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Abstract

While modern networks and services are continuously growing in scale, complexity and
heterogeneity, the management of such systems is reaching the limits of human capa-
bilities. Technically and economically, more automation of the classical management
tasks is needed. This has triggered a significant research effort, gathered under the
terms self-management and autonomic networking.

The aim of this thesis is to contribute to the realization of some self-management
properties in telecommunication networks. We propose an approach to automatize the
management of faults, covering the different segments of a network, and the end-to-
end services deployed over them. This is a model-based approach addressing the two
weaknesses of model-based diagnosis namely: a) how to derive such a model, suited to
a given network at a given time, in particular if one wishes to capture several network
layers and segments and b) how to reason with a potentially huge model, if one wishes
to manage a nation-wide network, for example.

To address the first point, we propose a new concept called self-modeling that
formulates off-line generic patterns of the model, and identifies on-line the instances
of these patterns that are deployed in the managed network. The second point is
addressed by an active self-diagnosis engine, based on a Bayesian network formalism,
that consists in reasoning on a progressively growing fragment of the network model,
relying on the self-modeling ability: more observations are collected and new tests are
performed until the faults are localized with sufficient confidence.

This active diagnosis approach has been experimented to perform cross-layer and
cross-segment alarm management on an IP Multimedia Subsystem (IMS) network.
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1.1 Contexte

Les réseaux de télécommunications deviennent de plus en plus complexes, notamment
de par la multiplicité des technologies mises en œuvre, leur couverture géographique
grandissante, la croissance du trafic en quantité et en variété, mais aussi de par l’évolution
des services fournis par les opérateurs. Tout ceci contribue à rendre la gestion de ces
réseaux de plus en plus lourde, complexe, génératrice d’erreurs et donc coûteuse pour
les opérateurs. On place derrière le terme � réseaux autonomiques � l’ensemble des
solutions visant à rendre la gestion de ce réseau plus autonome.

L’objectif de cette thèse est de contribuer à la réalisation de certaines fonctions
autonomiques dans les réseaux de télécommunications. Nous proposons une stratégie
pour automatiser la gestion des pannes tout en couvrant les différents segments du
réseau et les services de bout en bout déployés au-dessus. Il s’agit d’une approche basée
modèle qui adresse les deux difficultés du diagnostic basé modèle à savoir: a) la façon
d’obtenir un tel modèle, adapté à un réseau donné à un moment donné, en particulier si
l’on souhaite capturer plusieurs couches et segments réseau et b) comment raisonner sur
un modèle potentiellement énorme, si l’on veut gérer un réseau national par exemple.

Pour répondre à la première difficulté, nous proposons un nouveau concept : l’auto-
modélisation qui consiste d’abord à construire les différentes familles de modèles génériques,
puis à identifier à la volée les instances de ces modèles qui sont déployées dans le réseau
géré. La seconde difficulté est adressée grâce à un moteur d’auto-diagnostic actif, basé
sur le formalisme des réseaux Bayésiens et qui consiste à raisonner sur un fragment
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4 Résumé en français

du modèle du réseau qui est augmenté progressivement en utilisant la capacité d’auto-
modélisation: des observations sont collectées et des tests réalisés jusqu’à ce que les
fautes soient localisées avec précision.

Cette approche de diagnostic actif a été expérimentée pour réaliser une gestion
multi-couches et multi-segments des alarmes dans un réseau IMS (IP Multimedia Sub-
system).

1.2 Introduction

Plusieurs approches pour la gestion des pannes utilisent des méthodes de type � boite
noire � ou des méthodes d’apprentissage: réseaux de neurones, cartes auto adaptatives,
apprentissage statistique (Kavulya et al., 2011), techniques de dictionnaire (Reali and
Monacelli, 2009), découverte de chroniques (Dousson, 1996; Dousson and Duong, 1999;
Kavulya et al., 2012). De telles stratégies souffrent généralement d’un manque de
données classifiées reliant les pannes aux symptômes observés. Ces stratégies résistent
mal aux phénomènes de familles de symptômes complexes dus aux fautes multiples, à
l’asynchronisme ou à la perte des observations. Par ailleurs, ces méthodes sont difficiles
à maintenir lorsque le réseau évolue. De telles méthodes sont donc appropriées pour des
corrélations d’alarmes simples, à petite échelle sur des topologies fixes, où la convergence
du processus d’apprentissage est assurée.

Pour atteindre les objectifs mentionnés plus haut, nous devons adopter une stratégie
basée modèle, qui consiste tout d’abord à construire un modèle du réseau géré, à établir
les relations entre le fonctionnement correct ou incorrect et les symptômes ou signaux
observés, et ensuite à dériver des algorithmes de gestion d’évènements basés sur ce
modèle. C’est la stratégie adoptée par plusieurs contributions (voir les techniques
de traversée de modèle dans (Steinder and Sethi, 2004a), et leur généralisation en
méthodes théoriques graphiques). D’autres contributions assemblent la connaissance
experte à propos des disfonctionnements et de leur conséquences, ou des symptômes et
de leur causes, dans des graphes causaux qui forment le support pour un raisonnement
automatique (éventuellement distribué) (Lu et al., 2011; Grosclaude, 2008). Une autre
approche majeure modélise ou découvre à partir des données, les dépendances (logiques
ou statistiques) entre les ressources, les pannes initiales et les symptômes observables,
puis, les assemble en réseaux Bayésiens ou en objets similaires (Bouloutas et al., 1994,
1995; Fabre et al., 2004). Les moteurs d’inférence sur de telles structures sont standards
et prêts à l’usage. En effet, ce sujet ainsi que la distribution de ces techniques sont des
thèmes bien couverts par la littérature (Fabre et al., 2004, 2005).

Cependant, comme en témoigne les contributions ci-dessus, les techniques basées
modèle soulèvent toujours deux difficultés majeures: a) comment obtenir un tel modèle
adapté à un réseau donné à un moment donné, en particulier si l’on souhaite cap-
turer plusieurs couches et segments réseau, et b) comment raisonner sur un modèle
potentiellement énorme, si l’on veut gérer un réseau national par exemple. Cette thèse
propose une contribution à ces deux difficultés.

Obtenir un modèle du réseau géré est loin d’être trivial, surtout si l’on souhaite
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capturer les propagations de pannes inter-couche et inter-segment. La première source
d’information que l’on doit utiliser est bien sûr la topologie du réseau, qui a été con-
sidérée dans plusieurs contributions (par exemple (Bouloutas et al., 1994)), y compris
les outils professionnels dédiés à des technologies réseau spécifiques. Cependant, l’on de-
vrait aller plus loin et agréger différentes sources d’information, généralement trouvées
dans les normes, dans les descriptions de protocoles, et dans la connaissance experte si
celle-ci est disponible.

S’appuyant sur l’expérience de notre équipe dans la modélisation des propaga-
tions de fautes et d’alarmes (Fabre et al., 2004), nous proposons ici un nouveau con-
cept: l’auto-modélisation. L’auto-modélisation consiste tout d’abord à identifier les
différentes familles de ressources réseau qui doivent être gérées, et la façon dont ces
ressources sont structurées et liées les unes aux autres, en suivant la construction
hiérarchique habituelle des réseaux. Cela donne une collection de modèles génériques,
de ressources et de dépendances entre celles-ci, conçus selon une grammaire spécifique.
Ensuite, en explorant le réseau géré, on peut alors créer des instances de ces modèles
génériques autant de fois que celles-ci sont découvertes dans la topologie du réseau.
Comme ces instances partagent certaines ressources, cette construction se traduit par
une structure à grande échelle où des tendances similaires sont dupliquées et se chevauchent
partiellement. Le modèle obtenu de cette manière correspond parfaitement à un réseau
donné et peut être utilisé pour le diagnostic.

En ce qui concerne le moteur de diagnostic, nous proposons de traduire le modèle des
ressources réseau et de leur dépendances dans le formalisme des réseaux Bayésiens, qui
semble faire l’objet d’un consensus au sein de la communauté de gestion de réseau. Les
réseaux Bayésiens peuvent facilement mêler dépendances statistiques et contraintes/logique,
tout en permettant un apprentissage statistique limité (indentification des paramètres)
quand les données sont disponibles. Ils peuvent aussi s’adapter aux réseaux de systèmes
dynamiques (Fabre, 2007; Fabre et al., 2004; Fabre and Hadjicostis, 2006). Le raison-
nement probabiliste sur les réseaux Bayésiens est très bien documenté et permet d’associer
des observations ou des résultats de test à l’état de variables pertinentes cachées.

Néanmoins, les réseaux Bayésiens s’avèrent inappropriés lorsqu’il s’agit de faire face
à des modèles potentiellement énormes. Par conséquent, nous proposons d’adapter le
formalisme des réseaux Bayésiens pour a) explorer seulement une partie du modèle,
en commençant par les ressources impliquées dans une panne donnée qui doit être
expliquée, et b) introduire/révéler progressivement plus de ressources (variables) pour
obtenir plus d’observations et réaliser de nouveaux tests, dans le but de localiser l’origine
de la panne avec plus de précision.

Pour appuyer ces deux directions de recherche, la thèse considère la gestion des
pannes dans les réseaux IMS, tout en capturant plusieurs segments réseau (access,
metro et core), et les services de bout en bout déployés au-dessus (Bertin et al., 2007).
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1.3 Structure des réseaux IMS

Trois couches multi-résolution

En partant des descriptions classiques des réseaux IMS, l’objectif ici est d’identifier
les ressources impliquées dans de tels réseaux, et la façon dont ces ressources sont
structurées et dépendent les unes des autres. Cette connaissance sera utilisée pour
diagnostiquer les dysfonctionnements.

IP

CPE DSLAM BRAS A-SBC Session 
Controller

Media 
Server

User 
Profile 
Server

Core Network
Media 

Gateway
I-SBC

First Mile Aggregation Metro-core
Other IP 
networks
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Access Network

NASS
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UAAF, NACF, CLF
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A-RACF, C-BGF, SPDF, 

I-BGF, RCEF, L2TF

Core IMS
P/S/I-CSCF, HSS, SLF, MRFC, 

MRFP, IWF, IBCF

Registration
Stage 1, stage 2

SIP Register, Diameter UAR, etc. 

Basic session setup
Stage 1, stage 2, etc.

SIP Invite, Diameter LIR, etc.

...
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L2TF RCEF

CLF SPDF A-RACF
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UPSF

SLF
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I/S-CSCF

MGCF
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T-MGF

Media 
Gateway 

Controller

PSTN/ISDN

Executed before

Figure 1.1: Les réseaux IMS sont organisés de façon hiérarchique.

La Figure 1.1 illustre l’architecture générique d’un réseau IMS, qui peut être or-
ganisé en trois couches, chacune regroupant les ressources d’une nature spécifique.
Le terme � ressource � couvre à la fois les équipements physiques, les logiciels qui
s’exécutent à l’intérieur, mais aussi les procédures permettant d’accéder aux services.

La couche physique comprend un access network et un core network. L’access
network est constitué des segments metro-access et metro-core. Le segment metro-
access se décompose en segments plus petits: first mile et aggregation. Les segments
aggregation et metro-core sont connectés via un ou plusieurs Broadband Remote Access
Server (BRAS). Le segment metro-core est connecté au core network, contenant la
plateforme de service IMS, via des routeurs comme le Session Border Controller (SBC).
L’architecture de la couche physique est essentiellement hiérarchique: cette couche
est constituée d’équipements spécifiques connectant différents segments réseau, ceux-
ci étant décomposables en d’autres équipements physiques connectant des segments
réseau plus petits.

La couche fonctionnelle fait référence à l’architecture fonctionnelle IMS et est con-
stituée de trois sous-systèmes. Le sous-système d’attachement au réseau, Network
Attachment Subsystem (NASS) (TISPAN, 2010a) fournit l’enregistrement au niveau
accès et l’initialisation du terminal utilisateur (User Equipment, UE) pour accéder
aux services multimédia. Le sous-système de réservation des ressources et de contrôle
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d’admission, Resource and Admission Control Subsystem (RACS) (TISPAN, 2006)
est en charge des fonctions de contrôle, des réservations de ressources et du contrôle
d’admission. Enfin, le sous-système core IMS (TISPAN, 2007) est en charge de fournir
les services multimédia destinés aux terminaux utilisateur. Les sous-systèmes sont des
objets hiérarchiques, comprenant plusieurs fonctions listées à l’intérieur de chaque bloc
dans l’architecture fonctionnelle de la Figure 1.1. Ces fonctions communiquent entre
elles via des interfaces (également appelées des points de référence). Diverse solutions
existent pour implémenter ces fonctions dans les équipements/nœuds physiques et les
auteurs dans (Darvishan et al., 2009) comparent différentes implémentations.

La Figure 1.1 reflète un exemple d’implémentation avec un réseau d’accès xDSL.
Cette implémentation est modélisée par une relation � is-supported-by � entre une
fonction et un équipement physique. C’est un premier exemple de dépendances entre
ressources puisque la panne d’un équipement a en général un impact sur les fonc-
tions qu’il héberge. La couche procédurale décrit les procédures impliquées dans les
opérations permettant d’accéder aux services IMS. Ces procédures, décrites dans les
normes, ont une structure multi-résolution: elles se décomposent en phases, qui se
décomposent à leur tour en séquences (ou ordre partiel) de requêtes/réponses entre
les éléments fonctionnels du NASS, du RACS et du core IMS (voir Figure 1.3 par
exemple). Chaque requête/réponse se traduit par des échanges au-dessus d’interfaces
qui obéissent à des protocoles tels que DHCP, SIP ou Diameter. L’exécution d’une
procédure positionne des variables d’état, certaines d’entre elles sont observables ou
peuvent être testées. Par exemple, l’acquisition d’une adresse IP correcte prouve que
l’attachement de l’UE au réseau (via le NASS) s’est bien déroulé (voir Figure 1.3). Les
procédures, les phases, et leur composants dépendent les uns des autres, dans le sens
où ils sont (partiellement) ordonnés en temps, ce que nous notons par la relation � is-
preceded-by �. Par ailleurs, ils sont aussi supportés par (relation � is-supported-by �)
les fonctions et les interfaces de la couche fonctionnelle qui exécutent ces procédures.
Cette information est facilement accessible à partir des normes et révèle une autre forme
de dépendances entre ressources.

L’auto-modélisation: Modèle générique et Instance réseau

Le modèle en trois couches décrit ci-dessus est générique puisqu’il définit les différents
types de ressources réseau et la façon dont celles-ci interagissent et dépendent les unes
des autres. Cette description provient principalement des informations contenues dans
les normes et des pratiques courantes des opérateurs télécoms. Néanmoins, certaines
informations doivent être définies par un expert. Ce travail est facilité par la taille
relativement petite de ce modèle générique, par l’existence d’une grammaire définissant
la façon dont les objets peuvent être liés les uns aux autres, et par la nature hiérarchique
du modèle. Cette hiérarchie permet de modéliser chaque couche à différents niveaux
de détail (d’abstraction), et ainsi de sélectionner la granularité la plus fine à laquelle
on souhaite gérer le réseau. Le modèle générique définit les composants de base d’un
réseau, du point de vue de l’activité de gestion. Cependant, le réseau que l’on doit gérer
contient plusieurs instances de ces composants. Par analogie avec la programmation
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Figure 1.2: Une instance de réseau IMS: la couche physique et les fonctions de la couche
fonctionnelle hébergées sont illustrées.

orientée objet, le modèle générique est un diagramme de classes tandis que l’on doit
gérer un diagramme d’objets. Le réseau peut être représenté comme une structure à
grande échelle où les instances des patterns décrits dans le modèle générique partagent
certaines ressources et se chevauchent partiellement. Cela est illustré sur la Figure 1.2
où plusieurs utilisateurs d’un réseau d’accès ont des ressources privées (CPE et First
mile), mais peuvent partager ou non un DSLAM, un segment aggregation, etc.

Obtenir le modèle de l’instance réseau à gérer signifie créer autant d’instances de
ressources réseau (équipements, fonctions, etc) que celles-ci sont décrites dans le modèle
générique. Cela signifie aussi structurer ou connecter ces instances conformément aux
patterns permis par le modèle générique. Une telle construction garantit à la fois
l’adéquation du modèle obtenu avec les normes, et permet d’obtenir un modèle adapté à
un réseau spécifique, ce qui est d’une importance capitale pour capturer les architectures
évolutives. Nous appelons ce processus l’auto-modélisation. Cette tâche peut en effet
être automatisée à condition que l’architecture de gestion fournisse les outils permettant
d’explorer le réseau et de révéler son architecture. Un tel � service � ou une telle
� propriété de réflexivité � du réseau, est l’une des fonctions essentielles que l’on
doit attendre d’une architecture de gestion autonomique, de même que la capacité
d’interroger les éléments gérés dans le but de vérifier leur variables d’état ou de réaliser
des tests.

1.4 L’auto-modélisation: support de la localisation de pannes

Méthodologie

La section précédente a illustré un trait typique de la conception des réseaux: des
ressources de bas niveau sont assemblées pour construire des ressources de niveau
supérieur. Le terme ressource fait référence à des composants de la couche physique,
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fonctionnelle ou procédurale. Les relations de dépendances illustrées dans la sec-
tion précédente nous ont naturellement orienté vers une formalisation en termes de
réseaux Bayésiens. Ceux-ci conviennent particulièrement pour représenter à la fois
des contraintes et des dépendances statistiques. Par ailleurs, ils encodent les relations
d’indépendance conditionnelle sur lesquelles reposent les algorithmes d’inférence, un
sujet traité par plusieurs travaux de recherche. Dans ce contexte, l’inférence consiste
à inférer la valeur de certaines variables d’état étant donné la valeur observée chez
d’autres variables.

Cependant, ce contexte a besoin d’adaptations, et ce, dans plusieurs directions.
Tout d’abord, le réseau géré évolue avec le temps (les utilisateurs s’attachent au réseau,
s’enregistrent, se déconnectent, de nouveaux équipements sont ajoutés, etc.) et peut
ne pas être connu entièrement et dans tous ses détails. Donc, le réseau Bayésien utilisé
pour l’inférence devrait être construit sur demande, capturant l’état du réseau, pour
répondre à une requête de diagnostic donnée.

Par ailleurs, toutes les ressources réseau ne sont pas impliquées dans le dysfonc-
tionnement d’un service. Donc, seulement une partie du réseau devrait être prise en
compte.

Ensuite, cette construction du modèle de réseau Bayésien devrait être couplée
avec le moteur d’inférence. Les utilisateurs partagent certaines ressources réseau, par
conséquent ils transportent de l’information au sujet de l’état de celles-ci, ce qui peut
être utile pour le raisonnement. Donc, l’on doit concevoir une construction dynamique
du réseau Bayésien modélisant le réseau, ou, de façon similaire, une exploration dy-
namique du réseau, pour collecter progressivement des informations et répondre à une
requête de diagnostic donnée.

Enfin, voyons ce qu’est une requête de diagnostic. Supposons que l’état d’une
certaine ressource est observée comme étant en panne (par exemple la configuration IP
est défectueuse pour un terminal utilisateur spécifique), l’on doit découvrir l’origine (la
cause primaire) de cette panne. Cette cause primaire se trouve nécessairement dans
les ressources de couches inférieures qui sont assemblées pour construire la ressource
défectueuse. Ceci peut être vu comme un problème d’inférence d’état étant donné les
valeurs observées sur les autres variables d’état.

Par extension, on pourrait imaginer interroger l’état de toutes les variables d’un type
donné, étant donné des observations. Un exemple de requête serait alors la suivante:
étant donné la panne d’un segment first mile, quelle est la probabilité qu’un UE (non
spécifié) soit capable d’effectuer des appels. Ce type de requête d’inférence générique
est nouveau dans le formalisme des réseaux Bayésiens, et constitue de toute évidence
une approche pour évaluer l’impact des pannes.

La méthodologie que nous proposons pour localiser l’origine d’un dysfonctionnement
observé au niveau d’une ressource est la suivante:

1. Retrouver et/ou assembler (à un niveau de granularité donné) le modèle générique
(ou réseau Bayésien générique) qui décrit les ressources utilisées par la ressource
défectueuse.

2. Localiser l’instance de ce réseau Bayésien générique dans l’instance du réseau IMS
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et obtenir ainsi une instance de réseau Bayésien, que nous appelons pattern.

3. Au sein du réseau Bayésien actuel (l’instance), alimenter le moteur d’inférence
avec les observations disponibles pour localiser la ressource défectueuse.

4. Si les observations récoltées ne sont pas suffisantes, étendre le réseau Bayésien
actuel en explorant d’autres patterns (d’autres instances) qui partagent des ressources
avec le réseau Bayésien actuel. Dans ce réseau Bayésien étendu, collecter les nou-
velles observations disponibles pour améliorer la précision sur localisation de la
panne.

5. Répéter l’extension jusqu’à ce que l’origine de la panne soit localisée avec précision.

Exemple

Pour illustrer cette méthodologie sur un cas pratique, supposons que nous souhaitons
expliquer pourquoi la configuration IP a échoué pour l’utilisateur Laurie dans l’instance
réseau de la Figure 1.2. Comme le montre la Figure 1.3, le service de configuration IP se
décompose en deux phases successives, déclenchées par l’UE. Dans la couche fonction-
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1. DHCP Discover //

2. DHCP Discover //

3. DHCP Offer
oo

4. DHCP Request //

5. Bind IP-Address request//

6. NASS User profile request
oo

7. NASS User response //

8. Bind IP-Address answer
oo

9. DHCP Ack (IP address and P-CSCF address)
oo

Figure 1.3: Diagramme de séquence de la configuration IP en utilisant le protocole
DHCP (couche procédurale). Cette configuration se traduit par un dialogue entre l’UE
(à gauche) et les fonctions du NASS (à droite).

nelle, la granularité choisie distingue une ressource individuelle notée � NACF* � qui
regroupe les fonctions AMF (Access Management Function), NACF (Network Access
Configuration Function), UAAF (User Access Authorization Function), et les interfaces
entre elles. De la même façon, le niveau de granularité choisi distingue une ressource
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individuelle notée � CLF* � qui regroupe les fonctions CLF (Connectivity session Lo-
cation and repository Function) et A-RACF (Access-Resource and Admission Control
Function), et l’interface entre ces deux fonctions.

En suivant la méthodologie décrite ci-dessus, nous commençons par retrouver le
modèle générique qui décrit les ressources utilisées par le service de configuration IP
(Figure 1.4). Ce graphe de dépendances entre ressources peut être vu comme un réseau
Bayésien, avec des dépendances statistiques si ces statistiques sont disponibles, ou
des dépendances logiques sinon. Il traduit, par exemple, le fait que le résultat de la
procédure de configuration IP dépende de l’issue du � Stage 1 � qui dépend lui-même
de l’état de l’interface entre les fonctions UE et ARF (notée ici � int UE-ARF �). Cet
état dépend à son tour du lien physique entre l’UE et l’ARF, c’est-à-dire du segment
first-mile. Dans ce réseau Bayésien générique, la variable d’état � IP configuration � est
observable puisqu’on peut facilement tester si l’UE a obtenu une adresse IP correcte.

Stage 1 Stage 2

UE Int UE - ARF  ARF Int ARF - NACF* NACF* Int UE - NACF* Int NACF* - CLF* CLF*

CPE First Mile DSLAM Aggregation BRAS SBC Metro Core

Executed before

Supported by

Supported by

IP Configuration

Figure 1.4: Réseau Bayésien générique pour le service de configuration IP d’un terminal
utilisateur.

Dans un deuxième temps, nous localisons parmi plusieurs instances de ce réseau
Bayésien générique, l’instance qui concerne l’utilisateur Laurie. Cette instance de
réseau Bayésien est montrée à la Figure 1.5 où les ressources privées de Laurie sont
affichées en orange. Dans l’instance du réseau Bayésien relative à Laurie, l’état de la
variable observable � IP configuration � est � down � c’est-à-dire défectueux. Chacun

Laurie’s Stage 1 Laurie’s Stage 2

UE#1 Int UE#1 - ARF#1  ARF#1 Int ARF#1 - NACF*#1 NACF*#1 Int UE#1 - NACF*#1 Int NACF*#1 - CLF*#1 CLF*#1

CPE#1 First Mile#1 DSLAM#1 Aggregation#1 BRAS#1 SBC#1 Metro Core#1

Laurie’s IP Configuration

Figure 1.5: L’instance du réseau Bayésien relative à Laurie

des nœuds dans le réseau bayésien de Laurie peut être une explication pour la panne
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observée chez Laurie.
La troisième étape consiste à collecter les observations disponibles sur toutes ces

ressources, et à exécuter une inférence bayésienne pour essayer de localiser l’origine de
la panne. Notons que toutes les ressources ne peuvent pas fournir d’observables sur
leur état et, que certaines observations peuvent ne pas être totalement discriminantes.

Dans un quatrième temps, on peut décider de vérifier les explications possibles
découvertes jusque-là en interrogeant d’autres utilisateurs qui partagent certaines ressources
avec Laurie. Par exemple, nous avons choisi de vérifier l’état de la configuration
IP de Jane. Par conséquent, nous augmentons l’étendue du réseau Bayésien actuel
(l’instance de réseau Bayésien relative à Laurie) en ajoutant l’instance de Jane. La Fig-
ure 1.6 montre l’étendue du réseau Bayésien, qui contient à présent plus de variables
observables. Supposons que l’état de la configuration IP de Jane est � up �, c’est-
à-dire fonctionne correctement. Cette observation implique que toutes les ressources
que Laurie partage avec Jane fonctionnent correctement, ce qui aurait été révélé par
une inférence Bayésienne sur ce réseau étendu. Par conséquent, l’ensemble des causes
(ressources défectueuses) possibles dans l’instance de Laurie est réduit au sous ensemble
de ressources qui ne sont pas partagées avec Jane.

Laurie’s Stage 1 Laurie’s Stage 2

UE#1 Int UE#1 - 
ARF#1 ARF#1 Int ARF#1 - 

NACF*#1 NACF*#1 Int UE#1 - 
NACF*#1

Int NACF*#1 - 
CLF*#1

 
CLF*#

1

CPE#1 First Mile#1 DSLAM#1 Aggregation#1 BRAS#1

Jane’s Stage 2 Jane’s Stage 1

UE#3Int UE#3 - 
ARF#2ARF#2Int ARF#2 - 

NACF*#1
Int UE#3 - 
NACF*#1

CPE#3First Mile#3DSLAM#2SBC#1 Metro Core#1

Laurie’s IP Configuration Jane’s IP Configuration

Figure 1.6: L’instance de Jane est ajoutée; ses ressources privées sont représentées en
bleu.

Ce processus peut être itéré (point 5): on peut interroger un autre utilisateur, à
condition qu’il ou elle partage des ressources soit avec Laurie, soit avec Jane. Mais, le
choix de l’utilisateur à interroger devrait dépendre de la valeur informative des nou-
velles observations pour localiser la ressource défectueuse qui a causé le problème de
Laurie. Si nous choisissons d’interroger Alice, qui a plus de ressources en commun
avec Laurie qu’avec Jane, le réseau Bayésien actuel doit encore être étendu pour in-
corporer l’instance, du modèle générique de configuration IP, relative à Alice. La Fig-
ure 1.7 montre le réseau Bayésien étendu (les ressources privées de Jane n’ont pas
été montrées). Supposons que la configuration IP d’Alice est � up �, c’est-à-dire
fonctionne correctement. Cette observation implique que toutes les ressources que
Laurie partage avec Alice fonctionnent bien. Un fois de plus, dans l’instance de Lau-
rie, l’ensemble des ressources défectueuses possibles est réduit au sous-ensemble des
ressources qui ne sont pas partagées avec Alice ou Jane. Par contre, supposons que la
configuration IP pour Alice est � down �. Cette observation augmente notre certitude
dans l’état � down � pour les ressources que Laurie partage avec Alice et non avec
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Jane. L’explication de la panne observée chez Laurie se trouve probablement parmi ces
ressources partagées.

Laurie’s Stage 1 Laurie’s Stage 2

UE#1 Int UE#1 - 
ARF#1 ARF#1 Int ARF#1 - 

NACF*#1 NACF*#1 Int UE#1 - 
NACF*#1

Int NACF*#1 - 
CLF*#1 CLF*#1

CPE#1 First Mile#1 DSLAM#1 Aggregation#1 BRAS#1

Alice’s Stage 2 Alice’s Stage 1

UE#2Int UE#2 - 
ARF#1

Int UE#2 - 
NACF*#1

CPE#3First Mile#3SBC#1 Metro Core#1

Laurie’s IP Configuration Alice’s IP Configuration

Figure 1.7: L’instance du réseau Bayésien relative à Alice est ajoutée; ses ressources
privées sont représentées en vert. Les ressources privées de Jane ne sont pas montrées.

1.5 Raisonnement avec les réseaux Bayésiens génériques

Les sections précédentes ont montré comment les ressources réseau dépendent les unes
des autres, formant un grand graphe de dépendances. Ce graphe est modélisé comme
un réseau Bayésien où plusieurs parties sont isomorphes, c’est-à-dire que ce graphe
est obtenu en connectant des fragments qui sont des copies de modèles génériques.
Dans cette section, nous formalisons la construction du réseau Bayésien et expliquons
comment réaliser l’inférence au-dessus de ce réseau, en explorant seulement la portion
du réseau Bayésien qui est la plus informative vis-à-vis d’une requête de diagnostic
donné.

Formalisation

Définition 1.1 Un réseau Bayésien X = (V,E,PX) est formé d’un graphe orienté
acyclique G = (V,E), avec V l’ensemble des sommets, E ⊆ V × V l’ensemble des arcs,
et une collection de variables aléatoires (Xv)v∈V indexées par V avec une distribution
de probabilité PX . En notant •v = {u ∈ V : (u, v) ∈ E} les parents du nœud v ∈ V
dans le graphe (V,E), la distribution de X s’exprime comme suit: PX = ⊗v∈V PXv |X•v ,
où XU = (Xu, u ∈ U) représente un vecteur de variable aléatoires, U ⊆ V .

Comme c’est le cas habituellement, un morphisme φ : G1 → G2 entre graphes
orientés acycliques Gi = (Vi, Ei) est une fonction partielle de V1 vers V2 préservant les
arcs: ∀u, v ∈ Dom(φ) = V ′

1 ⊆ V1, (u, v) ∈ E1 ⇔ (φ(u), φ(v)) ∈ E2. φ est appelée
insertion of G2 dans G1 si et seulement si φ restreint à son domaine est bijective,
i.e. φ|V ′

1
est un isomorphisme entre G1|V ′

1
= (V ′

1 , E1 ∩ V ′
1 × V ′

1) et G2.

Définition 1.2 Un réseau Bayésien générique est un ensemble fini de réseaux Bayésiens
ordinaires (W k)1≤k≤K , où chaque réseau Bayésien W k = (Vk, Ek,PWk) est aussi ap-
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pelé un pattern. Une instance X = (V,E,PX , (φk,i)k≤K, i∈Ik) de ce réseau Bayésien
générique est un réseau Bayésien standard (V,E,PX) où

1. chaque φk,i est une insertion du pattern (Vk, Ek) dans (V,E), et le graphe orienté
acyclique (V,E) est couvert par de telles instances de pattern: V = ∪k,iDom(φk,i),
∀(u, v) ∈ E, ∃φk,i : u, v ∈ Dom(φk,i).

2. la probabilité PX est héritée des patterns Wk à travers les insertion-morphismes (φk,i)k≤K, i∈Ik :
∀v ∈ V , on a

a) si •v = ∅, alors ∀k, i : φk,i(v) = u ⇒ PXv ≡ PWk
u

b) si •v 6= ∅, alors ∀k, i : φk,i(v) = u, •v∩Dom(φk,i) 6= ∅ ⇒ •v ⊆ Dom(φk,i), PXv |X•v ≡
PWk

u |Wk
•u

En d’autres termes, pour construire X on prend plusieurs copies de différents patterns
W k, et on les agrège en partageant certaines variables aléatoires. Pour assurer la
cohérence de cette construction, chaque variable Xv appartenant à différentes instances
de pattern doit être définie par la même probabilité conditionnelle. La Figure 1.8 donne
un exemple d’un réseau Bayésien générique avec un seul pattern de cinq variables, et
une instance de ce réseau Bayésien générique avec six copies du pattern se chevauchant
de différentes façons. La localisation de pannes dans une instance de réseau Bayésien

s

E

A B C

D

X

Figure 1.8: Un réseau Bayésien générique (à gauche) avec un pattern unique, et une
instance de ce réseau (à droite) avec six instances de ce pattern se chevauchant.

générique peut être traduite en un problème d’inférence classique de la façon suivante.
Supposons qu’une variable, par exemple Xs dans la Figure 1.8, est déclarée/observée
comme défectueuse. Cette ressource Xs dépend d’autres ressources, à savoir X••s où
••s désigne tous les ancêtres du nœud s. Soit la panne de Xs est spontanée, soit,
elle résulte d’un pattern de propagation de pannes dans X••s. L’objectif est donc
d’estimer la valeur de XZ , avec Z = ••s ∪ {s} (en gris dans la Figure 1.8). A défaut
on pourrait construire une localisateur de cause primaire L, comme une fonction de
XZ qui contraint la présence d’une unique cause primaire au sein de XZ . L’objectif est
alors d’estimer la valeur de L.

Il existe des variables observables au sein de (ou directement attachées à) de XZ ,
en particulier l’observation indiquant la valeur défectueuse de Xs. Désignons par
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Y0 = y0 ce vecteur observé. La loi conditionnelle PXZ |Y0=y0 donne une première in-
formation de ce qui a causé la panne de Xs: par maximum de vraisemblance, on
obtient une explication (c’est-à-dire un schéma de propagation de pannes), la valeur
X̂Z = arg maxx PXZ |Y0=y0(x). On peut évaluer à quel point cette explication est fiable
en calculant l’entropie conditionnelle de XZ étant donné Y0 = y0 :

H(XZ |Y0 = y0) =
∑
x

−PXZ |Y0=y0(x) · log2 PXZ |Y0=y0(x)

Une grande valeur d’entropie conditionnelle signifie que les observations Y0 = y0 sont
insuffisantes pour choisir parmi plusieurs explications. On peut par conséquent chercher
à collecter plus d’observations dans le but d’obtenir plus d’information sur XZ , c’est-à-
dire réduire l’entropie conditionnelle. Plus cette entropie tend vers zéro, plus l’estimation
de XZ est fiable. L’idée est d’explorer une zone plus large de l’instance du réseau
Bayésien dans le but de collecter plus d’observations, comme l’illustre l’exemple de
la section précédente. A partir de l’ensemble de nœuds explorés U0 = Z, on passe à
U1 ⊇ U0 tel que U1 soit fermé pour la relation d’ancêtre: •U1 ⊆ U1. Cela définit un
nouvel ensemble d’observations Y1 = y1, à partir duquel X̂Z peut être estimé à condi-
tion que H(XZ |Y0 = y0, Y1 = y1) soit suffisamment faible. Sinon, on poursuit avec une
autre extension.

S’agissant de la Figure 1.8, on peut étendre la partie explorée de l’instance du
réseau Bayésien pour capturer des observations soit dans l’instance de pattern verte,
ou dans celle de couleur violet. Désignons par Y1 et Y2 ces deux ensembles possibles
d’observations. L’ensemble le plus informatif est obtenu en comparant H(XZ |Y0 =
y0, Y1) à H(XZ |Y0 = y0, Y2): la valeur la plus faible indique l’ensemble le plus informatif
en moyenne. Cette valeur est calculée au préalable, sans interroger/tester la valeur
effective de l’observable Yi sélectionnée. Supposons que Y1 est la plus prometteuse.
Cela définit une nouvelle zone U1 prise en compte dans l’instance du réseau Bayésien,
où on peut collecter la valeur observée Y1 = y1. Après une inférence classique, on obtient
la distribution à postériori PXZ |Y0=y0,Y1=y1 et par conséquent l’entropie conditionnelle
H(XZ |Y0 = y0, Y1 = y1). Notons que H(XZ |Y0 = y0, Y1 = y1) peut en fait être plus
petit ou plus grand que la valeur moyenne H(XZ |Y0 = y0, Y1) utilisée pour déterminer
l’observation la plus prometteuse.

