regions in which the normal pressoceeases when the gap is increasing.

Large circles (Blue color) correspond to the “agefgoore size at equilibrium. Small circles
(Black color) correspond to the simulation resufiglid line represents the pressure in the

reservoir. Dashed curve serves as guide for the eye

6.3.1.2. Swelling/Shrinkage

According to the constitutive equations, the “agefasize of pore at the equilibrium
state can easily be determined from Fig. 6.2 bgifig abscissa of intersections of the normal
pressure curve and the line of the reservoir pressie., whenPy = Pgpegervoir» DUt ONly in
the stable region of the normal pressure curveugevadth. To confirm this statement, we
have performed MD simulations letting the wallsefte move over th& direction (the pore
can so shrink or swell) as described in Sect. &&Ring from various initial sizes of pore.

As expected, results displayed in Fig. 6.3(a) iatidhat the average sizes of the pore
at equilibrium obtained from such simulations axaatly the same as those deduced from
Fig. 6.2. Thus, the value of the average equiliorgap depends on the initial size as shown

in Fig. 6.4. For instance, whéf,,_j,;; = 2.90 at the initial state the normal pressure in the
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Figure 6.3: (a) Pore size at equilibrium. CirclBed color) correspond to the simulation
results, diamonds (Green color) to the constitudigeations. (b) Deformation of the pore

induced by the presence of a fluid in it.

pore is less than the one outside the pore andespdre width decreasek(, = 2.45) until
Py in the pore is equal B;qervoir @S Shown in Fig. 6.4.

It is important to emphasize that the pore widtrea@tilibrium never reaches a value
corresponding to an unstable region of the “unstal};, in which the normal pressure
increases with the increase of the gap increasegFigs. 6.2 and 6.3. This can be understood
as a consequence of the fluctuation in the thermaahycs of the fluid. Because of this, a pore
with an initial gap for whichPy is nearly equal t@geservoir @Nd Which corresponds to an
unstable region, i.€.g,,_m;: = 3-30 for the system studied, can swell or shrink, sge.f6.3
and 6.4.

Additionally, it is interesting to point out thags expected, the pore width at

equilibrium fluctuates around.g,,_gqui OvVer a non negligible range especially when
LGap-Equi IS large, see Fig. 6.4. This can be explained dnsidering the derivative of the

normal pressure with the pore size around the ibguitn values which tends to decrease (in

absolute value) when the pore size increases,caasim Fig. 6.2.
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Figure 6.4: Variation in the pore size with thegimithout shear. Solid curves correspond to

the simulation results, Dashed-Dotted curves tarthial pore size.

6.3.2. Swelling/Shrinkage Induced by Walls Displaceent
As mentioned previously, the use of the conventioaad recently modified
constitutive equations leads to an unchanged patthwhen the solid walls are moved in the

direction parallel to the solid-fluid interfacese.i the shear is not assumed to influence the
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normal pressure. However, in a narrow pore for Whis size is comparable to the typical
distance of interaction between molecules, thetivelastructural ordering between the solid
walls has a significant effect on the fluid in there [12, 18], in particular on the normal
pressure of the confined fluid. This means thatlative displacement of the two solid walls
can modify the normal pressure of the fluid. Hereeggore can swell or shrink if the solid
walls are translated of a given distance in theation parallel to the solid-fluid interface. We
will called that effect “static” swelling/shrinkage the following.

To explore such static swelling/shrinkage of a pare have computed the variation in
the pore width with the amplitude of the solid watlisplacemenf\z. To do so, we have
performed MD simulations in which, once the systems reached the equilibrium, the solid
walls are moved in opposite direction of a distatizg2, see Fig. 6.1(b). It should be noticed
that the change from the initial out-of-registrynfiguration to an in-registry configuration of
the two solid walls, correspondsiay,, = a/2.

Figure 6.5 depicts the variation in the pore sizth whe solid displacemernitz* for
three different initial equilibrium pore widths. Réts clearly indicate that the pore can swell
or shrink because of a solid displacement in thhection parallel to the solid-fluid interface.
The pore swells whehg,,_gqui = 2.45, whereas it shrinks whel;,,_gqu; = 3.75. Such
behaviors are a consequence of the change in tineahpressure induced from the variation
of the relative structural ordering between thadselalls when the solid walls are moved
[18]. The effects of the relative structural oragriare more significant in narrower pores and
so the swelling/shrinkage in a narrower pore isaragpreciable than that in a larger pore, see
Fig. 6.5.

