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“Wenn man auf etwas hindenkt, verdickt sich das, was man denkt, bis es nach und
nach sichtbar wird. Wer sich was denkt, denkt das denk nur ich, kein anderer weiß
es, aber dann kommt ein Tag, an dem das Gedachte als Tat oder Ding für alle Welt

sichtbar wird.”

Erwin Strittmatter

“Si nous nous arrêtions aux seules considérations méchaniques, il nous serait
loisible d’expliquer que l’équilibre de la tête, ainsi placée sur l’empilement des

vertèbres cervicales, au lieu de prolonger horizontalement la colonne vertébrale
comme chez les quadrupèdes, ne peut s’obtenir que par un allègrement de la partie

antérieure, c’est-à-dire la boı̂te crânienne et son contenu, l’encéphale.”

Gabriel Camps
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Summary

This work is concerned with the characterization of certain classes of stochastic processes
via duality formulae. In particular we consider reciprocal processes with jumps, a subject
up to now neglected in the literature.

In the first part we introduce a new formulation of a characterization of processes with
independent increments. This characterization is based on a duality formula satisfied by
processes with infinitely divisible increments, in particular Lévy processes, which is well
known in Malliavin calculus. We obtain two new methods to prove this duality formula,
which are not based on the chaos decomposition of the space of square-integrable function-
als. One of these methods uses a formula of partial integration that characterizes infinitely
divisible random vectors. In this context, our characterization is a generalization of Stein’s
lemma for Gaussian random variables and Chen’s lemma for Poisson random variables.
The generality of our approach permits us to derive a characterization of infinitely divisible
random measures.

The second part of this work focuses on the study of the reciprocal classes of Markov
processes with and without jumps and their characterization.

We start with a resume of already existing results concerning the reciprocal classes of
Brownian diffusions as solutions of duality formulae. As a new contribution, we show that
the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion
has a physical interpretation as a stochastic Newton equation of motion. Thus we are
able to connect the results of characterizations via duality formulae with the theory of
stochastic mechanics by our interpretation, and to stochastic optimal control theory by the
mathematical approach. As an application we are able to prove an invariance property of
the reciprocal class of a Brownian diffusion under time reversal.

In the context of pure jump processes we derive the following new results. We describe
the reciprocal classes of Markov counting processes, also called unit jump processes, and
obtain a characterization of the associated reciprocal class via a duality formula. This
formula contains as key terms a stochastic derivative, a compensated stochastic integral
and an invariant of the reciprocal class. Moreover we present an interpretation of the
characterization of a reciprocal class in the context of stochastic optimal control of unit
jump processes. As a further application we show that the reciprocal class of a Markov
counting process has an invariance property under time reversal.

Some of these results are extendable to the setting of pure jump processes, that is, we
admit different jump-sizes. In particular, we show that the reciprocal classes of Markov
jump processes can be compared using reciprocal invariants. A characterization of the
reciprocal class of compound Poisson processes via a duality formula is possible under the
assumption that the jump-sizes of the process are incommensurable.
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Zusammenfassung

Diese Arbeit befasst sich mit der Charakterisierung von Klassen stochastischer Prozesse
durch Dualitätsformeln. Es wird insbesondere der in der Literatur bisher unbehandelte
Fall reziproker Klassen stochastischer Prozesse mit Sprüngen untersucht.

Im ersten Teil stellen wir eine neue Formulierung einer Charakterisierung von Prozessen
mit unabhängigen Zuwächsen vor. Diese basiert auf der aus dem Malliavinkalkül bekan-
nten Dualitätsformel für Prozesse mit unendlich oft teilbaren Zuwächsen. Wir präsentieren
zusätzlich zwei neue Beweismethoden dieser Dualitätsformel, die nicht auf der Chaoszer-
legung des Raumes quadratintegrabler Funktionale beruhen. Eine dieser Methoden basiert
auf einer partiellen Integrationsformel für unendlich oft teilbare Zufallsvektoren. In diesem
Rahmen ist unsere Charakterisierung eine Verallgemeinerung des Lemma für Gaußsche
Zufallsvariablen von Stein und des Lemma für Zufallsvariablen mit Poissonverteilung von
Chen. Die Allgemeinheit dieser Methode erlaubt uns durch einen ähnlichen Zugang die
Charakterisierung unendlich oft teilbarer Zufallsmaße.

Im zweiten Teil der Arbeit konzentrieren wir uns auf die Charakterisierung reziproker
Klassen ausgewählter Markovprozesse durch Dualitätsformeln.

Wir beginnen mit einer Zusammenfassung bereits existierender Ergebnisse zu den
reziproken Klassen Brownscher Bewegungen mit Drift. Es ist uns möglich die Charakter-
isierung solcher reziproken Klassen durch eine Dualitätsformel physikalisch umzudeuten
in eine Newtonsche Gleichung. Damit gelingt uns ein Brückenschlag zwischen derarti-
gen Charakterisierungsergebnissen und der Theorie stochastischer Mechanik durch den
Interpretationsansatz, sowie der Theorie stochastischer optimaler Steuerung durch den
mathematischen Ansatz. Unter Verwendung der Charakterisierung reziproker Klassen
durch Dualitätsformeln beweisen wir weiterhin eine Invarianzeigenschaft der reziproken
Klasse Browscher Bewegungen mit Drift unter Zeitumkehrung.

Es gelingt uns weiterhin neue Resultate im Rahmen reiner Sprungprozesse zu beweisen.
Wir beschreiben reziproke Klassen Markovscher Zählprozesse, d.h. Sprungprozesse mit
Sprunghöhe eins, und erhalten eine Charakterisierung der reziproken Klasse vermöge
einer Dualitätsformel. Diese beinhaltet als Schlüsselterme eine stochastische Ableitung
nach den Sprungzeiten, ein kompensiertes stochastisches Integral und eine Invariante der
reziproken Klasse. Wir präsentieren außerdem eine Interpretation der Charakterisierung
einer reziproken Klasse im Rahmen der stochastischen Steuerungstheorie. Als weitere
Anwendung beweisen wir eine Invarianzeigenschaft der reziproken Klasse Markovscher
Zählprozesse unter Zeitumkehrung.

Einige dieser Ergebnisse werden für reine Sprungprozesse mit unterschiedlichen Sprung-
höhen verallgemeinert. Insbesondere zeigen wir, dass die reziproken Klassen Markovscher
Sprungprozesse vermöge reziproker Invarianten unterschieden werden können. Eine
Charakterisierung der reziproken Klasse zusammengesetzter Poissonprozesse durch eine
Dualitätsformel gelingt unter der Annahme inkommensurabler Sprunghöhen.
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Résumé

Ce travail est centré sur la charactérisation de certaines classes de processus aléatoires
par des formules de dualité. En particulier on considérera des processus réciproques à
sauts, un cas jusqu’à présent négligé dans la littérature.

Dans la première partie nous formulons de façon innovante une charactérisation des
processus à accroissements indépendants. Celle-ci est basée sur une formule de dualité
pour des processus infiniment divisibles, déjà connue dans le cadre du calcul de Malliavin.
On va présenter deux nouvelles méthodes pour prouver cette formule, qui n’utilisent pas
la décomposition en chaos de l’espace des fonctionnelles de carré intégrable. Une méthode
s’appuie sur une formule d’intégration par parties satisfaite par des vecteurs aléatoires
infiniment divisibles. Sous cet angle, notre charactérisation est une généralization du
lemme de Stein dans le cas Gaussien et du lemme de Chen dans le cas Poissonien. La
généralité de notre approche nous permet de plus, de présenter une charactérisation des
mesures aléatoires infiniment divisibles.

Dans la deuxième partie de notre travail nous nous concentrons sur l’étude des classes
réciproques de processus de Markov avec ou sans sauts, et sur leur charactérisation.

On commence avec un résumé des résultats déjà existants concernant les classes réciproques
de diffusions browniennes comme solutions d’une formule de dualité. Nous obtenons no-
tamment une nouvelle interprétation des classes réciproques comme les solutions d’une
équation de Newton. Cela nous permet de relier nos résultats à la mécanique stochastique
d’une part et à la théorie du contrôle optimale, d’autre part. La formule de dualité nous
permet aussi de prouver une propriété d’invariance par retournement du temps de la classe
réciproque d’une diffusion brownienne.

En outre nous obtenons une série de nouveaux résultats concernant les processus de sauts
purs. Nous décrivons d’abord la classe réciproque associée à un processus markovien de
comptage, c’est-à-dire un processus de sauts de taille un, puis en présentons une char-
actérisation par une formule de dualité. Cette formule contient une dérivée stochastique,
une intégrale stochastique compensée, et une fonctionnelle qui est une grandeur invariante
de la classe réciproque. De plus nous livrons une interprétation de la classe réciproque
comme ensemble des solutions d’un problème de contrôle optimal. Enfin, par une utili-
sation appropriée de la formule de dualité, nous montrons que la classe réciproque d’un
processus markovien de comptage est invariante par retournement du temps.

Quelques-uns de ces résultats restent valables pour des processus de sauts purs dont
les sauts sont de taille variée. En particulier nous montrons que certaines fonctionnelles
dites invariants réciproques permettent de distinguer différentes classes réciproques. Notre
dernier résultat est la charactérisation de la classe réciproque d’un processus de Poisson
composé dès lors que les (tailles des) différents sauts sont incommensurables.
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Introduction

The theory of reciprocal processes basically evolved from an idea by Erwin Schrödinger.
In [Sch32] he described the motion of a particle diffusing in a thermal reservoir as a
stochastic boundary value problem. He proposed that the solutions of such a boundary
value problem are elements of the reciprocal class associated to a Markov process. This
class contains all stochastic processes that have the same bridges as that reference Markov
process, where the term bridge refers to a process conditioned on deterministic initial and
final states.

In [Ber32] Bernstein noted that the concept of reciprocal processes, or Markov fields
indexed by time, allows to state probabilistic models based on a symmetric notion of past
and future:

“[...] si l’on veut reconstituer cette symétrie entre le passé et le futur [...] il faut
renoncer à l’emploi des chaı̂nes du type de Markov et les remplacer par des schémas
d’une nature différente.”

The properties of reciprocal processes and reciprocal classes have been examined in detail
by numerous authors under various aspects.

Many important results concerning the fundamental properties of reciprocal processes
where given by Jamison in a series of articles [Jam70, Jam74, Jam75]. In particular he
characterizes reciprocal Gaussian processes using a differential equation satisfied by their
covariance function. The theory of Gaussian reciprocal processes was amended by Chay
[Cha72], Carmichael, Mass, Theodorescu [CMT82] and extended to a multivariate context
by Levy [Lev97].

Important contributions to a physical interpretation and to the development of a sto-
chastic calculus adjusted to the reciprocal class of continuous diffusions have been made by
Zambrini and various co-authors in their interest of creating a “Euclidean” version of quan-
tum mechanics. In joint work with numerous authors he develops a stochastic calculus
that possesses interesting analogies to the path-integral approach to quantum mechanics as
introduced by Feynman and Hibbs [FH10]. An account is given in monograph by Chung
and Zambrini [CZ01], see also Zambrini’s works with Cruzeiro or Thieullen [CZ91, TZ97].
Moreover Zambrini notes that reciprocal classes are an elegant way to describe the solu-
tions of certain stochastic control problems, see [Zam86]. This interpretation was extended
by Wakolbinger and Dai Pra to different cost functions in [Wak89] respectively [DP91].

Krener initiated his search for reciprocal invariants of the reciprocal class of continuous
diffusions using short-time expansions of transition densities in [Kre88]. Clark remarked
in [Cla90] that these reciprocal invariants are in fact characteristics of the reciprocal classes.
They permit to identify processes belonging to the same reciprocal class. A physical
interpretation of these invariants was furnished by Levy and Krener [LK93].

This thesis deals with the problem of characterizing reciprocal classes of Markov pro-
cesses by duality formulae. In connection with a Brownian motion, such duality formulae
first appeared as an analytical tool in Malliavin calculus: Bismut provided a probabilistic
proof of Hörmander’s theorem using a duality formula satisfied by the Wiener measure
in [Bis81]. The term duality formula refers to a duality, or “integration by parts” relation
between a stochastic derivative operator and a stochastic integral operator.

A characterization of the Poisson process as the unique process satisfying a duality for-
mula between a difference operator and a compensated stochastic integral was first given
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by Slivnjak [Sli62] and extended to Poisson measures by Mecke [Mec67]. A similar char-
acterization of the Wiener measure was presented by Rœlly and Zessin in [RZ91]. They
characterize the Brownian motion as the unique continuous process for which the Malli-
avin derivative and the Skorohod integral are dual operators.

The first part of this thesis deals with the characterization of processes with independent
increments by a duality formula. This result serves as a basis for the study of reciprocal
classes of Markov processes in the second part.

Section 1 is an introduction to the characterization of stochastic processes by duality
formulae. We present the abovementioned characterizations by Slivnjak and Rœlly, Zessin
and extend them to the reference-space of càdlàg processes. Our approach is based on a
characterization of the Poisson, respectively the Gaussian law on R as unique probability
distributions satisfying specific integration by parts formulae. These results are also known
as Chen’s Lemma, respectively Stein’s Lemma, see e.g. the monograph by Stein [Ste86].

Section 2 is devoted to make explicit an integration by parts formula satisfied by infinitely
divisible random vectors: In Proposition 2.7 we show that if Z is an integrable and infinitely
divisible random vector, then

(0.1) E
(

f (Z)(Z − b)
)

= E
(
A∇ f (Z)

)
+ E

(∫
Rd
∗

( f (Z + q) − f (Z))qL(dq)
)
.

Here, f : Rd
→ R is a smooth test function and b ∈ Rd, A ∈ Rd×d and L are the Fourier

characteristics of the infinitely divisible random vector Z. In particular A is non-negative definite
and L is a Lévy measure on Rd

∗ . This formula is the finite dimensional version of a duality
formula for càdlàg processes with independent increments, a formula which is known in
the Malliavin calculus of Lévy processes with and without jumps. Let X be a Lévy process
with integrable increments. In Proposition 2.20 we prove the duality formula

E

(
F(X)

∫
[0,1]

ut · (dXt − bdt)
)

= E

(∫
[0,1]

DtF(X) · Autdt
)

+E

(∫
[0,1]×Rd

∗

(F(X + q1[t,1]) − F(X))ut · qdtL(dq)
)
.(0.2)

Here, F(X) is a smooth functional of the Lévy process and u : [0, 1] → Rd is a step function.
The vector b is the drift, A is the diffusion matrix and L is a Lévy measure controlling the jumps
of X. The dual operator to the stochastic integral are the Malliavin derivative DtF(X) and the
difference operator F(X + q1[t,∞)) − F(X). The only known proof of this duality uses a chaos
decomposition of the underlying space of square integrable functionals. We present two
new and simple proofs in Propositions 2.20 and 2.38. The first one underlines the direct
correspondence of infinite divisibility and this kind of duality formulae. The second one
uses a new random perturbation of jumps to define the difference operator.

In Section 3 we show that processes with independent increments are indeed the only
ones that satisfy the duality formulae (0.2). Our main result is a characterization of pro-
cesses with independent increments presented in Theorem 3.4. Let us state the ensuing
characterization of Lévy processes: If X is an integrable process and (b,A,L) are a tuple con-
sisting of a vector, a non-negative definite matrix and a Lévy measure, then X is a Lévy process
with characteristics (b,A,L) only if the duality formula (0.2) holds. This is based on a character-
ization of infinitely divisible random vectors by (0.1) is presented in Theorem 3.1, which
is a generalization of Stein’s and Chen’s lemma. We thus unify and extend the results of
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Section 1. Our method permits us to give a new and simple proof of a characterization of
infinitely divisible random measures on Polish spaces by a factorization of the Campbell
measure, an old result due to Kummer and Matthes [KM70b].

The idea of using duality formulae as a tool to characterize reciprocal classes is relatively
new. It has been introduced by Rœlly and Thieullen [RT02, RT05] to characterize the
reciprocal classes of a Wiener measure and of Brownian diffusions.

Our main contribution in this work is the study of the reciprocal classes of pure jump
processes, in particular of jump processes with unit jump size. We underline the relevance
of such characterizations with applications on an optimal control problem and on time-
reversal of stochastic processes.

The second part of this thesis is devoted to the study of reciprocal classes of continuous
Markov processes and Markov processes with jumps. In particular our work contains the
first investigation in the context of jump processes.

We define in Section 4 the notions of reciprocal processes and of reciprocal classes
associated to Markov processes. The concept of a reciprocal class is central in the second
part of this thesis. If (Xt)0≤t≤1 is an Rd-valued Markov process, the reciprocal class of X consists
of all stochastic processes (Yt)0≤t≤1 that have the same bridges as X. The term bridge refers to
the law of the process conditioned on fixed enpoints X0 = x and X1 = y for x, y ∈ Rd. We
illustrate these concepts using stochastic processes with discrete time in § 4.4. This relates
to the original idea of Bernstein [Ber32], who introduced reciprocal processes as a time
symmetric generalization of Markov chains.

Section 5 is devoted to the study of the reciprocal classes of Brownian diffusions: A
Brownian diffusion X is the solution of the stochastic differential equation

dXt = b(t,Xt)dt + dWt,

where b is a smooth function and W is a Brownian motion. As a new contribution we present the
following characterization of Brownian diffusions. In Theorem 5.14 we prove that a continuous
semimartingale X with integrable increments is a Brownian diffusion if and only if

E

(
F(X)

∫
[0,1]

utdXt

)
= E

(∫
[0,1]

DtF(X) · utdt
)

+E

F(X)


∫

[0,1]
ut · b(t,Xt)dt +

∫
[0,1]

d∑
i, j=1

ui,t

∫
[t,1]

∂ib j(s,Xs)(dX j,s − b j(s,Xs)ds)dt




holds for smooth functionals F(X) and u : [0, 1]→ Rd step functions. Our assumptions on X are
minimal to render the duality formula well defined, since we need to define a stochastic
integral on the right side, and all terms must be integrable with respect to the law of X.
Following Rœlly and Thieullen [RT02, RT05] this is extended to a characterization of the
reciprocal class of a Brownian diffusion. We then present two applications. In § 5.5 we
present formal analogies between the properties of processes in the reciprocal class of a
Brownian diffusion and the motion of a particle in an electromagnetic field in classical
mechanics. The dynamics in the examined processes similar to those of the “Bernstein
processes” introduced by Zambrini [Zam85] and Lévy, Krener [LK93]. We are able to give
a concise physical interpretation of the invariants associated to the reciprocal class of a
Brownian diffusion Clark introduced in [Cla90]: If E,B : [0, 1] ×R3

→ R3 denote an electric
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respectively magnetic field, and X is a Brownian diffusion with drift b representing the motion of a
particle in a thermal reservoir under the influence of this electromagnetic field, then we are able to
prove that

Ei(t, x) = ∂tbi(t, x) +

3∑
j=1

b j(t, x)∂ jbi(t, x) +
1
2

3∑
j=1

∂ jbi(t, x), i = 1, 2, 3,

B(t, x) = (∂2b3 − ∂3b2, ∂3b1 − ∂1b3, ∂1b2 − ∂2b1) (t, x),

where on the right side of these equations we encounter Clark’s reciprocal invariants. Here, the
motion of the particle is defined as the solution of a stochastic optimal control problem
similar to the one proposed by Yasue [Yas81]. We show that the duality formula characterizing
the reciprocal class of X can then be written as

E

(∫
[0,1]

DtF(X) · utdt
)

= E

(
F(X)

(∫
[0,1]

ut ◦ dXt +

∫
[0,1]
〈u〉t × B(t,Xt) ◦ dXt +

∫
[0,1]
〈u〉t · E(t,Xt)dt

))
,

under the loop condition
∫

[0,1] utdt = 0, where 〈u〉t denotes the primitive of u and ◦ dXt is the
Fisk-Stratonovic integral and “×′′ denotes the cross product of vectors. This equation is a formal
analogue to the Newton equation “directing” a particle through an electromagnetic field,
see Remark 5.53. In the second application we analyze the behavior of the reciprocal class
of a Brownian diffusion with respect to the time-reversal t 7→ 1 − t. Using the characteri-
zation of the reciprocal class by a duality formula due to Rœlly and Thieullen, we are able
to identify in Proposition 5.84 the reciprocal class of reversed processes given their initial
reciprocal class. A first result was presented by Thieullen [Thi93, Proposition 4.5], who
identified the reciprocal invariants of a time reversed Brownian diffusion. In the context of
the above mechanical interpretation we infer the following interpretation: If X is a process
in the reciprocal class of a Brownian diffusion with reciprocal invariants identical to the electro-
magnetic fields E(t, x) and B(t, x), then its reversed process is in the reciprocal class with invariants
identical to E(1 − t, x) and −B(1 − t, x).

In the study of bridges of jump processes several new problems occur. Let us briefly
mention an important “algebraic” problem: If a real-valued pure jump process is condi-
tioned to start at time t = 0 in a point x ∈ R and to be in y ∈ R at the final time t = 1
after n ∈ N jumps with jump-sizes q1, . . . , qn ∈ R\{0}, then y = x + q1 + · · · + qn. Thus an
interdependence of jump-sizes occurs for the bridges, e.g. the n’th jump depends on the
size of first jump through qn = y − q1 − · · · − qn−1 − x. The study of pure jump processes
with unit jump size clearly permits to avoid this problem.

Section 6 is devoted to the study of the reciprocal classes of a Poisson process and of
certain Markov processes with unit jumps: We define “nice unit jump processes” as jump
processes with unit jumps and intensity-of-jumps functions ` which are bounded from
below and from above. In particular a Poisson process is a nice unit jump process with
intensity ` ≡ 1. In Theorem 6.58 we are able introduce a new reciprocal invariant associated
to the reciprocal class of Markov nice unit jump processes: Two nice unit jump processes X
and Y with intensities ` respectively k have the same reciprocal class, if and only if the reciprocal
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invariants

Ξ`(t, x) = Ξk(t, x) coincide, where Ξ`(t, x) = ∂t log `(t, x) + `(t, x + 1) − `(t, x).

Our way to characterize nice unit jump processes is based on a duality formula that was first
derived by Carlen, Pardoux [CP90] and independently by Elliott, Tsoi [ET93]. In Theorem
6.69 the reciprocal invariant is shown to appear in a duality formula that characterizes the
full reciprocal class: A unit jump process X is in the reciprocal class of a nice unit jump process
with intensity ` if and only if the duality formula

E

(
F(X)

∫
[0,1]

utdXt

)
= E (DuF(X)) − E

(
F(X)

∫
[0,1]

ut

∫
[t,1]

Ξ`(s,Xs−)dXsdt
)

holds for smooth functionals F(X) and step functions u that satisfy the loop condition
∫

[0,1] utdt = 0.
Here, DuF(X) is a derivative introduced by Carlen, Pardoux and Elliott, Tsoi. In particular
a unit jump process X is a mixture of Poisson bridges if and only if the above duality formula holds
with Ξ` ≡ 0. Moreover we show that the reciprocal class contains all solutions to an optimal
control problem under the constraint of a given boundary distribution. Given bounded cost
potentials A : I ×R→ (0,∞) and Φ : I ×R→ R this problem concerns the minimization of the
logarithmic cost function

E

(∫
[0,1]

(
γt logγt − γt log A(t,Xt−) + Φ(t,Xt−)

)
dt

)
,

inside the class of unit jump processes X with predictable intensity functionγt whose law is absolutely
continuous with respect to the law of a Poisson process, see Proposition 6.81. In Propostion 6.90
we conclude that the minimizer of the above cost function satisfies the above duality formula with
invariant

Ξ`(t, x) = ∂t log A(t, x) + Φ(t, x + 1) −Φ(t, x).

As a corollary we are able to identify the time-reversed reciprocal classes of nice unit jump
processes. We show that if X is a unit jump process in the reciprocal class of a nice unit jump
process with invariant Ξ`(t, x), then the reversed process X̂t := −X(1−t)− is in the reciprocal class of
a nice unit jump process with invariant Ξ`(1 − t,−x − 1), see Propostion 6.101.

In Section 7 we propose generalizations of some of our results on unit jump processes
to pure jump processes with different jump-sizes. To avoid interdependence of jump-sizes
of bridges, an incommensurability condition between the jumps is essential: A finite set
Q ⊂ Rd

∗ contains only incommensurable jump-sizes if for any two finite sums of elements of Q
the equality q1 + · · · + qn = q̃1 + · · · + q̃m implies n = m and (q1, . . . , qn) = (q̃1, . . . , q̃n) up to a
permutation of the entries. Under this condition, we show that the reciprocal class of any compound
Poisson process can be characterized by a duality formula, see Theorem 7.36. We also discuss the
reciprocal classes of certain Markov jump processes: X is a nice jump process, if the exists a
bounded function ` : [0, 1] ×Rd

×Q→ [ε,∞) that is differentiable in time such that

Xt − X0 −

∫
[0,t]×Q

`(t,Xt−, q)dtΛ(dq)

is a martingale, where Λ is the counting measure on Q. In Theorem 7.54 we are able to compare
the reciprocal classes of nice jump processes without assuming incommensurability of
jumps. Two nice jump processes X and Y with respective intensities ` and k have the same
reciprocal class if there exists a functionψ : [0, 1]×Rd

→ R such that log k(t, x, q) = log `(t, x, q)+
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ψ(t, x + q) − ψ(t, x) everywhere, and if the invariants

Ξ
q
`
(t, x) = Ξ

q
k(t, x) coincide, where Ξ

q
`
(t, x) = ∂t log `(t, x, q) +

∫
Q

(`(t, x + q, q̄) − `(t, x, q̄))Λ(dq).

In the Appendix we summarize some results from the stochastic calculus associated to
pure jump semimartingales on the space of càdlàg paths. This calculus is the basis of many
results in Sections 2, 6 and 7.
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Notation

In this work we use the notation

N := {0, 1, 2, . . . }, N∗ := {1, 2, . . . },

R+ := [0,∞), R∗ := R\{0}, and Rd
∗ := Rd

\{0}.

Any d-dimensional vector x ∈ Rd is considered as a column vector (x1, . . . , xd)t, where t

denotes the transpose. The scalar product in Rd is denoted by

x · y := x1y1 + · · · + xdyd, ∀x, y ∈ Rd.

For any x ∈ Rd we define the

`1-norm (absolute value): |x|1 := |x1|1 + · · · + |xd|1,

`2-norm (Euclidean norm): |x| :=
√

x2
1 + · · · + x2

d.

Stochastic processes are indexed with time I = [0, 1]. All finite and ordered subsets of I
are collected in

(0.3) ∆I := {τn = {t1, . . . , tn} ∈ I
n, 0 ≤ t1 < t2 < · · · < tn ≤ 1, n ∈N}.

We use the shorthands s∧ t := min{s, t} and s∨ t := max{s, t} for s, t ∈ I. The space of càdlàg
processes is

(0.4) D(I,Rd) := {ω : I → Rd, ω is càdlàg}.

Càdlàg is a shorthand for continue à droite, limité à gauche, which means right-continuous
with left limit. We writeD(I) = D(I,R1) if d = 1. We always use the canonical setup:

• The identity X : D(I,Rd)→ D(I,Rd) is the canonical process.
• For t ∈ I the time projection of X is Xt(ω) := ω(t), the jump at time t ∈ I is

∆Xt := Xt − Xt−, where we use the left limit Xt− := limε→0 Xt−ε.
• For any τ ⊂ I we define Fτ := σ(Xt, t ∈ τ), in particular (F[0,t])t∈I is the canonical

filtration.

We say that the process X has integrable increments with respect to some law P on
D(I,Rd) if for any t ∈ I the random variable |Xt−X0|1 is inL1(P). As soon as the following
stochastic integrals are well defined, we denote

• the Itô-integral by
∫
I

ut · dXt, and
∫
I

utdXt if d = 1.
• the Fisk-Stratonovich-integral by

∫
I

ut ◦ dXt.

Let P be a probability on any measurable space (Ω,F ). If F ∈ L1(P) is integrable, we
denote by

E (F) :=
∫

Ω

F(ω)P(dω)

the integral of F with respect to P. Up- and subscripts on P are inherited in the notation of
the expectation. The Dirac-measure concentrated on ω ∈ Ω is denoted by δ{ω}.

With O(ε) : Ω → R we denote a random Landau notation. In particular (O(ε))ε>0 is
a family of random variables uniformly bounded by εK for some K > 0. This implies
limε→0O(ε) = 0 in practically any sense of convergence. With o(ε) we denote the small
Landau notation, which signifies that o(ε)/ε→ 0 for ε→ 0.

For d,m,n ∈Nwe introduce the following spaces of measurable functions:

• C
n
b (Rd,Rm): The space of n-times differentiable functions from Rd into Rm that are

bounded with bounded derivatives;
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• C
n
c (Rd,Rm): The space of n-times differentiable functions that have compact support.

Smooth functions are elements of either

C
∞

b (Rd,Rm) :=
∞⋂

n=1

C
n
b (Rd,Rm), or C∞c (Rd,Rm) :=

∞⋂
n=1

C
n
c (Rd,Rm).

We write Cn
b (Rd) = Cn

b (Rd,R) or Cn
c (Rd) = Cn

c (Rd,R) if m = 1. We use similar definitions
for functions in time and space, in particular C1,2

b (I × Rd,Rd) denotes the functions f :
I × Rd

→ Rd that are one-time differentiable in the time direction and two-times in the
space direction. The partial derivatives are noted by ∂t f (t, x) in time and by ∂i f (t, x) for the
derivatives in direction xi for 1 ≤ i ≤ d. Let us define the supremum-norm

for φ : Rd
→ Rm, ||φ||∞ := sup

x∈Rd
|φ(x)|1.

The space of cylindric, smooth and bounded functionals is

(0.5) Sd :=
{
F : D(I,Rd)→ R, F(ω) = f (ω(t1), . . . , ω(tn)), f ∈ C∞b (Rnd), τn ∈ ∆I, n ∈N

}
,

simply S = S1 if d = 1. The space of elementary test functions is

(0.6) Ed :=

u : I → Rd, u =

n−1∑
i=1

ui1(ti,ti+1] for some ui ∈ R
d, τn ∈ ∆I, n ∈N

 ,
and again E = E1 if d = 1.

For any u, v ∈ L2(dt) respectively w ∈ L1(dt) and t ∈ Iwe write

〈u, v〉t :=
∫

[0,t]
usvsds and 〈w〉t :=

∫
[0,t]

wsds.

We hide the time-index if t = 1, e.g. 〈w〉 =
∫

[0,1] wsds for w ∈ L1(dt).
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First part:
Probability laws characterized by integration by parts formulae

1. Two fundamental examples

We introduce two fundamental examples of stochastic processes that can be character-
ized as unique processes satisfying a duality formula: The Wiener process and the Poisson
process. The characterization of the Wiener process in Proposition 1.10 is due to Rœlly and
Zessin [RZ91]. The characterization of the Poisson process presented in Proposition 1.21
is due to Slivnjak [Sli62]. We present a new approach for both results that is based on an
integration by parts of the underlying law of the processes increments, which is the Gauss-
ian respectively the Poisson distribution. With this technique we extend characterization
results of one-dimensional random variables, as known in Stein’s calculus, to the setting
of càdlàg processes.

1.1. Wiener process.
A Wiener process has Gaussian increments. We use this, to characterize the Wiener

process in § 1.1.2 based on a characterization of the Gaussian law introduced in § 1.1.1.

1.1.1. Integration by parts of the Gaussian law.
Let (Ω,F ,P) be some probability space. A measurable application Z : Ω → R is called

a random variable.
There are numerous ways to characterize Gaussian random variables, an account is given

by Bogachev in [Bog98, Paragraph 1.9]. Let us exemplarily mention a characterization result
by Darmois [Dar51]:

Let Z be a random variable and Z′ be an independent copy of Z. Then Z is Gaussian
if and only if Z + Z′ and Z − Z′ are independent.

We present a different characterization of the standard normal distribution onR that is also
known as Stein’s Lemma. This result extends to a characterization of the Wiener process
by the duality formula known from Malliavin’s calculus.

If Z ∼ N(0, 1) has standard normal distribution and f ∈ C∞b (R) the integration by parts
formula on the real line implies

(1.1) E ( f (Z)Z) =
1
√

2π

∫
R

f (z)ze−
z2
2 dz =

1
√

2π

∫
R

f ′(z)e−
z2
2 dx = E ( f ′(Z)).
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We call this the integration by parts formula under the Gaussian distribution. It is
essential to us that the converse conclusion also holds, the above integration by parts
formula is only satisfied by the Gaussian distribution.

Proposition 1.2. Let Z be an integrable random variable. If for every f ∈ C∞b (R) the integration
by parts formula

(1.3) E ( f (Z)Z) = E ( f ′(Z))

holds, then Z ∼ N(0, 1).

Proof. Take a non-negative f ∈ C∞c (R) and define F(z) :=
∫

(−∞,z] f (y)dy ∈ C∞b (R). If PZ :=

P ◦ Z−1 denotes the law of Z under P, then∫
R

f (z)PZ(dz) = E ( f (Z)) = E (F′(Z)) = E (F(Z)Z) ≤ ||F(z)||∞E (|Z|1) ≤ c
∫
R

f (z)dz,

for the constant c = E (|Z|1). Therefore PZ(dz) � dz is absolutely continuous, say PZ(dz) =

p(z)dz. The weak derivative p′ of the density function p is defined as the dz-a.e. unique
function such that ∫

R
f ′(z)p(z)dz =

∫
R

f (z)p′(z)dz, ∀ f ∈ C∞b (R).

But then the integration by parts formula (1.3) implies that p′(z) = p(z)z holds dz-a.e.. The
unique solution of this ordinary differential equation under the condition

∫
R

p(z)dz = 1 is
the Gaussian density function, thus Z ∼ N(0, 1). �

This characterization is due to Stein [Ste72], see also the monograph by the same author
[Ste86, Lemma II.1]. The following remark hints to the fundamental idea behind Stein’s
calculus concerning the approximation of normal random variables.

Remark 1.4. Loosely speaking, the distribution of a random variable V is close in distribution to
N(0, 1) if for a class of functions f : R→ R large enough

(1.5) E ( f (V)) ≈ E ( f (Z)).

A real function g f is called a solution to Stein’s equation, if

(1.6) g f (x)x − g′f (x) = f (x) − E ( f (Z)), ∀x ∈ R.

Inserting the random variable V and taking expectations, Stein’s equation then permits to change
condition (1.5) into

E (g f (V)V) ≈ E (g′f (V)).

Stein provided a solution of (1.6) in [Ste72]. The fact that due to Proposition 1.2 the standard
normal law is the unique probability on R satisfying the integration by parts formula (1.3) thus
justifies Stein’s method of approximation.

Similar characterizations based on an integration by parts formula exist for different
measures. Let us mention a result from the theory of differentiable measures.

Remark 1.7. The characterization presented in Proposition 1.2 of a Gaussian probability measure
is a particular case of a characterization of finite measures that are Fomin-differentiable as developed
by Bogachev and Röckner [BR95], see also Bogachev [Bog10, Theorem 7.6.3]. A measure µ on
(R,B(R)) is Fomin-differentiable, if for any Q ∈ B(R) the limit limε→0

1
ε (µ(Q + ε) − µ(Q)) exists

and is finite. The definition uses the translation Q + ε := {x + ε, x ∈ Q}. Clearly any measure
that is absolutely continuous on R with differentiable density is Fomin-differentiable. In particular
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the result by Bogachev and Röckner includes the characterization of the Gaussian law: A normal
random variable is Fomin differentiable with logarithmic gradient z, who appears on the left side of
the integration by parts formula (1.3).

1.1.2. Duality formula for the Wiener process.
The characterization of a probability measure on the one-dimensional space R given in

Proposition 1.2 is now lifted to an infinite-dimensional setting, we characterize a probability
on the space of càdlàg processes. This probability is basically the Wiener measure, but
instead of fixing the initial condition X0 = 0 a.s. we admit arbitrary initial laws.

Definition 1.8. A probability measure P onD(I) is called a Wiener measure if given X0, for any
{t1, t2, . . . , tn} ∈ ∆I the canonical vector (Xt1 − X0, . . . ,Xtn − Xtn−1)t has independent components
with Gaussian increments Xt j − Xt j−1 ∼ N(0, t j − t j−1), j ∈ {1, . . . ,n}, where t0 = 0.

The process X is then called a Brownian motion. In particular a Brownian motion has
independent and stationary increments, but in our definition the initial law P(X0 ∈ . ) may
be any probability measure on R. The Gaussianity of increments allows a characterization
of the Wiener process that is very close in spirit to Proposition 1.2.

The space of cylindric, smooth and bounded functionals S is going to take the place
of test functions C∞b (R) used in Proposition 1.2. We introduce a derivative of functionals
F(ω) = f (ω(t1), . . . , ω(tn)) ∈ S in the direction of elementary functions u =

∑m−1
i=1 ui1(si,si+1] ∈

E by

(1.9) DtF(ω) :=
n∑

i=1

∂i f (ω(t1), . . . , ω(tn))1(0,ti](t), and DuF(ω) :=
∫
I

DtF(ω)utdt.

This is a true derivative operator in the sense that a product- and a chain-formula of calculus
hold. Moreover it can be interpreted as a Gâteaux-derivative, see § 2.3.1.

Proposition 1.10. Assume that X has integrable increments with respect toQ. ThenQ is a Wiener
measure if and only if the duality formula

(1.11) EQ

(
F(X)

∫
I

utdXt

)
= EQ (DuF(X))

holds for all F ∈ S and u ∈ E.

Proof. Remark that formula (1.11) is well defined: On the left side we have the product of
a bounded functional with a stochastic integral, that in the case u ∈ E reduces to a finite
sum over the increments and is thus in L1(Q). On the right side there is the derivative of F
in direction of u which is bounded by its definition (1.9).

Fix some {t1, . . . , tn} ∈ ∆I, without loss of generality we chose u ∈ E and F ∈ S with
u =

∑n−1
i=1 ui1(ti,ti+1] and F(ω) = f (ω(t1), . . . , ω(tn)). Remark that

f (Xt1 , . . . ,Xtn) = f (X0 + (Xt1 − X0),X0 + (Xt1 − X0) + (Xt2 − Xt1), . . . )

=: f̃X0(Xt1 − X0, . . . ,Xtn − Xtn−1),(1.12)

and thus

(1.13) DuF(X) =

n∑
i=1

∂i f̃X0(Xt1 − X0, . . . ,Xtn − Xtn−1)ui−1(ti − ti−1), where u0 := 0, t0 := 0.
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If Q is a Wiener measure, we condition on the initial value X0 and get

EQ

(
F(X)

∫
I

usdXs

 X0

)
=

1
(2π)

n
2

∫
Rn

f̃X0(z1, . . . , zn)

n−1∑
i=1

uizi+1

 e−
z1
2t1 · · · e−

zn
2(tn−tn−1) dz1 · · · dzn.

Integration by parts in the variables z2, . . . , zn shows that the duality formula holds.
For the converse assume that the duality formula is satisfied under Q. Chose F(ω) =

f (ω(t1) − ω(0), . . . , ω(tn) − ω(tn−1)) ∈ S with f (z) = g1(z1) · · · gn(zn), gi ∈ C
∞

b (R). Fix any
j ∈ {1, . . . ,n} and put gi ≡ 1, ui−1 = 0 for i , j. The duality formula reduces to

EQ(g j(Xt j − Xt j−1)u j−1(Xt j − Xt j−1)) = EQ(g′j(Xt j − Xt j−1)u j−1(t j − t j−1)),

and Proposition 1.2 implies that (Xt j − Xt j−1)/(t j − t j−1) ∼ N(0, 1) under Q. The same trick
applies to any linear combinations α1(Xt1 −X0) + · · ·+ αn(Xtn −Xtn−1) with arbitrary factors
α1, . . . , αn ∈ R, thus (Xt1 − X0, . . . ,Xtn − Xtn−1)t is a Gaussian vector. But then again for any
g1, . . . , gn ∈ C

∞

b (R), we have

EQ
(
g1(Xt1 − X0) · · · g j−1(Xt j−1 − Xt j−2)g j+1(Xt j+1 − Xt j) · · · gn(Xtn − Xtn−1)(Xt j − Xt j−1)

)
= 0.

The random variables Xt1 − X0, . . . ,Xtn − Xtn−1 are mutually uncorrelated and therefore
independent, which ends the proof. �

The duality formula as presented in Equation (1.11) is a simplified version of a well
known duality from Malliavin’s calculus. It can be extended to arbitrary Gaussian spaces,
larger classes of differentiable functionals F and Skorohod-integrable processes u. An up
to date account on Malliavin’s calculus is the monograph by Nualart [Nua06].

This duality formula for a Wiener process was first introduced by Cameron as a first
variation of Wiener integrals in [Cam51, Theorem II]. Bismut extended the formula and
used it as an important tool in his approach on Malliavin’s calculus in [Bis81]. Gaveau and
Trauber furnished in [GT82] the interpretation of (1.11) as duality of operators on the Fock
space isomorphic to the space of square-integrable functionals of a Wiener process.

In Proposition 1.10 we underlined the fact, that only a Wiener measure satisfies the
duality relation between the stochastic integral operator and the derivative operator (1.9).
This characterization was first presented by Rœlly and Zessin in [RZ91], Hsu extended it to
Wiener processes on manifolds, see [Hsu05]. We presented a new simple proof that is based
on the characterization of Gaussian random variables by an integration by parts formula.
Our approach extends the prior characterizations to the setting of càdlàg processes.

1.2. Poisson process.
Analogue to the characterization of a Wiener processes presented in Proposition 1.10

we show that Poisson processes are the only processes satisfying a duality formula in
Proposition 1.21. A Poisson process is defined by its independent increments which have
a Poisson distribution. Analogue to the duality formula of a Wiener process, the duality
formula of a Poisson process (1.22) is based on an integration by parts formula satisfied by
the Poisson distribution, the law of the increments.

1.2.1. Integration by parts of the Poisson distribution.
Assume that the random variable Z ∼ P(λ) has a Poisson distribution on R with mean

λ > 0. Using the explicit form of the probability mass function we see that for every
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bounded and measurable function f : R→ R

(1.14) E ( f (Z)Z) =

∞∑
n=0

f (n)ne−λ
λn

n!
=

∞∑
n=0

f (n + 1)λe−λ
λn

n!
= E (λ f (Z + 1)).

By analogy to (1.1) we call this the integration by parts formula under the Poisson
distribution. Similar to the Gaussian case, the Poisson distribution is the only one satisfying
the above integration by parts formula.

Proposition 1.15. Let Z be an integrable random variable and λ > 0. If for every f ∈ C∞b (R) the
integration by parts formula

(1.16) E ( f (Z)Z) = E (λ f (Z + 1)),

holds, then Z ∼ P(λ).

Proof. By dominated convergence the identity (1.16) can be extended to all bounded mea-
surable functions on R. Using f = 1(−∞,0) we see that P(Z ≥ 0) = 1. Take f = 1(0,1),
then ∫

R
1(0,1)(z)zPZ(dz) =

∫
R
1(0,1)(z + 1)PZ(dz) =

∫
R
1(−1,0)PZ(dz) = 0,

and therefore P(Z ∈ (0, 1)) = 0. An iteration implies P(Z ∈ (n,n + 1)) = 0 for all n ∈ N,
and thus P(Z ∈ N) = 1 and P(Z = n + 1) = λ

n+1P(Z = n), ∀n ∈ N. Since P is a probability
c := P(Z = 0) > 0. Then P(Z = n) = cλ

n

n! and by normalization necessarily c = e−λ. �

In the context of Stein’s calculus the above result is known as Chen’s Lemma, see [Che75]
and the monograph by Stein [Ste86, Theorem VIII.1] for a proof under the additional
assumption that Z isN-valued. In our simple proof we showed that this assumption is not
necessary.

Chen provided a solution to the associated Stein-Chen equation

(1.17) g f (x)x − λg f (x + 1) = f (x) − E ( f (Z)), x ∈N,

which is a tool to compute bounds on the distance between certain probability distributions
onN and the Poisson distribution, see Remark 1.4.

1.2.2. Duality formula for the Poisson process.
The above characterization of the Poisson distribution was first known through a similar

characterization of the Poisson process by a duality formula. In our presentation we
reverse this argument, and use the fact that only the Poisson distribution satisfies (1.16) to
characterize a Poisson process by a duality formula.

Definition 1.18. A càdlàg process P is called a Poisson process if given X0, for any {t1, . . . , tn} ∈

∆I the canonical random vector (Xt1 − X0, . . . ,Xtn − Xtn−1)t has independent components with
Xt j − Xt j−1 ∼ P(t j − t j−1), j ∈ {1, . . . ,n}, where t0 = 0.

Note that we do not fix the initial law P(X0 ∈ . ). Next we give a complementary remark
on the distribution of the jump-times of a Poisson process. This will prove to be a key result
in the perturbation analysis of unit-jump processes in Section 6.

Remark 1.19. Define the jump-times T0 := 0 and Ti+1 = inf{t > Ti : Xt − Xt− > 0} for i ≥ 0
and the inter-jump-times Si := Ti − Ti−1 for i ≥ 1. If X is a Poisson process, then (Si)i≥1 is a
sequence of independent random variables with exponential distribution of mean 1. If we condition
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a Poisson process on the number of jumps made between the times t = 0 and t = 1, then for any
{t1, . . . , tn} ∈ ∆I

(1.20) P(T1 = dt1, . . . ,Tn = dtn|X1 − X0 = n) = n!1{t1<···<tn}dt1 · · · dtn.

For a proof of these well known results see e.g. the monograph by Brémaud [Bré99, Theorem 8.1.1].

We now lift the characterization of the Poisson distribution in Proposition 1.15 to the
infinitely dimensional context of a Poisson process on càdlàg space.

Proposition 1.21. Assume that X has integrable increments with respect toQ. ThenQ is a Poisson
process if and only if the duality formula

(1.22) EQ

(
F(X)

∫
I

ut(dXt − dt)
)

= EQ

(∫
I

(F(X + 1[t,1]) − F(X))utdt
)

holds for all F ∈ S, u ∈ E.

Proof. Fix {t1, . . . , tn} ∈ ∆I and assume without loss of generality that F(ω) = f (ω(t1), . . . , ω(tn)) ∈
S, u =

∑n−1
i=1 ui1(ti,ti+1] ∈ E. Remember that as in (1.12) the functional F can be written as a

cylindric functional on the initial value and the increments, analogue to (1.13) we get

F(X + 1[t,1]) − F(X)

= f̃X0(Xt1 − X0 + 1[0,t1)(t), . . . ,Xtn − Xtn−1 + 1[tn−1,tn)(t)) − f̃X0(Xt1 − X0, . . . ,Xtn − Xtn−1).

If Q is a Poisson process, we condition on the initial value X0, and by the independence
of increments we know the distribution of the random vector (Xt1 − X0, . . . ,Xtn − Xtn−1)t

explicitly. The derivation of equation (1.22) is the same as that of (1.16), in particular for F
and u as above we get

EQ

(
F
∫
I

usdXs

 X0

)
=

∞∑
i1,...,in=0

f̃X0(i1, . . . , in)

n−1∑
j=1

u ji j+1

 e−t1
ti1
1

i1!
e−(t2−t1) (t2 − t1)i2

i2!
· · · e−(tn−tn−1) (tn − tn−1)in

in!
,

and the discrete analog of integration by parts, as presented above Proposition 1.15, applied
to i2, . . . , in shows that the duality formula holds.

Now assume that the duality formula (1.22) holds. By dominated convergence it also
holds for F(X) = f (Xt1 , . . . ,Xtn) where f is a bounded function. In particular choose
f̃X0(z) = g1(z1) · · · gn(zn) with bounded functions gi. Fix any j ∈ {1, . . . ,n} and put gi ≡ 1,
ui−1 = 0 for i , j. The duality formula reduces to

EQ(g j(Xt j − Xt j−1)u j−1(Xt j − Xt j−1)) = EQ(g j(Xt j − Xt j−1 + 1)u j−1(t j − t j−1)),

which by Proposition 1.15 implies that Xt j−Xt j−1 ∼ P(t j−t j−1). Now take f̃X0 = g1(z1) · · · gn(zn)
but ui−1 = 0 for i , j:

EQ(g1(Xt1 − X0) · · · gn(Xtn − Xtn−1)u j−1(Xt j − Xt j−1))

= EQ(g1(Xt1 − X0) · · · g j(Xt j − Xt j−1 + 1) · · · gn(Xtn − Xtn−1)u j−1(t j − t j−1)).

Therefore Xt j −Xt j−1 ∼ P(t j− t j−1) conditionally on the random variables Xt1 −X0, . . . ,Xt j−1 −

Xt j−2 ,Xt j+1 − Xt j , . . . ,Xtn − Xtn−1 . This proves the independence of increments. �
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Let us remark, that instead of a derivative operator as in the Wiener case (1.11) we have
a difference operator on the right side of the duality formula, see § 2.3.1 for comments.

The first to present this characterization in the context of pure jump processes with unit
jump-size was Slivnjak [Sli62]. A generalization to Poisson measures on Polish spaces is
due to Mecke [Mec67, Theorem 3.1]. Our short and elementary proof allows to characterize
a Poisson process on càdlàg space instead of restricting the setup to processes with values
inN. An interpretation of (1.22) as duality formula on the Fock space has been provided
by Ito [Ito88] and also Nualart, Vives [NV90].
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2. Infinitely divisible random vectors and processes with independent increments

In this section, we unify the integration by parts formulae satisfied by the Gaussian law
(1.3) and the Poisson distribution (1.16) and extend them to infinitely divisible random
vectors in (2.8). This new integration by parts formula is the basis of a duality formula
for processes with independent increments, see (2.21). The duality formula already ap-
peared in the context of Malliavin calculus with jumps, with a proof related to the chaos
decomposition of Lévy processes as introduced by Itô [Itô56], see e.g. Løkka [Løk04]. We
provide two new and elegant proofs of the duality formula satisfied by Lévy processes,
see Propositions 2.20 and 2.38. As a complement we compare different definitions of the
derivative and difference operator that appear in the duality formula in § 2.3.1. In particu-
lar we present a new definition of the difference operator using a random perturbation of
càdlàg paths.

2.1. Integration by parts of infinitely divisible random vectors.
Infinitely divisible random variables and vectors were extensively investigated in the

past decades. They first appeared as limit distributions of converging series of random
variables, see Khintchine [Khi37]. The class of infinitely divisible random variables includes
Gaussian as well as Poisson random variables. We begin this paragraph with a short
introduction based on the monograph by Sato [Sat99].

A measurable function χ : Rd
→ Rd is called a cutoff function if

(2.1) χ(q) = q + o(|q|2) in a neighborhood of zero and χ is bounded.

A Lévy measure L on (Rd
∗ ,B(Rd

∗ )) is a σ-finite measure such that∫
Rd
∗

(|q|2 ∧ 1)L(dq) < ∞.

By definition every cutoff function χ is in L2(L).
We are interested in the class of infinitely divisible random vectors.

Definition 2.2. A random vector Z is called infinitely divisible if for every k ∈ N there exist
independent and identically distributed random vectors Z(k1), . . . ,Z(kk) such that

Z has the same law as Z(k1) + · · · + Z(kk).

The classical Lévy-Khintchine formula gives a representation for the characteristic func-
tion of Z. For any γ ∈ Rd

(2.3) logE
(
eiγ·Z

)
= iγ · b −

1
2
γ · Aγ +

∫
Rd
∗

(
eiγ·q
− 1 − iγ · χ(q)

)
L(dq),

where b ∈ Rd, A ∈ Rd×d is a symmetric non-negative definite matrix and L a Lévy measure,
[Sat99, Theorem 8.1]. The triple (b,A,L)χ is called characteristics of Z with respect to the
cutoff function χ. Only b depends on the choice of χ, [Sat99, Remark 8.4]. If χ′ is another
cutoff function, then Z has characteristics (b′,A,L)χ′ with

b′ = b +

∫
Rd
∗

(χ′(q) − χ(q))L(dq).

Example 2.4. We already introduced two important infinitely divisible distributions:

• A Gaussian random vector with mean b and covariance matrix A is infinitely divisible with
characteristics (b,A, 0)χ for any cutoff function χ.
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• A Poisson random variable with mean λ ≥ 0 corresponds to an infinitely divisible random
variable with characteristics (λχ(1), 0, λδ{1})χ.