L’introduction de nouvelles mesures se poursuit soit jusqu’à ce que l’entropie con-
ditionnelle devienne suffisamment faible, soit jusqu’à ce qu’il n’y ait plus d’observation
disponible.

1.6 Résultats

Pour démontrer la pertinence de la stratégie d’exploration ci-dessus, nous avons réalisé
des tests sur une grande instance de réseau Bayésien générique en forme d’arbre.
L’unique pattern correspond à celui de la Figure 1.8 où les variables XD et XE sont
observables. L’instance est illustrée à la Figure 1.9, où chaque sommet représente
une instance du pattern (donc 5 variables). Deux instances de patterns connectées se
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chevauchent en partageant 1, 2 ou 3 des variables parmi les nœuds {A,B,C}, ce qui se
reflète par l’épaisseur de l’arrête connectant ces patterns. Dans l’instance de pattern
X1, les variables X1,A, X1,B, X1,C sont des variables binaires uniformes indépendantes.
Dans tous les autres patterns Xi, i > 1, les variables Xi,A, Xi,B ou Xi,C nouvellement
crées ont une distribution (p, 1−p) avec p = 0.9, dans le but de garantir une corrélation
à longue portée entre les instances de pattern présentées à la Figure 1.9. Dans le pat-
tern Xi, les observations Yi correspondent aux variables Xi,D, Xi,E . D est plus sensible
à une panne de B qu’à une panne de A. De même, E réagit plus à C qu’à B. Pour les
deux capteurs, le taux de faux positif et le taux de faux négatif est de 5%. L’expérience
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Figure 1.9: Une instance de réseau Bayésien générique avec 22 instances de pattern.
L’épaisseur de la ligne reliant deux instances reflète le nombre de variables partagées.
Pour estimer le pattern central X1, les observations sont introduites par zones, en
commençant par la zone la plus foncée et en poursuivant vers les zones plus pales.

consiste à tirer un échantillon aléatoire du processus décrit par cette instance de réseau
Bayésien générique, et à calculer la distribution conditionnelle PX1|YU=yU du pattern
central étant donné un ensemble de mesures croissant U . Cet ensemble de mesures
part de U = {1} jusqu’à U = {1, 2, ..., 22}. Entre temps, la mesure la plus informative
est incorporée à chaque étape. Pour chaque échantillon, l’évolution de H(X1|YU = yU )
a été calculée. L’expérience a été menée un millier de fois. En moyenne, on observe
que H(X1|YU = yU ) décroit (Figure 1.10) et converge rapidement. Cependant, pour
un échantillon donné, cette courbe peut ne pas décroissante, en effet, même si une
observable est très informative en moyenne, la valeur réelle observée peut mener à une
révision des hypothèses courantes, par conséquent à une augmentation temporaire de
l’incertitude. Autre détail intéressant, nous avons réalisé des statistiques de rang sur
la façon dont les mesures sont introduites. En moyenne, le meilleur ordre s’avère être
1, 3, 4, 2, 7, 10, 8, 9, 21, 22, 17, 6, 16, 5, 13, 15, 20, 18, 19, 12, 14, 11, ce qui est reflété
par les zones grandissantes autour de X1 dans la Figure 1.9. Les patterns fortement
couplés ont tendance à être favorisés, mais cela n’est pas toujours le cas.

Nous avons également démontré la pertinence de cette approche pour résoudre un
scénario typique de panne dans une architecture IMS. Ce scénario ainsi que les résultats
correspondants sont décrits au chapitre 8 de cette thèse.
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Figure 1.10: Evolution en moyenne de l’entropie conditionnelle du pattern central X1

au fur et à mesure que le nombre d’observations augmente.

1.7 Conclusion

Les techniques basées modèle sont la clé pour gérer de façon ambitieuse et autonome
les pannes survenant dans un réseau. Elles s’adaptent à des instances réseau, offrent
un large éventail de techniques de raisonnement, suggèrent des méthodes pour analyser
l’impact des pannes et peuvent aller plus loin en suggérant des mesures de réparation.
Leur talon d’Achille réside dans l’obtention d’un modèle précis du réseau géré. Nous
avons proposé un nouveau concept: l’auto-modélisation qui réduit la difficulté de la
construction du modèle à la définition d’un nombre limité de patterns génériques du
modèle, en exploitant la connaissance disponible dans les normes. Le modèle réel
correspondant à une instance réseau donnée est ensuite construit en connectant autant
de copies (c’est-à-dire d’instances) de ces patterns génériques que nécessaire. Tout cela,
dans le but de reproduire la structure de dépendances entre les ressources déployées
dans cette instance de réseau.

Nous avons proposé un formalisme basé sur la notion de réseau Bayésien générique:
un réseau Bayésien composé d’un certain nombre de copies de patterns. Même si
l’instance du modèle est large, on a seulement besoin d’explorer la partie de cette in-
stance nécessaire pour expliquer/diagnostiquer un disfonctionnement observé. En effet
les variables trop éloignées transportent peu d’information au sujet d’un dysfonction-
nement observé. Cependant, ce formalisme a besoin d’être complété pour capturer la
construction hiérarchique intrinsèque aux réseaux, c’est-à-dire le fait qu’un segment
réseau se décompose généralement en une structure de segments réseaux plus petits,
et cela, de façon récursive. De tels réseaux Bayésiens génériques et multi-résolution
n’existent pas encore, mais semblent être cruciaux pour la gestion des réseaux. Une
autre direction de recherche serait le traitement simultané et/ou successif de plusieurs
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requêtes de diagnostic. Une autre direction encore consisterait à réaliser ce raison-
nement de façon distribuée pour capturer le fait que les segments réseau sont généralement
gérés par différentes unités opérationnelles. Enfin, le calcul d’impact des pannes, peut
être réalisé en évaluant l’impact d’une panne donnée sur toutes les variables d’un certain
type dans un pattern générique donné du réseau Bayésien.
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2.1 Scope

Telecom operators are going through a technological and business revolution. In ad-
dition to existing services such as telephony or leased line services, spread of the In-
ternet, the Internet Protocol (IP) phone, and new communications services like IPTV
are making great progress with the development of digital subscriber lines (DSL) and
high-speed communications technologies like Fiber-to-the-home (FTTH). Furthermore,
with the deployment of Next Generation Networks (NGNs), development of still newer
services is anticipated. Communications networks developed over the last two decades
have profoundly changed the way we carry out our everyday lives—how we exchange
information, engage in commerce, form relationships, entertain ourselves, protect our-
selves, create art, learn, and work. The emerging world is pervasive and strives towards
integrating people, technology, environment and knowledge. This emerging vision sets
the users at the core of the networks. From passive end-points, they became perma-
nent active components of layered and meshed networks and sources of information
transferred or accessed worldwide.

Besides these technology and usage revolutions, a change in the rules of the game
and in regulations have also led to a mutation in the value chain. Competition, online
service and content providers, the apparent free access and use of services, and ad-
vertising dispatched over the networks, etc., have created new businesses and business
models. This context has incited operators (but also suppliers and others actors) to
explore new territories at the boundary of their core business in order to follow the
value, the end customer.

At the technical level, historical bottlenecks disappear. Broadband fixed and mobile
technologies are now implemented on subscriber connection and are today providing
exceptional opportunities for Telecom operators to transform their business and their
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infrastructures. These services require closer network and IT, bringing together fixed
and mobile infrastructures in order to get new innovative services and cost savings
through common service enablers. To reach this goal, network operators have studied
and set-up multimedia broadband infrastructures based on a completely new frame-
work. IP has become the universal and common transport protocol for any type of
digitalized information. New architecture principles, like the Next Generation Network
(NGN) principle of separation of transport and control functions and the IP Multi-
media Subsytem (IMS) principle of common control for mobile and fixed services, are
enabling control and transport of data flows of any nature and origin. This includes the
more stringent ones, i.e., those coming from conversational or real-time TV services.

One can notice new access characteristics: the increasing symmetry of user flows
on fixed services, from xDSL over copper to optics, and on mobile services, from Uni-
versal Mobile Telecommunications Services (UMTS) to 4th Generation (4G) access as
well as widespread implementation of always-on connected user equipment. This tech-
nical revolution provides a great opportunity for Telecom operators to share network
infrastructures between fixed, mobile, Internet, and content services. It provides the
opportunity for separation from legacy networks (PSTN, X25, PDH), thus contributing
to medium term cost savings and complexity reduction, even though mass migrations
from legacy to new technologies may be costly, painful, and risky. Triple play is voice,
Internet, and TV services access. Quadruple play adds mobile services. Tomorrow
there will be multiple play services. These are made possible through a single generic
broadband access. This is the challenge.

Besides proposing higher access throughputs at home, on the move, and at the
office, Telecom operators also have a fundamental imperative: to bring a continuous
flow of innovation into their networks, services, and IS. This will lead, for instance, to
enhancements in content offers (HDTV, 3DTV, mobile TV, etc.) and the daily oper-
ation of services, such as health and security. It will support the development of user
generated content and social networks to insure better experiences on existing services
(VoIP, TV, VoD, etc.) and provide, for a given service, continuity and fluidity abilities
on different devices (multi-screen strategy) and access (fixed and mobile). This profu-
sion of technologies and usage has resulted in a tremendous amount of complexity. The
need to simplify has become more than evident. This is the reason why convergence,
mutualization, architectural efforts and so on, are essential tools to obtain simplicity
for service usage as well as service and network operation.

In summary, Telecom operators have a number of challenges to face.

The commercial challenge is that historical business models, based mainly on voice
transport, are no longer sustainable. In a world of abundance, protecting a viable
business model by driving a broadband-everywhere strategy, while taking advantage of
assets and traditional strength, is an essential issue. This includes the use of capabilities
such as billing (useful for billing third-party services), business intelligence (profiling, lo-
calization, and so on) based on knowledge of their customers, Quality-of-Service (QoS),
and customer experience. Historical know-how and lessons are important, pulled from
dozens of years of real-time applications delivered to millions of customers.

The technical challenge is to select the best-of-breed of new technologies whose
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arrival rate has never been so rapid. The technical challenge is to maintain agility
and secure robustness and scalability for new innovative services in a complete IP-
based world of transformation. Agility means the ability to evolve service platforms
and IT to support faster service rollouts. To secure robustness and scalability means
the ability for network and IT architecture and design and implementation to face the
growth of traffic and number of customers generated by new services. And last, but not
least, to improve customer experience. Triple play/quadruple play is currently under
deployment in conjunction with a “broadband everywhere” strategy in fixed and mobile
domains (FTTx, HSPA, LTE, WIMAX, etc.). This is going to have deep consequences
all along the technical/network chain, from the customer premises (home network),
network access, backhaul and aggregation, transport backbone, service and network
control, service platform, and finally to IT.

The technical challenge cannot be successfully achieved if network and IT operations
challenges, e.g., new operations models and processes, are not addressed and achieved.
The key differentiator will be the ability to ensure, day-after-day, the QoS and competi-
tive cost expected by customers. This will have the ability to hide (from customers) the
overall complexity. A number of quality problems with triple and quadruple play exist,
such as dropped VoIP calls, bad audio or video quality, long IPTV channel zapping
delay, and others. In the end, what matters is the quality of experience, the quality as
perceived by the customer. This challenge should be pursued while keeping operating
expenses (OPEX) under control. This is critical in triple play operation and is valid
for service provision, network operation, after sale processes, etc.

The existing network and IT architecture, methods of operation, delivery process
(commercial and technical aspects), and operational structure need to be adapted to
better fit with the characteristics of new services and business challenges. Unfortu-
nately, network and system management solutions are no more capable to deal with
the increasing complexity; they still rely on very expensive and rare human experts
to solve problems, which themselves are beyond the capacities of the experts. Many
problems also arise from these experts’ intervention, such as misconfigurations (wrong
configuration, tuning). These misconfigurations are among the most complex problems
to solve; they are very difficult both to understand and locate and therefore to fix.
Operators now understand that it is vital for them to master this increased, uncontrol-
lable operational cost (OPEX) (including the deployment cost) by deploying breaking
approaches.

The only response to this unsustainable situation is innovation in the way networks
are managed and controlled. It is necessary to develop new networks that are able to
automatically adapt their configurations to the increases and changing requirements
of end users and service providers. Soon, we’ll see drastic developments in the end
users’ services with the introduction of high-speed access networks that are either fixed
with the deployment of FTTH or wireless with LTE and WiMAX technologies. Fu-
ture networks need to be more flexible, capable of reorganizing in an autonomic way
when new types of equipment or services are introduced, reducing the need for human
intervention and consequently the associated costs. Future networks should be able to
improve their performances when needed to respond to unusual changes in the traffic
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pattern. The innovation should help to design new types of equipments, protocols, and
network architectures and even services that are able to be self-managed, to reduce
the operational burden on the operators by themselves making decisions in terms of
configuration, optimization, and the like.

If networks and services are able to exhibit some level of autonomy that will allow
them to themselves solve their problems in any context, then the operator will be able
to reduce the need for intervention by human experts and therefore reduce their oper-
ational costs (OPEX). It is time that significant progress be made in how to manage
and control these complex infrastructures at the early stage of their design. Many
initiatives have been launched to push toward innovations in this area. These initia-
tives have different names, but all converge to the emergence of a new generation of
intelligent equipment, networks, and services that are able to exhibit self-* properties.
These initiatives are variously named—for example, Autonomic Communication (AC),
Autonomic Networks (AN), Automatic Network Management (ANM), Self-Managed
Networks (SFN), Situated Networks (SN). Differences in the focus of the various ap-
proaches can explain roughly the differences in the terminology, but all of them have one
thing in common: they all seek to introduce self-adaptive capabilities in the network,
avoiding human interventions as much as possible.

2.2 Objective

We address the challenge of contributing to the realization of some self-management
properties in telecommunication networks. Our strategy to achieve this goal is to use
a dependency model describing the structure of the network, the relationships between
network components/functions, as well as their typical behaviours.

As a first step, we have looked at the maintenance of Modern Open Shortest Path
First (OSPF) routers in IP transport networks. These routers can preserve their packet
forwarding activity while they reboot. This enables maintenance operations in the
control plane with minimum impact on the data plane, such as the Graceful Restart
(GR) procedure. This of course assumes the stability of the network topology, since a
rebooting router is unable to adapt its forwarding table and may cause routing loops.
The Graceful Restart standard thus recommends to revert to a normal OSPF restart
as soon as a topological change is advertised. We propose to be less conservative and
to take full advantage of the separation between the control and forwarding functions.
This is achieved by new specific functionalities:

• the prediction of routing loops caused by a restarting router;

• the determination of the minimal number of temporary backup forwarding actions
that should be applied to prevent these loops, without reverting back to a normal
OSPF restart;

• the design of action plans to set and remove these temporary backups in order to
avoid micro-loops when the restarting router goes back to a normal functioning.
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Besides being useful for planning maintenance operations, a model of resource de-
pendencies can be used as a fault propagation model. Based on this observation, in a
second phase, we have proposed an approach to automatise the management of faults,
covering the different segments of a network, and the end-to-end services deployed over
them. This is a model-based approach addressing the two weaknesses of model-based
diagnosis namely deriving an accurate model and dealing with huge models. We pro-
pose:

• a solution called self-modeling that formulates off-line generic patterns of the
model, and identifies on-line the instances of these patterns that are deployed in
the managed network;

• an active (self-)diagnosis engine, based on a Bayesian network formalism, that
consists in reasoning on a progressively growing fragment of the network model,
relying on the self-modeling ability: more observations are collected and new tests
are performed until the faults are localized with sufficient confidence.

This active diagnosis approach is experimented to perform cross-layer and cross-segment
alarm management on an IMS network.

2.3 Thesis structure

The rest of the thesis is organized as follows.

• Chapter 3 presents the enhancements we propose to the standardized Graceful
Restart procedure. First, it illustrates the normal and graceful restarts of OSPF
and explains how routing loops can occur during a graceful restart. Then, the
notions of source and destination graphs are introduced. These graphs are central
for the detection of routing loops. Next, the severity of such routing loops is
characterized, using coloring properties of destination graphs. It is then explained
how to correct such loops by temporary reroutings. Finally, we evaluate, on a
typical network topology, the proposed enhanced OSPF GR.

• Chapter 4 reviews some of the numerous contributions to the topic of fault and
alarm management. It does not aim to be exhaustive, but rather tries to sample
the domain in order to give an overview of the techniques that were proposed and
experimented, before discussing their advantages, drawbacks and positioning the
ambition of this thesis.

• Chapter 5 starts from standard descriptions of IMS networks, and identifies the
network resources involved in such networks, their structuring and above all their
dependencies, which will be the knowledge used to diagnose malfunctions. The
main idea is that the failure of a resource is either spontaneous, or results from
the failure of a second resource that is necessary to the first one. We propose
to represent an IMS network by a dependency model of three multi-resolution
layers.
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• Chapter 6 uses object oriented paradigm to represent IMS network resources
and their relationships. The three-layer model described in the previous chapter
is generic, in the sense that it defines the different types of network resources
involved, how they depend on each other and how they interact. But the actual
network one has to manage contains many instances of these elements. This
actual network can be represented as a large collection of instances of the patterns
described in the generic model, and these instances overlap on some common
resources.

• Chapter 7 demonstrates how the resources involved in a network and its services
depend on each other, thus forming a huge dependency graph. This graph can be
modeled as a Bayesian network (BN) where many parts are isomorphic, i.e. this
graph is obtained by connecting tiles that are copies of a limited family of generic
patterns. Then, we formalize this construction of a possibly large Bayesian net-
work, and explain how to perform inference over it, by exploring only the portion
of the BN that is the most informative to a given diagnosis query. Finally, fault
localization in a Generic Bayesian Network (GBN) instance is translated into a
standard BN inference.

• Chapter 8 aims at demonstrating the relevance of the exploration strategy ex-
plained in the previous chapter. We review some standard results and definitions
related to Entropy, Relative Entropy, Mutual Information and Gain Function for
fault localization. These concepts and their properties are useful to analyse the
experimental results that will be presented.

The final part concludes this thesis and outlines directions for future work.
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OSPF (Open Shortest Path First) (Moy, 1998b,a) is a widely used link state routing
protocol in the Internet. Modern router architectures separate the data plane, and thus
the forwarding function, from the control plane, that runs the routing protocols such as
OSPF. This creates a possibility to keep forwarding packets while the control plane is
being restarted. This so-called Graceful Restart procedure has been standardized (Moy
et al., 2003) and is available in commercial routers (Juniper, 2013; Cisco, 2012). Grace-
ful Restart requires the cooperation of all routers neighboring the restarting one. Their
role is to keep up the adjacency with the restarting router as long as the topology
remains static. In case of any change in the topology, one must immediately stop the
graceful restart and return to the standard OSPF behavior, which thus fully removes
the restarting router from the topology. This intends to avoid the possible creation of
routing loops resulting in packet losses and unreachable destinations.

Such an abrupt change of behavior can be temporarily harmful to the network.
And, strictly speaking, it may not be necessary: not every topological change will
result into a routing loop, so the forwarding activity of the restarting router could be
maintained. Furthermore, even if routing loops are created, they can be temporarily
fixed. We study the possibility of such smoother changes of behavior.

Since the standardization of the graceful restart procedure, few papers have exam-
ined its practical consequences. (Ghamri-Doudane and Ciavaglia, 2010) examined how
a general reboot of all routers could be organized, taking into account that a helper
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node cannot reboot until the node it is helping has completed its own reboot. To the
best of our knowledge, however, the issue of preventing routing loops during the grace-
ful restart of OSPF routers has only been tackled by Shaikh et al. in (Shaikh et al.,
2002) and more recently in (Shaikh et al., 2006). These contributions detail necessary
conditions to the existence of routing loops, in the case of several restarting routers,
and propose to remove the restarting routers from the forwarding path as soon as these
conditions are detected. We follow a similar approach for the detection, but relies on
a necessary and sufficient condition for the existence of routing loops, in the case of
a single restarting router. The developments then go further by proposing minimal
temporary corrections to such loops, and by correcting simultaneously multiple prob-
lematic destinations. In our approach, when a routing loop is detected, only a few
nodes are informed and apply a correction, rather than broadcasting a global warning
to all nodes and returning to a standard OSPF behavior. As a result, the restarting
router is maintained in the topology for all destinations to which it is not dangerous.

The chapter is organized as follows. Section 3.1 illustrates the normal and graceful
restarts of OSPF and explains how routing loops can occur during a graceful restart.
Section 3.2 introduces the notions of source and destination graphs. These graphs are
central for the detection of routing loops (Section 3.3). Section 3.4 characterizes the
severity of such routing loops, using coloring properties of destination graphs. It then
explains in detail how to correct such loops by temporary reroutings, in the case of a
single problematic destination. Section 3.5 extends the problem to several problematic
destinations to correct simultaneously. Finally, Section 3.6 evaluates, on a typical
network topology, the proposed enhanced OSPF Graceful Restart.

3.1 Normal and Graceful restarts in OSPF

OSPF runs on a simple abstract vision of the network: a weighted and directed graph
(Figure 3.1), that we call the topological graph.

Figure 3.1: An example of OSPF network

At the core of the OSPF routing protocol is a distributed, replicated link state
database that describes the collection of routers in the domain, how they are intercon-
nected, and the quality of each link. Each router in the routing domain is responsible
for describing its local piece of the routing topology in link-state advertisements, or
LSAs. These LSAs are then reliably distributed to all the other routers in the routing
domain in a process called flooding. Taken together, the collection of LSAs generated
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by all of the routers is called the link-state database. So each node knows the full
topological graph at any time. Given the link state database, and assuming this is a
reliable description of the network state, each node/router runs Dijkstra’s algorithm to
derive the shortest paths to all other nodes. The shortest paths originating from (and
calculated by) some router R organize as a shortest-paths tree (SPT) rooted at R that
we call the source graph for router R. Figure 3.2 displays this source graph for node C
in the network of Figure 3.1. The SPT defines the routing table, associating a ‘next
hop’ to each destination: for example, at node C, packets to destinations D,F or G
will be forwarded to D.

E C D F G

B A

1 1

1
1

1 1

Figure 3.2: Shortest paths from C to all destinations (the source graph of C).

During a normal router restart, the router’s neighbors break adjacency with the
restarting one, i.e. they generate new LSAs that are flooded throughout the network
and cause all routers to update their forwarding tables in order to avoid the rebooting
node. A few minutes later, once the restart is completed, the router’s neighbors re-
establish adjacency with the rebooted one and the whole sequence of LSA floodings
and forwarding tables updates is repeated.

With a graceful restart, a router, whose control plane is about to restart and whose
forwarding plane functions normally, sends a grace LSA to its neighbors, declaring its
intention to perform a graceful restart within a specified grace period. The neighbor
nodes (known as helpers) continue to list the restarting router as fully adjacent in
their LSAs during the grace period, but only if the network topology remains static.
Once the control plane restarts, the restarting router goes through a normal adjacency
establishment procedure with all the helpers, at the end of which the restarting router
and the helpers regenerate their LSAs.

Any change in the network topology during the grace period would cause the helpers
to abort the graceful restart and generate their LSAs showing the breakdown of adja-
cency with the restarting router. Indeed, the latter is unable to adjust its forwarding
table in a timely manner when the network topology changes. Its forwarding table is
said to be frozen. Since this table may no longer be consistent with the new network
topology, routing loops can occur. Fig. 3.3 illustrates this routing loop creation for the
network of Figure 3.1, assuming link D → F fails while node C is restarting.

To prevent such routing loops, (Moy et al., 2003) takes a conservative approach
and recommends to revert to a normal OSPF restart when a change in the network
topology occurs. However, not every topological change will result into a routing loop
even if the restarting router is unable to adjust its forwarding table. This observation
underlines the need for a solution able to detect beforehand the creation of loops while
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(a) before failure of D → F
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(b) after failure of D → F

Figure 3.3: Destination graphs to F before and after failure of link D → F .

a graceful restart is in progress, and possibly to temporarily fix them, in order to avoid
the burden of several complete OSPF reconvergences and possible perturbations in the
load balancing.

3.2 Properties of routing graphs

Definition 1 The topological graph of an OSPF network is a weighted directed graph
G = (V,E,w) where the finite set V denotes vertices (or ‘nodes’ or ‘routers’), E ⊆
V × V \ {(v, v), v ∈ V } denotes the arcs (or ‘links’), and w : E → R+ is the weight (or
cost) function on links. It is assumed that any node is reachable from any other in G
(see below).

Definition 2 A path from u to v in G = (V,E,w) is a sequence of vertices p =
(v0, v1, ..., vn) of V such that v0 = u, vn = v, and each (vi, vi+1) ∈ E for 0 ≤ i < n.
When such a path p exists from u to v, v is said to be reachable from u through p,
denoted u

p
; v (or simply u; v). v is called descendant of u and u is called ancestor

of v. A circuit in G is a path such that u = v. The weight/cost of path p is the sum
of the weights/costs of its arcs: w(p) =

∑n
i=1w(vi−1, vi). The distance between u and

v is then d(u, v) = min{w(p) : u
p
; v}, and a shortest path between u and v is a path

reaching this bound.

We use two types of routing graphs in the sequel, source and destination graphs,
attached to any node of G = (V,E,w).

Definition 3 A source graph Hσ = (V,E′) is a directed graph such that every node
has a unique predecessor for E′, except a unique node σ ∈ V (the source), which has
none: ∀v ∈ V \ {σ}, |{u : (u, v) ∈ E′}| = 1 (and 0 for v = σ). Hσ is said to be correct
iff it contains no circuit. In G = (V,E,w), the source graph Gσ∗ = (V,Eσ∗) of a node
σ ∈ V is obtained by gathering consistent shortest paths from σ to all other nodes in
G: Eσ∗ ⊆ E, and ∀v ∈ V \ {σ} the unique path p such that σ

p
; v in Gσ∗ satisfies

w(p) = d(σ, v) in G.

Definition 4 A destination graph Hδ = (V,E′) is a directed graph such that every node
has a unique successor for E′, except a unique node δ ∈ V (the destination), which has
none: ∀u ∈ V \ {δ}, |{v : (u, v) ∈ E′}| = 1 (and 0 for u = δ). Hδ is said to be correct
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iff it contains no circuit. In G = (V,E,w), the destination graph G∗δ = (V,E∗δ ) of a
node δ ∈ V is obtained by gathering consistent shortest paths to δ from all other nodes
in G: E∗δ ⊆ E, and ∀u ∈ V \ {δ} the unique path p such that u

p
; δ in G∗δ satisfies

w(p) = d(u, δ) in G.

Source and destination graphs naturally appear in OSPF: by connecting the for-
warding rules to destination δ in all nodes of topology G, one gets a destination graph
Gδ. Ideally, each Gδ coincides with the true G∗δ if all nodes have an accurate and up-to-
date knowledge about G. However, during a graceful restart, the Gδ in use may differ
from the expected G∗δ , due to frozen forwarding tables, and thus may contain circuits.
Similarly, one could build the source graphs Gσ actually used by OSPF for topology
G: for each source σ, u is the unique predecessor of v if a packet originating from σ
and addressed to v reaches it through u. Ideally again, Gσ should coincide with Gσ∗,
but this may not hold during a graceful restart. Observe that source and destination
graphs are dual notions: inverting the orientation of edges in a source graph yields a
destination graph.

As destination graphs encode the effective forwarding rules applied by OSPF, they
are instrumental in the prediction of routing loops. These simple objects have numerous
properties that can help for this task.

Definition 5 In a directed graph G = (V,E), the ‘connected to’ relation on vertices,
denoted by u ∼ v, is defined as the equivalence relation on V generated by u;v ⇒ u ∼ v
(this amounts to dropping the orientation of edges). A connected component of G is a
subgraph G|V ′ = (V ′, E|V ′×V ′) of G such that V ′ ⊆ V is an equivalence class of vertices
for ∼.

Proposition 1 Let Hδ be a destination graph, each connected component of Hδ either
contains δ or contains a unique circuit. Therefore, if Hδ contains p circuits, then it
contains p+ 1 connected components.

Proof: If a connected component contains two circuits, there must exist a ‘path’ re-
lating these two circuits, where the notion of path here ignores the direction of edges.
Then necessarily there exists a node on this path that has two successors, which violates
the definition of a destination graph. Then observe that in a connected component con-
taining a circuit, the number of edges is equal to the number of vertices. By definition,
the number of edges in Hδ is equal to the number of vertices minus 1. So there is
exactly one connected component in Hδ with no circuit at all. And it must contain a
vertex that has no successor, which can only be δ. �

As an example, the destination graph GF in Figure 3.3(b) contains two connected
components. All destination graphs have a similar shape, with connected components
made of a single circuit and directed trees descending towards it, plus one last tree
directed toward the destination node.
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Corollary 1 Let G∗δ = (V,E∗δ ) be the destination graph gathering the shortest paths to
δ in G = (V,E,w). Let Gδ be a perturbed version of G∗δ where k nodes have modified
their successor. Then Gδ contains at most k circuits, and k+ 1 connected components.

The perturbations above model the fact that k routers are not using the forwarding table
they should follow on topology G, but rely on an outdated one. As a consequence, if
the topology changes while k routers are operating a graceful restart, at most k routing
loops can be created for each destination δ. And as shown in Section 3.5, the same
loop can alter several destinations at a time. This suggests that few ‘problems’ should
actually appear and require fixing.

3.3 Prediction of routing loops

Let G0 = (V,E0, w0) denote the topology with which a restarting router r computed
its last forwarding table, and let Gr be the source graph of node r in this topology. In
Gr, node r has h1, ..., hK as successors, which are also helper nodes by design of the
graceful restart procedure. Let Dr(hk) = {v : hk;v in Gr} denote the descendants
of hk in Gr, 1 ≤ k ≤ K. As Gr is a correct source graph, the Dr(hk) ∪ {hk} form a
partition of V \ {r}.

Let G1 = (V,E1, w1) denote the actual network topology. We assume that the links
(r, hk) ∈ E0 are still present in E1. Let Ghk be the source graph of node hk in this new
topology, for 1 ≤ k ≤ K (Figure 3.4). Let Dhk(r) = {v : r;v in Ghk} denote the
descendants of r in Ghk (Dhk(r) contains u and all nodes below u in Figure 3.4).

Finally, for a node δ ∈ V , let Gδ be the actual destination graph to δ when all nodes
use topology G1 except r that uses topology G0.

Proposition 2 There exists a (unique) routing loop in the destination graph Gδ iff
there exists a (unique) k such that δ ∈ Dr(hk) ∩ Dhk(r).

Proof: If δ ∈ Dr(hk) ∩ Dhk(r), then node r will forward a message addressed to δ
to its neighbor hk. And similarly, hk will direct this message on a path that meets r
before δ, whence the creation of a routing loop, containing both r and its successor hk.

Conversely, a routing loop in Gδ must go through r, the only node performing
an inappropriate routing. A packet addressed to δ will leave r through some hk, so
δ ∈ Dr(hk), and hk is also on the rooting loop. Since the packet will ultimately come
back to r before reaching its destination, one must have that r is on the unique path
from hk to δ in Ghk , so δ ∈ Dhk(r).

The unicity of the routing loop, when it exists, comes from Corollary 1. And the
unicity of the helper node hk revealing this loop comes from the fact that the Dr(hk)
are disjoint. �
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Figure 3.4: The expected source graph Ghk of hk, and its misbehavior for packets addressed to δ.
Instead of correctly forwarding such packets to u, node r selects a wrong neighbor and actually send
them back to hk, thus creating a circuit.

This defines a simple practical test for discovering destinations δ at risk, i.e. un-
reachable due to the presence of a routing loop. All neighbors of r are advertised that
r initiates a graceful restart, and they act as helpers, so they can store the frozen Gr

used by r all along the grace period. Each successor hk of r can then determine and
announce the contents of Dr(hk) ∩ Dhk(r) if the topology changes.

3.4 Correction of a routing loop

Let Gδ = (V,Eδ) be a destination graph over topology G = (V,E,w), so Eδ ⊆ E. If
Gδ is correct (i.e. contains no circuit), it can reliably be used to forward packets to δ,
but it may not use the shortest paths of G. Assume that k routers r1, ..., rk ∈ V are
performing a graceful restart in G. As seen above, the actual Gδ used for forwarding
packets to δ differs from the optimal G∗δ by at most k arcs: the arcs originating from
routers r1, ..., rk (assuming they differ from δ) can point to any node in V . Therefore
Gδ contains at most k circuits, that each contain at least one node of {r1, ..., rk}.
Given that these nodes cannot change their forwarding rule, is it possible to modify
the routing choices of other nodes to turn Gδ into a correct destination graph ? What
is the minimal number of nodes that should be rerouted, and where are they ?

3.4.1 Severity Degree of Routing Loops

Definition 6 Let Gδ = (V,Eδ) and G′δ = (V,E′δ) be two destination graphs in G such
that r has the same successor in Gδ and in G′δ. Let us denote by C(Gδ, G

′
δ) = |Eδ\E′δ| =
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|E′δ \Eδ| the number of arcs that distinguish them. The color of node v in Gδ is defined
as Cδ(v) = min{C(Gδ, G

′
δ) : v;δ in G′δ}.

So Cδ(v) is the minimal number of reroutings that should take place in Gδ in order
to correctly forward packets from v to destination δ. Note that Cδ(v) can be infinite if
no correction is possible, and Cδ(v) = 0 iff v is in the connected component of Gδ that
contains δ.

Proposition 3 Let Gδ be a destination graph in topology G. If u;v in Gδ, then
Cδ(u) ≤ Cδ(v). And if the arc (u, v) exists in G, then Cδ(u) ≤ Cδ(v) + 1.

Proof: Assume u
p
; v in Gδ (path p is unique). Let G′δ be obtained by rerouting

Cδ(v) vertices of Gδ, in such a way that v
p′
; δ in G′δ (again path p′ is unique in G′δ).

If no vertex of path p has been rerouted, then path p still exists in G′δ, and connecting
it to p′ yields a path from u to δ, so Cδ(u) ≤ Cδ(v). Otherwise, some nodes of path p
have been rerouted in G′δ, so p does not exist anymore in G′δ. This means that path p′

uses nodes of path p, so the path originated at u in G′δ goes to δ, and Cδ(u) ≤ Cδ(v).

For the second part, consider G′δ defined above, where v
p′
; δ. If path p′ does not

go through vertex u, let G′′δ be obtained by rerouting u to v in G′δ. Then u;δ in G′′δ ,
so Cδ(u) ≤ Cδ(v) + 1. If path p′ goes through u, then u;δ in G′δ, so Cδ(u) ≤ Cδ(v). �

As a consequence, the color of nodes in each connected component of Gδ augments
as one progresses towards the circuit, and it is constant on this circuit. There cannot
be gaps in series of colors: vertices of color n exist only if there exist vertices of color
n− 1.

Corollary 2 Gδ contains a circuit which color is infinite iff this routing loop cannot
be corrected. The color of a circuit in Gδ is the number of reroutings that is necessary
to redirect to δ all nodes of the connected component containing this circuit. If Gδ
contains a unique circuit, its color is the minimal (and sufficient) number of reroutings
to transform Gδ into a correct destination graph.