It is interesting to note that for a narrow porewhich the number of layers of the
fluid is even, starting from the initial out-of-fiefry configuration the pore swells when the

walls are moved. Whereas the pore shrinks for @hnoanber of layers, see Figs. 6.5 and 6.6.
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Figure 6.5: Variation of the pore size for a giwatid displacemeniz*.

This can be simply understood from the fact that af given pore size, the fluid in the out-of-
registry configuration is more strongly structureden the number of layers is even, whereas

it is opposite for the odd number of layers [12], 18

6.3.3. Dynamic Swelling/Shrinkage

In the previous section, we have investigated thellsg/shrinkage of narrow pores
induced by solid walls displacement in the diraectarallel to the solid-fluid interface. It
seems so interesting to explore the swelling/slagekof a pore when the solid walls are
moved at a constant velocity, i.e. to induce a dyinaswelling/shrinkage. To do so, we have

performed MD simulations in which, once the systeams reached the equilibrium, the solid
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Figure 6.6: Density profiles. Dashed-Dotted cure@sespond to the simulation results. Solid

lines are the density in the reservoir.

walls are moved at a constant velocity in the dioecparallel to the solid-surface interface,
see Fig. 6.1.

When the velocity is sufficiently small, it is castent to assume that the state of the
system is completely re-equilibrated at each timeother words, the pore size at any time
should depend only on the instantaneous relativectsiral ordering between the solid
surfaces. The instantaneous pore size while mosiogly the solid walls should so vary
between the values corresponding to the in-regesti out-of-registry configurations. Thus,
we have carried MD simulations as mentioned foied#int wall velocities were employed to
check this assumption and to explore the behavitreodynamic swelling/shrinkage for large

moving velocities.
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Figure 6.7 shows the dependence of the average smeefor different shear rates
¥" = Vwvan/2LGap-gqui- RESUlts indicate that the average size is sligipendent on the
shear rate for the range used in this work. Moexigely, the pore size is nearly constant,
wheny, < 0.01, and slightly increases with the shear rate wher 0.01. The latter trend is
mainly due to the fact that the pressure of a flusdally increases when the wall velocity
increases [18, 25]. It should be noticed thats one order of magnitude lower than the shear
rate associated to the shear thinning threshoddafik LJ liquid [26-27].

Figure 6.8 displays the variation of the pore sizith time for different walls
velocities. As expected, all cases exhibit an tmoilly behavior with a period 8* =
a*/2Vwan- This behavior is simply due to the periodic stuoe of the solid surfaces. It is
interesting to notice that the values of peaks \altbys are nearly equal to the equilibrium
ones corresponding to the in-registry or out-ofistey configurations for low walls velocities,
whereas it is not the case for high velocities, Sgs. 6.5 and 6.8. In other words, the walls
velocity has a noticeable effect on the instantaeesize of a pore, which is not so obvious

when looking only to the average size, see Figsafd 6.8. In particular, the amplitude of the
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oscillations is reduced when the walls velocity@ases. Such behaviors can be understood in
terms of re-equilibration of the fluid in the paradergoing shear. For low enough shear rate
the pore size is governed only by the effect of rislative structural ordering between the
solid surfaces, not by the wall velocity. When giear rate is sufficiently large, the fluid in
the pore does not have enough time to re-equiglaat so the effect of the relative structural

ordering is reduced.
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Figure 6.8: Variation in the pore size with thedimhen the solid walls are moved at a

constant velocity. Red curves correspontitgy/2Lg,p—gqui = 0-001, blue curves to
Vwan/2LGap-£qui = 0-02. Dashed-Dotted lines represent the pore size sporaling to the

in-registry and out-of-registry configurations guéibrium.