The Lévy-Khintchine formula (2.3) implies the following integrability property.

Remark 2.5. For an infinitely divisible random vector Z we have

(2.6)
∫
Rd
∗

(
|q|2 ∧ |q|1

)
L(dq) < ∞ ⇒ Z is integrable.

In this case we don’t need a cutoff function in (2.3) and take χ(q) = q, ∀q ∈ Rd
∗ . The associated

characteristics will be denoted simply by (b,A,L) and we call Z an integrable infinitely divisible
random vector. A short proof of (2.6) is given in Remark 2.36, using the Lévy-Itô decomposition of
the sample paths of a Lévy process.

The following Proposition presents an integration by parts relation satisfied by integrable
infinitely divisible random vectors. It contains both integration by parts formulae (1.3) and
(1.16) as special cases.

Proposition 2.7. Let Z be an integrable infinitely divisible random vector with characteristics
(b,A,L). Then the integration by parts formula

(2.8) E
(

f (Z) (Z − b)
)

= E
(
A∇ f (Z)

)
+ E

(∫
Rd
∗

(
f (Z + q) − f (Z)

)
qL(dq)

)
holds for every f ∈ C∞b (Rd).

Proof. Note that the second term on the right has a sense by (2.6) and boundedness of the
test function f . We are going to prove the equality (2.8) separately for each component of
the d-dimensional random vector Z. Define

fγ(q) := eiγ·q, for γ, q ∈ Rd.

Let 1 ≤ j ≤ d, we can permute differentiation and integration to obtain

(2.9) ∂γ jE
(

fγ(Z)
)

= i E
(

fγ(Z)Z j

)
.

On the other hand the Lévy-Khintchine formula (2.3) implies

(2.10) ∂γ jE
(

fγ(Z)
)

=

(
i b j − (Aγ) j + i

∫
Rd
∗

q j

(
eiγ·q
− 1

)
L(dq)

)
E

(
fγ(Z)

)
.

The second term on the right reduces to

−(Aγ) jE
(

fγ(Z)
)

= i E
(
(A∇ fγ(Z)) j

)
.

The last term on the right hand side can be reformulated as

i
∫
Rd
∗

q j

(
eiγ·q
− 1

)
L(dq)E

(
fγ(Z)

)
= i E

(∫
Rd
∗

(
fγ(Z + q) − fγ(Z)

)
q jL(dq)

)
.

Comparing (2.9) and (2.10) and using the above reformulations we get (2.8) for fγ. By
linearity the equation holds for all real valued trigonometric functions.

We extend this integration by parts to smooth bounded functions by a density argument:
Take any f ∈ C∞b (Rd) and ε > 0. There exists a k > 0 such that E (1|Z|1>k/2|Z|1) < ε,∫
|q|1>k/2(|q|2 ∧ |q|1)L(dq) < ε and a fortiori P(|Z|1 > k/2) < ε/k. By the Stone-Weierstraß

theorem there exist trigonometric functions that approximate f arbitrarily well for the
norm of uniform convergence on the compact set {q ∈ Rd : |q|1 ≤ k}, and whose absolute
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value onRd are bounded by a multiple of || f ||∞. Let φ ∈ C∞b (Rd) be a trigonometric function
such that

||( f − φ)1[−k,k]d ||∞ < ε/k, ||(∇ f − ∇φ)1[−k,k]d ||∞ < ε, and ||φ||∞ ≤ 3|| f ||∞, ||∇φ||∞ ≤ 3||∇ f ||∞.

Using 1 = 1|Z|1≤k +1|Z|1>k and 1 = (1|Z|1≤k/2 +1|Z|1>k/2)(1|q|1≤k/2 +1|q|1>k/2) this proves the four
approximations

• |E (Z f (Z)) − E (Zφ(Z))|1 ≤ E (|Z|1| f (Z) − φ(Z)|1) ≤ k εk + 4|| f ||∞ε;
• |E (b f (Z)) − E (bφ(Z))|1 ≤ E (|b|1| f (Z) − φ(Z)|1) ≤ ε/k + 4|| f ||∞ε;
• |E (A∇ f (Z)) − E (Aφ(Z))|1 ≤ E (|A|1|∇ f (Z) − ∇φ(Z)|1) ≤ |A|1ε + |A|14||∇ f ||∞ε;
• |E (

∫
Rd
∗

( f (Z+q)− f (Z))qL(dq))−E (
∫
Rd
∗

(φ(Z+q)−φ(Z))qL(dq))|1 ≤ 2
∫
Rd
∗

(|q|2∧|q|1)L(dq)ε+

8(|| f ||∞ + ||∇ f ||∞)ε + 4(|| f ||∞ + ||∇ f ||∞)
∫
Rd
∗

(|q|2 ∧ |q|1)L(dq)ε.

Define

K := max
{
1 + 4|| f ||∞, |A|1(1 + 4||∇ f ||∞),

8(|| f ||∞ + ||∇ f ||∞) + 2(1 + 2|| f ||∞ + 2||∇ f ||∞)
∫
Rd
∗

(|q|2 ∧ |q|1)L(dq)
}
.

Since (2.8) holds for φ we can use the above approximations to getE ( f (Z)(Z − b)) − E (A∇ f (Z)) − E
(∫
Rd
∗

( f (Z + q) − f (Z))qL(dq)
)

1

≤ 4Kε.

Since ε > 0 was arbitrary we end the proof by letting ε tend to zero. �

As mentioned in the first section this integration by parts formula is already known for
particular cases in Stein’s calculus, see the comments following Theorem 3.1. We provided
a new and simple proof that only uses the Lévy-Khintchine formula (2.3).

2.2. Duality formula for processes with independent increments.
Using the integration by parts (2.8) satisfied by infinitely divisible random vectors, we

unify and generalize the duality formulae (1.11) of the Wiener process and (1.22) of the
Poisson process: In Proposition 2.38 we prove a duality formula satisfied by d-dimensional
processes with independent increments.

2.2.1. Processes with independent increments - PII.
We want to find a duality formula satisfied by the following class of processes.

Definition 2.11. We say that the canonical process X is a PII under P if it has an arbitrary initial
state, independent increments and is stochastically continuous.

Remark that we assume that X0 is independent of Xt −X0 for any t ∈ I. If X is a PII then
Xt − X0 is an infinitely divisible random vector for each t ∈ I. This is due to the fact that
Xt − X0 is decomposable into a so called “null-array” of independent random variables:

Xt − X0 = (X t
n
− X0) + (X 2t

n
− X t

n
) + · · · + (Xt − X (n−1)t

n
).

See e.g. Sato [Sat99, Theorem 9.1] for a complete proof.

Remark 2.12. Let us recall that for any fixed cutoff function χ the characteristics (bt,At,Lt)χ of
the infinitely divisible random vector Xt −X0 satisfy some regularity properties in t. Let s ≤ t in I.
Theorem 9.8 in [Sat99] states, that as functions on I

(1) bt ∈ Rd with b0 = 0 and t 7→ bt is continuous;
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(2) At ∈ Rd×d is a non-negative definite matrix with A0 = 0, q · Asq ≤ q · Atq and t 7→ q · Atq is
continuous for any q ∈ Rd ;

(3) Lt is a Lévy measure on Rd
∗ with L0(Rd

∗ ) = 0, Ls(Q) ≤ Lt(Q) and t 7→ Lt(Q) is continuous for
any compact Q ⊂ Rd

∗ .
If the Lévy measure of Xt is “integrable” in the sense of Remark 2.5, then Xt is integrable. In this
case we can add the property
(4)

∫
Rd
∗

(|q|2 ∧ |q|1)Lt(dq) < ∞.

If conversely there are (bt)t∈I, (At)t∈I and (Lt)t∈I such that such that conditions (1)-(3) hold, then
there exists a law P onD(I,Rd) such that X is a PII and for any t ∈ I the triplets (bt,At,Lt)χ are
the characteristics of Xt − X0. Under the supplementary condition (4) we get the existence of an
integrable PII.

The law of a PII is unique up to the initial condition in the following sense: If Q is another PII
having the same characteristics, then P( . |X0) = Q( . |X0) holds P(X0 ∈ . ) ∧Q(X0 ∈ . )-a.e.

We already considered two important processes with independent increments, the
Wiener process and the Poisson process. We extend these and present further fundamental
examples.

Example 2.13. The following examples shall illustrate that the law of a PII can be decomposed into
an initial condition, a deterministic drift, a Gaussian part and a jump part. We will see this again
in the Lévy-Itô decomposition of sample paths (2.35).

• Let Z be any d-dimensional random variable, then the law of the constant process t 7→ Z is
a PII with characteristics (0, 0, 0)χ.
• Let b : I → Rd be continuous with b0 = 0, then the law of the deterministic process t 7→ bt

is a PII with characteristics (bt, 0, 0)χ.
• Let σ : I → Rd×d be such that condition (2) of Remark 2.12 holds for As := σt

sσs and let W
be a d-dimensional Brownian motion with initial value W0 = 0. Then σW has the law of a
PII with characteristics (0,At, 0)χ.
• Let (Yi)i≥1 be a sequence of iid d-dimensional random vectors such that Yi ∼ ρ and N a

Poisson process with initial condition N0 = 0 a.s. that is independent of the sequence (Yi)i≥1.
Then for any function ` : I → R+ such that λt :=

∫
[0,t] `tdt < ∞ for all t ∈ I, the process∑Nλt

i=0 Yi −
∫
I×Rd

∗

χ(q)`tdtρ(dq) has the law of a PII with characteristics (0, 0, `tdtρ(dq))χ.
This process is a compensated compound Poisson process with time-changing intensity.
• Assume that the above processes are independent. Let P be the law of theD(I,Rd)-valued

process

t 7→ Z + bt + σtWt +

Nλt∑
i=0

Yi −

∫
[0,t]×Rd

∗

χ(q)`tdtρ(dq).

Then X is a PII with X0 ∼ Z and Xt − X0 has characteristics (bt,At, `tdtρ(dq))χ under P.

We now present a convenient form of the characteristic function of the increments of a
PII. This characteristic function will be the starting point of the proof of the duality formula
for PII in Proposition 2.20.

We define a natural real-valued integral of càdlàg paths over elementary functions
u =

∑n−1
i=1 ui1(ti,ti+1] ∈ Ed by

(2.14)
∫
I

us · dωs :=
n−1∑
i=1

ui · (ω(ti+1) − ω(ti)) = −

n∑
i=1

(ui − ui−1) · ω(ti), ω ∈ D(I,Rd),
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with u0 = un = 0 as convention. Define a measure on I ×Rd
∗ by

(2.15) L̄([0, t] ×Q) := Lt(Q) for t ∈ I, Q ∈ B(Rd
∗ ).

By independence of increments the characteristics of the infinitely divisible random vector
Xt − Xs for any s ≤ t are (bt − bs,At − As, L̄((s, t] × dq))χ. Thus for any elementary function
u =

∑n−1
i=1 ui1(ti,ti+1] ∈ Ed

E
(
exp

(
i
∫
I

us · dXs
))

=

n−1∏
k=1

exp
(
iuk · (btk+1 − btk) −

1
2

uk · (Atk+1 − Atk)uk

+

∫
Rd
∗

(
eiuk·q − 1 − iuk · χ(q)

)
L̄((tk, tk+1] × dq)

)
.

Define the integral

(2.16)
∫
I

us · dAsus :=
n−1∑
k=1

uk · (Atk+1 − Atk)uk,

then we deduce the identity

E
(
exp

(
i
∫
I

us · dXs
))

= exp
(
i
∫
I

us · dbs −
1
2

∫
I

us · dAsus

+

∫
I×Rd

∗

(
eius·q − 1 − ius · χ(q)

)
L̄(dsdq)

)
.(2.17)

This is the characteristic functional of the PII, it determines law of the PII but for the
initial condition.

2.2.2. Duality formula for PII.
Using the form (2.17) of the characteristic functional of a process with independent

increments, we unify and extend the duality formulae (1.11) and (1.22) of Wiener and
Poisson process to PII.

To state the duality formula we need to define d-dimensional extensions of the gradient
and difference operators appearing in (1.11) and (1.22). Let F = f (ω(t1), . . . , ω(tn)) be a
cylindric, smooth and bounded functional in Sd. We define a

• derivative operator:

Ds, jF(ω) :=
n−1∑
k=0

∂kd+ j f (ω(t1), . . . , ω(tn))1(0,tk](s), j ∈ {1, . . . , d},(2.18)

and DsF(ω) := (Ds,1F(ω), . . . ,Ds,dF(ω))t for s ∈ I;

• difference operator:

Ψs,qF(ω) := f (ω(t1) + q1[0,t1](s), . . . , ω(tn) + q1[0,tn](s)) − f (ω(t1), . . . , ω(tn))(2.19)

= F(ω + q1[s,1]) − F(ω), for s ∈ I, q ∈ Rd
∗ .

We constrain the duality formula to the classes of test functions we need for the charac-
terization of PII in Section 3.
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Proposition 2.20. Let X be an integrable d-dimensional PII such that Xt − X0 has characteristics
(bt,At,Lt). Then the duality formula
(2.21)

E

(
F(X)

(∫
I

us · d(X − b)s

))
= E

(∫
I

DsF(X) · dAsus

)
+ E

(∫
I×Rd

∗

Ψs,qF(X)us · qL̄(dsdq)
)

holds for all u ∈ Ed, F ∈ Sd.

Proof. The demonstration could be based on the result of Proposition 2.7. It will be more
convenient to use the same method of proof, but with the characteristic function given in
(2.17). Assume that X is an integrable PII such that Xt − X0 has characteristics (bt,At,Lt).
Take any u, v ∈ Ed and let F(X) = exp

(
i
∫
I

vs · dXs
)

be a trigonometric path functional.
Without loss of generality we assume that

u =

n−1∑
j=1

u j1(t j,t j+1], and v =

n−1∑
j=1

v j1(t j,t j+1].

Differentiating E
(
exp

(
i
∫
I

vs · dXs
))

in each of the d components of vk and using (2.17)
implies

i E
(
ei

∫
I

vs·dXs(Xtk+1 − Xtk)
)

= E
(
i(btk+1 − btk) − (Atk+1 − Atk)vk

+i
∫
Rd
∗

(
eivk·q − 1

)
qL̄((tk, tk+1] × dq)

)
E

(
ei

∫
I

vs·dXs

)
.

Next we take the scalar product with uk, sum over 1 ≤ k ≤ n − 1 and use the definition
of the derivative (2.18) and difference operator (2.19) to get identity (2.21) for F(X) =

exp
(
i
∫
I

vs · dXs
)

and u ∈ Ed. The extension from trigonometric functionals to F ∈ Sd works
in the same lines as in the proof of Theorem 2.7. �

We already commented in Section 1 on the first versions of the duality formulae for the
Wiener process and the Poisson process. The fact that Lévy processes without Gaussian part
satisfy (2.21) with A = 0 was first mentioned by Picard [Pic96]. More recently many authors
where concerned with the duality formula on the Fock space and its interpretation in the
chaos decomposition of Lévy processes based on work by Itô [Itô56]. In this context (2.21)
is a duality relation between a creation operator (stochastic integral) and an annihilation
operator (derivative and difference operator). We will not develop this point of view, but
refer to e.g. Løkka [Løk04] or Solé, Utzet, Vives [SUV07] for the jump case. Our proof is a
new and elegant way to show that the duality formula is satisfied by PII with jumps, since
we do not use the chaos decomposition.

2.3. Definition of derivative and difference operator by perturbation.
In this paragraph we are going to make a small detour from the main subject of this

thesis. We present a deterministic perturbation that leads to the definition of the derivative
(2.18), and a new stochastic perturbation that leads to the difference operator (2.19). These
are used to provide another proof of the duality formula (2.21). In § 2.3.3 we briefly
compare the derivative and difference operators defined by perturbation to corresponding
definitions obtained via the chaos decomposition.

To simplify the exposition we constrain the class of reference measures on D(I,Rd)
to Lévy processes. This restricts the class of perturbations needed to prove the duality
formula.
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Definition 2.22. A Lévy process is a stationary PII, in particular Xt − X0 has characteristics

bt = tb, At = tA, Lt(dq) = tL(dq)

for some b ∈ Rd, A ∈ Rd×d symmetric non-negative definite and L a Lévy measure on Rd
∗ .

This implies L̄(dsdq) = dsL(dq). Since the law of the increments of a Lévy process is
determined by the characteristics of X1−X0, we just say from now on that the Lévy process
X has characteristics (b,A,L)χ.

2.3.1. Definition of derivative and difference operator.
In this paragraph we present alternative definitions of the derivative and difference

operator onSd that were given in (2.18) and (2.19). These definitions apply to larger classes
of functionals F.

The following interpretation of the derivative operator (2.18) on Sd is well known. Take
some u ∈ Ed, F ∈ Sd, then for any symmetric non-negative definite matrix A ∈ Rd×d the
derivative of F in direction

∫
[0,.] Ausds is given by

(2.23) lim
ε→0

1
ε

(
F(ω + ε

∫
[0,.]

Ausds) − F(ω)
)

=

∫
I

DsF(ω) · Ausds, ∀ω ∈ D(I,Rd).

Using the Lipschitz regularity of F ∈ Sd and the dominated convergence theorem we can
show that this convergence also holds in L2(Q) for any probability Q on D(I,Rd): The
derivative can be defined as a Gâteaux-derivative.

Denote by L2(Adt) the space of functions u : I → Rd with
∫
I

us · Ausds < ∞. Given
the non-negative definite matrix A ∈ Rd×d and u ∈ L2(dt) we define the deterministic
path-perturbation

(2.24) θεu : D(I,Rd)→ D(I,Rd), ω 7→ θεu(ω) = ω + ε

∫
[0,.]

Ausds.

Definition 2.25. LetQ be any probability onD(I,Rd), F ∈ L2(Q). We say that F is A-differentiable
if there exists a Rd-valued process DF ∈ L2(Adt ⊗Q) such that for every u ∈ Ed the equality

lim
ε→0

1
ε

(
F ◦ θεu − F

)
=

∫
I

DtF · Autdt

holds in L2(Q).

If A = Id is the identity matrix, we will only say that the functional F ∈ L2(Q) is
differentiable in direction u with derivative

(2.26) DuF :=
∫
I

DtF · utdt.

Let us note, that A-differentiability depends on the matrix A and the reference measure Q.

Remark 2.27. Take Q on D(I,R2) such that for the canonical process X = (X1,X2) the first
component X1 is a real-valued Wiener process and X2 ≡ 0 Q-a.s. Then X is a Lévy process in R2

with characteristics

b = 0, L = 0 and A =

(
1 0
0 0

)
.

Let us consider the simple functional F(X) = f1(X1,t) f2(X2,t) for some t ∈ I. Then F is A-
differentiable for any function f2, but F is differentiable in direction of the identity matrix only
if f2 is differentiable in zero. In both cases f1 has to be differentiable in the following sense: Its
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weak derivative (see the proof of Theorem 1.2) is square integrable with respect to the Gaussian
distribution with mean 0 and variance t.

The operator in Definition 2.25 is a true derivative in the following sense.

Lemma 2.28. The standard rules of differential calculus apply:

• Let F,G and FG be A-differentiable in direction u, then the product rule holds:

(2.29)
∫
I

Dt(GF) · Autdt = G
∫
I

DtF · Autdt + F
∫
I

DtG · Autdt.

• Let F by A-differentiable in direction u and φ ∈ C∞b (R), then φ(F) is A-differentiable in
direction u and the chain rule holds:

(2.30)
∫
I

Dtφ(F) · Autdt = φ′(F)
∫
I

DtF · Autdt.

Proof. For the product rule, we remark that

1
ε

(
(FG) ◦ θεu − FG

)
= G

1
ε

(
F ◦ θεu − F

)
+ F

1
ε

(
G ◦ θεu − G

)
+

1
ε

(
F ◦ θεu − F

) (
G ◦ θεu − G

)
,

and in the L2(Q)-limit the last term converges to zero by the Cauchy-Schwarz inequality:

E
(1
ε

(
F ◦ θεu − F

) (
G ◦ θεu − G

))
≤ E

((1
ε

(
F ◦ θεu − F

))2) 1
2

E
((

G ◦ θεu − G
)2
) 1

2 ,

where the second term tends to zero a-fortiori.
For the product rule use the Taylor expansion

φ(F ◦ θεu) = φ(F) + φ′(F)
(
F ◦ θεu − F

)
+ O

((
F ◦ θεu − F

)2
∧ ||φ′′||∞

)
,

and therefore
1
ε

(
(φ(F)) ◦ θεu − φ(F)

)
= φ′(F)

1
ε

(
F ◦ θεu − F

)
+

1
ε
O

((
F ◦ θεu − F

)2
∧ ||φ′′||∞

)
,

where the last term tends to zero by Cauchy-Schwarz again. �

Let us now introduce a definition of the difference operator (2.19) using a non-deterministic
perturbation. We need the following space of elementary space-time test functions:

Ē :=

ū : I ×Rd
∗ → R+, ū =

n−1∑
j=1

ū j1(t j,t j+1]×Q j for ū j ∈ R+,Q j ⊂ R
d
∗ compact, τn ∈ ∆I,n ∈N

 .
The analogue to the deterministic perturbation process

(
ε
∫

[0,t] Ausds
)

t∈I
used in Definition

2.25 will be a random processes Yεū defined on some auxiliary probability space (Ω′,F ′,P′)
as follows.

Let ū = ū11(s1,s2]×Q ∈ Ē and L any Lévy measure be fixed. We consider a family (Nεū)ε>0

of Poisson measures on I × Rd
∗ with intensity εū(s, q)dsL(dq) living on (Ω′,F ′,P′). Define

the Rd-valued compound Poisson process Yεū
t =

∫
[0,t]×Rd

∗

qNεū(dsdq). Then the marginals of
Yεū satisfy

P′(Yεū
t ∈ dq) = e−ε((t∨s1)∧s2)ū1L(Q)

[
δ{0}(dq) + ε((t ∨ s1) ∧ s2)ū11Q(q)L(dq) + O(ε2)

]
= (1 − ε((t ∨ s1) ∧ s2)ū1L(Q))δ{0}(dq) + ε((t ∨ s1) ∧ s2)ū1L(dq) + O(ε2).(2.31)



17

For F(ω) = f (ω(t1), . . . , ω(tn)) ∈ Sd the difference operator (2.19) can be derived as follows:

lim
ε→0

1
ε
E′

(
F(ω + Yεū) − F(ω)

)
=

n∑
j=1

∫
Rd
∗

(
f (ω(t1) + q j, . . . , ω(t j) + q j, ω(t j+1), . . . , ω(tn)) − F(ω)

)
·

·((t j ∨ s1) ∧ s2 − (t j−1 ∨ s1) ∧ s2)1Q(q j)ū1L(dq j)

=

∫
I×Rd

∗

(
F(ω + q1[s,1]) − F(ω)

)
ū(s, q)dsL(dq) =

∫
I×Rd

∗

Ψs,qF(ω)ū(s, q)dsL(dq).

By linearity the same limit exists for all ū ∈ Ē, we may define Yεū accordingly. Since
for F ∈ Sd the functional F(X) is bounded and Lipschitz the convergence holds in L2(Q)
for any probability Q on D(I,Rd). Therefore we can define the difference operator by a
perturbation in L2(Q): For ω′ ∈ Ω′ fixed and any ū ∈ Ēwe define the random perturbation

(2.32) θ̄εū(ω′, .) : D(I,Rd)→ D(I,Rd), ω 7→ θ̄εū(ω′, ω) = ω + Yεū(ω′).

Definition 2.33. LetQ be any probability onD(I,Rd), F ∈ L2(Q). We say that F is L-differentiable
if there exists ΨF ∈ L2(dt ⊗ L ⊗Q) such that for every ū ∈ Ē the equality

lim
ε→0

1
ε
E′

(
F ◦ θ̄εū − F

)
=

∫
I×Rd

∗

Ψt,qF ū(s, q)dsL(dq)

holds in L2(Q).

The notion of L-differentiability depends on Q and on the Lévy measure L in the same
way as A-differentiability is dependent on A and Q.

Remark 2.34. The operator Ψ is not a usual derivative operator in the sense of Lemma 2.28. Take
e.g. functionals F,G ∈ Sd, then

Ψt,q(FG)(X) = F(X + q1[t,1])G(X + q1[t,1]) − F(X)G(X)

= G(X)
(
F(X + q1[t,1]) − F(X)

)
+ F(X)

(
G(X + q1[t,1]) − G(X)

)
+

(
F(X + q1[t,1]) − F(X)

) (
G(X + q1[t,1]) − G(X)

)
= G(X)Ψt,qF(X) + F(X)Ψt,qG(X) + Ψt,qF(X)Ψt,qG(X)

where the term Ψt,qF(X)Ψt,qG(X) is not zero in general.

Other approaches of defining a derivative for functionals of processes with jumps exist.
They use perturbations of the existing jumps of the process instead of randomly adding
jumps. This leads to other operators than the difference operator of Definition 2.33. In
[BJ83] Bichteler and Jacod perturb the jumps-sizes of a reference process. The drawback is
that their Lévy measure has to be absolutely continuous L(dq) � dq. Carlen and Pardoux
as well as Elliott and Tsoi perturbed the jump-times of a Poisson process, in particular they
restricted their approach to L = λδ{1} for some λ > 0, see [CP90], [ET93] and § 6.2.1. Privault
extended this approach in [Pri96] to Lévy processes with Lévy measure L =

∑k
j=1 λ jδ{q j}

with λ j > 0, q j ∈ R
d
∗ and k ∈ N. Both approaches lead to a true derivative operator in the

sense of Lemma 2.28. In his study of the derivation of jump process functionals [Dec98]
Decreusefond unifies the approaches of perturbing the jump-sizes and jump-times.
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2.3.2. Application: An alternative proof of the duality formula for Lévy processes.
Let X be a Lévy process with characteristics (b,A,L)χ. As an application of the per-

turbation analysis in § 2.3.1 we give another proof of the duality formula (2.21) for Lévy
processes.

It is well known (see e.g. Sato [Sat99, Paragraph 19]) that X admits the Lévy-Itô decom-
position

(2.35) Xt − X0 = tb + MX
t +

∫
[0,t]×Rd

∗

χ(q)ÑX(dsdq) +

∫
[0,t]×Rd

∗

(q − χ(q))NX(dsdq), P-a.s.,

where MX is a continuous martingale with quadratic variation process (tA)t∈I, NX is a
Poisson measure with intensity dsL(dq) on I × Rd

∗ and ÑX is the compensated Poisson
measure. This is an extension of the decomposition in law we introduced in Example
2.13. Before proving the duality formula we use the Lévy-Itô decomposition to derive the
integrability condition presented in Remark 2.5.

Remark 2.36. If X is a Lévy process, the canonical random vector X1 − X0 is infinitely divisible
with characteristics (b,A,L)χ. Then

(2.37)
∫
Rd
∗

(
|q|2 ∧ |q|1

)
L(dq) < ∞ ⇒ X1 − X0 is integrable.

Proof. Since L is a Lévy measure the condition on the left side of (2.37) is equivalent to∫
{|q|1>1} |q|1L(dq) < ∞. Without loss of generality we assume that χ(q) = q1|q|1≤1 in (2.35).

Let us take the contra-position X1 − X0 < L1(P). This is equivalent to the right side of
(2.35) not being integrable for t = 1. Since b, MX

1 and
∫
I×{|q|1≤1} qÑX(dsdq) are integrable, this

implies that
∫
I×{|q|1>1} qNX(dsdq) is not integrable. This is a contradiction to the integrability∫

{|q|1>1} |q|1L(dq) < ∞, the mass measure of NX. �

Let us now proceed to the proof of the duality formula for Lévy processes using Defini-
tions 2.25 and 2.33 of the derivative and difference operator by perturbation.

Proposition 2.38. Let X be a Lévy process with characteristics (b,A,L)χ under P. For every
functional F ∈ L2(P) that is A- and L-differentiable and every u ∈ L2(Adt), v̄ ∈ L2(dt ⊗ L) the
following duality formula holds

E

(
F

(∫
I

us · dMX
s +

∫
I×Rd

∗

v̄(s, q)ÑX(dsdq)
))

= E

(∫
I

DsF · Ausds
)

+ E

(∫
I×Rd

∗

Ψs,qF v̄(s, q)dsL(dq)
)
.(2.39)

Proof. First let us explain the use the Girsanov theorem in the proof. Take any u ∈ Ed, v̄ ∈ Ē,
then for every ε > 0 the process

(2.40) Yt :=
∫

[0,t]
us · dMX

s +

∫
[0,t]×Rd

∗

v̄(s, q)ÑX(dsdq), t ∈ I,

is a martingale. We can define its Doléans-Dade exponential as the solution of the stochastic
integral equation

(2.41) Gε
t = 1 + ε

∫
[0,t]

Gε
s−dYs, t ∈ I.
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A solution to this equation exists in a pathwise sense and is a uniformly integrable martin-
gale (by Theorem IV.3 of Lepingle, Mémin [LM78]). Therefore Gε

1P defines a probability on
D(I,Rd). By the Girsanov theorem for semimartingales (see e.g. [JS03] Theorem III.3.24)
the canonical process X is a PII under Gε

1P and Xt − X0 has characteristics

tb + ε

∫
[0,t]

Ausds + ε

∫
[0,t]×Rd

∗

χ(q)v̄(s, q)dsL(dq), tA,
(∫

[0,t]
(1 + εv̄(s, q))ds

)
L(dq)

with respect to χ. Using Burkhölder-Davis-Gundy inequalities and Gronwall’s lemma we
are going to show that

lim
ε→0

1
ε

(
Gε

1 − 1
)

=

∫
I

us · dMX
s +

∫
I×Rd

∗

v̄(s, q)ÑX(dsdq) = Y1 in L2(P).

For any function ω : I → R we put

|ω|∗t := sup
s≤t
|ω(s)|1.

We show that | 1ε (Gε
− 1)−Y|∗t converges to zero in L2(P) for ε→ 0. The positive constant K

may change from line to line. By Burkhölder-Davis-Gundy inequalities

E

(1
ε

(Gε
− 1) − Y

∗t
)2 = E

(
∫

[0,.]

(
Gε

s− − 1
)

dYs

∗t
)2

≤ K E
(∫

[0,t]
(Gε

s− − 1)2d[Y]s

)
≤ K E

(∫
[0,t]

(|Gε
− − 1|∗s)

2ds
)
,

where we used (2.41) at the first line. In the same way we can see that

E
((
|Gε
− 1|∗t

)2
)
≤ ε2K E

(∫
[0,t]

(
|Gε
|
∗

s
)2 ds

)
.

Using (2.41) again we get

E
((
|Gε
|
∗

t

)2
)
≤ K

(
1 + ε2

∫
[0,t]
E

((
|Gε
−|
∗

s
)2
)

ds
)
,

and by Gronwall’s lemma

E
((
|Gε
|
∗

t

)2
)
≤ Keε

2Kt.

This yields

E

(1
ε

(Gε
− 1) − Y

∗t
)2 ≤ ε2K.

We first prove (2.39) for v̄ ≡ 0, which is the first half of this identity. Given ε > 0 the process
X ◦ θεu clearly is a PII and Xt ◦ θεu − X0 has characteristics

tb + ε

∫
[0,t]

Ausds, tA, tL(dq).

Now we observe by the Girsanov theorem recalled above that X ◦θεu under P has the same
characteristics as X under Pεu := Gε

1P. By equality of the characteristic functionals and
initial conditions we get the equality of laws Pεu

◦ X−1 = P ◦ (X ◦ θεu)−1, and therefore

E
(
F

1
ε

(
Gε

1 − 1
))

=
1
ε
E

(
F ◦ θεu − F

)
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for arbitrary A-differentiable F. We use the definition of the derivative operator to take
limits, thus

(2.42) E

(
F(X)

∫
I

ut · dMX
t

)
= E

(∫
I

DtF(X) · Autdt
)
.

We now prove (2.39) for u ≡ 0. For v̄ ∈ Ē define the perturbation as in Section 2.3.1, then
the perturbed process X ◦ θ̄εv̄ is a PII under P ⊗ P′ and Xt ◦ θ̄εv̄ has characteristics

tb +

∫
[0,t]×Rd

∗

χ(q)v̄(s, q)dsL(dq), tA,
(∫

[0,t]
(1 + εv̄(s, q))ds

)
L(dq).

This is an easy consequence of the fact that the sum of two independent Poisson measures
is still a Poisson random measure and the intensities add up. By Girsanov theory X
has the same characteristics under the measure Pεv̄ := Gε

1P, which implies Pεv̄
◦ X−1 =

(P ⊗ P′) ◦ (X ◦ θ̄εv̄)−1. For an arbitrary L-differentiable F this means

E
(
F

1
ε

(
Gε

1 − 1
))

=
1
ε
EP⊗P′

(
F ◦ θ̄εv̄ − F

)
.

We can apply the definition of the difference operator to get

(2.43) E

(
F
∫
I×Rd

∗

v̄(s, q)ÑX(dsdq)
)

= E

(∫
I×Rd

∗

Ψs,qF v̄(s, q)dsL(dq)
)
.

Adding (2.42) and (2.43) we get (2.39) for u ∈ Ed and all v̄ = v̄1 − v̄2 with v̄1, v̄2 ∈ Ē.
By density of these elementary functions in L2(Adt) and L2(dt ⊗ L) and isometry of the
stochastic integral with respect to the martingale MX and the martingale measure ÑX we
get the result. �

The duality formula (2.39) is extendable to predictable u ∈ L2(Adt ⊗ P) and v̄ ∈ L2(dt ⊗
L ⊗ P).

Lemma 2.44. Let X be as in the preceding Proposition 2.38. Then the duality formula (2.39) still
holds for F that is A- and L-differentiable and predictable u ∈ L2(dt ⊗ P), v̄ ∈ L2(dt ⊗ L ⊗ P).

Proof. Take F1,F2 ∈ Sd that are F[0,t]-measurable and u ∈ L2(dt), v̄ ∈ L2(dt ⊗ L) such that
u = u1(t,1] and v̄ = v̄1(t,1]. Then the duality formula holds for all F that are A- and L-
differentiable and the predictable processes F1u and F2v̄ since DuF1 = 0 and Ψv̄F2 = 0. The
rest of the proof is a monotone class argument. �

2.3.3. Comparison of several definitions of derivative and difference operator.
In this paragraph we investigate the connection between the definition of the derivative

and difference operators by a perturbation and the annihilation operator defined via the
chaos decomposition of Lévy processes. In the purely Gaussian case, a comparison of these
definitions of the derivative operator can be found e.g. in the monograph by Bogachev
[Bog10].

To achieve this, we need to show in Proposition 2.45 that the operators D and Ψ are
closable. With the proof of closability of Ψ we extend a result by Solé, Utzet, Vives
[SUV07], see also the comment after the Proposition.

Proposition 2.45. Let X be a Lévy process with characteristics (b,A,L)χ under P. Define the
derivative operator and the difference operator as in Definitions 2.25 and 2.33. Then

• the derivative operator D is closable as operator from L2(P) into L2(Adt ⊗ P);
• the difference operator Ψ is closable as operator from L2(P) into L2(dt ⊗ L ⊗ P).
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Moreover for each F in the closure of the domain of Ψ the difference representation

(2.46) Ψt,qF(X) = F(X + q1[t,1]) − F(X), dt ⊗ L ⊗ P-a.e.

holds.

Proof. There is a standard proof for the closability of the derivative operator D using the
duality formula (2.39) for v̄ ≡ 0 (see e.g. the monograph by Nualart [Nua06, Section 1.2]):
Let (F j) j≥1 a sequence of A-differentiable functionals such that lim j→∞ F j = 0 in L2(P). We
have to show that if lim j→∞DF j = η in L2(dt ⊗ P), then η = 0. But using the product rule
from Lemma 2.28 for any G ∈ Sd, u ∈ Ed we can show with (2.39) that

E

(∫
I

ηs · usdsG
)

= lim
j→∞
E

(∫
I

DsF j · usdsG
)

= lim
j→∞
E

(
F jG

∫
I

us · dMX
s − F j

∫
I

DsG · usds
)

= 0,

which can only be the case if η = 0.
To show that Ψ is closable, we first prove the representation (2.46) for every L-differentiable

functional F. We have already seen that this representation holds for F ∈ Sd. Take
v̄ = v̄11(s1,s2]×Q ∈ Ē and let Yεv̄ be defined as in Section 2.3.1. Similar to (2.31), we use the
density expansion

E′
(
F(θ̄εv̄(ω))

)
=

∞∑
j=0

∫
(I×Rd

∗ ) j
F(ω + q11[t1,1] + · · · + q j1[t j,1])e−εv̄1(s2−s1)L(Q)

(εv̄1) j1Q(q1)L(dq1) · · ·1Q(q j)L(dq j)1{s1<t1≤t j≤s2}dt1 · · · dt j.

The fact that E′
(F(ω ◦ θ̄εv̄) + F(ω)

1

)
< ∞ allows us to use the dominated convergence

theorem to show that

lim
ε→0

1
ε
E′

(
F(θ̄εv̄(ω)) − F(ω)

)
=

∫
I×Rd

∗

(
F(ω + q1[t,1]) − F(ω)

)
v̄(t, q)dtL(dq).

By the definition of the difference operator as L2(P)-limit there exist subsequences (ε j) j≥1,
ε j → 0 such that

lim
j→∞

1
ε j
E′

(
F ◦ θ̄εv̄ − F

)
=

∫
I×Rd

∗

Ψt,qFv̄(t, q)dtL(dq), P-a.s.,

which implies Ψt,qF = F(ω + q1[t,1]) − F(ω) holds dt ⊗ L ⊗ P-a.e..
The proof of closability of Ψ is oriented on a similar proof for the Poisson process by

Nualart, Vives (see [NV90, Theorem 6.2]). Let (F j) j≥1 be a sequence of L-differentiable
functionals such that F j → 0 in L2(P) and ΨF→ η in L2(dt ⊗ L ⊗ P). Ψ is closable if η = 0.

We can find a subsequence ( jk)k≥1 such that F jk → 0P-a.s. and ΨF jk → ηholds dt⊗L⊗P-a.e.
By the above representation of ΨF j we also get

lim
k→∞

Ψt,qF jk(ω) = lim
k→∞

(
F jk(ω + q1[t,1]) − F jk(ω)

)
= 0, dt ⊗ L ⊗ P-a.e.,

which implies η = 0. By a similar limit argument we can prove the difference representation
(2.46) on the closed domain of Ψ. �

We observe from the representation (2.46) that our definition of the closure of the operator
Ψ is equivalent to

(2.47) ΨF(ω) := F(ω + q1[t,1]) − F(ω) for every F ∈ L2(P) with ΨF ∈ L2(dt ⊗ L ⊗ P).
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In the literature there are at least two other approaches to define similar derivative and
difference operators.
(1) Starting from definitions (2.18) and (2.19) onSd one shows that the operators are closable

and extends these as operators fromL2(P) intoL2(Adt⊗P) respectivelyL2(dt⊗L⊗P). See
e.g. recent work by Geiss and Laukkarinen [GL11] for one-dimensional Lévy processes
with jumps. This is a classic way to define the derivative operator for processes without
jumps.

(2) Introducing a chaos decomposition of L2(P) and defining the operators as annihilation
operators on the chaos. For the jump case, see [Løk04], [SUV07] and [GL11].

In § 2.3.1 we introduced a new approach for Lévy processes with jumps:
(3) Use a deterministic respectively random perturbation to define derivative and differ-

ence operator, see Definitions 2.25 and 2.33. Show that these operators are closable
(Proposition 2.45) and extend these as operators from L2(P) into L2(Adt ⊗ P) respec-
tivelyL2(dt⊗L⊗P). This leads to a difference operator equivalent to the one in defined
in (2.47).

Geiss and Laukkarinen prove that approaches (1) and (2) coincide for one-dimensional
Lévy processes with jumps, their proof applies here as well. Solé, Utzet and Vives show
that (2.47) and the definition of the difference operator on the chaos are equivalent for Lévy
processes without Gaussian part. Using [SUV07, Proposition 5.5] and the closability of Ψ

proved in Proposition 2.45 we deduce that the definition by perturbation we give in (3) is
equivalent to the other approaches (1) and (2).

All three definitions of derivative and difference operator provide a way to prove the
duality formula. We presented two proofs in Theorem 2.20 and Proposition 2.38 that are
new for Lévy processes with jumps. A well known proof of a duality formula for Lévy
processes with jumps is based on the chaos decomposition with annihilation and creation
operators. An abstract algebraic proof of the duality formula on a Fock space isomorphic
to the chaos can be found in [NV90, Proposition 4.2].
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3. Characterization of infinitely divisible random vectors and PII

In this section we prove our main results of the first part of this thesis: Infinitely divisible
random vectors are the unique random vectors satisfying the integration by parts formula
(2.8), and PII are the unique processes satisfying the duality formula (2.21). These are
new results in so far as we use the general setup of integrable random vectors respectively
processes on càdlàg space and we unify the Gaussian and Poisson cases presented in Section
1. The uniqueness results imply a one-to-one connection between infinite divisibility and
duality formulae including the derivative and difference operator as defined in (2.18) and
(2.19). We underline this connection in § 3.3 by presenting a new proof of a characterization
of infinitely divisible random measures that was first presented by Kummer and Matthes
in [KM70b].

3.1. Characterization of infinitely divisible random vectors.
The following result is the converse of Theorem 2.7.

Theorem 3.1. Let Z be an integrable random vector. If for every f ∈ C∞b (Rd) the integration by
parts formula

(3.2) E
(

f (Z) (Z − b)
)

= E
(
A∇ f (Z)

)
+ E

(∫
Rd
∗

(
f (Z + q) − f (Z)

)
qL(dq)

)
holds, then Z is infinitely divisible with characteristics (b,A,L).

Proof. We only need that (3.2) holds for trigonometric functions, a subset of C∞b (Rd). For
λ ∈ R define

Φ(λ) = E
(
eiλγ·Z

)
.

Then
d

dλ
Φ(λ) = i E

(
eiλγ·Zγ · Z

)
,

and since the real and complex component of z 7→ eiλγ·z are in C∞b (Rd) we can use equation
(2.8) to get

d
dλ

Φ(λ) = i
(
γ · b + iλγ · Aγ +

∫
Rd
∗

(
eiλγ·q

− 1
)
γ · qL(dq)

)
Φ(λ).

This is an ordinary differential equation in λ with boundary condition Φ(0) = 1 which
admits the unique solution

Φ(λ) = exp
(
iλγ · b − λ2 1

2
γ · Aγ +

∫
Rd
∗

(
eiλγ·q

− 1 − iλγ · q
)

L(dq)
)
.

For λ = 1 we recognize the characteristic function of an integrable infinitely divisible
random vector with characteristics (b,A,L), see the Lévy-Khintchine formula (2.3). �

This characterization is a generalization of the so called Stein’s Lemma for Gaussian
random variables and its analogue for the Poisson distribution by Chen. We presented
these results in Propositions 1.2 and 1.15. Implicitly Chen and Lou already used the above
generalization in [CL87, Theorem 2.1]. Barbour, Chen and Loh considered the compound
Poisson case for Lévy measures with support onR+ and derived a solution of the associated
Stein’s equation

g f (x)x −
∫

(0,∞)
g f (x + q)qL(dq) = f (x) − E ( f (Z)),
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see Remark 1.4 for the interpretation of such an equation. In [BCL92, Corollary 1] they
conclude that the integration by parts formula for compound Poisson measures charac-
terizes the compound Poisson distribution. Recently Gaussian random vectors have been
characterized by an integration by parts formulae using the solution of the Stein’s equation

x · ∇g f (x) − Tr(AHessg f (x)t) = f (x) − E ( f (Z)),

where Hessg f (x) is the Hessian matrix of g f and Tr( . ) is the trace operator. Different
solutions have been presented by Reinert, Röllin [RR09, Lemma 3.3], Chatterjee, Meckes
[CM08, Lemma 2] and Nourdin, Peccati, Réveillac [NPR10, Lemma 3.3].

Lee and Shih obtained in [LS10, Proposition 4.5] a similar formula as (3.2) as finite
dimensional projection of an (infinite dimensional) formula characterizing the associated
white noise measure.

Let us give an explicit example of the characterization of an infinitely divisible random
vector. This example will be discussed once more in Section 6 in the connection with
Poisson processes.

Example 3.3. Let Z have a Gamma distribution on R with density 1(0,∞)(q)e−qqα−1/Γ(α) for
some α > 0. Then Z is infinitely divisible with characteristics given by (α, 0, α1(0,∞)(q)q−1e−qdq).
Theorems 2.7 and 3.1 lead to the following characterizing formula:

E
(

f (Z)(Z − α)
)

= E

(∫
(0,∞)

(
f (Z + q) − f (Z)

)
αe−qdq

)
, ∀ f ∈ C∞b (R).

Diaconis and Zabell proposed a different characterization based on an integration by parts of the
density function: According to [DZ91] the random variable Z has a Gamma distribution with
parameter α if and only if

E
(

f (Z) (Z − α)
)

= E
(

f ′(Z)Z
)
, ∀ f ∈ C∞c (R).

3.2. Characterization of processes with independent increments.
The following result shows that PII are the only càdlàg processes satisfying specific

duality formulae. It is the converse of the conclusion of Theorem 2.20.

Theorem 3.4. Let Q be a probability on D(I,Rd) such that X has integrable increments and
(bt)t∈I, (At)t∈I and (Lt)t∈I be characteristics in the sense that (1)-(4) of Remark 2.12 hold. If for
every u ∈ Ed, F ∈ Sd the duality formula

EQ

(
F(X)

(∫
I

us · d(X − b)s

))
= EQ

(∫
I

DsF(X) · dAsus

)
+EQ

(∫
I×Rd

∗

Ψs,qF(X)us · qL̄(dsdq)
)

(3.5)

holds, then X is a PII with integrable increments and Xt − X0 has characteristics (bt,At,Lt) under
Q.

Proof. The proof is similar to the finite dimensional case presented in Theorem 3.1. Assume
that X has integrable increments and satisfies (3.5). Fix any u ∈ Ed and define

Φ(λ) := EQ

(
exp

(
iλ

∫
I

us · dXs

))
for λ ∈ R.
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We see that

d
dλ

Φ(λ) = i EQ

(
eiλ

∫
I

us·dXs

∫
I

us · dXs

)
= i

[∫
I

us · dbs + iλ
∫
I

us · dAsus +

∫
I×Rd

∗

(eiλus·q − 1)us · qL̄(dsdq)
]
Φ(λ),

where we used the duality formula (3.5) to get the second equality. This is an ordinary
differential equation with initial condition Φ(0) = 1. It admits the unique solution

Φ(λ) = exp
(
iλ

∫
I

us · dbs −
λ2

2

∫
I

us · dAsus +

∫
I×Rd

∗

(
eiλus·q − 1 − iλus · q

)
L̄(dsdq)

)
.

For λ = 1 we recognize (2.17) and identify X as PII. �

We already saw in Section 1 that these characterizations are known for the Wiener and the
Poisson case. Recently Lee and Shih proved a similar infinite dimensional characterization
for white noise measures on the dual of the Schwartz space, see [LS10, Theorem 3.7].

Let us present the above result in the important case of α-stable processes.

Example 3.6. A PII is called isotropic α-stable if its characteristics for a given t ∈ I are
(tb, 0, (tC/|q|1+α)dq) for some α ∈ (0, 2) and any C > 0 and b =

∫
Rd
∗

q C
|q|1+α dq. It is well known that

an α-stable process is integrable only if α ∈ (1, 2). By Theorems 2.20 and 3.4 the canonical process
X is α-stable under Q for α ∈ (1, 2) if and only if X has integrable increments and

EQ

(
F(X)

∫
I

us · (dXs − bds)
)

= EQ

(∫
I×Rd

∗

(
F(X + q1[s,∞)) − F(X)

)
us · q

C
|q|1+α

dsdq
)

holds for all F ∈ Sd and u ∈ Ed.

One method to extend the duality formula (3.5) to PII with non-integrable increments is
to cut the large jumps of the process. For any càdlàg trajectory ω ∈ D(I,Rd) the jump at
time t ∈ I, ∆ω(t) := ω(t) − ω(t−), is well defined. Moreover for any k > 0, t ∈ I the sum∑

s≤t ∆ω(s)1|∆ω(s)|>k is finite. This allows us to define the measurable application

ω 7→ ωk := ω −
∑
s≤.

∆ω(s)1|∆ω(s)|>k .

If X is a PII the process Xk(ω) := X(ωk) is a PII with integrable increments.

Corollary 3.7. Let Q be such that Xk has integrable increments for any k > 0. Then X is a PII
with characteristics (b,A,L)χ if and only if for every u ∈ Ed, F ∈ Sd and k > 0

EQ

(
F(Xk)

(∫
I

usd(Xk
− bk)s

))
= EQ

(∫
I

DsF(Xk) · dAsus

)
+EQ

(∫
I×Rd

∗

Ψs,qF(Xk)us · q1|q|≤KL̄(dsdq)
)
,

where bk
t := bt −

∫
Rd
∗

(
χ(q) − q1|q|≤k

)
Lt(dq) ∈ Rd.

Proof. Immediate from Theorems 2.20 and 3.4, since Xk has integrable increments and
Xk

t − X0 has characteristics (bk
t ,At,1|q|≤kLt(dq)). �

This allows to treat the α-stable processes mentioned in Example 3.6 for the non-
integrable case.
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Example 3.8. Take some α ∈ (0, 2). By Theorems 2.20 and 3.4 the canonical process X is isotropic
α-stable under Q if and only if each Xk has integrable increments and

EQ

(
F(X)

∫
I

usd(Xk
− bk)s

)
= EQ

(∫
I×Rd

∗

(
F(Xk + q1[t,∞)) − F(Xk)

)
ut · q1|q|≤k

C
|q|1+α

dtdq
)

holds for all F ∈ Sd, u ∈ Ed, k > 0 and some C > 0, where

bk
t = t

∫
Rd
∗

q1|q|≤k
C
|q|1+α

dq.

3.3. The non-negative case, characterizing infinitely divisible random measures.
In this section we look at integration by parts formula for non-negative random vectors

and a duality formula for infinitely divisible random measures on polish spaces. With our
presentation we wish to point out the generality of the approaches developed in Section 2
and § 3.1, § 3.2.

3.3.1. Non-negative infinitely divisible random vectors.
There exists an extensive literature about the characterization of infinitely divisible ran-

dom variables that are positive, see e.g. the monographs by Steutel [Ste70] and Sato [Sat99].
We present a generalization of the integration by parts formula (1.16) of the Poisson dis-
tribution that derives from the integration by parts (2.8) for infinitely divisible random
vectors.

Let Z be an infinitely divisible random vector that is non-negative, P(Z ∈ Rd
+) = 1. It is

known that the Laplace transform of Z is such that for all γ ∈ Rd
+ we have

(3.9) − logE
(
e−γ·Z

)
= γ · α +

∫
Rd

+\{0}

(
1 − e−γ·q

)
L+(dq),

where α ∈ Rd
+ and L+ is a Lévy measure on Rd

∗ with∫
Rd
∗

(|q|1 ∧ 1)L+(dq) < ∞, L+(Rd
∗\R

d
+) = 0.

The relation between the Laplace characteristics (α,L+) and the Fourier characteristics
(b,A,L)χ of Z is given by

(3.10) b = α +

∫
Rd
∗

χ(q)L+(dq), A = 0, L = L+.

Corollary 3.11. Let Z be a non-negative random variable. Then Z is infinitely divisible with
Laplace characteristics (α,L+) if and only if the equation

(3.12) E
(

f (Z)Z
)

= E
(

f (Z)α
)

+ E

(∫
Rd
∗

f (Z + q)qL+(dq)
)
.

holds for every f ∈ C∞c (Rd
+).

Proof. The proof is the same as the proofs of Theorems 2.7 and 3.1, but for the function
fγ which is replaced by q 7→ e−γ·q and the convergence arguments can be replaced by
monotone convergence. �



27

3.3.2. Characterization of infinitely divisible random measures.
We show an extension of the characterization given in Corollary 3.11 to infinitely divisible

random measures. Similar to the treatment of càdlàg processes on canonical space we
begin with an introduction of the canonical space of random measures over a Polish space
(a Polish space is a separable, completely metrizable topological space).