Figure 3.5 illustrates the vertex coloring on the destination graph GF , for our run-
ning example. Vertices E,F,G are located in the same connected component as the
destination F , therefore their color is 0 (displayed in green). One has CF (A) = 1 (yel-
low), because edge (A,E) exists in topology G, and CF (E) = 0. A can easily reach F
by rerouting packets through E instead of B in GF . Finally, vertices B,C,D in the
circuit all have color 2 (red). C is the frozen restarting router, so it cannot be rerouted,
and neither B nor D could be directly rerouted to E,F or G (recall that link (D,F )
failed). However, B can be rerouted to A, and the latter to E. These two modifications
are sufficient to guarantee that all packets addressed to F actually reach it.

Proposition 3 reveals a simple coloring algorithm over Gδ. Nodes of color 0 are
easily obtained by back-tracking from δ. For any remaining (uncolored) node u, if arc
(u, v) exists in G and v has color 0, then u takes color 1. And one can recover all nodes
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Figure 3.5: Vertex colors on the destination graph GF : green=0, yellow=1, red=2.

of color 1 on Gδ by backtracking from such u nodes. Similarly, nodes of color 2 are the
uncolored predecessors u in G of a node v of color 1, or the uncolored ancestors in Gδ
of such u nodes. And so on, until no more coloring rule is applicable. The remaining
uncolored nodes take ∞ as color. This algorithm has a linear complexity, similar to
Dijkstra’s algorithm, and it can also be distributed. It allows one to decide if routing
loops can be corrected.

3.4.2 Correction of a Routing Loop

The remainder of the chapter focuses on the case of a single restarting router in G.
Therefore, if destination graph Gδ is incorrect, there is a single routing loop to repair.

Corollary 3 Let the incorrect destination graph Gδ contain a unique circuit p of color
n. At least one node of this circuit (different from the frozen node r) can be rerouted
to a node of color n− 1. Performing this rerouting yields the destination graph G′δ that
again contains a unique circuit p′, of color n− 1.

This result derives simply again from Proposition 3. Its interest is to reveal a simple
procedure to determine the n reroutings that can turn Gδ into a correct destination
graph. Figure 3.6 illustrates these two steps for the GF in Figure 3.5: B is first rerouted
from C to A, then A is rerouted from B to E.
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(a) New vertex colors once B is rerouted from
C to A.
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A B D

C
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(b) New vertex colors once A is also rerouted
from B to E.

Figure 3.6: Successive reroutings to correct destination graph GF .

In summary, when a topological change occurring during a (single) graceful restart
creates a routing loop for some destination δ, a simple procedure can determine the
minimal number n of reroutings that could correct it, and the location of these rerout-
ings. There generally exist several such temporary ‘patches’ of n reroutings, and one
could wonder which one is the most efficient in terms of average cost, if link weights
are taken into account. We conjecture that this problem is NP hard. One may wonder
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about situations where the color of the circuit is infinite. In that case, there is no so-
lution to reroute messages to δ around r. Therefore a standard restart of OSPF would
also be useless to resolve the problem.

3.4.3 Scheduling of Backup Routings

Assume one has determined a sequence s1, ..., sn of vertices that should be rerouted to
correct a destination graph Gδ, where the index i in si represents the color Cδ(si). In
which ordering should these temporary reroutings be performed ? One possibility is
illustrated in Figure 3.6, where s2 = B is rerouted before s1 = A in GF . The reverse
order is illustrated in Figure 3.7. As one can notice, this second option offers a better
transient mode: nodes are progressively rerouted correctly to δ = F , whereas in the
previous option all nodes suffer from the loop until the last rerouting is performed.

F G

E

A B D

C

15

1

1

1

21

(a) New vertex colors in GF once A is rerouted
from B to E.
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(b) New vertex colors in GF once B is then
rerouted from C to A.

Figure 3.7: Successive reroutings to correct destination graph GF .

Proposition 4 Let s1, ..., sn be a minimal sequence of vertices that should be rerouted
to correct Gδ, where Cδ(si) = i in Gδ, and n = Cδ(r). Rerouting only si to its ap-
propriate new successor yields G′δ where the new node colors satisfy C ′δ(s) = Cδ(s) if
Cδ(s) < i, and C ′δ(s) = Cδ(s)− 1 if Cδ(s) ≥ i.

Proof: Each si will be rerouted toward a vertex of color i−1 in Gδ, and in particular
to an ancestor of si−1. Performing this rerouting decreases by one the color of si in
G′δ, since it is now a predecessor of a node of color i− 1. Similarly, all nodes that were
at distance j ≥ i now have one less rerouting to perform to reach δ. The rerouting of
si cannot help node of color strictly lower than i, since by definition of the color they
have a shorter path to δ in number of reroutings. �

A consequence of this result is that one should start rerouting nodes in the order
s1, ..., sn, in order to maximize the color decrease in Gδ, i.e. to maximize at each step
the number of nodes that can correctly reach δ.

Assume now that the restarting router r has finished its graceful restart. Can it
safely switch to its new forwarding table (corresponding to the actual topology G1) ?
And how should one remove the temporary rerouting patches ? Figure 3.8 illustrates
the return in function of r = C, now correctly connected to E, and a removal of
the rerouting patches following order s1 = A, s2 = B. As one can notice, this may
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recreate forwarding loops, whereas the converse ordering is safe. A similar phenemenon
was already observed in standard OSPF convergence, and led to the developement of
ordered updates of forwarding tables, known as OFIB (Francois and Bonaventure, 2005,
2007; Hock et al., 2011).
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(a) C recovers its normal routing to F through
E in G′δ.
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(b) Vertex colors once A recovers its normal
route through B in G′F .
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(c) Vertex colors once B then recovers its nor-
mal route through C in G′F .

Figure 3.8: Successive removals of the temporary reroutings into the corrected destination graph G′F ,
after node C returns to function.

Proposition 5 Let s1, ..., sn be a minimal sequence of vertices that have been rerouted
to correct the loop created by r in Gδ, where Cδ(si) = i in Gδ, and n = Cδ(r). Once r
returns to function, it can safely switch to its expected forwarding table without recre-
ating a loop. And removing the temporary reroutings starting from sn to finish by s1

guarantees that no transient routing loop appears.

Proof: Consider Gδ, before rerouting s1, ..., sn, and G′δ its corrected version after
s1, ..., sn have been rerouted. Before correction, Gδ contains a unique circuit, due
to the erroneous routing of r, and nodes s1, ..., sn are ancestors of this circuit. The
second connected component of Gδ is a directed tree where each node has a path to
δ. Rerouting r to its correct (expected) neighbor for topology G1 and destination δ
would turn Gδ into the correct and expected destination tree to δ for topology G1.
Therefore the correct successor of r cannot be in the connected component containing
the circuit (otherwise packets would come back to r), and is necessarily in the connected
component containing δ. Performing this rerouting of r in G′δ is thus harmless: it
simply establishes a more direct path to δ for ancestors of r (see Figure 3.8(a), with
r = C, s1 = A, s2 = B, δ = F ).

For the second statement, consider again Gδ, before reroutings of s1, ..., sn. Assume
only nodes s1, ..., sk, k < n are rerouted. This yields a new destination graph G′δ,k,
which remains incorrect because it still contains a loop going through r, but where
all node colors have decreased by k, by Prop. 4. In particular, nodes that still have
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a strictly positive color in G′δ,k have r as a descendant, i.e. their outgoing path is
directed towards the remaining circuit (See Figure 3.7(a) for an example of G′δ,1, with
r = C, s1 = A, s2 = B and δ = F ). Of course, G′δ,n coincides with the corrected G′δ
mentioned above. Consider now G′δ,k. If one reroutes r to its correct neighbor for
topology G1 and destination δ, then one gets a new destination graph G′′δ,k where the
circuit has vanished (all color nodes go down to 0). To conclude, observe that this
correct destination graph G′′δ,k can be obtained by starting from G′δ, rerouting r to its
correct successor, and by reassigning to sk+1, ..., sn their original successors in Gδ. In
other words, removing the rerouting patches starting from sn and terminating by s1

does not create routing loops. However, selecting a different order can create loops,
as proved by Figure 3.8(b) where the patch at s1 = A was removed before the one at
s2 = B. �

3.5 Correction of multiple routing loops

Assuming a single router r has a frozen forwarding table while the network topology
evolves, we have shown how to detect a routing loop for some destination and how to
correct it with minimal effort. This leaves open the burden of fixing all problematic
destinations, which we address now. The idea is that fixing a problematic destination
may help resolving others. Consider again the setting of Section 3.3, where all nodes
established their forwarding table according to topology G1 excepted node r, which
used topology G0. We rely on the criterion of Proposition 2.

Proposition 6 Let δ1, δ2 be two destinations in Dr(hk) ∩ Dhk(r) where hk is one of
the successors of r in its source graph Gr. Consider the source graph Ghk of node hk
(in topology G1). If δ1;δ2 in Ghk , then the routing loop to δ1 and to δ2 goes through
the same nodes. The node reroutings that correct the destination graph Gδ1 can be used
to correct as well Gδ2 (see Figure 3.9).

Proof: As δ1, δ2 are in Dr(hk), their packets are forwarded to hk when they reach r.
Consider the unique path relating hk to δ2 in the source graph Ghk . This path decom-
poses as the concatenation of three segments p0 · p1 · p2 where path p0 relates hk to r,
path p1 relates r to δ1, and path p2 relates δ1 to δ2. The path p0 · p1 from hk to δ1

goes through r, so the (unique) routing loop to δ1 in the destination graph Gδ1 to δ1 is
defined by arc (r, hk) followed by path p0. It is thus the same routing loop as the one
appearing in Gδ2 to δ2.

To correct the routing loop to δ1, one must reroute at least one node on segment
p0 (excepted r itself), and possibly other nodes elsewhere in Gδ1 . After this correction
(see Section 3.4), Cδ1(r) nodes have changed their successor for destination δ1. Let G′δ1
be the corrected destination graph to δ1, and p̄ the new path from hk to δ1 in G′δ1 . Two
situations can occur. If p̄1 uses no node of path p2, then no node along path p2 changed
their rerouting to help hk reach δ1, therefore in the new source graph of hk, G

hk ′, path
p2 relating δ1 to δ2 of Ghk has been preserved. Therefore the concatenation of paths
p̄1 ·p2 relates hk to δ2. In other words, if the Cδ1(r) nodes that changed their forwarding
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rule for destination δ1 adopt the same rule for destination δ2, the forwarding circuit to
δ2 is repaired. In the second case, path p̄1 does use some node(s) of path p2 relating
δ1 to δ2 in Ghk . The remark above still holds: packets addressed to δ2 can follow the
same modified path p̄1 as those addressed to δ1, until they reach a node of path p2. In
that case they can safely follow the rest of this path down to δ2. �

This also proves that the color Cδ2(r) of the routing loop (to δ2) in Gδ2 is lower than
the color Cδ1(r) of the routing loop (to δ1) in Gδ1 . But as illustrated by the second
case discussed above, it can be strictly lower.
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Figure 3.9: Rerouting packets addressed to δ1 with a minimal number of hops in order to go around
r (and thus avoid the circuit). This rerouting path can also be (partly) used to correct the circuit on
the path to δ2 when δ1;δ2 in GHk .

3.6 Evaluation of the enhanced graceful restart

To illustrate the potential gains of the proposed enhanced graceful restart, we consider
the NSFNET (Figure 3.10(a)), a US network based on a former NSF network topology
used in many studies, e.g. (Hülsermann et al., 2004).

In the destination graph GI (Figure 3.10(b)), router L is supposed to be restarting
and thus has a frozen forwarding table. If any link in {A−B,A−C,B−D,D−K,E−
G,K −M,F − L,N − L} fails, no routing loop will occur for destination I if L keeps
its frozen routing table instead of adopting the new one expected from it. Therefore,
removing L from the forwarding path as it is recommended by the standardised graceful
restart is unnecessary. L can safely update its routing table (towards destination I) after
it completes its restart and re-establishes adjacency with its neighbors. By contrast,
graceful restart is pessimistic and demands to advertise the disconnection of L, and later
to announce its return in the topology, which incurs an extra round of flooding, routing
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Figure 3.10: Evaluation on the NSFNET network



Discussion 41

table calculations and forwarding table updates, besides some unnecessary temporary
reroutings. Our proposal can avoid this second round by detecting that no routing loop
is about to occur, even if the rebooting router does not behave exactly as expected for
some short period of time.

Now suppose that link I − J fails while router L is restarting. The new shortest
paths to destination I require that nodes J,K,M,N route their packets through L, the
latter being expected to forward them to F . Keeping L in the topology with its frozen
routing table would create the loop M → L → M . The standardized graceful restart
avoids this by removing L from the topology, which results in the destination graph
G′I (Figure 3.10(c)). Observe that J routes its traffic to I through H instead of M
and L; and K routes its traffic through D instead of N and L. Once L completes its
restart, J,K,M,N will reorient their traffic for I through L. This represents in total
six modifications in their routing tables.

With our proposal, the loop M → L → M is detected and temporarily patched,
resulting in destination graph G′′I (Figure 3.10(d)). Observe that routers K and N
are directly set to their correct final routing. Only M and J are temporarily rerouted
to patch the routing loop. Once L returns in function and updates its table, M,J
can safely adopt their final value. This represents a total of four modifications in the
routing tables of J,M,N , since two of them are directly positioned to their final value.

3.7 Discussion

This work shows that it is possible, at low complexity, to preserve the graceful restart
procedure of OSPF routers even if the topology changes during this operation. To this
end, the helper nodes of the rebooting router simply have to check if routing loops will
appear, and in that case to compute the optimal patches (temporary reroutings) for
all problematic destinations. They then ask the selected nodes to apply these patches,
and later to remove them when the rebooting router is back, all this in an appropriate
ordering. Helper nodes are also in charge of moving from one set of temporary patches
to another set, in case the topology evolves again during the reboot. This is thus a min-
imal extension to the existing graceful restart standard, which incurs smoother traffic
perturbations since no massive rerouting is involved to bypass the potentially danger-
ous router. These ideas extend to several simultaneous graceful restart operations: n
frozen routers can cause at most n loops toward some destination. However, patching
optimally these loops will require the coordination of the n sets of helper nodes. This
will be examined in a forthcoming work, together with an extensive evaluation of this
enhanced graceful restart.

Modern IP networks implement fast corrective mechanisms, as IP Fast ReRoute
(IPFRR) (Gjoka et al., 2007), that precompute bypassses for all single link or single
node failures, and then rely on ordered updates of forwarding tables (OFIB) to move
to the new routing rules computed by OSPF (Francois and Bonaventure, 2005, 2007;
Hock et al., 2011). These fast protection ideas are of course compatible with the work
presented here, provided their computations take into account the frozen routing table
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of a rebooting router, and the patches that have been applied. Notice however that they
serve a different purpose since their scope is to quickly and harmlessly isolate a faulty
or dead element, while an enhanced graceful restart aims specifically at maximally
exploiting a not yet dead element, despite its non optimal behavior.
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The last decade has witnessed a spectacular development of telecommunication
networks. They are no longer distinguished from computer networks, and connect a
huge variety of equipment, ranging from “smart” wireless mobile devices to data cen-
ters. They also support increasingly diverse services and applications, ranging from
real time communications (voice, streaming, conferencing, gaming) to data storage
and access (social networks, cloud services, online businesses) and to intensive dis-
tributed/networked applications.

This evolution has impacted network structures in their size, complexity and het-
erogeneity, while the demand for availability, reliability and quality of service was si-
multaneously becoming prominent. Network management is thus becoming a major
concern for operators, which has triggered intensive research about autonomic net-
working, the network counterpart of the concept of autonomic computing advocated
by IBM in 2001. Autonomic networking aims at designing networks where most of
the classical management operations would be automatized as much as possible, in
order to program the network by high-level objectives or policies, and let the network
implement the best answer to these requirements. One objective being to relieve opera-
tors from numerous tedious and error prone micro-management operations, and at the
same time to shorten the time to market of new services. Autonomic networking is also
called self-management, and decomposes the classical FCAPS management functions
(faults, configuration, accounting, performance, security) into a collection of self-* func-
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tions, going beyond these 5 historical objectives: self-configuration, self-optimization,
self-diagnosis, self-healing, etc.

This thesis focuses on the management of faults, and thus aims at contributing to
the design of self-diagnosis and self-healing methods. Besides, it advocates the new
concept of self-modelling: the ability to automatically build an abstract model of the
network that will be the support of diagnosis and healing algorithms.

Faults, also called failures, root causes, or primary causes, represent malfunctions
in network equipment or software that have an impact on the expected service(s) from
this network. Given the very design of networks as a hierarchical assembling of interde-
pendent functions and components, faults naturally propagate, i.e. generate a cascade
of secondary failures or malfunctions. For example a broken link cuts an end to end
communication; a missing message can make a protocol fail an important step, that in
turn may prevent the establishment of a connection, whence the impossibility to use a
service, etc. Network equipment, protocols and services are equipped with elementary
monitoring indicators that check their health and raise alarms when a malfunction or
a breakdown is detected. Alarms are primarily directed to the management layer for
display in dashboards, from which the operator will decide which mitigation, recovery
or maintenance operation is necessary. Some alarms have also an operational role: they
can be directed to client functions in the network, for example to automatically switch
protection mechanisms (as the automatic rerouting in case of link failure), or simply for
a simple informative purpose of that client, which may itself trigger a new alarm. The
consequence of both fault and alarm propagations is that a single root cause may result
in a complex and distributed pattern of subsequent failures and of their corresponding
alarms.

The first expectation from a fault management system is the ability to detect (Bouloutas
et al., 1994) the occurrence of primary faults, and then to localize/isolate them (Bouloutas
et al., 1995; Katker and Geihs, 1997). This consists in processing the various alarms or
malfunction indicators (such as customer complaints) in order to identify the possible
root cause(s). This task is sometimes referred to as fault localization, alarm/event cor-
relation, or root cause analysis. Event correlation was primarily performed by human
operators, in response to customer complaints, before mitigation or corrective actions
could be envisioned. The current practice in management rooms has long been to ignore
the numerous non severe alarms, as they may result from non advertised maintenance
operations on the network, or of temporary reconfigurations, with little impact on the
users. But even for the few selected cases, fault management was soon identified as
too complex for humans, who can keep track of only few hypotheses in their reason-
ing, and who need a long training to fully master their network segment. Besides, the
requirements of fault management have been considerably reinforced: it should now

• capture several layers and segments of the network at a time, and correlate
events/alarms horizontally (within the same layer, but over several network seg-
ments) but also vertically (cross-layer correlation),

• be tailored to a specific network instance, and adaptive as the network architec-
ture/configuration evolves,
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• be not only reactive, to deal with faults that have already occurred, but also be
proactive, i.e. early detect failures that yet do not have serious consequences, but
which may degenerate,

• classify accurately the different malfunctions, and evaluate their impact on the
services (with a specific focus on the services to customers),

• provide the human operator with clear explanations about what (can have) hap-
pened,

• suggest corrective/repair actions, and possibly perform them automatically (with
or without a human in the loop), with explanation/verification of their expected
effect,

• extend beyond a passive procedure reasoning on the collected alarms, and become
an active procedure able to poll components or perform tests in order to collect
the most relevant information for the current state of the reasoning process,

• be designed as a distributed procedure, to coordinate the management teams
in charge of different network segments or layers within the same operator, but
also extend to multi-operator cooperation to address cross-domain malfunctions
(which immediately triggers confidentiality issues).

Besides these strong expectations, fault management is facing difficulties that are
specific to the networking context. They mostly relate to a) the quality of the in-
formation that is collected, b) the difficulty to reason about a very complex system.
Considering the alarm side first, one is far from the familiar setting where a dynamical
system produces a sequence of observable events, as in hidden Markov models (HMMs)
for example. Several new phenomena must be captured, such as

• the multiplication of alarms, due to repetitive failed attempts to use a service,
or the intermittent/repetitive alarms (for example those reacting to threshold
crossings);

• missing alarms, due to their loss (for example in case of inband signalling) or due
to their masking (incomplete propagation of faults), to their filtering by some
intermediate equipment, to the fact that the supervisor did not register to some
type of alarms, or to their too late arrival;

• the inconsistency of alarms, due to different perceptions of the state of some
network resource;

• ambiguous alarms, when several underlying phenomena are loosely gathered into
a single type of default indication (this is frequent when low-level failure indicators
are reported to an upper layer);

• transient alarms due to temporary states of the network, during reconfiguration
or maintenance operations;



46 State of the art

• delayed alarms, reordered alarms or more generally the fact that a single failure
generates alarms at different locations in the network, which results in a partially
ordered pattern of alarms rather than a nice sequence,

• the interferences and/or interleaving of alarm patterns in case of multiple primary
failures;

• the necessity to take the timestamps of alarms into account;

• the difficulty to define the relevant range of alarms to consider among the numer-
ous types raised by the different network components.

This last item introduces the second difficulty: how to reason about alarms in such
large complex systems ? This immediately raises several questions:

1. What type of knowledge should one use to support his reasoning?

2. How should this knowledge be modeled or formalized?

3. Which centralized and/or distributed algorithms can exploit this knowledge, at
least to recover primary failures from alarms in the first place?

Surprisingly, while alarm processing clearly falls within the scope of automatics, the
complexity of the problem has rather attracted the artificial intelligence community.
The problem was addressed with numerous techniques in the past two decades, ranging
from expert systems that try to mimic human expertise, to machine learning techniques
(neural networks, statistical inference, case-based reasoning), and to model based rea-
soning.

The rest of this chapter reviews some of the numerous contributions to the topic
of fault and alarm management. It does not aim at exhaustivity, but rather tries to
sample the domain in order to give an overview of the techniques that were proposed
and experimented, before discussing their advantages, drawbacks and positioning the
ambition of this thesis. For an excellent survey of various fault localization techniques
and algorithms the reader is referred to (Steinder and Sethi, 2004a).

4.1 Rule-based Expert systems

The application of expert systems in network operations and management software
development has been a growing phenomenon (Cronk et al., 1998). Diagnostic ex-
pert systems attempt to infer the cause of a problem from symptoms recognized in
sensor data. An expert system is a problem-solving software that embodies special-
ized knowledge in a narrow task domain to do work usually performed by a trained,
skilled human. Expert knowledge in the task domain must lend itself to a formalized
representation to be implemented in a knowledge base. Various types of knowledge rep-
resentation schemes can be employed: rules, frames, semantic networks, lists of facts,
logic predicates, etc. The complexity of diagnostic systems make knowledge represen-
tation a critical issue—see (PAU, 1986) for an evaluation of knowledge representation
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schemes. However, an expert system will often require a combination of the previous
types. With regard to the inference mechanism for expert systems, the various options
include: forward-backward chaining (still the most common), generate/test methods,
heuristic search, and meta-rules (PAU, 1986). As with the knowledge representation,
a combination of the above inference mechanisms is common.

Surveys of the first diagnostic expert systems of technological processes are pro-
vided by (PAU, 1986) and (Scherer and White, 1987). The first successful diagnostic
expert systems (also called “first generation” expert systems) were rule-based and used
empirical reasoning. Since then, numerous systems have been built. Expert systems
are organized around three levels: data, control, and task knowledge. Depending upon
the type of rule-based system, these three levels become, architecturally: working mem-
ory or global database (data), knowledge base (task knowledge), and inference engine
(control) (Cronk et al., 1998). This architecture is shown in Figure 4.1. At the control

Figure 4.1: Organization of rule-based expert systems, taken from (Cronk et al., 1998)

level, an inference engine is a program which determines how to apply knowledge con-
tained in a knowledge base to current facts and premises described in working memory
in order to infer new data, which can then be used for further inferences. In a rule-
based system environment, the inference engine determines which rules are applicable
and which of these candidate rules should be the one to use in a given situation. In
rule-based systems, rules are expressed in the form:

IF <condition> THEN <action>

The inference engine of a rule-based system implements the following concept: before
we take an action, we want to consider all possible choices, and make a decision on
which choice is best. The control mechanism is a ‘recognize-act cycle’ (see Figure 4.1).
The cycle has the following three components (Cronk et al., 1998):

• Matching—finds all the rules that are satisfied by current contents of working
memory. These matches are collectively called the ‘conflict set’.
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• Selection, or conflict resolution—determines which one of the matches in the
conflict set is the best to invoke at this time.

• Rule invocation (execution)—is the process of applying the matches specified by
the chosen rule. These actions typically change data so that new patterns are
formed. In some systems, rules themselves are added, removed, or modified.

The cycle is repeated until there are no more matches to invoke (or an explicit halt is
issued). Therefore, program control is the repeated evaluation of rule conditions based
on changing data rather than on static structure of the program. Thus, the strategy is
called data-driven control, or forward-chaining.

Reasoning by the exercising of inference rules can proceed in different ways accord-
ing to different control procedures. As explained above, the strategy of forward-chaining
is to start with a set of facts or given data and to look for rules in the knowledge base
the ‘IF’ portion of which matches the data. When such rules are found, one of them is
selected based upon an appropriate conflict resolution criterion and executed or ‘fired’.
This generates new facts and data in the knowledge base which in turn causes other
rules to fire. The reasoning operation stops when no more new rules can fire. It is il-
lustrated in Figure 4.2. An alternative approach is to begin with the goal to be proved

Knowledge Base
(Initial State)

Fact :
F1 – A Ford Sierra is a Saloon
Rules :
R1 – If X is a Car Then X has an Engine
R2 – If X is a Saloon Then X has Four Doors
R3 – If X is a Saloon Then X is a Car

F1 & R2 Match

Knowledge Base
(Intermediate State)

Facts :
F1 – as before
F2 – A Ford Sierra has Four Doors
Rules :
R1 –
R2 –
R3 –

F1 & R3 Match

Knowledge Base
(Intermediate State)

Facts :
F1 –
F2 –
F3 – A Ford Sierra is a Car
Rules :
R1 –
R2 –
R3 –

F3 & R1 Match

Knowledge Base
(Final State)

Facts :
F1 – A Ford Sierra is a Saloon
F2 – A Ford Sierra has Four Doors
F3 – A Ford Sierra is a Car
F4 – A Ford Sierra has an Engine
Rules :
R1 – If X is a Car Then X has an Engine
R2 – If X is a Saloon Then X has Four Doors
R3 – If X is a Saloon Then X is a Car

as before

as before

as before

Figure 4.2: An example of forward chaining (taken from (Pham, 1988))

and try to establish the facts needed to prove it by examining rules with the desired
goal as the ‘THEN’ portion. If such facts are not available in the knowledge base, they
are set up as sub goals. The process continues until all required facts are found, in
which case the original goal is proved, or the situation is reached when one of the sub
goals cannot be satisfied, in which case the original goal is disproved. This method of
reasoning is called ‘backward chaining’ or ‘goal directed-inferencing’.
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Several difficulties are to be taken into account while designing an expert sys-
tem (David and Krivine, 1987):

1. it is difficult to formalize the problem: what knowledge is useful, how should it
be represented and how should it be used;

2. it is difficult to acquire knowledge;

3. it is difficult to validate an expert system.

Furthermore, network troubleshooting presents characteristics like incomplete data,
high rate of events, simultaneous presence of several problems, which raise interesting
problems in the development of an expert system. (Mathonet et al., 1987) stresses
the development issues that are peculiar to network troubleshooting. Of particular
importance are performance of inference in real-time, multi-problem handling, and
consideration of time in reasoning and revision of belief. Dealing with such issues is
primarily a question of system design. This has implications for the knowledge base
organization, reasoning mechanism, and recording of deductions. The above challenges
and difficulties have been addressed in the literature.

Lor et al. (Lor, 1993) developed an expert system to diagnose multiplexer networks.
The diagnostic expertise is classified into general expertise and customized expertise.
Their Network Diagnostic Expert System keeps a database containing certain network
information, both static and dynamic, needed during the diagnostic process. Infor-
mation stored include the relationships between the logical entities (channel groups)
and the physical entities (nodes or links) like routing information, attributes of the
physical entities, and node/link incident relationship, etc. The diagnostic process is bi-
directional between the core expertise and the customized expertise. A specific failure
invokes a rule in the customized knowledge, which in turn invokes a rule in the generic
knowledge. The generic rules offer a general diagnosis and recovery plan for such a
failure. The customized expertise is then invoked again to implement this plan. In an
ordinary diagnostic session with more than one network faults, the diagnostic system
goes back and forth between customized and general expertise many times, at least
once for each failure encountered.

Sinergia (Brugnoni et al., 1993) is an expert system for the isolation and diagno-
sis of faults in the Italian Telecommunications Network. They introduce the notion
of ‘reduced Fault Influence Area’ (RIA) defining the set of equipment in the network
affected by a fault. The signals belonging to the RIA are close in time (i.e. occur
within few milliseconds). This principle denoted as temporal locality is the main the-
oretical support of the real time diagnostic technique implemented in Sinergia. The
overall methodology exploited by Sinergia is built up of two main reasoning steps that
implement a sort of generate and test paradigm. The first step is based on a set of rules
which instantiate fault hypotheses, while the second is a classical AI heuristic search
to determine the best solution among the hypotheses.

DANTES (Mathonet et al., 1987) is an expert system designed to provide real-time
assistance to network supervisors in carrying out their troubleshooting activities. It
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uses three kinds of knowledge: structural knowledge, deductions, and problem detec-
tion/diagnosis knowledge. The structural knowledge uses a structured object formalism
comprising two hierarchies: network component and network event. Properties asso-
ciated with network components serve to represent the object current situation or to
represent the relationships between objects. As for properties associated with network
events, they serve to identify an event in time and space and to define event treat-
ment characteristics. Deductions can be symptoms, hypotheses or results. Problem
detection and diagnosis knowledge specifies how to interpret network events, how to
recognize problem situations and how to isolate faulty components. The heuristic na-
ture of this knowledge led naturally to a production rule representation. The rule base
in DANTES (Mathonet et al., 1987) is not flat: rules are grouped by object class. This
organization allows a distribution of expertise among the different object types of the
network representation. DANTES has the ability to deal with time aspects of inference
(i.e. time correlation between events and belief revision with time) and present several
features which are typical of traditional real-time systems.

ANSWER (Weiss et al., 1998b) is an expert system used by surveillance technicians
at AT&T’s two network control centres to monitor and maintain the 4ESS switching
elements in the AT&T network. In addition to using rule-based programming, AN-
SWER uses object-oriented technology and models the 4ESS as a collection of devices.
The model implicitly contains information about the structure and behavior of the
4ESS. Much of the reasoning in ANSWER is accomplished by using ‘affective’ rela-
tions. Affective relations express aspects of the design at a level of abstraction that
expert troubleshooters use to link symptoms to faults, and hence are easily acquired.
These relations are maintained and used by rules. The sub-part relation serves to iso-
late faults. For example, ANSWER has a rule that states that if many of device A’s
sub-parts fail, then the fault is most likely located in device A (not in its sub-parts).
The model of the 4ESS switch is dynamically built from the information sent to it
from the 4ESS. The first advantage of such a dynamic model is flexibility: no up-front
configuration information is required. The second advantage is efficiency: it is possible
to model only the components which have abnormal activity, thereby reducing the size
of the model and thus realizing time and space savings.

Discussion Expert systems have been applied extensively within the telecommuni-
cations industry, but not without problems. Early (or first generation) expert systems
required a knowledge engineer to acquire knowledge from the domain experts and en-
code this knowledge in a rule-based expert system. These rules were very “ad-hoc”
and as the number of rules increased, the expert system became more difficult to un-
derstand and modify. The procedure for constructing a rule-based expert system is
(a) to define a description language that represents the problem domain, (b) to extract
expertise from multiple domain experts and/or trouble-shooting documents, and (c) to
represent the expertise in the rule-based reasoning format. The procedure can require
several iterations of an interview/implement/test cycle in order to achieve a correct
system (Lewis, 1993). If the knowledge does not change very often, little maintenance
is necessary. However if the diagnostic expert system is used to solve faults in un-
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predictable or rapidly changing domains, two problems inevitably occur (Lewis, 1993).
The first one is the system brittleness, which means that the system will fail when it is
presented with a novel problem. The counterpart of the brittleness problem is the sys-
tem’s lack of ability to adapt existing knowledge to a novel situation or to learn from
experience. The second problem is the knowledge acquisition bottleneck. It happens
when a knowledge engineer tries to devise rules and control procedures that will cover
unforeseen situations. When this happens, the system typically becomes unwieldy,
unpredictable, and unmaintainable. With rapidly changing domains, the system can
become obsolete quickly. The alternatives at this stage are to limit the coverage of the
rule-based system or to search for other approaches.

4.2 Model-based Expert systems

Second generation expert systems attempted to solve the limitations of rule-based sys-
tems by using stronger methods, such as model-based reasoning. Model-based Systems
(MBS) are knowledge-based systems which reason about a system from an explicit
representation of its structure and functional behaviour. For the telecommunication
networks management, the structural representation involves the description of net-
work elements (NEs) and of the network topology (see Figure 4.3 for an example).
The representation of functional behavior describes the processes of event propagation
and event correlation (Jakobson and Weissman, 1995). As the real plants tend to be
complex, so are the models used in this technique (Penido et al., 1999). Model-based
Systems (MBS) have been mainly used in industry for the automation of engineer-
ing tasks such as simulation, design, monitoring and diagnosis (Isermann, 1997, 2005;
Angeli, 2010). However the same principles can be extended into real-time fault man-
agement in a telecommunications network, where the network structure (NE types and
topology, containment constraints) and behavior (dynamic process of alarm correlation)
are modelled (Gardner and Harle, 1996).

The complexity on building a diagnostic system for Network Management resides
on the following facts: a regular network can have a variety of types of hardware com-
ponents and a large number of them; there are different types of software components
(protocols, operating systems, services, applications); the equipment and connections
may be changed, and yet some network protocols are based on dynamic configuration.
The construction of network models to build management tools involves the identifica-
tion of all necessary knowledge and its organization in such way that the management
task can be automatically performed as an activity of exchanging behavioral, structural
and control information (Barros and Lemos, 1999). Several researchers proposed the
application of model-based reasoning techniques to solve diagnosis problems.

Kehl et al. (Kehl et al., 1992) presented a generic maintenance system (GMS) for
the telecommunication networks (e.g. broadband ISDN networks). The knowledge
base of this GMS is divided into two parts: a functional and a physical model, with the
functional model being he most important part of it (see Figure 4.3). The functional
model consists of structural information and behavioural knowledge. It is built out
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Figure 4.3: Structure of the knowledge sources

of functional entities (FEs) corresponding to specific functionalities of the modelled
telecommunication network. There is a mapping between the FEs of the functional
model and the elements of the physical model. A functional entity consists out of
internal attributes and ports. Such ports connect FEs to each other. The FEs to-
gether with these port-to-port connections are building the structural model. FEs have
been organized on four different levels of granularity which are connected via a has-
subfunctions/is-subfunction-of relation. The reasoning is done on the level which has
the finest granularity. Furthermore, a classification hierarchy has been set up over the
functional entities: while the upper part of the hierarchy reflects generic telecom classi-
fications, the lower part introduces network-specific classes. The behavioural knowledge
is a description of how the network behaves in terms of functional entities and their
ports. This generic maintenance system presents the typical characteristics of a model-
based system, using an explicit model of the telecommunication network as well as
a model of its behavior. It therefore exhibits the advantages of model-based systems
including easy maintenance, reconfiguration and extension.