6.4. Conclusions

The pore-mechanics approach have shown to be ablaluool to study the
deformation of a porous media partially or fullywgated by a fluid. In its present form, such
theory assumes that a deformation of the solidehathe direction parallel to the solid-fluid
interface (at the pore scale) does not affect bhiel foressure. However, this seems to be
incorrect for systems in which the fluid is hightyructured due to a strong solid-fluid
interaction. So, in this work, using molecular slations we have explored the volumetric

deformation of a simple slit pore induced by shear.
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First, we have estimated at equilibrium the norsmdWation pressure of a confined
Lennard-Jones liquid for fixed pore width. As exjeel; it has been found that the normal
pressure varies appreciably (damped oscillationgh whe pore size for narrow pores,
i.e.whenLg,, < 7 for the system studied in this work. Then, usimguations in which the
slit pore was immerged in a fluid reservoir andakd to swell/shrink, it has been verified
that the relative equilibrium position of the twaNg is the one corresponding to a normal
pressure in the confined fluid equal to that in bk reservoir. However, even if that last
condition is respected, the system should be indtable part of the normal pressure
dependence to the pore width (i.e. a pressuredd@aeases when the width increases). Thus,
whatever the initial state, the equilibrium poreesnever reaches a value corresponding to an
unstable region.

Second, the swelling/shrinkage of a pore induced bisplacement of the solid walls
(immerged in a fluid reservoir) of a given distancehe direction parallel to the solid-fluid
interface has been investigated. Results have shioatnin narrow pores, the average pore
size is changed by such solid displacement, igretis a shear-induced swelling/shrinkage.

This effect is simply due to the fact that the nakpressure of the simulated fluid appreciably

to in registry configurations).

Finally, we have explored the situation in whichicdoevalls are moved at a constant
velocity. It has been found that the velocity enyplib has only a slight effect on the average
pore size, whereas it implies a noticeable effatttloe instantaneous pore size. More
precisely, while all cases exhibit an oscillatoghbvior of the instantaneous pore size, which
is simply due to the periodic structure of the dalurfaces, the amplitude of the oscillations is
reduced when the walls velocity increases. Suclawels can be understood in terms of re-

equilibration of the fluid in the pore undergoirttear.
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Chapter 7

Conclusion and Perspective

7.1. Conclusions

To better understand and to improve the modelinthefphysical characteristics of a
fluid confined in a micro-porous medium, it is ciralcto estimate its properties (static and
dynamic) at the pore-scale. Thus, using extensiv@ecnlar dynamics (in adequate
ensembles) on simple fluids confined in slit namepp we have tried to provide a
fundamental information/model on some points ofhsacproblematic. It is important to
emphasize that even if the simulations were camigdon very simple system, the general
methodology described in this work is applicabtertiost cases in a straightforward manner)
to realistic systems at the pore scale using ap@tepmolecular models while keeping in
mind the limitations in terms of CPU.

The MD simulations in the grand canonical (GC) enlsle are probably the most
suitable to deal with the confined systems andxtoaet an information comparable to what
could be measured experimentally. Although thereehlaeen a non negligible number of
algorithms proposed in the literature to deal vgitich ensemble using MD simulations, none
seems to possess all possible advantages. Hencéawvee proposed a slightly modified
version of the algorithm proposed by Gao et atoltsists in simulating explicitly the fluid in
the pore in direct contact with reservoirs mairgdirat the desired thermodynamics state
through a relaxation scheme of the type propose8drgndsen et al. Using this algorithm,
the transient behavior of the mass diffusion pre@ssociated with the migration of one fluid
into another one confined between parallel atomstiid walls has been studied. Results on
isotopic Lennard-Jones mixtures have shown thagfaeonfined system in which the local

density varies very strongly with the position, iéghly adsorbent walls, the mass diffusion
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process is noticeably slowed down as expected miode important, is a 2D phenomenon
because the diffusion coefficient is no longer tansperpendicular to the walls. Otherwise,
for weakly or moderately adsorbent it still followsughly a 1D diffusion model with a
characteristic time that is reduced compare tdotlik situation.