Let A be a polish space, A0 the ring of bounded Borel sets andA the σ-field generated
byA0. Define the space of all σ-finite measures on (A,A) by

(3.13) M := {µ σ-finite measure on (A,A)}.

The canonical random measure is the identity N : M → M. We equip the spaceM with
the σ-fieldM := σ(N(A), A ∈ A0).

Let P be any probability measure on (M,M). The notion of infinite divisibility is similar
to the one for random vectors: The random measure N is infinitely divisible under P is for
any m ∈N there exists a probability Pm on (M,M) such that

(3.14) P = P∗mm ,

where P∗mm = Pm ∗ · · · ∗ Pm denotes the m-times convolution product of Pm. DefineM∗ :=
M\{0} and M∗ = M∩M∗ (here 0 ∈ M is the measure without mass 0(A) = 0). Remark
that {0} ∈ M. The Laplace transform of an infinitely divisible random measure is of the
following form, see e.g. Kallenberg [Kal83, Theorem 6.1].

Proposition 3.15. If N is infinitely divisible, there exist α ∈ M and a σ-finite measure Γ over
(M∗,M∗) with

∫
M∗

(µ(A) ∧ 1)Γ(dµ) < ∞ for every A ∈ A0 such that for all ξ : A→ R+ we have

(3.16) − logE (e−
∫
A
ξ(a)N(da)) =

∫
A
ξ(a)α(da) +

∫
M∗

(1 − e−
∫
A
ξ(a)µ(da))Γ(dµ),

where log(0) := −∞.

Proof. We refer to the proof presented by Kallenberg. The integrability condition on Γ given
there is actually

∫
M∗

(1 − e−µ(A))Γ(dµ) < ∞. This is equivalent to our condition because

1
2

q ≤ (1 − e−q) ≤ q, q ∈ [0, 1] and
1
2
≤ (1 − e−q) ≤ 1, q ∈ (1,∞).

The existence of α and Γ can be proven by projection of the Laplace characteristics of the
infinitely divisible random vectors (N(A1), . . . ,N(An))t given in (3.9). �

(α,Γ) are called characteristics of the infinitely divisible random measure N. To state the
characterization theorem we are going to use the following sets of test functions. The set
of elementary functions is defined by

EA :=

ξ : A→ R+, ξ =

n∑
i=1

ξi1Ai , ξi ∈ R+,Ai ∈ A0,n ∈N

 .
And the set of smooth and cylindrical functionals with compact support is

SM :=
{
F :M→ R+, F(µ) = f (µ(A1), . . . , µ(An)), f ∈ C∞c (Rn

+),Ai ∈ A0,n ∈N
}
.
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Theorem 3.17. The random measure N is infinitely divisible with characteristics (α,Γ) underQ if
and only if for all F ∈ SM, ξ ∈ EA the duality formula

EQ

(
F(N)

∫
A
ξ(a)N(da)

)
= EQ

(
F(N)

∫
A
ξ(a)α(da)

)
+EQ

(∫
M∗

F(N + µ)
(∫
A
ξ(a)µ(da)

)
Γ(dµ)

)
.(3.18)

holds.

Proof. Since theσ-fieldM is cylindrical, N is infinitely divisible if and only if (N(A1), . . . ,N(An))t

is infinitely divisible as a random vector inRn
+ for any A1, . . . ,An ∈ A0 (see also Kallenberg

[Kal83, Lemma 6.3]). Remark that for γ ∈ Rn
+ we have γ · (N(A1), . . . ,N(An))t =

∫
A
ξ(a)N(da)

if ξ =
∑n

i=1 γi1Ai ∈ EA. By (3.16) the Lévy measure corresponding to (N(A1), . . . ,N(An))t is
given by the image Γ ◦ ((N(A1), . . . ,N(An))t)−1. Then we conclude using Corollary 3.11 and
the linearity of (3.18) with respect to ξ. �

The above theorem was first proven by Kummer and Matthes [KM70b], applying a
characterization of infinitely divisible point processes proved in [KM70a]. Nehring and
Zessin [NZ12] simplified the proof using a representation of infinitely divisible random
measures by a Poisson measure.

A characterization of the above kind was first known for Poisson measures, a particular
case of an infinitely divisible random measure, see Mecke [Mec67]. The concept of a Poisson
measure generalizes the definition of a Poisson process from the index-set R+ toA.

Definition 3.19. Let Λ be a σ-finite measure without atoms on (A,A). Then N is called a Poisson
measure with intensity Λ under P if for any A,B ∈ A0 the random variables N(A) and N(B) are
independent with Poisson distribution N(A) ∼ P(Λ(A)) and N(B) ∼ P(Λ(B)).

We now show that Theorem 3.17 implies a corresponding characterization of Poisson
point processes on (A,A) by projection, thus we obtain Mecke’s result.

Corollary 3.20. Let Λ be some σ-finite measure on (A,A) with no atoms. The random measure N
is a Poisson measure with intensity Λ under Q if and only if for all F ∈ SM, ξ ∈ EA

(3.21) EQ

(
F(N)

∫
A
ξ(a)N(da)

)
= EQ

(∫
A

F(N + δ{a})ξ(a)Λ(da)
)
.

Proof. Suppose N is a Poisson measure with intensity Λ. Then N is infinitely divisible with
independent increments. Denote by (α,Γ) its characteristics. Since N is a point process
we have α ≡ 0. By independence of increments the support of Γ is included in the set of
degenerate integer-valued measures{

µ = nδ{a}, a ∈ A, n ∈N
}

=
⋃
n≥1

{
µ = nδ{a}, a ∈ A

}
,

(see [Kal83], Theorem 7.2 and Lemma 7.3). Thus Γ can be projected onto some measure Λ̄

onN ×A in the sense that for every g :M ×A→ R+ we have

(3.22)
∫
M∗×A

g(µ, a)µ(da)Γ(dµ) =

∫
N×A

g(nδ{a}, a)Λ̄(dnda).

Putting F ≡ 1 in (3.18) we obtain

Λ(A) = EQ (N(A)) =

∫
M∗

µ(A)Γ(dµ) = Λ̄(N × A), ∀A ∈ A0.
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Extending (3.18) to F = 1
{µ=nδ{a}, a∈A} and ξ = 1A for A ∈ A0 and applying (3.22) to g = F1A

we see that Λ̄(N × A) = Λ̄({1} × A) = Λ(A). Therefore∫
M∗×A

g(µ, a)µ(da)Γ(dµ) =

∫
A

g(δ{a}, a)Λ(da), g :M ×A→ R+ ,

which implies (3.21).
The sufficiency of the duality (3.21) is due to the identification of the Laplace transform

of a Poisson random measure, similar to the proof of Theorem 3.17. �

Using ξ = 1A and F(N) = f (N(A)) for some f ∈ C∞b (R) and A ∈ A0 we see that Corollary
3.20 implies the characterization of the Poisson distribution presented in Proposition 1.15.
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Second part:
Characterization of Markov processes and reciprocal classes

4. The reciprocal classes ofMarkov processes

This section serves as an introduction to the second part of this thesis, in which we study
the reciprocal classes of Markov processes. In § 4.1 and § 4.2 we state the definitions of
Markov and reciprocal processes on D(I,Rd) and introduce some of their fundamental
properties. In a sense reciprocal processes are Markov fields on I, they generalize the
concept of a Markov process. The reciprocal property has first been defined by Bernstein
[Ber32]. He followed an idea of Schrödinger [Sch32] to introduce processes with time-
symmetric dynamics. The reciprocal class, as introduced in § 4.3, contains all processes
having the same bridges as a reference Markov process. Here a bridge is a process with
deterministic initial and final state. We study the reciprocal classes of continuous Markov
processes in Section 5 and of pure jump Markov processes in Sections 6 and 7.

As a first example we introduce in § 4.4 the concept of the reciprocal class of a Markov
chain. The related concept of “reciprocal chains” is identical to the definition of reciprocal
processes in a discrete time setting as originally given by Bernstein. A comparison of the
bridges of homogeneous Markov chains indicates “algebraic” problems that occur when
treating the reciprocal classes of càdlàg processes with jumps.

4.1. Markov processes.
The following is a customary definition of the Markov property.

Definition 4.1. Let P be a probability onD(I,Rd). We say that P is Markov, if for any t ∈ I and
any bounded F[t,1]-measurable functional F we have

(4.2) E (F | F[0,t]) = E (F |Xt), P-a.s.

It is well known that a Wiener measure has the Markov property. Let us present an
equivalent definition of the Markov property that appears to be time symmetric (see e.g.
the introduction by Meyer [Mey67, Théorème T4]). The following property is often stated
as the independence of future and past conditionally on the present.

Proposition 4.3. The probability P on D(I,Rd) has the Markov property if and only if for any
t ∈ I the σ-fields F[0,t] and F[t,1] are independent given Xt.
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Proof. Assume that P is Markov, let t ∈ I and F,G be bounded functionals such that F is
F[0,t]-measurable and G is F[t,1]-measurable, then

E (FG |Xt)
!
= E (E (FG |F[0,t])|Xt) = E (FE (G |F[0,t])|Xt)

!
= E (FE (G |Xt)|Xt) = E (F |Xt)E (G |Xt),

where the use of the Markov property has been marked with an exclamation.
Let on the other hand the σ-fields F[0,t] and F[t,1] be independent conditionally on Xt and

take bounded functionals F,G as above. Then

E (FG) = E (E (FG |Xt)) = E (E (F |Xt)E (G |Xt)) = E (FE (G |Xt)),

where the second equality holds by assumption. �

Next we present a sufficient condition for the Markov property of càdlàg processes
whose distribution is absolutely continuous with respect to a Markov process, see e.g.
Léonard, Rœlly and Zambrini [LRZ12].

Lemma 4.4. Let P be Markov and Q be the law of some càdlàg process such that Q� P. Then Q
is Markov if the Radon-Nikodym density with respect toP factorizes as follows: For any t ∈ I there
exist two random variables αt, βt that areF[0,t]- respectivelyF[t,1]-measurable such thatQ = αtβtP.

Proof. Assume that Q = αtβtP for αt, βt as above. We prove the Markov property of Q
using Proposition 4.3: For a bounded and F[0,t]-measurable functional F and a bounded
and F[t,1]-measurable functional G we show that Q(FG|Xt) = Q(F|Xt)Q(G|Xt) holds Q-a.s.
First check that for any bounded φ : R→ R we have

EQ(φ(Xt)FG) = E (φ(Xt)FGαtβt) = E (φ(Xt)E (FGαtβt|Xt)) and

EQ(φ(Xt)FG) = EQ(φ(Xt)EQ(FG|Xt)) = E (φ(Xt)αtβtEQ(FG|Xt))

= E (φ(Xt)E (αtβt|Xt)EQ(FG|Xt)),

which implies

EQ(FG|Xt) =
E (FGαtβt|Xt)
E (αtβt|Xt)

=
E (Fαt|Xt)
E (αt|Xt)

E (Gβt|Xt)
E (βt|Xt)

holds Q-a.s.

since αtβt > 0Q-a.s. and by the Markov property of P. If we apply this with G = 1 and then
with F = 1 we get

EQ(F|Xt) =
E (Fαt|Xt)
E (αt|Xt)

and EQ(G|Xt) =
E (Gβt|Xt)
E (βt|Xt)

hold Q-a.s.,

which ends the proof. �

Example 4.5. Let P be a Wiener measure on D(I) and {t1, . . . , tn} ∈ ∆I be arbitrary. Given the
intervals [a1, b1], . . . , [an, bn] ⊂ R we define the measure

Q :=
1[a1,b1](Xt1) · · ·1[an,bn](Xtn)

P(Xt1 ∈ [a1, b1], . . . ,Xtn ∈ [an, bn])
P.

Clearly Q is a probability onD(I) and by definition

Q( . ) = P( . |Xt1 ∈ [a1, b1], . . . ,Xtn ∈ [an, bn]).

Thus Q is a Wiener measure conditioned to pass through prescribed intervals at given times. A
straightforward application of Lemma 4.4 shows that Q has the Markov property.
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4.2. Reciprocal processes.
The following definition of the reciprocal property is stated as a conditional indepen-

dence condition, close in spirit to the definition of Markov processes in Proposition 4.3.

Definition 4.6. Let P be a probability onD(I,Rd). We say that P is reciprocal, if for any s, t ∈ I,
s ≤ t the σ-fields F[0,s]∪[t,1] and F[s,t] are independent given (Xs,Xt).

Reciprocal processes have a property that looks similar to the Markov property as defined
in Definition 4.1: If P is reciprocal, then for any t ∈ I and any bounded functionals F,G
that are F[0,t]- respectively F[t,1]-measurable we have

(4.7) E (G | F[0,t]) = E (G |Xt,X0) and E (F | F[t,1]) = E (F |Xt,X1), P-a.s.

This is just a consequence of the independence of the σ-fieldsF{0}∪[t,1] andF[0,t] given X0,Xt

respectively F[0,t]∪{1} and F[t,1] given Xt,X1.
Next we recall some general properties of reciprocal processes. Most of these results

are due to Jamison, who developed a general theory of reciprocal processes in a series of
articles [Jam70, Jam74, Jam75].

Proposition 4.8. Every Markov process is a reciprocal process.

Proof. Assume thatP has the Markov property. Let F,G and H be bounded functionals such
that F is F[0,s]-measurable, G is F[s,t]-measurable and H is F[t,1]-measurable. We repeatedly
use the Markov property in equations marked with an exclamation to get

E (FGH) = E (E (FGH | F[s,t]))
!
= E (E (F |Xs) GE (H |Xt))

= E (E (F |Xs)E (G |Xs,Xt)E (H |Xt))
!
= E (E (F | F[s,1])E (G |Xs,Xt)E (H |Xt))

= E (FE (G |Xs,Xt)E (H |Xt))
!
= E (FE (G |Xs,Xt) H ).

This implies
E (G | F[0,s]∪[t,1]) = E (G |Xs,Xt),

which is the reciprocal property. �

The converse is not true, we present a counterexample.

Example 4.9. Let P be the law of a Wiener process with initial distribution P(X0 ∈ . ) = 1
2 (δ{0} +

δ{1}). Then the process Q( . ) := P( . |X1 ≥ X0) is not Markov since for any t ∈ I

0 = Q(X1 < 1|Xt ∈ [0, 1],X0 = 1) , Q(X1 < 1|Xt ∈ [0, 1],X0 = 0) > 0.

But Q is a reciprocal process, since for any bounded F[s,t]-measurable functional F we have

Q(F | F[0,s]∪[t,1]) = E (F | F[0,s]∪[t,1],X1 ≥ X0)

=
1{X1≥X0}

P(X1 ≥ X0)
E (F | F[0,s]∪[t,1])

!
=

1{X1≥X0}

P(X1 ≥ X0)
E (F |Xs,Xt)

= Q(F |Xs,Xt),

where we marked the use of the Markov property of P with an exclamation sign.
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Even if reciprocal processes are not generally Markov we can recover the Markov prop-
erty by pinning one of the endpoints.

Proposition 4.10. LetP be reciprocal. Then the pinned distributionP( . |X0 = x) isP(X0 ∈ . )-a.s.
well defined and Markov. Likewise P( . |X1 = y) is P(X1 ∈ . )-a.s. well defined and Markov.

Proof. We present the proof for pinning at time t = 1, the proof for t = 0 is the same.
Take any s ∈ [0, 1] and bounded functionals F,G where F is F[0,s]-measurable and G is
F[s,1]-measurable. For any φ : Rd

→ R bounded we have

E
(
E (FG |Xs,X1)φ(Xs)

 X1

)
= E

(
Fφ(Xs)G |X1

)
= E

(
E (F |Xs,X1)φ(Xs)E (G |Xs,X1)

 X1

)
which is the Markov property by Proposition 4.3. �

Example 4.11. Let Q the reciprocal distribution defined in Example 4.9. By Proposition 4.10 the
pinned process Q( . |X0 = 0) = P( . |X0 = 0,X1 ≥ 0) has the Markov property. This can also be
shown using Lemma 4.4 sinceP( . |X0 = 0,X1 ≥ 0) = 21[0,∞)(X1)P( . |X0 = 0), whereP( . |X0 = 0)
is the law of a Brownian motion starting in zero.

4.3. Reciprocal class of a Markov process and harmonic transformations.
In this paragraph we associate a class of reciprocal processes to a given distribution P

that is Markov. The following notations will be used throughout the rest of this thesis:
• The initial law P0( . ) := P(X0 ∈ . ) and the final law P1( . ) := P(X1 ∈ .) on Rd. The

joint distribution of the endpoints is P01( . ) := P(X0 ∈ . ,X1 ∈ . ) on R2d.
• The fixed initial condition Px( . ) := P( . |X0 = x), which is P0-a.s. well defined. The

bridges Px,y( . ) := P( . |X0 = x,X1 = y), which are P01-a.s. well defined
For certain types of Markov processes we may assume that Px is well defined for every
x ∈ Rd, take e.g. a Brownian motion or a Poisson process. In such a context we will say
that the bridge Px,y is well defined for every x ∈ Rd and Px

1(dy)-a.s.

Definition 4.12. The reciprocal class R(P) associated to the Markov distribution P consists of all
càdlàg distributions Q that have the disintegration

(4.13) Q( . ) =

∫
R2d
Px,y( . )Q01(dxdy),

where Px,y has to be Q01-a.s. well defined.

The reciprocal class contains all processes that have the same bridges as a reference
Markov process: From (4.13) it follows directly that

(4.14) R(P) =
{
Q probability onD(I,Rd) such that Qx,y( . ) = Px,y( . ) holds Q01-a.s.

}
.

This equality of bridges may be localized on subintervals of I.

Corollary 4.15. Let Q be an element of the reciprocal class R(P). Then Q is a reciprocal process
and

Q( . |F[0,s]∪[t,1]) = P( . |Xs,Xt) on F[s,t].

Proof. Assume that the disintegration (4.13) holds. Let s < t, using the Markov property of
Pwe get

Q( . | F[0,s]∪[t,1]) = Q( . | F[0,s]∪[t,1],X0,X1) = P( . | F[0,s]∪[t,1],X0,X1) !
= P( . |Xs,Xt)
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as measures on F[s,t]. In particular

Q( . |Xs,Xt) = EQ(Q( . |F[0,s]∪[t,1])|Xs,Xt) = P( . |Xs,Xt) = Q( . |F[0,s]∪[t,1]),

we see that Q has indeed the reciprocal property. �

Example 4.16. Let P be the law of a Brownian motion with arbitrary initial condition.
• Any pinned Wiener measure Px is in the reciprocal class of the Wiener measure R(P). The

endpoint distribution in the disintegration (4.13) is given by

Px
01(dzdy) = δ{x}(dz) ⊗

1
√

2π
e−
|y−x|2

2 dy.

• The Brownian bridge Px,y starting in x and ending in y is in R(P) for any x, y ∈ Rd. Here
the endpoint distribution is just Px,y

01 = δ{x} ⊗ δ{y}.
• The reciprocal process Q( . ) := P( . |X1 ≥ X0) from Example 4.9 is in R(P) with endpoint

distribution

Q01(dxdy) = P(X0 ∈ dx,X1 ∈ dy|X1 ≥ X0)

=
P(X0 ∈ dx,X1 ∈ dy,X1 ≥ X0)

P(X1 ≥ X0)
= 21{x≥y}P01(dxdy)

= 21{x≥y}P0(dx) ⊗
1
√

2π
e−
|y−x|2

2 dy.

It is easy to see, that the integrability of the increments of X is not conserved in the reciprocal class.
• Let x ∈ Rd and µ1 be any probability on Rd that does not have a finite first moment and

define Qx( . ) :=
∫
Rd P

x,yµ1(dy) ∈ R(P). Clearly X has integrable increments with respect
to the reference Wiener measureP. But this is not the case underQx, the increment X1−X0

is not integrable since X1 ∼ µ1 .

LetP be a Markov distribution. We introduce an important subclass of Markov processes
in R(P): Let h : Rd

→ R+ be measurable such that E (h(X1)) = 1. Then hP( . ) := h(X1)P( . )
defines a probability on D(I,Rd) that has the Markov property by Lemma 4.4. Moreover
hP ∈ R(P), since for any bounded φ,ψ : Rd

→ R and a bounded functional F we have

hE (φ(X0)ψ(X1)F) = hE (φ(X0)ψ(X1)hE (F |X0,X1)),

and

hE (φ(X0)ψ(X1)F) = E (φ(X0)ψ(X1)h(X1)F)

= E (φ(X0)ψ(X1)h(X1)E (F |X0,X1))

= hE (φ(X0)ψ(X1)E (F |X0,X1)).

Definition 4.17. Let P be a Markov distribution and h : Rd
→ R+ be a measurable function such

that E (h(X1)) = 1. Then hP( . ) := h(X1)P( . ) is called h-transform of P.

The notion of harmonic transformation has been introduced by Doob in [Doo57]. He
used a Wiener measure as reference law and a random time instead of t = 1.

The notion of an h-transform in the context of reciprocal processes has been studied
before by Jamison [Jam74], see also Fitzsimmons, Pitman, Yor [FPY92] and Léonard, Rœlly,
Zambrini [LRZ12] for the connection between h-transforms and the bridges of a Markov
process.

Let us note that a partial “converse” to the properties of h-transforms exist.
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Remark 4.18. Fix any initial state X0 = x. Let Px be Markov and Qx an element of the reciprocal
class Qx

∈ R(P) such that Qx
� Px. Then Qx is an h-transform of Px with

h(y) =
dQx

1

dPx
1

(y),

since

Qx( . ) =

∫
Rd
Px,y( . )Qx

1(dy) =

∫
Rd
Px,y( . )h(y)Px

1(dy) = h(X1)Px( . ).

An h-transform in the sense of Definition 4.17 may be interpreted as the prescription of
a certain endpoint distribution.

Example 4.19. Let P be a Wiener measure with arbitrary initial distribution µ0. Clearly not all
probabilities in R(P) are h-transforms, the bridges Px,y already violate the necessary condition of
absolute continuity with respect to P. To abbreviate we denote the Gaussian transition kernel by

φ(x, y) :=
1

(2π)
d
2

e
−|x−y|2

2 .

An h-transform changes the endpoint distribution of the reference process as follows.

• For any probability µ1(dy) = ρ1(y)dy on Rd we define

h(y) :=
dµ1

dP1
(y) = ρ1(y)

(∫
Rd
φ(x, y)µ0(dx)

)−1

.

Then hP is a processes in R(P) that has endpoint distribution µ1.
• Let h be defined as above, then the initial distribution of the h-transform changes as follows.

Since hP01(dxdy) = h(y)P01(dxdy) we can compute the marginal of the initial state. For
any B ∈ B(Rd) we have

hP0(B) =

∫
B×Rd

h(y)P01(dxdy)

=

∫
B×Rd

ρ1(y)
(∫
Rd
φ(z, y)µ0(dz)

)−1

φ(x, y)µ0(dx)dy

=

∫
B

∫
Rd

ρ1(y)φ(x, y)∫
Rd φ(z, y)µ0(dz)

dy

µ0(dx).

Note that for a pinned reference process the initial law does not change, we have Px
0 = δ{x}

and hPx
0 = δ{x}.

4.4. The reciprocal class of a Markov chain, a basic example.
In this paragraph we transfer the concepts of reciprocal processes and reciprocal classes

to the discrete time setting for processes with finite state space. To justify this transfer
we briefly explain why the dynamical properties of a Markov chain are similar to the
properties of a Markov process inD(I,Rd) with deterministic jump-times that are constant
between the jumps. The concept of discrete time reciprocal processes was first introduced
by Bernstein [Ber32]. More recently authors have been interested in the classification of
such “reciprocal chains” having Gaussian marginals, see e.g. Levy, Frezza, Krener [LFK90],
Levy, Ferrante [LF02] and Carravetta [Car08].

The toy examples at the end of this paragraph then give a first impression of problems
that arise, when comparing the bridges of pure jump Markov processes in continuous time.
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4.4.1. Embedding of Markov chains using deterministic jump-times.
Let Y = (Yi)0≤i≤m be an arbitrary discrete time process with finite state space {y1, . . . , yn} ⊂

Rd defined on an arbitrary probability space (Ω,A,P).

Definition 4.20. The process Y is Markov if for any 0 ≤ i ≤ m the σ-fields σ(Y0, . . . ,Yi) and
σ(Yi, . . . ,Ym) are independent given Yi. The process Y is reciprocal if for any 0 ≤ i ≤ j ≤ m the
σ-fields σ(Y0, . . . ,Yi,Y j, . . .Ym) and σ(Yi, . . . ,Y j) are independent given Yi,Y j.

Let us justify the above definitions by an embedding: We fix any 0 < t1 < · · · < tm <
1 throughout this paragraph. Using these as deterministic jump-times, we define the
continuous time càdlàg process Y(m) as follows:

(4.21) Y(m)
t :=


Y0, for t ∈ [0, t1),
Y1, for t ∈ [t1, t2),
...
Ym, for t ∈ [tm, 1].

The process Y(m) is a càdlàg process that jumps m-times at the deterministic time points
t1, . . . , tm and is constant in between the jumps. Moreover Y(m) : Ω → D(I,Rd) is measur-
able. Define PY := P ◦ (Y(m))−1.

Lemma 4.22. The process Y = (Yi)0≤i≤m is Markov resp. reciprocal if and only if PY has the
Markov property resp. the reciprocal property onD(I,Rd).

Proof. Let F(X) = f (Xs1 , . . . ,Xsk) ∈ Sd. By definition there exist {i1, . . . , ik} ⊂ {1, . . . ,m} such
that F(Y(m)) = f (Yi1 , . . . ,Yik) and for arbitrary t ∈ I there exists i ∈ {1, . . . ,m} such that
Y(m)

t = Yi. Then

EY(F(X) | F[0,t]) = E(F(Y(m))|σ(Y(m)
s , s ≤ t)) = E( f (Yi1 , . . . ,Yik)|σ(Y1, . . . ,Yi))

and by a similar computation

EY(F(X)|Xt) = E( f (Yi1 , . . . ,Yik)|Yi).

The claimed equivalence concerning the Markov property is now immediate. To proof the
equivalence of the reciprocal property for the discrete and continuous time models one
advances in the same fashion. �

All results from § 4.1, § 4.2 and § 4.3 now apply to the setting of a discrete time process
Y. In particular the definition of the reciprocal class of a Markov chain is again that of a
mixture over the bridges.

Corollary 4.23. Let Y be a Markov chain and Ỹ = (Ỹi)0≤i≤m another {y1, . . . , yn}-valued random
process. Then PỸ ∈ R(PY) if and only if the following decomposition holds:

(4.24) P(Ỹ ∈ . ) =

n∑
i, j=1

P(Y ∈ . |Y0 = yi,Ym = y j)P(Ỹ0 = yi, Ỹm = y j).

Proof. Just use the same identification of random variables as in the proof of Lemma
4.22. �

We define the reciprocal class of a given Markov chain as follows.

Definition 4.25. Let Y be a Markov chain. Then we define the reciprocal classR(Y) as the collection
of all {y1, . . . , yn}-valued processes (Ỹi)1≤i≤m that have the same bridges

(4.26) P(Ỹ ∈ . |Ỹ0 = yi, Ỹm = y j) = P(Y ∈ . |Y0 = yi,Ym = y j) holds P(Ỹ0 ∈ . , Ỹm ∈ . )-a.s.
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4.4.2. The reciprocal class of a time-homogeneous Markov chain.
Let (Yi)0≤i≤m be a time-homogeneous Markov chain on the finite state space {y1, . . . , yn} ⊂

Rd. Denote the initial law and transition matrix by

µ0({yi}) := P(Y0 = yi) for i ∈ {1, . . . ,n}, and (pi j)1≤i, j≤n :=
(
P(Y1 = y j|Y0 = yi)

)
1≤i, j≤n

.

The reciprocal class of Y is defined by the identity of bridges in (4.26). Let us now study
the bridges of Y for various m,n ∈ N (the number of “jumps” and the number of different
states).

Example 4.27. Let the number of states n ∈ N be arbitrary, m = 2 and Y, Ỹ be two time-
homogeneous Markov chains. We compute

P(Y1 = yk|Y0 = yi,Y2 = y j) =
pikpkj∑n
l=1 pilpl j

, and P(Ỹ1 = yk|Ỹ0 = yi, Ỹ2 = y j) =
p̃ikp̃kj∑n
l=1 p̃ilp̃l j

,

where the denominator is just the two-step probability of going from i to j. Define pi j(2) := P(Y2 =

y j|Y0 = yi), then the equality of the bridge between yi and y j is given if and only if

pikpkj

pi j(2)
=

p̃ikp̃kj

p̃i j(2)
, ∀k ∈ {1, . . . ,n}.

The condition found in the above example is easily extended to arbitrary m ∈N.

Corollary 4.28. Let n,m ∈N and Y, Ỹ be two time-homogeneous Markov chains. Then Ỹ ∈ R(Y)
if and only if for all 1 ≤ i, j ≤ n we have

(4.29)
pik1pk1k2 · · · pkm−1 j

pi j(m)
=

p̃ik1 p̃k1k2 · · · p̃km−1 j

p̃i j(m)
, ∀1 ≤ k1, . . . , km−1 ≤ n,

where pi j(m) := P(Ym = y j|Y0 = yi).

Proof. This follows directly from the definition of the reciprocal class through equality of
the bridges. �

In the rest of this paragraph we compare the bridges of different time-homogeneous
Markov chains Y and Ỹ in examples, using the comparison result of Corollary 4.28.

Example 4.30. We study a simple message transmission model, a Markov chain that switches
between two states {y1, y2}, where the transition probabilities are given by(
P(Y1 = y j |Y0 = yi)

)
1≤i, j≤2

=

(
α 1 − α

1 − β β

)
,

(
P(Ỹ1 = y j | Ỹ0 = yi)

)
1≤i, j≤2

=

(
α̃ 1 − α̃

1 − β̃ β̃

)
,

where α, β, α̃, β̃ ∈ (0, 1).

y1 y2

1 − β

1 − α

α β

We use the localization result of Corollary 4.15 and transfer it into the discrete time setting by
Lemma 4.22 to get a necessary condition for the equality of the bridges: For any lengths m ∈ N of
the Markov chain, it is necessary that already the bridges for m = 2 of Y and Ỹ are identical. Thus
we have to find conditions on α, β, α̃, β̃ such that

P(Y1 = y1|Y0 = y1,Y2 = y2) =
p11p12

p11p12 + p12p22
=

α(1 − α)
α(1 − α) + (1 − α)β

!
=

α̃(1 − α̃)
α̃(1 − α̃) + (1 − α̃)β̃

.
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This can only be the case if there exists δ > 0 with

α̃
α

=
β̃

β
= δ.

Another necessary condition for the equality of all bridges is

P(Y1 = y1|Y0 = y1,Y2 = y1) =
p11p11

p11p11 + p12p21
=

α2

α2 + (1 − α)(1 − β)
!
=

(δα)2

(δα)2 + (1 − δα)(1 − δβ)
,

which is equivalent to the quadratic equation

δ2(1 − α)(1 − β) = (1 − δα)(1 − δβ) ⇔ δ2(1 − α − β) + δ(α + β) − 1 = 0.

If we assume that α, β ≈ 1, then the positive solutions to this quadratic equation are

δ1,2 =
α + β ±

√
(α + β)2 − 4(α + β − 1)
2(α + β − 1)

=
(α + β) ± (α + β − 2)

2(α + β − 1)
,

such that

δ1 = 1, or δ2 =
1

α + β − 1

are solutions. But it is easy to see, that δ2 is too large, since in this case

α̃ =
α

α + β − 1
> 1 ⇔ 1 > β,

which was an assumption. Thus the reciprocal classes of Y and Ỹ only coincide if α = α̃ and β = β̃.

Example 4.31. Let m,n ∈ N be arbitrary and let the time-homogeneous Markov chains Y and Ỹ
have the transition probabilities pii = α, pi,i+1 = 1 − α and p̃ii = α̃, p̃i,i+1 = 1 − α̃ for 1 ≤ i ≤ n − 1
and pnn = p̃nn = 1.

y1 y2
1 − α

α

y3
1 − α

α α

· · ·
1 − α yn−1

1 − α

α

yn
1 − α

1

We may interpret this as a comparison of birth processes with absorption in n. Let us first compare
the bridges from yi to y j for i ≤ j < n and k := j − i ≤ m. Condition (4.29) is

(4.32)
αm−k(1 − α)k(m
k
)
αm−k(1 − α)k

!
=

α̃m−k(1 − α̃)k(m
k
)
α̃m−k(1 − α̃)k

,

these bridges coincide. But note that for the bridge from yn−1 to yn we have

P(Y1 = yn|Y0 = yn−1,Ym = yn) =
1 − α

P(Ym = yn|Y0 = yn−1)
!
=

1 − α̃
P(Ỹm = yn|Ỹ0 = yn−1)

.

The denominator is easily computed as P(Ym = yn|Y0 = yn−1) =
∑m−1

k=0 α
k(1−α). ThusR(Y) = R(Ỹ)

if and only if α = α̃, even if most bridges coincide in this example: R(Y)∩R(Ỹ) contains all elements
Ȳ of either reciprocal class with P(Ȳm = yn) = 0.

Example 4.33. Next we consider a random walk on a circle moving in one direction: Let pii = α,
pi,i+1 = 1 − α and p̃ii = α̃, p̃i,i+1 = 1 − α̃ for 1 ≤ i ≤ n − 1 and pnn = α, pn1 = 1 − α and p̃nn = α̃,
p̃n1 = 1 − α̃.
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y1 y2
1 − α

α

y3
1 − α

α α

· · ·
1 − α yn−1

1 − α

α

yn
1 − α

α

1 − α

Both chains are following the circle y1 → y2 → · · · → yn → y1 → . . . . To compare the bridges we
have to take into account the difference between the number of states n and the number of jumps m.
If m < n we can argue as in the preceding Example 4.31 that Ỹ ∈ R(Y) for all α̃ ∈ (0, 1). But if
n ≤ m < 2n, then condition (4.29) for the probability of going from yk exactly one time around the
“circle” by taking n jumps first and then staying in yk is

P(Y1 = yk+1, . . . ,Yn−1 = yk−1,Yn = yk,Yn+1 = yk, . . . ,Ym = yk|Y0 = yk,Ym = yk)

=
αn(1 − α)m−n

m!
(n−1)!α

n(1 − α)m−n + (1 − α)m

!
=

α̃n(1 − α̃)m−n

m!
(n−1)! α̃

n(1 − α̃)m−n + (1 − α̃)m
.

Put c := n!
(m−n)! , then the above condition is equivalent to

( α
1−α )n

c( α
1−α )n + 1

=
( α̃

1−α̃ )n

c( α̃
1−α̃ )n + 1

⇔
1 − α
α

=
1 − α̃
α̃

,

which can only be the case if α = α̃.

Example 4.34. Let pi,i−1 = α, pi,i+1 = 1 − α and p̃i,i−1 = α̃, p̃i,i+1 = 1 − α̃ for some α, α̃ ∈ (0, 1)
with boundary reflection p12 = p̃12 = 1 and pn,n−1 = p̃n,n−1 = 1. This is a birth and death process
with re-insertion of an individual if the population died out and certain death of one individual if
the population has reached the number of n individuals.

y1 y2

1

α

y3

1 − α

α

· · ·

α

1 − α
yn−1

1 − α

α

yn

1 − α

1

Both chains are (asymmetric) finite random walks on a domain with reflecting boundary. We can
easily check that the reciprocal classes of Y and Ỹ do not coincide if α , α̃ using the localization
result of Corollary 4.15: Assume that n ≥ 4 and m ≥ 3, then

P(Y1 = y1,Y2 = y2|Y0 = y2,Y3 = y3) =
α(1 − α)

α(1 − α) + 2α(1 − α)2 =
1

3 − 2α
!
=

1
3 − 2α̃

,

where the denominator is computed by

P(Y0 = y2,Y3 = y3) = P(Y0 = y2,Y1 = y1,Y2 = y2,Y3 = y3)

+P(Y0 = y2,Y1 = y3,Y2 = y4,Y3 = y3)

+P(Y0 = y2,Y1 = y3,Y2 = y2,Y3 = y3).

But this necessary condition is only satisfied if α = α̃.
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5. The reciprocal classes of Brownian diffusions

In this section we present a theory of reciprocal classes of Brownian diffusions, which are
defined in Definition 5.6. The objective is to give a synopsis of results by different authors
in a uniform setting in preparation of the treatment of reciprocal classes of jump processes
in Sections 6 and 7. We are able to improve some of these results, and present a new
approach to euclidean quantum mechanics that is based on analogies to classical mechanics.
Since all processes treated in this section have continuous sample paths, we present our
results in the frame of the canonical setup on C(I,Rd), the space of Rd-valued continuous
functions on I.

In the presentation of § 5.1, § 5.2 and § 5.4 we closely follow the articles by Rœlly and
Thieullen [RT02], [RT05]. They characterized the reciprocal class of a Brownian motion
with drift by a duality formula. Their characterization is based on reciprocal invariants in
the sense of Clark [Cla90], we present his result in § 5.3.

We present two applications. In § 5.5 we introduce an optimal control approach to
determine the motion of a charged particle in an electromagnetic field. We define the
dynamics of the motion of a charged particle that is immersed in a thermal reservoir
and under the influence of an external electromagnetic field. The effective motion of the
particle is then described by the solution of a stochastic optimal control problem under
boundary constraints in the sense of Wakolbinger [Wak89] and Dai Pra [DP91]. Following
their result we provide a new interpretation of the duality formula as a stochastic Newton
equation. Our approach is closely related to Zambrini’s euclidean quantum mechanics, see
e.g. Zambrini [Zam85], but also Lévy and Krener [LK93] and Krener [Kre97].

A second application is the identification of the behavior of the reciprocal class of a
Brownian diffusion under time reversal in § 5.6. This approach by duality formula is an
alternative to the computations of Thieullen, who presented a similar result in [Thi93]. In
combination with the results from § 5.5 we see, that the dynamics of a charged particle in
a thermal reservoir are time reversible in the same sense as the deterministic dynamics of
a charged particle in an electromagnetic field.

5.1. The Brownian motion and its reciprocal class.
Throughout this paragraph P denotes a d-dimensional Wiener measure with arbitrary

initial state on C(I,Rd). We show that R(P) can be characterized as the unique class
of probability measures that satisfies a duality formula. By Theorem 3.4 only a Wiener
measure satisfies the duality formula

(5.1) E

(
F(X)

∫
I

us · dXs

)
= E

(∫
I

DsF(X) · usds
)
,

for all u ∈ Ed, F ∈ Sd. Thus this duality cannot hold for arbitrary elements of R(P).
The common feature of elements of one reciprocal class is the distribution of the bridges:

Any Q ∈ R(P) admits the disintegration (4.13) with respect to the Brownian bridges Px,y,
x, y ∈ Rd. Rœlly and Thieullen proved that the duality formula (5.1) holds for all Brownian
bridges if the class of test functions is reduced. In the sequel we will continually use the
short notation

〈u〉t :=
∫

[0,t]
usds, and 〈u〉 := 〈u〉1, for any u ∈ L1(dt).

Lemma 5.2. Let x, y ∈ Rd and Px,y be the law of the Brownian bridge from X0 = x to X1 = y.
Then the duality formula (5.1) holds under Px,y for all u ∈ Ed with 〈u〉 = 0 and F ∈ Sd.
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Proof. Let φ,ψ ∈ C∞b (Rd), then

E

(
φ(X0)ψ(X1)E

(
F(X)

∫
I

us · dXs

 X0,X1

))
= E

(
φ(X0)ψ(X1)F(X)

∫
I

us · dXs

)
= E

(
φ(X0)φ(X1)

∫
I

DsF(X) · usds
)

+ E

(
φ(X0)F(X)∇ψ(X1) ·

∫
I

usds
)
,

where the second term is equal to zero if 〈u〉 = 0. We deduce

E

(
φ(X0)ψ(X1)E

(
F(X)

∫
I

us · dXs

 X0,X1

))
= E

(
φ(X0)ψ(X1)E

(∫
I

DsF(X) · usds
 X0,X1

))
.

�

This duality formula extends naturally to all elements of R(P) and furthermore charac-
terizes the reciprocal class.

Theorem 5.3. Let X have integrable increments underQ. ThenQ ∈ R(P) if and only if the duality
formula

(5.4) EQ

(
F(X)

∫
I

us · dXs

)
= EQ

(∫
I

DsF(X) · usds
)

holds for every u ∈ Ed with 〈u〉 = 0 and F ∈ Sd.

Proof. Let Q ∈ R(P), F ∈ Sd and u ∈ Ed with 〈u〉 = 0. By the disintegration (4.13) and
Lemma 5.2 we get

EQ

(
F(X)

∫
I

us · dXs

)
=

∫
R2d
Ex,y

(
F(X)

∫
I

us · dXs

)
Q01(dxdy)

=

∫
R2d
Ex,y

(∫
I

DsF(X) · usds
)
Q01(dxdy)

= EQ

(∫
I

DsF(X) · usds
)
.

Conversely, let Q have integrable increments such that the duality formula holds. Fol-
lowing the proof of Lemma 5.2 we see that the duality formula still holds with respect to
Qx,y for all x, y such that the bridge is well defined. Take any u ∈ Ed and define

Φ(λ) := Ex,y
Q

(
exp

(
iλ

∫
I

us · dXs

))
.

Let ũ := u − 〈u〉, then ũ ∈ Ed with 〈ũ〉 = 0 and by assumption the duality formula applies.
We obtain

Φ′(λ) = iEx,y
Q

(
exp

(
iλ

∫
I

us · dXs

) ∫
I

us · dXs

)
= iEx,y

Q

(
exp

(
iλ

∫
I

us · dXs

) (∫
I

ũs · dXs + (y − x) · 〈u〉
))

= −λE
x,y
Q

(
exp

(
iλ

∫
I

us · dXs

) ∫
I

(us − 〈u〉) · usds
)

+ i(y − x) · 〈u〉Φ(λ)

=
(
i(y − x) · 〈u〉 − λ(〈|u|2〉 − |〈u〉|2)

)
Φ(λ).
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The unique solution of this ordinary differential equation with initial condition Φ(0) = 1 is

(5.5) Φ(λ) = exp
(
iλ(y − x) · 〈u〉 −

λ2

2

(
〈|u|2〉 − |〈u〉|2

))
.

By Lemma 5.2 the duality (5.4) holds also with respect to Px,y, in particular the above
computation implies

Ex,y
(
exp

(
iλ

∫
I

us · dXs

))
= exp

(
iλ(y − x) · 〈u〉 −

λ2

2

(
〈|u|2〉 − |〈u〉|2

))
= E

x,y
Q

(
exp

(
iλ

∫
I

us · dXs

))
.

This identifies (5.5) as the characteristic functional of a Brownian bridge: Px,y = Qx,y. By
the disintegration formula (4.13) we deduce Q ∈ R(P). �

In particular an arbitraryQx,y with fixed endpoint conditions and integrable increments
is the bridge of the Wiener measure Px,y if and only if the duality formula (5.4) holds for
all F ∈ Sd and u ∈ Ed with 〈u〉 = 0.

5.2. Characterization of Brownian diffusions.
We define the law of a Brownian motion with drift and in particular of a Brownian

diffusion through its semimartingale decomposition.

Definition 5.6. Let b : I×C(I,Rd)→ Rd be a predictable process such thatPb(
∫
I
|bs|1ds < ∞) =

1. Then Pb is the law of a Brownian motion with drift b

if t 7→ Xt −

∫
[0,t]

bsds is a Brownian motion under Pb.

We say that Pb is the law of a Brownian diffusion if there exists b ∈ C1,2
b (I × Rd,Rd) such that

bs = b(s,Xs).

Remark that analogue to Definitions 1.8, 1.18 or 2.11 a Brownian motion with drift is
defined up to the arbitrary initial condition. The law of a Brownian diffusion Pb is a weak
solution of the SDE

(5.7) dXt = b(t,Xt)dt + dWt, with initial condition X0 ∼ Pb,0,

where W is a Brownian motion. In the sequel of the section we will use the notation

Wt := Xt −

∫
[0,t]

b(s,Xs)ds.

The terminology of a “diffusion” is not standard in probability theory, see e.g. diffusions
as defined in the monograph by Protter [Pro04, Chapter V] and his comments. To justify
our definition, let us mention that

• The boundedness of the drift and Novikov’s condition ensure that the law of a
Brownian diffusion and a Wiener measure with same initial condition are equiva-
lent. Theorem 5.8 provides an explicit form of the density.
• Brownian diffusions are Markov processes, see Remark 5.10.
• We simplify the presentation by choosing b to be bounded with bounded deriva-

tives, even if most results hold in a more general context.
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• A Brownian diffusion has nice one-time probabilities and transition probabilities.
The densities

pb(s, x)dx := Pb(Xs ∈ dx), and pb(s, x; t, y)dy := Pb(Xt ∈ dy|Xs = x),

exist. For small ε > 0 we have

pb(., .) ∈ C1,3
b ([ε, 1] ×Rd,R+) and pb(., .; t, y) ∈ C1,3

b ([0, t − ε] ×Rd,R+) for all (t, y) ∈ I ×Rd

The Girsanov theorem is a key tool for the generalization of results presented in § 5.1 to
Brownian diffusions. The general Girsanov theorem for semimartingales may be consulted
in e.g. the monograph by Jacod and Shiryaev [JS03, Chapter III].

Theorem 5.8. Let Pb be the law of a Brownian diffusion, P a Wiener measure with the same initial
law Pb,0 = P0. Then Pb is equivalent to P and the density process defined by Pb = Gb

tP on F[0,t]
has the explicit form

(5.9) Gb
t = exp

(∫
[0,t]

b(s,Xs) · dXs −
1
2

∫
[0,t]
|b(s,Xs)|2ds

)
.

In particular Gb
t > 0 holds P-a.s. for all t ∈ I.

Using the explicit form of the density we can make sure that Brownian diffusions are
Markov processes.

Remark 5.10. By Lemma 4.4 a Brownian diffusion is a Markov process: For any t ∈ I we can
factorize

αt := exp
(∫

[0,t]
b(s,Xs) · dXs −

1
2

∫
[0,t]
|b(s,Xs)|2ds

)
βt := exp

(∫
[t,1]

b(s,Xs) · dXs −
1
2

∫
[t,1]
|b(s,Xs)|2ds

)
,

and then Pb = αtβtP, where αt is F[0,t]-measurable and βt is F[t,1]-measurable.

Using the Girsanov density (5.9) we derive a duality formula for Brownian diffusions.

Proposition 5.11. Let Pb be the law of a Brownian diffusion with drift b. Then the duality formula

Eb

(
F(X)

∫
I

us · dXs

)
= Eb

(∫
I

DsF(X) · usds
)

+Eb

F(X)


∫
I

ut · b(t,Xt)dt +

∫
I

d∑
i, j=1

ui,t

∫
[t,1]

∂ib j(s,Xs)dW j,sdt


(5.12)

holds for any F ∈ Sd and u ∈ Ed, where u = (u1, . . . ,ud)t, b = (b1, . . . , bd)t.

Proof. By Theorem 5.8 the law of a Brownian diffusion Pb is absolutely continuous with
respect to a Wiener measure P with same initial condition. The Girsanov density Gb

1
is differentiable in the sense of Definition 2.25: This is proven in the same lines as in
Proposition 2.38 since b is bounded. Take F ∈ Sd, u ∈ Ed. Since F is bounded the product
FGb

1 is differentiable which implies

(5.13) E
(
Gb

1F(X)
∫
I

us · dXs

)
= E

(
Gb

1

∫
I

DsF(X) · usds
)

+ E

(
Gb

1F(X)
∫
I

Ds log(Gb
1) · usds

)
,
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since a product formula and a chain formula hold for the Malliavin derivative, see Lemma
2.28. The last term on the right is∫

I

Ds log(Gb
1) · usds

= lim
ε→0

1
ε

(∫
I

b(t,Xt + ε〈u〉t) · (dXt + εutdt) −
∫
I

b(t,Xt) · dXt

−
1
2

(∫
I

b(t,Xt + ε〈u〉t) · b(t,Xt + ε〈u〉t)dt −
∫
I

b(t,Xt) · b(t,Xt)dt
))

= lim
ε→0

1
ε

(∫
I

(b(t,Xt + ε〈u〉t) − b(t,Xt)) · dXt + ε

∫
I

b(t,Xt + ε〈u〉t) · utdt

−
1
2

(∫
I

(b(t,Xt + ε〈u〉t) − b(t,Xt)) · b(t,Xt) + (b(t,Xt + ε〈u〉t) − b(t,Xt)) · b(t,Xt + ε〈u〉t)dt
))
,

and we may use a Taylor expansion of the drift b, which implies

= lim
ε→0

1
ε

ε
∫
I

d∑
i, j=1

∂ib j(t,Xt)〈ui〉tdX j,t + ε

∫
I

b(t,Xt) · utdt

−ε

∫
I

d∑
i, j=1

∂ib j(t,Xt)〈ui〉tb j(t,Xt)dt + O(ε2)


=

∫
I

ut · b(t,Xt)dt +

∫
I

d∑
i, j=1

ui,t

∫
[t,1]

∂ib j(s,Xs)(dX j,s − b j(s,Xs)ds)dt,

in particular we see that log Gb
1 is derivable. Inserting the derivative into (5.13) proves the

assertion. �

In [RZ91, Lemme 3] Rœlly and Zessin presented a duality formula that holds for a
Brownian motion with drift that has finite entropy with respect to a Wiener measure. They
also prove a converse: A Brownian motion with drift is the only continuous process that
satisfies the duality formula in the class of processes that have finite entropy with respect
to a Brownian motion.

We are able to characterize the law of a Brownian diffusion Pb as the unique probability
satisfying the duality formula (5.15) in the larger class of all continuous semimartingales
with integrable increments. These are the optimal assumptions in order to render the
duality formula (5.15) well defined, since it contains a stochastic integral.

Theorem 5.14. Let X be a semimartingale with integrable increments under Q and b ∈ C1,2
b (I ×

Rd,Rd). If for every u ∈ Ed and F ∈ Sd the duality formula

EQ

(
F(X)

∫
I

us · dXs

)
= EQ

(∫
I

DsF(X) · usds
)

+EQ

F(X)


∫
I

ut · b(t,Xt)dt +

∫
I

d∑
i, j=1

ui,t

∫
[t,1]

∂ib j(s,Xs−)(dX j,s − b j(s,Xs−)ds)dt


(5.15)

holds, then Q is the law of a Brownian diffusion with drift b.
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Proof. First we remark that the above duality formula is indeed well defined. In particular
the processes s → ∂ib j(s,Xs) are bounded and predictable, which renders the stochastic
integral on the right integrable with respect to Q since X has integrable increments.