Frohlich et al. (Frohlich et al., 1997) introduced a model-based solution to the
problem of alarm correlation in cellular phone networks. They proposed a model called
the system description (SD) that consists of a set of axioms characterizing the behavior
of system components of certain types while the topology is modeled separately by a
set of facts. A set of predicate logic formulas is used to specify the alarm messages as
well as their type. And another set of formulas describes the alarm behavior as well as
the alarm propagation. The strengths of this alarm correlation system rely on the fact
that is is based on: a) a small and maintainable model of the system called the system
description (SD) that separates structural or topological knowledge from behavioral
knowledge and thus makes changes of the network topology easy; b) a propagation
model which allows to correctly diagnose unforeseen errors as well as multiple faults;
c) failure probability estimates, which lead to correct diagnoses even on noisy data,
where alarm messages have been lost or suppressed.

For building network models, Barros et al. (Barros and Lemos, 1999) specified a
Communication Fault Diagnostic System to support the network administrator task.
This system is based on the construction of models that represent the network in its
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multiple aspects, such as: configuration model, performance model, fault-states causal
model, equipment models, and others. In particular, the Configuration Model con-
struction is facilitated by a system, called Network Discovery System, able to collect
and gather information about the configuration levels. Since the network configuration
is the result of human activity, errors can be embedded in the discovered configuration
model. For that reason they have also developed another system called the Config-
uration Diagnosis System, which can detect a set of configuration errors during the
acquisition and construction of the network models.

Dupuy et al. (Dupuy et al., 1991) described a generic network management system
(Netmate) to address the management of large, heterogeneous and complex networks.
They proposed a model for network management information which emphasizes the
definition of generic network objects and relationships. Netmate Structure for Manage-
ment Information (SMI) defines four object classes and five relationships: 1) is-in-layer
represents the fact that a node, a link, or a group may belong to a single layer; 2) is-
connected-to represents the notion that a node (link) may connect to more than one
link (node) in the same layer; 3) is-member-of represents the collection of groups, nodes
and links into a group; 4) is-part-of represents the collection of (sub)nodes into a node,
or of (sub)links into a link, or of (sub)layers into a layer; 5) is-implemented-in-terms-of
represents the notion that elements in one layer use the services of elements in other
layers, and therefore, are functionally dependent on the well-being of elements in the
other layers. These object classes and relationships are able to support various man-
agement operations in a number of management scenarios. This object-oriented model
is extensible and well suited to accommodate current as well as future heterogeneous
networks and protocols.

Miyazawa et al. (Miyazawa and Nishimura, 2011) addressed the issue of the in-
creased time required to identify the root cause of a failure resulting from the increased
number and type of alarms caused by network or service failures. They proposed a
root cause analysis (RCA) mechanism which classifies types of alarms based on a hier-
archical alarm identification type of failure (resource, performance or service failure),
but also execute a root cause analysis based on alarm types.

Discussion The model-based approach is easy to deploy and modify and is appropri-
ate for a large-scale network if the network resource information is available (Miyazawa
and Nishimura, 2011). Model based systems have the potential to solve novel prob-
lems and their performance tends to degrade gracefully when confronted with problems
outside their expertise. They also lend themselves well to providing explanations for
their decisions and conclusions since each stage in an analysis can be followed and un-
derstood. MBSs can be constructed in a modular fashion with different aspects of a
physical system being modelled separately, if required, and hence they cater well for
expandable, upgradable systems. Also, a model of a system may be used for purposes
other than alarm correlation and take different ‘views’ of the contained knowledge ac-
cording to the needs of the user or task. However, the application of a model based
approach to many systems is often hindered by problem solving complexity. This can
be solved, in part, by using more efficient problem-solving algorithms and adopting
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the correct system model or sub-models for the the tasks in hand. Selecting the cor-
rect level of abstraction for the model is important and the relevant functional, causal,
compositional, and structural semantics of the working of the device should be cap-
tured (Gardner and Harle, 1996). While these expert systems seem preferable to first
generation systems, they have not seen the same level of commercial success. In the field
of telecommunications, this is because it is often too difficult to specify a behavioural
or functional model at a sufficiently high level to make the model practical and yet
have it to be useful (Weiss et al., 1998a).

4.3 Case-based Reasoning systems

Some of the limitations in ‘first-generation’ expert system technology are addresses
in ‘second-generation’ and ‘third-generation’ expert programs. The second-generation
expert systems use model-based reasoning. This use for network management suffers
however, for the difficulty in modeling a complete network, with its interactions in an
application (Goyal, 1991). Third-generation expert systems use case-based reasoning
and have the capacity to learn naturally with the experience and to avoid the excessive
maintenance (Lewis, 1993).

The main idea of case-based reasoning is to recover, adapt, and execute past episodes
of problems solution in the evaluation of present problems (Penido et al., 1999). Past
episodes are represented in the form of cases in a case library. The experience acquired
with the solution proposed is stored in the case library for future references.

Cases contain registers with the most relevant characteristics of past episodes and
are stored, retrieved, adapted, and utilized in the solution of new problems. The
experience obtained from the solution to these new problems constitutes new cases,
which are added to the database for future use.

An important feature of case-based reasoning is its association with learning. When
a problem is successfully solved, the parts of the solution which are likely to be useful
in the future are stored. When an attempt to solve a problem fails, then the reason
for the failure is identified and ‘remembered’ in order to avoid a recurrence of such a
mistake (Gardner and Harle, 1996).

A case generally consists of information about the situation, the solution, the results
of using that solution and some attributes that may be used in the searching for similar
attributes of other cases. A case-based reasoning system may be described by a cyclic
system comprising of four processes (Figure 4.4): retrieve the closest matching cases in
the past, reuse the information in these cases to suggest a solution to the new problem,
revise the suggested solution in light of testing and retain the parts of this experience
which may be useful in the future.

Since the development of case-based reasoning systems, several challenges have
stimulated the researchers’ creativity: how to represent the cases; how to index them
to allow their retrieval when necessary; how to adapt an old case to a new situation to
generate an original solution; how to test a proposed solution and identify it as either
a success or a failure; and how to explain and repair the fault of a suggested solution
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Figure 4.4: Case-Based Reasoning Cycle

to originate a new proposal.

The problem of case adaptation is studied in (Lewis and Dreo, 1993). It described
a technique named parametrized adaptation, which is based on the existence in a
trouble ticket, of a certain relationship among the variables that describe a problem
and the variables that specify the corresponding solution. A CBR system takes into
account the parameters of this relationship in the proposition of a solution for the
case under analysis. To represent the parameters, the use of linguistic variables (i.e.,
the ones that assume linguistic values, instead of numeric values) and the provision of
functions is proposed, so that the parameters’ numeric values are translated into grades
of membership in a fuzzy set.

Lewis (Lewis, 1993) reviewed case-based reasoning (CBR) techniques for retriev-
ing, adapting, and embedding knowledge in a case library and described CRITER, a
CBR trouble ticketing system for managing an resolving, network faults. The problem
of fault management in large and heterogeneous networks is expensive and hard to
solve. According to (Lewis, 1993), the solution to this problem includes a) a fault de-
tection system, b) a trouble ticketing management system, c) a representation of fault
resolution expertise.

ACS (Penido et al., 1999) is much like CRITER as it has case-based reasoning and
it is integrated to the fault management system. However, ACS’s approach is to add a
case-based component to an alarm collection agent, what makes a decision making in
a much earlier stage of fault management. The structure of the database is designed in
order to decrease the time it takes to search the cases library by grouping the cases with
respect to the kind of the NE and to the category of the problem. ACS’s approach tries
to reduce the number of alarms the operators can see by correcting faults before sending
them to the operators. It is has proved to be greatly helpful for the organization, as it
immediately decreased the mean time to repair the faults.

Weiner et al. (Weiner et al., 1995) proposed FIXIT a system for encoding fault man-
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agement experience and making it available to operators confronting similar anomalous
situations. Its architecture relies on two levels of abstraction to organize fault man-
agement information, and on the concept of symptomatic search for retrieving cases.
Nevertheless, it presents the disadvantage of typical case-based reasoning systems: it is
domain-specific. The semantics of a specific set of fault management experiences and
whole-part decompositions do not generalize, except in concept, outside the application
for which they were developed. Besides, it does not correct faults.

Melchiors et al. (Melchiors and Tarouco, 1999) proposed DUMBO a system incorpo-
rating case-based reasoning paradigm into traditional Trouble Ticket Systems (TTS),
that already accumulate knowledge derived from previous problems, to help managers
in the diagnosis of a new similar situation. The way DUMBO requests actions and
presents solutions is less structured than CRITER. Besides, DUMBO’s adaptation is
based on the mechanism of context refinement, while CRITER acquires adaptation
strategies for the exact solutions. The advantages of DUMBO are its flexibility. Prob-
lem types are defined in order to include most of the situations that can be found in
the domain. Maintenance and learning are simplified.

Discussion Case-based reasoning (CBR) is an alternative approach to problem-solving
that offers potential solutions to the problem of brittleness and knowledge acquisition
bottleneck. The goals of CBR systems are (i) to learn from experience, (ii) to offer
solutions to novel problems based on past experience, and (iii) to avoid extensive main-
tenance. The basic idea of CBR is to recall, adapt, and execute episodes of former
problem-solving in attempt to deal with a current problem (Lewis, 1993). The tech-
nology of case-based systems directly addresses problems found in rule-based systems:
First is knowledge acquisition. The unit of knowledge is the case, not the rule. It
is easier to articulate, examine, and evaluate cases than rules. Second is performance
experience. A case-based system can remember its own performance and modify its be-
haviour to avoid repeating prior mistakes. Third are adaptive solutions. By reasoning
from analogy with past cases, a case-based system should be able to construct solutions
to novel problems (Slade, 1991). However, case based reasoning methods suffer from
the problem that they must be closely tailored to the domain of application—there
are no universal CBR methods. Also, despite the emphasis on the learning process,
experience plays a minimal role in refining the method of reasoning; instead they rely
on static pre-defined procedures. The time efficiency of the CBR process may also
pose problems when it coma to real-time alarm correlation situations. The process-
ing required is potentially complex and time consuming but once up and running, a
fast and effective system may evolve which is resilient to changes in network size and
configuration (Gardner and Harle, 1996).

4.4 Knowledge discovery and data mining

For many years the telecommunication industry has relied on intelligent solutions to
help manage telecommunication networks. Building such applications involved acquir-
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ing valuable telecommunication knowledge from human experts and then applying this
knowledge typically by embedding it in an expert system. This knowledge acquisition
process is so time-consuming that it is referred to as the “knowledge acquisition bot-
tleneck”. Data mining techniques can be applied to industrial applications to break
this bottleneck by replacing the manual knowledge acquisition process with automated
knowledge discovery. Telecommunication networks which routinely generate tremen-
dous amounts of data, are ideal candidates for data mining (Weiss et al., 1998a).

Knowledge discovery is the nontrivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data (Fayyad et al., 1996). Here, data
are a set of facts (for example, cases in a database), and pattern is an expression in some
language describing a subset of the data or a model applicable to the subset. Hence,
here, extracting a pattern also designates fitting a model to data; finding structure
from data; or in general, making any high-level description of a set of data. The term
process implies that knowledge discovery comprises many steps, which involves:

• data preparation (selecting, cleaning and preprocessing the data e.g., filling in
missing values and transforming it so that it is suitable for data mining);

• data mining (searching for patterns of interest in a particular representational
form or a set of such representations, including classification rules or trees, re-
gression, and clustering);

• interpretation and evaluation (interpreting and evaluating the patterns produced
by data mining).

The term nontrivial means that some search or inference is involved; that is, it is
not a straightforward computation of predefined quantities like computing the average
value of a set of numbers. The step in the knowledge discovery process which typically
requires the most work for telecommunication applications is the transformation step,
which involves identifying useful features to represent the data. This step is complicated
by the fact that telecommunication networks produce sequences of alarms, where it is
not the individual alarms which are of importance but the behavior over time of the
network (Weiss et al., 1998a).

Since most data mining methods do not directly operate on temporal sequences,
these sequences must be transformed so that these methods can be used. The Scout (Sasisekha-
ran et al., 1993, 1996) application and the forecasting application (Weiss et al., 1998a)
both take this approach. An alternative approach is to develop a data mining method
which can reason about temporal relationships. The TASA (Hätönen et al., 1996)
application follows this alternative approach.

In our brief overview of data mining tasks we use Figure 4.5 as an example. This
figure shows a simple two-dimensional artificial data set consisting of 23 cases. Each
point on the graph represents a person who has been given a loan by a particular bank
at some time in the past. The horizontal axis represents the income of the person; the
vertical axis represents the total personal debt of the person (mortgage, car payments,
and so on). The data have been classified in two classes: (1) the x’s represent persons
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Figure 4.5: A simple data set with two classes used for illustrative purposes (taken from (Fayyad
et al., 1996)).

who have defaulted on their loans and (2) the o’s represent persons whose loans are
in good status with the bank. Thus, this simple artificial data set could represent a
historical data set that can contain useful knowledge from the point of view of the bank
making the loans. Note that in knowledge discovery applications there are typically
many more dimensions (as many as several hundreds) and many more data points
(many thousands or even millions).

A typical data mining application from the telecommunications industry is to pre-
dict the failure of a network component based on past alarm history. Data mining can
be used to solve many tasks, including the following:

• Classification: learning a function that maps (classifies) a data item into one or
several predefined classes. Figure 4.6 shows a simple partitioning of the loan data
into two class regions. The shaped region denotes class no loan. The bank might
want to use the classification regions to automatically decide whether future loan
applicants will be given a loan or not.

Figure 4.6: A simple linear classification boundary for the loan data set (taken from (Fayyad et al.,
1996)).

• Regression: learning a function that maps a data item to a real-valued prediction
variable. Figure 4.7 shows the result of simple linear regression where total debt
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is fitted as a linear function of income: The fit is poor because only a weak
correlation exists between the two variables.

Figure 4.7: A Simple Linear Regression for the Loan Data Set (taken from (Fayyad et al., 1996)).

• Clustering : identifying a finite set of categories or clusters to describe the data.
Figure 4.8 shows a possible clustering of the loan data set into three clusters;
note that the clusters overlap, allowing data points to belong to more than one
cluster. The original class labels (denoted by x’s and o’s in the previous figures)
have been replaced by a + to indicate that the class membership is no longer
assumed known.

Figure 4.8: A Simple Clustering of the Loan Data Set into Three Clusters (taken from (Fayyad et al.,
1996)). Note that original labels are replaced by a +.

• Dependency modeling : finding a model that describes significant dependencies
between variables. Dependency models exist at two levels: (1) the structural
level of the model specifies (often in graphic form) which variables are locally
dependent on each other and (2) the quantitative level of the model specifies the
strengths of the dependencies using some numeric scale. For example, probabilis-
tic dependency networks use conditional independence to specify the structural
aspect of the model and probabilities or correlations to specify the strengths of
the dependencies.

• sequential and temporal pattern detection deals with the problem of mining pat-
terns from temporal data, which can be either symbolic sequences or numerical
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time series. It has the capability to look for interesting correlations or rules in
large sets of temporal data, which might be overlooked when the temporal com-
ponent is ignored or treated as a simple numeric, attribute.

The above tasks can be associated with real telecommunication problems. Applica-
tions such as Scout (Sasisekharan et al., 1996), the forecasting application (Weiss et al.,
1998a), TASA (Hätönen et al., 1996), and Trouble locator (Chen et al., 1996) can be
considered classification tasks (e.g. is a network element faulty or not). While the
trouble locator builds dependency models, TASA and to a lesser degree the forecasting
application are both example of temporal pattern detection.

AT&T’s Scout system proactively identifies recurring transient faults (Sasisekha-
ran et al., 1996). It identifies patterns of chronic problems directly from the data by
examining the network behavior over periods of days and weeks. To do this, features
which summarize time-varying historical data are extracted from the data so that stan-
dard machine learning algorithms can be used (i.e., algorithms which are not capable
of explicit temporal reasoning). This featurization is accomplished by using two fixed
consecutive time windows, W1 and W2. The objective is to use the measurements from
W1 to predict problems in W2. One way of summarizing these measurements is to
count the number of times each feature occurs within the window. Scout then used
Swap-1 (Weiss and Indurkhya, 1993) to learn rules that predict recurring transient
faults.

The main objective of the forecasting application (Weiss et al., 1998a) is to identify
patterns of messages that identifies the pending arrival of crucial events namely those
corresponding to catastrophic failure of switching equipment. The (initial) time-series
data are expressed in a standard case-based representation, where each case includes a
set of feature variables and a single class variable. This transformation is accomplished
by using two fixed consecutive time windows, a monitor window M and a predictive
window P . The objective is to observe the count of each message type in M then look
forward some fixed unit of time and observe in P whether the crucial event occurred.
Each case is represented by a monitor window, M , and a prediction window, P . Once
time-series data are transformed into cases, standard machine learning classification
methods such as neural nets or decision trees, can then be applied to the transformed
data. Predictive performance is maximized by varying a sampling period window and
a prediction period window during the data transformation.

The Telecommunication Network Alarm Sequence Analyzer (TASA) (Hätönen et al.,
1996) is a system for locating regularities in the alarm sequences in order to filter redun-
dant alarms, locate problems in the network and predict future faults. TASA operates
in two phases. In the first phase, specialized algorithms are used to find rules that
describe frequently occurring alarm episodes from the sequential alarm data (Mannila
et al., 1995). An episode describes a set of alarm sequences over a given time period
and this set can include alarm sequences in which the specific order of alarms does not
matter. In the second phase, collections of episodes are interactively manipulated by
the user so that interesting episodes from the original set can be found. TASA supports
this process by providing operations to prune uninteresting episodes, order the set of
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episodes and group similar episodes.

Pacific Bell has an intelligent system which determines the location of troubles in a
local telephone cable network (Chen et al., 1996). This system uses data generated by
a nightly automated test to help narrow down potential cables or network equipment
which may be faulty; however, the test results are not sufficient to determine the exact
cause. The Trouble Locator uses a Bayesian network and Bayesian inference (Pearl,
1988) to solve this problem. The system begins by generating a local plant topology
graph and then from this generates a Bayesian network, where each node in the network
contains state information (belief of failure) of a plant component. This network also
takes into account historical information about the components and the data from
the overnight test. The belief of failure is then propagated throughout the network
until equilibrium is reached, at which point a ranked list of faulty components can
be generated. This system is used by preventative maintenance analysts as a decision
support system.

Data mining methods for solving the various data mining tasks vary in several ways,
including: the time they require for learning, their tolerance of noise, the expected
format of the data and the concepts they are capable of expressing. Rule induction
(used in Scout (Sasisekharan et al., 1996)) and Bayesian networks (used in (Chen et al.,
1996)) are two data mining methods used extensively within the telecommunications
industry. Other data mining methods, such as neural networks can also be used to
solve data mining tasks. Indeed, non linear regression and classification methods are a
family of techniques for prediction that fit linear and non-linear combinations of basis
functions to combinations of the input variables, and examples of such methods include
feed forward neural networks. Figure 4.9 illustrates the type of nonlinear decision
boundary that a neural network might find for the loan data set.

Figure 4.9: An Example of Classification Boundaries Learned by a Nonlinear Classifier (Such as a
Neural Network) for the Loan Data Set (taken from (Fayyad et al., 1996)).

An Artificial Neural Network (ANN) is a system comprising a number of mutually
connected elements (neurons) having a simple input-output. Conceptually, each neu-
ron may be considered as an autonomous processing unit, provided with local memory
and with unidirectional channels for the communication with other neurons. The func-
tioning of an input channel in an ANN is inspired by the operation of a dendrite in
biological neurons. In an analog way, an output channel has an axon as its model. A
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neuron has only one axon, but it may have an arbitrary number of dendrites. The
output “signal” of a neuron may be utilized as the input for an arbitrary number of
neurons. In its simplest form, the processing carried out in a neuron consists of affect-
ing the weighted sum of the signals present in their inputs and of generating an output
signal if the result of the sum surpasses a certain threshold.

Feedforward neural networks have already been proven effective in medical diagno-
sis, target tracking from multiple sensors, and image/data compression. It is therefore
plausible that NNs would be effective for the similar problem of alarm correlation, found
in fault diagnosis. In a feedforward neural net, shown in Figure 4.10, the neurons are
arranged into layers, with the outputs of each layer feeding into the next layer. This
model has a single input layer, a single output layer, and zero, one, or more hidden
layers. As the name suggests, all connections are in the forward direction where there
is no feedback. Feedforward networks are useful because of their ability to approxi-
mate any function, given enough neurons, and their ability to learn (generalize) from
samples of input-output pairs. Learning is accomplished by adjusting the connection
weights in response to input-output pairs, and training can be done either off-line, or
on-line during actual use. Depending on how the training is done, these NNs can be
characterized as being trained by supervised methods or by unsupervised methods.

Supervised NNs training data consists of correct input vector/output vector pairs as
examples, used to adjust the neural net connection weights. An input vector is applied
to the NN, the output vector obtained from the NN is compared with the correct
output vector, and the connection weights are changed to minimize the difference. A
well trained neural net can successfully generalize what it has learned from the training
set (i.e., given an input vector not in the training set, it produces the correct output
vector most of the time).

In unsupervised training there is no training data based on known input/output
pairs. The NN discovers patterns, regularities, correlations, or categories in the input
data and accounts for them in the output. For example, an unsupervised neural net
where the variance of the output is minimized could serve as a categorizer which clusters
inputs into various groups. Unsupervised training is typically faster than supervised
training and provides the opportunity to present patterns to operations personnel who
can identify new output relations. For these reasons unsupervised training is used even
in situations where supervised training is possible. However, for the domain of alarm
correlation, input/output pairs can be easily produced, making supervised trained NNs
a plausible choice for alarm correlation.

A different neural net approach for alarm correlation (Patton et al., 1994) uses
the ability of neural networks to predict future behavior of general nonlinear dynamic
systems. In this approach, a neural network predicts normal system behavior based on
past observations and the current state of the system. A residual signal is generated
based on a comparison between the actual and predicted behavior, and a second neural
network is trained to detect and classify the alarms based on characteristics of the
residual signal. This method can be used to identify basic categories for the alarms.

An additional approach is to cast the pattern recognition problem into an optimiza-
tion problem, making Hopfield NNs an appropriate tool for alarm correlation. This type
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of NN operates by using gradient methods to find a local minimum of a quadratic energy
function that represents an optimization problem, and whose coefficients depend on the
network’s interconnection strengths. Methods such as mean-field annealing, repeated
trials with random initial states, and tabu learning (Beyer and Ogier, 1991) can be
used to find a local minimum that is nearly optimal. For example, in alarm correlation,
the optimization problem is to identify the hypothesis that best explains the observed
data. (Goel et al., 1998) propose a neural network model based on Hopfield nets for
solving a special case of this problem. In this case, the neural net would be designed
so that states corresponding to the most likely hypotheses have the lowest energy.

Figure 4.10: Model of a feedforward neural network.

Discussion The difficulties of using knowledge discovery and data mining include
considerations such as the availability of sufficient data (cases). In general, the more
fields there are and the more complex the patterns being sought, the more data are
needed. Another consideration is the relevance of attributes. It is important to have
data attributes that are relevant to the discovery task; no amount of data will allow
prediction based on attributes that do not capture the required information. Further-
more, low noise levels (few data errors) are another consideration. High amounts of
noise make it hard to identify patterns unless a large number of cases can mitigate ran-
dom noise and help clarify the aggregate patterns. Finally, and perhaps one of the most
important considerations, is prior knowledge. It is useful to know something about the
domain—what are the important fields, what are the likely relationships, what is the
user utility function, what patterns are already known, and so on (Fayyad et al., 1996).

The following properties of multilayer feedforward neural networks make them a
powerful tool for alarm correlation.

• NNs can recognize conditions similar to previous conditions for which the solution
is known (i.e., pattern matching).

• They can approximate any function, given enough neurons, including boolean
functions and classifiers. This gives NNs great flexibility in being able to be
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trained for different alarm patterns.

• They can generalize well and learn an approximation of a given function, without
requiring a deep understanding of the knowledge domain.

• They provide a fast and efficient method for analyzing incoming alarms.

• They can handle incomplete, ambiguous, and imperfect data.

They have been used for the purpose of fault localization in (Gardner and Harle, 1997,
1998; Wietgrefe, 2002). Nevertheless neural networks have the disadvantage that they
require intensive training before being able to associate an output pattern with a given
input pattern (Gardner and Harle, 1996; Wu et al., 1998). Although this learning
process must occur, it is not always convenient in a telecommunications environment
where all the alarm signatures of fault occurrences may not be known or are not readily
available.

4.5 Fault-symptom graphs and the codebook approach

The codebook approach to event correlation consists in associating the n different prob-
lems p1, ..., pn one wishes to recognize to patterns of k observable symptoms s1, ..., sk.
Each problem pi is thus characterized by an alarm vector, checking the presence/absence
of all the selected symptoms. If the symptoms are numerous enough and correctly cho-
sen, they allow not only to discriminate between problems p1, ..., pn, but also to resist
to a number of observation errors, either false alarms (spurious symptoms) or misdetec-
tions (missing symptoms or lost alarms). This technique has been popular in a number
of problems for its robustness properties (Reali and Monacelli, 2009; Tang et al., 2008;
Frohlich et al., 1997); it generally proceeds by analysing the alarms within a sliding time
window. There exists a probabilistic version of this approach, and several techniques
have been proposed to automatically build a model relating problems to symptoms and
to optimally select the relevant sets of symptoms. Some contributions also explain how
to adapt the codebook to network changes (Yemini et al., 1996).
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Figure 4.11: A problem-symptom graph and its associated codebook.

The principle. Consider problems p1, ..., pn to be diagnosed, and the observable
symptoms s1, ..., sk. A codebook is a binary matrix C ∈ {0, 1}k×n, where Ci,j = 1 iff
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problem pj can produce symptom si. Each column C.,j is thus the signature (or the
codeword) of problem pj , and each row Ci,. represents the sensitivity of symptom si
to the different problems. Equivalently, one can view this matrix as a simple bipartite
causality graph relating problems to symptoms (see Figure 4.11).

A minimum of k = dlog2 ne symptoms (bits) is sufficient to distinguish the n dif-
ferent problems, but k is generally larger because: a) one does not fully master the
sensitivity of symptoms, and some selection should be made (see below), b) and having
more symptoms than necessary ensures some robustness to errors in the values of the
symptoms. There is actually a straightforward analogy with error correcting codes: the
codeword C.,i of problem pi should be as far apart as possible from that of problem pj ,
j 6= i, where the distance can be chosen as the Hamming distance dH , which counts
the number of different bits. With minimal distance dmin = mini6=j dH(C.,i, C.,j) be-
tween codewords, one can correct at most r = (dmin − 1)/2 observation errors. Let
(o1, ..., ok) ∈ {0, 1}k be an observation vector (oi = 1 iff symptom si is present), then
any observation vector within the ball of radius r around codeword C.,i will be “de-
coded” as problem pi. The analogy stops here, however: by construction, the codebook
does not correspond to a linear code, so all usual (fast) decoding strategies are unavail-
able. One is thus bound to decoding an element of {0, 1}k by table lookup, minimizing
the (Hamming) distance to the different codewords.

This approach is most often presented as a fast and robust single problem identifi-
cation method. It extends to multiple problems provided one can reasonably assume
that symptoms accumulate (i.e. one can add up the codewords bit by bit, with the rule
1+1=1). The problem then becomes that of finding the minimal number of problems
that best explains/fits the observed vector of alarms.

Codebook construction. This point covers three aspects:

1. the derivation of a causality graph connecting problems to symptoms,

2. its adaptation to network changes, and

3. the selection of the relevant symptoms in order to ensure robustness.

A starting point to derive the problem-symptom relations is a causality graph rep-
resenting the propagation of failures from the root causes to the observable alarms (see
also the section dedicated to causality graphs). This causality graph contains much
more information/knowledge than necessary to the codebook approach, in particular
it encodes problem dependencies, the presence of intermediary consequences, and nu-
merous possible symptoms. The causal graph can thus be considered as a relevant
model for inference (see causal graph inference, and the Bayesian networks section),
that would moreover provide an explanation to the collected observations. Here, one
rather looks for a fast and robust technique to quickly diagnose a problem. It thus
proceeds by extracting characteristic alarm patterns from this graph. The first step
consists in removing all intermediary nodes, i.e. those not identified as a problem or as
an alarm/symptom, by taking the transitivity closure of the causality relation (assumed
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acyclic). The causal relations between problems are dropped: problems are assumed
independent. And redundant symptoms are also discarded (i.e. symptoms that dupli-
cate the behavior of other symtoms). Figure 4.12 illustrates a causal graph that could
lead to the problem-symptom graph in Figure 4.11.
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Figure 4.12: A causal graph explaining the propagation of failures from the problems
(top) to the symptoms (bottom). This causal graph yields the problem-symptom graph
of Figure 4.11 by transitivity closure, after removal or intermediate nodes and dupli-
cated symptoms.

This construction brings the problem back to the derivation of a relevant causal-
ity graph for a given network, a richer structure than the problem-symptom graph.
The latter can derive from expert knowledge (see the section dedicated to causality
graphs). For example, it can result from an in depth analysis of failure scenarios
and the attached alarm logs. In other words, it can be identified or learnt from a
collection of actual network data. Alternately, some contributions have proposed to
derive a causality graph from the very structure of the network, which resembles the
first step of model-based approaches. In (Yemini et al., 1996), the authors propose to
model several network layers as a collection of connected objects. The ideas presented
there are quite appealing, despite a weak formalization. They proceed by identifying
the relevant classes of managed objects (physical objects, logical objects, links, nodes)
and their relationships (consists of, contains, belongs-to-layer, layer-over/layer-below,
provides/consumes, serves/served-by, connected-to/connected-via, etc.), following the
Netmate class hierarchy. A given network is then composed of instances of such ob-
jects and of their relations, which gives a first topological structure of the managed
object dependencies and relations. Within each class, one then identifies the events
that can appear, either as problems that can propagate to connected objects, or as
alarms that can be reported to the manager. One also needs to model how objects
react to events in their neighbors. For example, the event (problem) SyncLoss in an
object of class WAN-Interface can propagate to the objects of class link through the
connected-to relation, and produce an event BitErrorRate-above-threshold in these links.
The last step consists in labeling the events in the causal graph either as problems, in-
termediary events or symptoms, and proceed to the extraction of the problem-symptom
graph. The main advantage of this approach is that it can adapt the knowledge used
for diagnosis to the evolution of the network topology, one of the few contributions with
this much desirable property.
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Building an adequate problem-symptom graph is not sufficient to ensure the effi-
ciency and the robustness of the diagnosis engine. A trade-off is necessary between
the selection of the most discriminant symtoms (efficiency) and the preservation of a
sufficient level of redundancy (robustness). This is generally performed in a two-stage
manner. The selection first isolates a subset of symptoms (at least k = dlog2 ne) that
best discriminate the n problems p1, ..., pn. This consists in building a coding for these
n symbols. The approach is essentially empirical, and relies on the successive selection
of symptoms si that have a balanced number of 0 and 1 in their sensitivity pattern Ci,..
One has to guarantee that any added bit (or symptom) in the coding maximally reduces
the entropy of the “problem” variable P that takes its values in the set {p1, ..., pn}. For
example, a symptom reacting to a single problem is of little interest. Unfortunately,
the problem is never stated as a source compression question, which would definitely
be useful there, in particular to take problem likelihoods into account. Once a valid
minimal coding is available, the issue of robustness is also addressed by heuristics. The
idea is to incorporate extra symptoms in order to maximize the minimal (or average)
Huffman distance between codewords.

Probabilistic version. Causal graphs have a direct extension as Bayesian networks.
However, this is not the clean track that has been followed by the codebook approach.
A first difference lies in the definition of problem likelihoods, which is generally ignored.
This translates the fact that there is an ambiguity between the identification of a single
problem, which would mean assigning a distribution over the set {p0, p1, ..., pn} where
p0 represents the “no failure” case, and the identification of a multiple independent
problems, which would mean assigning a distribution to a n-uple of binary variables
P1, ..., Pn. This second case corresponds to a classical Bayesian network approach.

The probabilistic version of the codebook approach rather focuses on modeling
the likelihood of the different symptoms conditionally to the problems (Kliger et al.,
1995). When there exists a connection between problem pj and symptom si, the model
specifies P(si = 1|pj = 1) = di|j , i.e. the probability of detection (or misdetection, by
complement). False alarms are thus not assumed... If a symptom depends on several
problems, the assembling of these specifications is performed by the noisy OR technique.
For example, assume si depends on pj , pk, pl, one then states 1− P(sj = 1|pj = 1, pk =
1, pl = 0) = (1 − di|j)(1 − di|k), and similarly for other values of the triple (pj , pk, pl).
This models the fact that only misdetections can occur, and that these misdetections
are independent when several problems are present. Such likelihoods are then used to
compute distances from codewords to problems. In addition, one can incorporate extra
probabilities for erroneous detections of symptoms, and to account for false alarms.
The decoding is then performed by a minimal distance criterion, i.e. on the basis of a
maximum a priori principle.

As one can notice, this randomization of the model is ad hoc and rather question-
able on many points. The derivation of a probabilistic problem-sympton graph from
a probabilistic causal graph also suffers from several weaknesses: it ignores the dis-
tribution of problems and their correlations, it also ignores the correlation between
symptoms introduced by intermediary malfunctions such as f1 in Figure 4.12: one can
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not anymore assume that symptoms (as s2 and s3) are conditionally independent given
the problems, as it is erroneously presented in (Kliger et al., 1995). Bayesian networks
provide a more appropriate framework to encode such causality models and to perform
a more rigorous estimation of the problems causing the observed symptoms.

Discussion. The codebook approach is a rather fast and flexible pattern recognition
technique that identifies problems from the characteristic patterns of symptoms that
they produce. Its strong points are the simplicity and the adjustable robustness. Some
contributions have proposed a methodology to tailor the codebook to a specific network
instance, and to adjust it as the network evolves.

However, this technique suffers from numerous drawbacks. The most obvious ones
are that it focuses on the identification of a single problem, and that it provides no
explanation to what happened in the network. This is a little bothering since the very
construction of the problem-symptom graph uses an elaborate object, namely a causal
graph, that partly has this explanation capability and a more powerful description
power. On the formal side, both the construction and optimization of the codebook
and the decoding rely on heuristics. The probabilistic version of the model is too
weak, just like the handling of time. It seems that model-based approaches using
directly causal graphs, or Bayesian networks for their probabilistic version, are much
more elegant. For the same modeling effort, they provide explanations about failure
propagations, deal with multiple failures, capture false or missed alarms, and rely on
some inference algorithms.

4.6 Dependency/causality graphs

Fault-symptom graphs can be considered as the basic level of model-based approaches
to event correlation. By contrast, causality graphs, and their close siblings dependency
graphs, make a step further towards a more accurate modeling of network structures
and behaviors. And as mentioned above, their construction is a natural prerequisite to
the derivation of an accurate fault-symptom graph. So it seems natural to directly work
with causal graphs, and take advantage of their sparsity, which mechanically vanishes
once intermediary faults are removed.

The principle of causal graphs is to represent not only the initial failures (root
causes) and the symptoms that they generate, but also to model the complex chains
of intermediate faults and failures that relate them (Kätker and Paterok, 1997). This
knowledge derives from several types of information: expert knowledge about the mech-
anisms of fault propagation and alarm production, but also the dependency relations
between softwares and equipment, which are inherent to the very design of such com-
plex systems as networks. By contrast with codebook approaches, the inference consists
in guessing the state of all relevant nodes in a causality graph, once some observation
nodes (alarms) are positioned to true or false. This is again a static approach to event
management, in the sense that it operates on a snapshot of the network state, as op-
posed to dynamic approaches that track the evolution of this state.
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Causal graphs and their variations. Several formalisms of causal graphs have
been proposed in the literature. We focus first on the work of (Lu et al., 2010, 2011)
which is quite exemplary. In this setting, a causal graph is first of all an oriented graph
G = (V,E), and specifically a DAG (Directed Acyclic Graph). Vertices (or nodes) in
V represent events, and arrows in E ⊆ V × V stand for causality relations. A node is
minimal iff it has no predecessor for E, and maximal iff it has no successor.