As the local estimation of the mass diffusion coetht is not easy to handle, we have
then studied the effect of fluid density inhomogeas on the local viscosity. More precisely,
using non-equilibrium MD simulations in a Couetteslconfiguration, we have computed the
local viscosity of strongly inhomogeneous fluidduced by a sinusoidal external field or by
confinement in a slit pore for different states dod different fluid types going from the
Hard-sphere one to the Lennard-Jones one. Simugatiesults have shown that the local
viscosity appreciably varies with the position whadr the state and cannot be described by a
simple van der Waals approach, i.e. non localsceffeshould be taken into account. To
guantitatively predict the viscosity profiles frothe local thermodynamics conditions (the
density profile), we have proposed a simple schémag is based on separating the local
viscosity into the translational (kinetic) and agofational (collisional) contributions. The
former can quantitatively be determined by usirggnaple kinetic-like theory, whereas a local
average density model (LADM) combined with an adgguweight function has been
employed for the latter. More precisely a geneealitADM has been developed that seems
to be efficient for all types of spherical fluidssaming the density inhomogeneities are
known.

Then, to analyze the apparent/effective propertlest are deduced from such
simulations on a sheared thin liquid confined isliapore, we have performed simulations
using the two molecular dynamics schemes thatherenost widely used in the literature. In
the first approach, the non-equilibrium simulati@me performed on a confined fluid directly

connected to bulk reservoirs. In the second one;aguilibrium simulations are carried out
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on the confined fluid only, in which the averagasity is deduced from a prior simulation in
the grand canonical ensemble. Using these scheheeapparent properties (average density,
effective viscosity and friction force) of a Lendafones liquid confined in narrow slit pore
(of a fixed width) and undergoing boundary shearehbeen determined. It has been found
that the apparent properties can be significantferént using one scheme or the other when
the (crystalline) solid surfaces induce a strongcstire in the whole fluid, i.e. for small
separations between the solid surfaces. In paaticilis shown that the first scheme is the
only one usable to explore the history-dependerfcéh® friction force as observed in
experiments. Furthermore, because of this stromg 8tructure, for precise walls distance
corresponding to a first order phase transitiomsaosplastic (and shear thinning) behavior of
the confined thin liquid can appear.

The last part of this work was devoted to inveségdorough MD simulations the
swelling/shrinkage of such slit pore (i.e. the walle allowed to move from each other). In
particular, we have studied the swelling/shrinkagduced by shear of a simple slit pore
immerged in a Lennard-Jones liquid reservoir. Resudve shown that, on average, the pore
can swell or shrink when the solid walls are dispthin parallel with the fluid-solid interface,
i.e. a shear-induced swell/shrink can exist whishnot yet taken into account in usual
poromechanics theories. This effect is simply du¢he fact that the normal pressure of the
confined fluid appreciably varies with the relatiggructural ordering between the solid
(crystalline) surfaces for a given pore size. Sokemwthe solid walls are moved parallelly at a
constant velocity, the instantaneous pore sizdlates with time. It has been noticed that the
walls velocity has a slight effect on the averageepsize, but induces a significant
modification of the magnitude of the oscillationhi3 is related to the time needed to re-

equilibrate the fluid in the pore.
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7.2. Perspectives

A large part of the work done during this thesiswigdicated to noticeably enhance
the possibilities of an already existing in hous® Mode calledTransporeand to design
efficient algorithms to quantify various propertiesa fluid confined in a (micro-) porous
medium. Thus, one of the main perspective of thoskvis to apply the developed schemes to
more realistic fluid and solid systems (in partaulrelated to geosciences and civil
engineering problems) to provide data that couldebentually compared to experimental
results directly or used as inputs to a macroscejplator. In addition, depending on the
findings on such realistic systems it would beepdgbrward to propose experiments in order
to assess the numerical findings. In the followingly the short terms perspective are
presented.

Concerning mass diffusion in low permeability sitaas, we have already developed
a slightly modified (in collaboration with Dr. Bereouz) technique that allows studying the
transient behavior of gas diffusion into a confinkguid. Such a method may allow
estimating effective diffusion coefficients of vaums gases (methane, longer alkanes, carbon
dioxide) into water confined in clay for example ieth would be useful as inputs (through
homogenization) for a large variety of problemspfcack leakage, CO2 storage, etc.). At
equilibrium, it allows as well quantifying the sbility of such gases in the confined fluid
which may be an additional useful information canogg the storage capabilities of such
systems. Another interesting topic would be to pare the results obtained in the strongly
adsorbent situation with what can yield a 2D dibasequation (using finite volume for
instance) with mass diffusion coefficient variablespace. If such simplification is possible
this would ease the finding an adequate homogeoizapproach.