We prove that W = X −
∫

[0,.] b(s,Xs)ds is a Brownian motion under EQ using the charac-
terization of a Wiener measure contained in Theorem 3.4. For this we extend the duality
formula (5.15) to functionals of the type

(5.16) F = f
(
Xt1 −

∫
[0,t1]

b(s,Xs)ds, . . . ,Xtn −

∫
[0,tn]

b(s,Xs)ds
)

= f (Wt1 , . . . ,Wtn) =: F̃(W),

with f ∈ C∞b (Rnd), {t1, . . . , tn} ∈ ∆I and n ∈ N. The functional in (5.16) is differentiable in
direction u ∈ Ed, since

F ◦ θεu − F = f
(
Xt1 + ε〈u〉t1 −

∫
[0,t1]

b(s,Xs + ε〈u〉s)ds, . . .
)
− f

(
Xt1 −

∫
[0,t1]

b(s,Xs)ds, . . .
)

=

d∑
i=1

n−1∑
j=0

∂i+ jd f
(
Xt1 −

∫
[0,t1]

b(s,Xs)ds, . . .
) ε〈ui〉t j − ε

∫
[0,t j]
∇bi(s,Xs) · 〈u〉sds

 + O(ε2),

where b = (b1, . . . , bd)t and the gradient is in direction of the space variables: ∇bi(s, x) =

(∂1bi(s, x), . . . , ∂dbi(s, x))t. Therefore me may take the L2(Q)-limit

lim
ε→0

1
ε

(
F ◦ θεu − F

)
=

∫
I

DtF · utdt(5.17)

=

d∑
i=1

n−1∑
j=0

∂i+ jd f
(
Xt1 −

∫
[0,t1]

b(s,Xs)ds, . . .
) 〈ui〉t j −

∫
[0,t j]
∇bi(s,Xs) · 〈u〉sdt

 .
Using Definition 2.18 we may write DuF̃(W) =

∫
I

DtF̃(W) · utdt for the first term.
To show that the duality formula (5.15) still holds for the functional F as defined in (5.16)

we need to approximate F by a sequence in Sd. Let (b(m))m≥1 be a sequence of smooth and
uniformly bounded functions b(m)

∈ C
1,∞
b (I × Rd,Rd) such that ||b − b(m)

||∞ → 0 and take

((s(m)
0 , s(m)

1 , . . . , s(m)
m ))m≥n+1 ⊂ ∆I a sequence of subdivisions of [0, tn] with s0 = 0 and sm = tn

such that {t1, . . . , tn} ⊂ {s1, . . . , sm} and max1≤i≤m |si − si−1|1 → 0 for m → ∞. Define Fm ∈ Sd
by

Fm(ω) := f

ω(t1) −
∑

j:s(m)
j ≤t1

b(m)(s(m)
j−1, ω(s(m)

j−1))(s(m)
j − s(m)

j−1), . . .


for m ≥ n + 1. By construction Fm(ω) → F(ω) and DtFm(ω) → DtF(ω) converge Q-a.s. By
dominated convergence (5.15) still holds for F as defined in (5.16). Inserting the derivative
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(5.17) into the duality formula (5.15) we get

EQ

(
F̃(W)

∫
I

ut · dWt

)
− EQ

F̃(W)
∫
I

d∑
i=1

ui,t

∫
[t,1]

∂ib(s,Xs) · dWsdt


= EQ

(
F̃(W)

∫
I

ut · dWt

)
− EQ

(
F̃(W)

∫
I

(∇b1(s,Xs) · 〈u〉s, . . . ,∇bd(s,Xs) · 〈u〉s)t
· dWs

)
= EQ

(∫
I

DtF · utdt
)

= EQ

(∫
I

DtF̃(W) · utdt
)
− EQ

 d∑
i=1

n−1∑
j=0

∂i+ jd f
(
Wt1 , . . .

) ∫
[0,t j]
∇bi(s,Xs) · 〈u〉sdt


= EQ

(∫
I

DtF̃(W) · utdt
)
− EQ

(∫
I

DtF̃(W) · (∇b1(t,Xt) · 〈u〉t, . . . ,∇bd(t,Xt) · 〈u〉t)tdt
)
,

where the first two equalities are a reorganization of terms in the duality formula (5.15) and
the last two equalities are a reorganization of terms using the explicit form of the derivative
of F given in (5.17). Comparing the second and the last line, we recognize the duality
formula of the Wiener measure with respect to the process W, the cylindric and smooth
functional F̃ ∈ Sd and the predictable and bounded process

s 7→ (u1,s − ∇b1(s,Xs) · 〈u〉s, . . . ,ud,s − ∇bd(s,Xs) · 〈u〉s)t, u ∈ Ed.

Using the same proof as for Lemma 2.44 we may extend the duality formula (5.15) from
u ∈ Ed to processes u : I × C(I,Rd) → R that are predictable and bounded. Let v ∈ Ed
be arbitrary, we want to find a predictable and bounded u such that the following Volterra
integral equation holds:

(5.18) us = vs + (∇b1(s,Xs), . . . ,∇bd(s,Xs))t
·

∫
[0,s]

urdr.

We may find a solution by fixed-point iteration. Let the iteration start with u(0) = 0 and
u(1) = v. The iteration converges since v and ∇bi are bounded: Indeed for any ε > 0

||(un+1
− un)1[0,ε]||∞ = ||(∇b1(s,Xs), . . . ,∇bd(s,Xs))t

· (〈un
− un−1

〉.1[0,ε])||∞
≤ εK||(u(n)

− u(n−1))1[0,ε]||∞,

where K is a global bound of the derivatives of b. Moreover the solution u is the uniform
limit of predictable processes and thus predictable. Inserting the solution u into (5.15),
we see that the duality formula (3.5) holds for the process W under Q. By Theorem 3.4
we conclude that W is a Brownian motion, and by Definition 5.6 we deduce that X is a
Brownian diffusion with drift b. �

Note that in the proof of Theorem 5.14 the boundedness of b could be replaced by weaker
assumptions, as long as the integral equation (5.18) still has a solution for every v ∈ Ed.

Example 5.19. Let b ∈ C∞b (I,Rd), such thatPb is the law of a Brownian diffusion with deterministic
drift b. Let X be a semimartingale with integrable increments underQ. By the above theoremQ = Pb
if and only if Q0 = Pb,0 and the duality formula

EQ

(
F(X)

∫
I

us · (dXs − b(t)dt)
)

= EQ

(∫
I

DsF(X) · usds
)
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holds for every F ∈ Sd and u ∈ Ed with 〈u〉 = 0. In this case the result immediately follows from
Theorem 3.4 too.

5.3. Comparison of reciprocal classes of Brownian diffusions.
In this section we present an important result by Clark [Cla90], that permits to compare

the reciprocal classes of Brownian diffusions by invariants. His result is closely connected
to the following semimartingale decomposition of h-transforms of a Brownian diffusionPb
as computed by Jamison in [Jam75], see also Föllmer [Föl88].

Lemma 5.20. Let Pb be the law of a Brownian diffusion with drift b ∈ C1,2
b (I × Rd,Rd). An

h-transform hPb is a Brownian motion with drift

(5.21) c(t,Xt) = b(t,Xt) + ∇ log h(t,Xt), where h(t, x) = Eb(h(X1)|Xt = x).

In particular h ∈ C1,2(I ×Rd,Rd) and is bounded with bounded derivatives on [0, 1 − ε] ×Rd for
arbitrary ε > 0.

Proof. The density process defined by hPb = GtPb on F[0,t] is given by Gt = Eb(h(X1)|Xt)
since Pb is Markov. In particular

(5.22) h(t, x) := Eb(h(X1)|Xt = x) =

∫
Rd

h(y)Pb(X1 ∈ dy|Xt = x) =

∫
Rd

h(y)pb(t, x; 1, y)dy,

where pb(t, x; 1, y) is the transition density of Pb. That pb(t, x; 1, y) exists, is smooth in (t, x)
and locally bounded with bounded derivative on [0, 1−ε], ε > 0, follows from Hörmander’s
theorem, see e.g. the famous probabilistic proof by Malliavin in [Mal78]. Thus h(t, x) is
smooth and h(t, x) > 0 everywhere. We want to write G1 in the form of a Doléans-Dade
exponential. By Itô’s formula

(5.23) h(t,Xt) = h(s,Xs) +

∫
[s,t]

∂th(r,Xr)dr +

∫
[s,t]
∇h(r,Xr) · dXr +

1
2

∫
[s,t]

d∑
i=1

∂2
i h(r,Xr)dr.

But note that h(t, x) is space time harmonic and thus a solution of the Kolmogoroff backward
equation

(5.24) Eb(h(t,Xt)|Xs) = h(s,Xs) ⇒ ∂th(t, x) + b(t, x) · ∇h(t, x) +
1
2

d∑
i=1

∂2
i h(t, x) = 0,

and if we insert this into (5.23) we derive the stochastic integral equation

Gt = 1 +

∫
[0,t]

Gs ∇ log h(s,Xs) · (dXs − b(s,Xs)ds).

This equation has the pathwise solution

Gt = exp
(∫

[0,t]
∇ log h(s,Xs) · (dXs − b(s,Xs)ds) −

1
2

∫
[0,t]
|∇ log h(s,Xs)|2ds

)
.

We multiply this density with Gb
t , the density of Pb with respect to the Wiener measure P

given in Theorem 5.8:

GtGb
t = exp

(∫
[0,t]

(b(s,Xs) + ∇ log h(s,Xs)) · dXs −
1
2

∫
[0,t]
|b(s,Xs) + ∇ log h(s,Xs)|2ds

)
.

Since hPb = G1Gb
1P the general Girsanov theorem implies that hPb is a Brownian motion

with drift c(t,Xt) as specified in (5.21). �
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Example 5.25. Let P0 be the law of a one-dimensional Brownian motion starting in X0 = 0 and
h(y) = y2. Then E0(h(X1)) = 1, thus the conditions of Lemma 5.20 are satisfied. Moreover

h(t, y) = E0(X2
1|Xt = y) = E0((X1 − y)2

|Xt = y) + y2 = y2 + (1 − t).

Thus hP0 is a Brownian motion with drift c(t, y) = (2y)/(y2 + (1 − t)). For t→ 1 this drift pushes
the process away from 0, which is understandable since hP0(X1 = 0) = 0. Since h-transforms are
in the reciprocal class, we see that the weak solution of the stochastic differential equation

dXt =
2Xt

X2
t + (1 − t)

dt + dWt, with X0 = 0

is in the reciprocal class of a Wiener measure.

The fact that h(t, x) is space-time harmonic can be further exploited to compare the recip-
rocal classes of different Brownian diffusions: The following characterization of reciprocal
classes was first developed by Clark in a general framework of diffusions with non-unit
diffusion coefficient, see [Cla90]. We present his proof in the context of Brownian diffusions.

Theorem 5.26. Let Pb and Pc be two Brownian diffusions. Then R(Pc) = R(Pb) if and only if

(i) the “rotational” invariants coincide: Ψ
i, j
b (t, y) = Ψ

i, j
c (t, y) where

(5.27) Ψ
i, j
b (t, y) = ∂ib j(t, y) − ∂ jbi(t, y), i, j ∈ {1, . . . , d};

(ii) the “harmonic” invariants coincide: Ξb(t, y) = Ξc(t, y) where

(5.28) Ξi
b(t, y) = ∂tbi(t, y) +

d∑
j=1

b j∂ib j(t, y) +
1
2

d∑
j=1

∂i∂ jb j(t, y), i ∈ {1, . . . , d}.

Proof. Assume that Pc is in R(Pb). Without loss of generality we let both processes start in
x ∈ Rd. Since Px

c is absolutely continuous with respect to Px
b and has the same bridges it is

an h-transform: There exists a function h : Rd
→ R+ such that Pc = hPb. By Lemma 5.20

the drift c is of the form c = b +∇ log h, where h is a space-time harmonic function. Then (i)
is equivalent to

∂i∂ j log h(t, y) − ∂ j∂i log h(t, y) = 0,

which is known as Clairaut’s theorem or Schwarz’s theorem. Assertion (ii) stems from
the fact, that h is space-time harmonic. Indeed, using the Kolmogoroff backward equation
(5.24) on h(t, y) = eψ(t,y) gives

∂tψ + b · ∇ψ +
1
2

d∑
j=1

∂2
jψ +

1
2

d∑
j=1

(∂ jψ)2 = 0.

We take the partial derivative ∂i and use ∂ jψ = c j − b j for all 1 ≤ j ≤ d:

0 = ∂t(ci − bi) +

d∑
j=1

(∂ib j(c j − b j) + b j(∂ic j − ∂ib j))

+
1
2

d∑
j=1

∂i∂ j(c j − b j) +

d∑
j=1

(c j − b j)(∂ic j − ∂ib j),

which properly arranged is (ii).
For the converse, assume thatPx

b andPx
c are Brownian diffusions with drift b respectively

c such that (i) and (ii) hold. Condition (i) implies that there exists a functionψ ∈ C1(Rd) such
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that ∇ψ(t, y) = c(t, y) − b(t, y): By the Poincaré lemma closed forms are exact on Rd, t ∈ I
being fixed. We may add to ψ(t, y) any φ ∈ C1(I) and condition (ii) still holds. The choice
of φ is specific and comes from the following considerations. Define h(t, y) := eφ(t)+ψ(t,y),
then h is a solution of the Kolmogoroff backward equation (5.24) if

(5.29) ∂tψ(t, y) +

d∑
i=1

bi(t, y)∂iψ(t, y) +
1
2

d∑
i=1

∂2
iψ(t, y) + (∂iψ(t, y))2 = −∂tφ(t).

If we derive the left side by ∂ j for 1 ≤ j ≤ d we can see with ∂ jψ = c j − b j and condition
(ii) that the left side indeed does not depend on y ∈ Rd. We may chose φ such that (5.29)
holds and moreover Ex

b(h(1,X1)) = 1. This normalization is possible, since if we insert the
Kolmogoroff backward equation satisfied by h(t, y) into the Itô-formula (5.23) we see that

h(t,Xt) = h(0, x) +

∫
[0,t]

h(s,Xs)∇ log h(s,Xs) · (dXs − b(s,Xs)ds)

= h(0, x) +

∫
[0,t]

h(s,Xs)(c(s,Xs) − b(s,Xs−)) · (dXs − b(s,Xs)ds).

Thus h(t,Xt) is integrable and can a-priori be normalized. But then Lemma 5.20 implies
that h(1,X1)Px

b is a diffusion with drift c, and by uniqueness of the associated martingale
problem we get Px

c = h(1,X1)Px
b. We have shown that the Brownian diffusion Px

c is an
h-transform of Px

b therefore a-fortiori in the reciprocal class R(Pb). �

Example 5.30. LetPb andPc be two Brownian diffusions with deterministic drifts b, c ∈ C1
b(I,Rd).

Following the “harmonic” condition (ii) we have R(Pb) = R(Pc) if and only if t 7→ b(t) − c(t) is
constant.

The invariants (5.27) and (5.28) appear in a duality formula that characterizes the recip-
rocal class of a Brownian diffusion.

5.4. Characterization of the reciprocal class R(Pb) by a duality formula.
In this paragraph we unify the results of § 5.2 and § 5.3 to present a characterization of

the reciprocal class of a Brownian diffusion by a duality formula. Let us first present a new
complementary result of technical nature concerning the definition of stochastic integrals.

Proposition 5.31. Let Pb be a Brownian diffusion, Q ∈ R(Pb) be arbitrary. Then Q is a semi-
martingale.

Proof. Take any x, y ∈ Rd, we show that Px,y
b is a semimartingale first. It is well known, that

a Brownian bridge is a Brownian motion with drift, and thus a semimartingale. Now for
any bounded φ,ψ : Rd

→ R

Eb

(
Eb( . |X0,X1)φ(X0)ψ(X1)

)
= E

(
Eb( . |X0,X1)E(Gb

|X0,X1)φ(X0)ψ(X1)
)

= E
(
E ( .Gb

|X0,X1)φ(X0)ψ(X1)
)

and thus

E
x,y
b ( . ) =

Ex,y( .Gb)
Ex,y(Gb)

.

Therefore Px,y
b � P

x,y and by Girsanov’s theorem Px,y
b is the law of a semimartingale too.

To show that an arbitrary mixture of bridges in the sense of the disintegration formula
(4.13) is still a semimartingale, we use a definition of semimartingales as introduced by
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Protter [Pro04]: We say that H : I × C(I,Rd)→ Rd is a simple integrand if it is of the form

H = H01{0} +

n∑
i=1

Hi1(Ti,Ti+1],

where 0 = T1 ≤ · · · ≤ Tn+1 < ∞ are stopping times, and Hi ∈ F[0,Ti], ∀1 ≤ i ≤ n + 1. For
any simple integrand H = H01{0} +

∑n
i=1 Hi1(Ti,Ti+1] we may define the natural real valued

integral ∫
I

Ht · dXt := H0 · X0 +

n∑
i=1

Hi · (XTi+1 − XTi).

Let (H(i))i≥1 a sequence of simple integrands converging to the simple integrand H in
the sense that sup(t,ω) |H

(i)(t, ω) − H(t, ω)|1 converges to zero for i → ∞. Then Q is a
semimartingale if any only if the integrals converge in probability:

lim
i→∞
Q (Ai(ε)) = 0, for any ε > 0, where Ai(ε) :=

{
∫
I

H(i)
t · dXs −

∫
I

Ht · dXt

1
> ε

}
.

We use the disintegration (4.13) to show that

lim
i→∞
Q(Ai(ε)) = lim

i→∞
EQ

(
Eb

(
1Ai(ε)

 X0,X1

))
= EQ

(
lim
i→∞
Eb

(
1Ai(ε)

 X0,X1

))
= 0,

where the second equation holds by bounded convergence. �

Now we prove that every process with integrable increments in the reciprocal class
R(Pb) satisfies a duality formula which is expressed in terms of the reciprocal invariants
defined in Theorem 5.26. Following the proof of Lemma 5.2 and the well definedness of
the stochastic integral by Proposition 5.31 we can drop a finite entropy assumption used
by Rœlly and Thieullen in [RT05].

Proposition 5.32. Let Q ∈ R(Pb) be such that X has integrable increments. Then the duality
formula

EQ

(
F(X)

∫
I

ut · dXt

)
= EQ

(∫
I

DtF(X) · utdt
)

−EQ

F(X)
∫
I

d∑
i=1

ui,t


∫

[t,1]

d∑
j=1

Ψ
i, j
b (s,Xs)dX j,s(5.33)

+

∫
[t,1]

Ξi
b(s,Xs) +

1
2

d∑
j=1

∂ jΨ
i, j
b (s,Xs)

 ds

 dt

 ,
holds for all F ∈ Sd and u ∈ Ed with 〈u〉 = 0.

Proof. Remark, that the above formula is indeed well defined, since Q is a semimartingale
and the characteristics are bounded integrands. We start our derivation with the duality
formula (5.15) under Pb. We exchange∫

[t,1]
∂ib j(s,Xs)dX j,s =

∫
[t,1]

Ψ
i, j
b (s,Xs)dX j,s +

∫
[t,1]

∂ jbi(s,Xs)dX j,s.
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The last term also appears in the Itô-expansion of b(t,Xt):

b(t,Xt) = b(1,X1) −
∫

[t,1]
(∂tb1(s,Xs), . . . , ∂tbd(s,Xs))tds

−

∫
[t,1]

d∑
j=1

(∂ jb1(s,Xs), . . . , ∂ jbd(s,Xs))tdX j,s

−
1
2

∫
[t,1]

d∑
j=1

(∂2
j b1(s,Xs), . . . , ∂2

j bd(s,Xs))tds.

We insert this expansion into (5.15) and recognize the reciprocal invariants defined in (5.27)
and (5.28):

Eb

F(X)


∫
I

ut · b(t,Xt)dt +

∫
I

d∑
i, j=1

ui,t

∫
[t,1]

∂ib j(s,Xs)(dX j,s − b j(s,Xs)ds)dt




= Eb

F(X)


∫
I

d∑
i=1

ui,t

bi(1,X1) −
∫

[t,1]

d∑
j=1

Ψ
i, j
b (s,Xs)dX j,s

−

∫
[t,1]

Ξi
b(s,Xs) +

1
2

d∑
j=1

∂ jΨ
i, j
b (s,Xs)

 ds

 dt


 .

As in the proof of Lemma 5.2 we apply this identity to the functional F(X)φ(X0)ψ(X1) for
F ∈ Sd and φ,ψ ∈ C∞b (Rd) and u ∈ Ed such that 〈u〉 = 0. This shows that (5.33) holds for
all bridges Px,y

b . Using the disintegration (4.13) one obtains that (5.33) is indeed true for all
Q ∈ R(Pb). �

We end this paragraph with a partial converse to the above proposition as presented by
Rœlly and Thieullen in [RT05]. For the sake of completeness we quote their result including
all the hypotheses: They characterize the elements of R(Pb) in a class of probabilities
on C(I,Rd) that satisfy regularity assumptions. In particular, they assume that Q is a
probability on C(I,Rd) such that

• Q has finite entropy with respect to a Wiener measure.
• supt∈I |Xt|1 ∈ L

1(Q).
• Conditional density: Regularity and domination.

(a) ∀0 ≤ t < u < 1, ∀(x, y) ∈ R2d, there exists a function q such that

Q(Xr ∈ dz|Xt = x,X1 = y) = q(t, x; r, z; 1, y)dz.

(b) ∀0 < r < 1, ∀(x, y) ∈ R2d, q(0, x; r, z; 1, y) > 0.
(c) ∀ε > 0, ∀(s, x) ∈ [0, 1− ε]×Rd, there exists a neighborhood V of (s, x) and a function

φV(r, z, 1, y) such that whenever ∂α denotes ∂s, ∂i or ∂2
i j for i, j ∈ {1, . . . , d} it holds:

sup(s′,x′)∈V |∂αq(s′, x′; r, z; 1, y)| ≤ φV(r, z, 1, y), and∫
[0,1−ε]

∫
Rd(1 + |z|2)φV(r, z, 1, y)(1 +

φV(r,z,1,y)
q(0,x′,r,z,1,y) )dzdr < +∞

• Integrability condition on the derivatives of the conditional density.
Let 0 ≤ s ≤ 1 − ε.
(a)

∫
[s,1−ε]

∫
Rd |∂αq(s,Xs; r, z; 1,X1)|(1 + |z|2)dzdr ∈ L1(Q), where ∂α denotes ∂s or ∂i j for

1 ≤ i, j ≤ d.
(b)

∫
[s,1−ε]

∫
Rd |∂iq(s,Xs; r, z; 1,X1)|(1 + |z|2)dzdr ∈ L2(Q).
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(c)
∫

[s,1−ε]

∫
Rd(1 + |z|2)∂αq(s,Xs,r,z,1,X1)2

q(0,x,r,z,1,X1) dzdr ∈ L1(Q), where ∂α denotes ∂s, ∂i or ∂i j for
1 ≤ i, j ≤ d.

These hypotheses exclude e.g. the bridges Px,y
b .

Theorem 5.34. Let Q be a probability measure on C(I,Rd) such that the above assumptions hold.
If for every F ∈ Sd, u ∈ Ed with 〈u〉 = 0 the duality formula (5.33) holds, thenQ is in the reciprocal
class R(Pb).

In the last two paragraphs of this section we apply and interpret this characterization
result. Let us first present a continuation of Examples 5.19 and 5.30.

Example 5.35. Let Pb be the law of a Brownian diffusion with deterministic drift b ∈ C1
b(I,Rd).

Then the above duality formula (5.33) reduces to

Eb

(
F(X)

∫
I

ut · dXt

)
= Eb

(∫
I

DtF(X) · utdt
)
− Eb

F(X)
∫
I

d∑
i=1

ui,t

∫
[t,1]

∂tbi(s)dsdt

 .
Since b(1) − b(t) =

∫
[t,1] ∂tb(s)ds, this is equivalent to the duality formula (5.4) that holds for the

process t 7→ Xt −
∫

[0,t] b(s)ds. By Theorem 5.3 the above duality characterizes the reciprocal class
R(Pb) in the class of all probabilities Q on C(I,Rd) with integrable increments.

5.5. A physical interpretation of the reciprocal invariants.
The origin, and an important inspiration for the development of the theory of reciprocal

classes, was an idea of Schrödinger [Sch32]: He remarks certain analogies between the com-
putation of transition probabilities in a reciprocal class and the probabilistic interpretation
of the wave function in quantum dynamics:

“Il s’agit d’un problème classique: problème de probabilités dans la théorie du
mouvement brownien. Mais en fin de compte, il ressortira une analogie avec la
mécanique ondulatoire, qui fut si frappante pour moi lorsque je l’eus trouvée, qu’il
m’est difficile de la croire purement accidentelle.”

Schrödinger introduces a time-symmetric formulation of diffusion problems that are usu-
ally posed in the form of Fokker-Planck equations:

“[..] on peut dire qu’aucune des deux directions du temps n’est privilégiée.”

His considerations can be summarized as follows: The motion of a particle in a thermal
reservoir in the absence of external forces is described by the law of a Brownian motion
P. He interprets this well accepted model as a special solution of a diffusion problem with
fixed endpoint distributions. If instead of the endpoint measure P01 we want to prescribe
another boundary distribution µ01 on the particle, the physical meaningful motion of the
particle will be described by the unique element of R(P) with boundary distribution µ01.
His choice of dynamics is based on a consideration on the statistics of a large number of
particles, essentially a large deviation argument, an idea made rigorous by Föllmer [Föl88].

In this paragraph we want to generalize the original considerations of Schrödinger to
particles moving in a thermal reservoir under the influence of an external electromagnetic
field in dimension d = 3. Our presentation is more formal than strict, allthough we tried to
present the results in a conclusive mathematical frame. We provide an interpretation of the
reciprocal invariants (5.27) and (5.28) of a Brownian diffusion in terms of the electric and
magnetic field in Proposition 5.71. Using this interpretation of the invariants we propose
a new stochastic formulation of Newton’s equation using the duality formula (5.33) in
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Remark 5.72. As a continuation of this idea we can show that our stochastic dynamics are
time-reversible in the same sense as the deterministic dynamics controlled by a Newton
equation, see Proposition 5.84.

Of course our model is highly idealized, we do not claim that any effective physical
behavior of diffusing particles is described by our results. The physical picture of our
model may rather serve as an analogy to the formulation of quantum mechanics, in a
sense proposed by Zambrini and other authors: The setting of a diffusing particle in
an electromagnetic field has been examined among others by Zambrini, Cruzeiro [CZ91]
and Lévy, Krener [LK93]. Both approaches are inspired by formal analogies to quantum
mechanics, but their construction leads to the same type of processes and reciprocal classes
as our construction that is purely based on analogies to classical mechanics. In particular
Lévy and Krener were able to identify the reciprocal invariants of a Brownian diffusion with
the electromagnetic field by a short-time expansion of reciprocal transition probabilities,
see also Proposition 5.76. Let us note that the concept of stochastic mechanics as introduced
by Nelson seems to lead to different kinds of processes for a similar physical problem. This
is due to his alternative definition of the velocity and acceleration of a diffusing process,
see e.g. Nelson’s monograph [Nel85, Paragraph 14].

Our results are based on a stochastic control approach under boundary restrictions
developed by Wakolbinger in [Wak89]. Let us note that a similar control approach has
been studied by Guerra, Morato in [GM83] for particles under the influence of an electric
field. Their results are based on different methods than Wakolbinger’s and do not underline
the role of the reciprocal invariants.

5.5.1. A particle in an electromagnetic field.
In this paragraph we describe the deterministic motion of a particle with unit mass and

unit charge in an electromagnetic field. There are several ways to describe such a dynamical
problem in classical mechanics. We use the formulation of Lagrangian mechanics as a
variational problem, which we then reformulate as a control problem with boundary
restrictions.

The trajectory of a particle is described by a function ω ∈ C2(I,R3), such that the

velocity: ω̇ :=
d
dt
ω, and the acceleration: ω̈ :=

d2

dt2ω

are well defined. All admissible trajectories given endpoints x, y ∈ R3 are contained in

Γ(x, y) :=
{
ω ∈ C2(I,R3) : ω(0) = x and ω(1) = y

}
.

The Lagrangian of a particle with unit mass and unit charge in an electromagnetic field is
defined by

L(ω(t), ω̇(t), t) =
1
2
|ω̇(t)|2 + ω̇(t) · A(t, ω(t)) −Φ(t, ω(t)),

where A ∈ C1,1
b (I×R3,R3) is the vector potential of the magnetic field and Φ ∈ C1,1

b (I×R3,R)
is the scalar potential of the electric field. In particular we can compute the

magnetic field: B(t, z) := (∂2A3 − ∂3A2, ∂3A1 − ∂1A3, ∂1A2 − ∂2A1)t(t, z);(5.36)

electric field: Ei(t, z) := −∂iΦ(t, z) − ∂tAi(t, z), i = 1, 2, 3.(5.37)
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The Hamiltonian action functional associated to the Lagrangian of the motion in an elec-
tromagnetic field is

(5.38) J(ω) :=
∫
I

L(ω(t), ω̇(t), t)dt =

∫
I

(1
2
|ω̇(t)|2 + ω̇(t) · A(t, ω(t)) −Φ(t, ω(t))

)
dt.

We may now state the general Hamiltonian principle of stationary action.

Definition 5.39. The effective trajectory of the particle moving from a point x ∈ R3 to y ∈ R3 in
an electromagnetic field defined in (5.36) and (5.37) is an extremal of the action functional (5.38) in
the class of all admissible trajectories ω ∈ Γ(x, y).

To state this physical problem as a deterministic control problem with boundary restric-
tions let us assume that the motion of the particle is controlled: The trajectory of a particle
is described by a function ωc ∈ C

2(I,R3) that is the solution of an ordinary differential
equation of the form

(5.40)
d
dt
ωc(t) = c(t, ωc(t)), where c ∈ C1,1

b (I ×R3,R3) is the control vector.

The control condition implies

ω̇c,i(t) = ci(t, ωc(t)), i = 1, 2, 3,(5.41)

ω̈c,i(t) = ∂tci(t, ωc(t)) +

3∑
j=1

c j(t, ωc(t))∂ jci(t, ωc(t)), i = 1, 2, 3.(5.42)

Since we want to describe the motion of the particle with given boundary conditions, we
collect all control vectors defining trajectories that have the same endpoint values x, y ∈ R3

in

(5.43) Γc(x, y) :=
{
c ∈ C1,1

b (I ×Rd,Rd) : ωc(0) = x and ω̇c(t) = c(t, ωc(t)) ⇒ ωc(1) = y
}
.

We may now state the Hamiltonian principle of stationary action as a control problem, the
boundary restriction is expressed through the restriction on the set of admissible controls
Γc(x, y).

Definition 5.44. A control vector c ∈ Γc(x, y) is called an optimal control if the trajectory ωc is an
extremal of the action (5.38) in the class of all admissible trajectories ω ∈ Γ(x, y).

We are going to see, that the effective trajectory ω ∈ C2(I,R3) is unique, see also e.g. the
introduction by Arnold [Arn78]. The optimal control is unique in the following sense.

Remark 5.45. Let c ∈ Γc(x, y) be an optimal control, then it is unique in the following sense: If
c̃ ∈ Γc(x, y) is another optimal control, then ωc = ωc̃ if ωc(0) = ωc̃(0) = x, since the minimizing
trajectory is unique.

Deriving a solution of the ensuing Lagrange equations of motion gives a sufficient
condition on a control vector c ∈ Γc(x, y) to be optimal. Thus the next result is a reformuation
of the Euler-Lagrange equations in terms of “reciprocal invariants”.

Proposition 5.46. Let x, y ∈ R3 be arbitrary boundary values. The control vector c ∈ Γc(x, y) is
optimal if it has

(i) the “rotational” invariant:
(
Ψ3,2

c (s, ωc(s)),Ψ1,3
c (s, ωc(s)),Ψ2,1

c (s, ωc(s))
)t

= B(s, ωc(s)) where

(5.47) Ψ
i, j
c (s, z) := ∂ic j(s, z) − ∂ jci(s, z), i, j = 1, 2, 3;
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(ii) the “harmonic” invariant:
(
Ξ1

c (s, ωc(s)),Ξ2
c (s, ωc(s)),Ξ3

c (s, ωc(s))
)t

= E(s, ωc(s)), where

(5.48) Ξi
c(s, z) := ∂tci(s, z) +

3∑
j=1

c j(s, z)∂ic j(s, z), i = 1, 2, 3.

Proof. This is just a reformulation of the Lagrange equations of motion. It is well known,
that an admissible path ω ∈ Γ(x, y) is a critical value of the action functional (5.38) if the
Lagrange equations of motion are satisfied:

0 =
d
dt

∂
∂ω̇i

L(ω, ω̇, t) −
∂
∂ωi

L(ω, ω̇, t), i = 1, 2, 3

⇔ 0 = ω̈i + ∂tAi +

3∑
j=1

ω̇ j∂ jAi −

3∑
j=1

ω̇ j∂iA j + ∂iΦ, i = 1, 2, 3.

For a controlled trajectory ωc with c ∈ Γc(x, y) we insert (5.41) and (5.42) to get

∂tci +
∑3

j=1 c j∂ jci = −∂tAi −

3∑
j=1

c j∂ jAi +

3∑
j=1

c j∂iA j − ∂iΦ, i = 1, 2, 3,

⇔ ∂tci +
∑3

j=1 c j∂ic j =

3∑
j=1

c j

(
∂ic j − ∂ jci + ∂iA j − ∂ jAi

)
− ∂tAi − ∂iΦ, i = 1, 2, 3,

where all functions are evaluated in (s, ωc(s)). A term-by-term comparison with the defini-
tion of the electromagnetic field gives the result. �

By assumptions on the electromagnetic potentials the Lagrange equations have a unique
solution, and since the action functional is bounded from below we may presume that this
solution is even the unique minimizer of the action functional.

In analogy to Theorem 5.26, the solutions of the deterministic optimal control problem
for given electromagnetic potentials A and Φ and varying boundary conditions x, y ∈ R3

are characterized as elements of the same “reciprocal class”. Condition (i) on the invariant
in the above Proposition 5.46 states that Ψ

i, j
c (s, ωc(s)) = Ψ

i, j
−A(s, ωc(s)) for i, j = 1, 2, 3. We

would like to formulate condition (ii) in a similar way, to get an identity of the harmonic
invariant Ξi

c to the harmonic invariant of a reference control b ∈ C1,1
b (I × R3,R3). This

reference control cannot be −A, since generally Ξi
−A(t, z) , −∂tAi(t, z) − ∂iΦ(t, z) would not

imply the Lagrange equation of motion for the controlled trajectory. Instead we use the
following ansatz

b(t, z) = −A(t, z) + ∇ψ(t, z),

where ψ ∈ C1,2(I × R3,R3), since in this case Ψ
i, j
c (s, ωc(s)) = Ψ

i, j
b (s, ωc(s)), i, j = 1, 2, 3, that

is, condition (i) still holds. The Lagrange equation of motion

Ξi
c(s, ωc(s)) =

3∑
j=1

c j

(
Ψ

i, j
c (s, ωc(s)) −Ψ

i, j
b (s, ωc(s))

)
− ∂tAi(s, ωc(s)) − ∂iΦ(s, ωc(s)), i = 1, 2, 3

holds if we find ψ such that

Ξi
c(s, ωc(s)) = Ξi

b(s, ωc(s)) = −∂tAi(s, ωc(s)) − ∂iΦ(s, ωc(s)), i = 1, 2, 3.
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This is implied if ψ is the solution of the partial differential equation

−∂tAi − ∂iΦ = −∂tAi + ∂t∂iψ +

3∑
j=1

(−A j + ∂ jψ)∂i(−A j + ∂ jψ)

⇔ 0 = ∂i

∂tψ +
1
2

3∑
j=1

(−A j + ∂ jψ)2 + Φ


globally on (s, y) ∈ I × R3. Since Φ is defined up to a constant we may assume that the
term in the bracket is already zero. Now we reformulate Proposition 5.46 using a reference
control vector.

Proposition 5.49. Assume that there exists a solution ψ ∈ C1,2(I × R3,R3) of the non-linear
partial differential equation

(5.50) 0 = ∂tψ +
1
2

3∑
j=1

(−A j + ∂ jψ)2 + Φ,

such that b(t, z) := −A(t, z) + ∇ψ(t, z) ∈ C1,1
b (I × R3,R3) is regular enough. Then c ∈ Γc(x, y) is

optimal if

(i) the “rotational” invariants coincide: Ψ
i, j
c (s, ωc(s)) = Ψ

i, j
b (s, ωc(s)), i, j = 1, 2, 3;

(ii) the “harmonic” invariants coincide: Ξ
i, j
c (s, ωc(s)) = Ξ

i, j
b (s, ωc(s)), i, j = 1, 2, 3.

Of course the conditions in Proposition 5.46 and 5.49 are only sufficient and do not
guarantee the existence of a controlled trajectory ωc that minimizes (5.38). The existence
depends on the solvability of the non-linear partial differential equation (5.50) and the
regularity of its solution.

Before treating the same dynamical problem for a particle in a thermal reservoir, let us
make some remarks for later reference on other physical aspects of the motion of a particle
in an electromagnetic field. The first remark is on the famous time-reversibility of classical
mechanics.

Remark 5.51. Let c ∈ Γc(x, y) be an optimal control vector for the electromagnetic potentials
A ∈ C1,1

b (I ×R3,R3) and Φ ∈ C1,1
b (I ×R3,R). The time reversed trajectory is defined by

ω̂c(t) := ωc(1 − t).

The first question of time-reversibility is, wether ω̂c is a physical meaningful trajectory. The second
question concerns the electromagnetic potential governing the trajectory. We can answer both
questions by observing that d

dt ω̂c(t) = −c(1− t, ω̂c(t)) = ĉ(t, ω̂c(t)) with ĉ(t, y) := −c(1− t, y), since
this implies (

Ψ3,2
ĉ (s, ω̂c(s)),Ψ1,3

ĉ (s, ω̂c(s)),Ψ2,1
ĉ (s, ω̂c(s))

)t
= −B(1 − s, ω̂c(s)),(

Ξ1
ĉ (s, ω̂c(s)),Ξ2

ĉ (s, ω̂c(s)),Ξ3
ĉ (s, ω̂c(s))

)t
= E(1 − s, ω̂c(s)).

By Proposition 5.46 ω̂c is the trajectory of a particle in the same electromagnetic field with reversed
boundary conditions.

Now we give a comment on the problem of finding an extremal contained in Definition
5.44 and an equivalent formulation used in the random setting of the next paragraph.
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Remark 5.52. The minimization of the action functional (5.38) in the class is equivalent to the
minimization of the functional

1
2

∫
I

|c(s, ωc(s))|2ds +

∫
I

A(s, ωc(s)) · c(s, ωc(s))ds −
∫
I

Φ(s, ωc(s))ds

=

∫
I

c(s, ωc(s)) · ω̇c(s)ds −
1
2

∫
I

|c(s, ωc(s))|2ds +

∫
I

A(s, ωc(s)) · ω̇c(s)ds −
∫
I

Φ(s, ωc(s))ds,

subject to c ∈ Γc(x, y). A similar minimization problem will appear in the stochastic setting of the
next paragraph, where it has the interpretation of an entropy minimization problem.

The last remark is a reformulation of Newton’s equation of motion for a particle in an
electromagnetic field. This “integral” formulation provides an analogue to the duality
formula of Brownian diffusions in the next paragraph.

Remark 5.53. Given the electromagnetic field (5.37) and (5.36), Newton’s equation of motion for a
particle of unit mass and unit charge is an equality between the acceleration of the particle and the
Lorentz force

(5.54) ω̈(t) = E(t, ω(t)) + ω̇ × B(t, ω(t)), were ω ∈ Γ(x, y),

and we used the cross product of vectors x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)t for any
x, y ∈ R3. We use a simple integration by parts to give a formulation that does not need the second
derivative of ω, thus admitting classes of admissible trajectories that are larger than Γ(x, y). Take
any u ∈ E3 with 〈u〉 = 0, then (5.54) implies∫

I

〈u〉t · ω̈(t)dt =

∫
I

〈u〉t · (E(t, ω(t) + ω̇(t) × B(t, ω(t))) dt

⇔ −

∫
I

utω̇(t)dt =

∫
I

〈u〉t · E(t, ω(t))dt +

∫
I

(〈u〉t × B(t, ω(t))) · ω̇(t)dt,(5.55)

where the equation holds due to integration by parts. Boundary terms vanish because of the loop
condition on u.

5.5.2. A particle in an electromagnetic field immersed in a thermal reservoir.
In this paragraph we describe the motion of a particle with unit mass and unit charge

immersed in a thermal reservoir and under the influence of an external electromagnetic
field. We start with the description of the stochastic Lagrangian mechanics as a variational
problem, then reformulate these as a stochastic control problem. A sufficient condition to
be the solution of the stochastic control problem can be stated using the invariants of the
reciprocal class of a Brownian diffusion.

In the deterministic case we have chosen the class of admissible trajectories such that we
where able to define a velocity and an acceleration. Here we model the motion of the particle
by a Brownian motion with drift, since the drift can be interpreted as velocity. Instead of
endpoints x, y ∈ R3 of a deterministic trajectory we prescribe an endpoint distribution
(X0,X1) ∼ µ01 on R6. For technical reasons we will assume that the endpoint distribution
and the drift are regular enough: The set of admissible distributions of the particle is

Γ(µ01) =
{
Pb such that X is a Brownian motion with drift b, Pb,01 = µ01 and Pb � P

}
.

In particular we exclude bridges. The identification of the velocity of the particle with
the predictable drift b under the law Pb allows us to introduce the canonical stochastic
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Lagrangian of the particle diffusing in an electromagnetic field by

L(Xt, bt, t) :=
1
2
|bt|

2 + bt · A(t,Xt) −Φ(t,Xt).

We define a stochastic Hamiltonian action functional by

(5.56) J(Pb) = Eb

(∫
I

L(Xt, bt, t)dt
)

= Eb

(∫
I

(1
2
|bt|

2 + bt · A(t,Xt) −Φ(t,Xt)
)

dt
)
,

for any Pb ∈ Γ(µ01). We may now state the general Hamiltonian principle of least action in
the random setup. This definition is inspired by Definition 5.39, but similar minimization
problems have been associated to stochastic problems of motion before, see e.g. Yasue
[Yas81].

Definition 5.57. The effective distribution of the particle moving between the endpoint distribution
µ01 in the electromagnetic field defined in (5.36) and (5.37) minimizes the stochastic action functional
(5.56) in the class of all admissible distributions Pb ∈ Γ(µ01).

This minimization problem does not always have a solution, since Γ(µ01) may be empty
or the action may be infinite for all distributions in Γ(µ01). As for the deterministic case we
will not deal with the question of the existence of a solution.

Let us state this physical problem as a stochastic control problem. Instead of introducing
a control vector c we assume that the particle moves according to the law of a Brownian
diffusion. As the control vector specified the trajectory by (5.40), the drift specifies the law
of a Brownian diffusion Pc as the weak solution of the stochastic differential equation

(5.58) dXt = c(t,Xt)dt + dWt, where c ∈ C1,2
b (I ×Rd,Rd) is the drift.

Here W denotes a Brownian motion. The drift could be called the stochastic control vector.
We collect all drifts that agree with the prescribed endpoint distribution

(5.59) Γc(µ01) :=
{
c ∈ C1,2

b (I ×R3,R3) : such that Pc,01 = µ01

}
.

Clearly
{
Pc : c ∈ Γc(µ01)

}
⊂ Γ(µ01). The stochastic optimal control problem is defined as

follows.

Definition 5.60. The drift c ∈ Γc(µ01) is called an optimal drift under the boundary constraints
(X0,X1) ∼ µ01 if it minimizes the stochastic action functional (5.56) in the class of admissible
distributions Γ(µ01).

We present a solution of the minimization problem of Definition 5.57 for a particular
case: Assume that the particle starts to move from a fixed point x ∈ R3. All admissible
trajectories are absolutely continuous with respect to Px, therefore the final distribution
µ1(dy) = µ01({x} × dy) has at least to be absolutely continuous with respect to the Lebesgue-
measure. Thus we look at the motion of the particle with boundary distribution µ01 =

µ0 ⊗ µ1, where

(5.61) µ0 = δ{x} and µ1(dy) = ρ1(y)dy where ρ1(y) > 0 for all y ∈ R3.

The form of µ01 as a product measure is due to the deterministic initial condition. Let us
note, that if µ01 is of the form (5.61), then the set of admissible distributions is non-empty
since h(X1)Px

∈ Γ(µ01) with h(z) = (dµ1/dPx
1)(z), see also Example 4.19.

Using an approach by Wakolbinger [Wak89], we now compute the effective distribution
of the particle. This approach is based on the identification of a relative entropy with the
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stochastic action functional. Given two distributions P andQwithQ� P on C(I,R3), the
entropy of Qwith respect to P is defined through

EQ(log G), where Q = GP.

In particular if P is a Wiener measure, and Q = Pb ∈ Γ(µ01), then the relative entropy is
given by

Ex
b(log Gb) = Ex

b

(∫
I

bt · dXt −
1
2

∫
I

|bt|
2dt

)
.

Proposition 5.62. Let µ01 be as in (5.61). Then the effective distribution of the particle is a
Brownian motion with drift b(t,Xt) = −A(t,Xt) + ∇ log h(t,Xt), where

(5.63) h(t, y) := Ex
−A

(
h(X1) exp

(∫
[t,1]

(
Φ(s,Xs) +

1
2
|A(s,Xs)|2

)
dt

) Xt = y
)
,

and we used

(5.64) h(y) := ρ1(y)(2π)
3
2 e
|y−x|2

2

[
Ex,y

(
exp

(
−

∫
I

A(t,Xt) · dXt +

∫
I

Φ(t,Xt)dt
))]−1

.

Proof. We introduce an auxiliary measure on the canonical space: If Px is the Wiener
measure starting in x ∈ R3 put

(5.65) Q̃x := GA,ΦPx with GA,Φ := exp
(
−

∫
I

A(t,Xt) · dXt +

∫
I

Φ(t,Xt)dt
)
.

Note that Q̃x is not necessarily a probability measure. By assumption every Px
b ∈ Γ(µ01) is

absolutely continuous with respect to Px with Girsanov density

(5.66) Gb = exp
(∫
I

bt · dXt −
1
2

∫
I

|bt|
2dt

)
.

Assume that there exists an element Pb ∈ Γ(µ01) such that J(Pb) is finite. Since

Ex
b

(∫
I

bt · (dXt − btdt)
)

= 0 and Ex
b

(∫
I

A(t,Xt) · (dXt − btdt)
)

= 0,

we can rewrite the action functional

J(Pb) = Ex
b

(∫
I

(1
2
|bt|

2 + bt · A(t,Xt) −Φ(t,Xt)
)

dt
)

= Ex
b

(∫
I

bt · dXt −
1
2

∫
I

|bt|
2dt +

∫
I

A(t,Xt) · dXt −

∫
I

Φ(t,Xt)dt
)
.

Note that this minimization problem is similar to the one in the deterministic setting
proposed in Remark 5.52. Here we encounter the densities given in (5.65) and (5.66), which
implies the entropy formulation

J(Pb) = Ex
b

(
log Gb

− log GA,Φ
)

= Ex
b

(
log

(dPx
b

dPx
dPx

dQ̃x

))
= Ex

b

(
log

(dPx
b

dQ̃x

))
.

We use the multiplication formula

dPx
b

dQ̃x
(ω) =

dPx
b,1

dQ̃x
1

(ω(1))
dPx,ω(1)

b

dQ̃x,ω(1)
(ω),
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but the first term must be nothing else than the function h(y) defined in (5.64): Indeed we
know Px

b,1(dy) = ρ1(y)dy and the endpoint distribution of Q̃x is

Q̃x(1Q(X1)) = Ex(1Q(X1)GA,Φ) =
1

(2π)
3
2

∫
R3
1Q(y)e−

|x−y|2

2 Ex,y(GA,Φ)dy.

If we insert this into the above representation of the action functional

(5.67) J(Pb) = Eb
(
log h(X1)

)
+ Ex0

b

log

dPx0,X1
b

dQ̃x0,X1


 .

The second term is zero if and only ifPx,y
b = Q̃x,y holdPx

b,1-a.s. Since the h-transform h(X1)Q̃x

would satisfy this condition, we only have to show that h(X1)Q̃x is a Brownian motion with
drift in which case h(X1)Q̃x

∈ Γ(µ01) is the unique minimizer of the entropy, and thus of the
action functional (5.59). We can already remark, that following Lemma 4.4 the h-transform
h(X1)Q̃x has the Markov property.

Define h(t, y) as in (5.64), by the Feynman-Kac formula h is a solution of the partial
differential equation

(5.68) ∂th +

3∑
j=1

A j∂ jh +
1
2

3∑
j=1

∂2
j h +

1
2

3∑
j=1

A2
j + Φ

 h = 0,

see e.g. the monograph by Karatzas and Shreve [KS91]. We use this to rewrite the Itô-
formula

log h(1,X1) = log h(0,X0)+
∫
I

∂t log h(t,Xt)dt+
∫
I

∇ log h(t,Xt)·dXt+
1
2

∫
I

3∑
j=1

∂2
j log h(t,Xt)dt,

which implies

h(X1)Q̃x = exp
(
log h(1,X1) − log h(0,X0)

)
Q̃x

= exp
(∫
I

∇ log h(t,Xt) · dXt −
1
2

∫
I

|∇ log h(t,Xt)|2dt

+

∫
I

(h(t,Xt))−1

1
2

3∑
j=1

∂2
j h(t,Xt) + ∂th(t,Xt)

 dt

 GA,ΦPx

= exp
(∫
I

(
−A + ∇ log h

)
(t,Xt) · dXt −

1
2

∫
I

(−A + ∇ log h)(t,Xt)
2 dt

)
Px,

and we recognize h(X1)Q̃x as the law of a Brownian motion with drift b(t,Xt) = −A(t,Xt) +

∇ log h(t,Xt). �

As mentioned above the Proposition, the original idea of identifying the stochastic
Hamiltonian action functional to a relative entropy is due to Wakolbinger [Wak89]. A
similar optimal control problem, in the case Φ ≡ −1

2
∑3

i=1 Ai, has been solved by Dai Pra
[DP91] using a logarithmic transformation approach.

In the above Proposition we showed that for given electromagnetic potentials A and
Φ the effective distribution of the particle is given by h(X1)Q̃x. If h > 0 on R3, then
every processes g(X1)Q̃x with Ex

Q̃
(g(X1)) = 1 is given by (g(X1)/h(X1))h(X1)Q̃x, and thus

in the reciprocal class of the Brownian motion with drift h(X1)Q̃x. Therefore the effective
distribution of a particle in a thermal reservoir given electromagnetic potentials A and Φ is
characterized as an element of the reciprocal class of h(X1)Q̃x.
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We use this fact, to combine the above result with Theorem 5.26 on the reciprocal
invariants and state a necessary condition on the drift c ∈ Γc(µ01) to be optimal using the
invariants of a reference drift b ∈ C1,2

b (I ×R3,R3) in the reciprocal class of h(X1)Q̃x.

Corollary 5.69. Assume that there exists a solution ψ ∈ C1,3(I×R3,R3) of the non-linear partial
differential equation

(5.70) 0 = ∂tψ +
1
2

(
−A j + ∂ jψ

)2
+

1
2

3∑
j=1

∂2
jψ + Φ,

with endpoint condition Ex(eψ(1,X1)GA,Φ) = 1 such that b(t, y) := −A(t, y) + ∇ψ(t, y) ∈ C1,2
b (I ×

R3,R3) is regular enough. Then the drift c ∈ Γc(µ01) is optimal if and only if

(i) the rotational invariants coincide: Ψ
i, j
c (s, y) = Ψ

i, j
b (s, y), i = 1, 2, 3;

(ii) the harmonic invariants coincide: Ξi
c(s, y) = Ξi

b(s, y), i = 1, 2, 3.

Proof. Define h(t, y) = eψ(t,y), then h is solution of the Feynman-Kac partial differential
equation (5.68). By the proof of Proposition 5.62 we have Px

b = h(1,X1)Q̃x and h(1, .) > 0
identically by definition.

Let Px
c ∈ Γ(µ01) such that conditions (i) and (ii) hold. By Theorem 5.26 Px

c is in the
reciprocal class of Px

b and thus of the form Pc = h̃(X1)Px
b. Therefore Pc is an h-transform of

the auxiliary measure Q̃x and with Proposition 5.62 we deduce that c is an optimal drift.
If on the other hand c is the optimal drift we may apply the proof of Proposition 5.62 to

see that Pc is in the reciprocal class of Pb and by Theorem 5.26 the reciprocal invariants of
the two Brownian diffusions coincide. �

We can reformulate the condition of equality of invariants using the electromagnetic
fields B and E as defined in (5.37) and (5.36). This provides an interesting physical in-
terpretation of the reciprocal invariants. We note also, that this development is precisely
analogue to the deterministic one, see Proposition 5.46.

Proposition 5.71. The drift c ∈ Γc(µ01) is optimal if it has

(i) the rotational invariant:
(
Ψ3,2

c (s, y),Ψ1,3
c (s, y),Ψ2,1

c (s, y)
)t

= B(s, y);

(ii) the harmonic invariant:
(
Ξ1

c (s, y),Ξ2
c (s, y),Ξ3

c (s, y)
)t

= E(s, y).

Proof. By condition (i) there exists a ψ ∈ C1,3
b (I×R3,R) such that c(t, y) = −A(t, y) +∇ψ(t, y)

(closed forms are exact in R3). Then condition (ii) states that

Ξi
c = −∂tAi + ∂t∂iψ +

3∑
j=1

(−A j + ∂ jψ)∂i(−A j + ∂ jψ) +
1
2

3∑
j=1

∂i∂ j(−A j + ∂ jψ) = −∂tAi − ∂iΦ.