Vertices can be of several types: minimal nodes (for the partial defined by the edges)
are generally called primary causes and represent the failures one wishes to identify,
nodes both with predecessors and with successors are simply intermediate faults, and
maximal nodes represent observable events. The latter can be further divided into im-
mediately observable nodes (i.e. alarms), test nodes (which provide an observation only
if they are triggered), or display nodes. These display nodes are purely indicative and
play no part in the semantics of the graph: they are there to express a diagnosis hypoth-
esis, and/or to suggest a repair action. The latter could then be triggered automatically
if such a node assumes value true, but its effect on the causal graph is unspecified. A
configuration of the graph is a function c : V → {false, suspect, true, unknown} that
associates a status to each node: true (resp. suspect, resp. false) represents the pres-
ence (resp. suspected presence, resp. absence) of a root cause or of an intermediate
fault. The value suspect is forbidden for terminal nodes (i.e. alarms, tests and dis-
plays), since they represent the presence or absence of an alarm, or the fact that this
observation is simply not known.

The edges of E represent causality relations between events, and can assume dif-
ferent modalities, as in modal automata. For example, one can partition E into
E = Emust ] Emay. Edge (a, b) ∈ Emust means that the failure of a causes the failure
of b, whereas (a, b) ∈ Emay means that the failure a can be the cause of the failure of
b, but this is not mandatory: the propagation can stop. In other words, configurations
where a = true and b 6= true are not allowed in the first case. A configuration c is
said to be consistent (see Figure 4.13) iff edge modalities are satisfied, and for all non
minimal node a such that c(a) = true, at least one of its predecessors assumes value
true (i.e. there is a cause to the failure at a).
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Figure 4.13: A causal graph and a configuration over it. Edges describe two propagation
modalities: “must cause” (solid arrows) and “may cause” (dashed arows). Test nodes
are represented as parallelograms, alarm nodes as ovals.

By definition, observable nodes are always terminal. Nothing prevents having them
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at any place in the graph; this simply translates the fact that the consequences of an
observable node (i.e. alarms resulting from other alarms) can only trigger redundant
alarms. Which implicitly assumes that (intermediate) alarms cannot be lost, an as-
sumption that is not made in fault-symptom graphs, nor in Bayesian networks, the
probabilistic version of causal graphs.

The literature proposes numerous variations around causal graphs. One can actu-
ally play with node types, with propagation modalities, and with the possible values
that each node can take. Some contributions have considered causal graphs as a rep-
resentation of logical constraints on the values that nodes can assume, i.e. on valid
configurations. Implicitly, in the above setting, the edges going out of a node represent
an AND on the consequences of that node, while the incoming edges represent an OR
on the possible causes of that node. (Hasan et al., 1999) goes further by allowing any
logical constraint relating a node to its offsprings, in the binary case. For example, one
can encode the relation a⇒ b OR ( c AND d ) when b, c, d are the offsprings of a. One
could go further in this direction and consider a more general formalism where nodes
represent variables (taking values in any domain), and the graph encodes constraints
relating these variables. Specifically, a constraint between variables of W ⊆ V makes
W a clique in the (non-oriented) graph, that is all pairs of nodes in W are connected.
This setting is a degenerated case of Bayesian networks, which allows to recycle their
inference algorithms (Dechter, 2003).

Inference procedures. The diagnosis proceeds as follows. For a given time window,
and thus for a given snapshot of the network state, one positions the observed alarms
to true in the causal graph. Negative symptoms may also be observed (for example the
fact that some connectivity or service is still alive) and thus positioned to false. All
other terminal nodes are positioned to unknown. The objective is to compute the set C
of all configurations c explaining the observed nodes. One is only interested in the root
causes, i.e. in the minimal nodes of configurations c that take value true: this is called
a possible diagnosis for the observed malfunctions. For example, in Figure 4.13, one
has a2 = true and a1 = false as observations, plus the result of test t2 which returned
t2 = true. A possible diagnosis is the initial failure p2 = true. Among all elements of c,
some may contain numerous root causes that generate the same observations. In that
case, Occam’s razor applies and one selects the configurations with the minimal number
of root causes positioned to true, and proposes them as the most likely explanations.

The algorithm proceeds recursively, in a bottom-up manner, starting from the ob-
served symptoms and trying to guess what are the possible causes of the observed
alarms (there must be at least one, by construction). The value suspect is used for
that purpose, to keep track of the opened hypotheses about possible causes. The algo-
rithm is thus a simple constraint propagation procedure, which branches when several
possibilities appear. Consequently, when the value of a node is determined (either true
or false), it can not be reconsidered. Observe that the effects of failures are “additive”
by construction: the initial failure b can only add to the consequences observed for the
initial failure a. This simplifies much the inference: one does not have to explore com-
plex patterns of failures that would make some symptom disappear (inference would
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then become NP hard). Instead, the problem “simply” amounts to finding at least one
cause to every observed symptom: only missing (positive) symptoms can invalidate a
suspected cause, and since minimal explanations are desired, there is no need to further
add extra causes with the same effects.
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Figure 4.14: Two causal graphs, for resp. domains 1 and 2, sharing some nodes (p2, p3

and a2). Left: two compatible local configurations. Right: two incompatible local
confidurations.

The formalism proposed in (Lu et al., 2010, 2011) presents two exciting features.
A first one is the possibility to perform tests, and thus to acquire information that will
allow one to confirm or discard some diagnosis assumptions. The question of which
test would be the most informative remains open: one would actually like to reduce as
much as possible the set of current diagnosis assumptions (configurations) that are being
explored by the algorithm. This is a first step towards active diagnosis procedures that
cleverly poll the network to retrieve more information. A second feature is the ability
to perform a distributed diagnosis. The idea consists in separating the causal graph
into several subgraphs, sharing some nodes. Each subgraph is the causal graph of some
component or domain of the network. The diagnosis can be performed independently
in each subgraph, and followed by a message passing procedure between neighboring
components in order to check the compatibility of the proposed local configurations (see
Figure 4.14). This is a specialized version of distributed constraint solving algorithms as
they appear in (Dechter, 2003), or equivalently a specialization of the belief propagation
(or message passing) algorithms that one can design for Bayesian networks (Pearl,
1988). Interestingly, checking the compatibility of two local configurations can be done
at low complexity, by considering only their restriction to the common variables (see (Lu
et al., 2011) for details).

Several inference mechanisms have appeared in the literature, more or less in the
same spirit. For example (Hasan et al., 1999) translates the logical relations relating
each node to its offsprings into a collection of local inference rules that allow to deter-
mine the value of a node from that of its offsprings. The originality of this work is to
extend the setting to temporal relations. Under the direct translation into a rule lan-
guage, the inference mechanism is basic and does not allow for branchings and multiple
assumptions. The most general inference machinery one could expect from general
causal graphs would certainly be the family of SAT solvers, although apparently no
publication refers to it.
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Interestingly, (Grosclaude, 2008) proposes a slightly different approach, when test
nodes are more numerous than alarm nodes. The idea is to compile the causal graph
into a diagnosis procedure, that selects the most relevant tests to perform and their
ordering, in view of quickly identifying the origin of a failure. This results into a decision
diagram driven by tests, as the ones that are used by hotline operators. Apparently,
the research direction has not been fully formalized nor explored.

Graph construction. The major bottleneck of this approach is clearly the derivation
of the causal graph: given this graph, the design of the inference engine is rather
easy and is a well paved road. Unfortunately, the difficulties on the modeling side
have received much less attention. From the few papers that address them, there are
essentially two sources of information that can be used.

1. Dependency graphs, or modeling how things work. This consists in selecting the
set of network resources that will appear in the model, together with their possible
failures and the symptoms they produce (Houck et al., 1995). One then represents
the dependencies that relate these resources. In (Gruschke et al., 1998), these re-
sources are split into 3 categories: services (connectivity, access to a data-base,
etc.), the physical equipment, under the form of end-systems, and the network
devices, that guarantee the physical connectivity between end-systems. The de-
pendency relations between these resources derive from the network topology, the
MIBs (Management Information Bases) of the equipment and of the applications,
or the inventory systems. An important concern is the definition of the appropri-
ate granularity for the model. Interestingly, this paper advocates the design of a
user interface allowing an expert to partially build and refine this model. It also
advocates the construction at runtime of the appropriate dependency graph, in
order to track topological changes in the network. In the same spirit, (Grosclaude,
2008) (in French) makes use of operational models, at the service level, that cap-
ture some of the resources (or prerequisites) necessary to a service, for example
HiFi VoIP. These dependencies describe both structural requirements as well as
temporal requirements. Temporal requirements express for example the correct
execution of protocols or procedures that are necessary to launch a service (e.g.
establishing a connection, obtaining an IP address, having internet connectivity,
etc.). As another source of information, dependency relations can also be derived
from the information models that define how the managed objects are structured,
connected and related (Choi et al., 1999; Yemini et al., 1996; Houck et al., 1995).

2. Failure graphs, or modeling why things may not work. This is the dual approach,
that consists in examining failure cases. This information generally comes from
experienced situations (as in Cased Based Reasoning) compiled by experts into
failure scenarios. It provides partial fault propagation examples that can be di-
rectly translated into a causal graph (Grosclaude, 2008). This model can be
enriched with test scenarios or simple information retrieval that can enrich the
observations (for example asking the user the color of a led on his equipment).
However, it is by essence incomplete, limited to/by the interpretation of experts
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and sometimes erroneous, limited to the experienced failures, and it can also be
too much specialized to a given network topology.

Discussion. Compared to fault-symptom graphs, causal graphs offer several inter-
esting advantages: beyond the detection of the modeled failures (root causes), they
also explain what happened in the network as consequences of these failures. This is
a valuable information for the operator that can then check the validity of these au-
tomatic interpretations of alarms, and further check the relevance of the fault model.
Moreover, causal graphs are generally a prerequisite to the derivation of fault-symptom
graphs, but they have a sparser structure which is beneficial to inference algorithms.

Several formalisms have been proposed for causal graphs, that encode various kinds
of logical relations between causes and effects. As they are designed for snapshots on the
networks (i.e. for events collected within a time window), they grab both strict causal-
ities, but also precedence, possibly with time constraints. The expressivity level of the
different formalisms varies, which results in inference problems of different complexi-
ties. But overall, all can be captured under the umbrella of SAT problems. Inference
is well understood for this family of problems, and even admits distributed/modular
versions. In particular, one can consider systems defined by local (logical) constraints
as specific cases of Bayesian networks, for which exact and approximate inference al-
gorithms are available and rather well understood. Interestingly, some contributions
have highlighted that the possibility to perform tests was raising new problems, like the
optimal selection of these tests, which is a first step towards active diagnosis. Further,
one can also compile offline a causal graph into organized test plans that would help
resolve some observed malfunctions, and that could be used, for example, as a support
for hotline operators.

While algorithmic resources are well mastered for these problems, the more demand-
ing (but necessary) modeling stage has been much less explored. Some contributions
have proposed to use and compile the available knowledge that can be derived from
topological considerations: managed objects definitions and structures (information
models), network resources dependencies (MIBs), protocols and procedures necessary
to the establishment of services, etc. Some contributions have suggested that this
could open the way to “modelling at runtime”, in order to fit the model to the man-
aged network. Two important questions remain open: the selection of the appropriate
granularity for the model, and the definition of an interactive modeling framework that
would help an operator or an expert check and refine the current version of the model.

4.7 Chronicles: patterns of timed events

Principle. This approach proposes to monitor a continuous flow of timed events
a1, a2, ..., an, ..., and to look for known patterns of events within this flow that charac-
terize a specific malfunction (Dousson, 1996; Dousson and Maigat, 2007).

The flow is made of the observable events that reach the network manager, and
each event an is characterized by some event type τ(an) denoting the nature of the
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observed problem (for example “excessive BER on equipment E”) and by a date δ(an)
at which this alarm was produced. These dates assume the existence of a global clock
in the netwok.

The patterns one is looking for in this flow are called chronicles. A chronicle is
a labeled oriented graph of events G = (V,E, τ, α, β). Vertices V represent events,
and τ associates an event type to each of them. Edges E ⊆ V × V encode temporal
dependencies between the events they connect, by means of functions α, β : E → R.
To the edge e = (v, v′) ∈ E, better denoted v → v′, one associates the time interval
I(e) = [α(e), β(e)] which means that event v′ must appear at least α(e) time units
and at most β(e) time units after v. Equivalently, if events v and v′ appear at dates t
and t′ respectively, then one must have α(e) ≤ t′ − t ≤ β(e). Observe that one could
very well reverse the orientation of an edge e = (v, v′) without changing this semantics,
by taking I(v′ → v) = −I(v → v′) = [−β(e),−α(e)]. So the oriented graph G need
not be acyclic. Observe also that the time intervals I(e) may contain both negative
and positive values, therefore a chronicle does not necessarily encode causality relations
between events, although this is generally the case in practice.
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Figure 4.15: An timed event flow (top) and a chronicle (bottom). The arrows indicate
a chronicle instance within the event flow.

An instance of chronicle G = (V,E, τ, α, β) into the alarm flow (an)n>0 is a mapping
φ : V → {an, n > 0} that preserves event types and such that event dates satisfy
the time contraints of the chronicle (Figure 4.15). Specifically, one must have ∀v ∈
V, τ(φ(v)) = τ(v), and ∀e = (v, v′) ∈ E, δ(φ(v′))− δ(φ(v)) ∈ I(e).

For simplicity here, we consider the basic language of chronicles, that only considers
event occurrences. The formalism extends to capture the absence of events within a
given time interval, the continuous presence of a phenomenon within some period, or
to count the number of events of a certain type within some period.

Chronicle consistency. We have mentioned above that G needs not be acyclic.
Nevertheless, the set of time contraints that it defines must be consistent. This veri-
fication can be performed by propagating the time constraint of each edge to the rest
of the graph, until stability. One starts by completing G with all missing edges v → v′

(provided v′ → v does not already exist), setting I(v → v′) =]−∞,+∞[. The propa-
gation rule is local (Figure 4.16): let e0 = v → v′′ be an edge, and let e1 = v → v′ and
e2 = v′ → v′′ be an alternate path of length 2 relating v to v′′ in G. One then updates
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I(e0) by

I(e0) := I(e0) ∩ [I(e1) + I(e2)]

or equivalently

α(e0) := max[α(e0), α(e1) + α(e2)]
β(e0) := min[β(e0), β(e1) + β(e2)]

If some I(e0) becomes empty, the chronicle is invalid or inconsistent: no date on events
can satisfy these constraints. Moreover, the local consistency that the above propaga-
tion rule enforces can be proved to be equivalent to the global consistency. Therefore
the ‘if’ is actually also an ‘only if’. The propagation rule must be applied to every triple
of edges (up to reversing some of them), which results in a complexity in O(|V |3). Fig-
ure 4.17 illustrates a graph of temporal constraints before and after propagation of
constraints.
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Figure 4.16: The constraint propagation rule in a chronicle.
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Figure 4.17: A time constraint graph before (left) and after (right) constraint propa-
gation.

Recognition algorithm. The procedure maintains a set of partially recognized
chronicles, i.e. partial mappings φ from G to the event set (Dousson, 1996; Dous-
son and Maigat, 2007). This is initiated as soon as a minimal event in the chronicle is
identified in the flow. As this imposes a date to a vertex of G, the constraint propa-
gation algorithm can be used to determine intervals for the arrival dates of the other
events. If such an expected successive event appears in the flow, with correct type and
correct time, the partial instance φ gives birth to two partial instances: an extension φ′

of φ including the new observed event a, followed by a propagation of the constraints
imposed by the date δ(a), and a copy of φ to prepare the ground for another event a′

with the same type as a that may appear later.
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A partially recognized chronicle may die if an expected event does not appear in
time. To this end, it is assumed that events are not observed exactly in the order they
are produced (so event dates may not be increasing in the observed sequence), but
they reach the supervisor with some bounded delay. Alternately, one can feed partial
instances of chronicles with special events that set the actual time, and which may
reveal that not yet observed events will definitely be missing. When a partial instance
is completed, it is displayed as a pattern of alarms, and the “diagnosis” corresponding
to this chronicle is output.

Chronicle construction. As for all model-based approaches, the inference algo-
rithms are well mastered and rather efficient, and the main difficulty lies in the iden-
tification of the relevant model. Here, this amounts to a) determining the relevant
chronicles and b) associating them to some diagnosis. There are essentially two ap-
proaches: by model construction, or by learning. The first approach relies on a fault
model of the network, and more specifically on a model of fault propagations. This
brings us back to issues discussed in the section about causal graphs. In (Guerraz and
Dousson, 2004), the authors rely on previous contributions (Aghasaryan et al., 1998)
that modeled fault propagations in a network under the form of safe Petri nets. With-
out going too much into the details, safe Petri nets are dynamic systems that explicitly
represent the parallelism of some events. In that sense, they contrast with automata
that can only encode sequences of events. Safe Petri nets can be provided with a true
concurrency (or partial order) semantics that represents their executions as partial or-
der of events. It was shown in previous works of our team that distributed diagnosis
procedures could be derived from a modeling of fault propagations as distributed Petri
nets. (Guerraz and Dousson, 2004) proposes to extend this setting with timing, under
the form of timed Petri nets. As a result, runs of these models immediately take the
form of partially ordered transition firings related by time constraints, i.e. chronicles.
The last step consists in selecting runs of the model that are exemplary of the failure
situations one wishes to identify.

A second technique consists in directly examining the (huge) alarm logs collected by
equipment in order to detect regularity patterns. Once such patterns are detected, they
can be examined by experts that will then interpret them, label them with a diagnosis
and a severity level, and select those that should be monitored. This semi-automatic
data/process mining approach has the advantage of relying on easily available data,
regardless of the presence or not of failures. It may yield normal behaviors, serious
errors, but also some frequent malfunctions that fly below the radar (temporary or non
critical problems). They also offer the advantage of automatically selecting the most
frequent issues.

Chronicle learning is still an active topic in network management (see for exam-
ple (Kavulya et al., 2012)). (Dousson and Duong, 1999; Fessant et al., 2005) proposed
the FACE approach: Frequency Analysis for Chronicle Extraction. The algorithm is
based on the obvious remark that any frequent chronicle in an alarm log is an as-
sembling of frequent sub-chronicles. Therefore one can first look for frequent small
chronicles and then try to combine them into larger ones. The method proceeds in two
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steps: first the identification of the structure of a chronicle, then the setting of its time
constraints. This is better illustrated by an example. Consider the following alarm log:
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Figure 4.18: Merging 3 chronicles of size 2 into a chronicle of size 3, with time con-
straints propagation.

(A, 1) (B, 3) (D, 4) (C, 4) (A, 4) (B, 8) (C, 9) (B, 10) (B, 12)

The first step consists in detecting unconstrained chronicle instances made of 2 events:
all 10 possibilities are examined for pairs of event types in {A,B,C,D}, given that
an unconstrained chronicle AB is of course equivalent to BA. A chronicle recognizer
yields the following frequencies (for technical reasons, it is assumed that two chronicle
instances can’t share alarms, or equivalently that alarms are assigned to a unique
instance):

AA : 1 AB : 2
AD : 1 AC : 2
BD : 1 BB : 2
CC : 1 BC : 2
CD : 1
DD : 0

The less frequent chronicles are discarded. For each of the most frequent ones (right-
hand side column), one then observes the dates that appear in each detected instance
to determine the time constrains of the chronicle. For example, from the two instances
{(A, 1), (B, 3)} and {(A, 4), (B, 8)} one determines the time interval [2, 4] for edge A→
B. This interval computation must reflect the most relevant detected instances, and
reject some obvious outliers. The recursion step then consists in merging 3 frequent
chronicles of size 2 into a chronicle of size 3, for example AB,BC and AC into ABC (see
Figure 4.18). This yields 4 possibilities here, from which one recomputes frequencies,
selects the most frequent ones, adjusts time constraints, and so on.

BBB : 1 ABB : 2 ABBC : 1
ABC : 2
BBC : 2

In the end, one preserves the most frequent chronicles that were not assembled into a
frequent larger one.



78 State of the art

Discussion. The chronicle method belongs to pattern recognition approaches, and
relies on rather efficient detection algorithms. They offer the nice feature of processing
alarms on the fly, taking their date into account, which is a clean way to go beyond
a plain reasoning based on a sliding time window. In the currently available settings,
however, chronicles are sensitive to alarm losses, and there is no probabilistic version
of chronices. Their explanation power is limited to the interpretation made by experts
for each chronicle inserted into the recognition engine.

On the modeling side, chronicles can again be derived from fault propagation mod-
els, but most interestingly, there exist semi-automatic learning algorithms that can
discover chronicles from alarm logs, an abundant resource which is rarely exploited.
However, the unability of chronicles to adapt to changing networks, and the presence
of an expert in the loop, remain important drawbacks.

4.8 Bayesian Networks

Bayesian networks are another possible choice for alarm correlation due to their ability
to handle uncertainty and represent cause and effect relationships. A Bayesian Network
(BN) is a directed acyclic graph (traditionally abbreviated DAG) whose nodes repre-
sent random variables, the edges denote existence of direct causal influences between
the linked variables and the strengths of these influences are expressed by forward con-
ditional probabilities (see Figure 4.19). In the context of fault diagnosis, the random
variables represent states of network objects or the occurrence of network events. An

Figure 4.19: A Bayesian network for IP paths diagnosis

important advantage that Bayesian networks offer is the avoidance of building huge
joint probability distribution tables that include permutations of all the nodes in the
network. Rather, only the possible states of a node’s immediate predecessors and their
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effects on the node are necessary.

Definition 7 A Bayesian network consists of the following:

• a set of variables and a set of directed edges between variables;

• each variable has a finite set of mutually exclusive states;

• the variables together with the directed edges form a DAG, a directed graph is
acyclic if there is no directed path X1 → · · · → Xn so that X1 = Xn;

• to each variable X with parents W1, ...,Wn, a conditional probability distribution
(CPD) P (X|W1, ...,Wn) is attached; if X has no parents, then the table reduces
to the unconditional probability table P (X).

Conditional probability distributions can be described in a variety of ways. A common,
but not necessarily compact representation for a CPD is a table which contains a row
for each possible set of values for the parents of the node describing the probability of
different values for X. These are often referred to as table CPDs and are tables of multi-
nomial distributions. Other possibilities are to represent the distributions via a tree
structure (called, tree-structured CPDs), or using an even more compact representation
such as a noisy-OR or noisy-MAX.

A Bayesian network is made up of various types of nodes. A root node has no
parents, and a leaf node has no children. An evidence node, also known as a finding
node, instantiated node, or observed node represents a variable with a single value that
has been observed with probability one. Such a node is said to have been instantiated
with specific or hard evidence. The set of all evidence variables is denoted E with values
e. The conditional and prior probabilities are part of the design of the network and
do not change during inference. The dynamic values of the node probabilities shall be
denoted Bel(x). This latter value reflects the overall belief in the proposition X = x
given all the evidence, that is,

Bel(x) , p(x|e) (4.1)

As such, the belief values represent the posterior probabilities. The posterior probability
of any variable may be obtained through marginalisation. A vector of belief values for
all possible states of X is denoted Bel(X).

Belief propagation

A Bayesian network represents a complete probabilistic model of all the variables in
a specific domain. Therefore, it contains all the information required to answer any
probabilistic question about any variable in that domain. These questions are usually
restricted to determining the most likely hypothesis or, more specifically, the belief
in, or probability of, each possible hypothesis, given the available observations or ev-
idence. The application of evidence is ongoing as the observations continue to arrive
over a period of time. Therefore, the Bayesian network is dynamic and the most likely
hypotheses, and their probabilities, are likely to change.



80 State of the art

To ascertain the effect of the available evidence on any variable (hypothesis), each
node updates the posterior probabilities for each of its hypotheses on the receipt of
data messages from its immediate neighbours. The effect of evidence is transmitted
throughout the network by allowing each variable to continually update its state by
comparing the state of its neighbours against local constraints; if the local constraints
are satisfied, no activity takes place, otherwise action is taken to correct the constraint
violation and messages are sent to the immediate neighbours of that variable.

The posterior probability, or belief, for variable X = x is Bel(x) , p(x|e). The
evidence influencing X is separated into two disjoint subsets, e−X denoting the evidence
introduced through the arcs between X and its children, and e+

X denoting the evidence
introduced through the arcs between X and its parents. These may be further divided
into e−XYi for the evidence introduced through the arc to child Yi, and e+

WjX
as that

introduced through the arc from parent Wj . Applying Bayes’ rule conditioned on e+
X ,

and since e−X and e+
X are independent given X, the belief may be written

Bel(x) = p(x|e−X , e
+
X) =

p(e−X |x, e
+
X) p(x|e+

X)

p(e−X |e
+
X)

=
p(e−X |x) p(x|e+

X)

p(e−X |e
+
X)

. (4.2)

Defining π(x) = p(x|e+
X) and λ(x) = p(e−X |x), the belief becomes

Bel(x) = α π(x) λ(x), (4.3)

where α represents a normalizing constant.
Variable λ(x) is the likelihood representing diagnostic or retrospective support for

the proposition X = x. Vectors or messages λ(X), where each element of λ(X) corre-
sponds to a different state of X, are passed up the network in the opposite direction
to the arrows on the arcs i.e. from the children of X to X. Conversely, π(x) may be
considered as the prior certainty of x given the prior evidence e+

X , and it represents the
causal or predictive support for X = x. Messages π(x), also representing each possible
state of X, are passed down the network in the direction of the arrows i.e. from X
to its children. For simplicity, it is assumed that all evidence is introduced into the
network through leaf nodes, that is, all evidence on non-leaf nodes is represented by
adding child leaf nodes.

The following description of the propagation in chains, trees and polytrees is taken
from (Krieg, 2001). Note that the product F (X)G(X) of two such vectors will stand
for term-by-term multiplication while the dot symbol · will be used to indicate matrix
products.

Propagation in Chains

Consider the serial or chain network in Figure 4.20, where λ(Y ) = p(e−Y |Y ). Now,

λ(x) = p(e−X |x) =
∑
y

p(y|x) p(e−Y |y)⇒ λ(X) = λ(Y ) · p(Y |X). (4.4)

Similarly, λ(W ) = λ(X) · p(X|W ). Note that λ(X) is calculated from the probability
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Figure 4.20: Propagation in a chain network (taken from (Krieg, 2001))

table p(Y |X) attached to node Y and is calculated at node Y . To complete the belief
propagation, consider the propagation of the π messages, starting at node W . Node
W is a root node and its only evidence is its prior probability distribution. Therefore,
π(w) = p(w|e+

W ) = p(w), and

π(x) = p(x|e+
X) =

∑
w

p(x|w)p(w|e+
W )⇒ π(X) = π(W ) · p(X|W ). (4.5)

Similarly, π(Y ) = π(X) · p(Y |X). The π messages are propagated as illustrated in
Figure 4.20, and the belief at each node can be calculated using (4.3). The appropriate
λ and π messages are re-propagated if evidence is added or changed.

Propagation in Trees

Now, consider a case of multiple child nodes, as illustrated in Figure 4.21. The addi-
tional problems introduced here are combining the λs as they are propagated up the
tree and separating the πs as they are propagated down the tree. Starting with the

Figure 4.21: Propagation in a tree (taken from (Krieg, 2001))

λs, the evidence on the sub-tree at X is partitioned into the disjoint sets e−Y1 and e−Y2 .
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Therefore,

λ(x) = p(e−Y1 |x) p(e−Y2 |x) , λY1(x) λY2(x)⇒ λ(X) = λY1(X) λY2(X). (4.6)

Node X then transmits λX(W ) = λ(X) · p(X|W ) to node W . Assuming we have
π(X) = πX(W ) · p(X|W ), it is now necessary to split π(X) into individual messages
for each child of X, that is Y1 and Y2. Consider the predictive support for X = x that
is passed to node Y1, namely,

πY1(x) = p(x|e+
X , e

−
Y2

). (4.7)

Using Bayes’ rule,

πY1(x) = α p(e−Y2 |x)p(x|e+
X) = α λY2(x)π(x). (4.8)

More generally, for the kth child of K children of X,

πYk(x) = α
K∏

j=1\k

λYj (x)π(x) = α
Bel(x)

λYk(x)
⇒ πYk(X) = α

Bel(X)

λYk(X)
, (4.9)

allowing the same message to be passed to all children, namely Bel(X), for determi-
nation of πk(X) at each child.

Propagation in Polytrees

Causal polytrees are singly connected trees in which each node may have multiple
parents. They may be thought of as collections of causal trees, fused at the nodes
where the arrows converge. To illustrate the propagation in this type of network,

Figure 4.22: Propagation in a causal polytree network

consider the example in Figure 4.22. The additional problems introduced by this type
of structure are combining the π messages from multiple parent nodes and splitting
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the λ messages between multiple parent nodes. Consider the variable X that has two
parents, W1 and W2, and two children, Y1 and Y2. The evidence obtained from the
sub-tree rooted at X is the union of evidence obtained from each arc connecting it to its
children, that is, e−XY1 and e−XY2 . Similarly, the evidence from the rest of the network
can be separated into that obtained from each arc linking X to each of its parents,
namely e+

W1X
and e+

W2X
(Pearl, 1988).

The λ messages, λ(X) = λY1(X) λY2(X) must be split for transmission to the
parents of X, namely λX(W1) for W1 and λX(W2) for W2. Therefore, we denote
λX(w1) = p(e−W1X

|w1) and separate the evidence e−W1X
into disjoint sets, namely that

associated with the sub-tree rooted at X, e−X , and that associated with all other parents
of X, in this case e+

W2X
. Then,

λX(w1) = p(e−W1X
|w1) = p(e−X , e

+
W2X
|w1), (4.10)

and conditioning on X and W2 and applying Bayes’ Rule gives

λX(w1) = β
∑
x

p(e−x |x)
∑
w2

p(w2|e+
W2X

)p(x|w1, w2), (4.11)

where β is an arbitrary constant. In general, for n parents:

λX(wi) = β
∑
x

λ(x)
∑

wk:k 6=i
p(x|w1, w2, ..., wn)

n∏
k=1\i

πXwk, (4.12)

where πX(wk) = p(wk|e+
WkX

). The predictive support is provided through the arcs

from the parents of X, that is, π(x) = p(x|e+
X) = p(c|e+

W1X
, e+
W2X

). Conditioning on
W1 and W2, this becomes

π(x) =
∑
w1

∑
w2

p(x|w1, w2)πX(w1)πX(w2). (4.13)

In general, for n parents, this may be written,

π(x) =
∑

w1,w2,...,wn

p(x|w1, w2, ..., wn)

n∏
i=1

πX(wi). (4.14)

Application of Bayesian Networks for fault management

Several applications of Bayesian networks for fault management have been reported.
(Deng et al., 1993) investigated the application of probabilistic reasoning to fault di-
agnosis in Linear Lightwave Networks (LLN’s). The basic network components are
LDC’s (linear divider/combiner). The observable messages are the LDC input and
output power values. If an LDC has failed or some part of it has failed, all its output
power values will be incorrect (outside the specified range) but its input power values
remain unaffected. The LLN routes/connections determine the internal connections
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between the input and the output ports of every LDC. The inference model is con-
structed as follows. A power value, say Fip, is assumed to be in one of the two states,
within the expected range or outside it. A binary-valued random variable Fi is defined
for power value Fip: Fi = 1 if the power value Fip is within the expected range, and
0 otherwise. Similarly, for each LDC a binary-valued random variable Lj is defined:
Lj = 1 if LDCj is under normal operation, and 0 otherwise. Furthermore, the Lj ’s are
assumed to be mutually independent. The dependence relations among these random
variables can be graphically represented as a DAG. For a non-root random variable X
in the DAG, X and its parents U1, ..., Un, are related by X = U1 ∧ U2 ∧ ... ∧ Un. The
conditional probability P (x|u1, ..., un) = 1 if x = u1 ∧ ... ∧ un and 0 otherwise. By the
DAG and the defined probability distributions, the LLN inference model is represented
by a Bayesian network. An inference algorithm capable of conducting fault diagnosis
with incomplete evidence and on an interactive basis is then proposed.

(Steinder and Sethi, 2002) proposed a layered system model that represents rela-
tionships between services and functions offered between neighboring protocol layers.
These relationships form a bipartite probabilistic dependency graph where each node is
associated with multiple failure modes F1, ..., Fk, which represent availability and per-
formance problems pertaining to the service or function represented by the node. The
chosen BN structure represents a model of conditional probabilities known as noisy-OR
gates. This simplified model contains binary-valued random variables. A mapping from
the above dependency graph to the BN is performed as follows. For every node of the
dependency graph and for every failure mode associated with this node, a random vari-
able is created, whose domain is {true, false} (1 and 0 are also used to represent values
true and false, respectively). Let Vi be a belief network node created for failure mode
Fj of the dependency graph node representing a service or a function. Assignment
Vi = true (V i = false) indicates that the service/the function is (is NOT) in condition
Fj . For every dependency graph edge X → Y and for every failure mode of node Y ,Fi,
the corresponding failure mode of node X, Fj is determined. Let Vi be the belief net-
work node corresponding to Y and Fi. Let Vj be the belief network node corresponding
to X and Fj . A belief network edge is inserted from Vi to Vj . A probability matrix
associated with dependency link X → Y . A symptom is defined as an observation that
a dependency graph node X is in condition Fj (negative symptom), or is NOT in con-
dition Fj (positive symptom). If Vi is the belief network node corresponding to X and
its failure mode Fi, then the negative symptom and positive symptom are interpreted
as an instantiation of Vi with value true and false, respectively. As a result of this
mapping, the set of all observed symptoms becomes the evidence set e. The problem
of finding the subset of (all possible) faults is equivalent to computing the MPE query
based on the evidence set e.

(Steinder and Sethi, 2004b) presents a probabilistic event-driven fault localization
technique, which uses the so-called probabilistic symptom-fault map as a fault prop-
agation model. With every fault fi ∈ F a probability of its independent failure is
associated, which is denoted by p(fi). The edge between fi ∈ F and sj ∈ S indi-
cates that fi may cause sj . The edge is weighted with the probability of the causal
implication, p(sj |fi). A noisy-OR model of probability distribution is considered. A
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subset of symptoms observed is denoted by SO. The purpose of fault localization is to
find FD ⊆ F that maximizes the probability that (1) all faults in FD occur and (2)
each symptom in SO is explained by at least one fault from FD. A fault localization
technique called Incremental Hypothesis Updating (IHU) is proposed. Its basic version
creates a set of hypotheses, each of which is a subset of F that explains all symptoms
in SO. Hypothesis hj ⊆ F explains symptom si ∈ SO if it contains at least one fault
that explains si. The hypotheses are ranked using a belief metric, b, which expresses
the confidence associated with a given hypothesis relative to other hypotheses. The
algorithm is triggered by an observation of the ith symptom, si, and creates a set of
hypotheses, Hi, each explaining symptoms s1 through si. Set Hi is created by updating
Hi−1 with an explanation of symptom si. Set Hsi is defined as a set {fk ∈ F} such
that fk may cause si. To incorporate the explanation of symptom si into a set of fault
hypotheses, in the ith iteration of the algorithm, each hj ∈ Hi−1 is analysed. If hj is
able to explain symptom si, hj is put into Hi. Otherwise, hj has to be extended by
adding to it a fault from Hsi . Fault fl ∈ Hsi may be added to hj ∈ Hi−1 only if the
size of hj , |hj |, is smaller than µ(fl), defined as the minimal size of a hypothesis in
Hi−1 that contains fl and explains symptom si. The proposed solution allows multiple
simultaneous independent faults to be identified and is then extended to deal with loss
and spurious symptoms.