A formulation was proposed to describe the locatashviscosity of strongly

inhomogeneous fluids starting from the density ifgoft would be interesting to check that
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the proposed formulation is suitable for other spitere fluids and to which extent it can be
applied to mixtures. Additionally, the situation which long range interaction occurs (i.e.
Coulombic ones) would be interesting to analyzéoag as it may lead to similar non local
effects on the local viscosity but over much londestances than when only van der Waals
interaction occurs. In addition, at low density greposed formulation is not fully satisfying
and we expect that a simple kinetic like schemelioling the external field induced by the
fluid-solid potential and the fluid structure) cdule designed.

When dealing with apparent properties of confirt@d film it would be interesting to
look after the influence on the load dependencéhefshear fiction. In particular, we are
planning to study why the relation between the dyieafriction force and the load is
following the Amonton’s law for high load. It woulde enriching as well to explore the
swelling/shrinkage and the evolution of compositinrthe pore in mixtures when the bulk
pressure evolves (e.g. discontinuous pore sizeitikgure fluids or not ?). In addition, it is
compulsory, in collaboration with Dr. Vermorel arfér. Pijaudier-Cabot, to envisage
including these effects in an enhanced poromechapproach to extend the benefit of the

work done at the pore scale to the porous mediwaie sc
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Modélisation de Fluides Simples Confinés dans desaNopores Lamellaires: Transport
et Poromécanique

Résume:

Ce travall vise a étudier les propriétés de trarisgtde comportement poromécanique
de fluides simples confinés dans des nanoporesllidmes par le biais de simulations
moléculaires. Pour ce faire, nous avons proposérdifts schémas de simulations de la
dynamique moléculaire dans des ensembles adapxéprapriétés étudiées (diffusion de
masse, viscosité, force de friction, gonflement Il.&. été note que les propriétés de transport
de fluides fortement inhomogénes variaient forteimams la direction perpendiculaire aux
murs solides. Nous avons alors proposé une appmochdocale permettant de déterminer
guantitativement la viscosité locale de fluidesomiogenes a partir du profil de densité et
applicable pour des spheres dures, molles et ideflde Lennard-Jones. Il a été également
montré qu’un fluide de Lennard-Jones fortement io@npouvait avoir un comportement
viscoplastique (et rhéofluidifiant) si un ordre ustiurel était induit dans le fluide par la
position relative des murs solides. Enfin, nousnavimontré qu’'une modification importante
de la pression de solvatation du fluide confinétggre induite par cisaillement ce qui peut
induire un gonflement « dynamique » d’un nanopanedilaire.

Mots clés: simulation de dynamique moléculaire, poromécaniqunanopores, fluide
inhomogeéne, propriétés de transport, force deidrictgonflement, théorie fonctionnelle de la
densité.

Modeling of Simple Fluids Confined in Slit Nanopors: Transport and Poromechanics

Abstract:

This work aims at investigating the transport prips and the poromechanics of
simple spherical fluids confined in slit nanopoti@®ugh molecular simulations. To do so, we
have proposed different schemes to perform moleayaamics simulations in ensembles
adequate to deal with the properties we were |lagpkifter (mass diffusion, shear viscosity,
friction force, swelling ...). The transport propesdiof strongly inhomogeneous fluids were
found to be varying with space perpendicularlyhe solid walls. We have then proposed a
non-local approach to determine quantitatively tlocal shear viscosity of such
inhomogeneous fluids from the density profile apgble from the Hard-Sphere to the
Lennard-Jones fluids. In addition, it has been shivat highly confined Lennard-Jones fluid
may exhibit a visco-plastic (+ shear thinning) bebawhen a strong structural order is
induced in the whole confined fluid because ofridative position of the solid walls. Finally,
it was demonstrated that shear induced modificatmnthe solvation pressure of a confined
fluid may exist that leads to a “dynamic” swellimpen a slit micropore is sheared.

Keywords: molecular dynamics simulation, poromechanics, pargs, inhomogeneous
fluids, transport properties, friction force, svimll, density functional theory.
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