Since conditions (i) and (ii) are invariant under electromagnetic gauge, we may assume the
Coulomb-gauge

∑3
j=1 ∂ jA j = 0 holds. This implies

0 = ∂i

∂tψ +
1
2

3∑
j=1

(A j + ∂ jψ)2 +
1
2

3∑
j=1

∂2
jψ + Φ

 .
We proceed as in the proof of Theorem 5.26 to find a function φ ∈ C1(I) such that the right
normalization condition Ex(eψ(1,X1)GA,Φ) = 1 holds. Thus Px

c is an h-transform of Q̃x and by
Proposition 5.62 the drift c is optimal. �
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Let us introduce a reformulation of the duality formula (5.33) using the above interpre-
tation of rotational and harmonic invariants.

Remark 5.72. Let us exchange the Itô integral in the duality formula (5.33) by a Fisk-Stratonovich
integral. With respect to the law of a Brownian diffusion Pb that is∫

[t,1]
Ψ

i, j
b (s,Xs) ◦ dX j,r =

∫
[t,1]

Ψ
i, j
b (s,Xs)dX j,s +

1
2

∫
[t,1]

∂ jΨ
i, j
b (s,Xs)ds,

for 1 ≤ i, j ≤ 3. Assume that the drift c ∈ Γc(µ01) is optimal and let b ∈ C1,2
b (I×R3,R3) be defined

as in Corollary 5.69. Then the duality formula

Ex
c

(
F(X)

∫
I

ut ◦ dXt

)
= Ex

c

(∫
I

DtF(X) · utdt
)

−Ex
c

F(X)
∫
I

3∑
i=1

ui,t


∫

[t,1]

3∑
j=1

Ψ
i, j
b (s,Xs) ◦ dX j,s +

∫
[t,1]

Ξi
b(s,Xs)ds

 dt

 ,(5.73)

holds for all F ∈ S3 and u ∈ E3 with 〈u〉 = 0. But identifying the characteristics and the
electromagnetic field this is equivalent to

Ex
c

(∫
I

DtF(X) · utdt
)

= Ex
c

(
F(X)

(∫
I

ut ◦ dXt +

∫
I

〈u〉t × B(t,Xt) ◦ dXt +

∫
I

〈u〉t · E(t,Xt)dt
))
,(5.74)

where we used the cross product x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)t for any x, y ∈ R3.
Take any t ∈ I and chose F ∈ S3 such that F is F[0,t] measurable and u ∈ E3 such that u = u1(t,1].
Using the computation of the proof of Lemma 2.44 for the predictable process Fu, the above equation
implies

(5.75) Ex
c

(
−

∫
I

ut ◦ dXt

F[0,t]

)
= Ex

c

(∫
I

〈u〉t × B(t,Xt) ◦ dXt +

∫
I

〈u〉t · E(t,Xt)dt
F[0,t]

)
.

By analogy we can identify the duality formula (5.74) with the formulation of Newton’s equation
in Remark 5.53.

Theorem 5.34 may thus be interpreted as a criterion of uniqueness of the solution to the
stochastic Newton equation (5.74).

Before considering the time-reversal of the motion of the diffusion particle, we want to
point out a remarkable result by Krener [Kre97]. He showed that the invariants from the
reciprocal class of a Brownian diffusion appear in a short-time expansion. By Proposition
5.71 this implies that we can locally detect the electric and magnetic field.

Proposition 5.76. Let Q be any process in the reciprocal class of a Brownian diffusion Pb. Then
for small ε > 0, δ > 0 the expansion

EQ

(
Xi,t−ε − 2Xi,t + Xi,t+ε

Xt−ε + Xt+ε

2
= xo,

Xt+ε − Xt−ε

2
= δx

)
= Ξi

b(t, xo)ε2 +

3∑
j=1

Ψ
i, j
b (t, xo) (εδx j) + O((ε ∨ δ)3)(5.77)

= Ei(t, xo)ε2 + (x × B(t, xo))i εδ + O((ε ∨ δ)3)

holds for any t ∈ (0, 1), xo, x ∈ Rd.
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We will only give the sketch of a proof using the duality formula (5.33), for the proof of
this and similar results we refer to Krener [Kre97, Theorem 2.1]. Let us note, that the above
short-time expansion may be interpreted as a second derivative of Xt in direction x, since
the condition is equivalent to Xt−ε = xo − δx and Xt+ε = xo + δx, whereas

Xt−ε − 2Xt + Xt+ε = (Xt+ε − Xt) − (Xt − Xt−ε).

Sketch of a proof. By Corollary 4.15 the identity Q( . |Xt−ε = xo − δx,Xt+ε = xo + δx) =

Pb( . |Xt−ε = xo−δx,Xt+ε = xo +δx) holds onF[t−ε,t+ε]. It is therefore sufficient to prove (5.77)
for under Pb.

Let φ,ψ ∈ C∞b (Rd). For the derivation of the conditional density on the left side of (5.77)
we have to examine

(5.78) Eb

(
φ(Xt+ε − Xt−ε)ψ(Xt−ε + Xt+ε)

(∫
[t,t+ε]

dXi,s −

∫
[t−ε,t]

dXi,s

))
.

Define the functionals F(X) = φ(Xt+ε − Xt−ε) and G(X) = ψ(Xt−ε + Xt+ε). By (2.18) the
derivative of FG is

Di,s(FG)(X) = ∂iφ(Xt+ε − Xt−ε)ψ(Xt−ε + Xt+ε)1[t−ε,t+ε](s)

+φ(Xt+ε − Xt−ε)∂iψ(Xt−ε + Xt+ε)1[0,t+ε](s).(5.79)

Since 〈1[t,t+ε] − 1[t−ε,t]〉 = 0 we can apply duality formula (5.73) to (5.78) and get

Eb

(
F(X)G(X)

(∫
[t,t+ε]

dXi,s −

∫
[t−ε,t]

dXi,s

))
= Eb

(∫
I

Di,s(FG)(X)(1[t,t+ε](s) − 1[t−ε,t](s))ds
)

+Eb

F(X)G(X)
∫
I

(1[t,t+ε](s) − 1[t−ε,t](s))


∫

[s,1]

d∑
j=1

Ψ
i, j
b (r,Xr) ◦ dX j,r +

∫
[s,1]

Ξi
b(r,Xr)dr

 ds

 .
The first term is zero by (5.79). In the second term we change the order of integration to get

Eb

(
F(X)G(X)

(∫
[t,t+ε]

dXi,s −

∫
[t−ε,t]

dXi,s

))

= Eb

F(X)G(X)


∫
I

d∑
j=1

Ψ
i, j
b (s,Xs)〈1[t,t+ε] − 1[t−ε,t]〉s ◦ dX j,s

+

∫
I

Ξi
b(s,Xs)〈1[t,t+ε] − 1[t−ε,t]〉sds

))
.

The rest of the proof is a Taylor expansion around (t, xo) of the invariants an a careful
treatment of the stochastic integral. �

Using a similar short-time expansion Lévy and Krener [LK93] where able to identify
the reciprocal invariants with the electromagnetic field. We have been able to give this
identification in Proposition 5.71 using an optimal control approach.

5.6. Time reversal of Brownian diffusions.
The time-reversed canonical process is defined by

(5.80) X̂t := X1−t, t ∈ I.

The limit from the left has to appear here, since we are working on the space C(I,Rd), even
if the trajectories of X are a.s. continuous with respect to the reference measures we use in
this paragraph. If Q is any probability on C(I,Rd), we denote by Q̂ := Q ◦ X̂−1 the image
of Q under time-reversal. Clearly Q̂ is a probability on C(I,Rd) too.
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Lemma 5.81. The Markov and reciprocal property are stable under time-reversal.

Proof. Let Q be a distribution on C(I,Rd) having the Markov property. Take any t ∈ I and
F,G ∈ Sd such that F(X) = f (Xt1 , . . . ,Xtn) is F[0,t]-measurable and G(X) = g(Xs1 , . . . ,Xsm) is
F[t,1]-measurable. Remark that EQ̂ (F(X)|Xt) = EQ(F(X̂)|X̂t) since

Q̂( . |Xt ∈ Q) =
Q̂( . ∩ {Xt ∈ Q})
Q̂(Xt ∈ Q)

=
Q( . ◦ X̂−1

∩ {X̂t ∈ Q})
Q(X̂t ∈ Q)

= Q( . ◦X̂−1
|X̂t ∈ Q), for Q ∈ B(Rd).

Then

EQ̂ (F(X)G(X)|Xt) = EQ
(
F(X̂)G(X̂)

 X̂t
)

= EQ
(

f (X1−t1 , . . . , f (X1−tn))g(X1−s1 , . . . ,X1−sm)
 X1−t

)
= EQ

(
F(X̂)

 X̂t
)
EQ

(
G(X̂)

 X̂t
)

= EQ̂ (F(X)|Xt)EQ̂ (G(X)|Xt) ,

which is the Markov property of Q̂.
Now assume that Q has the reciprocal property. Take any s, t ∈ I, s < t and F,G ∈ Sd

such that F(X) is F[0,s]∪[t,1]-measurable and G(X) is F[s,t]-measurable. Then the above
computation for the Markov property can be applied, but for the conditioning that is on
(Xs,Xt) now. �

In particular time reversed Brownian diffusions still have the Markov property. Nu-
merous authors have been interested in the question, whether the diffusion property is
preserved under time reversal too. Let us quote the following result by Haussmann,
Pardoux [HP86].

Proposition 5.82. Let Pb be a Brownian diffusion, then the image of Pb under time-reversal is a
Brownian motion with drift

(5.83) b̂(t,Xt) = −b(1 − t,Xt) + ∇ log pb(1 − t,Xt).

In other words: P̂b = Pb̂, wherePb̂ is a Brownian motion with drift b̂ and initial condition
Pb̂,0 = Pb,1. If a Brownian diffusion Px

b with pinned initial condition is reversed, the
backward process will have a very singular drift when nearing the endpoint sincePb̂,1 = δ{x}
in this case. Different initial conditions may lead to densities pb(t, x) that have bounded
logarithmic derivatives.

Assume that there exists an initial condition Pb,0 such that b̂ ∈ C1,2
b (I × Rd,Rd).

In particular assume that Ψ
i, j
b̂

and Ξi
b̂

are the invariants of the reciprocal class of a
Brownian diffusion.

In [Thi93, Proposition 4.5] Thieullen identified the reciprocal class of the time-reversed
diffusionPb̂ using the explicit form (5.83) of the drift and the Kolmogoroff forward equation
satisfied by pb. We present a different proof, to show that this result is connected with the
duality formula (5.33) that is characteristic for the reciprocal class.

Proposition 5.84. Let Q be an element of R(Pb) such that X has integrable increments. Assume
that the image of Q under time-reversal Q̂ := Q ◦ X̂−1 satisfies the hypotheses of Theorem 5.34.
Then Q̂ is an element of the reciprocal class R(Pb̂) with invariants

Ψ
i, j
b̂

(t, x) = −Ψ
i, j
b (1 − t, x), and Ξi

b̂
(t, x) = Ξi

b(1 − t, x), for (t, x) ∈ I ×Rd and i, j ∈ {1, . . . , d}.
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Proof. We present a proof using the characterization of the reciprocal class of a diffusion
by the duality formula (5.33). Take an arbitrary F(X) = f (Xt1 , . . . ,Xtn) ∈ Sd and u =∑m

i=1 ui1(si,si+1] ∈ Ed with 〈u〉 = 0. Without loss of generality we may assume that n = m and
{t1, . . . , tn} = {s1, . . . , sn}. Then

EQ

(
F(X̂)

∫
I

ut · dX̂t

)
= EQ

 f (X1−t1 , . . . ,X1−tn)
n−1∑
i=1

ui · (X1−ti+1 − X1−ti)


= EQ

(
F̂(X)

∫
I

ût · dXt

)
,

where we define F̂(X) = f (X1−t1 , . . . ,X1−tn) ∈ Sd and û = −
∑n−1

i=1 ui1(1−ti+1,1−ti] ∈ Ed with
〈û〉 = 0. Since Q is in the reciprocal class of Pb we can apply (5.33):

EQ

(
F̂(X)

∫
I

ût · dXt

)
= EQ

(∫
I

DtF̂(X) · ûtdt
)

+EQ

F̂(X)
∫
I

d∑
i=1

ûi,t


∫

[t,1]

d∑
j=1

Ψ
i, j
b (s,Xs)dX j,s

+

∫
[t,1]

Ξi
b(s,Xs) +

1
2

d∑
j=1

∂ jΨ
i, j
b (s,Xs)

 ds

 dt

 .
The first term on the right side can be rewritten as

EQ

(∫
I

DtF̂(X) · ûtdt
)

= EQ

 n∑
i=1

∫
[0,1−ti]

∂(i−1)d+. f (X1−t1 , . . . ,X1−tn) · ûsds


= EQ

 n∑
i=1

∂(i−1)d+. f (X̂t1 , . . . , X̂tn) ·
i−1∑
j=1

u j(t j+1 − t j)

 = EQ

(∫
I

DtF(X̂) · utdt
)
.

As for the second term on the right side, we remark that F̂(X) = F(X̂) under the integration
by Q. Let us first treat the non-stochastic integrals:

EQ

F̂(X)
∫
I

ûi,t

∫
[t,1]

Ξi
b(s,Xs) +

1
2

d∑
j=1

∂ jΨ
i, j
b (s,Xs)

 dsdt


= EQ

F(X̂)
∫
I

Ξi
b(s,Xs) +

1
2

d∑
j=1

∂ jΨ
i, j
b (s,Xs)

 〈ûi〉sds


= EQ

F(X̂)
∫
I

Ξi
b(1 − s,X1−s) +

1
2

d∑
j=1

∂ jΨ
i, j
b (1 − s,X1−s)

 〈ûi〉1−sds

 ,
and using the relation 〈û〉1−s = −

∫
[s,1] urdr = 〈u〉s gives

= EQ

F(X̂)
∫
I

Ξi
b(1 − s, X̂s) +

1
2

d∑
j=1

∂ jΨ
i, j
b (1 − s, X̂s)

 〈ui〉sds


= EQ

F(X̂)
∫
I

ui,t

∫
[t,1]

Ξi
b(1 − s, X̂s) +

1
2

d∑
j=1

∂ jΨ
i, j
b (1 − s, X̂s)

 dsdt

 .



67

In the last term we have to rewrite a stochastic Itô integral:

EQ

F̂(X)
∫
I

ûi,t

∫
[t,1]

d∑
j=1

Ψ
i, j
b (s,Xs)dX j,sdt

 = EQ

F(X̂)
∫
I

d∑
j=1

Ψ
i, j
b (s,Xs)〈ûi〉sdX j,s

 .
We have to check the behavior of the Itô-integral under time-reversal. With {0, 1/m, . . . , (m−
1)/m, 1} =: {s0, . . . , sm} ∈ ∆I we define the sequence of equipartition subdivisions of I. We
expand the stochastic integral∫

I

Ψ
i, j
b (s,Xs)〈ûi〉sdX j,s = lim

m→∞

m∑
k=0

Ψ
i, j
b (sk,Xsk)〈ûi〉sk(X j,sk+1 − X j,sk),

by a Taylor expansion of Ψ
i, j
b (t, x) in the j’th space coordinate

m∑
k=0

Ψ
i, j
b (sk,Xsk)〈ûi〉sk(X j,sk+1 − X j,sk)

=

m+1∑
k=1

Ψ
i, j
b (1 − sk,X1−sk)〈ûi〉1−sk(X j,1−sk−1 − X j,1−sk)

= −

m+1∑
k=1

Ψ
i, j
b (1 − sk, X̂sk)〈ûi〉1−sk(X̂ j,sk − X̂ j,sk−1)

= −

m∑
k=0

Ψ
i, j
b (1 − sk, X̂sk)〈ûi〉1−sk(X̂ j,sk+1 − X̂ j,sk)

−

m∑
k=0

∂ jΨ
i, j
b (1 − sk, X̂sk)〈ûi〉1−sk(X̂ j,sk+1 − X̂ j,sk)

2 + R(m).

The last term is bounded from above by K(X̂sk+1 − X̂sk)
2 maxl |X̂sl+1 − X̂sl | for some K > 0

and therefore converges to 0 in the L1(Q) limit m → ∞. The other terms converge to the
backward Itô stochastic integral plus a correction term, thus∫

I

Ψ
i, j
b (s,Xs)〈ûi〉sdX j,s = −

∫
I

Ψ
i, j
b (1 − s, X̂s)〈ûi〉1−sdX̂ j,s −

∫
I

∂ jΨ
i, j
b (1 − s, X̂s)〈ûi〉1−sds

= −

∫
I

Ψ
i, j
b (1 − s, X̂s)〈ui〉sdX̂ j,s −

∫
I

∂ jΨ
i, j
b (1 − s, X̂s)〈ui〉sds.

This proves

EQ

F̂(X)
∫
I

d∑
i=1

ûi,t

∫
[t,1]

d∑
j=1

Ψ
i, j
b (s,Xs)dX j,sdt


= −EQ

F(X̂)
∫
I

ui,t


∫

[t,1]

d∑
j=1

Ψ
i, j
b (1 − s, X̂s)dX̂ j,s +

∫
[t,1]

d∑
j=1

∂ jΨ
i, j
b (1 − s, X̂s)ds

 dt

 .
Therefore we have shown, that (5.33) holds under Q̂ with respect to the claimed charac-
teristics. An application of the characterization in Theorem 5.34 ends the proof, since the
same duality holds with respect toPb̂, and by assumption Ψ

i, j
b̂

and Ξi
b̂

are the characteristics
of the reciprocal class of a Brownian diffusion. �

The situation is especially time-symmetric if the drift b is deterministic.
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Example 5.85. The reciprocal class of P̂b = Pb̂ is in general different than the reciprocal class of
the diffusion with drift b̃(t, x) := −b(1 − t, x). In particular

Ψb̃(t, x) = Ψb̂(t, x),

but

Ξi
b̃
(t, x) = ∂tbi(1 − t, x) +

d∑
j=1

b j(1 − t, x)∂ib j(1 − t, x) −
1
2

d∑
j=1

∂i∂ jb j(1 − t, x)

, ∂tbi(1 − t, x) +

d∑
j=1

b j(1 − t, x)∂ib j(1 − t, x) +
1
2

d∑
j=1

∂i∂ jb j(1 − t, x)

= Ξi
b̂
(t, x).

If on the other hand b ∈ C1
b(I,Rd) and Pb is the law of a Brownian diffusion with deterministic

drift b, then the reciprocal invariants coincide in the sense that Ψ
i, j
b (1 − t) = Ψ

i, j
b̂

(t) = 0 and
Ξi

b(1 − t) = Ξi
b̂
(t).

Let us return to the physical interpretation of § 5.5.

Remark 5.86. In dimension d = 3 we may use the interpretation of the reciprocal invariants as
electric and magnetic field. The behavior of a diffusion particle that is immersed in a thermal reservoir
and under the influence of an external electromagnetic field under time reversal may be loosely
describes as follows. IfQ describes the motion of a particle in an electromagnetic field given by E(t, x)
and B(t, x) and boundary conditionsµ01, then Q̂ is the motion of a particle in an electromagnetic field
given by E(1− t, x) and −B(1− t, x) with boundary conditions Q̂01(dxdy) = µ01(dydx). Comparing
this to Remark 5.51 on the time reversal of the deterministic motion, we see that the stochastic
dynamics are reversible in the same sense as the deterministic dynamics.
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6. The reciprocal classes of unit jump processes

The canonical space of unit jump processes J1(I), as defined in (6.1), is the subspace
of D(I) that consists of counting processes. A typical unit jump process is the Poisson
process, whose law is supported by J1(I).

In [CP90] Carlen and Pardoux introduced a Malliavin calculus for the Poisson process
based on a derivative of its jump times. In particular they derive a duality formula for the
Poisson process that contains a “true” derivative operator in the sense that a chain and a
product formula are satisfied.

We derive similar duality formulae satisfied for Markov unit jump processes, which
leads to our main result in Theorem 6.69: In this section we obtain a new characterization
of the reciprocal classes of Markov unit jump processes as the unique class of processes
satisfying a certain duality formula. This characterization is preceded by a study of the
bridges of Markov unit jump processes, for which we point out the existence of reciprocal
invariants presented in Theorem 6.58. We apply the characterization result to an optimal
control problem and the time-reversal of unit jump processes.

The section is organized as follows. In the first paragraph we give an introduction to unit
jump processes, see also the essential results of stochastic calculus of pure jump processes
in the Appendix. Paragraph 6.2 is devoted to the definition of the derivation operator of
Carlen and Pardoux that acts on jump-times.

In Paragraph 6.3 we study the Poisson process and its reciprocal class. We present a
duality formula satisfied by the Poisson process in Proposition 6.22. Moreover we show
that a Poisson process is the unique unit jump process that satisfies this duality formula.
Our first new result is the extension of this characterization to the bridges of a Poisson
process: By a loop-constraint on the class of test functions we prove that the reciprocal
class of a Poisson process is completely determined as the set of probability measures on
J1(I) that satisfies a duality formula.

This approach is extended to Markov processes on J1(I). In § 6.4 we introduce the
setting of “nice” unit jump processes. These processes are Markov and admit a regular
jump intensity given in Definition 6.46. In Theorem 6.58 we specify a characterizing
reciprocal invariant for them: Two nice unit jump processes belong to the same reciprocal
class if and only if they have the same invariant. Our main result is Theorem 6.69 in § 6.6.
The reciprocal class of a nice unit jump process is then characterized via a duality formula
that contains the reciprocal invariant.

We present two applications of this new characterization. In § 6.7 we introduce an opti-
mal control problem for unit jump processes. The solutions of such a problem are contained
in the reciprocal class of a reference nice unit jump process, thus they are characterized by
a duality formula.

We study the time reversal of unit jump processes in § 6.8. This subject has been ad-
dressed before by Elliott and Tsoi [ET90]. They use the duality formula satisfied by a
Poisson process to compute the intensities of time reversed processes, an approach in-
spired by the treatment of time-reversed Brownian motions with drift by Föllmer [Föl86].
Our approach is different and leads to different results. In particular we compute the
intensity of a time-reversed nice unit jump process and characterize the behavior of the
reciprocal class of a nice unit jump process under time reversal.

6.1. Unit jump processes.
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Throughout this section we consider real valued càdlàg processes that have jumps of
unit size 1 and are constant in between the jumps. Instead of working with general càdlàg
functions it is natural to focus on the canonical space of unit jump paths

(6.1) J1(I) :=

ω = x +

m∑
i=1

1[ti,1], x ∈ R, {t1, . . . , tm} ∈ ∆I, m ∈N

 .
In particular J1(I) ⊂ D(I) and we use the canonical setup induced by the space of càdlàg
functions:

• The canonical unit jump process X : J1(I)→ J1(I) is the identity;
• Fτ := σ(Xs, s ∈ τ) for every subset τ ⊂ I.

We identify ω ∈ J1(I) with the tuple containing the initial condition and the jump-times:
The spaces J1(I) and R × ∆I are isomorphic through the identification

J1(I) 3 ω = x +

m∑
i=1

1[ti,1] ↔ (x, {t1, . . . , tm}) ∈ R × ∆I.

The integer random variable that counts the total number of jumps is denoted by η :=
X1 − X0, in particular η((x, {t1, . . . , tm})) = m. Let T1,T2, . . . be the consecutive jump-times
of X defined by T0 = 0, Ti(ω) = Ti((x, {t1, . . . , tm})) = ti for 1 ≤ i ≤ m and Ti(ω) := ∞ if i > m,
where∞may be interpreted as abstract cemetery time. The knowledge of the initial value
X0 and the jump-times is equivalent to the information given by the canonical unit jump
process.

Lemma 6.2. Let t ∈ I be arbitrary, then

(6.3) F[0,t] = σ (X0,T1 ∧ t,T2 ∧ t, . . . ) ,

where t ∧∞ = t.

Proof. Denote byG[0,t] the σ-field on the right side of (6.3). By definitionF[0,t] = σ (Xs, s ≤ t).
In order to prove F[0,t] ⊂ G[0,t] we show that every Xs is G[0,t] measurable if s ≤ t. But

Xs = X0 +

∞∑
i=1

1{Ti≤s},

and X0 as well as the events {Ti ≤ s} are G[0,t]-measurable for any i ∈ N. For the reverse
inclusion G[0,t] ⊂ F[0,t] we have to show that X0 as well as (Ti ∧ t) for i ∈ N are F[0,t]-
measurable. For X0 this is immediate, as for the jump-times we have to use the fact that
∆Xs = Xs −Xs− is F[0,t]-measurable for any s ≤ t and the jump-times may be defined as e.g.
T1 = inf{s > 0 : ∆Xs = 1}. �

Let us point out, that our setup of unit jump processes is more regular than similar setups
of point processes on the line, see e.g. the monograph by Brémaud [Bré81].

Remark 6.4. Usually a point process on the line is defined by a sequence (Si)i≥1 of non-negative
random variables, which through Ti = S1 + · · · + Si define the jump-times of a point process. We
avoid the following irregularities:

• There is no immediate jump: T1(ω) > 0, ∀ω ∈ J1(I).
• There are no simultaneous jumps: Ti(ω) < Ti+1(ω), ∀1 ≤ i ≤ η − 1, ∀ω ∈ J1(I).
• There is no accumulation of jumps: η(ω) < ∞ for every trajectory ω ∈ J1(I).
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If we would allow Ti = Ti+1, then the trajectory X could have jumps of size 2 or more. An
accumulation of jumps could lead to an “explosion” of the trajectory, which in turn would no longer
be càdlàg. For the sake of examining the reciprocal classes, and thus the bridges, of unit jump
processes it is natural to assume that no explosion of the trajectory takes place, since we will have to
condition the processes on finite endpoint values.

Following the above remark, the canonical process X is a semimartingale with respect to
any probability Q on J1(I). In the Appendix we give a brief introduction to the stochastic
calculus of pure jump semimartingales, see also Remark 7.3. In particular there exists a
predictable process A : I × J1(I)→ R of locally bounded variation such that

(6.5) X − X0 − A is a local martingale with respect to Q.

We will call dA the intensity of the unit jump process under Q.

Remark 6.6. Any probability Q on J1(I) can be decomposed into

(6.7) Q( . ) =

∫
R
Qx( . )Q0(dx),

where Qx( . ) = Q( . |X0 = x) as defined in Section 4. Clearly Qx(Xt ∈ . )� δ{x} ∗ (
∑
∞

m=0 δ{m}), and
with the above decomposition we deduce Q(Xt ∈ . ) � Q0 ∗ (

∑
∞

m=0 δ{m}) for any t ∈ I. We define
the density of the one-time projection by

Q(Xt ∈ dy) =: q(t, y)

Q0 ∗

 ∞∑
m=0

δ{m}


 (dy).

In the caseQ0 = δ{x} we have q(t, y) = Q
(
Xt = y

)
whenever y−x ∈N. The transition probabilities

are defined in a similar fashion by

q(s, x; t, y) := Q
(
Xt = y|Xs = x

)
for s < t, y − x ∈N.

Clearly q(t, y) =
∫
R

q(0, x; t, y)Q0(dx). Most of our results concerning the reciprocal classes of
unit jump processes are first proven for Qx with x ∈ R arbitrary and then extended by the
decomposition (6.7).

In § 1.2 we presented a first definition of a Poisson process on the space D(I) with
intensity one. The space of unit jump processes J1(I) is large enough to admit a Poisson
process with arbitrary initial condition. In this section a Poisson process will play the role
of reference processes, similar to the role of a Wiener measure in Section 5.

Using Watanabe’s characterization we can identify a Poisson process by its intensity.
Remark that we use the term Poisson process always for a Poisson process with intensity
one.

Lemma 6.8. The probabilityP on J1(I) is the law of a Poisson process if and only if t 7→ Xt−X0− t
is a martingale.

Proof. First assume that X is a Poisson process with respect to P. By Proposition 1.21 the
duality formula

E

(
F(X)

∫
I

usdXs

)
= E

(∫
I

F(X + 1[s,1])usds
)

holds for any F(X) = f (Xt1 , . . . ,Xtn) ∈ S and u =
∑m−1

i=1 ui1(si,si+1] ∈ E. If F is F[0,s]-measurable
and u = 1(s,t] for some s < t this implies

E ((Xt − Xs)F) = E (F)(t − s) ⇒ E
(
Xt − Xs | F[0,s]

)
= t − s,
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which is the martingale property.
If on the other hand Xt − X0 − t is a martingale we may define the process

Yγt := exp
(
iγ(Xt − X0) − t(eiγ

− 1)
)
, γ ∈ R,

which is the solution of the Doléans-Dade stochastic differential equation

Yγt = 1 +

∫
[0,t]

(
eiγ
− 1

)
Yγs−(dXt − dt),

since X only has jumps of unit size. Thus Yγ is a local martingale, and since Yγ is bounded
we get E (Yγt ) = 1: The characteristic functional of X coincides with that of a Poisson
process. �

In the sense of (6.5) a Poisson process has intensity dt. Throughout Section 6 we denote
by P the law of a Poisson process.

6.2. Derivative operator for functionals of unit jump processes.
In § 5.1 we restricted the path perturbation θεu(ω) = ω + ε〈u〉. to directions u ∈ Ed with

〈u〉 =
∫
I

utdt = 0. These perturbations do not influence the final state of the path X1◦θεu = X1,
an essential factor in the derivation of the duality formula (5.33) that characterized the
reciprocal class of the Wiener measure.

In the unit jump context the perturbation θ̄εv̄(ω′, ω) = ω + Yεv̄(ω′) as defined in (2.32) is
a random addition of jumps of size one. This addition of jumps will influence the final
state X1 ◦ θ̄εv̄ = X1 + Yεv̄

1 , regardless of the direction of perturbation v̄ ∈ Ē. For the study
of the reciprocal class of a Poisson process, we therefore have to introduce a different
perturbation.

6.2.1. Definition and properties of the jump-time derivative.
We follow an idea of perturbation of the jump-times that was introduced independently

by Carlen, Pardoux [CP90] and Elliott, Tsoi [ET93].

Definition 6.9. Given a bounded, measurable u : I → R and small ε ≥ 0 we define the perturbation

πεu : J1(I)→ J1(I), (x, {t1, . . . , tm}) 7→ (x, {t1 + ε〈u〉t1 , . . . , tm + ε〈u〉tm} ∩ I).

Let Q be any probability on J1(I). A functional F ∈ L2(Q) is called differentiable in direction u if
the limit

(6.10) DuF := − lim
ε→0

1
ε

(
F ◦ πεu − F

)
exists in L2(Q). If F is differentiable in all directions u ∈ E, we denote by DF = (DtF)t∈I ∈

L2(dt ⊗Q) the unique process such that

DuF =

∫
I

DtFutdt = 〈DF,u〉 holds Q-a.s. for every u ∈ E.

Note that the perturbation is well defined for ε small enough, since −1 < εut for all t ∈ I
implies that the mapping t 7→ t + ε〈u〉t is strictly monotone. We defined a true derivative
operator in the following sense.

Lemma 6.11. The standard rules of differential calculus apply:
• Let F,G and FG be differentiable in direction u, then the product rule holds:

Du(FG) = GDuF + FDuG.
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• Let F be differentiable in direction u, φ ∈ C∞b (R), then φ(F) is differentiable in direction u
and the chain rule holds:

Du(φ(F)) = φ′(F)DuF.

Proof. Let us first proof the product rule: For F and G given in the statement we get

−Du(FG) = lim
ε→0

1
ε

(
(F ◦ πεu)(G ◦ πεu) − FG

)
= G lim

ε→0

1
ε

(
F ◦ πεu − F

)
+ F lim

ε→0

1
ε

(
G ◦ πεu − G

)
+ lim
ε→0

1
ε

(
F ◦ πεu − F

) (
G ◦ πεu − G

)
.

The last term converges to zero by the Cauchy-Schwarz inequality:

Q

((1
ε

(
F ◦ πεu − F

) (
G ◦ πεu − G

))2)
≤ Q

((1
ε

(F ◦ πεu − F)
)2) 1

2

Q
((

G ◦ πεu − G
)2
) 1

2 .

As for the proof of the chain rule, we just have to use the Taylor expansion of φ

1
ε

(
φ(F ◦ πεu) − φ(F)

)
= φ′(F)

1
ε

(F ◦ πεu − F) +
1
ε

(
(F ◦ πε − F)2

O(1)
)
∧ K,

for some K > 0. Then the second term converges to zero. �

6.2.2. Fundamental examples and counterexamples of derivability.
By Lemma 6.2 the knowledge of the jump-times and initial condition is equivalent to the

knowledge of the canonical process X. Instead of cylindric functionals F(X) = f (Xt1 , . . . ,Xtn)
of the canonical process, it is natural in the context of unit jump processes to consider
functionals of the jump-times:

SJ1 :=
{
F : J1(I)→ R, F((x, {t1, . . . , tm})) = f (x, t1, . . . , tn∧m, 1, . . . ), f ∈ C∞b (R × In), n ∈N

}
.

For F ∈ SJ1 we have F(X) = f (X0,T1 ∧ 1, . . . ,Tn ∧ 1) under the convention ∞ ∧ 1 = 1. We
use the shorthand F(X) = f∧1(X0,T1, . . . ,Tn) := f (X0,T1 ∧ 1, . . . ,Tn ∧ 1) ∈ SJ1 .

Proposition 6.12. LetQ be an arbitrary probability on the space of unit jump paths J1(I). Then all
functionals F(X) = f∧1(X0,T1, . . . ,Tn) ∈ SJ1 are differentiable in direction of any bounded function
u : I → R. The derivative is given byDuF(X) =

∫
I
DtF(X) utdt with

DtF(ω) = DtF((x, {t1, . . . , tm})) := −
m∧n∑
i=1

∂1+i f (x, t1, . . . , tn∧m, 1, . . . )1[0,ti](t).

Proof. Let F(X) = f∧1(X0,T1, . . . ,Tn) ∈ SJ1 and a bounded u : I → R be arbitrary. By
definition of the perturbation

F(X) ◦ πεu = f∧1(X0,T1 + ε〈u〉T1 , . . . ,Tn + ε〈u〉Tn),

where Ti + ε〈u〉Ti := ∞ if Ti = ∞ already. We use the Taylor expansion to get

−
1
ε

(
F(X) ◦ πεu − F(X)

)
= −

η∧n∑
i=1

∂1+i f∧1(X0,T1, . . . ,Tn)〈u〉Ti + O(ε).

Then dominated convergence gives the L2(Q)-limit. �

Unfortunately it is fairly easy to find functionals that are not differentiable. The following
example explains why functionals of the type F(X) = f (Xt1 , . . . ,Xtn) ∈ S are in general not
differentiable.
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Example 6.13. Let P be the law of a Poisson process. Take F = Xt ∈ L2(P) for some fixed t ∈ I
and chose u ∈ E such that u ≥ 0 on I and 〈u〉t > 0. We define the time-inversion related to the
perturbation πεu by

(6.14)
∫

[0,τεu(t)]
(1 + εus)ds = t.

Then τεu : I → [0, τεu(1)] is a deterministic function and (τεu)−1(t) = t + ε〈u〉t. The perturbed
functional is

F ◦ πεu = Xτεu(t),

since by u ≥ 0 and 〈u〉t > 0 we have τεu(t) < t and τεu(t) → t if ε → 0. Since X is stochastically
continuous under P we get

− lim
ε→0

1
ε

(Xτεu(t) − Xt) = 0 holds P-a.s.

Thus if a derivative of Xt in direction u in the sense of Definition 6.9 exists, it has to be zero: The
L2(P)-convergence of the perturbed functional Xτεu(t) would imply the almost sure convergence of a
subsequence to the L2(P)-limit. But since the almost sure limit exists and is zero, the L2(P)-limit
needs to be zero too. But since t − τεu(t) = ε〈u〉τεu(t) we get

E

((1
ε

(Xt − Xτεu(t)) − 0
)2)

=
1
ε2

∞∑
k=0

k2e−ε〈u〉τεu(t)
(ε〈u〉τεu(t))k

k!
=

1
ε2

(
ε2
〈u〉2τεu(t) + ε〈u〉τεu(t)

)
,

which diverges for ε→ 0. Thus Xt is not differentiable in direction u if 〈u〉t > 0.

In the next example we present a class of jump-time functionals that are not generally
differentiable.

Example 6.15. Given a sequence ( f j) j≥0 of functions f j ∈ C
∞

b (R × I j) we define

(6.16) F(ω) = F((x, {t1, . . . , tm})) :=
∞∑
j=0

f j(x, t1, . . . , t j)1{ j=m}.

In the canonical form such functionals are conveniently given by F(X) = fη(X0,T1, . . . ,Tη). Using
an alternating sequence of ( f j) j≥0 we present a specific example of such functionals that is not
differentiable with respect to the bridge of a Poisson process. Take f2 j ≡ 1 and f2 j+1 ≡ 0 for j ∈ N
and u ≡ 1 ∈ E, then

1
ε

F(X ◦ πεu) − F(X)
 =

1
ε

(1η◦πεu=η−1 + 1η◦πεu=η−3 + . . . ),

and with respect to a Poisson bridge P0,1( . ) = P( . |X0 = 0,X1 = 1) the a.s. limit of the above is
zero since P0,1(T1 = 1) = 0. Remark that τεu(t) = t/(1 + ε) for u ≡ 1. We use P0,1(η = 1) = 1 to
compute

E0,1
((1
ε

(F(X ◦ πεu) − F(X)) − 0
)2) 1

2

=
1
ε
P0,1(η ◦ πεu = 0)

1
2

=
1
ε
P0,1(Xτεu(1) = 0)

1
2

=
1
ε

(
P(Xτεu(1) = 0,X1 = 1|X0 = 0)/P(X1 = 1|X0 = 0)

) 1
2

=
1
ε

√
ε

√
1 + ε

,
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which diverges for ε → 0. We conclude that functionals of the form (6.16) are not in general
differentiable in the sense of Definition 6.9.

In what follows, we are in particular interested in the differentiability of functionals of
the stochastic integral type. Let us remark that the stochastic integral over the canonical
unit jump process is always well defined as the finite sum∫

I

usdXs :=
η∑

i=1

u(Ti) for any measurable u : I × J1(I)→ R.

We define the compensated integral

(6.17) δ(u) :=
∫
I

us(dXs − ds), u : I × J1(I)→ R predictable, u(., ω) ∈ L1(dt), ∀ω ∈ J1(I).

It will be the dual operator of the derivative operatorD with respect to a Poisson process.
In Example 6.13 we have seen that δ(1[0,t]) = Xt − X0 − t is not differentiable with respect
to the law P of a Poisson process. In the last two examples we develop conditions that
guarantee differentiability for the compensated integrals δ(u).

Example 6.18. Let Q be an arbitrary probability on J1(I), v ∈ C1
b(I) be deterministic and the

total number of jumps η ∈ L2(Q) be square integrable. Then the functional δ(v) is differentiable in
direction of every u ∈ E with 〈u〉 = 0.

Proof. We know that

δ(v) =

η∑
i=1

v(Ti) −
∫
I

vsds, and δ(v) ◦ πεu =

η◦πεu∑
i=1

v(Ti + ε〈u〉Ti) −
∫
I

vsds.

Under the assumption 〈u〉 = 0 we have

t + ε〈u〉t = t − ε
∫

[t,1]
usds ≤ t + εK(1 − t) ≤ 1, ∀t ∈ I,

if εK < 1, where K > 0 is a global bound for the absolute value of u. Therefore η ◦ πεu = η
identically on J1(I) for small ε > 0, and we can apply the differentiability of v ∈ C1

b(I) to
see that

(6.19) lim
ε→0

1
ε

(
δ(v) ◦ πεu − δ(v)

)
=

η∑
i=1

v′(Ti)〈u〉Ti holds Q-a.s.

Since the increment of X is square-integrable and v′. 〈u〉. is bounded we can apply dominated
convergence to get the L2(Q)-convergence. �

In particular we have seen that the derivative of δ(v) in direction u ∈ E with 〈u〉 = 0 is
given by (6.19). We define the process

(6.20) Dδ(v) = (Dtδ(v))t∈I, withDtδ(v) = −

η∑
i=1

v′(Ti)1[0,Ti](t),

even if δ(v) is not differentiable in directions of bounded u with 〈u〉 , 0. An additional
assumption on v will allow differentiation in every direction.

Example 6.21. Let Q be a probability on J1(I) such that η ∈ L2(Q) and v ∈ C1
c (I) in the sense

that v = 0 in a neighborhood of t = 0 and t = 1. Then the functional δ(v) is differentiable in every
direction u ∈ E with respect to Q.
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Proof. By assumption there exists a constant δ > 0 such that vt = 0 for all t ∈ [2δ, 1 − 2δ]c.
Define η1−δ := X1−δ − X0 as the number of jumps up to time t = 1 − δ. Then δ(v) =∑η1−δ

i=1 v(Ti) − 〈v〉, and

EQ


1
ε

η1−δ∑
i=1

v(Ti + ε〈u〉Ti) −
η1−δ∑
i=1

v(Ti)

 − η1−δ∑
i=1

v′(Ti)〈u〉Ti


2

1
2

≤ sup
t∈I

{
v(t + ε〈u〉t) − v(t)

ε
− v′(t)〈u〉t

}
Q((X1−δ − X0)2)

1
2 → 0, for ε→ 0.

Furthermore if ε is small enough such that ε|〈u〉1−2δ| < δ and ε|〈u〉1−δ| < δ, then

η1−δ∑
i=1

v(Ti + ε〈u〉Ti) =

η1−δ◦πεu∑
i=1

v(Ti + ε〈u〉Ti),

which in combination with the above implies the result. �

We define the derivative ofDδ(v) of δ(v) as given in Example 6.21 by (6.20).

6.3. The Poisson process and its reciprocal class.
In the first part of this paragraph we prove a duality formula for a Poisson process that

includes the derivative operator introduced in Definition 6.9 on the one hand, and the
compensated integral (6.17) on the other hand. We can prove that Poisson processes are
the only unit jump processes satisfying this formula, a characterization result that uses
a different duality formula as the one given in Proposition 1.21. In § 6.3.3 we obtain a
new characterization of the reciprocal class of a Poisson process. This characterization is
achieved under a loop condition on the test functions in the duality formula.

6.3.1. Characterization of the Poisson process by a duality formula.
The integral operator (6.17) and the derivative (6.10) are dual operators in the following

sense.

Proposition 6.22. Let X be a Poisson process under P. Then the duality formula

(6.23) E (Fδ(u)) = E (DuF)

holds for any u ∈ L2(dt) and F ∈ L2(P) that is differentiable.

Proof. For arbitrary u ∈ E we define the stochastic exponential process Gε as the unique
solution of the stochastic integral equation

Gε
t = 1 + ε

∫
[0,t]

Gε
s−usd(Xs − s).

Let us first show that Xε := X ◦ πεu is a Poisson process with respect to the probability
Pε := Gε

1P on J1(I). Girsanov’s theorem implies that X has intensity (1+εut)dt with respect
to Pε. Take any s < t ∈ I then

Eε(Xε
t − Xε

s |X
ε
r , r ≤ s) = Eε(Xτεu(t) − Xτεu(s)|F[0,τεu(s)])

= τεu(t) + ε〈u〉τεu(t) − τ
ε
u(s) − ε〈u〉τεu(s)

= t − s,



77

where τεu was defined in (6.14). Therefore t 7→ Xε
t −X0 − t is a martingale with respect to Pε

and its proper filtration. By Lemma 6.8 the law of Xε with respect to Pε is that of a Poisson
process. We deduce the identity

(6.24)
1
ε
E

(
F ◦ πεu(Gε

1 − 1)
)

= −
1
ε
E

(
F ◦ πεu − F

)
,

for any differentiable F ∈ L2(P) since E (F ◦ πεuGε) = E (F). In the limit ε → 0 this is the
duality formula: The right side converges to DuF by definition of the derivative. The
convergence of the left side follows from Gronwall’s lemma and the L2(P) isometry of the
compensated Poisson integral, which imply

E ((Gε
t − 1)2)

1
2 ≤ εK

(
1 +

∫
[0,t]
E ((Gε

s− − 1)2)
1
2 ds

)
≤ εKeεKt.

where ||u||∞ ≤ K. This permits us to compute

E

((1
ε

(Gε
1 − 1) − δ(u)

)2) 1
2

≤ K
∫

[0,1]
E ((Gε

t− − 1)2)
1
2 dt ≤ εK2eεK.

The first inequality implies that

1
ε

(F ◦ πεu − F)(Gε
1 − 1)→ 0 in L1(P),

since F ◦ πεu → F in L2(P). The second inequality implies that 1
ε (Gε

1 − 1) → δ(u) in L2(P)
and since F ∈ L2(P)

1
ε

F ◦ πεu(Gε
1 − 1) =

1
ε

(F ◦ πεu − F)(Gε
1 − 1) +

1
ε

F(Gε
1 − 1)→ Fδ(u) in L1(P).

The extension of the test functions to u ∈ L2(dt) follows by a density argument. �

The duality formula (6.23) holds in particular for F ∈ SJ1 and u ∈ E. This will be enough
to characterize the distribution of a Poisson process on the space of unit jump functions.

The following theorem is fundamental to us since it is a first step to the characterization
of the reciprocal class of a Poisson process. We give one complete proof and outline
another one. In the first proof, we show that the duality formula “contains” Watanabe’s
characterization of Lemma 6.8. The second proof is an outline of an iteration procedure
to derive the characteristic functional of a Poisson process. This latter approach is due
to Nicolas Privault, who is hereby gratefully acknowledged for sharing his ideas in a
private communication during the conference “Applications of Stochastic Processes VI” at the
University of Potsdam. We extend it to characterize the reciprocal class of a Poisson process.

Theorem 6.25. Let Q be an arbitrary probability on J1(I) with η ∈ L1(P). If for all F ∈ SJ1 and
u ∈ E the duality formula

(6.26) EQ (F(X)δ(u)) = EQ (DuF(X))

holds, then X is a Poisson process under Q.

First proof. Let s ∈ I be arbitrary, then there exists a sequence of functions ( fi)i≥1 ⊂ C
∞

b (I,I)
with fi|[s,1] = s such that || fi( . )−( . ∧s)||∞ → 0 for i→∞. For any F(X) = f∧1(X0,T1, . . . ,Tn) ∈
SJ1 we may define the jump-time functional Fi(X) := f (X0, fi(T1), . . . , fi(Tn)) ∈ SJ1 . Then
Fi → f (X0,T1 ∧ s, . . . ,Tn ∧ s) uniformly in ω. By Lemma 6.2 the functionals Fi are F[0,s]-
measurable and by Proposition 6.12 we have that 〈DFi(X),1(s,t]〉 = 0 holds Q-a.s. for any
t > s. A density argument implies Q(Xt − Xs|F[0,s]) = t − s such that t 7→ Xt − X0 − t
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is a martingale under Q. With Watanabe’s characterization presented in Lemma 6.8 we
conclude that X is a Poisson process. �

Second proof. In the second proof we compute the characteristic functional of Q. We need
two technical results.

Lemma 6.27. Assume that v ∈ C1(I) with v(1) = 0. Then the commutation relation Dtδ(v) =

vt + δ(κtv) holds, where κtvs := −v′s1[0,s](t).

Proof. Just use the definition

δ(κtv) = δ(−v′.1[0,.](t)) = −

η∑
k=1

v′(Tk)1[0,Tk](t) +

∫
[t,1]

v′sds = Dtδ(v) − vt,

and the last equality is implied by (6.20). �

Lemma 6.28. For u, v ∈ C1(I) with u(1) = 0 we have 〈v(κu)n,u〉 = 1
(n+1)!〈v,u

n+1
〉, where

v(κu)n
t :=

∫
In

vt1κt1ut2κt2ut3 · · ·κtnutdt1 · · · dtn

= (−1)n
∫

[0,t]

(
· · ·

(∫
[0,t2]

vt1u′t2
· · · u′tn

u′tdt1

)
· · ·

)
dtn.

is bounded.

Proof. For n = 0 the equation holds trivially. For n = 1 we have∫
I2

vt1κt1ut2ut2dt1dt2 = −

∫
I2

vt1u′t2
1[0,t2](t1)ut2dt1dt2

= −

∫
I

vt1

∫
[t1,1]

u′t2
ut2dt2dt1

=

∫
I

vt1

(
u2

t1
+

∫
[t1,1]

ut2u′t2
dt2

)
dt1

= 〈v,u2
〉 −

∫
I2

vt1κt1ut2ut2dt1dt2.

Using the same calculus for arbitrary n ∈Nwe see that

〈v(κu)n,u〉 =

∫
In+1

vt1κt1ut2κt2ut3 · · ·κtnutn+1utn+1dt1 · · · dtn+1

= 〈v(κu)n−1,u2
〉 − 〈v(κu)n,u〉

= 〈v(κu)n−2,u3
〉 − 2〈v(κu)n−1,u2

〉 − 〈v(κu)n,u〉,

which by iteration proves the result. �

Now we may continue with the second proof of Theorem 6.25. We will compute the
Laplace transform of the random variable δ(u) for u ∈ C∞c (I) such that u ≥ 0. Letλ < 0, then
the duality formula holds for Fn = exp

(
λ
(∑n

i=1 u(Ti ∧ 1) − 〈u〉
))
∈ SJ1 and u. Considering

Lemma 6.11 the functional F = exp(λδ(u)) is differentiable in direction u. Dominated
convergence implies that the duality formula holds for F and u, since Fn → F converges
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Q-a.s. An application of the duality formula and Lemma 6.27 gives

∂λEQ
(
eλδ(u)

)
= EQ

(
δ(u)eλδ(u)

)
= EQ

(
〈u,Deλδ(u)

〉

)
= λEQ

(
〈u,Dδ(u)〉eλδ(u)

)
= λEQ

(
〈u,u〉eλδ(u)

)
+ λEQ

(∫
I

usδ(κsu)dseλδ(u)
)
.

Since κsu. is bounded we can use Lemma 6.27 and the duality formula for F and κsu on the
second term:

∂λEQ
(
eλδ(u)

)
= λEQ

(
〈u,u〉eλδ(u)

)
+ λEQ

(∫
I2

ut1κt1ut2Dt2eλδ(u)dt1dt2

)
= λEQ

(
〈u,u〉eλδ(u)

)
+ λ2EQ

(∫
I2

ut1κt1ut2Dt2δ(u)dt1dt2eλδ(u)
)

= λEQ
(
〈u,u〉eλδ(u)

)
+ λ2EQ

(∫
I2

ut1κt1ut2ut2dt1dt2eλδ(u)
)

+λ2EQ

(∫
I2

ut1κt1ut2δ(κt2u)dt1dt2eλδ(u)
)
.

Iterating this on the third term, and then on the m’th term we get

∂λEQ
(
eλδ(u)

)
= λ

∞∑
m=0

λmEQ
(
〈(κu)mu,u〉eλδ(u)

)
=

∞∑
m=0

λm+1

(m + 1)!

∫
I

um+2
s dsEQ(eλδ(u))

= EQ(eλδ(u))
∞∑

m=1

λm

m!

∫
I

um+1
s ds

= EQ(eλδ(u))〈eλu
− 1,u〉,

where we applied Lemma 6.28 to get the second equality. The unique solution of this
differential equation with initial condition Q(e0) = 1, when evaluated in λ = −1, is

EQ
(
e−δ(u)

)
= exp

(∫
I

(e−us + us − 1)ds
)
,

for every u ∈ C∞c (I), u ≥ 0. Thus by identification of the Laplace transform, the law of the
increments of X on [0 + ε, 1 − ε] for small ε > 0 is identical to the increments of a Poisson
process. Stochastic continuity implies that Q is a Poisson process. �

Remark 6.29. In Example 3.3 we mentioned a characterization of an exponential distribution
introduced by Diaconis and Zabell. Following [DZ91] a random variable Z has exponential
distribution if and only if

E ( f (Z)(Z − 1)) = E ( f ′(Z)Z),

for every smooth function f ∈ C∞c (R). But the duality formula (6.26) applied to a function of the
first jump time f (T1 ∧ 1) and the predictable process u = 1[0,T1] is

E
(

f (T1 ∧ 1) (1 − T1 ∧ 1)
)

= −E
(

f ′(T1 ∧ 1)(T1 ∧ 1)1{T1≤1}

)
.
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The duality formula (6.26) may thus be interpreted as a formula characterizing the (truncated)
exponential distribution of the times between the jumps. In contrast, the duality formula (1.22)
characterizes the Poisson distribution of the increments Xt − Xs and thus contains a difference
instead of a derivative operator as dual of the stochastic integral.