(Khanafer et al., 2008) presented an automated diagnosis system for UMTS net-
works using Bayesian Network approach. Two components of the automatic diagnosis
system have been distinguished, i.e. the diagnosis model and the inference method.
The elements of the model are causes and symptoms. Causes are modeled as dis-
crete random variables with two states (absent / present). Two types of symptoms
are considered: Alarms and KPIs. Alarms are also modeled as discrete random vari-
ables with two states (on / off ). KPIs can be modeled as discrete random variables
with two, three, or more states, each representing a subset of the continuous range of
the KPI. The chosen BN structure is a so-called Naive Bayes Model (NBM), which is
also known as a Simple Bayes Model or Naive Bayesian Classifier. The NBM (Fig-
ure 4.23) consists of a parent node C, whose states are the possible fault causes, and
the children nodes S1, ..., SN , which represent the symptoms and may have any dis-
crete number of states. This model assumes that there can only be one fault happening

Figure 4.23: NBM

at the same time. The impact of this simplification on the diagnosis performance is
considered minor while the simplicity of this type of model is a clear benefit. The re-
quired probabilities for this model are the following: p(C = ck) for each fault cause ck;
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p(Si = si,j |C = ck) for each state si,j of Si and each fault cause ck. Thus, with the
NBM structure, the desired conditional probabilities of the fault causes given the ob-
served symptoms can be calculated as

p(C = ck|E) =
p(C = ck)

∏N
i=1 p(Si = si,j |C = ck)

p(E)
.

This equations assumes that the symptoms Si are independent given the fault cause
C. According to the independence properties of a BN, this is exactly what the NBM
structure indicates. To further enhance automation and performance of the BN model,
the automated learning of both KPI thresholds and model probabilities has been
thouroughly investigated.

Discussion Due to Bayesian network’s form of knowledge representation, large amounts
of interconnected and causally linked data can be represented. Generally speaking:
Bayesian networks can represent deep knowledge by modeling the functionality of the
transmission network in terms of cause and effect relationships between element and
network behavior and faults.

Bayesian networks can provide guidance in diagnosis. Calculations over the same
BN can determine both the precedence of alarms and the areas that need further
clarification in order to provide a finer grained diagnosis. They can handle noisy,
transient, and ambiguous data due to their grounding in probability theory. They have
a modular, compact, and easy to understand representation, when compared to other
probabilistic methods. They provide a compact and well-defined problem space because
they use an exact solution method for any combination of evidence or set of faults.

Bayesian networks are appropriate for automated diagnosis because of their deep
representations and precise calculations. A concise and direct way to represent a sys-
tem’s diagnostic model is as a Bayesian Network constructed from relationships between
failure symptoms and underlying problems. A Bayesian Network represents cause and
effect between observable symptoms and the unobserved problems so that when a set
of symptoms are observed the problems most likely to be the cause can be determined.
In practice, the network is built from descriptions of the likely effects for a chosen fault.
In use as a diagnostic tool, the system reasons from effects back to causes.

The difference of Bayesian Networks, in comparison with other classical methods, is
their polyvalence. They allow dealing with issues such as prediction or diagnosis, opti-
mization, data analysis of feedback experience, deviation detection and model updating.
The graphical representation is interesting since the model complexity is understand-
able in a single view. In the case of large size model, object oriented representation
OOBN or probabilistic relational descriptions (PRM) provide manageable models.

The development of a diagnostic Bayesian Network requires a deep understanding
of the cause and effect relationships in a domain, provided by domain experts. This
is both an advantage and disadvantage. An advantage is the knowledge is not rep-
resented as a black box, as are the Neural Networks. Thus, humanly understandable
explanations of diagnoses can be given. The disadvantage is that the realm of the con-
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sidered system/network can be technologically immature and as a result expertise in
fault diagnosis may be hard to find and to implement.

4.9 Summary

Many approaches to fault management rely on black-box or learning methods (neural
networks, self-organizing maps, statistical learning (Kavulya et al., 2011), codebook
techniques (Reali and Monacelli, 2009), chronicle discovery (Dousson, 1996; Dousson
and Duong, 1999; Kavulya et al., 2012)). Such strategies generally suffer from a lack of
classified data relating failures to some observed symptoms. They also poorly resist to
phenomena like complex symptom patterns due to multiple faults, or to the asynchro-
nism or loss of observations, and they are difficult to maintain as the network evolves.
Such approaches are thus appropriate for simple and small scale event correlation over
fixed topologies, where training can safely converge.

To progress towards the more ambitious objectives mentioned above, one must
adopt a model-based strategy, which consists first in building a model of the man-
aged network, establishing relations between correct/incorrect functioning and observed
signals/symptoms, and then in deriving event management algorithms based on this
model. This is the track adopted by several contributions (see the ‘model traversal’
techniques in (Steinder and Sethi, 2004a), and their generalization into ‘graph theo-
retic’ techniques). One trend compiles expert knowledge about malfunctions and their
consequences, or symptoms and their causes, into causal graphs that form the support
of automatic (possibly distributed) reasoning (Lu et al., 2011) and (Grosclaude, 2008)
(in French). Another important trend models or learns from data the (logical or sta-
tistical) dependencies between resources, initial faults and observable symptoms, and
compile them into Bayesian networks or related objects (Bouloutas et al., 1994, 1995;
Fabre et al., 2004). The inference engines on such structures can then be taken off
the shelf, since this is a well understood and much covered topic, and the distribution
of these techniques is also a well paved trail (Fabre et al., 2004, 2005). As witnessed
by the above contributions, however, model-based techniques always raise two major
difficulties: a) how to derive such a model, suited to a given network at a given time,
in particular if one wishes to capture several network layers and segments (see open
problems 1, 4 and 6 in (Steinder and Sethi, 2004a)) and b) how to reason on a poten-
tially huge model, if one wishes to manage a nation-wide network for example. This
thesis proposes a contribution to these two issues.

Obtaining a model of the managed network is far from simple, especially if one
wishes to capture inter-layer and inter-segment fault propagations. The first infor-
mation source one should use is of course the topology of the network, which many
contributions considered (for e.g. (Bouloutas et al., 1994)), including professional tools
dedicated to specific network technologies. But one should go further and aggregate
different sources of information, generally found in the standards, in protocol descrip-
tions, and in expert knowledge if available. Relying on the past experience of our
team in the modeling of fault and alarm propagations (Fabre et al., 2004), we propose
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here a self-modeling approach. This consists first in identifying the different families
of network resources that should be managed, and how these resources are structured
and rely on each other, following the usual hierarchical construction of networks. This
yields a collection of generic patterns of resources and their dependencies, designed
according to a specific grammar. Secondly, by exploring the managed network, one can
then create as many instances of these generic patterns as discovered in the network
topology. As these instances share some resources, this construction results in a large
scale structure where similar patterns are duplicated and partially overlap. The model
obtained in that way perfectly matches a given network, and can be used for diagnosis,
root-cause analysis, and possibly for failure impact analysis.

Regarding the diagnosis engine, we propose to translate the model of network re-
sources and their dependencies into the Bayesian network (BN) formalism, which seems
to reach some consensus in the network management community. Bayes nets can easily
mix statistical dependencies and constraints/logics, while enabling limited statistical
learning (parameter identification) when data are available. They can also accommo-
date networks of dynamic systems (Fabre, 2007; Fabre et al., 2004; Fabre and Hadji-
costis, 2006). Probabilistic reasoning on BN is well understood, and allows one to relate
observations or test results to the state of hidden variables of interest. But dealing with
possibly huge models may make them inappropriate. Therefore we propose to adapt
the BN formalism to explore only part of the model, starting by the resources involved
in a given malfunction to be explained, and progressively introducing/revealing more
resources (i.e. variables) to reach new observations and making new tests, in order to
locate the origin of the malfunction with more precision. Extra extensions would also
be necessary, in particular to deal with the intrinsic hierarchical description of networks,
but they will be examined in a forthcoming work.

As a support to these two research directions, the thesis considers the management
of failures in IMS networks, capturing several network segments (access, metropolitan
and core), and the end-to-end services running on top of them (Bertin et al., 2007).
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Starting from standards descriptions of IMS networks, our objective in this chap-
ter is to identify the network resources involved in such networks, their structuring
and above all their dependencies, which will be the knowledge used to diagnose mal-
functions. The main idea is that the failure of a resource is either spontaneous, or
results from the failure of a second resource that is necessary to the first one. The term
‘resource’ covers both physical equipment in charge of transport, pieces of software
running over them, but also procedures (that must be completed in order to access
IMS services). We represent an IMS network by a dependency model of three multi
resolution layers.

5.1 Physical layer of the IMS Architecture

The physical layer1 displayed in Figure 5.1 comprises an access network and a core
network. The access network is made of two segments: the metro-access, and the
metro-core. The former itself decomposes into smaller segments: access (first/last
mile) and aggregation. The first mile stretches from the Customer Premise Equipment
(CPE) up to the Access Node (AN). As for the aggregation segment, it aggregates

1The one considered here corresponds to a possible realization of the TISPAN NGN IMS functional
architecture (TISPAN, 2009) with an xDSL-based access network.
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traffic from different users, located behind different ANs, and connects them to the
metro-core segment. Aggregation and metro-core segments are connected via one or
more IP edge routers. In configurations where the access segment uses the Digital
Subscriber Line (DSL) technology, the AN is known as a DSL Access Multiplexer
(DSLAM) and the IP Edge router as a BRAS. The metro-core segment is connected
to the core network, containing the IMS service platform, via routers such as the SBC.
The Point of Presence (PoP) of Internet (IP) is generally at the SBC, while routing in
the access network mostly uses Ethernet. Notice that the internal components of the
core network and of the metro aggregation have not been detailed.

IP

CPE DSLAM BRAS A-SBC Session 
Controller

Media 
Server

Media 
Gateway 

Controller

User 
Profile 
Server

Core Network Media 
Gateway

I-SBC

First Mile Aggregation Metro-core
Other IP 
networks

Metro-access

Access Network

PSTN/ISDN

Figure 5.1: The generic IMS physical architecture

Properties of the physical layer

The physical layer architecture is made of specific equipment connecting various net-
work segments. Such a connection is modelled by a ‘connected-to’ relationship between
an equipment and a segment. Besides, the physical layer architecture is essentially
hierarchical: network segments being decomposable into other physical equipment con-
necting smaller network segments.

5.2 Functional layer of the IMS architecture

IMS is defined in the form of a reference architecture to enable delivery of next-
generation communication services over an IP network. It is considered a subsystem
because it exists as part of a complete network. It is considered a reference archi-
tecture, because the implementers build the functional elements conforming to these
specifications. The IMS architecture is defined in terms of functional elements, their
interaction, which is termed as reference points, and the protocols that carry out these
interactions. All functional elements within the IMS architecture communicate with IP-
based protocols. Session Initiation Protocol (SIP) (Rosenberg et al., 2002) is the most
prominent, as it provides the capability to establish and control multimedia sessions.
One reason why SIP is important, is that IMS is seen to provide a uniform protocol for
signaling with the endpoints. Besides SIP, other protocols support vital functions as
well. Diameter (Calhoun et al., 2003) is the enabler for subscriber, policy, and charging
functions. Megaco/H.248 (Cuervo et al., 2000; ITU-T, 2013) and Real-Time Protocol
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(RTP) (Schulzrinne et al., 2003) provide the media-related support. Common Open
Policy Service (COPS) (Durham et al., 2000) was used in the earlier IMS releases for
policy functions, but has now given way to Diameter.

We now look at some of the functions provided by the various elements in the
architecture. The functional architecture is made of three main subsystems. The
NASS (TISPAN, 2010a) provides registration at the access level (identification and
authentication) and initialization of the User Equipment (UE) (in particular IP address
allocation) for accessing to the multimedia services. The RACS (TISPAN, 2006) is in
charge of policy control, in particular resource reservation and admission control in
the access and aggregation segments of the network. Finally the Core IP Multimedia
Subsystem (TISPAN, 2007) (core IMS) is in charge of session initiation, provisioning
and termination (SIP) for multimedia services directed to terminal users. Subsystems
are hierarchical objects, comprising several functions (see below) that communicate
with each other via interfaces (reference points).

5.2.1 Core IMS subsystem

The Core IP Multimedia Subsystem (TISPAN, 2007, 2009) displayed in Figure 5.2
comprises the the following functions.

Figure 5.2: Core IP Multimedia Subsystem architecture (taken from (TISPAN, 2007))
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Session Control Functions

The Call Session Control Function (CSCF) provides the central control function in
the IMS Core Network to set up, establish, modify, and tear down multimedia sessions
(Figure 5.3). The CSCF function is distributed across three types of functional elements
based on the specialized function they perform. These three elements are the Proxy
CSCF (P-CSCF), Interrogating CSCF (I-CSCF), and the Serving CSCF (S-CSCF).

HSS
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Addr

4. S-CSCF 

Addr

1. Register Request

7. Response
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5. Register Request

8. Response

10. Response

9. Invite Request

Figure 5.3: Session Control

The P-CSCF is an edge access function and is the entry point for a UE to request
services from an IMS network. The role of this CSCF is to function as a proxy by
accepting incoming requests and forwarding them to the entity that can service them.
The incoming requests are either the initial registration or an invitation for a multimedia
session. A request for the UE to register for a service is normally forwarded to a session
controller or to one with the capability to interrogate for it. Requests that are a session
invitation are directed by the P-CSCF to a serving CSCF. The P-CSCF provides a
policy function by initiating support for IP flow control and authorization of traffic-
bearer resources.

The I-CSCF is responsible for determining which serving CSCF should be assigned
for controlling the session requested by the UE. A request to the I-CSCF may come
from the home network or a visited network through the proxy CSCF. The I-CSCF
obtains the request for the address of the S-CSCF from the User Profile Server Function
(UPSF) during a registration request, and provides it to the P-CSCF for subsequent
multimedia requests.

The S-CSCF is responsible for conducting both registration and session control
for the registered UE’s sessions. It functions as a registrar and enables the network
location information of the UE to be available at the UPSF. It makes a determination
to allow or deny service to the UE. It enables the assignment of application servers
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to the session, if required. Its role is to execute the session request by locating the
destination endpoint and conducting the signaling toward it.

All three CSCF functions are responsible for generating the Session Details or the
Call Detail Records. The interface to the P-CSCF from the UE is the Gm interface
that carries SIP or Session Description Protocol (SDP) signaling. The P-CSCF com-
municates to the interrogating and serving CSCF using SIP over the Mw interface.

Subscription Functions

The User Profile Server Function (UPSF) is a large database containing the complete
subscription information about an IMS user. This information is accessible to all the
IMS core elements needing information about the subscriber’s profile, subscribed ser-
vices, or authentication data. The UPSF supports the CSCF functions by: a) identify-
ing the address of the CSCF that should be handling the session; b) storing the user’s
registration and location information; c) supporting the authentication and authoriza-
tion by providing the integrity and ciphering data; d) and providing an access to a
service profile, for which the subscriber has been provisioned. The UPSF also extends
functionality to the application servers to determine service authorization, and also
grants the capability to update subscriber profile data to application servers with pro-
visioning capability. The CSCF communicates with the UPSF using Diameter over the
Cx interface. The application servers use the Diameter Sh interface. A large network
may require provisioning the subscribers set into more than one UPSF. This requires
an intelligent entity to guide the requested CSCF or application server to the right
UPSF. The Subscriber Locator Function (SLF) provides this support to the I-CSCF,
the S-CSCF, and the application servers as well. The CSCFs request the UPSF deter-
mination from the SLF over the Diameter Dx interface. The application servers use
the Diameter Dh interface.

Media Functions

Having examined the elements in the control plane, we now examine the functional
elements responsible for processing the multimedia stream in the media plane (Fig-
ure 5.4). The Multimedia Resource Function (MRF) encompasses the functionality to
control the media stream and provide resources for processing it. The MRF comprises
the Multimedia Resource Function Controller (MRFC) and the Multimedia Resource
Function Processor (MRFP). The bearer represents the actual multimedia stream car-
rying voice, data, and video. The MRFP provides the control of the bearer, which in the
IMS core network is an RTP stream. It provides the necessary resources for processing
the media stream. To support multimedia conferencing, it provides the capability to
mix multiple media streams and manage access to shared resources.

The function of the MRFC is to control the resource pool of the MRFP. The MRFC
and MRFP have a master-slave relationship. The MRFC controls the MRFP with
an H.248 model over the Mp interface. The MRFC accepts the requests from the
serving CSCF or an Application Server and controls the resources for the media stream
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Figure 5.4: The media functions

accordingly. The serving CSCF and the application servers can request media resources
and services using SIP over the Mr interface.

The second set of elements in the media plane provides the capability to inter-work
with the legacy Circuit Switched (CS) network. Traffic is carried out on Time Division
Multiplexing (TDM) streams. Media conversion between TDM and IP is performed
by an IMS Media Gateway (IMS-MGW). The control function has functionality split
into a Breakout Gateway Control Function (BGCF) and a Media Gateway Control
Function (MGCF) based on whether a call has to go outbound to the CS network
or it is an inbound call from the CS network. Similar to the MRFP, it provides the
necessary Digital Signal Processing (DSP) resources for this function. In addition, it
has to provide processing of the payload, which involves codecs, echo cancellation, and
a bridge for conferencing. The MGCF, similar to the MRFC, provides control of the
MGW resources. In addition, it has to handle an inbound call from a CS network. It
therefore needs to identify the right serving CSCF based on the routing number of the
incoming call. The MGCF is also responsible for protocol conversion between the CS
network ISDN User Part (ISUP) signaling and SIP.

The serving CSCF requests the BCGF for determining, from the IMS network,
which CS network the call needs to be directed to. If the CS network is managed
within the same operator domain, the BGCF will direct the request to the MGCF.
Otherwise, the BGCF will forward the signaling to the BGCF in that network. The
S-CSCF communicates with the BGCF using SIP over the Mi interface. The BCGF
communicates with the MGCF using SIP over the Mj interface. The BGCF also com-
municates with a BGCF in another IMS network over the Mk interface. The MGCF
controls the IMS-MGW with Megaco/H.248 over the Mp interface.
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Service Functions

The service plane in the IMS is designed to support the next generation of application
with SIP, and to be able to work with the Legacy service platforms. The service plane
elements, referred to as the application servers, have the capability to support full
service logic for an application. They can additionally function as a gateway or provide
the inter-working function to a legacy server or a non-SIP server. Or the elements could
coordinate service logic between multiple servers.

Regardless of their role, all types of service elements communicate with the S-CSCF
using SIP on the IMS Service Control (ISC) interface. They also have access to the
subscriber information stored in the UPSF. The SIP Application Server (AS) is a SIP
server platform providing the value-added service logic to the IMS session control. The
SIP AS can support services for call control, presence, and messaging to name a few.
The SIP AS can also be used to inter-work with a non-SIP service, such as Web-based
services.

Border Functions

The Signaling Gateway (SGW) is a border function that provides the signaling con-
version between IP-based protocols and the legacy SS7 networks. The Inter Working
Function (IWF) provides the necessary support between different SIP profiles and be-
tween SIP and H323 systems. The Interconnection Border Control Function (IBCF)
provides the edge function specific to the service provider network. It supports Session
Border Control, interfacing for bandwidth control with RACS and invokes the IWF
when necessary.

5.2.2 RACS subsystem

RACS subsystem (see Figure 5.5) provides

• Admission control. Performs admission of Quality of Service (QoS) resource re-
quests based on the user profile, operator-specific policy rules, and resource reser-
vation provided by NASS.

• Resource reservation. Verifies if the QoS resource request is within the permitted
bandwidth in the access network, and reserves the resource.

• Gate control. Provides Network Address Port Translation (NAPT) control and
priority traffic control, and performs gate control of the edge router based on the
approved QoS resource request.

The elements in the RACS use Diameter to communicate the policy-related infor-
mation. The RACS provides the support for guaranteed QoS by resource reservation.
It also supports relative QoS with diffserv. RACS consists of the following function
blocks:
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Figure 5.5: Resource and Admission Control Subsystem architecture (taken from (TISPAN, 2006))

• Service Policy Decision Function (SPDF) communicates with the Application
Function (AF), a P-CSCF for instance. The AF provides the resource require-
ments from the session descriptor. The SPDF can take the decision to authorize
the QoS resources, which are communicated to the A-RACF or the C-BGF.

• Access Resource and Admission Control Function (A-RACF) is located in the
access network and is responsible for directing the SPDF decisions in the RCEF.
Depending upon the mode—Guaranteed QoS or diffserv—it sets the appropriate
Layer 2/Layer 3 policies or diffserv markers, respectively in the RCEF.

• Resource Control Enforcement Function (RCEF) is located in the access network
and can apply the gating function on the Layer 2 termination.

• Border Gateway Function (BGF) supports border control functionality at the
IP packet level in the access, core, or inter-core network. The BGF supports
the functions for IPv4/IPv6 conversion, NAPT and Network Address Translation
(NAT) traversal, traffic screening, and topology hiding. Function Core Border
Gateway Function (C-BGF) is an edge router located at the border of the core
network. The SPDF can take the decisions to apply a gating function to the
IP-flows at the C-BGF.

Figure 5.6 shows the network components associated with QoS control and the control
procedure. The control procedure is described as follows.

< 1 > In the access authentication when starting the access to the network from a
terminal, RACS receives and retains the QoS profile from NASS.
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Figure 5.6: Network components and control flow for QoS

< 2 > The originating terminal sends a session initiation request (SIP message) to
CSCF.

< 3 > CSCF sends a QoS resource request to RACS together with the information such
as the bandwidth required for service execution, service class, and reservation
priority.

< 4 > After receiving the QoS resource request, RACS collates the requested condi-
tions with the retained user profile and edge router information, and performs
admission control. RACS also calculates the bandwidth value required for guar-
anteeing the service quality.

< 5 > RACS performs gate control for the edge router based on the calculated band-
width value.

< 6 > RACS responds about the securing of the QoS resource to CSCF.

< 7 > CSCF sends a session initiation request to the terminating terminal.

5.2.3 NASS subsystem

NASS subsystem (see Figure 5.7) performs IP address distribution and authentication.
Network attachment is provided based on either implicit or explicit user identification
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credentials stored in its database (respectively, physical or logical Layer 2 addresses, or
user name and password).

Figure 5.7: Network Attachment Subsystem architecture (taken from (TISPAN, 2010a))

NASS consists of the following functions blocks:

• Network Access Configuration Function (NACF) is responsible for the IP address
allocation to the user equipment and it may provide some additional parameters.
This service can be provided by a Dynamic Host Configuration Protocol (DHCP)
server.

• Access Relay Function (ARF) is a relay between the CNG and the NASS that
inserts local configuration information.

• Access Management Function (AMF) translates the network access requests sent
by the User Equipment (UE) and forwards requests for allocation of an IP address
and possibly additional network configuration parameters to/from the NACF.
The AMF also forwards requests to the UAAF to authenticate the user, autho-
rize or deny the network access, and retrieve user-specific access configuration
parameters.

• Connectivity Session Location Function (CLF) is used to associate the user IP ad-
dress to the physical location information and to transfer QoS profile information
containing the IP address and QoS information to RACS.

• Profile Database Function (PDBF) stores the user profiles and authentication
data, manages user profile information such as subscriber ID and subscribed
services.

• User Access Authorization Function (UAAF) performs authentication for network
access, based on the user profile stored in the PDBF.

• Customer Network Gateway Configuration Function (CNGCF) is used to config-
ure the Customer Network Gateway (CNG) when necessary.
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NASS RACS

CSCF

· Authenticates the network access level based on the user profile.
· Manages IP addresses of terminals and network information to be set in the terminals,
and provides the information to the terminal whose connection is permitted (DHCP
server function).

· Manages QoS profile information that is required for RACS bandwidth management
and provides the information to RACS.
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Figure 5.8: Network components and procedure for authentication

Figure 5.8 shows the authentication procedure and related network components.
The authentication procedure is described as follows:

< 1 > Terminal requests access authentication to NASS when initiating the access to
the network.

< 2 > NASS verifies the profile information such as the subscriber ID, physical access
ID, and logical access ID for the terminal connection request, and performs
authentication.

< 3 > The authenticated terminal requests IP address assignment to NASS by sending
a DHCP request.

< 4 > NASS assigns an IP address to the terminal through DHCP.

< 5 > When interacting with RACS, NASS sends the QoS profile information to RACS
together with the subscriber ID and the IP address. (See<1> of the QoS control
procedure.

Properties of the functional layer

Figure 5.9 displays the TISPAN IMS functional architecture with NASS, RACS and
Core IMS functions connected via interfaces. Such a connection is modelled by a
‘connected-to’ relationship between a function and an interface. Besides, the func-
tional layer architecture is essentially hierarchical: it is made of subsystems being
decomposable into other functions connected via interfaces.
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Figure 5.9: TISPAN NGN IMS functional architecture

Mapping between functional and physical layers

In a real network, the IMS functions or logical servers need to be implemented on phys-
ical nodes. How to map logical servers located in a functional architecture to physical
nodes located in a physical architecture is not standardized, but is of great interest
to the network providers. Network providers may choose different mapping strategies
to achieve their own objectives. For example, an industry-leading network provider
may want a mapping strategy that provides high reliability and high expandability.
Moreover, each mapping strategy has its own advantages and disadvantages. Network
providers select a mapping strategy with the best performance results according to
their needs and actual network conditions, including the number of users, the capacity
of physical nodes, the budget plan, and so forth. This requires the providers to consider
both advantages and disadvantages of each mapping strategy, in order to determine the
one that is satisfied by themselves and their users.

For example, (Xiao et al., 2010) presents a generic mapping strategy and two special
mapping strategies. The Generic Mapping Strategy is a method that allows for the
mapping of a logical entity into any physical node. In this case, any physical node
can host one or more logical server(s). On the other hand, two or more physical nodes
can host one or more identical logical servers. Any two or more physical nodes can
be identical, which means that they can host the same logical servers. The generic
mapping strategy includes all possible mapping ways.

When using the first special mapping strategy (Customized Mapping Strategy 1)
presented in (Xiao et al., 2010) to map logical servers to the physical nodes, each
physical node only hosts one type of logical server. This mapping strategy is desired
when the loads of two or more logical servers exceed the capacity of a physical node.
This is often the case for network providers with a large number of users. Overall,
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there are three advantages by using this mapping strategy. First, it is easier to create a
backup physical node and upgrade capacity for the future. Second, this strategy brings
a small impact to the system when the failure occurs on the physical nodes, because
each physical node only takes care of one type tasks. Third, it is easy to implement
and maintain the physical nodes. The main disadvantages of this mapping strategy
is cost. The remaining capacity of the physical nodes which host one type of logical
server cannot be allocated to other logical servers and therefore will be wasted.

The second special mapping strategy (Customized Mapping Strategy 2) presented
in (Xiao et al., 2010) fits small carriers who try to pack different logical servers into
the same physical nodes to save footprint and cost. In this strategy, physical nodes are
divided into different groups. One logical server can be hosted by the physical nodes
located in one group only. One group of physical nodes can host one or more than one
logical servers. Furthermore, it is assumed that a message traversing the logical servers
that belong to the same group will be processed by one physical node only in the group.
This constraint can reduce the travelling time within a group. In the extreme case, if
each group hosts only one logical server, this becomes the customized strategy 1. The
main disadvantage of this mapping strategy over the previous one is the complexity
running these servers. When a physical node hosts more than one logical server, the
physical node has to handle more types of tasks which may interfere with each other.
The maintenance cost will clearly be higher.

Figure 5.10 reflects a possible implementation of functions over physical equipment.
This embedding is modelled by a ‘supported-by’ relation between a function and a
physical equipment. This is a first example of resource dependency since the failure of
an equipment generally impacts the functions running over it.
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Figure 5.10: Mapping functions to physical equipment

5.3 Procedural layer of the IMS Architecture

Before an IMS terminal starts any IMS-related operation there are a number of pre-
requisites that have to be met. First, the IMS terminal needs to get access to an IP
Connectivity Access Network (IP-CAN) such as Asymmetric Digital Subscriber Line
(ADSL). As part of this prerequisite the IMS terminal needs to acquire an IP address.
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Second, the IMS terminal needs to discover the IP address of the P-CSCF that will be
acting as an outbound/inbound SIP proxy server. When these two prerequisites are
fulfilled the IMS terminal registers at the SIP application level to the IMS network.
This is accomplished by regular SIP registration. IMS terminals need to register with
the IMS before initiating or receiving any other SIP signaling. The IMS registration
procedure allows the IMS network to locate the user (i.e. the IMS obtains the termi-
nal’s IP address). It also allows the IMS network to authenticate the user, establish
security associations, and authorize the establishment of sessions.

The procedures required to meet the above prerequisites are defined in standards.
Some procedures involve interactions between NASS functions (e.g. network attach-
ment procedures (TISPAN, 2010a)), others RACS functions (e.g. resource reservation
and resource release (TISPAN, 2006)) and others Core IMS functions (e.g. registra-
tion (TISPAN, 2010c,b), call origination (TISPAN, 2008a,b).

5.3.1 NASS procedures

The Network attachment procedure (TISPAN, 2010a) is composed of several procedure-
stages: authentication and authorization, IP configuration, CNG configuration and Lo-
cation Management. Depending on the protocols (e.g. Point-to-Point Protocol (PPP),
DHCP, etc.) and deployment scenarios used, these procedure-stages can be applied in
a different order. Though for security reasons it needs to be ensured that the authen-
tication procedure-stage is always successfully completed first.

Network attachment using DHCP Figure 5.11 shows the network attachment
procedure using DHCP with a focus on procedure-stages 1 and 2a of the network at-
tachment process (i.e. authentication and IP address allocation). Note that procedure-
stages 2b (P-CSCF IP address discovery), 3 (CNG configuration), and 4 (Location
Management) are not considered here.

< 1 > The UE initiates the IP address allocation and implicit authentication procedure
by sending a DHCP Discover message.

< 2 > ARF receives the message, adds additional information to the DHCP Discover
(e.g. line identification), and forwards the message on to AMF.

< 3 > AMF receives the DHCP Discover and sends an access request to the UAAF
to authorize the NASS User associated with the UE which sent the DHCP Dis-
cover. The association of NASS User profile and UE is facilitated by the line
identification information.

< 4 > UAAF responds with an access accept in case a NASS User profile could suc-
cessfully be associated with the supplied line identification information.

< 5 > AMF sends the DHCP Discover to NACF, which operates as a DHCP server.

< 6-7 > NACF responds with a DHCP Offer to the UE.
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1. DHCP Discover //

2. DHCP Discover //

3. Access request //

4. Access accept
oo

5. DHCP Discover //

6. DHCP Offer
oo

7. DHCP Offer
oo

8. DHCP request // //

9. Bind IP-Address request //

10. NASS User profile request
oo

11. NASS User profile response//

12. NASS User profile pushed to RACS//

13. Bind IP-Address answer
oo

oo
14. DHCP ACK (IP-address and P-CSCF address)

oo

Figure 5.11: Network attachment procedure using DHCP (taken from (TISPAN, 2010a))
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< 8 > The UE sends a DHCP Request to request an IP address and through DHCP
option 120 the address of a P-CSCF. This request is relayed by the AMF to the
NACF.

< 9 > The NACF informs the CLF that an IP address is allocated to the UE.

< 10-11 > The CLF retrieves the NASS User profile from UAAF and associates it with
the IP address received.

< 12 > The CLF pushes the NASS User profile along with the associated IP addressing
and location information to RACS via the e4 reference point.

< 13 > CLF acknowledges to NACF the successful binding of IP address to NASS
User profile. This message may contain address information of the TISPAN NGN
Service/Applications Subsystems contact point.

< 14 > NACF provides the allocated IP address as well as the Fully Qualified Domain
Name (FQDN) or IP address of the P-CSCF, which is relayed by the AMF to the
UE.

5.3.2 RACS procedures

This subsection describes the RACS interactions for notifying the A-RACF when a
subscriber attaches to the network and for resource reservation.

Notification to the RACS during network attachment The NASS is responsi-
ble for notifying the A-RACF when a subscriber attaches to the network. The NASS
provides to A-RACF an association between Subscriber ID/IP address, the bearer used
in the access network and additional subscriber access information. Figure 5.12 presents
the associated procedure:

Figure 5.12: Notification sent to the RACS when a user attaches to the network (taken
from (TISPAN, 2006))
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< 1 > The NASS accepts a request from a customer equipment device to obtain bearer
resources to attach to the access network or a modification on a subscriber’s access
profile that has been previously pushed to the RACS by NASS occurs.

< 2 > The NASS sends Access-Profile-Push to inform A-RACF.

< 3 > Based on Local Policies in the A-RACF and the information received from the
NASS, the A-RACF decides if any traffic policy need to be installed, changed
or removed. The application of the new local policies will apply to new SPDF
requests whereas the current reservations are optionally handled according to
previous local policies.

< 4 > The A-RACF requests the RCEF to install traffic policies (depending on step< 3>).

< 5 > The RCEF confirms the installation of the traffic policies (depending on step< 4>).

5.3.3 Core IMS procedures

IMS-level registration is accomplished by a SIP REGISTER request. SIP registration
is the procedure whereby a user binds his public Uniform Resource Identifier (URI) to a
URI that contains the host name or IP address of the terminal where the user is logged
in. Registration with the IMS is mandatory before the IMS terminal can establish a
session.

IMS registration Figure 5.13 illustrates the registration procedure during which the
user is authenticated and authorized to access the IMS network. The goal is achieved
and the procedure completes after two round trips. The registration is composed of two
procedure-stages. In the first procedure-stage, the network challenges the user while
in the second procedure-stage, the user responds to the challenge and completes the
registration.

< 1 > The IMS terminal creates a SIP REGISTER request including the user public
URI (SIP address) and the IP address of the terminal where the user is logged
in. Then, the IMS terminal sends this request to its P-CSCF.

< 2 > The P-CSCF needs to locate an entry point into the user IMS network by
executing some DNS procedures. These procedures provide the P-CSCF with the
SIP URI of an I-CSCF. The P-CSCF forwards the SIP REGISTER request to
this I-CSCF.

< 3 > The I-CSCF does not keep any state associated to registration so it is not aware
of whether an S-CSCF is allocated to the user and what the address of such
an S-CSCF would be. In order to discover whether there is an S-CSCF already
allocated to the user, the I-CSCF sends a Diameter User-Authentication-Request
(UAR) to the UPSF.
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1. Register //

2. Register //

3. Diameter UAR //

4. Diameter UAA
oo

5. Register //

6. Diameter MAR
oo

7. Diameter MAA //

8. 401 Unauthorized
oo

9. 401 Unauthorized
oo

10. 401 Unauthorized
oo

11. Register //

12. Register //

13. Diameter UAR //

14. Diameter UAA
oo

15. Register //

16. Diameter SAR
oo

17. Diameter SAA //

18. 200 OK
oo

19. 200 OK
oo

10. 200 OK
oo

Figure 5.13: IMS-level registration procedure
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< 4 > The UPSF answers with a Diameter User-Authentication-Answer (UAA). This
answer contains a set of S-CSCF capabilities that are the input for the I-CSCF
when selecting the S-CSCF. After performing the S-CSCF selection, the I-CSCF
continues with the process by proxying the SIP REGISTER request to the chosen
S-CSCF.