6.3.2. The reciprocal class of a Poisson process.
Following Definition 4.12 a unit jump processQ is in the reciprocal class R(P) of the law

of a Poisson process Pwhenever the disintegration

(6.30) Q( . ) =

∫
R2
Px,y( . )Q01(dxdy)

with respect to the Poisson bridges holds. Note that Px,y is well defined if y − x ∈ N, but
since Q is a probability on J1(I) we always have Q(X1 − X0 ∈N) = 1.

In this paragraph we want to examine some examples of processes in the reciprocal
class R(P). We denote by Pα a Poisson process with intensity α > 0, which means that
underPα the canonical process X has stationary and independent increments with Poisson
distribution Xt −Xs ∼ P(α(t− s)). Surprisingly Poisson processes of any intensity are in the
same reciprocal class.

Proposition 6.31. Let Pα be a Poisson process with intensity α > 0. Then the reciprocal class of
Pα coincides with the reciprocal class of a Poisson process with unit intensity: R(Pα) = R(P).

Proof. By the disintegration formula (6.30) we only have to show that Px,y
α = Px,y where

y = x + m, m ∈N. Let 0 ≤ k1 ≤ · · · ≤ kn ≤ m and {t1, . . . , tn} ∈ ∆I for arbitrary n ∈N. Then

P
x,y
α

(
Xt1 = x + k1, . . . ,Xtn = x + kn

)
= Px

α
(
Xt1 = x + k1, . . . ,Xtn = x + kn|X1 = x + m

)
= Px

α
(
Xt1 = x + k1, . . . ,Xtn = x + kn,X1 = x + m

)
(Px

α (X1 = x + m))−1

= e−t1α
(t1α)k1

k1!
e−(t2−t1)α ((t2 − t1)α)k2−k1

(k2 − k1)!
· · · e−(1−tn)α ((1 − tn)α)m−kn

(m − kn)!
eα

m!
αm

=
tk1
1

k1!
(t2 − t1)k2−k1

(k2 − k1)!
· · ·

(1 − tn)m−kn

(m − kn)!
m!

does not depend on α. Since FI = σ(Xs, s ∈ I) is cylindric this implies Px,y
α = Px,y for any

α > 0. �

Clearly Px
α(X1 ∈ . )� Px(X1 ∈ . ) for every x ∈ R. Since Px

α ∈ R(P) we can write Px
α as an

h-transform of Px with

(6.32) h(y) =
Px
α(X1 = y)
Px(X1 = y)

= e−α
αy−x

(y − x)!
e1 (y − x)!

1
= e(y−x) logα−(α−1).

In the next example we introduce a Poisson bridge as an h-transform and compute its
intensity.
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Example 6.33. Let Px,y be the distribution of a Poisson bridge with y− x = m ∈N. For any t ∈ I
and 0 ≤ k ≤ m we compute

Px,y (Xt = x + k) = Px (Xt = x + k|X1 = x + m)

= Px (Xt = x + k,X1 = x + m) (Px (X1 = x + m))−1

= e−t tk

k!
e−(1−t) (1 − t)m−k

(m − k)!
e1 m!

1m

=

(
m
k

)
tk(1 − t)m−k,

which means that Xt has a binomial distribution with parameter m and t. By Proposition 4.10 the
Poisson bridge has the Markov property. Let s < t, we may use the above calculus between the
points Xs at time s and y at time 1 to compute that conditionally on Xs and X1 = y the random
variable Xt − Xs has binomial distribution with parameter y − Xs and t−s

1−s . Therefore

Ex,y
(
Xt − Xs|F[0,s]

)
= Ex,y (Xt − Xs|Xs)

=
t − s
1 − s

(y − Xs)

=

∫
[s,t]

y − Xs−

1 − s
dr

= Ex,y
(∫

[s,t]

y − Xr−

1 − r
dr

F[0,s]

)
,

where the last equality follows from the fact, that

Ex,y
(

y − Xr

1 − r

 Xs

)
=

y − Xs

1 − s
.

We deduce that X −
∫

[0,.]
y−Xt−

1−t dt is a martingale. In other words

X has intensity `(t,Xt−)dt :=
y − Xt−

1 − t
dt with respect to Px,y.

Remark that the intensity explodes for t→ 1 if the process has not yet reached its final state X1 = y.
Moreover the intensity is

• strictly positive `(t, z) > 0 for y − x > z − x ∈N and finite for t ∈ [0, 1 − ε], ε > 0;
• zero `(., y) ≡ 0 on I since Px,y(Xt = y + 1) = 0 for all t ∈ I.

Note that the bridge Px,y is an h-transform of Px with

h(z) =
Px,y(X1 = z)
Px(X1 = z)

=
(y − x)!

e
1{y}(z).

This is different from the situation in Section 5: The law of the Brownian bridge is not absolutely
continuous with respect to any Wiener measure on C(I,Rd).

Example 6.34. Let us now construct the process in R(P) that starts from zero and has Bernoulli
distributionBp with parameter p ∈ (0, 1) at the endpoint t = 1. As a mixture of bridges this process
is given by

Q( . ) := (1 − p)P0,0( . ) + pP0,1( . ).

Equivalently Q = hP0 with

h(z) =
pz(1 − p)1−z

e
1{0,1}(z).
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We want to compute the predictable compensator of X with respect to Q. Clearly EQ(Xt −Xs|Xs =

1) = 0 and conditionally on Xs = 0 we get

EQ(Xt − Xs|Xs = 0) = EQ(Xt − Xs|Xs = 0,X1 = 0)Q(X1 = 0|Xs = 0)

+EQ(Xt − Xs|Xs = 0,X1 = 1)Q(X1 = 1|Xs = 0).(6.35)

The first summand is zero, as for the second we can use the intensity of the bridges derived in
Example 6.33, that is

EQ(Xt − Xs|Xs = 0,X1 = 1) =
t − s
1 − s

,

and explicitly calculate the conditional probability

Q(X1 = 1|Xs = 0) =
Q0,1(Xs = 0)Q0(X1 = 1)

Q0,0(Xs = 0)Q0(X1 = 0) +Q0,1(Xs = 0)Q0(X1 = 1)
=

(1 − s)p
(1 − p) + (1 − s)p

to get

EQ(Xt − Xs|Xs = 0) =
t − s
1 − s

(1 − s)p
1 − ps

=

∫
[s,t]

p
1 − sp

dr.

By a similar computations

EQ(1{0}(Xr−)|Xs = 0) = Q(Xr− = 0|Xs = 0) =
1 − rp
1 − sp

, for r ≥ s.

Combining these results, we derive the intensity of X under Q, which is

EQ(Xt − Xs|Xs) = EQ

(∫
[s,t]

p
1 − rp

1{0}(Xr−)dr
 Xs

)
.

In particular the intensity is zero if Xs = 1, and on the set Xs = 0 the intensity grows but does not
explode for s → 1. This growth depends on the value p: A larger probability of X1 = 1 under Q
implies a larger intensity around the endpoint for s→ 1 if Xs = 0.

We extend the preceding example from a Bernoulli to a Binomial endpoint distribution.

Example 6.36. LetQ be the law in R(P) with respect to which X starts from zero and has Binomial
distribution Bk,p with parameters k ∈ N and p ∈ (0, 1) at the endpoint t = 1. This probability is
defined by the mixture of bridges

Q( . ) :=
k∑

i=0

(
k
i

)
pi(1 − p)k−iP0,i( . ).

The predictable compensator of X under Q is computed by a similar decomposition as in (6.35) and
is equal to∫

[0,t]
1{0,...,k−1}(Xs−)

 k∑
i=x+1

pi(1 − p)k−i

(k − i)!
(1 − t)i−Xs−−1

(i − Xs− − 1)!

 /
 k∑

i=Xs−

pi(1 − p)k−i

(k − i)!
(1 − t)i−Xs−

(i − Xs−)!

 ds.

We see, that the predictable compensator of X for elements of the reciprocal class of a
Poisson process can become arbitrarily complicated. It is therefore all the more surprising,
that the reciprocal class may be characterized by a simple duality formula, as we will see
in Theorem 6.39.
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6.3.3. Characterization of the reciprocal class of a Poisson process.
The duality formula (6.23) still holds for the bridges of the Poisson process under a loop

condition on the test functions.

Lemma 6.37. Let x, y ∈ R such that y − x ∈N. Then the duality formula (6.23) holds under Px,y

for every F ∈ SJ1 and u ∈ E with 〈u〉 = 0.

Proof. Take any ψ ∈ C∞b (R), F ∈ SJ1 , u ∈ E with 〈u〉 = 0. Note that the loop condition on u
implies X1 ◦ πεu = X1. Then

Ex (
ψ(X1)Ex(F(X)δ(u)|X1)

)
= Ex (

Du(ψ(X1)F(X))
)

= Ex (
ψ(X1)Ex(DuF(X)|X1)

)
,

where the last equality holds since Duψ(X1) = 0 and the product formula of Lemma 6.11
applies. �

We are going to prove a converse of the above lemma in terms of a characterization of the
reciprocal class using techniques similar to the second proof of Theorem 6.25. Therefore
let us first compute the Laplace transform of δ(u) for some u ∈ C1(I) with respect to the
Poisson bridge Px,y:

Ex,y(e−δ(u)) = Ex,y(e−
∑y−x

i=1 u(Ti)+〈u〉).

Denote m = y − x. We only have to use the conditional distribution of the jump times of a
Poisson process given in Remark 1.19 to derive the Laplace transform

Ex,y(e−
∑m

i=1 u(Ti)) = m!
∫
Im

e−
∑m

i=1 u(ti)10≤t1≤···≤tm≤1dt1 · · · dtm

=

∫
Im

e−
∑m

i=1 u(ti)dt1 · · · dtm

= 〈e−u
〉

m,

and therefore
Ex,y(e−δ(u)) = 〈e−u

〉
y−xe〈u〉.

It follows that the function λ 7→ Ex,y(eλδ(u)) defined for λ < 0 is solution to the ordinary
differential equation

(6.38) ∂λE
x,y(eλδ(u)) =

[
(y − x)

〈ueλu
〉

〈eλu〉
− 〈u〉

]
Ex,y(eλδ(u))

with initial condition Ex,y(e0δ(u)) = 1. We now present our main result in this paragraph
about the reciprocal class of a Poisson process.

Theorem 6.39. Assume thatQ is a probability on J1(I) such that the number of jumps η ∈ L1(Q)
is integrable. Then Q is in the reciprocal class R(P) if and only if the duality formula

(6.40) EQ (F(X)δ(u)) = EQ (DuF(X))

holds for every F ∈ SJ1 and u ∈ E with 〈u〉 = 0.

Proof. If Q ∈ R(P) we just have to use Lemma 6.37 to prove that the duality formula is
satisfied: Since Q ∈ R(P) we get

EQ(F(X)δ(u)) =

∫
R2
Exy(F(X)δ(u))Q01(dxdy) =

∫
R2
Exy(DuF(X))Q01(dxdy) = EQ(DuF(X)).

Assume, on the other hand, that the duality formula holds under Q. Then it also holds
under the bridges ofQ, see the proof of Lemma 6.37. We want to compute the characteristic
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functional ofQx,y for x, y ∈ R such that the bridge is well defined. For some u ∈ C1
c (I) with

u ≥ 0 we define ũ := u − 〈u〉. We easily see that δ(ũ) = δ(u) − (X1 − X0 − 1)〈u〉 and κũ = κu,
where the operator κtus = −u′s1[0,s](t) was defined in Lemma 6.27. Take some λ < 0. Then
we can show as in the second proof of Theorem 6.25 that the duality formula extends to
F = eλδ(u) differentiated in direction of ũ. Using Examples 6.18 and 6.21 combined with the
duality formula we get

E
x,y
Q

(eλδ(u)δ(ũ)) = E
x,y
Q

(Dũeλδ(u)) = λE
x,y
Q

(∫
I

ũs(us + δ(κsu))ds eλδ(u)
)
.

We iterate this on the derivative of the Laplace transform

∂λE
x,y
Q

(eλδ(u)) = E
x,y
Q

(δ(u)eλδ(u))

= E
x,y
Q

(δ(ũ)eλδ(u)) + (y − x − 1)〈u〉Ex,y
Q

(eλδ(u))

= λE
x,y
Q

(∫
I

ũs(us + δ(κsu))ds eλδ(u)
)

+ (y − x − 1)〈u〉Ex,y
Q

(eλδ(u))

= (y − x − 1)〈u〉Ex,y
Q

(eλδ(u)) + λ(y − x)〈ũ,u〉Ex,y
Q

(eλδ(u))

+λE
x,y
Q

(∫
I

ũsδ(κsu − us)ds eλδ(u)
)

=
[
−〈u〉 + (y − x)〈u〉 + (y − x)λ(〈u2

〉 − 〈u〉2)
]
E

x,y
Q

(eλδ(u)) + λ2[. . . ].

The quadratic term in λ is equal to

λE
x,y
Q

(∫
I

ũsδ(κsu − us)ds eλδ(u)
)

= λ2E
x,y
Q

(∫
I2

ũt1(κt1ut2 − ut1)(ut2 + δ(κt2u))dt1dt2eλδ(u)
)

= λ2E
x,y
Q

(∫
I2

ũt1(κt1ut2 − ut1)((y − x)ut2 + δ(κt2u − ut2))dt1dt2eλδ(u)
)

= (y − x)λ2
[1
2
〈u2, ũ〉 − 〈u, ũ〉〈u〉

]
E

x,y
Q

(eλδ(u)) + λ3[. . . ]

= (y − x)
λ2

2

[
〈u3
〉 − 3〈u2

〉〈u〉 + 2〈u〉3
]
E

x,y
Q

(eλδ(u)) + λ3[. . . ].

The cubic term in λ is equal to

λ2E
x,y
Q

(∫
I2

ũt1(κt1ut2 − ut1)δ(κt2u − ut2)eλδ(u)dt1dt2

)
= λ3E

x,y
Q

(∫
I3

ũt1(κt1ut2 − ut1)(κt2ut3 − ut2)((y − x)ut3 + δ(κt3u − ut3))dt1dt2dt3eλδ(u)
)

= λ3(y − x)
[1
6
〈u3, ũ〉 −

1
2
〈u2, ũ〉〈u〉 −

1
2
〈u, ũ〉〈u2

〉 + 〈u, ũ〉〈u〉2
]
E

x,y
Q

(eλδ(u)) + λ4[. . . ]

=
λ3

3!
(y − x)

[
〈u4
〉 − 4〈u3

〉〈u〉 + 12〈u2
〉〈u〉2 − 3〈u2

〉
2
− 6〈u〉4

]
E

x,y
Q

(eλδ(u)) + λ4[. . . ].

We want to show that λ 7→ Ex,y
Q

(eλδ(u)) satisfies the same ordinary differential equation as
the Laplacian of the Poisson bridge λ 7→ Ex,y(eλδ(u)) in equation (6.38). Define the function

g(λ) :=
〈ueλu

〉

〈eλu〉
= ∂λ log〈eλu

〉.
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Then we compute

g(0) = 〈u〉,

g′(0) = 〈u2
〉 − 〈u〉2

g′′(0) = 〈u3
〉 − 3〈u2

〉〈u〉 + 2〈u〉3

g′′′(0) = 〈u4
〉 − 4〈u3

〉〈u〉 + 12〈u2
〉〈u〉2 − 3〈u2

〉
2
− 6〈u〉4.

For arbitrary n ≥ 0 we have

(6.41) g(n)(0) = n!
∫
In

ũt1(κt1ut2 − ut1) · · · (κtn−1utn − utn−1)utndt1 · · · dtn.

Indeed, the above iteration in powers of λ also holds under Px,y. Therefore the uniqueness
of the solution of the differential equation (6.38) implies that (6.41) has to be true. The
development in λ of the derivative of the Laplace transform of Qx,y gives

∂λE
x,y
Q

(eλδ(u)) =

[
−〈u〉 + (y − x)

(
g(0) + λg(1)(0) +

λ2

2!
g(2)(0) + . . .

)]
E

x,y
Q

(eλδ(u))

=
[
(y − x)g(λ) − 〈u〉

]
E

x,y
Q

(eλδ(u)),

and compared with equation (6.38) we deduce thatEx,y
Q

(eλδ(u)) = Ex,y(eλδ(u)) holdsQ01(dxdy)-
a.s. for all λ ≤ 0 and u ∈ C1

c (I) with u ≥ 0. Since the boundary states X0,X1 of the bridges
are deterministic, this is sufficient to prove that Qx,y = Px,y. By identity of its bridges to
Poisson bridges, Q is in the reciprocal class of the Poisson process. �

An important example of the above characterization is the application to Poisson bridges.

Example 6.42. Let Q be any probability on J1(I) with Q(X0 = x,X1 = y) = 1. Then Q is the
Poisson bridge from x to y if and only if the duality formula (6.40) holds for all F ∈ SJ1 and u ∈ E
with 〈u〉 = 0. Here the integrability condition η ∈ L1(Q) is meaningless, since η = y − x Q-a.s.

Let us note that the condition η ∈ L1(Q) in Theorem 6.39 is not a real restriction in the
unit jump setting, since with respect to the bridges Qx,y the number of jumps η = y − x is
deterministic. It is thus always possible to compare the bridges of Q with the bridges of a
Poisson process.

6.4. Markov unit jump processes.
In this paragraph we introduce a class of Markov unit jump processes with an especially

nice intensity: A degree of regularity is required of the reference Markov processes for the
definition of reciprocal invariants. We already mentioned the notion of intensity of unit
jump processes in Remark 6.4. Let us now fix this idea in the following definition.

Definition 6.43. LetQ be any probability distribution on J1(I). Then there exists a Q-a.s. unique
predictable and increasing process A with Q(A0 = 0) = 1 such that

(6.44) EQ

(∫
I

usdXs

)
= EQ

(∫
I

usdAs

)
holds for all predictable and bounded processes u : I × J1(I)→ R. The predictable measure dA is
called the intensity.

We refer to Jacod [Jac75, Theorem 2.1 and Theorem 3.4] for the existence and uniqueness
of the intensity. He shows that the intensity characterizes the lawQ in the following sense:
If Q′ is another probability on J1(I) with the same initial condition Q′0 = Q0 and with
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intensity dA′ such that
∫
I

usdAs =
∫
I

usdA′s holds Q-a.s. and Q′-a.s. for any u ∈ E, then
Q = Q′. This is a generalization of Watanabe’s characterization presented in Lemma 6.8 to
all unit jump processes.

Example 6.45. We already know several unit jump process with their respective intensities:
• A Poisson process P has intensity dt.
• A Poisson process Pα with intensity α > 0 as introduced in § 6.3.2 has intensity αdt.
• The Poisson bridge Px,y has intensity y−Xt−

1−t dt.

6.4.1. Nice unit jump processes.
We are interested in a particular class of Markov processes on J1(I).

Definition 6.46. Let ε > 0 arbitrary and ` a function such that

(6.47) ` : I ×R→ [ε,∞) is bounded, and `(., x) ∈ C1(I,R+) for all x ∈ R.

Then P` is called the law of a “nice” unit jump process if X has intensity `(t,Xt−)dt under P`.

We say for short that the nice unit jump process P` has intensity `. The boundedness of
the intensity 0 < ε ≤ ||`||∞ ≤ K assures that for every t ∈ Iwe have∫

[0,t]

[
`(s,Xs−) log `(s,Xs−) − `(s,Xs−)

]
ds ≤ K(| log ε| + 1 + K), uniformly for ω ∈ J1(I).

Lepingle and Mémin state in [LM78, Théorème IV.3] a Novikov condition for jump pro-
cesses. With the above bound their result implies that the law of a nice unit jump process
P` is equivalent to the law of a Poisson process P in the sense that P` � P and P � P`
if P`,0 = P0. A convenient form of the Girsanov theorem for semimartingales with jumps
provides an explicit form of the density, see also the Appendix.

Proposition 6.48. Let P` the law of a nice unit jump process and P the law of a Poisson process
with same initial condition P`,0 = P0. Then P` is equivalent to P and the density process defined
by P` = G`

tP on F[0,t] has the explicit form

(6.49) G`
t = exp

(
−

∫
[0,t]

(`(s,Xs−) − 1)ds
)∏

Ti≤t

`(Ti,XTi−).

In particular G`
t > 0 P-a.s. for all t ∈ I.

Since the density G`
1 factorizes into an F[0,t] and an F[t,1]-measurable part, P` has indeed

the Markov property, see Lemma 4.4.

Remark 6.50. The preceding Girsanov transformation gives an explicit expression of the density
of the jump-times. Assume P`,0 = P0 as above. Then by Remark 1.19 we have

P`(X0 ∈ dx,T1 ∈ dt1, . . . ,Tm ∈ dtm,Tm+1 = ∞)

= G`
1P(X0 ∈ dx,T1 ∈ dt1, . . . ,Tm ∈ dtn,Tm+1 = ∞)

= P0(dx)`(t1, x)e−
∫

[0,t1] `(s,x)ds
`(t2, x + 1)e−

∫
[t1 ,t2] `(s,x+1)ds

· · ·

· · · `(tm, x + m − 1)e−
∫

[tm−1 ,tm] `(s,x+m−1)dse−
∫

[tm ,1] `(s,x+m)ds
1{0<t1<···<tm≤1}dt1 · · · dtm.

This completely describes the law of P`.

Note that in the unit jump context the knowledge of the intensity is sufficient to identify
the process. In particular we have:
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Corollary 6.51. Let Q be any distribution on J1(I) such that η ∈ L1(Q) and ` be as in (6.47). If
for every t ∈ I, u ∈ E with u = u1(t,1] and F ∈ SJ1 that is F[0,t]-measurable the formula

(6.52) Q

(
F
∫
I

utdXt

)
= Q

(
F
∫
I

ut`(t,Xt−)dt
)

holds, then Q is a nice unit jump process with intensity `.

Proof. This is just a particular case of Jacod’s extension of Watanabe’s characterization result
quoted in the comments following Definition 6.43. �

6.5. Comparison of reciprocal classes of nice unit jump processes.
In Theorem 6.58 we present our main result in this paragraph. We show that the

reciprocal class of any nice unit jump process is characterized by a reciprocal invariant.
Let us first prove an auxiliary result: In § 4.3 we showed that h-transforms are Markov
processes that preserve bridges. We are able to compute the intensity of h-tranforms of nice
unit jump processes.

Proposition 6.53. Let P` be the law of a nice unit jump process, h : R → R+ be any measurable
function such that E`(h(X1)) = 1. The h-transform hP` := h(X1)P` is Markov and has intensity

(6.54) k(t,Xt−)dt = `(t,Xt−)
h(t,Xt− + 1)

h(t,Xt−)
dt, dt ⊗ hP`-a.e.,

where h(t, x) := E`(h(X1)|Xt = x).

Proof. We first show that h(t, x) satisfies a Kolmogoroff backward equation.

Lemma 6.55. Let h(t, x) be defined as above. Then h is a solution of the Kolmogoroff backward
equation

(6.56) ∂th(t, x) = −`(t, x) (h(t, x + 1) − h(t, x)) holds P`(Xt ∈ . )-a.e., for all t ∈ I.

In particular h(., x) ∈ C1(I).

Proof. We express h(t, x) as

h(t, x) =

∞∑
m=0

h(x + m)P`(X1 = x + m|Xt = x) =

∞∑
m=0

h(x + m)p`(t, x; 1, x + m).

Here we use Remark 6.50 and the Markov property ofP` to define the transition probability

p`(t, x; 1, x + m) := P`(X1 = x + m|Xt = x)

=

∫
Im
`(t1, x)e−

∫
[t,t1] `(s,x)ds

· · ·

`(tm, x + m − 1)e−
∫

[tm−1 ,tm] `(s,x+m−1)dse−
∫

[tm ,1] `(s,x+m)ds
1t≤t1<···<tm≤1dt1 · · · dtm

=

∫
[t,1]

∫
[t,tm]
· · ·

∫
[t,t2]

fx(t1, . . . , tm, t)dt1 · · · dtm,

with

fx(t1, . . . , tm, t) := `(t1, x)e−
∫

[t,t1] `(s,x)ds
· · · `(tm, x + m − 1)e−

∫
[tm−1 ,tm] `(s,x+m−1)dse−

∫
[tm ,1] `(s,x+m)ds.
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Clearly fx(t1, . . . , tm, t) is bounded and differentiable in t, and therefore so is p`(t, x; 1, x + m).
Moreover ∂t fx(t1, . . . , tm, t) = `(x, t) fx(t1, . . . , tm, t), which implies

1
ε

[
p`(t + ε, x; 1, x + m) − p`(t, x; 1, x + m)

]
=

1
ε

[∫
[t+ε,1]

· · ·

∫
[t+ε,t2]

fx(t1, . . . , tm, t + ε)dt1 · · · dtm −

∫
[t,1]
· · ·

∫
[t,t2]

fx(t1, . . . , tm, t)dt1 · · · dtm

]
=

1
ε

[∫
[t+ε,1]

· · ·

∫
[t+ε,t2]

(
fx(t1, . . . , tm, t + ε) − fx(t1, . . . , tm, t)

)
dt1 · · · dtm

−

∫
[t,t+ε]

∫
[t,tm]
· · ·

∫
[t,t2]

fx(t1, . . . , tm, t)dt1 · · · dtm − . . .

. . . −

∫
[t,1]

∫
[t,tm]
· · ·

∫
[t,t+ε]

fx(t1, . . . , tm, t)dt1 · · · dtm

]
,

which by dominated convergence goes to

ε→0
→

∫
[t,1]
· · ·

∫
[t,t2]

`(t, x) fx(t1, . . . , tm, t)dt1 · · · tm −

∫
[t,1]
· · ·

∫
[t,t3]

f (t, t2, · · · , tm, t)dt2 · · · dtm

= `(t, x)p`(t, x; 1, x + m) − `(t, x)p`(t, x + 1; 1, x + m).

The same computations apply to the limit of −1
ε (p`(t − ε, x; 1, x + m) − p`(t, x; 1, x + m)). The

sum over the first term is
∞∑

m=0

h(y + m)`(t, x)p`(t, x; 1, x + m) = `(t, x)E`(h(X1)|Xt = x) = `(t, x)h(t, x),

and the sum over the second term is
∞∑

m=1

h(x + m)`(t, x)p`(t, x + 1; 1, x + m) =

∞∑
m=1

h(x + 1 + m − 1)`(t, x)p`(t, x + 1; 1, x + m)

= `(t, x)E`(h(X1)|Xt = x + 1)

= `(t, x)h(t, x + 1),

and we see that (6.56) holds. �

Let us resume the proof of Proposition 6.53. Since h(t, x) is differentiable in the time
variable we may apply the Itô-formula

h(t,Xt) = h(s,Xs) +

∫
[s,t]

∂th(r,Xr−)dr +

∫
[s,t]

(h(r,Xr) − h(r,Xr−))dXr

= h(s,Xs) +

∫
[s,t]

∂th(r,Xr−)dr +

∫
[s,t]

(h(r,Xr− + 1) − h(r,Xr−))dXr

= h(s,Xs) +

∫
[s,t]

h(r,Xr−)
h(r,Xr− + 1) − h(r,Xr−)

h(r,Xr−)
(dXr − `(r,Xr−)dr),

where the last equality follows from (6.56). We recognize the Doléans-Dade differential
equation, and write h(X1) in the form

h(X1) = exp
(
−

∫
I

(
h(s,Xs− + 1)

h(Xs−, s)
− 1

)
`(s,Xs−)ds

) η∏
i=1

h(Ti,X0 + i)
h(Ti,X0 + i − 1)

.
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Since hP` = h(X1)G`
1P and

h(X1)G`
1 = exp

(
−

∫
I

(
`(s,Xs−)

h(s,Xs− + 1)
h(Xs−, s)

− 1
)

ds
) η∏

i=1

`(Ti,X0 + i − 1)
h(Ti,X0 + i)

h(Ti,X0 + i − 1)
.

the Girsanov theorem implies that hP` has the intensity k(t,Xt−)dt given in (6.54). �

Using Example 6.33 we now give a qualitative statement on the intensities of the bridges
of nice unit jump processes.

Remark 6.57. Since for y − x ∈ N the bridge Px,y of a Poisson process is an h-transform of Px,
we deduce that Px,y

`
is equivalent to Px,y as a measure on J1(I). Therefore a relation similar to

(6.54) holds between the intensity of the Poisson bridge and `x,y(t,Xt−)dt, which is the intensity of
the bridge Px,y

`
. We deduce the following qualitative statements from Example 6.33: The intensity

`x,y(t, z) is

• strictly positive `x,y(t, z) > 0 for y − x > z − x ∈N and finite for t ∈ [0, 1 − ε], ε > 0;
• zero `(., y) ≡ 0 on I since Px,y

`
(Xt = y + 1) = 0 for all t ∈ I.

In § 6.6 we prove that these qualitative properties are also implied by a duality formula.

Next we present a comparison of the reciprocal classes of two different nice unit jump
processes. This is a new result, but in the same spirit as Theorem 5.26 for Brownian diffusion
processes.

Theorem 6.58. Let P` be the law of a nice unit jump process with intensity `. Then the function

(6.59) Ξ`(t, x) := ∂t log `(t, x) + `(t, x + 1) − `(t, x)

is a “harmonic” invariant of the reciprocal class R(P`): If Pk is another nice unit jump process then
Ξk ≡ Ξ` if and only if R(Pk) = R(P`).

Proof. First assume that R(Pk) = R(P`). Fix x ∈ R, then there exists h : R → R+ such that
Px

k = h(X1)Px
` since Px

` and Px
k are equivalent measures, see Remark 4.18. We know that

relation (6.54) between the intensities k and ` holds and that h(t, y) = Ex
`(h(X1)|Xt = y) is

space-time harmonic in the sense of (6.56). This implies

∂th(t, y + 1)
h(t, y + 1)

= −`(t, y + 1)
h(t, y + 2) − h(t, y + 1)

h(t, y + 1)
and

∂th(t, y)
h(t, y)

= −`(t, y)
h(t, y + 1) − h(t, y)

h(t, y)
,

We subtract the second equation from the first

∂t log
h(t, y + 1)

h(t, y)
+

(
h(t, y + 2)
h(t, y + 1)

− 1
)
`(t, y + 1) −

(
h(t, y + 1)

h(t, y)
− 1

)
`(t, y) = 0.

In this we can insert

(6.60)
h(t, y + 1)

h(t, y)
=

k(t, y)
`(t, y)

, and
h(t, y + 2)
h(t, y + 1)

=
k(t, y + 1)
`(t, y + 1)

,

which leads to the equality of the invariants Ξk(t,Xt−) ≡ Ξ`(t,Xt−) holds dt⊗Px
`-a.s.Mixing

over the initial condition implies the identical equality of invariants.
Assume on the other hand, that P` and Pk are nice unit jump processes such that the

invariants Ξ` and Ξk coincide. Clearly the deterministic bridge without jumps coincides
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Px,x
`

= Px,x
k for any x ∈ R. Using Remark 6.50, we now prove the equality of the bridges

with one jump. In particular

Px,x+1
k (T1 ∈ dt) =

k(t, x)e−
∫

[0,t] k(s,x)dse−
∫

[t,1] k(s,x+1)dsdt∫
I

k(s, x)e−
∫

[0,s] k(r,x)dre−
∫

[s,1] k(r,x+1)drds
,

and an insertion of the equality of the characteristics into the denominator gives

k(t, x)e−
∫

[0,t] k(s,x)dse−
∫

[t,1] k(s,x+1)ds

= k(t, x)e−
∫

[0,t] ∂t log k(s,x)+k(s,x+1)ds+
∫

[0,t] ∂t log `(s,x)+`(s,x+1)−`(s,x)dse−
∫

[t,1] k(s,x+1)ds

=
k(0, x)
`(0, x)

`(t, x)e−
∫

[0,t] `(s,x)dse
∫

[0,t] `(s,x+1)dse−
∫

[0,1] k(s,x+1)ds.

The same calculus applies to the nominator which implies

Px
k(T1 ∈ dt|X1 = x + 1)

=

[
k(0, x)
`(0, x)

`(t, x)e−
∫

[0,t] `(s,x)dse
∫

[0,t] `(s,x+1)dse−
∫

[0,1] k(s,x+1)dsdt
]
/

[∫
I

k(0, x)
`(0, x)

`(s, x) · · · ds
]

=
[
`(t, x)e−

∫
[0,t] `(s,x)dse−

∫
[t,1] `(s,x+1)dsdt

]
/

[∫
I

`(s, x)e−
∫

[0,s] `(r,x)dre−
∫

[s,1] `(r,x+1)drds
]

= Px
`(T1 ∈ dt|X1 = x + 1),

where we used
∫

[0,t] `(s, x + 1)ds =
∫

[0,1] `(s, x + 1)ds −
∫

[t,1] `(s, x + 1)ds to get the second
equality.

The case of bridges with m jumps could be treated in a similar way. Instead, we will
show that Px

k is an h-transform of Px
` for an arbitrary x ∈ R. Define

(6.61) h(t, x) := c(t), and h(t, x + m) :=
m−1∏
j=0

k(t, x + j)
`(t, x + j)

c(t), with c(t) := ce−
∫

[0,t](k(s,x)−`(s,x))ds,

and c is a normalization constant such thatE (h(1,X1)) = 1. Such a normalization is possible
since

Ex
`


η−1∏
j=0

k(1, x + j)
`(1, x + j)

 = Ex

e−
∫
I

(`(t,Xt−)−1)dt
η∏

j=1

k(1, x + j − 1)`(t, x + j − 1)
`(1, x + j − 1)

 < ∞
by boundedness assumptions on ` and k. Put y := x + m for any m ≥ 0. The identity of the
invariants implies that

0 = ∂t log
k(t, y)
`(t, y)

+ k(t, y + 1) − k(t, y) − `(t, y + 1) + `(t, y)

⇔ 0 = ∂t log
k(t, y)
`(t, y)

+ `(t, y + 1)
(

k(t, y + 1)
`(t, y + 1)

− 1
)
− `(t, y)

(
k(t, y)
`(t, y)

− 1
)
.

Since log k(t, y) − log `(t, y) = log h(t, y + 1) − log h(t, y) we get

0 = ∂t log
h(t, y + 1)

h(t, y)
+ `(t, y + 1)

(
h(t, y + 2)
h(t, y + 1)

− 1
)
− `(t, y)

(
h(t, y + 1)

h(t, y)
− 1

)
,

which is equivalent to

∂t log h(t, y+1)+`(t, y+1)
(

h(t, y + 2) − h(t, y + 1)
h(t, y + 1)

)
= ∂t log h(t, y)+`(t, y)

(
h(t, y + 1) − h(t, y)

h(t, y)

)
.
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For y = x the right side is

∂t log h(t, x) + `(t, x)
(

h(t, x + 1) − h(t, x)
h(t, x)

)
= −(k(t, x) − `(t, x)) + `(t, x)

(
k(t, x)
`(t, x)

− 1
)

= 0.

Therefore h is a space-time harmonic with respect to Px
` in the sense of equation (6.56). But

since k(t, x + m) =
h(t,x+m+1)

h(t,x+m) `(t, x + m) this implies that Px
k = h(1,X1)Px

` is an h-transform for
any x ∈ R, and in turn Px

k ∈ R(Px
`), the nice unit jump distributions Pk and P` have the

same bridges. �

Let us illustrate the above result by a comparison of the reciprocal classes of unit jump
processes in two examples.

Example 6.62. In the first example we treat counting processes with exponential decay rate. Take
for example the decay of N0 ∈ N radioactive particles. It is well known, that the mean number of
particles that have not decayed until time t ∈ I is given by Nt ≈ e−λtN0, where λ > 0 is called the
decay rate. This exponential decay property may be loosely stated as

(6.63)
dNt

dt
= −λNt ⇔

∫
I

ut(dNt + λNtdt) = 0, ∀u ∈ E.

Let us assume that the canonical unit jump process X that counts the number of decayed particles
has independent increments. Then

E0
` (Xt) ≈ N0 −Nt ≈ N0(1 − e−λt) = N0

∫
[0,t]

λe−λsds,

thus we say that the number of decayed particles is a nice unit jump process with intensity `(t)dt =

N0λe−λtdt. We will call this unit jump process an exponential decay process with rate λ. The
associated harmonic invariant of the reciprocal class is Ξ`(t, x) = −λ. Thus by Theorem 6.58 any
two exponential decay processes are in the same reciprocal class if and only if the decay rates coincide.

Next we compare time-homogenous nice unit jump processes.

Example 6.64. Assume that X is a nice unit jump process underP` such that the intensity `(Xt−)dt
does not depend on time. Then X is time-homogenous in the sense that

P`(Xt+ε ∈ . |Xt = x) = P`(Xs+ε ∈ . |Xs = x), ∀ε > 0, s, t ∈ I.

This property follows from Remark 6.50. If Pk is the distribution of another time-homogenous nice
unit jump process with intensity k(Xt−)dt, then

R(P`) = R(Pk) ⇔ `(y + 1) − `(y) = k(y + 1) − k(y),

which is only possible if k(y) − `(y) is constant.

6.6. Characterization of the reciprocal class R(P`) by a duality formula.
Let P` be the law of a nice unit jump process. We first show that under any probability

in R(P`) a duality formula, in which the invariant Ξ` of Theorem 6.58 appears, holds. With
Theorem 6.69 we present our main result in this section: The duality formula character-
izes the reciprocal class of P` in the sense that any unit jump process that satisfies the
duality formula (6.70) has the same bridges as the reference process P`. We underline the
significance of our result with the introduction of two applications in § 6.7 and § 6.8.
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Lemma 6.65. Let P` be the law of a nice unit jump process and x, y ∈ R with y − x = m ∈ N.
Then the duality formula

(6.66) E
x,y
`

(F(X)δ(u)) = E
x,y
`

(DuF(X)) − Ex,y
`

(
F(X)

∫
I

ut

∫
[t,1]

Ξ`(s,Xs−)dXsdt
)

holds for all F ∈ SJ1 and u ∈ E with 〈u〉 = 0.

Proof. Assume that the Girsanov density G`
1 as defined in (6.49) is differentiable in direction

of u ∈ E with 〈u〉 = 0. Using the product rule and the duality formula under the Poisson
measure we deduce

E`(F(X)δ(u)) = E (G`
1F(X)δ(u)) = E

(
G`

1DuF(X)
)

+ E (G`
1F(X)Du log G`

1).

For the last term we have to differentiate the functional

log G`
1 =

−
η+1∑
i=1

∫
[Ti−1,Ti]

(`(s, i − 1) − 1)ds

 +

 η∑
i=1

log `(Ti, i − 1)

 ,
with T0 := 0 and Tη+1 := 1. Using Example 6.18 we infer that log G`

1 is differentiable in
direction u with derivative

Du log G`
1 =

η+1∑
i=1

(`(Ti, i − 1) − 1)〈u〉Ti − (`(Ti−1, i − 1) − 1)〈u〉Ti−1 −

η∑
i=1

∂t log `(Ti, i − 1)〈u〉Ti

= −

∫
I

[
∂t log `(s,Xs−) + `(s,Xs− + 1) − `(s,Xs−)

]
〈u〉sdXs

and a change of the order of integration shows that the duality formula (6.66) holds with
respect to P`.

Using bounded, measurable functions φ,ψ : R → R we integrate on the endpoint
distributions

E`

(
φ(X0)ψ(X1)F(X)

(
δ(u) +

∫
I

ut

∫
[t,1]

Ξ`(Xs−, s)dXsdt
))

= E`
(
φ(X0)ψ(X1)DuF(X)

)
,

since Duφ(X0) = Duψ(X1) = 0. Therefore the duality also holds for the bridges Px,y
`

for
x ∈ R and y = x + m with m ∈N. �

Example 6.67. Let X be an exponential decay process with decay rate λ > 0, see Example 6.62.
Then the duality formula (6.66) reduces to

E0
`

(
F(X)

∫
I

utdXt

)
= E0

` (DuF(X)) + λE0
`

(
F(X)

∫
I

ut

∫
[t,1]

dXsdt
)

for F ∈ SJ1 and u ∈ E with 〈u〉 = 0. This is equivalent to

(6.68) E0
`

(
F(X)

(∫
I

ut(dXt + λXt−dt)
))

= E0
` (DuF(X)) ,

which may be interpreted as a probabilistic analogue of (6.63) for the reciprocal class of the exponential
decay process.

The rest of this section is devoted to the proof of the converse of the above lemma in
terms of a characterization of the reciprocal class.
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Theorem 6.69. Assume that Q is an arbitrary measure on J1(I) such that η ∈ L1(Q). Then Q is
in R(P`) if and only if the duality formula

(6.70) EQ (F(X)δ(u)) = EQ (DuF(X)) − EQ

(
F(X)

∫
I

ut

∫
[t,1]

Ξ`(s,Xs−)dXsdt
)

holds for every F ∈ SJ1 and u ∈ E with 〈u〉 = 0.

Proof. Note that all terms in (6.70) have a sense since Ξ` is bounded and η ∈ L1(Q). To
prove necessity we use Lemma 6.65 and the fact that elements in the reciprocal class are
mixtures of bridges of P` to extend the duality formula to any Q ∈ R(P`) with integrable
increments, see also the first part of the proof of Theorem 6.39.

For the converse it is sufficient to show that Qx is in R(P`) for Q0-almost every x ∈ R.
We moreover assume that η < m∗ is bounded with respect to Qx for some m∗ ∈ N, since
the duality formula (6.70) still holds under Qx( . |η ≤ m∗) for any m∗ ∈ N and the bridges
coincide with those of Qx( . ) for endpoint values smaller than x + m∗ + 1.

Denote by dA the intensity of Qx. By dominated convergence the duality formula (6.70)
still holds for any bounded u : I → R with 〈u〉 = 0. Let u be the indicator function of a
Lebesgue null-set in I and put F ≡ 1. We apply the duality formula (since 〈u〉 = 0) and get

Ex
Q(δ(u)) = Ex

Q

(∫
I

usdXs

)
= Ex

Q

(∫
I

usdAs

)
= 0.

But the random variable
∫
I

usdAs ≥ 0 is non-negative, therefore
∫
I

usdAs = 0 Qx-a.s. which
implies that dA� dt holds Qx-a.s.

In particular there exists a predictable process a : I× J1(I)→ R+ that is dt⊗Qx-a.e. well
defined such that dAt = atdt. Let us now compute a nice version of a. Take any F ∈ SJ1 that
is F[0,s]-measurable and u ∈ E such that u = u1(s,t] for s, t ∈ I, s < t. We apply (6.70) to F
and ũ := u − 〈u〉(t − s)−11(s,t]:

Ex
Q(F(X)

∫
[s,t]

urardr) = Ex
Q(F(X)

∫
[s,t]

urdXr)

= Ex
Q(F(X)δ(ũ)) +

〈u〉
t − s
Ex
Q(F(X)

∫
[s,t]

dXr)

= −Ex
Q

(
F(X)

∫
[s,t]

ur

∫
[r,1]

Ξ`(v,Xv−)dXvdr
)

+

∫
[s,t]

urE
x
Q

(
F(X)

Xt − Xs

t − s

)
dr

+
〈u〉

t − s
Ex
Q

(
F(X)

∫
[s,t]

∫
[r,1]

Ξ`(v,Xv−)dXvdr
)
.

Fubini’s theorem implies that for s ≤ s′ ≤ t

Ex
Q(a(s′)|F[0,s]) = Ex

Q

(
−

∫
[s′,1]

Ξ`(r,Xr−)dXr

+
1

t − s

[
Xt − Xs +

∫
[s,t]

∫
[r,1]

Ξ`(v,Xv−)dXvdr
]F[0,s]

)
,

and taking s′ = s gives

a(s) = Ex
Q

(
−

∫
[s,1]

Ξ`(r,Xr−)dXr +
1

t − s

[
Xt − Xs +

∫
[s,t]

∫
[r,1]

Ξ`(v,Xv−)dXvdr
]F[0,s]

)
=

1
t − s
Ex
Q

(
Xt − Xs −

∫
[s,t]

∫
[s,r]

Ξ`(v,Xv−)dXvdr
F[0,s]

)
.
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In particular this representation does not depend on t ∈ (s, 1]. We conclude that the intensity
of Qx is of the form a(s)ds with

(6.71) a(s) =
1

t − s
Ex
Q

(∫
[s,t]

(1 − (t − r)Ξ`(r,Xr−)) dXr

F[0,s]

)
, ds ⊗Qx-a.e.

Let us prove thatQx has the Markov property. Take some t ∈ I and defineQ′ := Qx( . |F[0,t])
andQ′′ := Qx( . |Xt), which we interpret as probability distributions on F[t,1] that areQx-a.s.
well defined. The integration by parts formula (6.70) still holds if u = u1[t,1] and 〈u〉 = 0.
Using (6.71) we see that for s ≥ t the point process Q′ has intensity a1,sds, where

a1(s) =
1

t − s
EQ′

(∫
[s,t]

(1 − (t − r)Ξ`(r,Xr−)) dXr

F[0,s]

)
,

and Q′′ has intensity a2,sds with

a2(s) =
1

t − s
EQ′′

(∫
[s,t]

(1 − (t − r)Ξ`(r,Xr−)) dXr

F[0,s]

)
.

By the “tower property” of conditional expectation we deduce a1(s)ds = a2(s)ds. Thus the
law ofQx, whether conditioned onF[0,t] or Xt, is the same onF[t,1], in other wordsF[0,t] and
F[t,1] are independent given Xt. This is exactly the Markov property from Definition 4.1.

In particular the intensity of X under Qx is given by

(6.72) k(s,Xs−)ds, with k(s, y) :=
1

t − s
Ex
Q

(∫
[s,t]

(1 − (t − r)Ξ`(r,Xr−)) dXr

 Xs = y
)
,

where k : I × R → R+ is a measurable function that is ds ⊗ Qx(Xs ∈ dy)-a.e. well defined.
The measurability of k is a consequence of the measurability properties of the conditional
expectation.

We now check, that the probabilities Qx(Xs ∈ y) qualitatively behave like probabilities
in the reciprocal class of P` in the sense of Remark 6.57. This is necessary to establish a
regular behaviour ofQx and k in view of later computations. Fix any y = x + m with m ∈N
and define the set I(y) := {s ∈ I : Qx(Xs = y) > 0}. Since unit jump functions are càdlàg we
immediately deduce that this set is of the formI(y) = ∪i≥1[si, si+1) orI(y) = ∪i≥1[si, si+1)∪{1}
for some s1 < s2 < . . . . Using (6.72) in t = 1 we can bound k(s, y) ≤ 1

1−s (K +EQ(η)), such that
if s ∈ I(y) we have [s, 1) ⊂ I(y): A finite intensity implies a positive probability of staying
in y (this is easy to see using the explicit distribution given in Remark 6.50). If we define
sy := inf{s ∈ I(y)} then I(y) = [sy, 1) or I(y) = [sy, 1] and k(s, y) < ∞ for s ∈ I(y). Again by
(6.72) the function s 7→ k(s, y) is continuous on I(y) since

k(s, y) =
1

t − s

∫
[s,t]
Ex
Q

(
(1 − (t − r)Ξ`(r,Xr−)) k(r,Xr−)|Xs = y

)
dr.

Clearly I(x) = [0, 1) or I(x) = [0, 1]. Take the smallest y = x + m such that sy+1 > 0 and let
Qx(Xsy+1+ε = y + 1|Xsy+1 = y) =: δ(ε) > 0 for any ε > 0 small. Assume that ε||Ξ`||∞ < 1, then
using (6.72) we get the contradiction

0 = k(sy+1, y) ≥
1
ε
Ex
Q

(
(1 − ε||Ξ`||∞)(Xsy+1+ε − Xsy+1)|Xsy+1 = y

)
≥ (1 − ε||Ξ`||∞)δ(ε) > 0.

Therefore sy = 0 or sy = 1 for all y = x + m, m ∈N.
Let us now compute the first time derivative of k(s, y) for some s ∈ (0, 1) and y with

Qx(Xs = y) > 0. To show that k(s, y) is differentiable in s we will use (6.72) to express
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k(s + ε, y) − k(s, y), where ε > 0 with s + ε < 1 (the case “ε < 0” can be treated in a similar
way). Define

H(s, t) =
1

t − s

∫
[s,t]

(
k(r,Xr−) −

∫
[s,r]

Ξ`(v,Xv−)dXv

)
dr.

We use the short notation kr = k(r,Xr−) and Ξ`,r = Ξ`(r,Xr−) and the decomposition

∫
[s,t]

(
kr −

∫
[s,r]

Ξ`,vdXv

)
dr =

∫
[s+ε,t]

(
kr −

∫
[s+ε,r]

Ξ`,vdXv

)
dr

+

∫
[s,s+ε]

(
kr −

∫
[s,r]

Ξ`,vdXv

)
dr −

∫
[s+ε,t]

∫
[s,s+ε]

Ξ`,vdXvdr

when developing

H(s, t) −H(s + ε, t)

=
(t − s − ε)

∫
[s,t]

(
kr −

∫
[s,r] Ξ`,vdXv

)
dr − (t − s)

∫
[s+ε,t]

(
kr −

∫
[s+ε,r] Ξ`,vdXv

)
dr

(t − s)(t − s − ε)

=
−ε

∫
[s+ε,t]

(
kr −

∫
[s+ε,r] Ξ`,vdXv

)
dr + (t − s − ε)

∫
[s,s+ε]

(
kr −

∫
[s,r] Ξ`,vdXv

)
dr

(t − s)(t − s − ε)

+
−

∫
[s+ε,t]

∫
[s,s+ε] Ξ`,vdXvdr

(t − s)
.

This can be rewritten into

(6.73) H(s, t) = H(s + ε, t) −
ε

t − s
H(s + ε, t) +

ε
t − s

H(s, s + ε) −
t − s − ε

t − s

∫
[s,s+ε]

Ξ`,rdXr.

We are going to use

k(s, y) = Ex
Q

(
H(s, t)|Xs = y

)
and k(s + ε, y) = Ex

Q

(
H(s + ε, t)|Xs+ε = y

)
.

But with (6.73) this implies

k(s, y) = EQ

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs = y
)
.

We already know that the intensity k(s, y) is continuous in s ∈ I and locally bounded. Thus
the following short time expansions hold:

Qx(Xs+ε = y|Xs = y) = 1 − εk(s, y) + O(ε2)

Qx(Xs+ε = y + 1|Xs = y) = εk(s, y) + O(ε2)

Qx(Xs+ε > y + 1|Xs = y) = O(ε2),
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see Remark 6.50. But then

k(s, y) = Ex
Q

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs = y
)

= Ex
Q

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs+ε = y,Xs = y
)
Qx(Xs+ε = y,Xs = y)

+Ex
Q

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs+ε = y + 1,Xs = y
)
Qx(Xs+ε = y + 1|Xs = y)

+Ex
Q

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs+ε > y + 1,Xs = y
)
Qx(Xs+ε > y + 1|Xs = y).

The first term is

Ex
Q

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs+ε = y,Xs = y
)
Qx(Xs+ε = y,Xs = y)

= Ex
Q

(
H(s + ε, t)|Xs+ε = y

)
(1 − εk(y, s) + O(ε2))

= k(s + ε, y) − εk(s + ε, y)k(s, y) + O(ε2).

The second term is

Ex
Q

(
H(s + ε, t) −

∫
[s,s+ε]

Ξ`,rdXr

 Xs+ε = y + 1,Xs = y
)
Qx(Xs+ε = y + 1|Xs = y)

=
(
k(s + ε, y + 1)

)
(εk(y, s) + O(ε2)) − (Ξ`(s, y) + O(ε))(εk(y, s) + O(ε2))

= εk(s + ε, y + 1)k(s, y) − εΞ`(s, y)k(s, y) + O(ε2).

The third term is of order O(ε2). Using these expansions we get

1
ε

(
k(s + ε, y) − k(s, y)

)
= k(s + ε, y)k(s, y) − k(s + ε, y + 1)k(s, y) + Ξ`(s, y)k(s, y) + O(ε)

→ k(s, y)
(
k(s, y) − k(s, y + 1) + Ξ`(s, y)

)
,(6.74)

where the last equality follows from the continuity of k. Under the condition, that k(t, y) > 0,
this is Ξk(t, y) = Ξ`(t, y).

In particular (6.74) represents an ordinary differential equation satisfied by k(., y). We
use this to check the qualitative behavior of the intensity under Qx in the sense of Remark
6.57. Assume that k(s, y) = 0 for some s ∈ I. Since the above ordinary differential equation
in has a unique solution therefore k(., y) ≡ 0 on I. Thus for y = x + m with Qx(Xs = y) > 0
we have k(., y) ≡ 0 or k(., y) > 0 on I, and in the first case Qx(X. = y + 1) ≡ 0 whereas in
the second case Qx(X. = y + 1) > 0 on I. In particular, by our assumption that η ≤ m∗ is
bounded Qx-a.s. we know that k(., x + m∗) ≡ 0.

The rest of the argument is similar to the second part of the proof of Theorem 6.58. For
y′ = x + n′ ≤ x + m∗ such that Qx(X1 = y′) > 0 we may define

h(t, x) := c(t), and h(t, x + m) := 1{m≤m∗}

m−1∏
j=0

k(t, x + j)
`(t, x + j)

c(t), with c(t) := ce−
∫

[0,t](k(s,y′)−`(s,y′))ds,

since in this case c(t) is strictly positive. Here c is a normalization constant such that
Ex
`(h(1,X1)) = 1, which exists since we work under the assumption that η ≤ m∗ is bounded

under Qx, and k(1, y) is well defined and finite if Qx(X1 = y) > 0. If there exists y′′ =

x + n′′ ≥ y′ with k(., y′′) ≡ 0 we put h(., y′′+ 1) ≡ 0. Then for x ≤ y < y′′ the derivative (6.74)
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implies Ξk(t, y) = Ξ`(t, y). As we have seen in the proof of Theorem 6.58 the function h is a
space-time harmonic

∂th(t, y) + `(t, y)
(
h(t, y + 1) − h(t, y)

)
= 0.

By Proposition 6.53 the h-transform h(1,X1)Px
`( . ) is a unit jump process with intensity

k(t,Xt−)dt. Since the intensity of a unit jump process characterizes the distribution, we
identify Qx = hPx

` as that h-transform, and in particular Qx
∈ R(P`). �

Example 6.75. In Examples 6.62 and 6.67 we have treated the exponential decay process X with
intensity `(t)dt = λe−λtdt under P`. The physical description of time-development of the number
of decaying particles was given in (6.63) by

dNt

dt
= −λNt ⇔

∫
I

ut(dNt + λNtdt) = 0, ∀u ∈ E.

On the other hand, following Example 6.67 and the above characterization result, X is an exponential
decay process under Q with η ∈ L1(Q) if and only if

EQ

(
F(X)

(∫
I

utdXt + λXt−dt
))

= EQ (DuF(X)) ,

for all F ∈ SJ1 and u ∈ E with 〈u〉 = 0. The duality formula may thus be interpreted as decay
law. In this context Theorem 6.69 garuantees the existence and uniqueness (up to the endpoint
distribution) of a solution of a decay problem under the condition, that the reciprocal invariant is the
invariant of a nice unit jump process. We will generalize this interpretation of the duality formula
in the next paragraph.

The last two paragraphs are devoted to applications of Theorem 6.69 to an optimal
control problem and to the time reversal of unit jump processes.

6.7. An optimal control problem associated to the reciprocal class.
Numerous authors have been interested in optimal control problems for jump processes,

see e.g. the monographs by Brémaud [Bré81], Øksendahl, Sulem [ØS07] or Fleming, Soner
[FS06]. Privault and Zambrini introduced an optimal control problem whose solutions are
elements of reciprocal classes of Lévy processes in [PZ04]. In this paragraph we present a
similar approach to the optimal control of nice unit jump processes. Our results are based
on an entropy-minimization similar to the one used for continuous processes in § 5.5.

In a few words the following control problem is the minimization of a cost function given
fixed endpoint distributions. Let µ01 be some probability onR2, in the following definition
P is the law of a Poisson process with initial condition P0(dx) = µ0(dx) := µ01(dx ×R). The
class of admissible unit jump processes is

(6.76) Γ(µ01) :=
{
Q : a unit jump processes such that Q01 = µ01 and Q� P

}
.

Note that this set may very well be empty. A necessary and sufficient condition for
non-emptiness is µ01 � P01, where P0 = µ0. By Girsanov’s theorem the condition Q � P
ensures that the unit jump processQ has an intensity of the form γtdt, where γ : I×J1(I)→
R is predictable. We will writePγ instead ofQ. This notation is consistent with the notation
P` for nice unit jump processes with intensity `(t,Xt−)dt.

Given ε > 0 and bounded functions A : I × R → [ε,∞), Φ : I × R → R such that
A(., x),Φ(., x) ∈ C1

b(I) for all x ∈ R, we define a Lagrangian by

(6.77) L(Xt−, γt, t) := γt logγt + γt log A(t,Xt−) −Φ(t,Xt−).
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The cost function associated to the above Lagrangian is defined by

(6.78) J(Pγ) = Eγ

(∫
I

L(Xt−, γt, t)dt
)

= Eγ

(∫
I

(
γt logγt + γt log A(t,Xt−) −Φ(t,Xt−)

)
dt

)
.

As in the diffusion case, we will make assumptions on the endpoint distribution. In
particular we assume that µ01 = µ0 ⊗ µ1 with

(6.79) µ0 = δ{x} and µ1 �

∞∑
i=0

δ{x+i} with µ1({x + i}) > 0, such that
∑
i≥1

iµ1({x + i}) < ∞.

Clearly Γ(µ01) is non-empty in this case, and for everyQ ∈ Γ(µ01) we have η ∈ L1(Q). We
may now state the optimal control problem.

Definition 6.80. The optimal control problem consists of minimizing the cost function (6.78) in
the class Γ(µ01) of admissible unit jump processes.

Under our assumptions on the endpoint distribution and the cost potential A and Φ the
optimal control problem has the following solution.

Proposition 6.81. Let µ01 be as in (6.79), then the unique minimizer of the cost (6.78) in the class
Γ(µ01) is the Markov unit jump processPx

k with intensity k(t,Xt−) = (eA(t,Xt−))−1 h(t,Xt−+1)
h(t,Xt−) , where

(6.82) h(t, y) = Ex
(eA)−1

(
h(X1) exp

(
−

∫
[t,1]

(
Φ(t,Xt−) + (eA(t,Xt−))−1

)
dt

) Xt = y
)
,

and we used

(6.83) h(y) = e(y−x)!µ1({y})
[
Ex,y

(
exp

(
−

∫
I

(log A(t,Xt−) + 1)dXt +

∫
I

(Φ(t,Xt−) + 1)dt
))]−1

Proof. We introduce an auxiliary measure on J1(I) by

(6.84) Q̃x := GA,Φ with GA,Φ := exp
(
−

∫
I

(log A(t,Xt−) + 1)dXt +

∫
I

(Φ(t,Xt−) + 1)dt
)
Px.

Note that Q̃x is not necessarily a probability measure, but is equivalent to Px by bounded-
ness assumptions on A and Φ. Every Px

γ ∈ Γ(µ01) is absolutely continuous with respect to
Px with Girsanov density

(6.85) Gγ := exp
(
−

∫
I

(
γt − 1

)
dt

) η∏
i=1

γTi = 1Gγ>0 exp
(∫
I

logγtdXt −

∫
I

(
γt − 1

)
dt

)
.

Assume that J(Px
γ) is finite for some Px

γ ∈ Γ(µ01), then

J(Pγ) = Ex
γ

(∫
I

(
γt logγt + γt log A(t,Xt−) −Φ(t,Xt−)

)
dt

)
= Ex

γ

(∫
I

logγtdXt −

∫
I

(
γt − 1

)
dt +

∫
I

(log A(t,Xt−) + 1)dXt −

∫
I

(Φ(t,Xt−) + 1)dt
)
,

and using the definitions of the densities (6.84) and (6.85) we get

J(Pγ) = Ex
γ

(
log Gγ

− log GA,Φ
)

= Ex
γ

(
log

(dPx
γ

dPx
dPx

dQ̃x

))
= Ex

γ

(
log

(dPx
γ

dQ̃x

))
.

We use the multiplication formula

dPx
γ

dQ̃x
(ω) =

dPx
γ,1

dQ̃x
(ω(1))

dPx,ω(1)
γ

dQ̃x,ω(1)
(ω), ∀ω ∈ J1(I),
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but the first term must be nothing else than the function h(y) defined in (6.83): Necessarily
Px
γ,1 = µ1 and the endpoint distribution of Q̃x is given by

Q̃x
1({x + m}) = Ex

(
1{x+m}(X1)GA,Φ

)
= Ex,x+m

(
GA,Φ

) e−1

m!
.

Therefore

J(Pγ) = Ex
γ
(
log h(X1)

)
+ Ex

γ

log

dPx,X1
γ

dQ̃x,X1


 .

The first term is independent of γ by the boundary condition in Γ(µ01) and the second
term is zero if and only if Px,y

γ = Q̃x,y holds Px
γ,1-a.s. But by construction the h-transform

hQ̃x := h(X1)Q̃x would satisfies this condition and moreover hQ̃x
∈ Γ(µ01).

Let us now identify the form of the intensity of the solution hQ̃x. We want to write h(X1)
in the form of a Doléans-Dade exponential, therefore we need a Feynman-Kac formula for
unit-jump processes.

Lemma 6.86. Let Ã : I×R→ [ε,∞), Φ̃ : I×R→ R for some ε > 0 be bounded and h : R→ R+

such that h(X1) ∈ L1(Px
Ã

), where Px
Ã

is a unit jump process with intensity Ã(t,Xt−)dt. Then

h(t, y) := Ex
Ã

(
h(X1)e−

∫
[t,1] Φ̃(s,Xs−)ds

 Xt = y
)

is a solution of the Feynman-Kac equation

(6.87) ∂th(t, y) + Ã(t, y)(h(t, y + 1) − h(t, y)) − Φ̃(t, y)h(t, y) = 0,

in particular h(., y) ∈ C1(I) for all y = x + m, m ∈N.

Proof. The proof is similar to the proof of the Kolmogoroff backward equation in Lemma
6.55. The explicit definition of h(t, x) may be written as

h(t, y) =

∞∑
m=0

h(y + m)pΦ̃
Ã

(t, y; 1, y + m)

=

∞∑
m=0

h(y + m)
∫

[t,1]

∫
[t,tm]
· · ·

∫
[t,t2]

f Φ̃
y (t1, . . . , tm, t)dt1 · · · dtm,

where

f Φ̃
y (t1, . . . , tm, t) := Ã(t1, y)e−

∫
[t,t1](Φ̃(s,y)+Ã(s,y))ds

· · ·

· · · Ã(tm, y + m − 1)e−
∫

[tm−1 ,tm](Φ̃(s,y+m−1)+Ã(s,y+m−1))dse−
∫

[tm ,1](Φ̃(s,y+m)+Ã(s,y+m))ds.
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Clearly f Φ̃
y (t1, . . . , tm, t) is bounded and differentiable in t, and the derivative is given by

∂t f Φ̃
y (t1, . . . , tm, t) = (Φ̃(t, y) + Ã(t, y)) f Φ̃

y (t1, . . . , tm, t). This implies

1
ε

(
pΦ̃

Ã
(t + ε, y; 1, y + m) − pΦ̃

Ã
(t, y; 1, y + m)

)
=

1
ε

[∫
[t+ε,1]

· · ·

∫
[t+ε,t2]

f Φ̃
y (t1, . . . , tm, t + ε)dt1 · · · dtm −

∫
[t,1]
· · ·

∫
[t,t2]

f Φ̃
y (t1, . . . , tm, t)dt1 · · · dtm

]
=

1
ε

[∫
[t+ε,1]

· · ·

∫
[t+ε,t2]

(
f Φ̃
y (t1, . . . , tm, t + ε) − f Φ̃

y (t1, . . . , tm, t)
)

dt1 · · · dtm

−

∫
[t,t+ε]

∫
[t,tm]
· · ·

∫
[t,t2]

f Φ̃
y (t1, . . . , tm, t)dt1 · · · dtm − . . .

· · · −

∫
[t,1]

∫
[t,tm]
· · ·

∫
[t,t+ε]

f Φ̃
y (t1, . . . , tm, t)dt1 · · · dtm,

which by dominated convergence goes to

ε→0
→

∫
[t,1]
· · ·

∫
[t,t2]

(Φ̃(t, y) + Ã(t, y)) f Φ̃
y (t1, . . . , tm, t)dt1 · · · tm

−

∫
[t,1]
· · ·

∫
[t,t3]

f Φ̃
y (t, t2, · · · , tm, t)dt2 · · · dtm

= (Φ̃(t, y) + Ã(t, y))pΦ̃
Ã

(t, x; 1, x + m) − Ã(t, y)pΦ̃
Ã

(t, y + 1; 1, y + m).

The same computations apply to the limit of −1
ε (pΦ̃

Ã
(t − ε, x; 1, x + m) − pΦ̃

Ã
(t, x; 1, x + m). The

sum over the first term is
∞∑

m=0

h(y + m)(Φ̃(t, y) + Ã(t, y))pΦ̃
Ã

(t, y; 1, y + m) = (Φ̃(t, y) + Ã(t, y))Ex
Ã

(h(X1)e−
∫

[t,1] Φ̃(s,Xs−)ds
|Xt = y)

= (Φ̃(t, y) + Ã(t, y))h(t, y),

and the sum over the second term is
∞∑

m=1

h(y + m)Ã(t, y)pΦ̃
Ã

(t, y + 1; 1, y + m) =

∞∑
m=1

h(y + 1 + m − 1)Ã(t, y)pΦ̃
Ã

(t, y + 1; 1, y + m)

= Ã(t, y)Ex
Ã

(h(X1)|Xt = y + 1)

= Ã(t, y)h(t, y + 1),

and we see that (6.87) holds. �

Let us resume the proof of Proposition 6.81. Since h(., y) is differentiable and h(t,Xt−) > 0
holds hQ̃x-a.s., we may apply the Itô-formula

log h(1,X1) = log h(0, x) +

∫
I

∂t log h(t,Xt−)dt +

∫
I

log(h(t,Xt− + 1) − log h(t,Xt−))dXt.

Using this we can rewrite

h(X1)Q̃x = 1{h(X1)>0} exp
(∫
I

∂t log h(t,Xt−)dt +

∫
I

log
(

h(t,Xt− + 1)
h(t,Xt−)

)
dXt

)
GΦ,APx.
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Now we apply the Feynman-Kac equation of Lemma 6.86 with Ã(t, y) = (eA(t, y))−1 and
Φ̃(t, y) = −Φ(t, y) − (eA(t, y))−1, then

∂t log h(t, y) = −(eA(t, y))−1
(

h(t, y + 1)
h(t, y)

− 1
)
−Φ(t, y) − (eA(t, y))−1

= −(eA(t, y))−1
(

h(t, y + 1)
h(t, y)

)
−Φ(t, y),(6.88)

and we get

h(X1)Q̃x = 1{h(X1)>0} exp
(∫
I

(
−(eA(t,Xt−))−1

(
h(t,Xt− + 1)

h(t,Xt−)

)
−Φ(t,Xt−)

)
dt

+

∫
I

log
(

h(t,Xt− + 1)
h(t,Xt−)

)
dXt −

∫
I

log(eA(t,Xt−))dXt +

∫
I

(Φ(t,Xt−) + 1) dt
)
Px

= 1{h(X1)>0} exp
(∫
I

log k(t,Xt−)dXt −

∫
I

(k(t,Xt−) − 1) dt
)
Px,

where k is defined as in the statement of the proposition. By Girsanov’s theorem we
recognize that Px

k = h(X1)Q̃x is a unit jump process with intensity k(t,Xt−)dt, moreover Px
k

has the Markov property since the density with respect to Px factorizes in the sense of
Lemma 4.4. �

Remark 6.89. Note that the intensity of the solution given by (6.82) and (6.83) has a rather peculiar
dependence on the potentials A and Φ. This is due to the fact, that we wanted to keep the form of
the Lagrangian (6.77) as simple as possible, and close to the diffusion case presented in § 5.5. If e.g.
we put Ã := (eA)−1 and Φ̃ := Φ + 1 we get an alternative formulation of the Lagrangian

L̃(Xt−, γt, t) = γt logγt − γt − 1 − γt log Ã(t,Xt−) − Φ̃(t,Xt−),

and the intensity of the solution of the associated optimal control problem is then given by k(t, y) =

Ã(t, y) h̃(t,y+1)
h̃(t,y)

with

h̃(y) = e(y − x)!µ1({y})
[
Ex,y

(∫
I

log Ã(t,Xt−)dXt +

∫
I

Φ̃(t,Xt−)dt
)]−1

and

h̃(t, y) = Ex
Ã

(
h(X1) exp

(
−

∫
[t,1]

(Φ̃(t,Xt−) + Ã(t,Xt−) − 1)dt
) Xt = y

)
.

Using the above proposition we may now state sufficient conditions on nice unit jump
processes to be the solution of the optimal control problem in terms of the reciprocal
invariant.

Proposition 6.90. Let µ01 be as in (6.79) and assume that there exists a bounded ψ : I ×R→ R,
such that ψ(., y) ∈ C1

b(I) for every y = x + m with m ∈ N, that is solution of the differential
equation

(6.91) 0 = ∂tψ(t, y) + (eA(t, y))−1eψ(t,y+1)−ψ(t,y) + Φ(t, y),

and subject to the normalization condition Ex
Q̃

(eψ(1,X1)) = 1, where Q̃x is defined in (6.84). Define

k(t, y) = (eA(t, y))−1eψ(t,y+1)−ψ(t,y). Then a unit jump process Qx
∈ Γ(µ01) is the solution of the

optimal control problem if and only if the duality formula

(6.92) Ex
Q (F(X)δ(u)) = Ex

Q (DuF(X)) − Ex
Q

(
F(X)

∫
I

ut

∫
[t,1]

Ξk(s,Xs−)dXsdt
)
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holds for every F ∈ SJ1 and u ∈ E with 〈u〉 = 0.

Proof. Put h(t, y) := eψ(t,y) for y = x + m and m ∈ N. Then k(t, y) = (eA(t, y))−1 h(t,y+1)
h(t,y) , and

Px
k = h(1,X1)Q̃x where h(1, x + m) > 0 for all m ∈ N by boundedness assumption on ψ.

Proposition 6.81 implies that if a unit jump process Qx
∈ Γ(µ01) is the minimizer of the cost

function (6.78) then there exists a function h̃ : R → R+ such that Qx = h̃(X1)Q̃x. But then
Qx = h(1,X1)−1h̃(X1)Px

k is in the reciprocal class of Pk and thus the duality formula (6.92)
holds.

If on the other hand the above duality formula holds for some Qx
∈ Γ(µ01), we know

by Theorem 6.69 that Qx is in the reciprocal class of Px
k and therefore of the form h̃(X1)Q̃x

for some h̃ : R → R+. By Proposition 6.81 we deduce that Qx minimizes the cost function
(6.78). �

Using the Feynman-Kac formula we present a dynamical interpretation of the invariant
Ξk in terms of the cost-potentials A and Φ. By (6.88) we have

∂t log h(t, y) = −(eA(t, y))−1 h(t, y + 1)
h(t, y)

−Φ(t, y),

and we insert the definition

k(t, y) = (eA(t, y))−1 h(t, y + 1)
h(t, y)

to prove

(6.93) −Ξk(t, y) = ∂t log A(t, y) + Φ(t, y + 1) −Φ(t, y).

Thus we may re-write the duality formula (6.92) as

Ex
Q (F(X)δ(u)) = Ex

Q (DuF(X))

+Ex
Q

(
F(X)

∫
I

ut

∫
[t,1]

(
∂t log A(s,Xs−) + Φ(s,Xs− + 1) −Φ(s,Xs−)

)
dXsdt

)
Let us illustrate this interpretation of the reciprocal invariant in two simple examples.

Example 6.94. The reciprocal class of the Poisson process is characterized by the fact, that the
invariant Ξk = 0 is zero. By (6.93) this is e.g. the case for a constant potential A ∈ [ε,∞) and
Φ ∈ C1

b(I). Thus the reciprocal class of a Poisson process contains all minimizers of the cost function

J(Pγ) = Eγ

(∫
I

(γt logγt − γt log A −Φ(t))dt
)
,

under the boundary condition µ01 = δ{x} ⊗ µ1 given in (6.79).

Example 6.95. The reciprocal class of the exponential decay process X with rateλ > 0 has reciprocal
invariant Ξk(t, y) = −λ, see Examples 6.62 and 6.67. Using (6.93) this invariant is e.g. associated
to the potentials A(t, y) = ceλt with c > 0 and Φ ∈ C1

b(I). Thus the reciprocal class of the
exponential decay process with rate λ > 0 contains the minimizers of the cost function

J(Pγ) = Eγ

(∫
I

(γt logγt − (c + λt)γt −Φ(t))dt
)
,

under the boundary condition µ01 = δ{x} ⊗ µ1.
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6.8. Time reversal of unit jump processes.
On the space J1(I) we define the time reversal as follows.

Definition 6.96. Let Q be any unit jump distribution on J1(I). The time reversed unit jump
process Q̂ is defined as the image of Q under the transformation

R : J1(I)→ J1(I), ω = (x, {t1, . . . , tm}) 7→ ω̂ = (−x −m, {1 − tm, . . . , 1 − t1}).

In comparison to the time reversal of continuous diffusions (5.80) we have to change the
sign of the canonical process to get a process that still jumps up in the sense that if X̂ := X◦R
then X̂t = −X(1−t)−. Elliott and Tsoi have investigated time reversed unit jump processes
by computing the backward intensities of the form Q(Xt−ε − Xt|Xt) for small ε > 0. Our
concept of time-reversal is equivalent, but the results are different than those of [ET90]. We
compute the intensity of a time-reversed nice unit jump process and describe the behavior
of the reciprocal classes of nice unit jump processes under time-reversal.

By definition we have Q̂(F) = Q(F ◦ R) for any bounded functional F : J1(I) → J1(I). If
Q is stochastically continuous the endpoint distribution of the reversed process is

Q̂(X0 ∈ dx,X1 ∈ dy) = Q(X0 ∈ −dy,X1 ∈ −dx).

If i ≤ η = X1 − X0 we also have Ti ◦ R = 1 − Tη+1−i.
In the unit jump process context, no derivation of the intensity of a reversed nice unit

jump process similar to the result for Brownian diffusions in Lemma 5.82 seems to be known
yet. We compute a convenient representation of the intensity in the following proposition.

Proposition 6.97. LetPx
` be the law of a nice unit jump process starting in x ∈ R. ThenQ := Px

`◦R
is Markov and has intensity ˆ̀(t,Xt−)dt with

(6.98) ˆ̀(t, y) = `(1 − t,−y − 1)
px
`(1 − t,−y − 1)

px
`
(1 − t,−y)

,

with px
`(t, y) = Px

`(Xt = y) > 0 for y = x + m, m ∈N.

Proof. Let us remark that Px
` is the law of a unit jump process with intensity `(t,Xt−)dt if

and only if for every f ∈ C∞b (I ×R,R) the process

t 7→ f (t,Xt) −
∫

[0,t]

[
∂t f (s,Xs−) + `(s,Xs−)

(
f (s,Xs− + 1) − f (s,Xs−)

)]
ds

is a martingale with respect to Px
` (the necessity follows easily from Itô’s formula, for

the sufficiency see e.g. the monograph by Jacod [Jac79]). Take any f ∈ C∞b (I × R) and
g ∈ C∞b (R), then

Ex
`

(
f (s,Xs)g(Xt)

)
= Ex

`

(
f (s,Xs)g(s,Xs)

)
=

∞∑
n=0

f (s, x + n)g(s, x + n)px
`(s, x + n),

where g(s,Xs) := Ex
`

(
g(Xt)|Xs

)
is a space-time harmonic function and px

`(s, x+n) = p`(0, x; s, x+

n) is the transition probability. We use a trick to develop this term that is also used in the
diffusion case (see e.g. Haussmann, Pardoux [HP86]) to get

=

∞∑
n=0

f (t, x + n)g(t, x + n)px
`(t, x + n) −

∫
[s,t]

d
dt

 ∞∑
n=0

f (r, x + n)g(r, x + n)px
`(r, x + n)

 dr

= Ex
`

(
f (t,Xt)g(Xt)

)
−

∫
[s,t]

d
dt

 ∞∑
n=0

f (r, x + n)g(r, x + n)px
`(r, x + n)

 dr.
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We may apply the product rule to develop the last term∫
[s,t]

 ∞∑
m=0

∂t f (r, x + m)g(r, x + m)px
`(r, x + m)

+ f (r, x + m)∂tg(r, x + m)px
`(r, x + m) + f (r, x + m)g(r, x + m)∂tpx

`(r, x + m)
)

dr.

Here we may use the fact that g(t, y) is solution of the Kolmogoroff backward equation and
px
`(t, y) of the Kolmogoroff forward equation. The backward equation has been derived in

Lemma 6.55, as for the forward equation we give a similar proof in the following Lemma.

Lemma 6.99. The counting density px
`(r, x + m) := Px

`(Xr = x + m) is a solution of the Kolmogoroff

forward equation

(6.100) ∂tpx
`(r, x + m) = `(r, x + m − 1)px

`(r, x + m − 1) − `(r, x + m)px
`(r, x + m).

Proof. Let y := x + m, by definition

px
`(r, y) = Px

`(Tm ≤ r,Tm+1 > r)

=

∫
[0,r]m

[
`(t1, x)e−

∫
[0,t1] `(s,x)ds

· · · `(tm, x + m − 1)e−
∫

[tm−1 ,tm] `(s,x+m−1)ds

e−
∫

[tm ,r] `(s,x+m)ds
]
1{0≤t1<···<tm≤r}dt1 · · · dtm

=

∫
[0,r]

∫
[0,tm]
· · ·

∫
[0,t2]

fx(t1, . . . , tm, r)dt1 · · · dtm,

where fx(t1, . . . , tm, r) is the defined by the term in the square brackets in the second line.
Clearly ∂r fx(t1, . . . , tm, r) = −`(r, x + m) fx(t1, . . . , tm, r), which we can use in the expansion

1
ε

(
px
`(r + ε, y) − px

`(r, y)
)

=
1
ε

(∫
[0,r+ε]

∫
[0,tm]
· · ·

∫
[0,t2]

fx(t1, . . . , tm, r)dt1 · · · dtm

−

∫
[0,r]

∫
[0,tm]
· · ·

∫
[0,t2]

fx(t1, . . . , tm, r)dt1 · · · dtm

)
=

1
ε

(∫
[0,r]

∫
[0,tm]
· · ·

∫
[0,t2]

(
fx(t1, . . . , tm, r + ε) − fx(t1, . . . , tm, r)

)
dt1 · · · dtm

+

∫
[r,r+ε]

∫
[0,tm]
· · ·

∫
[0,t2]

fx(t1, . . . , tm, r + ε)dt1 · · · dtm

)
,

and for ε→ 0 this converges to

1
ε

(
px
`(r + ε, y) − px

`(r, y)
)
→ −`(r, y)px

`(r, y) +

∫
[0,r]

∫
[0,tm−1]

· · ·

∫
[0,t2]

fx(t1, . . . , tm−1, r, r)dt1 · · · dtm

= −`(r, y)px
`(r, y) + `(r, y − 1)px

`(r, y − 1),

where the exchange of integration and differentiation is justified by the boundedness of
fx(t1, · · · , tm, r) and its partial derivative in r. �

Let us now resume the proof of Proposition 6.97. We insert the Kolmogoroff forward
equation (6.100) and the Kolmogoroff backward equation (6.56) to substitute the time
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derivatives of g(r, y) and px
`(r, y)

Ex
`

((
f (s,Xs) − f (t,Xt)

)
g(Xt)

)
= −

∫
[s,t]

∞∑
m=0

(
∂t f (r, x + m)g(r, x + m)px

`(r, x + m)

− f (r, x + m)`(r, x + m)(g(r, x + m + 1) − g(r, x + m))px
`(r, x + m)

+ f (r, x + m)g(r, x + m)(`(r, x + m − 1)px
`(r, x + m − 1) − `(r, x + m)px

`(r, x + m))
)

dr

= −

∫
[s,t]

∞∑
m=0

(
∂t f (r, x + m) +

[
f (r, x + m) − f (r, x + m − 1)

]
`(r, x + m − 1)

px
`(r, x + m − 1)

px
`
(r, x + m)

)
g(r, x + m)px

`(r, x + m)

= Ex
`

(
−g(Xt)

∫
[s,t]

(
∂t f (r,Xr−) +

[
f (r,Xr−) − f (r,Xr− − 1)

]
`(r,Xr− − 1)

px
`(r,Xr− − 1)

px
`
(r,Xr−)

)
dr

)
.

We can apply this to the time reversed nice unit jump process Q = Px
` ◦ R as follows

EQ
(
( f (t,Xt) − f (s,Xs))g(Xs)

)
= Ex

`

((
f (1 − (1 − t),−X1−t) − f (1 − (1 − s),−X1−s)

)
g(−X1−s)

)
= −Ex

`

(∫
[1−t,1−s]

(
∂r f (1 − r,−Xr−) +

[
f (1 − r,−Xr−) − f (1 − r,−(Xr− − 1)

]
`(r,Xr− − 1)

px
`(r,Xr− − 1)

px
`
(r,Xr−)

)
dr

)
= −EQ

(∫
[1−t,1−s]

(
−∂t f (1 − r, X̂(1−r)−) +

[
f (1 − r, X̂(1−r)−) − f (1 − r, X̂(1−r)− + 1)

]
`(r,−X̂(1−r)− − 1)

px
`(r,−X̂(1−r)− − 1)

px
`
(r,−X̂(1−r)−)

 dr


= EQ

(∫
[s,t]

(
∂t f (r, X̂r−) − ˆ̀(r, X̂r−)

(
f (r, X̂r− + 1) − f (r, X̂r−)

))
dr

)
,

where ˆ̀ is defined as in the assertion of the proposition. Since the equation holds for all
g ∈ C∞b (R) and we already know that Q has the Markov property by Lemma 5.81, the
process

f (t,Xt) −
∫

[0,t]

(
∂t f (r, X̂r−) − ˆ̀(r, X̂r−)

(
f (r, X̂r− + 1) − f (r, X̂r−)

))
dr

is a martingale with respect to Q for all f ∈ C1,2
b (I ×R). �

In particular the invariant Ξ ˆ̀(t, y) is well defined. To be able to apply the characterization
of the reciprocal class of Theorem 6.69 we have to assume that there exists an initial
condition P`,0 of the reference measure such that

P̂` is a nice unit jump process.

This implies that Ξ ˆ̀ is the invariant of the reciprocal class of a nice unit jump process. The
next result shows how the reciprocal class of a nice unit jump process is transformed by
time reversal.
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Proposition 6.101. Let Q be in the reciprocal class of P`. Then Q̂ is in the reciprocal class of P̂`,
and the reciprocal invariant is given by Ξ ˆ̀(s, y) = −Ξ`(1 − s,−y − 1).

Proof. The idea of this proof is, too identify the reciprocal class of P̂` by a duality formula
using Theorem 6.69. Take any F = f∧1(X0,T1, . . . ,Tm) ∈ SJ1 and u =

∑n−1
i=1 ui1(si,si+1] ∈ Ewith

〈u〉 = 0. Then

EQ̂(F(X)δ(u)) = EQ

(
f∧1(X̂0, T̂1, . . . , T̂n)

∫
I

usdX̂s

)
= EQ

(
f̂∧1(X1,T1, . . . ,Tn)

∫
I

ûsdXs

)
,

with F̂(X) := f̂∧1(X1,T1, . . . ,Tm) = f (−X1, 1−Tη, . . . , 1−T(η−m+1)∨1, 1, . . . , 1) and û =
∑n−1

i=1 ui1(1−ti+1,1−ti]

with 〈û〉 = 0. Clearly 〈û〉1−t =
∫

[t,1] usds = −〈u〉t. Since Q ∈ R(P`) the duality formula (6.70)
holds, thus

EQ̂(F(X)δ(u)) = EQ(F̂(X)δ(û))

= EQ(DûF̂(X)) − EQ

(
F̂(X)

∫
I

ût

∫
[t,1]

Ξ`(s,Xs−)dXsdt
)
.

The first term in the last line is

EQ
(
DûF̂(X)

)
= EQ

m∧η∑
i=1

∂i+1 f̂∧1(X1,T1, . . . ,Tm)〈û〉Ti


= EQ

−
η∧m−1∑

i=0

∂η∧m−i+1 f (−X1, 1 − Tη, . . . , 1 − T(η−m+1)∨1, 1, . . . , 1)〈û〉T(η−m+1)∨1−i


= EQ

η∧m∑
i=1

∂i+1 f∧1(X̂0, T̂1, . . . , T̂m)〈u〉T̂i


= EQ̂ (DuF(X)) ,

which is best seen under the distinction of the cases η < m, η = m and η > m. The second
term in the duality formula can be rewritten into

EQ

(
F̂(X)

∫
I

ût

∫
[t,1]

Ξ`(s,Xs−)dXsdt
)

= EQ

(
F̂(X)

∫
I

Ξ`(s,Xs−)〈û〉sdXs

)
= EQ

F̂(X)
η∑

i=1

Ξ`(Ti, x + i − 1)〈û〉Ti


= EQ

F̂(X)
η∑

i=1

Ξ`(1 − T̂η−i+1, x + i − 1)〈û〉1−T̂η−i+1


= −EQ

F̂(X)
η∑

i=1

Ξ`(1 − T̂η−i+1,−X̂T̂η−i+1
)〈u〉T̂η−i+1


= EQ

F̂(X)
η∑

i=1

(−Ξ`(1 − T̂i,−X̂T̂i−
− 1))〈u〉T̂i

 ,
and we may change the order of integration to get

EQ

(
F̂(X)

∫
I

ût

∫
[t,1]

Ξ`(s,Xs−)dXsdt
)

= EQ

(
F̂(X)

∫
I

ut

∫
[t,1]

(−Ξ`(1 − s,−X̂s− − 1))dX̂sdt
)

= EQ̂

(
F(X)

∫
I

ut

∫
[t,1]

(−Ξ`(1 − s,−Xs− − 1))dXsdt
)
.
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Thus we have shown that

EQ̂ (F(X)δ(u)) = EQ̂ (DuF(X)) − EQ̂

(
F(X)

∫
I

ut

∫
[t,1]

(−Ξ`(1 − s,−Xs− − 1))dXsdt
)
,

and can apply the characterization of the reciprocal class in Theorem 6.69. The identity
Ξ ˆ̀(t, y) = −Ξ`(1− t,−y−1) is immediate from (6.98) and the Kolmogoroff forward equation
satisfied by px

`(t, y). �

As was the case for Brownian diffusions in § 5.6 the behavior of the reciprocal class of a
nice jump process under time-reversal is symmetric.

Remark 6.102. Let A : I × R → [ε,∞) and Φ : I × R → R be the bounded potentials of the
optimal control problem of Definition 6.80. Assume that P` ∈ Γ(µ01) is the law of a nice unit jump
process such that the relation (6.93) holds. Then the reciprocal class of P` contains all solutions of
the optimal control problem associated to A and Φ. By Proposition 6.101 we have

Ξ ˆ̀(t, y) = −Ξ`(1 − t,−y − 1) = ∂t log A(1 − t,−y − 1) + Φ(1 − t,−y) −Φ(1 − t,−y − 1).

Thus the time reversed reciprocal class contains all the solutions of the optimal control problem
associated to the potentials Â(t, y) = A(1 − t,−y − 1) and Φ̂(t, y) = Φ(1 − t,−y).
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7. The reciprocal classes of pure jump processes

In this last section we study the reciprocal classes and bridges of Markov processes with
varying jump-sizes. The only result on this subject known to the author is a work by
Privault and Zambrini. In [PZ04] they derive the semimartingale decomposition of certain
Markov processes in the reciprocal class of a Lévy process with jumps. Our results are
different, since we are interested in the characterization of the whole reciprocal class, and
in particular of the bridges with fixed deterministic boundary conditions. We study pure
jump processes that only use a finite number of different jump-sizes. This setting allows
us to discuss some rather geometrical aspects concerning the distribution of the bridges of
such jump processes.

In the first paragraph we define the space of pure jump processes and present a natural
pure jump distribution, the law of a compound Poisson process. In § 7.2 we introduce
the notion of incommensurable jumps, see Definition 7.23. Our main result in the second
paragraph is Theorem 7.36. We are able to characterize the reciprocal class of a compound
Poisson process with incommensurable jumps by a duality formula. In § 7.3 we discuss
possible extensions of this characterization to the reciprocal classes of Markov jump pro-
cesses with regular jump-intensities, so called nice jump processes. Without assuming
incommensurability of jump-sizes, we are able to compare the reciprocal classes of nice
jump processes by reciprocal invariants. In addition to an “harmonic” invariant, a “gra-
dient of a potential” condition on the intensity of the nice jump process appears that is
similar to the “rotational” invariant on Brownian diffusions in Theorem 5.26.

7.1. Pure jump processes.
In this paragraph we define the canonical space of continuous time pure jump processes.

This space is large enough to admit the distribution of compound Poisson processes. In
§ 7.1.3 we prepare the discussion of the bridges of compound Poisson processes with some
examples.

7.1.1. Basic definitions.
Let Q ∈ B(Rd

∗ ) be a finite set of jump-sizes. All finite and time-ordered subsets of I ×Q
are collected in

∆I×Q :=
{
{(t1, q1), . . . , (tm, qm)} ∈ (I ×Q)m, 0 ≤ t1 < t2 < · · · < tm ≤ 1, m ∈N

}
.

Remark that the elements of Q are not numbered, a set {(t1, q1), . . . , (tm, qm)} may contain
several identical jump-sizes. The space of jump processes with jumps in Q is

(7.1) J(I,Q) :=

ω = x +

m∑
i=1

qi1[ti,1] : x ∈ Rd, {(t1, q1), . . . , (tm, qm)} ∈ ∆I×Q, m ∈N

 .
This setting includes as a special case J1(I) = J(I, {1}). Since J(I,Q) ⊂ D(I,Rd

∗ ) we use the
canonical setup induced from the space of càdlàg functions:

• The canonical jump process X : J(I,Q)→ J(I,Q) is the identity;
• Fτ := σ(Xs, s ∈ τ) for every subset τ ⊂ I.

The spaces J(I,Q) and Rd
× ∆I×Q are isomorphic through the identification

J(I,Q) 3 ω = x +

m∑
i=1

qi1[ti,1] ↔ (x, {(t1, q1), . . . , (tm, qm)}) ∈ Rd
× ∆I×Q.
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We identify ω ∈ J(I,Q) with the tuple containing the initial condition, the jumps and the
jump-times. The integer random variable that counts the total number of jumps is denoted
by η(ω) = η((x, {(t1, q1), . . . , (tm, qm)})) := m. Let T1,T2, . . . be the consecutive jump-times of
X defined by T0 := 0, Ti(ω) = Ti((x, {(t1, q1), . . . , (tm, qm)})) = ti if 1 ≤ i ≤ m and Ti(ω) := ∞ if
i > m, where∞may be interpreted as abstract cemetery time. The consecutive jump-sizes
are defined by Vi(ω) := Vi((x, {(t1, q1), . . . , (tm, qm)})) = qi if 1 ≤ i ≤ m and Vi(ω) := 0 if i > m.
We define an integer valued random measure on I ×Q by

NX :=
η∑

i=1

δ(Ti,Vi).

Clearly NX(I×Q) = η. We define the number of jumps with jump-size in B ⊂ Q up to time
t ∈ I by ηB

t := NX([0, t] × B). Then (ηB
t )t∈I is a unit jump process with initial state ηB

0 = 0.
There are several equivalent ways to define the canonical filtration.

Lemma 7.2. The canonical filtration has the following representations

F[0,t] = σ(X0,V1, . . . ,Vηt ,T1 ∧ t,T2 ∧ t, . . . )

= σ(X0,V1, . . . ,Vηt , ηs with 0 ≤ s ≤ t)

= σ(X0, η
{q}
s with s ≤ t, q ∈ Q).

where t ∈ I and t ∧∞ = t.

Proof. Similar to the proof of Lemma 6.2 this follows from the identities

Xt = X0 +
∑
i≥1

Vi1[0,t](Ti) = X0 +

ηt∑
i=1

Vi = X0 +
∑
q∈Q

qη{q}t , ∀t ∈ I.

Let us also remark that σ(ηs, s ≤ t) = σ(T1 ∧ t,T2 ∧ t, . . . ) since ηt =
∑

i≥1 1[0,t](Ti). �

In the Appendix we introduce the distributions of pure jump processes on D(I,Rd)
and a stochastic calculus associated to this class of semimartingales. Let us briefly state
the connection of pure jump distributions on D(I,Rd) and the space of pure jump paths
J(I,Q).

Remark 7.3. One can easily verify that as a subset ofD(I,Rd)

J(I,Q) =

{
ω ∈ D(I,Rd) : NX(I ×Rd

∗ ) = NX(I ×Q) < ∞, X. − X0 =

∫
[0,.]×Rd

∗

qNX(dsdq)
}
,

since these conditions hold for ω ∈ D(I,Rd
∗ ) if and and only if

ω = x +

m∑
i=1

qi1[ti,1], for some {(t1, q1), . . . , (tm, qm)} ∈ ∆I×Q, m ∈N.

But if X is a pure jump process under the probability P on D(I,Rd), as introduced in Definition
A.1 in the Appendix, we have

P

(
∃t ∈ I : Xt − X0 ,

∫
[0,t]×Rd

∗

qNX(dsdq)
)

= 0, and P(NX(I ×Rd
∗ ) < ∞) = 1.

Thus if moreover NX(I×Rd
∗ ) = NX(I×Q) holdsP-a.s., then there exists a probability P̃ on J(I,Q)

such that P(D′) = P̃(D′ ∩ J(I,Q)) for any measurable subset D′ ⊂ D(I,Rd). In particular for
Q = {1} we may call X a unit jump process under P.
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We can define one-time probability densities and transition densities for any probability
law on J(I,Q). As a reference measure we use

(7.4) Λ :=
∑
q∈Q

δ{q},

which will play the role of a reference measure for the distribution of the jumps, similar
to the role the Lebesgue measure dt on I for the distribution of the jump-times. Clearly
Λ(Q) = |Q| ∈ N, since Q was assumed to contain only a finite number of arbitrary jump-
sizes.

Remark 7.5. Any probability Q on J(I,Q) can be decomposed into

Q( . ) =

∫
Rd
Qx( . )Q0(dx).

Clearly Qx(Xt ∈ . ) � δ{x} ∗
(∑
∞

m=0(Λ(Q))−mΛ∗m
)
, where ∗m denotes the m-times convolution of a

measure with itself. The topological support of this reference measure is

(7.6) Qx := {x + q1 + · · · + qm ∈ R
d : q1, . . . , qm ∈ Q, m ∈N},

which is a countable subset of Rd. With the above decomposition we see that Q(Xt ∈ . ) �
Q0 ∗

(∑
∞

m=0(Λ(Q))−mΛ∗m
)

for any t ∈ I. We define the density of the one-time projection by

(7.7) q(t, y)

Q0 ∗

 ∞∑
m=0

(Λ(Q))−mΛ∗m


 (dy) := Q(Xt ∈ dy), y ∈ Qx.

The transition probabilities are defined in a similar fashion by

q(s, x; t, y)δ{x} ∗

 ∞∑
m=0

(Λ(Q))−mΛ∗m

 (dy) := Q(Xt = y|Xs = x) for s < t.

Since Qx is at most countable, the bridge Qx,y is well defined if and only if y ∈ Rd with
Qx(X1 = y) > 0. Therefore each bridge may be written in the form of an h-transform

(7.8) Qx,y( . ) :=
1{y}(X1)

Qx(X1 = y)
Qx( . ).

The difficult task when computing the distribution of the bridge is of course the computa-
tion of the normalizing factor Qx(X1 = y). An approach to facilitate these computations is
the following decomposition of bridges.

Remark 7.9. For m ∈N define

(7.10) Γm(x, y) :=
{
γm = (q1, . . . , qm)t

∈ Qm : x + q1 + · · · + qm = y
}
.

This set contains the possible combinations of jump-sizes that add up to y ∈ Rd starting from x ∈ Rd

with m ∈ N jumps. We necessarily have Qx(X1 = y) = 0 for every probability Q on J(I,Q) if
Γm(x, y) is empty for every m ∈ N. For γm, γ′m ∈ Γm(x, y) we write γm ' γ′m if γm and γ′m are
identical up to a permutation of their coordinates. Define Γ'm(x, y) := Γm(x, y)/ '. Then

Qx,y( . ) =

∞∑
m=0

∑
γm∈Γ'm(x,y)

Qx,y( . ∩ {(V1, . . . ,Vm)t
' γm} ∩ {η = m})

=

∞∑
m=0

∑
γm∈Γ'm(x,y)

Qx( . | (V1, . . . ,Vm)t
' γm, η = m)Qx,y((V1, . . . ,Vm)t

' γm, η = m).
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Denote #qγm := |{i : q = qi, where γm = (q1, . . . , qm)t
}| the number of repetitions of jump-size q in

the coordinates of γm. Since Xt = X0 +
∑

q∈Q qη{q}t we may rewrite the above conditional probability
as

(7.11) Qx( . | (V1, . . . ,Vm)t
' γm, η = m) = Qx( . | η{q}1 = #qγm, ∀q ∈ Q).

By Lemma 7.2 the joint law of the unit jump processes (η{q}, q ∈ Q) determines the law of X up to the
deterministic initial state X0 = x. Thus for γm ∈ Γ'm(x, y) the law of the bridge Qx,y is determined
by the law of the bridges of unit jump processes

Qx(η{q} ∈ . | (V1, . . . ,Vm)t
' γm, η = m) = Qx(η{q} ∈ . | η{q̃}1 = #q̃γm, η

{q̃}
0 = 0, ∀q̃ ∈ Q).

If the processes (η{q}, q ∈ Q) are independent with respect to Q we have

Qx(η{q} ∈ . | η{q̃}1 = #q̃γm, η
{q̃}
0 = 0, ∀q̃ ∈ Q) = Qx(η{q} ∈ . | η{q}1 = #qγm, η

{q}
0 = 0).

This is exactly the bridge of the unit jump process η{q} from η
{q}
0 = 0 to η{q}1 = #qγm under Qx.

In the next paragraph we introduce an important class of processes for which the unit
jump processes (η{q}, q ∈ Q) are independent.

7.1.2. Compound Poisson processes.
We already mentioned compound Poisson processes in Sections 2 and 3. The space of

jump processes J(I,Q) is large enough to admit compound Poisson processes with jumps
in Q ⊂ Rd

∗ . We present one of the most common definitions.
Let us first remark that every measure L on Q is finite and L � Λ. In particular there

exists a function ` : Q→ R+ such that L({q}) = `(q)Λ({q}) = `(q).

Definition 7.12. Let ` : Q→ (0,∞) by any function and define the measure L = `Λ. Let P` be a
probability on J(I,Q). Then X is called a compound Poisson process with intensity ` under P` if
(ηQ

t )t∈I is a Poisson process with intensity L(Q) and is independent of the sequence V1,V2, . . . of
iid random vectors with Vi ∼ (L(Q))−1L( . ).

With the assumption ` > 0 we avoid a degeneracy that just reduces the number of jump-
sizes Q used by the compound Poisson process P`. We will hide the subscript P = P` if
` ≡ 1, that is, X is a compound Poisson process with intensity Λ under P.

Let us state some other equivalent definitions of a compound Poisson process.

Remark 7.13. Let P` be a probability on J(I,Q), ` : Q → (0,∞) and define the measure L(dq) =

`(q)Λ(dq). Then X is a compound Poisson process with intensity ` under P` if and only if

• X is a Lévy process with characteristics (
∫

Q χ(q)L(dq), 0,L)χ, see Definition 2.22.
• NX is a Poisson measure on I ×Q with intensity dsL(dq), see Definition 3.19.
• the processes (η{q}, q ∈ Q) are independent Poisson processes with respective intensities
`(q).

Using Definition 7.12 and Remark 1.19 we provide an explicit form of the distribution of a compound
Poisson process, in particular

P`(X0 ∈ dx,T1 ∈ dt1, . . . ,Tm ∈ dtm,V1 = q1, . . . ,Vm = qm, η = m)

= P`,0(dx)`(q1) · · · `(qm)e−L(Q)10≤t1<···<tm≤1dt1 · · · dtm.(7.14)

The distributions of the bridges of a compound Poisson process are more difficult to compute, we
present some examples in § 7.1.3.
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A result similar to Watanabe’s characterization of a Poisson process presented in Lemma
6.8 holds. Here we characterize the compound Poisson law by the compensator of the
canonical random measure.

Lemma 7.15. Let ` : Q → (0,∞) and L := `Λ. The probability P` on J(I,Q) is the law of a
compound Poisson process with intensity ` if and only if t 7→

∫
[0,t]×Q ū(s, q)(NX(dsdq) − dsL(dq))

is a martingale for any ū =
∑n−1

i=1 ūi1(ti,ti+1]×Bi ∈ Ē.

Proof. Let X be a compound Poisson process with intensity ` under P`. Then the random
variable

∫
[s,t]×Q ū(r, q)NX(drdq) =

∑
q∈Q

∫
[s,t] ū(r, q)dη{q}r is independent of F[0,s] for any ū ∈ Ē.

Since η{q} is a Poisson process with intensity `(q) we can derive the expectation

E`

(∫
[s,t]×Q

ū(r, q)NX(drdq)
F[0,s]

)
=

∫
[s,t]×Q

ū(r, q)drL(dq),

hence the martingale property.
For the converse, the martingale property of the random measure (NX(dtdq) − dtL(dq))

implies that (η{q}t − t`(q))t∈I is a martingale, and by Watanabe’s characterization Lemma
6.8 it is a Poisson process with intensity `(q). Using ū = u

∑n
i=1 1{qi} for qi , q j pairwise

and q1, . . . , qn ∈ Q, u ∈ E, we compute with the same idea that any linear combination of
the Poisson processes (η{q}, q ∈ Q) is still a Poisson process and the intensities are likewise
additive. Using the characterization result of Jacod [Jac75] mentioned after Definition 6.43
we deduce that X = X0+

∑
q qη{q} is distributed as the sum of independent Poisson processes

(η{q}, q ∈ Q). By Remark 7.13 we deduce that P` is the law of a compound Poisson process
with intensity `. �

In Definition 6.43 we have seen that every unit jump process admits a predictable
compensator that characterizes the law of the process. Since Q is finite, this idea is easily
extended to the space of jump processes J(I,Q). In particular under every probability Q
on J(I,Q) there exists a predictable random measure Ā on I × Q such that dNX

− dĀ is a
martingale measure in the sense that t 7→

∫
[0,t]×Q ū(s, q)(NX(dsdq) − Ā(dsdq)) defines a local

martingale for any ū ∈ Ē. We will call dĀ the intensity of X respectively NX. In particular
a compound Poisson process has intensity Ā(dsdq) = `(q)dsΛ(dq) in the above sense.

7.1.3. Examples of compound Poisson processes and their bridges.
Let us first show that we may use the duality formula (2.39) for Lévy processes to identify

the intensity of h-transforms of compound Poisson processes. This provides an important
tool to compute the intensities of bridges of compound Poisson processes. Let us already
note that the representation of the intensity of an h-transform presented in the lemma
below holds in a far more general context: A generalization of this result to Markov jump
processes is given in Proposition 7.50 by a different proof.