< 5 > The S-CSCF receives the REGISTER request and is in charge of authenticating
the user.

< 6 > The S-CSCF then contacts the UPSF for a double purpose. On the one hand,
the S-CSCF needs to download authentication data to perform authentication
for this particular user. On the other hand, the S-CSCF needs to save the S-
CSCF URI in the UPSF, so that any further query to the UPSF for the same
user will return routing information pointing to this S-CSCF. For this purpose,
the S-CSCF creates a Diameter Multimedia-Auth-Request (MAR) message and
sends it to the UPSF.

< 7 > The UPSF stores the S-CSCF URI in the user data and answers in a Diameter
Multimedia-Auth-Answer (MAA) message. Users are authenticated by the S-
CSCF with authentication vectors provided by the UPSF. The UPSF includes
one or more authentication vectors in the Diameter MAA message, so that the
S-CSCF can properly authenticate the user.

< 8-10 > Then, the S-CSCF creates a SIP 401 Unauthorized response. This response
includes a challenge that the IMS terminal should answer. The SIP 401 Unautho-
rized response is forwarded, according to regular SIP procedures, via the I-CSCF
and P-CSCF.

< 11 > When the IMS terminal receives the SIP 401 Unauthorized response, it realizes
that there is a challenge included and produces an appropriate response to that
challenge. The response to the challenge (sometimes known as credentials) is
included in a new SIP REGISTER request sent to the P-CSCF.

< 12 > The P-CSCF does the same operation as for the first REGISTER request; that
is, it determines the entry point in the network and finds an I-CSCF.

< 13 > The I-CSCF sends a new Diameter UAR message, for the same reasons as
explained before.

< 14 > The difference in this situation is that the Diameter UAA message includes
the SIP URI of the S-CSCF allocated to the user. The UPSF stored this URI
when it received a Diameter MAR message (6).

< 15 > The S-CSCF receives the REGISTER request that includes the user creden-
tials. It then validates these credentials against the authentication vectors pro-
vided by the UPSF in a Diameter MAA message (7).
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< 16-17 > If authentication is successful, then the S-CSCF sends a Diameter SAR
message to the UPSF to inform the UPSF that the user is now registered and to
download the user profile. At this stage, the S-CSCF has stored the IP address
for this user, as it was present in the SIP REGISTER request. It has also stored
the P-CSCF URI. Later, the S-CSCF will route initial SIP requests addressed to
the user via this P-CSCF.

< 18 > The S-CSCF sends a 200 OK response to the REGISTER request, to indicate
the success of the REGISTER request. The 200 OK response also contains the
address of the S-CSCF of the user. Future SIP requests (excluding REGISTER
requests, which are always routed according to the instructions received from the
UPSF) that the IMS terminal sends will be routed via this S-CSCF, in addition
to the outbound proxy (P-CSCF).

< 19-20 > The 200 OK response traverses the same I-CSCF and P-CSCF that the
REGISTER request traversed. Eventually, the IMS terminal gets the 200 OK
response. At this stage the registration procedure is complete.

IMS call origination Figure 5.14 shows the origination procedure for a UE located
in the home network.

< 1 > UE sends the SIP INVITE request, containing an initial SDP, to the P-CSCF
address determined with P-CSCF discovery mechanism. The initial SDP may
represent one or more media for a multimedia session.

< 2 > A connection is reserved in the C-BGF with optional NAT binding list retrieval.

< 3 > P-CSCF remembers (from the registration procedure) the next hop CSCF for
this UE. In this case it forwards the INVITE to the S-CSCF in the home network.

< 4 > S-CSCF validates the service profile, and invokes any origination service logic
required for this user. This includes authorisation of the requested SDP based on
the user’s subscription for multimedia services.

< 5 > S-CSCF forwards the request, as specified by the S-S procedures.

< 6 > The media stream capabilities of the destination are returned along the sig-
nalling path, per the S-S procedures.

< 7-9 > S-CSCF forwards the Offer Response message to the P-CSCF which triggers
RACS. RACS performs admission control based on the Offer and Answer param-
eters. RACS configures the connections in the C-BGF based on the SDP answer
and optionally requests a NAT binding list.

< 10 > UE decides the offered set of media streams for this session, confirms receipt
of the Offer Response and sends the Response Confirmation to P-CSCF. The
Response Confirmation may also contain SDP. This may be the same SDP as in
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UE C-BGF RACS P-CSCF S-CSCF

1. INVITE (SDP offer)

2. Reserve Connection
3. INVITE (SDP offer)

4. Service Control

5. INVITE (SDP offer)

6. Offer Response

7. Offer Response

8. Resource Admission &
Connection Configuration

9. Offer Response

10. Resp. Conf (Opt SDP)

11. Resp. Conf (Opt SDP)
12. Resp. Conf (Opt SDP)

13. Conf Ack

14. Conf Ack

15. Conf Ack 16. Ringing

17. Ringing

18. Ringing

Ringing

19. 200 OK

20. 200 OK

21. Approval of QoS Commit &
Open Gates

22. 200 OK

23. Start media

24. Ack

25. Ack

26. Ack

Figure 5.14: Call origination procedure (taken from (TISPAN, 2008a))
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the Offer Response received in Step 9 or a subset. If new media are defined by
this SDP, a new connection configuration shall be performed following Step 2.
The originating UE is free to continue to offer new media in this request or in
subsequent requests using the Update method. Each offer/answer exchange will
cause the P-CSCF to repeat the RACS interactions again.

< 11 > P-CSCF forwards this message to S-CSCF.

< 12 > S-CSCF forwards this message to the terminating endpoint, as per the S-S
procedure.

< 13 > The terminating end point responds to the originating end with an acknowl-
edgement. If Optional SDP is contained in the Response Confirmation, the
Confirmation Acknowledge will also contain an SDP response. If the SDP has
changed, the admission control and configure connection flows are repeated.

< 14-15 > S-CSCF and P-CSCF forward the answered media towards the UE.

< 16-18 > The destination UE may optionally perform alerting. If so, it signals this
to the originating party by a provisional response indicating Ringing. This mes-
sage is sent to S-CSCF per the S-S procedure. It is sent from there toward the
originating end along the signalling path. UE indicates to the originating user
that the destination is ringing.

< 19-20 > When the destination party answers, the terminating endpoint sends a SIP
200-OK final response along the signalling path to the originating endpoint, as
specified by the termination procedures and the S-S procedures.

< 21 > P-CSCF performs the approval of QoS Commit procedure which triggers the
Open Gates procedures if required.

< 22 > P-CSCF passes the 200-OK response back to UE

< 23 > UE starts the media flow(s) for this session.

< 24-26 > UE responds to the 200 OK with an ACK message which is sent to P-CSCF
and passed along the signaling path to the terminating endpoint.

Properties of the procedural layer

The procedures above have a multi-resolution structure: they decompose into stages or
phases, that themselves decompose into sequences (or partial orders) of request/response
between functional elements of the NASS, RACS and Core IMS. Each such request/answer
decomposes further into exchanges over interfaces that obey standard protocols, such as
DHCP, SIP or Diameter. The execution of a procedure positions state variables, some
of which are observable or can be tested. For example, the correct obtention of an IP
address proves that the network attachment of the User Equipment (via the NASS) was
correctly performed. Procedures, phases, and their smaller elements depend on each
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other, in the sense that they are (partially) ordered in time, which we denote by an
‘executed before’ relation. But they are also ‘supported by’ the functions and interfaces
of the functional layer that run these procedures. This information is easily accessible
in the standards, and reveals another form of dependency between resources.

Our approach has focused essentially on the signalling part of an IMS network, as
much information is available in the standards and can be used for diagnosing mal-
functions. The transport plane could be partly addressed in that manner, but less
information is available on the different problems one may encounter, on their causes
and their consequences. For example, scarse (expert) knowledge exists relating the use
of an incompatible vocoder and the perceived quality on the user side. But one may
be able to discover that a RACS policy prevents one of the end users to make hifi VoIP
calls.

5.4 Contributions: Relevant structural properties

Figure 5.15 illustrates the generic architecture of an IMS network, which we organized
into three layers, each one gathering resources of a specific nature. This architecture
exhibits some structural properties that are relevant and general enough to be taken
into account in the design of the dependency model that will serve as basis for diagnosis
operations.
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Figure 5.15: IMS networks are hierarchically organized structures

The physical layer architecture is made of specific equipment connecting various
network segments. We represent such a connection by a ‘connected-to’ relationship
between an equipment and a segment. Besides, the physical layer architecture is hi-
erarchical, in the sense that network segments are decomposable into other physical
equipment connecting smaller network segments.
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The functional layer architecture is made of functions connected via interfaces. We
represent such a connection by a ‘connected-to’ relationship between a function and
an interface. Besides, the functional layer architecture is also hierarchical, in the sense
that it is made of subsystems being decomposable into other functions connected via
interfaces.

We represent the fact that a function is implemented into a physical equipment
by a ‘supported-by’ relation between the function and the equipment. This is a first
example of resource dependency since the failure of an equipment generally impacts
the functions running over it.

The procedures in the procedural layer have a multi-resolution structure: they
decompose into stages or phases, that themselves decompose into sequences (or partial
orders) of request/response between functional elements.

Each such request/response describes exchanges or interactions over interfaces that
obey standard protocols. Procedures, phases, and their smaller elements depend on
each other, in the sense that they are (partially) ordered in time, which we denote by
an ‘executed before’ relation.

Furthermore, procedures and phases are also ‘supported by’ the functions and in-
terfaces of the functional layer that run these procedures.
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The three-layer model described in the previous chapter is generic, in the sense
that it defines the different types of network resources involved (for a given range of
technologies), how they depend on each other and how they interact. The generic
model defines the building blocks of a network, from a management perspective, but
the actual network one has to manage contains many instances of these elements.
The actual network can be represented as a large collection of instances of the patterns
described in the generic model, and these instances overlap on some common resources.
In this chapter, we use object oriented paradigm to represent IMS network resources
and their relationships.

6.1 Different types of resources and their relationships

Our representation of IMS resources and dependencies is based on six important object
classes: Equipment, Link, Function, Interface, Procedure, and Message such that each
IMS resource inherits from (i.e. is a subclass of) one of the above classes; and four
important relationships: is-connected-to, is-composed-of, is-supported-by, is-preceded-
by.

113
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6.1.1 Physical resources and their relationships

The physical layer contains physical resources that belongs to two classes/types: equip-
ment or link. We use Figure 6.1(a) and Figure 6.1(b) to describe these resources and
illustrate the relationships between them.
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Figure 6.1: The generic IMS physical architecture and its instance

• Equipment . An instance of the Equipment class within the physical layer repre-
sents a physical box. For example, CPE, displayed in Figure 6.1(a), is one of the
subclasses inheriting from Equipment. Other subclasses include DSLAM, BRAS,
SBC, etc. In Figure 6.1(b), five instances CPE#1, CPE#2, CPE#3, CPE#4,
CPE#5 of CPE have been displayed.

• Link . An instance of the Link class within the physical layer represents a network
segment. For instance, First mile, displayed in Figure 6.1(a), is one of the sub-
classes inheriting from Link. Other subclasses include Aggregation, Metro-access,
Metro-core, Access-network, Core-network, etc. In Figure 6.1(b), five instances:
first-mile#1, first-mile#2, first-mile#3, first-mile#4, first-mile#5 of this subclass
have been displayed.

• is-connected-to. This relationship denotes the fact that an equipment (resp.
link) may connect to more than one link (resp. equipment). For example, DSLAM
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is connected to first-mile in Figure 6.1(a), while in Figure 6.1(b) DSLAM#1 is
connected first-mile#3.

• is-composed-of . This relationship denotes the fact that a link (or an equipment)
is composed of other links and equipment. If a physical resource X is composed of
several physical resources X1, X2, · · · , Xn, the set {X1, X2, · · · , Xn} is called the
set of descendants of X which is said to be the ancestor of each Xi, i = 1 · · ·n.
For example, in Figure 6.1(a), Metro-access is composed of first-mile, DSLAM
and Aggregation. As for Figure 6.1(b), it shows that Metro-access#1 is com-
posed of five instances of first-mile (first-mile#1, first-mile#2, first-mile#3, first-
mile#4, first-mile#5), two instances of DSLAM (DSLAM#1 and DSLAM#2)
and one instance of Aggregation (Aggregation#1). This relationship enables to
organize/analyse/view the physical IMS architecture on different levels of granu-
larity. By a refinement operation we go from a coarse view of the architecture to
a finest (more detailed) one.

• is-connected-to and is-composed-of . When (a) a physical resource X is con-
nected to another physical resource Y and (b) X has a non-empty set of descen-
dants X1, X2, · · · , Xn, then at least one descendant of X is connected to Y . For
example, in Figure 6.1(a) where Metro-access is connected to BRAS and com-
posed of first-mile, DSLAM, and Aggregation, the latter descendant is also con-
nected to BRAS. Similarly, in Figure 6.1(b) Metro-access#1 and its descendant
Aggregation#1 are connected to BRAS#1. The connectivity between equipment
and links is preserved by the refinement and abstraction operations.

6.1.2 Functional resources and their relationships

The functional layer contains functional resources that are either functions or interfaces.
We use Figure 6.1(a) and Figure 6.1(b) to describe these resources and illustrate the
relationships between them.

• Function . An instance of the Function class within the functional layer rep-
resents a logical entity. For example, ARF displayed in Figure 6.2(a) is one of
the subclasses inheriting from Function. Other subclasses include AMF, NACF,
NASS, A-RACF, RACS, P-CSCF, Core-IMS, etc. In Figure 6.2(b), two instances
ARF#1 and ARF#2 of ARF have been displayed.

• Interface . An instance of the Interface class within the functional layer repre-
sents a reference point whereby functions can interact. For instance, e1 (between
UE and ARF) displayed in Figure 6.2(a) is one of the subclasses inheriting Inter-
face. Other subclasses include Gm (between UE and P-CSCF), e2 (between CLF
and Core-IMS), Gq’ (between Core-IMS and RACS), etc. In Figure 6.2(b) two
instances of e1 (between UE and ARF) have been displayed: e1#1 and e1#2.

• is-connected-to. This relationship denotes the fact that a function (interface)
may connect to more than one interface (function). For example, in Figure 6.2(a),
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Figure 6.2: The generic IMS functional architecture and its instance
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UE is connected to e1 (between UE and ARF) while in Figure 6.2(b), UE#2 is
connected to e1#2 (between UE#2 and ARF#2).

• is-composed-of . This relationship denotes the fact that a function (interface) is
composed of other functions and interfaces. When a functional resource X is com-
posed of several functional resources X1, X2, · · · , Xn. The set {X1, X2, · · · , Xn}
is called the set of descendants of A which is then said to be the ancestor of each
Ai, i = 1 · · ·n. For example, in Figure 6.2(a) NASS is composed of CNGCF,
ARF, AMF, PDBF, UAAF, NACF, and CLF. As for Figure 6.2(b), it shows that
NASS#2 is composed of CNGCF#2, ARF#2, AMF#2, PDBF#2, UAAF#2,
NACF#2, and CLF#2. This relationship enables to organize/analyse/view the
functional IMS architecture on different levels of granularity. By a refinement
operation we go from a coarse view of the architecture to a finest (more detailed)
one.

• is-connected-to and is-composed-of . When (i) a functional resource X is
connected to another functional resource Y and (ii) X has a non-empty set of
descendants X1, X2, · · · , Xn, then at least one descendant of X is connected to
Y . For example, in Figure 6.2(a) where NASS is connected to A-RACF and is
composed of CNGCF, ARF, AMF, PDBF, UAAF, NACF, and CLF. The latter
descendant is connected to A-RACF. Similarly in Figure 6.2(b), NASS#1 and
its descendant CLF#1 are connected to A-RACF#1. The connectivity between
functions and interfaces is preserved by the refinement and abstraction operations.

6.1.3 Procedural resources and their dependencies

The procedural layer contains resources that are either procedures or messages. Below
we present these resources and the relationships between them.

• Procedure . An instance of the Procedure class within the procedural layer rep-
resents a procedure, a procedure-stage defined either by the standards or a more
complex high-level service capability defined by the human expert. Examples of
subclasses inheriting from Procedure are network attachment, IMS registration,
IMS call origination, etc.

• Message . An instance of the Message class within the procedural layer repre-
sents a request or a response sent from a function to another one via a refer-
ence point. Examples of subclasses inheriting from Message are DHCP Discover,
DHCP Offer, Register, Diameter UAR, Invite, 200 OK, etc. Sometimes, receiving
a specific message or not receiving a message in time can be an explanation for
an observed failure.

• is-preceded-by . This relationship denotes the fact that the execution of a proce-
dure (message) requires to have, previously, successfully executed some prerequi-
sites: other procedures or messages. For instance, the IMS registration procedure
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is required before a terminal can execute the IMS call origination procedure. An-
other example is the network attachment procedure, where CNG configuration
is preceded by IP configuration. In the same manner, DHCP Offer is preceded
by DHCP Discover. When a procedural resource Y is preceded by a procedural
resource X, we say that X is a predecessor of Y that is then said to be a successor
of X.

• is-composed-of . This relationship denotes the fact that a procedure is com-
posed of other procedures and messages. Suppose that a functional resource
X is composed of the following functional resources X1, X2, · · · , Xn. The set
{X1, X2, · · · , Xn} is the set of descendants of X which is then said to be the
ancestor of each Ai, i = 1 · · ·n. For example, the Network attachment procedure
as composed of three ordered procedures: IP configuration, CNG configuration
and Location Management (TISPAN, 2010a) where IP configuration, displayed
in Figure 6.3(a), is composed of procedure 1 and procedure 2. As illustrated in
Figure 6.3, this relationship enables to organize/analyse/view a procedure on dif-
ferent levels of granularity. By a refinement operation we go from a coarse view
of the procedure to a finest (more detailed) one.

• is-preceded-by and is-composed-of . When (i) a procedural resource Y is
preceded by another procedural resource X and (ii) Y has a non-empty set of
descendants Y1, Y2, · · · , Yn, then each descendant of Y is preceded by X. For
example, within IP configuration procedure displayed in Figure 6.3(b), proce-
dure 2 (composed of message (8) . . . messages (14)) is preceded by procedure 1
(composed of message (1) . . . message (7)). Each descendant of procedure 2 is
preceded by procedure 1.

6.1.4 Inter-layer relationships

The mapping between the generic physical and functional architectures of an IMS
network describes how functions and interfaces are implemented into equipment and
links. Figure 6.4 displays an example of mapping. Note that interfaces have not been
displayed.

• is-supported-by .

– is-supported-by from the physical layer to the functional one. This rela-
tionship denotes the fact that a functional resource (a function or an in-
terface) is hosted into a physical resource (an equipment or a link). For
example, in Figure 6.4, Core-IMS is supported by Core-network, NACF is
supported by BRAS, e1 (between ARF and AMF) is supported by Aggre-
gation.

– is-supported-by from the functional layer to the procedural one. This rela-
tionship denotes the fact that the execution of a procedural resource (proce-
dure or message) requires interactions of functions via interfaces connecting
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UE ARF

1. DHCP Discover

2. DHCP Discover

NACF* CLF*

4. DHCP Request

3. DHCP Offer

5. Bind IP-Address request

6. NASS User profile
request

7. NASS User response

8. Bind IP-Address answer
5. DHCP Ack (IP address and

P-CSCF address)

Procedure 1

Procedure 2
Procedure 1A

Procedure 2A

(a) Coarse granularity of the IP configuration procedure
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(b) Finest granularity of the IP configuration procedure

Figure 6.3: Two different levels of granularity for IP configuration procedure. The coarse granularity
distinguishes a single resource denoted ‘NACF*’ that groups the ‘AMF’, the ‘NACF’, the ‘UAAF’, the
communication interface between ‘AMF’ and ‘NACF’ ( ‘int AMF-NACF’) and the one between ‘NACF’
and ‘UAAF’ ( ‘int NACF-UAAF’). In the same manner, the chosen granularity distinguishes a single
resource denoted ‘CLF*’ that groups the ‘CLF’, the ‘A-RACF’ and the communication interface ( ‘int
CLF-A-RACF’) between these two functions.
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Figure 6.4: A mapping between the physical and the functional architecture (interfaces have not
been displayed)

them. As an example, consider Figure 6.3(b) where the IP configuration pro-
cedure is supported by NACF and message DHCP discover (2) is supported
by e1 (between ARF and AMF).

• is-supported-by and is-composed-of .

– When (i) a functional (procedural) resource Y is supported by a physi-
cal (functional) resource X and (ii) Y has a non-empty set of descendants
Y1, Y2, · · · , Yn, Then, at least one descendant of Y is supported by X. For
example, in Figure 6.4 where Core-IMS is supported by A-SBC, one can
see that P-CSCF is supported by A-SBC. Similarly, in Figure 6.3(b) where
IP configuration procedure is supported by CLF, one can see that proce-
dure 2 (started with DHCP request (8) and ended with DHCP ack (14)) is
supported by CLF.

– When (i) a functional (procedural) resource Y is supported by a physi-
cal (functional) resource X and (ii) X has a non-empty set of descendants
X1, X2, · · · , Xn, then Y is supported by at least one descendant of X. For
instance, in Figure 6.4 where NASS is supported by Metro-network, one can
see that NASS is supported by DSLAM. Similarly, the IP configuration pro-
cedure displayed in Figure 6.3(a) and supported NACF*, is also supported
by NACF (see Figure 6.3(b)).

6.2 Contributions: Models of network dependencies

We used object-oriented paradigm to represent IMS network resources and their rela-
tionships. Our model class hierarchy is shown in the class diagram of Figure 6.5.

6.2.1 Network model class hierarchy

Any Network resource, no matter the layer to which it belongs, may be broken down
into more than one resource within the same layer. This breakdown is expressed by
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3 is-preceded-by

Message

Figure 6.5: Network model class hierarchy

the reflexive association is-composed-of.
Each network resource belongs to exactly one specific layer: it may be a physical

resource, a functional resource or a procedural resource. A procedural resource has the
particular feature that they may be preceded by more than one procedural resource.
This precedence is expressed by the reflexive association is-preceded-by.

The execution of a procedural resource may be enabled by more than one functional
resource. This support provided by the functional resources is expressed by the asso-
ciation is-supported by from the procedural resource to the functional one. Similarly,
this type of association exists from a functional resource to a physical one expressing
the fact that a functional resource may be implemented into more than one physical
resource.

A physical resource is either an Equipment or a Link. A functional resource is either
a Function or an Interface. As for a procedural resource, it is either a Procedure or a
Message. Furthermore, a link (equipment) may connect to more than one equipment
(link). In the same manner, a function (interface) may connect to more than one
interface (function). This connectivity property is expressed by the association is-
connected-to.

The above object classes: Equipment, Link, Function, Interface, Procedure, and
Message are important since managed IMS resources (e.g. DSLAM, Metro-access,
NASS, P-CSCF, network attachment, DHCP Discover, etc) can inherit from one of
them. For instance, UE inherits from Function. Figure 6.6 shows this subclass with
two attributes IP address and P-CSCF address, and a method IPconnectivity()

that updates these attributes during the network attachment procedure.

6.2.2 Causal graph of network dependencies

The information contained in the model class hierarchy can be expressed by the graph
G = (V,E↔, E>, E⇑, E�) described below.

• The set V of vertices denotes the set of IMS network resources. V is partitioned
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Function

IPconnectivity()

IP address
P-CSCF address

UE

Figure 6.6: Class UE inherits from class Function

into three subsets V1, V2, and V3 where V1 is the set of physical resources (equip-
ment and links), V2 the set of functional resources (functions and interfaces), and
V3 the set of procedural resources (procedures and messages).

• The set E↔ ⊆ (V1 × V1) ∪ (V2 × V2) of edges represents the relationship is-
connected-to. ∀(u, v) ∈ (V1 × V1) ∪ (V2 × V2), u is-connected-to v is written as
u↔ v.

• The set E> ⊆ (V1 × V1) ∪ (V2 × V2) ∪ (V3 × V3) of arcs represent the relationship
is-composed-of. ∀(u, v) ∈ (V1 × V1) ∪ (V2 × V2) ∪ (V3 × V3), u is-composed-of v is
written as u > v. The set E> defines three directed acyclic graphs: one on V1, one
on V2 and another one on V3. For all u ∈ V , we denote ε(u) = {u′ ∈ V, u > u′}
the set of descendants of u.

• The set E⇑ ⊆ (V1×V2)∪(V2×V3) of arcs represents the relationship is-supported-
by. ∀(u, v) ∈ (V1 × V2) ∪ (V2 × V3), u is-supported-by v is written u ⇑ v. The set
E⇑ defines a directed acyclic graph (DAG) on V .

• The set E� ⊆ (V3×V3) of arcs represents the relationship is-preceded-by. ∀(u, v) ∈
(V3 × V3), u is-preceded-by v is written as u� v. The set E� defines a directed
acyclic graph (DAG) on V3.

• Consistency between the relationship is-composed-of (refinement operation) and
the three other relationships is-connected-to, is-supported-by and is-preceded-by :
∀(u, v) ∈ (V1×V1)∪ (V2×V2), [u↔ v∧ ε(u) 6= ∅ ↔ ∃u′ ∈ ε(u) : u′ ↔ v∧v /∈ ε(u)]

∀(u, v) ∈ (V1 × V2) ∪ (V2 × V3), [u ⇑ v ∧ ε(v) 6= ∅ ↔ ∃ v′ ∈ ε(v) : u ⇑ v′]
∀(u, v) ∈ (V1 × V2) ∪ (V2 × V3), [u ⇑ v ∧ ε(u) 6= ∅ ↔ ∃ u′ ∈ ε(u) : u′ ⇑ v]

∀(u, v) ∈ (V3 × V3), [u� v ∧ ε(v) 6= ∅ ↔ ∀v′ ∈ ε(v), u� v′]

∀(u, v) ∈ (V3 × V3), [u� v ∧ ε(u) 6= ∅ ↔ ∀u′ ∈ ε(u), u′� v]

The relationships is-supported-by and is-preceded-by are used to express causal re-
lations between failure events occurring in the IMS network. From graph G, above
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a causal graph H = (V,E↑) where E↑ = E⇑ ∪ E� can be constructed. In graph H,
it suffices to define the strength of the causal links, represented as conditional prob-
abilities, in order to obtain a Bayesian network for reasoning under uncertainty. The
relationship is-connected-to serves to identify a specific network resource instance. As
for the relationship is-composed-of, it can be useful to obtain a hierarchical representa-
tion of the causal graph, each level corresponds to a particular level of abstraction for
the network resources. Nevertheless, as a first step we ignore the refinement operation
and choose to reason with a single level of granularity.

6.2.3 Generic model vs network instance: self-modeling

The three-layer model described in the previous chapter is generic, in the sense that it
defines the different types of network resources involved (for a given range of technolo-
gies), how they depend on each other and how they interact. Most of it derives from
the standards or best practices of an operator, but part of it must be designed by an
expert. This work is facilitated by the relatively small size of this generic model, by
the existence of a grammar defining how objects can be related, and by the hierarchical
nature of the model. This allows one to model each layer by progressive refinements,
thus selecting the finest granularity at which one wishes to manage the network.

The generic model defines the building blocks of a network, from a management
perspective, but the actual network one has to manage contains many instances of
these elements. Borrowing to object oriented programming, the generic model is a
class diagram, while one has to monitor an object diagram, with many objects of the
same class. The actual network can be represented as a large collection of instances
of the patterns described in the generic model, and these instances overlap on some
common resources. This is illustrated in Figure 6.7, where several users of an access
network have private parts (CPE and first mile), but may or not share a DSLAM, may
or not be connected to the same aggregation segment, etc.
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Figure 6.7: An IMS network instance: physical layer, with mention of the supported functions of the
functional layer.
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Deriving the model of the actual network instance to be managed means creating
as many instances as necessary of the network resources (equipment, functions, etc), as
they are described in the generic model. It also means structuring or connecting them
in accordance with the patterns allowed by the generic model. Such a construction
guarantees both the adequacy of the resulting model with the standards, and allows
one to fit a model to a specific network, which is of great interest to track evolving
architectures. We call this process the self-modeling. This task can indeed be automa-
tised provided the management framework provides tools to explore the network and
reveal its architecture. Such a ‘service,’ or this ‘reflectivity property’ of the network,
is one of the essential functions one should expect from a self-management framework,
together with the ability to query the managed elements in order to check some of their
state variables or to perform tests.

The network model obtained by this approach may be huge, in particular if one
has to capture all private equipment of all users. But it is not necessary to build it
beforehand as a necessary input to an adequate monitoring/diagnosis algorithm. Such
an approach would not scale up. We therefore adopt a strategy where only part of the
model is built on the fly, in order to solve a specific malfunction. The next chapter
formalizes this approach and illustrates it on a simple example.
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The previous chapter illustrated a typical feature of network design: low-level re-
sources are assembled to build a higher level resource, where the term ‘resource’ ranges
from physical component to high-level capabilities. These complex dependency rela-
tions naturally orient us to a formalization in terms of Bayesian networks (BN), which
are particularly suited to represent both constraints and statistical dependencies. At
the same time they encode conditional independence relations, which constitute the ba-
sis of efficient inference algorithms, a topic covered by a vast body of literature. In this
context, inference means to infer the value of some state variables given the observed
value of other variables.

The framework needs adaptations however, in several directions. Firstly, the man-
aged network evolves in time (users attach, register, de-register, new equipment or
functionalities are added, etc.) and may not be known entirely and in full details. So
the BN used for inference should be built on request, capturing the state of the network,
to answer a given diagnosis query.

Secondly, not all network resources are involved in the malfunction of say some high
level capability. So only part of the network should be taken into account.

But, thirdly, this BN model construction should be coupled with the inference
engine. Users share some of the network resources, therefore they carry information
about their state, which can be useful to the reasoning. So one must design a dynamic
construction of the BN modeling the network, or equivalently a dynamic exploration
of the network, to collect more information and solve a given diagnosis query.

Finally, let us clarify what this diagnosis query means. Assuming some network
resource is observed as down (e.g. IP configuration down for a specific UE), one has to
discover the root cause of this failure, which necessarily lies in the lower level resources
that are assembled to build the damaged one. This can be understood as a state
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inference problem given the values observed on other state variables. By extension, one
could imagine querying the state of all variables of a given type, given some observations.
This corresponds to a questions like, for example, given access segment failure, what is
the probability that a non specified UE be not able to make calls. This type of generic
inference query is new in the BN formalism, and is clearly an approach to perform fault
impact analysis.

7.1 Methodology

Our approach to troubleshoot an observed malfunctioning resource is based on the
following methodology:

1. Find and/or assemble (at some level of abstraction) the generic model (or generic
BN) that describes the resources used by the malfunctioning resource. The mal-
functioning resource is the entry point of the fault localization query and is gen-
erally a capability. But, it can also be any other IMS resource.

2. Locate the instance of this generic BN in the IMS network instance, thus deriving
a BN instance, that we call a pattern.

3. Within the current BN (instance), feed the inference engine with available obser-
vations to locate the faulty resource.

4. If the collected observations are not sufficient, expand the current BN by exploring
other patterns (BN instances) that share resources with the current BN. In this
expanded BN, or expanded neighborhood of the malfunction in the network,
collect the new available observations to improve fault location.

5. Repeat the expansion until confidence in the explanation becomes sufficient.

To illustrate this methodology on a simple practical case, suppose that we want to
explain why the IP configuration failed for the user Laurie in the network instance of
Figure 7.1.

IP configuration comprises the IP address allocation to the UE, and the discovery
of addressing information to the Proxy-Call Session Control Function (P-CSCF). As
shown by Figure 7.2, the IP configuration capability is broken down into two successive
stages, initiated by the UE.

For clarity, let us select a single granularity of description within each layer. In the
functional layer, this granularity distinguishes a single resource denoted ‘NACF*’ that
groups the Access Management Function (AMF), the Network Access Configuration
Function (NACF), the User Access Authorization Function (UAAF), the communi-
cation interface between AMF and NACF (int AMF - NACF) and the one between
NACF and UAAF (int NACF - UAAF). In the same manner, the chosen granularity
distinguishes a single resource denoted ‘CLF*’ that groups the Connectivity session
Location and repository Function (CLF), the Access-Resource and Admission Control
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Figure 7.1: An IMS network instance: physical layer, with mention of the supported functions of the
functional layer.
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Figure 7.2: Sequence diagram of IP configuration using DHCP (procedural layer). It consists in a
dialog between the User Equipment (left) and functions of the NASS (right).
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Function (A-RACF) and the communication interface (int CLF - A-RACF) between
these two functions.

The UE behaves as a DHCP client and during the first stage, it broadcasts a DHCP
Discover message (1) to locate available DHCP servers. The message is received by the
NACF* that behaves as a DHCP server, via the ARF that acts as a DHCP relay. Next,
the UE receives a DHCP Offer message (3) with an offer of configuration parameters.
During the second stage, the UE requests offered parameters with a DHCP Request
message (4). This message is relayed towards the NACF* that commits binding and
responds with a DHCP Ack message.

Following the methodology described above, we first retrieve the generic model
that describes the resources used by the IP configuration capability (Figure 7.3). This
dependency graph between resources can be regarded as a generic BN, with statistical
dependencies if statistics are available, or logical dependencies otherwise. It encodes, for
example, that the outcome of the ‘IP configuration’ procedure demands that ‘Stage 1’ be
properly performed, which depends on the state of the interface between the functions
UE and ARF denoted here as ‘int UE-ARF’, which in turn uses the communication
channel between the UE and the ARF, that is the first mile segment. In this generic
BN, the state variable ‘IP configuration’ is observable, since one can easily test whether
the UE obtained a correct IP address.

Stage 1 Stage 2

UE Int UE - 
ARF  ARF Int ARF - 

NACF* NACF* Int UE - 
NACF*

Int NACF* - 
CLF*  CLF*

CPE First Mile DSLAM Aggregation BRAS SBC Metro Core

Executed before

Supported by

Supported by

IP Configuration

Figure 7.3: Generic BN for the IP configuration capability of a User Equipment.

As a second step, we locate among multiple instances of this generic BN, the instance
that refers to the user Laurie. This BN instance is shown in Figure 7.4. The other
BN instances refer to the other users: Jane and Alice. In Lauries’s BN instance, some
resources are private to Laurie. Such resources are displayed in orange to distinguish
them from the resources that are shared with other users. The state of the observable
variable ‘IP configuration’ in the BN instance attached to Laurie is set to ‘down,’
i.e. not functioning correctly.

Any node in Laurie’s BN instance can be an explanation for the observed mal-
function. The third step consists in collecting the available observations on all these
resources, and running a BN inference, to try and locate the origin of the malfunction.
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Laurie’s IP Configuration

Figure 7.4: Laurie’s BN instance

Not all resources may provide observable state information. And some observation may
not be fully discriminant. For example, one may observe that the Aggregation segment
is in state ‘loaded’, but may not be certain that this is the origin of the failure. There
is simply some probability that this caused a crash of the IP configuration, for example
because of the time-outs in the DHCP protocol.

As a fourth step, one may decide to cross-check the possible explanations discovered
so far by querying other users that share some resources with Laurie. For example, we
choose to check the state of Jane’s IP configuration. Thus, we extend the scope of the
BN under study (Laurie’s BN instance) by adding Jane’s BN instance. Figure 7.5 shows
the extended BN, which now incorporate more observable variables. Suppose that the
state of Jane’s IP configuration is ‘up’, functioning correctly. This observation implies
that all the resources Laurie shares with Jane are working properly (which would have
been revealed by a BN inference on this extended BN). As a consequence, the set of
possible faulty resources in Laurie’s BN instance is reduced to the subset of resources
that are not shared with Jane.

This process can be iterated (point 5 in Section 7.1): one may query another user,
provided he/she shares resources with either Laurie or Jane. But the choice of the
user to query should depend on how informative the new observations will be to locate
the faulty resource that caused Laurie’s problem. If we choose to query Alice, who
has more resources in common with Laurie than Jane has, the current BN must again
be extended to incorporate Alice’s BN instance of the IP configuration generic model.
Figure 7.6 shows the extended BN (due to space limitation Jane’s private resources
are not displayed). Suppose that Alice’s IP configuration is ‘up’. This observation
implies that all the resources Laurie shares with Alice are functioning. Once more,
the set of possible faulty resources in Laurie’s BN instance is reduced to the subset of
resources that are not shared with Alice or Jane. By contrast, suppose that Alice’s IP
configuration is ‘down’. This observation increases our confidence in the state ‘down’
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Laurie’s Stage 1 Laurie’s Stage 2

UE#1 Int UE#1 
- ARF#1 ARF#1 Int ARF#1 - 

NACF*#1 NACF*#1 Int UE#1 - 
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- CLF*#1  CLF*#1
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Jane’s Stage 2 Jane’s Stage 1

UE#3Int UE#3 
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CPE#3First Mile#3DSLAM#2SBC#1 Metro Core#1

Laurie’s IP Configuration Jane’s IP Configuration

Figure 7.5: Jane’s BN instance is added; her private resources are represented in blue

Laurie’s Stage 1 Laurie’s Stage 2

UE#1 Int UE#1 
- ARF#1 ARF#1 Int ARF#1 - 

NACF*#1 NACF*#1 Int UE#1 - 
NACF*#1
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- CLF*#1 CLF*#1

CPE#1 First Mile#1 DSLAM#1 Aggregation#1 BRAS#1

Alice’s Stage 2 Alice’s Stage 1

UE#2Int UE#2 
- ARF#1

Int UE#2 - 
NACF*#1

CPE#3First Mile#3SBC#1 Metro Core#1

Laurie’s IP Configuration Alice’s IP Configuration

Figure 7.6: Alice’s BN instance is added; her private resources are represented in green. Jane’s
private resources are not shown.
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for the resources in Laurie’s BN instance that are shared with Alice, and not shared
with Jane. The cause of Laurie’s IP configuration failure is likely to be found among
these shared resources.

7.2 Generic Bayesian Networks

The previous section has demonstrated how the resources involved in a network and its
services depend on each other, thus forming a huge dependency graph. This graph can
be modeled as a Bayesian network where many parts are isomorphic, i.e. this graph is
obtained by connecting tiles that are copies of a limited family of generic patterns. This
section formalizes this construction of a possibly large Bayesian network, and explains
how to perform inference over it, by exploring only the portion of the BN that is the
most informative to a given diagnosis query.

Definition 8 A Bayesian network (BN) X = (V,E,PX) is formed of a finite directed
acyclic graph (DAG) G = (V,E), with V as vertex set and E ⊆ V ×V as edge set, and
a collection of random variables (Xv)v∈V indexed by V and with probability distribution
PX . Denoting •v = {u ∈ V : (u, v) ∈ E} the parents of node v ∈ V in the DAG (V,E),
the distribution of X factorizes as PX = ⊗v∈V PXv |X•v , where XU = (Xu, u ∈ U)
denotes a vector of random variables, U ⊆ V .

As usual, a morphism φ : G1 → G2 between DAGs Gi = (Vi, Ei) is a partial
function from V1 to V2 preserving the edges: ∀u, v ∈ Dom(φ) = V ′1 ⊆ V1, (u, v) ∈
E1 ⇔ (φ(u), φ(v)) ∈ E2. φ is said to be an insertion of G2 into G1 iff φ restricted to
its domain is bijective, i.e. φ|V ′1 is an isomorphism between G1|V ′1 = (V ′1 , E1 ∩ V ′1 × V ′1)
and G2.

Definition 9 A Generic Bayesian network (GBN) is a finite collection of ordinary
BNs (W k)1≤k≤K , where each BN W k = (Vk, Ek,PWk) is also called a pattern. An
instance X = (V,E,PX , (φk,i)k≤K, i∈Ik) of this GBN is a standard BN (V,E,PX) where

1. each φk,i is an insertion of pattern (Vk, Ek) into (V,E), and the DAG (V,E) is
covered by such pattern instances: V = ∪k,iDom(φk,i), ∀(u, v) ∈ E, ∃φk,i : u, v ∈
Dom(φk,i).

2. probability PX is inherited from patterns Wk through the insertion morphisms
(φk,i)k≤K, i∈Ik : ∀v ∈ V , one has

a) if •v = ∅, then ∀k, i : φk,i(v) = u ⇒ PXv ≡ PWk
u

b) if •v 6= ∅, then ∀k, i : φk,i(v) = u, •v∩Dom(φk,i) 6= ∅ ⇒ •v ⊆ Dom(φk,i), PXv |X•v ≡
PWk

u |Wk
•u

In other words, to build X one takes many copies of the different patterns W k, and
aggregates them by sharing some of the random variables. To ensure consistency of this
construction, each variable Xv (with parents) appearing in several pattern instances



132 Self-Modeling as Support for Fault Localization

must be defined by the same conditional probability. So either Xv comes alone in
an instance, or it comes with all its parents, and in this case the same PXv |X•v is
obtained from the different patterns. A similar condition holds when Xv has no parent.
Figure 7.7 gives an example of a GBN with a single pattern of five variables, and
an instance of this GBN with six copies of the pattern, overlapping in different ways.
Observe that a given variable may play different ‘roles’ according to the pattern instance
where it is considered.

s

E

A B C

D

X

Figure 7.7: A GBN (left) with a single pattern, and an instance of this GBN (right) with six
overlapping instances of this pattern.

7.3 Fault localization in a GBN instance

Fault localization in a GBN instance can be translated into a standard BN inference as
follows. Assume some variable, for example Xs in Figure 7.7, is declared/observed as
faulty. This resource Xs depends on other resources, namely X••s where ••s denotes
all the ancestors of node s. Either the failure of Xs is spontaneous, or it results from a
fault propagation pattern in X••s. The objective is thus to estimate the value of XZ ,
with Z = ••s ∪ {s} (in gray in Figure 7.7). Alternatively, one can build a root-cause
localizer L, as a function of XZ that constrains the presence of a single root-cause
within XZ . The objective is then to estimate the value of L.

There exist observable variables within (or directly attached to) XZ , in particular
the observation indicating the faulty value of Xs. Let us denote by Y0 = y0 this
observed vector. The conditional law PXZ |Y0=y0 gives a first information of what caused
the failure of Xs: by maximum likelihood estimation, one gets an explanation (i.e. a
fault propagation scheme) as the value X̂Z = arg maxx PXZ |Y0=y0(x). How reliable this
explanation is can be determined by computing the conditional entropy of XZ given
Y0 = y0 :

H(XZ |Y0 = y0) =
∑
x

−PXZ |Y0=y0(x) · log2 PXZ |Y0=y0(x)

A large conditional entropy means that the observations Y0 = y0 are insufficient
to discriminate among several explanations. One may therefore seek to collect more
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observations in order to increase more information about XZ , that is reduce the con-
ditional entropy: the closer to zero, the most reliable the estimation of XZ . The idea
is the to explore a larger area of the BN instance in order to collect more observations.
From the explored set of nodes U0 = Z one thus goes to U1 ⊇ U0 such that U1 is closed
for the ancestor relation: •U1 ⊆ U1. This defines a new set of observations Y1 = y1,
from which X̂Z can be estimated provided H(XZ |Y0 = y0, Y1 = y1) is small enough.
Otherwise one proceeds to another extension.

What is the rationale governing the BN instance exploration ? Referring to Fig-
ure 7.7, one may extend the explored part of the BN instance to capture observations in
either the green pattern instance, or those in the magenta one. Let us denote Y1 and Y2

these two possible sets of observations. The most informative one is obtained by com-
paring H(XZ |Y0 = y0, Y1) to H(XZ |Y0 = y0, Y2): the smaller one wins, which selects
the set of observations that is the most informative on the average. This is computed
beforehand, without querying/testing the actual value of the selected Yi. Assume Y1

was the most promising set of measurements, this defines the new area U1 taken into
account in the BN instance, where one may collect the observed value Y1 = y1. After
standard inference, this yields the new posterior distribution PXZ |Y0=y0,Y1=y1 and thus
the conditional entropy H(XZ |Y0 = y0, Y1 = y1). Notice that H(XZ |Y0 = y0, Y1 = y1)
may actually be either smaller or larger than the averaged value H(XZ |Y0 = y0, Y1)
used to determine the most promising set of observations.

The introduction of new measurements proceeds until either the conditional entropy
is small enough, or no more observations are available. Notice that by construction of
BN, the exploration is necessarily performed by exploring pattern instances that share
variables with the explored section of the BN. Measurements lying in disconnected
areas are independent of XZ , and thus of no help to estimate it. Observe also that
such a recursive exploration approach opens the way to a tradeoff when the collection
of new observations incurs some cost, for example if tests must be performed. One
can therefore balance the amount of information that can be gained with the cost of
collecting it.
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The aim of this chapter is to demonstrate the relevance of the exploration strategy
explained in the previous chapter. We review some standard results and definitions
related to entropy, relative entropy, mutual information and gain function for fault
localization. These concepts and their properties are useful to analyse the experimental
results that will be presented.

8.1 Entropy, relative entropy and mutual information

For any probability distribution, we recall the definition of a quantity called the entropy,
which has many properties that agree with the intuitive notion of what a measure of
information should be. This notion is extended to define mutual information, which is
a measure of the amount of information one random variable contains about another.
Entropy then becomes the self-information of a random variable. Mutual information
is a special case of a more general quantity called relative entropy, which is a measure
of the distance between two probability distributions. All these quantities are closely
related and share a number of simple properties that are presented below.

8.1.1 Entropy and conditional entropy

We will first introduce the concept of entropy, which is a measure of uncertainty of a
random variable. Let X be a discrete random variable with alphabet X and probability
mass function p(x) = Pr(X = x), X ∈ X . We denote the probability mass function
by p(x).

135
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Definition 10 The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
X∈X

p(x)log p(x). (8.1)

Note that H(X) ≥ 0.

We also recall the conditional entropy of a random variable given another as the
expected value of the entropies of the conditional distributions, averaged over the con-
ditioning random variable.

Definition 11 If (X,Y ) ∼ p(x, y), then the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
X∈X

p(x)H(Y |X = x) (8.2)

= −
∑
X∈X

p(x)
∑
Y ∈Y

p(y|x) log p(y|x) (8.3)

= −
∑
X∈X

∑
Y ∈Y

p(x, y) log p(y|x). (8.4)

The naturalness of the definition of joint entropy and conditional entropy is exhibited
by the fact that the entropy of a pair of random variables is the entropy of one variable
plus the conditional entropy of the other.

Theorem 1 (Chain rule for entropy)

H(X,Y ) = H(X) +H(Y |X). (8.5)

Let X1, X2, ..., Xn be drawn according to p(x1, x2, ..., xn). Then

H(X1, X2, ..., Xn) =

n∑
i=1

H(Xi|Xi−1, ..., X1). (8.6)

8.1.2 Relative entropy and mutual information

Here, we review two related concepts: relative entropy and mutual information.

Definition 12 The relative entropy or Kullback Leibler distance between two probabil-
ity mass functions p(x) and q(x) is defined as

D(p‖q) =
∑
X∈X

p(x)log
p(x)

q(x)
. (8.7)
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Definition 13 Consider two random variables X and Y with a joint probability mass
function p(x, y) and marginal probability mass function p(x) and p(y). The mutual in-
formation I(X;Y ) is the relative entropy between the joint distribution and the product
distribution p(x)p(y):

I(X;Y ) =
∑
X∈X

∑
Y ∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(8.8)

= D(p(x, y)‖p(x)p(y)) (8.9)

= H(X)−H(X|Y ). (8.10)

Thus, the mutual information I(X;Y ) is the reduction in the uncertainty of X due
to the knowledge of Y . Using Jensen’s inequality and its consequences (Cover and
Thomas, 1991) some of the properties of entropy and relative entropy can be proved.

Theorem 2 (Information inequality) Let p(x), q(x), x ∈ X , be two probability
mass functions. Then,

D(p‖q) ≥ 0 (8.11)

Corollary 4 (Non-negativity of mutual information) For any two random vari-
ables, X, Y :

I(X;Y ) ≥ 0, (8.12)

Theorem 3 (Conditioning reduces entropy)

H(X|Y ) ≤ H(X) (8.13)

Intuitively, the theorem says that knowing another random variable Y can only
reduce the uncertainty in X. Note that this is true only on the average. Specifically,
H(X|Y = y) may be greater or lower than H(X), but on the average H(X|Y ) =∑

y p(y)H(X|Y = y) ≤ H(X). For example, in a court case, specific new evidence
might increase uncertainty, but on the average evidence decreases uncertainty.

Example. Let (X,Y ) have the following joint distribution. Then, H(X) = H(1
8 ,

7
8) =

X=1 X=2

Y=1 0 3
4

Y=2 1
8

1
8

0.544 bits, H(X|Y = 1) = 0 bits and H(X|Y = 2) = 1 bit. We calculate H(X|Y ) =
3
4H(X|Y = 1) + 1

4H(X|Y = 2) = 0.25 bits. Thus, uncertainty in X is increased if
Y = 2 is observed and decreased if Y = 1 is observed, but uncertainty decreases on
the average. Notice again that this information reduction H(X|Y ) ≤ H(X) is on the
average. For a given sample, one may have H(X|Y = y) ≥ H(X|Y ) and even ≥ H(X).
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Theorem 4 (Chain rule for information)

I(X;Y1, Y2, ..., Xn) = I(X;Y1) + I(X;Y2|Y1) + I(X;Y3|Y1Y2) + .... (8.14)

In particular,

H(X|Z = z, Y = y) = −
∑
x

p(x|y, z)logp(x|y, z). (8.15)

H(X|Z, Y = y) =
∑
z

p(X|Z = z, Y = y)ṗ(z|y). (8.16)

so that, to select the next measurement Z, we need p(z|y) and p(x|y, z) or equivalently
p(x, z|y) (i.e. P (X,Z|Y = y), the full law for X,Z and fixed y).

8.1.3 Gain function for fault localization

Suppose the state of a system is denoted by a vector X = (X1, X2, ..., Xn) of random
variables, where Xi represents the state of a node. A probabilistic model is a joint
probability distribution (a prior distribution) over all the random variables Xi. Hence
it assigns, a probability p(x) to each realization x. Given observations Y of the system
state, a fault diagnosis algorithm identifies the Most Probable Explanation (MPE) of
the underlying system responsible for observed outage, i.e.:

x∗ = arg max
x

p(x|y)

Observations reduce uncertainty of the system. Before we observe Y , the uncer-
tainty about system state can be quantified by the Shannon entropy:

H(X) = −
∑
x

p(x) log p(x).

If the system state is doubtless, H(X) = 0. As uncertainty goes up, H(X) increases.
The purpose of making observations is just to reduce this uncertainty. Given probe
responses Y = (Y1, Y2, ..., Yn), the probability of the system state changes into P (X|Y ),
consequently the average uncertainty of the system state is:

H(X|Y ) = −
∑
x,y

p(x, y) log p(x|y).

(Lindley, 1956) proposed a method to measure the average information provided
by an experiment. Suppose the probe Yi is defined on system state X.

Definition 14 The average amount of information gain from Yi, with prior probability
distribution P (X), is:

G(Yi) = I(X;Yi) = H(X)−H(X|Yi) =
∑
x,yi

p(x, yi) log
p(x, yi)

p(x)P (yi)
. (8.17)
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In some situations, as the one we examine below, one may not be able to use
directly the full observation set Y = (Y1, Y2, ..., Yn) and may have to select a subset of
k observations to collect. In order to select an optimal set of k probes among variables
Y1, ..., Yn, for fault localization, the target is to find a subset E ⊆ {1, ..., n}, |E| = k,
which maximizes the reduction of Shannon entropy i.e.:

E∗ = arg max
E

G(YE), for YE = {Yi, i ∈ E}. (8.18)

The problem stated in (8.18) is NP-hard (Brodie et al., 2003), hence efficient exact
solutions are likely not possible. An alternative, widely used in the literature, is the
heuristic greedy approach, which iteratively adds to E the probe that reduces the max-
imum entropy of the system, among those that were not selected yet. When problems
are detected, a greedy algorithm repeatedly selects, given E, the new observation Yi to
collect by:

i∗ = arg max
i/∈ E

I(X;Yi|YE). (8.19)

Actually i /∈ E can be simplified into i ∈ E because I(X;Yi|YE) ≥ 0 and I(X;Yi|YE) =
0 for i ∈ E. Besides, note that this solution uses P (X,Yi|YE). Not only the mutual
information of X and Yi is measured, but the impact of previously selected probes on
Yi is also calculated, which provides a “global view”, better than the techniques which
only consider system state X and the candidate probe Yi.

8.2 Implementation and evaluation

Kevin Murphy’s Bayes Net Toolbox (Murphy et al., 2001) is an open-source Matlab
package for directed acyclic graph (DAG) models, also known as Bayesian or belief
networks. It has proved to be very popular and it is widely used throughout the world
for teaching and research. Bayes Net Toolbox (BNT) supports many kind of nodes
(probability distributions) and offers a variety of exact and approximate inference algo-
rithms. We use the junction tree inference engine in BNT to implement our exploration
strategy.

8.2.1 Entropy reduction as more measurements are collected

We have first performed some tests on a large tree-shaped GBN instance. The (unique)
pattern corresponds to Figure 8.1 where variables XD and XE are observable. The
instance is depicted in Figure 8.2, where each vertex represents a pattern instance (thus
5 variables). Two connected pattern instances overlap by 1, 2 or 3 of the {A,B,C}
nodes, which is reflected by the thickness of the edge relating these patterns. In pattern
(instance) X1, variables X1,A, X1,B, X1,C are (independent) uniform binary variables.
In all other patterns Xi, i > 1, the newly created variables Xi,A, Xi,B or Xi,C have
distribution (p, 1−p) with p = 0.9, in order to guarantee long-range correlation between
patterns in the net of Figure 8.2. In pattern Xi, the observations Yi correspond to
variables Xi,D, Xi,E . D is more sensitive to a failure of B than to a failure of A, and
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similarly E reacts more to C than to B. Both sensors have a misdetection rate and a
false alarm rate of 5%.

s

E

A B C

D

X

Figure 8.1: A GBN (left) with a single pattern, and an instance of this GBN (right) with six
overlapping instances of this pattern.
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Figure 8.2: A GBN instance with 22 pattern instances. The thickness (and length) of the line relating
two patterns reflects the number of shared variables. To estimate the central pattern X1, observations
are introduced by zones, starting by the dark zones first and progressing towards the pale ones.

The experiment consists in drawing a random sample of the process described by this
GBN instance, and in computing the conditional distribution PX1|YU=yU of the central
pattern X1 given a growing set U of measurements collected on X1 and on distant
patterns. The measurement set starts from U = {1} up to U = {1, 2, ..., 22} where U
is the index set of the patterns where observation are collected. In between, the most
informative measurement is incorporated at each step. For each sample, the evolution
of H(X1|YU = yU ) was computed. The experiment was conducted one thousand times.
On the average, one observes that H(X1|YU = yU ) does decrease (Figure 8.3), and
quickly converges. However, for a given sample, this curve may not always decrease:
even if an observable node is very informative on the average, its actual observed
sample may lead to a revision of the current assumptions, thus increasing temporarily
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the uncertainty. An example of such a non-decreasing behaviour is presented later in
this chapter.
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Figure 8.3: Average evolution of the conditional entropy of the central pattern X1 as the number of
observations increases.

More interestingly, we have performed rank statistics on the way measurements are
introduced. On the average, the best order appears to be 1, 3, 4, 2, 7, 10, 8, 9, 21, 22, 17, 6,
16, 5, 13, 15, 20, 18, 19, 12, 14, 11, which is reflected by the growing zones around X1 in
Figure 8.2. Strongly coupled patterns tend to be favored, but not always.

8.2.2 Fault localization in an IMS network

We have then performed another experiment on a more realistic GBN instance. The
network instance considered is shown in Figure 8.4.

Description of the failure scenario

Suppose that we want to explain why the IP connectivity is down for the user Mary in
the network instance of Figure 8.4.
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Figure 8.4: Network instance example: the physical and functional layers at a given resolution.

As shown by Figure 8.5, the IP connectivity procedure is broken down into two suc-
cessive procedures, initiated by the UE. In the functional layer, the chosen granularity

UE ARF

1. DHCP Discover

2. DHCP Discover

NACF* CLF*

4. DHCP Request

3. DHCP Offer

5. Bind IP-Address request

6. NASS User profile
request

7. NASS User response

8. Bind IP-Address answer
5. DHCP Ack (IP address and

P-CSCF address)

Procedure 1

Procedure 2

Procedure 1A

Procedure 2A

Figure 8.5: Sequence diagram of IP connectivity using DHCP (procedural layer). It consists in a
dialog between the User Equipment, functions of the NASS and the RACS.

of description distinguishes a single resource denoted ‘NACF*’ that groups the Access
Management Function ‘AMF’, the Network Access Configuration Function ‘NACF’,
the User Access Authorization Function ‘UAAF’, the communication interface between
‘AMF’ and ‘NACF’ (‘int AMF-NACF’) and the one between ‘NACF’ and ‘UAAF’ (‘int
NACF-UAAF’). In the same manner, the chosen granularity distinguishes a single re-
source denoted ‘CLF*’ that groups the Connectivity session Location and repository
Function ‘CLF’, the Access-Resource and Admission Control Function ‘A-RACF’ and
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the communication interface (‘int CLF-A-RACF’) between these two functions.

The (unique) pattern (generic model) that describes the resources used by the IP
connectivity procedure is shown in Figure 8.6. The pattern instance relative to the

Proc1

UE Int UE-
ARF  ARF Int ARF-

NACF* NACF* Int NACF*-
CLF*  CLF*

CPE First-Mile DSLAM Aggregation BRAS A-SBCMetro-Core

Int UE-
NACF*

Proc2

IP-Connectivity

is-preceded-by

is-supported-by

1 - q 1 - q 1 - q 1 - q 1 - q 1 - qis-supported-by

1 - q

1 - q

1 - q

1 - q

1 - q

Figure 8.6: Pattern for IP connectivity with conditional probabilities displayed. If all these parents
are in state ‘up’, a child is in state ‘up’, unless it fails by itself and the probability for that is q = 0.1.

user Mary is shown in Figure 8.7. The five pattern instances are depicted in Figure 8.8

Mary’s Proc1

UE#1 Int UE-
ARF#1  ARF#1 Int ARF-

NACF*#1 NACF*#1 Int NACF*-
CLF*#1  CLF*#1

CPE#1 First-Mile#1 DSLAM#1 Aggregation#1 BRAS#1 A-SBC#1Metro-Core#1

Int UE-
NACF*#1

Mary’s Proc2

Mary’s IP-Connectivity

up

down

Y2

Y1

up
Y3

Figure 8.7: Mary’s pattern instance. Observable variables are Y1,Y2 and Y3.

where the private resources are distinguishable by colors: Mary’s private resources
are displayed in orange, Alice’s pattern instance in green, Peggy’s pattern instance
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in purple, Jane’s pattern instance in blue, Trudy’s pattern instance in red. Shared
resources are displayed in gray.

Experimental setup

The parameters for this experiment are described below.

• All variables are binary with states 1 meaning ‘down’ and 2 meaning ‘up’.

• Some of them are observable:

– Y1, Y2, and Y3 in Mary’s pattern instance

– Y4 and Y5 in Alice’s pattern instance

– Y6 and Y7 in Peggy’s pattern instance

– Y8 and Y9 in Jane’s pattern instance

– Y10 and Y11 in Trudy’s pattern instance

They are displayed in rounded boxes in Figure 8.8.

• Variables ‘CPE’, ‘First-Mile’, ‘DSLAM’, ‘Aggregation’, ‘BRAS’, ‘Metro-Core’, ‘A-
SBC’ (and their corresponding instances) have no parent, they are (independent)
variables with distribution (0.1, 0.9) where 0.1 is the probability of the variable
being in state 1 (‘down’).

• Variables ‘UE’, ‘Int UE-ARF’, ‘ARF’, ‘Int ARF-NACF*’, ‘NACF*’, ‘Int NACF*-
CLF*’ (and their corresponding instances) have one parent. See Figure 8.6 for
their distribution and Table 8.1 below as an example.

CPE=1 CPE=2

UE=1 1 0.1
UE=2 0 0.9

Table 8.1: P(UE|CPE)

• Variables ‘Int UE-NACF*’ and ‘CLF*’ (and their corresponding instances) have
three parents. See Figure 8.6 for their distribution and Table 8.2 below as an
example.

A-SBC=1 A-SBC=2
Metro-Core=1 Metro-Core=2 Metro-Core=1 Metro-Core=2

BRAS=1 (1,0) (1,0) (1,0) (1,0)
BRAS=2 (1,0) (1.0) (1,0) (0.1,0.9)

Table 8.2: P(CLF* | BRAS, Metro-Core, A-SBC). The numbers (x,y) in the table
represent (CLF*=1,CLF*=2)
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Figure 8.8: The whole model.
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• Variables ‘Proc1’ and ‘Proc2’ (and their corresponding instances) have six par-
ents. Their distribution is such that if at least one parent is in state down, then
they are certainly in state 1 (‘down’). When all parents are in state 2 (‘up’),
these variables can be in the state 1 (‘down’) with probability 0.1 or in the state
2 (‘up’) with probability 0.9.

• Variable ‘IP-Connectivity’ (and its corresponding instance) See Figure 8.6 for
their distribution and Table 8.3 below as an example.

proc1=1 proc1=2

proc2=1 (1,0) (1,0)
proc2=2 (1,0) (0.1,0.9)

Table 8.3: P(IP-Connectivity|Proc1,Proc2). The numbers (x,y) in the table represent
(IP-Connectivity=1,IP-Connectivity=2)

• All variables representing observations have one parent and distribution (1, 0.02, 0, 0.98).
This is the case for Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11. As an example see
Table 8.4 below.

Mary’s IP connectivity=1 Mary’s IP connectivity=2

Y1=1 1 0.02
Y1=2 0 0.98

Table 8.4: P(Y1 |Mary’s IP connectivity)

• The variable Z (not shown here) has 15 parents: all variables in Mary’s pattern
instance corresponding to a physical or functional resource. Z can take 15 values,
each value pointing toward the failed resource in Mary’s pattern instance (see
Table 8.5). Note that, we could have chosen sixteen values for Z, the sixteenth
value meaning that there is no failure. Furthermore, we could have chosen to add
two more states for Z : 17 and 18 to denote the fact that ‘proc1’ and ‘proc2’ can
fail by themselves i.e. even their underlying functional resources are all in state
‘up’. For simplicity, here we use only 15 values.

Results

We observed the distribution of Z and its entropy H(Z) when observations (displayed
in rounded boxes in Figure 8.8) are progressively added.

1. When the set of observations {Y1 = 1, Y2 = 2, Y3 = 2} in Mary’s pattern instance
is entered and propagated, we have H(Z) = 3.3186 (see Figure 8.9(a) for Z’s
distribution).

2. Observation Y7 in Peggy’s pattern instance is selected as the most informative one.
Peggy’s pattern instance is considered and observations Y6 = 1 and Y7 = 1 are
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Z’s value Meaning

1 CPE#1 failed
2 First-Mile#1 failed
3 DSLAM#1 failed
4 Aggregation#1 failed
5 BRAS#1 failed
6 Metro-Core#1 failed
7 A-SBC#1 failed
8 UE#1 failed
9 Int UE-ARF#1 failed
10 ARF#1 failed
11 Int ARF#1-NACF*#1 failed
12 NACF*#1 failed
13 Int UE#1-NACF*#1 failed
14 Int NACF*#1-CLF*#1 failed
15 CLF*#1 failed

Table 8.5: Possible values of Z and their respective meaning

entered and propagated. The uncertainty (about the faulty resource) decreased:
H(Z) dropped to 3.2575 (see Figure 8.9(b) for Z’s distribution).

3. Observation Y11 in Trudy’s pattern instance is selected as the most informa-
tive one. Trudy’s pattern instance is considered and observations Y10 = 1 and
Y11 = 1 are entered and propagated. The uncertainty (about the faulty resource)
increased: H(Z) went up to 3.2776 (see Figure 8.9(c) for Z’s distribution).

4. Observation Y8 in Jane’s pattern instance is selected as the most informative
one. Jane’s pattern instance is considered and observations Y8 and Y9 are entered
and propagated. The uncertainty (about the faulty resource) decreased: H(Z)
dropped to 1.8529 (see Figure 8.9(d) for Z’s distribution).

5. Observation Y4 in Alice’s pattern instance is selected as the most informative
one. Finally, Alice’s pattern instance is considered and observations Y4 and Y5

are entered and propagated. H(Z) becomes null meaning that the state of Z i.e.
the information about the guilty resource is now doubtless (see Figure 8.9(e) for
Z’s distribution).

We conduct another experiment consisting in drawing a random sample of the
process described by this GBN instance, and in computing the conditional distribution
PZ|Yi=yi of the variable Z given the set Y1...Y11 of measurements. The measurement
set starts from V = {Y1, Y2, Y3} up to V = {Y1, ..., Y11}. For each sample, the evolution
of H(Z|YV = yV ) was computed. The experiment was conducted one thousand times.
On the average, one observes that H(Z|YV = yV ) does decrease (Figure 8.10).

However, for a given sample, this curve may not always decrease, as mentioned
above: even if an observable node is very informative on the average, its actual observed
sample may lead to a revision of the current assumptions, thus increasing temporarily
the uncertainty. For example, this situation happens with the following two samples.
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(a) Mary’s pattern instance is considered.
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(b) Peggy’s pattern instance is added.

0 0.05 0.1 0.15 0.2

CPE#1

First-Mile#1

DSLAM#1

Aggregation#1

BRAS#1

Metro-core#1

A-SBC#1

UE#1

int UE-ARF#1

ARF#1

int ARF#1-NACF*#1

NACF*#1

int UE#1-NACF*#1

int NACF*#1-CLF*#1

CLF*#1

Z's distribution when Trudy's pattern instance is added

(c) Trudy’s pattern instance is added.
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(d) Jane’s pattern instance is added.
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(e) Alice’s pattern instance is added.

Figure 8.9: Evolution of H(Z) while pattern instances are added
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Chapter9
Conclusion

The first part of the thesis address the problem of the Graceful Restart procedure in
OSPF networks. We propose to be less conservative as the standardized procedure by
taking full advantage of the separation between the control and forwarding functions.
We have shown that it was possible at low complexity to preserve the graceful restart
procedure of OSPF routers even if the topology changes during this operation. Such
a possibility avoids an abrupt return to a normal OSPF restart, which could disrupt
the network by large scale (possibly useless) reroutings. The proposed approach yields
a softer transition of behavior, where possible routing loops are detected beforehand,
and temporarily patched, until the restarting routers return in function. The case of
a single restarting router was completely solved: we have characterized the minimal
number of reroutings necessary to correct forwarding loops, and have shown where to
place them, all this with low complexity and distributable algorithms.

Future work will address the case of several simultaneous reboots, and examine how
to deal with successive topological changes, i.e. how to move from a set of temporary
reroutings to another one.

In the second part of the thesis, we address the self-diagnosis problem with a model-
based approach that aims at managing both the access network, the core network, the
functional architecture on top of them and the end-to-end services or the use of these
services. Diagnosis here isolating the root cause of symptoms whether they are located
in the physical, functional or service layer. The existing management solutions handle
separately the service layer, the access and the core network segment, which prevents a
smart and automatic analysis of the situation, and blocks any correlation of observed
events in these domains. Correlating events of these domains may however require some
coordination of the dedicated management resources, that may not be always possible,
so single layer versions may also be considered.

Model-based techniques are the key to an ambitious and autonomous management
of network malfunctions. They are adaptable to network instances, offer accurate and
wide range reasoning techniques, suggest methods to analyse the impact of failures and
can certainly go as far as suggesting the best mitigation actions. Nevertheless, they
have two weaknesses, namely deriving an accurate model and dealing with huge models.

We have proposed a self-modeling principle that limits the burden of model con-
struction to the design of generic patterns of the model, exploiting knowledge available
in the standards. The actual model matching a given network instance is then built
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by connecting as many copies/instances as necessary of these generic patterns, in order
to reproduce the dependency structure between the resources deployed in this network
instance. This guarantees a perfect fit of the model.

However, this model instance may not be known entirely once for all and in full
details, for example, if it is supposed to represent the full national network of some
operator. First of all because the model evolves in time (users appear, connect, register,
disconnect, equipment are added, reconfigured, etc.). But also, one rather needs to
know or discover only part of the model, the part that is necessary and sufficient to
answer a given diagnosis like “explain why this user cannot make calls”. So, the idea
is to determine the scope and granularity of the model on which inference will be
performed, assuming the model is stationary during the time the query is examined.
This means that the network configuration is assumed to change very slowly (e.g.
connections that are established remain up for a long time) when compared with the
time required to carry out the fault diagnosis. Then, the model instance is progressively
built/extended, on the fly, to satisfy the needs of the reasoning/diagnosis process. This
exploration scope evolves simultaneously with the inference procedure, which will have
to determine whether it is relevant to extend the visible part of the model in order to
collect more information about a diagnosis query.

We have proposed a formalism to match this self-modeling principle. It is based
on a notion of generic Bayesian network: a BN composed of many copies of a few
patterns. Even if the model instance is large, one only needs to explore part of it to
explain/diagnose some local observation, since variables located far away carry little
information about the observed malfunction.

This formalism is not yet complete however, since it does not yet capture the in-
trinsic hierarchical construction of networks, that is the fact that a network component
generally decomposes into a structure of smaller sub-components, and recursively. Such
generic and multi-resolution BN do not exist yet, but seem crucial to network man-
agement. Indeed, the large number of dependencies among network components (both
physical, functional or procedural) makes it reasonable to perform fault localization
in a hierarchical fashion. Fault localization would then be performed starting from a
macro-view (high level or abstract view) of the problem to select a potential spot of
the problem, an then it should focus on the micro-view (low-level or detailed view) of
the chosen spot.

Other new and exciting research directions are opened by this approach, for example
the simultaneous or successive processing of multiple diagnosis requests.

Another one is the distribution of the reasoning to capture the fact that network
segments are generally managed by different operational units. Expliciting distributed
reasoning (which is almost ‘built in’ the BN formalism) would indicate when these
units should communicate and what kind of information. Finally, impact analysis can
be performed by checking the influence of a given malfunction of all variables of a given
type in a given generic pattern of the BN.

The next step of this work will of course be to demonstrate the relevance of this
approach on typical failure scenarios in a realistic IMS architecture.
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RCEF Resource Control Enforcement Function 96

RTP Real-Time Protocol 91

S-CSCF Serving CSCF 91

SBC Session Border Controller 90

SDP Session Description Protocol 93

SGW Signaling Gateway 95

SIP Session Initiation Protocol 90

SLF Subscriber Locator Function 93

SPDF Service Policy Decision Function 96

TDM Time Division Multiplexing 94

UAAF User Access Authorization Function 98

UE User Equipment 98

UMTS Universal Mobile Telecommunications Services 22

UPSF User Profile Server Function 91

URI Uniform Resource Identifier 105
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