Lemma 7.16. Let P` be the law of a compound Poisson process with intensity ` on J(I,Q) and
h : Rd

→ R+ be bounded such that E (h(X1)) = 1. Then the h-transform hP` is a jump process on
J(I,Q) with intensity

(7.17) k(t,Xt−, q)dtL(dq) =
h(t,Xt− + q)

h(t,Xt−)
dtL(dq),

where h(t, y) := E`(h(X1) |Xt = y) is P`(Xt ∈ dy)-a.s. well defined for every t ∈ I.
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Proof. Define h(t,Xt−) := E (h(X1) |Xt−) = E (h(X1) |Xt), where the second equality follows
from stochastic continuity of X under P`. Since X is an integrable Lévy process with
characteristics (

∫
Q qL(dq), 0,L) Proposition 2.38 implies that for every bounded functional F

that is F[0,t] measurable and ū ∈ Ē such that ū = ū1(t,1]×Q the duality formula

E`

(
h(X1)F

∫
I×Q

ū(s, q)(NX(dsdq) − dsL(dq))
)

= E`

(
F
∫
I×Q

(h(X1 + q) − h(X1))ū(s, q)dsL(dq)
)

holds. On the right side we may take conditional expectation and use successively a
stochastic Fubini and a Fubini to get

E`

(
h(X1)F

∫
I×Q

ū(s, q)NX(dsdq)
)

= E`

(
F
∫
I×Q
E`(h(X1 + q)|Xs−)ū(s, q)dsL(dq)

)
= E`

(
F
∫
I×Q

h(s,Xs− + q)ū(s, q)dsL(dq)
)

= E`

(
F
∫
I×Q

h(s,Xs−)
h(s,Xs−)

h(s,Xs− + q)ū(s, q)dsL(dq)
)

= E`

(
h(X1)F

∫
I×Q

h(s,Xs− + q)
h(s,Xs−)

ū(s, q)dsL(dq)
)
,

whereE`(h(X1 +q)|Xs) = E`(h(X1)|Xs +q) due to the space-homogeneity of the Lévy process.
Since this holds for all bounded F that are F[0,t]-measurable we deduce that X has intensity
(7.17) with respect to hP`. �

Let us now compare the reciprocal classes of different compound Poisson processes
on J(I,Q) in some examples. This will provide an introduction to explicit computations
regarding the bridges of compound Poisson processes. The concluding statements at the
end of each example will be quoted at different occasions in this paragraph.

Example 7.18. Let Q = {1, 2} and P` be the law of a compound Poisson process with intensity
` for some `(1), `(2) > 0. Conditioned on the initial state X0 = 0 we have P0

`
(X1 ∈ N) = 1 and

P0
`
(X1 = m) > 0 for any m ∈ N, as can be checked with Remark 7.13. Let us first explicitly

compute the distribution of a bridge P0,m
`

( . ) = P`( . |X0 = 0,X1 = m) for m ∈N using the form of
an h-transform given in (7.8).

Take e.g. the bridge from X0 = 0 to X1 = 3 then

(7.19) P0,3
`

( . ) =
1{3}(X1)

P0
`
(X1 = 3)

P0
`( . ).

The normalization factor P0
`
(X1 = 3) is computed using

(7.20) {X0 = 0, X1 = 3} = {X0 = 0} ∪ {η{1}1 = 3, η{2}1 = 0} ∪ {η{1}1 = 1, η{2}1 = 1},

and the independence of the Poisson processes η{1} and η{2}:

P0
`(X1 = 3) = P0

`(η
{1}
1 = 3)P0

`(η
{2}
1 = 0) + P0

`(η
{1}
1 = 1)P0

`(η
{2}
1 = 1)

= e−`(1) `(1)3

6
e−`(2) + e−`(1)`(1)e−`(2)`(2).

Therefore e.g.

P0,3
`

(T1 ∈ dt1,V1 = 1,T2 ∈ dt2,V2 = 2, η = 2) = `(1)`(2)
1{t1<t2}dt1dt2

1
6`(1)3 + `(1)`(2)

,
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or in the case of 3 small jumps

P0,3
`

(T1 ∈ dt1,V1 = 1,T2 ∈ dt2,V2 = 1,T3 ∈ dt3,V3 = 1, η = 3) = `(1)31{t1<t2<t3}dt1dt2dt3
1
6`(1)3 + `(1)`(2)

.

LetP ˜̀ be another compound Poisson process on J(I, {1, 2}) with intensity ˜̀ given by ˜̀(1), ˜̀(2) > 0.
Using the above expressions of the distribution of a bridge it is quite difficult to compute conditions
such that P0,m

`
= P̃0,m

˜̀ even for m = 3. Let us instead present a more dynamical viewpoint.

To gain insights into the dynamics of the bridgeP0,3
`

, let us compute the intensity `0,3(t,Xt−, q)dtΛ(dq)
of X under P0,3

`
for Xt− = 1 and q = 1 respectively q = 2 and t ∈ I. We apply Lemma 7.16 to h

given in (7.19). To derive h(t, y) for y = 1, . . . , 3 we see

h(t, y) = E0
`

 1{3}(X1)

e−(`(1)+`(2))( 1
6`(1)3 + `(1)`(2))

 Xt = y


=

P0
`
(X1 = 3|Xt = y)

e−(`(1)+`(2))( 1
6`(1)3 + `(1)`(2))

=
P0
`
(X1 = 3,Xt = y)

P0
`
(Xt = y)e−(`(1)+`(2))( 1

6`(1)3 + `(1)`(2))

=
P0
`
(X1 − Xt = 3 − y)

e−(`(1)+`(2))( 1
6`(1)3 + `(1)`(2))

,

where the last equality holds since X has independent increments under P0
`
. We use decompositions

like (7.20) to compute all probabilities. Let us just state the results

h(t, 1) = et(`(1)+`(2)) (1 − t)2`(1) + (1 − t)`(2)
1
6`(1)2 + `(2)

= et(`(1)+`(2))(1 − t)
(1 − t)`(1) + `(2)

1
6`(1)2 + `(2)

,

h(t, 2) = et(`(1)+`(2)) 1 − t
1
6`(1)2 + `(2)

,

h(t, 3) = et(`(1)+`(2)) 1
`(1)( 1

6`(1)2 + `(2))
.

With (7.17) we now derive the intensity `0,3(t,Xt−, q)dtΛ(dq) of NX with respect toP0,3
`

. In Xt− = 1
we get for example

`0,3(t, 1, 1) =
h(t, 2)
h(t, 1)

`(1) =
`(1)

(1 − t)`(1) + `(2)
,

`0,3(t, 1, 2) =
h(t, 3)
h(t, 1)

`(2) =
`(2)

(1 − t)2`(1)2 + (1 − t)`(1)`(2)
.

The overall intensity of jumping `0,3(t, 1, 1) + `0,3(t, 1, 2) explodes for t→ 1, even if `0,3(t, 1, 1)→
1/`(2) is always finite. If `(2) ≈ 0 the intensity of the jump of size one will grow faster too, but
stays finite.

A necessary condition for the identity of the bridges P0,3
`

= P0,3
˜̀ is then `0,3(t, 1, 1) = ˜̀0,3(t, 1, 1)

and `0,3(t, 1, 2) = ˜̀0,3(t, 1, 2) for all t ∈ I. But

`0,3(t, 1, 1) ≡ ˜̀0,3(t, 1, 1) ⇔ (1 − t) +
`(2)
`(1)
≡ (1 − t) +

˜`(2)
˜̀(1)

,
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thus ˜̀(1) = α`(1) and ˜̀(2) = α`(2) for some α > 0. We insert this into

`0,3(t, 1, 2) ≡ ˜̀0,3(t, 1, 2) ⇔ (1 − t)2`(1)2 + (1 − t)`(1)`(2) = α
(
(1 − t)2`(1)2 + (1 − t)`(1)`(2)

)
,

to see that the intensities are only equal if α = 1, thus `(1) = ˜̀(1) and `(2) = ˜̀(2). Therefore
compound Poisson processes on J(I, {1, 2}) with different intensities always have different reciprocal
classes.

In the above example there are only finitely many types of paths supported by a given
bridge, e.g. to go from 0 to 3 during I, the pure jump paths which are admitted are only
those with jump-size combinations V1 = 1,V2 = 2 or V1 = 2,V2 = 1 or V1 = 1,V2 = 1,V3 =

1. In particular η only had finitely many values with respect to the bridges.

Example 7.21. Let Q = {−1, 1} and X be a compound Poisson process under P` with intensity `
for some `(−1), `(1) > 0. Then X has the law of the difference of two independent Poisson process
with intensities `(1) respectively `(2). Let us first compute the distribution of the total number of
jumps η with respect to the bridge P0,0

`
. Clearly P0,0

`
(η ∈ {0, 2, 4, . . . }) = 1, the total number of

jumps is a.s. pair. Moreover, there are as many jumps up, as there are jumps down

P0,0
`

(η = 2m) = P0,0
`

(η{1}1 = m, η{−1}
1 = m) =

P0
`
(η{1}1 = m, η{−1}

1 = m)∑
∞

i=0P
0
`
(η{1}1 = i, η{−1}

1 = i)
, ∀m ∈N.

By independence of η{−1} and η{1} we get

P0
`(η
{1}
1 = m, η{−1}

1 = m) = P0
`(η
{1}
1 = m)P0

`(η
{−1}
1 = m) = e−(`(1)+`(−1)) (`(1)`(−1))m

(m!)2 .

Let P ˜̀ the law of a compound Poisson process on J(I, {−1, 1}) with intensity ˜̀. For the equality of
the bridges P0,0

`
= P0,0

˜̀ it is necessary that up to the normalizing factors c−1 = e`(1)+`(2)P0
`
(X1 = 0)

and c̃−1 = e ˜̀(1)+ ˜̀(2)P0
˜̀(X1 = 0) we have

c(`(1)`(−1))m = c̃( ˜̀(1) ˜̀(−1))m, ∀m ∈N ⇔
`(1)`(−1)
˜̀(1) ˜̀(−1)

=
m

√
c̃
c
, ∀m ∈N.

This holds if and only if there exists an α > 0 with ˜̀(1) = α`(1) and ˜̀(−1) = α−1`(−1), and in this
case we also have c = c̃. Let us check, that the bridges of P ˜̀ and P` coincide in this case for any
α > 0. Using Remark 7.13 it is easy to check that

P0
˜̀( . ) = e−L̃(Q)+L(Q)

η∏
i=1

˜̀(Vi)
`(Vi)

P0
`( . ).

Since for any n ∈N we have

P0
˜̀(X1 = n) =

∞∑
i=0

P0
˜̀(η
{1} = n + i)P0

˜̀(η
{−1} = i) =

∞∑
i=0

e− ˜̀(1)
˜̀(1)n+i

(n + i)!
e− ˜̀(−1)

˜̀(−1)i

i!
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we may insert ˜̀(1) = α`(1) and ˜̀(−1) = α−1`(−1) to compute

P0,n
˜̀ ( . ) =

1{n}(X1)

P0
˜̀(X1 = n)

P0
˜̀( . )

=
1{n}(X1)

e−L̃(Q)
∑
∞

i=0
(α`(1))n+i

(n+i)!
(α−1`(−1))i

i!

e−L̃(Q)+L(Q)
η∏

i=1

˜̀(Vi)
`(Vi)

P0
`( . )

=
1{n}(X1)

e−L̃(Q)αn ∑
∞

i=0
`(1)n+i

(n+i)!
`(−1)i

i!

e−L̃(Q)+L(Q)αnP0
`( . )

=
1{n}(X1)

P0
`
(X1 = n)

P0
`( . )

= P0,n
`

( . ).

A similar computation shows that Px,y
˜̀ ( . ) = P

x,y
`

( . ) for any x, y ∈ Rd with |y − x| ∈ N. Thus the
laws of two compound Poisson processes P` and P ˜̀ have the same reciprocal class on J(I, {−1, 1})
if and only if ˜̀(1) = α`(1) and ˜̀(−1) = α−1`(−1) for some α > 0.

In the next example the distribution of η under any bridge will be deterministic. This
simplifies the comparison of the bridges of compound Poisson processes.

Example 7.22. Let Q = {e1, e2} with vectors e1 = (1, 0)t, e2 = (0, 1)t
∈ R2

∗ and X be a compound
Poisson process under P` with intensity ` for some `(e1), `(e2) > 0. This is a two-dimensional
continuous time random walk with independent motion in both directions. Starting from (0, 0) the
process can reach any point on the latticeN2. Given a fixed endpoint (n,m) ∈N2 we have

P(0,0),(n,m)
`

(η{e1}

1 = n, η{e2}

1 = m) = 1

since {X0 = (0, 0),X1 = (n,m)} = {X0 = (0, 0), η{e1}

1 = n, η{e2}

1 = m}. The law of the bridge of the
compound Poisson process is therefore given by the law of the bridges of the Poisson processes

P(0,0),(n,m)
`

(η{e1} ∈ . , η{e2} ∈ . )

= P`(η{e1} ∈ . |X0 = (0, 0), η{e1} = n)P`(η{e2} ∈ . |X0 = (0, 0), η{e2} = m),

where η{e1} and η{e2} are independent under P(0,0),(n,m) since η = n + m is deterministic and
Γ'n+m((0, 0), (n,m)) consists of one element. We saw in Proposition 6.31 that all Poisson processes
with different intensities are in the same reciprocal class. We conclude that every distribution of
a compound Poisson process P ˜̀ on J(I, {e1, e2}) with intensity ˜̀ for some ˜̀(e1), ˜̀(e2) > 0 has the
same reciprocal class as P`.

7.2. Compound Poisson processes with incommensurable jumps.
In Example 7.22 we saw that the comparison of bridges of jump processes is made

easier if under any given bridge Qx,y the number of jumps η is deterministic and Γ'η (x, y)
contains at most one element. Here we generalize this idea introducing the concept of
incommensurability between the jump-sizes. This will provide to be a crucial condition in
the derivation of precise statements concerning the bridges of compound Poisson processes.

We first define the general property of incommensurability for jump-sizes. Then we
apply this concept to identify the reciprocal class of compound Poisson processes: Our
main result in this paragraph is the characterization of the reciprocal class of a compound
Poisson process by a duality formula in Theorem 7.36.
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7.2.1. Incommensurability between jumps.
Incommensurability of jump-sizes is an algebraic condition on the set Q.

Definition 7.23. We say that the jump-sizes in Q are incommensurable if for any q1, . . . , qm ∈ Q
and q′1, . . . , q

′
n ∈ Q with m,n ∈N the equality q1 + · · ·+ qm = q′1 + · · ·+ q′n only holds if m = n and

(q1, . . . , qm)t
' (q′1, . . . , q

′
m)t.

Note that the jump-sizes e1 = (1, 0), e2 = (0, 1) ∈ R2
∗ of Example 7.22 are incommensurable.

In the following remark we show how the concept of incommensurability affects the
reference measure Λ.

Remark 7.24. Let Λ be the finite counting measure on Q introduced in (7.4). Then the jump-sizes
in Q are incommensurable if and only if the measures Λ∗m and Λ∗n are singular on Rd for all
m,n ∈N, m , n.

Proof. Assume that the jumps in Q are incommensurable, take n , m, n,m ∈ N. If there
exists q ∈ Rd

∗ with Λ∗m({q}) > 0 and Λ∗n({q}) > 0, then there exist q1, . . . , qm ∈ Q with
q1 + · · ·+ qm = q and q′1, . . . , q

′
n ∈ Q with q′1 + · · ·+ q′n = q. But this is a direct contradiction to

the incommensurability property.
Now assume that Λ∗m and Λ∗n are singular for each n , m. If Q is commensurable, there

exists m,n ∈ N and q1, . . . , qm, q′1, . . . , q
′
n ∈ Q with q1 + · · · + qm = q′1 + · · · + q′n. But since Λ

is a discrete measure on Q we have Λ∗m({q1 + · · · + qm}) > 0 and Λ∗n({q′1 + · · · + q′n}) > 0 in
contradiction to the singularity of Λ∗m and Λ∗n. �

The following Lemma will provide a decomposition of the bridges of jump processes
in J(I,Q) in the sense of Remark 7.9. It represents the probabilistic interpretation of the
incommensurability of jumps and is a key result for the characterization of the reciprocal
class of a compound Poisson process.

Lemma 7.25. Let Q be any probability on J(I,Q). If the jumps in Q are incommensurable then
for any x, y ∈ Rd such that Qx(X1 = y) > 0 there exists an m ∈ N such that η = m Qx,y-a.s. and
Γ'm(x, y) contains exactly one element.

Proof. Let Qx
1(y) > 0 such that the law of η with respect to Qx,y is not deterministic. Then

there exists at least two different m,n ∈ N with Qx,y(η = m) > 0 and Qx,y(η = n) > 0. Since
this implies the existence of q1, . . . , qm, q′1, . . . , q

′
n ∈ Qx with q1+· · ·+qm = y−x = q′1+· · ·+q′n we

get a contradiction to the incommensurability of Q. The fact that Γ'm(x, y) contains more than
one element directly contradicts the definition of incommensurability of jump-sizes. �

Let us show that there exists sets of jumps Q that are such that every bridge of a jump
process has a deterministic number of jumps η = m, but Γ'm(x, y) may contain more than
one element: The condition (q1, . . . , qm)t

' (q′1, . . . , q
′
m)t of Definition 7.23 is meaningful.

Example 7.26. Let {e1, e2, e3} ⊂ R3 with e1 = (1, 0, 0)t, e2 = (0, 1, 0)t and e3 = (0, 0, 1)t be
incommensurable jumps and define Q := {e1, e2, e1 + e3, e2 − e3} = {e1, e2, (1, 0, 1)t, (0, 1, 1)t

}. The
jump-sizes in Q are commensurable since e1+e2 = (e1+e3)+(e2−e3). Note that the number of jumps
is deterministic for any bridge of any jump process with jumps in Q. If this would not be the case, there
would exist y = x+n1e1 +n2e2 +n3(e1 +e3)+n4(e2−e3) = x+m1e1 +m2e2 +m3(e1 +e3)+m4(e2−e3)
with integer ni,mi ∈ N i = 1, 2, 3, 4 and

∑4
i=1 ni ,

∑4
i=1 mi. But a comparison of coefficients in

front of e1 and e2 shows that n1 + n3 = m1 + m3 and n2 + n4 = m2 + m4 since {e1, e2, e3} are
incommensurable jumps. Therefore

∑4
i=1 ni =

∑4
i=1 mi, in contradiction to the hypothesis that η is

not generally deterministic for the bridges of any jump process.
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7.2.2. Duality formula for compound Poisson processes.
If Q = {q} contains but a single jump-size, the space J(I, {q}) � J1(I) is isomorphic to the

space of unit jump processes. In particular X is a compound Poisson process with intensity `
if and only if t 7→ η

{q}
t = ηt is a Poisson process with intensity `(q). The characterization of the

Poisson process η{q} and its reciprocal class by a duality formula then imply similar results
for the compound Poisson process and its reciprocal class. In § 7.2.3 we want to extend
this principle of characterization by duality formulae to compound Poisson processes with
incommensurable jumps. In turn, this paragraph is devoted to the derivation of a duality
formula that holds with respect to a compound Poisson process. The basic idea is to use the
additivity of the duality formula (6.26) with respect to the integrating compound Poisson
distribution and the decomposition X =

∑
q∈Q qη{q}. Note that the results of this paragraph

are valid without the incommensurability assumption between jumps.
To present a duality formula we have to start with the introduction of a derivative

operator of functionals on the space of jump processes J(I,Q). A functional F : J(I,Q)→ R
is called smooth and cylindric if there exists a bounded f : Rd

× (I × (Q ∪ {0}))n such that
f (x, (., q1), (., q2), . . . ) ∈ C∞b (In), ∀x ∈ Rd, q1, . . . , qn ∈ Q ∪ {0} and for all ω ∈ J(I,Q) we have

(7.27) F(ω) = F((x, {(t1, q1), . . . , (tm, qm)})) := f (x, (t1, q1), . . . , (tn∧m, qn∧m), (1, 0), (1, 0), . . . ).

Define the space of smooth functionals of the jump-times and jumps by

(7.28) SJ :=
{
F : J(I,Q)→ R is smooth and cylindric as in (7.27)

}
.

We will also use the canonical formulation F(X) = f (X0, (T1 ∧ 1,V1), . . . , (Tn ∧ 1,Vn)) ∈
SJ. Let us now present two definitions of a derivative operator that acts on functionals
F : J(I,Q) → R which are complementary. First we define a derivative of functionals
F(ω) ∈ SJ as in (7.27), that only operates in the direction of the jump-times associated to
fixed jump-sizes by

Dt,qF((x, {(t1, q1), . . . , (tm, qm)}))

:= −

n∧m∑
i=1

∂2i f (x, (t1, q1), . . . , (tn∧m, qn∧m), (1, 0), . . . )1[0,ti]×{qi}(t, q).(7.29)

This extends the definition of the derivative operator on smooth functionals of unit-jump
processesSJ1 if Q = {1}, see Proposition 6.12. Let us give another complementary definition
of this derivative operator by a perturbation.

Definition 7.30. Given a bounded, measurable ū : I × Rd
→ R and a small ε ≥ 0 we define the

perturbation πεū : J(I,Q)→ J(I,Q) by

(x, {(t1, q1), . . . , (tm, qm)}) 7→ (x, {(t1 + ε〈ū(., q1)〉t1 , q1), . . . , (tm + ε〈ū(., qm)〉tm , qm)} ∩ I ×Q).

Let Q be any probability on J(I,Q). A functional F ∈ L2(Q) is called differentiable in direction ū
if the limit

DūF := − lim
ε→0

1
ε

(F ◦ πεū − F)

exists in L2(Q). If F is differentiable in all directions ū ∈ Ē, we can denote the unique derivative by

DF = (Dt,qF)t∈I,q∈Q ∈ L
2(dt ⊗Λ ⊗Q), whereDūF =

∫
I×Q
Dt,qFū(t, q)dtΛ(dq)

holds Q-a.s. for every ū ∈ Ē.

The next Proposition explains why these definitions were called complementary.
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Proposition 7.31. LetQ be any probability on J(I,Q). Then a functional F(X) ∈ SJ is differentiable
in the sense of Definition 7.30 in any direction ū ∈ Ē with 〈ū(., q)〉 = 0, ∀q ∈ Q, and the derivative
coincides with (7.29).

Proof. If ū ∈ Ē with 〈ū(., q)〉 = 0, q ∈ Q, then for every ω = (x, {(t1, q1), . . . , (tm, qm)}) ∈ J(I,Q)
we have

lim
ε→0

1
ε

(
f (x, (t1 + ε〈ū(., q1)〉t1 , q1), . . . , ) − f (x, (t1, q1), . . . )

)
=

m∧n∑
i=1

∂2i f (x, (t1, q1), . . . )〈ū(., qi)〉ti

=

∫
I×Q

m∧n∑
i=1

∂2i f (x, (t1, q1), . . . )1[0,ti]×{qi}ū(t, q)dtΛ(dq).

Since η ◦ πεū = η under the condition 〈ū(., q)〉 = 0 we have Vi ◦ πεū = Vi for 1 ≤ i ≤ η and
ε > 0 small enough. The boundedness of f in its time derivatives implies convergence in
L2(Q) for any probability Q on J(I,Q). �

Using these complementary definitions of the derivative operator we can give two
complementary proofs of a duality formula that holds with respect to a compound Poisson
process.

Proposition 7.32. Let P` be the law of a compound Poisson process with intensity ` on J(I,Q).
Then the duality formula

(7.33) E`

(
F
∫
I×Q

ū(t, q)(NX(dtdq) − dtL(dq))
)

= E` (DūF)

holds for all ū ∈ Ē and F ∈ L2(P) that are differentiable in direction ū, respectively for all F ∈ SJ if
the derivative is defined by (7.29).

Proof. Let us first prove the duality formula for ū ∈ Ē and F(X) ∈ SJ using (7.29). Since η{q}

is a Poisson process with intensity `(q) we have

E`

(
F(X)

∫
I×Q

ū(s, q)(NX(dsdq) − dsL(dq))
)

=
∑
q∈Q

E`

(
F(X)

∫
I

ū(s, q)(dη{q}s − `(q)ds)
)

=
∑
q∈Q

E`

(∫
I

Ds,qF(X)ū(s, q)ds
)

= E`

(∫
I×Q
Ds,qF(X)ū(s, q)dsΛ(dq)

)
,

where for the second equality we applied the duality formula (6.23) of Poisson processes.
The proof of (7.33) for F ∈ L2(P`) that is differentiable in direction ū ∈ Ē is similar to

the proof of the duality formula (6.23) of the Poisson process: First we “compensate” the
perturbation πεū by a Girsanov transformation of measure. Take some F ∈ F[0,s] and put
v̄ := F1(s,t]×B with s ≤ t and B ⊂ Q. Then v̄ is a predictable function. By definition of
the perturbation we see that for any ū ∈ Ē we have NX

◦ πεū((s, t] × Q)) = NX(ω(B̄ε)), with
B̄ε := {(r, q) : q ∈ B, τεū(s, q) < r ≤ τεū(t, q)} and τεū(t, q) is defined by∫

[0,τεū(t,q)]
(1 + εū(r, q))dr = t,
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see also Example 6.13 for the unit jump version of this time-inversion. We define a new
probability GεP on J(I,Q) by

Gε = exp
(∫
I

(ū(s, q) − 1)dsL(dq)
) η∏

i=1

u(Ti,Vi).

Then

E`

([
F

∫
I×Rd

∗

v̄(r, q)NX(drdq)
]
◦ πεūGε

)
= E`

(
F ◦ πεūNX(B̄ε)Gε

)
= E`

(
F ◦ πεūGε) ∫

I×Rd
∗

1B̄ε(r, q)(1 + εū(r, q))drL(dq)

= E`
(
F ◦ πεūGε) ∫

Rd
∗

τεū(t, q) − τεū(s, q) + ε

∫
[0,τεū(t,q)]

ū(r, q)dr − ε
∫

[0,τεū(s,q)]
ū(r, q)dr

1B(q)L(dq)

= E`
(
F ◦ πεūGε) (t − s)L(B),

which implies that NX
◦πεū is a Poisson measure with intensity dtL(dq) on I×Q under GεP.

We deduce the equality

−E`
(
F ◦ πεū − F

)
= E`

(
F ◦ πεū(Gε

− 1)
)

for any functional F and any ū, since E`
(
F ◦ πεūGε

)
= E`(F). Multiplying both sides with

1/ε and taking the limit ε→ 0 proves the duality formula: The convergence arguments are
similar to the ones in the proof of Proposition 6.22. �

7.2.3. Characterization of the reciprocal class of compound Poisson processes.
Let us first remark, that the duality formula for F(X) ∈ SJ and ū ∈ Ē in turn implies the

martingale property of compensated compound Poisson processes. This result does not
require incommensurability between jumps.

Proposition 7.34. Let Q be an arbitrary probability on J(I,Q) such that η ∈ L1(Q) is integrable.
If for all F ∈ SJ and ū ∈ Ē the duality formula

(7.35) EQ

(
F(X)

∫
I×Q

ū(s, q)(NX(dsdq) − dsL(dq))
)

= EQ

(∫
I×Q
Ds,qF(X)ū(s, q)dsΛ(dq)

)
holds, then Q is the law of a compound Poisson process with intensity L.

Proof. The result is due to the characterization by Watanabe presented in Lemma 7.15. In
particular, if F ∈ SJ is F[0,t]-measurable and ū = ū1[t,1]×Q, then Ds,qF(X) ≡ 0 and (7.35) is a
statement of the martingale property. �

We now prove our first main result in this section: The characterization of the reciprocal
class of a compound Poisson process by a duality formula. Here, the fact that the jump-sizes
in Q are incommensurable is essential and necessary.

Theorem 7.36. Let the jumps in Q be incommensurable. Assume thatQ is a probability on J(I,Q)
such that η ∈ L1(Q). Then Q is in the reciprocal class of the law of a compound Poisson process
with intensity ` if and only if the duality formula

(7.37) EQ

(
F(X)

∫
I×Q

ū(s, q)(NX(dsdq) − dsL(dq))
)

= EQ

(∫
I×Q
Ds,qF(X)ū(s, q)dsΛ(dq)

)
holds for every F ∈ SJ and ū ∈ Ē with 〈ū(., q)〉 = 0 for all q ∈ Q.
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Proof. Note, that the compensation of NX by dsL(dq) is not necessary under the loop condi-
tion: ∫

I×Q
ū(s, q)(NX(dsdq) − dsL(dq)) =

∫
I×Q

ū(s, q)NX(dsdq), if 〈ū(., q)〉 = 0, ∀q ∈ Q.

Let us first proof the necessity of the duality formula. In this part of the proof, the
incommensurability assumption is not necessary. Under the loop condition 〈u(., q)〉 = 0
we have Dūφ(X0) = Dūψ(X1) = 0 for any bounded φ,ψ : Rd

→ R. This implies that the
duality formula holds with respect to the bridges, which in turn implies that it holds in the
reciprocal class of P` (see also the similar proof of Lemma 6.37).

To prove the converse, let x, y ∈ Rd be such that Qx,y is well defined. By Lemma 7.25
η = m Qx,y-a.s. for some m ∈ N and there exists exactly one γm = (q1, . . . , qm)t

∈ Γ'm(x, y).
The duality formula (7.37) still holds with respect to the bridge Qx,y by the first part of the
proof. Using Remark 7.9 we decompose the expectation under the bridge

E
x,y
Q

(
F(X)

∫
I×Q

ū(s, q)NX(dsdq)
)

=
∑
q∈Q

EQ

(
F(X)

∫
I

ū(s, q)dη{q}s

 X0 = x, η{q̃}1 = #q̃γm, ∀q̃ ∈ Q
)

=
∑
q∈Q

EQ

(∫
I

Ds,qF(X)ū(s, q)ds
 X0 = x, η{q̃}1 = #q̃γm, ∀q̃ ∈ Q

)
Define F(X) ∈ SJ with f0 ∈ C∞b (Rd) and fq ∈ C∞b (In), q ∈ Q, as follows:

(7.38) F((x, {(t1, q1), . . . , (tm, qm)})) = f0(x)
∏
q∈Q

fq(t11{q=q1}, . . . , tm∧n1{q=qm∧n}, 1, . . . ).

The derivative of such a functional is given by

Dt,qF((x, {(t1, q1), . . . , (tm, qm)})) = f0(x)
∏
q̃,q

fq̃(. . . )

m∧n∑
i=1

∂i f (. . . )1[0,ti]×{qi}(t, q)

 .
We apply the duality formula to this kind of functionals and conclude that η{q} are inde-
pendent Poisson bridges conditionally on X0 = x,X1 = y: First assume that fq̃ ≡ 1 and
ū(., q̃) ≡ 0 for q̃ , q, then the derivative operatorDt,q only acts on fq and by Theorem 6.39 η{q}

is a Poisson bridge from 0 to #qγm under Qx,y. Using an arbitrary F(X) as defined in (7.38)
we deduce that η{q} still has the same law conditionally on (η{q̃}, q̃ , q). Thus (η{q}, q ∈ Q)
are independent Poisson bridges under Qx,y. But the joint law of (η{q}, q ∈ Q) determines
the distribution of X under Qx,y. Thus we conclude that Qx,y = Px,y, since (η{q}, q ∈ Q) are
independent Poisson bridges under Px,y, see Remark 7.9. �

If the jump-sizes in Q are commensurable, the independence of the processes (η{q}, q ∈ Q)
under the bridge Px,y

`
may fail. As a consequence, the above characterization result may

fail as well. We illustrate this in the following example.

Example 7.39. We resume Example 7.18: The jump-sizes Q = {1, 2} are commensurable and P`,
P ˜̀ are the laws of compound Poisson process on J(I,Q) with intensities ` respectively ˜̀. We showed
that if `(1) , ˜̀(1) or `(2) , ˜̀(2) these distributions do not have the same reciprocal class. Still, by
Proposition 7.32 the duality formula (7.11) holds. Thus for all F ∈ SJ and ū ∈ Ē with 〈ū(., q)〉 = 0
we have

E`

(
F(X)

∫
I×Q

ū(s, q)NX(dsdq)
)

= E`

(∫
I×Q
Dt,qF(X)ū(s, q)dsΛ(dq)

)
.
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In particular the same duality formula is satisfied by P` and P ˜̀. This duality formula can not be
fruitful for the characterization of the reciprocal class R(P`) on J(I, {1, 2}).

By a similar argument as in the above example we infer the following property of
reciprocal classes of compound Poisson processes with incommensurable jumps.

Corollary 7.40. All compound Poisson processes with incommensurable jumps in Q are in the
same reciprocal class.

Proof. Under the loop condition 〈ū(., q)〉 = 0 the same duality formula holds for any com-
pound Poisson process on J(I,Q). With Theorem 7.36 we conclude that R(P`) = R(P ˜̀) for
any two compound Poisson processes. �

7.3. Nice jump processes.
In this paragraph we present a first discussion of the possibility of characterizing the

reciprocal classes of Markov jump processes by duality formulae. In Theorem 7.54 we
present our second main result of this section: We are able to compare the reciprocal
classes of Markov jump processes with regular intensities by reciprocal invariants, without
relying on the incommensurability of jump-sizes.

7.3.1. Definition and basic properties of nice jump processes.
We are interested in a particular class of pure jump Markov processes.

Definition 7.41. Let ε > 0 be arbitrary and take a function ` such that

(7.42) ` : I ×Rd
×Q→ [ε,∞) is bounded, and `(., x, q) ∈ C1

b(I,R+) for all x ∈ Rd, q ∈ Q.

Then P` is the law of a nice jump process if X has intensity `(t,Xt−, q)dtΛ(dq) under P`.

Clearly compound Poisson processes are nice jump processes with `(t, x, q) = `(q), the
notation P` is thus consistent. In Remark 7.13 we stated that a compound Poisson process
is the sum of independent Poisson process. A similar property does not hold for nice jump
processes: The “sum” of nice unit jump processes (η{q}, q ∈ Q) is not necessarily a nice jump
process. Let us illustrate this in the following example.

Example 7.43. Let Q = {1, 2} as in Example 7.18 and 7.39. Since Xt = X0 + η{1}t + 2η{2}t , the law
of X is determined by the joint law of X0, η{1} and η{2}. We define a probability Q on J(I,Q) as
follows. Assume that Q0 = δ{x}, η{1} is a nice unit jump process with intensity `{1}(t, η{1}t− )dt and
η{2} is a nice unit jump process with intensity `{2}(t, η{2}t− )dt such that η{1} and η{2} are independent.

We may chose `{1} and `{2} such that X is not Markov: Let t ∈ I be arbitrary, F = f (Xt1 , . . . ,Xtn) ∈
S that is F[t,1]-measurable. This functional has a representation F(X) = F̃(η{1}, η{2}) = f (x + η{1}t1

+

2η{2}t1
, . . . ), and we may use the Markov property of η{1} and η{2} to deduce

EQ
(
F(X)

F[0,t]

)
= EQ

(
F̃(η{1}, η{2})

 F[0,t]

)
= EQ

(
F̃(η{1}, η{2})

 η{1}t , η
{2}
t

)
= EQ

(
F(X)

 η{1}t , η
{2}
t

)
.(7.44)

But the canonical process Xt = x + η{1}t + 2η{2}t contains less information than the condition on
η{1}t and η{2}t : By bounded convergence equation (7.44) holds for all F that are F[t,1]-measurable and
bounded. Take e.g. F(X) = 1{Xt1−Xt=1} for t1 > t, then for any n,m ∈N

EQ
(
F(X)

 η{1}t = m, η{2}t = n
)

= Q
(
η{1}t1
− η{1}t = 1, η{2}t1

− η{2}t = 0
 η{1}t = m, η{2}t = n

)
.
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But on the other hand

EQ
(
F(X)

 η{1}t + η{2}t = m + n
)

= Q
(
η{1}t1
− η{1}t = 1, η{2}t1

− η{2}t = 0
 η{1}t + η{2}t = m + n

)
=

∑n+m
i=0 Q

(
η{1}t1
− η{1}t = 1, η{2}t1

− η{2}t = 0
 η{1}t = i, η{2}t = n + m − i

)
Q(η{1}t = i, η{2}t = n + m − i)

Q
(
η{1}t + η{2}t = m + n

) .

All probabilities can be derived using Remark 6.50. To give an explicit numeric example take m = 1,
n = 0 and `{1}(s, 0) = 1, `{1}(s, 1) = 2, `{1}(s, 2) = 3 and `{2}(s, 0) = 4, `{2}(s, 1) = 2 for any s ∈ I,
and finally put t = 0, 5 and t1 = 0, 6. Then we derive

Q
(
η{1}t1
− η{1}t = 1, η{2}t1

− η{2}t = 0
 η{1}t = 1, η{2}t = 0

)
≈ 0, 11.

and

Q
(
η{1}t1
− η{1}t = 1, η{2}t1

− η{2}t = 0
 η{1}t + η{2}t = 1

)
≈ 0, 08.

Thus X is not even a Markov process under Q.

The characterization results of the reciprocal classes of nice unit jump processes by
duality formulae in Section 6 thus cannot be extended directly to nice jump processes. Still,
using an approach similar to the identification of the reciprocal class of a nice unit jump
process by an invariant in § 6.5, we will derive a comparison of the reciprocal classes of
nice jump processes in Theorem 7.54. The main technical requisite to obtain this result is
the Girsanov theorem.

The law of a nice jump process P` is equivalent to the the law of a compound Poisson
process P with intensity Λ =

∑
q∈Q δ{q}. The Girsanov theorem for processes with jumps

provides an explicit form of the density, see also Theorem A.6 in the appendix.

Proposition 7.45. Let P` be a nice jump process and P be a compound Poisson process with
intensity Λ with same initial condition P`,0 = P0. Then P` is equivalent to P and the density
process defined by P` = G`

tP on F[0,t] has the explicit form

(7.46) G`
t = exp

(
−

∫
[0,t]×Q

(`(s,Xs−, q) − 1)dsΛ(dq)
) η{Q}t∏

i=1

`(Ti,XTi−,Vi).

Let us mention that G`
1 can be written as a function of the initial state, the jump-times

and jumps only:

(7.47) G`
1 = exp

−
η+1∑
i=1

∫
[Ti−1,Ti]×Rd

∗

(`(s,X0 +

i−1∑
j=1

V j, q) − 1)dsΛ(dq)


η∏

i=1

`(Ti,X0 +

i−1∑
j=1

V j,Vi),

where we use T0 = 0 and Tη+1 := 1 to abbreviate.

Remark 7.48. We reformulate the Girsanov theorem to provide an explicit expression for the
distribution of nice jump processes. Define the intensity of X under P` to have any jump at a given
time t ∈ I from the position y ∈ Rd by

¯̀(t, y) :=
∫

Q
`(t, y, q)Λ(dq) =

∑
q∈Q

`(t, y, q).
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Then the law P` is completely described by

P`(X0 ∈ dx,T1 ∈ dt1,V1 = q1, . . . ,Tm ∈ dtm,Vm = qm, η = m)(7.49)

= P`,0(dx)`(t1, x, q1)e−
∫

[0,t1]
¯̀(s,x)ds

`(t2, x + q1, q2)e−
∫

[t1 ,t2]
¯̀(s,x+q1)ds

· · ·

· · · `(tm, x + q1 + · · · + qm−1, qm)e−
∫

[tm−1 ,tm]
¯̀(s,x+q1+...qm−1)dse−

∫
[tm ,1]

¯̀(s,x+q1+···+qm)ds

1{t1<···<tm}dt1 · · · dtm,

for any x ∈ Rd, {(t1, q1), . . . , (tm, qm)} ∈ ∆I×Q and m ∈N.

7.3.2. Comparison of the reciprocal classes of nice jump processes.
The next proposition generalizes the result of Lemma 7.16 to h-transforms of nice jump

processes.

Proposition 7.50. LetP` be the law of a nice jump process and h : Rd
→ R+ such thatE`(h(X1)) =

1. Then the h-transform hP` is a Markov jump process on J(I,Q) with intensity

(7.51) k(t,Xt−, q)dtΛ(dq) = `(t,Xt−, q)
h(t,Xt− + q)

h(t,Xt−)
dtΛ(dq),

where h(t,Xt) := E`(h(X1)|Xt).

Proof. Clearly the h-transform hP` has the Markov property, see also Lemma 4.4. Define
the space-time harmonic function h(t, y) = E`

(
h(X1)|Xt = y

)
and put Gt := h(t,Xt). Then

h(t, y) is differentiable in time and solution of a Kolmogoroff backward equation.

Lemma 7.52. Let h(t, x) be defined as in the statement of the above proposition. Then h is a solution
of the Kolmogoroff backward equation
(7.53)

∂th(t, x) = −

∫
Q

(
h(t, x + q) − h(t, x)

)
`(t, x, q)Λ(dq), holds P`(Xt ∈ dx)-a.s. for any t ∈ I,

in particular h(., x) ∈ C1(I).

Proof. We omit the proof, since it works in the same way as the proof of Lemma 6.55 in the
unit jump case. Just use Remarks 7.5 and 7.48 on the explicit distribution of P`. �

By regularity of h we can apply the Itô formula

h(t,Xt) = h(s,Xs) +

∫
[s,t]

∂th(r,Xr−)dr +

∫
[s,t]×Q

[
h(r,Xr− + q) − h(r,Xr−)

]
NX(drdq).

But since the Kolmogoroff backward equation holds, we deduce that Gt = h(t,Xt) is solution
of the exponential stochastic integral equation:

Gt = 1 +

∫
[0,t]×Q

Gs−

(
h(s,Xs− + q)

h(s,Xs−)
− 1

)
(NX(dsdq) − `(s,Xs−, q)dsΛ(dq)),

which has the explicit solution

Gt = exp
(
−

∫
[0,t]×Q

(
h(s,Xs− + q)

h(s,Xs−)
− 1

)
`(s,Xs−, q)dsΛ(dq)

) η(Q)
t∏

i=1

h(Ti,XTi− + Vi)
h(Ti,XTi−)

.

We just have to multiply the densities Gk
1P = G1G`

1P, which gives

G1G`
1 = exp

(
−

∫
I×Q

(
`(s,Xs−, q)

h(s,Xs− + q)
h(s,Xs−)

− 1
)

dsΛ(dq)
) η∏

i=1

`(Ti,XTi−,Vi)
h(Ti,XTi− + Vi)

h(Ti,XTi−)
,
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and invoke the Girsanov theorem to identify

k(s,Xs−, q)dsΛ(dq) = `(s,Xs−, q)
h(s,Xs− + q)

h(s,Xs−)
dsΛ(dq), P`-a.s.

as intensity of hP`. �

The fact, that h(t, x) is a solution of the Kolmogoroff backward equation is now used to
compute reciprocal invariants for the law P`. Our main result in this paragraph is the fact,
that these invariants are indeed characteristics of R(P`).

Theorem 7.54. Let P` and Pk be the laws of two nice jump processes. Then R(Pk) = R(P`) if and
only if

(i) log k − log ` is the “gradient of a potential”: For every x ∈ Rd there exists a function
ψ : I ×Rd

→ R such that

log k(t, y, q) − log `(t, y, q) = ψ(t, y + q) − ψ(t, y)

holds dt ⊗ Px
`(Xt ∈ dy)-a.e. for all q ∈ Q and such that eψ(t,Xt) ∈ L1(Px

`) for all t ∈ I.
(ii) the “harmonic” invariants coincide: ∀q ∈ Q, Ξ

q
`
(t, y) = Ξ

q
k(t, y), with

Ξ
q
`
(t, y) = ∂t log `(t, y, q) +

∫
Q

(
`(t, y + q, q̄) − `(t, y, q̄)

)
Λ(dq̄).

Proof. Assume first, that R(Pk) = R(P`). Fix x ∈ Rd. We prove (i) and (ii) under Px
` , the

general result for (ii) follows by mixing over the initial condition. There exists h : Rd
→ R+

that is everywhere positive such that Px
k = h(X1)Px

` is an h-transform, see Remark 4.18. We
know that relation (7.51) holds between the intensities k and `with h(t, y) = Ex

`(h(X1)|Xt = y),
which by Lemma 7.52 is a solution of the Kolmogoroff backward equation. This implies
condition (i) with potential log h(t, y). Moreover for q, q̄ ∈ Q this implies

∂th(t, y + q)
h(t, y + q)

= −

∫
Q

(
h(t, y + q + q̄) − h(t, y + q)

h(t, y + q)

)
`(t, y + q, q̄)Λ(dq̄) and

∂th(t, y)
h(t, y)

= −

∫
Q

(
h(t, y + q̄) − h(t, y)

h(t, y)

)
`(t, y, q̄)Λ(dq̄).

We take the difference of these two equations and insert

h(t, y + q̄)
h(t, y)

=
k(t, y, q̄)
`(t, y, q̄)

, and
h(t, y + q + q̄)

h(t, y + q)
=

k(t, y + q, q̄)
`(t, y + q, q̄)

to get the “harmonic” invariant, condition (ii).
For the converse assume that (i) and (ii) hold. We will show that Px

k is an h-transform of
Px
` for arbitrary x ∈ Rd. Define

h(t, y) := eψ(t,y)c(t) with c(t) = ce−
∫

[0,t]×Q(k(s,x,q)−`(s,x,q))dsΛ(dq),

where ψ is the potential from condition (i) and c is a normalization constant such that
E x
`(h(1,X1)) = 1. The normalization constant exists by the boundedness of ` and k and the

integrability condition eψ(t,Xt) ∈ L1(P`) for all t ∈ I. Clearly the relation (7.51) holds since
log h is a potential for log k(t, y, q) − log `(t, y, q) too since c(t) does not depend on y. We
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insert this into the equality of the harmonic invariant, condition (ii), which results in

∂th(t, y + q)
h(t, y + q)

+

∫
Q

(
h(t, y + q + q̄) − h(t, y + q)

h(t, y + q)

)
`(t, y + q, q̄)Λ(dq̄)

=
∂th(t, y)
h(t, y)

+

∫
Q

(
h(t, y + q̄) − h(t, y)

h(t, y)

)
`(t, y, q̄)Λ(dq̄)(7.55)

for all q ∈ Q and y ∈ Qx, the support of δ{x} ∗
(∑
∞

m=0(Λ(Q))−mΛ∗m
)
. In particular

0 = ∂t log h(t, x) +

∫
Q

(
h(t, x + q̄)

h(t, x)
− 1

)
`(t, x, q̄)Λ(dq̄)

= −

∫
Q

(k(s, x, q̄) − `(s, x, q̄))Λ(dq̄) +

∫
Q

(k(s, x, q̄) − `(s, x, q̄))Λ(dq̄).

Since for every y ∈ Qx there exist q1, . . . qm ∈ Q such that y = x + q1 + · · · + qm we invoke
equation (7.55) and deduce that h(t, y) is a solution of the Kolmogoroff backward equation
with respect to `. Therefore h(t,Xt−) is a martingale under Px

` and we may apply the first
part of the proof to identify Px

k = hPx
` . �

Example 7.56. Let Q = {1, 2} and P` the law of a compound Poisson process with intensity `,
where `(1), `(2) > 0. Then Ξ

q
`
(t, y) = 0, and a nice jump process Pk is in the reciprocal class R(P`)

if
∂t log k(t, y, q) +

∑
q̄=1,2

(
k(t, y + q, q̄) − k(t, y, q̄)

)
= 0, for q = 1, 2 and (t, y) ∈ I ×Rd.

and there exists a ψ : Rd
→ R such that

k(t, y, q) = `(q)eψ(t,y+q)−ψ(t,y), for all t ∈ I, q ∈ {1, 2}, y ∈ Rd.

If we fit the potential ψ into the harmonic invariant, we get the condition

0 = ∂t
(
ψ(t, y + q) − ψ(t, y)

)
+

∑
q̄=1,2

(
`(q̄)eψ(t,y+q+q̄)−ψ(t,y+q)

− `(q̄)eψ(t,y+q̄)−ψ(t,y)
)

⇔ ∂tψ(t, y + q) +

∫
Q

eψ(t,y+q+q̄)−ψ(t,y+q)`(q̄)Λ(dq̄) = ∂tψ(t, y) +

∫
Q

eψ(t,y+q̄)−ψ(t,y)`(q̄)Λ(dq̄),

which reduces to the statement, that h(t, y) = logψ(t, y) is a space-time harmonic function.

A “rotational” invariant is hidden in the “gradient of a potential” condition (i) of
the above theorem. It is easy to check that if (i) holds, then the “rotational invariants”
Ψ

q,q̄
`

(t,Xt−) = Ψ
q,q̄
k (t,Xt−) coincide, where

(7.57) Ψ
q,q̄
`

(t,Xt−) := log `(t,Xt− + q, q̄)− log `(t,Xt−, q̄)− (log `(t,Xt− + q̄, q)− log `(t,Xt−, q)).

This invariant is called “rotational invariant”, since if `(y) and k(y) only depend on the
position of the process, the condition reduces to

`(y + q) − `(y) − (`(y + q̄) − `(y)) = k(y + q) − k(y) − (k(y + q̄) − k(y)),

and thus resembles the rotational condition (ii) of the continuous case presented in Theorem
5.26: On both sides we have the difference of discrete derivative operators.

The equivalence of this identity of rotationals to the gradient of a potential condition (i)
of the above Theorem 7.54 depends strongly on the algebraic properties of the set of jump-
sizes Q. See e.g. Borwein, Lewis [BL92], who examine the gradient of a potential condition
if (Qx,+) has a group structure. Both conditions are meaningless if Q only contains one
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element, therefore only a “harmonic” invariant appeared in the characterization of the
reciprocal class of nice unit jump processes in Theorem 6.58. Let us present a simple
example that implies that the rotational invariant is weaker than the gradient of a potential
condition.

Example 7.58. Let Q ⊂ Rd
∗ be any finite set of jump-sizes and `(t, x, q)dtΛ(dq) the intensity of a

nice jump process P`. Let k(t, x, q) := `(t, x, q)eφ(q)−x·q for some function φ : Q → R. It is easy to
check, that the “rotational” invariants coincide Ψ

q,q̄
k (t, x) = Ψ

q,q̄
`

(t, x) for any t ∈ I, x ∈ Rd and
q, q̄ ∈ Q. But log k(t, x, q)− log `(t, x, q) = φ(q)− x · q is not necessarily the gradient of a potential.
Clearly if ψ : Rd

→ R with φ(q) − x · q = ψ(x + q) − ψ(x) exists, we fix ψ on Q up to a constant
by φ(q) = ψ(q)−ψ(0) for x = 0. But then for x = q we get ψ(2q) = 2φ(q) + q · q−ψ(0) and on the
other hand ψ(2q) = φ(q) +ψ(0), which implies φ(q) = 2ψ(0) − q · q. This contradicts the arbitrary
choice of φ. Chosing Q = {1, 2}, ` : Q → (0,∞) and k(q) = `(q)eφ(q) for some φ : Q → R, we see
that this result is in accordance with the statement of Example 7.18, that the reciprocal classes of
the compound Poisson processes Pk and P` coincide if and only if ` ≡ k.

In the next proposition we present a duality formula satisfied by any element of the
reciprocal class R(P`) of a nice jump process. Note that neither the “rotational” invariant
nor the “gradient of potential” condition appear in the formula.

Proposition 7.59. Let P` be the law of a nice jump process,Q be any element of the reciprocal class
of P` such that η ∈ L1(Q). Then the duality formula

EQ

(
F(X)

∫
I×Q

ū(s, q)NX(dsdq)
)

(7.60)

= EQ (DūF(X)) − EQ

(
F(X)

∫
I×Q

Ξ
q
`
(s,Xs−)〈ū(., q)〉sNX(dsdq)

)
holds for all F(X) ∈ SJ and ū ∈ Ē with 〈ū(., q)〉 = 0 for all q ∈ Q.

Proof. The proof is similar to the proof of Lemma 6.65 in the unit jump setting. Using the
product rule satisfied by the derivative operator and the duality formula for a compound
Poisson process with intensity Λ we derive

E`

(
F(X)

∫
I×Q

ū(s, q)NX(dsdq)
)

= E` (DūF(X)) + E`
(
F(X)Dū log G`

1

)
,

if log G`
1 is differentiable in direction ū. By (7.47) we have to differentiate

log G`
1 =

−
η+1∑
i=1

∫
[Ti−1,Ti]×Q

(`(s,X0 +

i−1∑
j=1

V j, q) − 1)dsΛ(dq)

 +


η∑

i=1

log `(Ti,X0 +

i−1∑
j=1

V j,Vi)

 ,
where T0 := 0 and Tη+1 := 1. Since 〈ū(., q)〉 = 0, the perturbation πεū does not change the
number of jumps, thus log G`

1 is differentiable and the derivative is

Dū log G`
1 = −

η∑
i=1

∫
Q

`(Ti,X0 +

i−1∑
j=1

V j, q)〈ū(.,Vi)〉Ti − `(Ti−1,X0 +

i−1∑
j=1

V j, q)〈ū(.,Vi−1)〉Ti−1

Λ(dq)

+

η∑
i=1

∂t log `(Ti,X0 +

i−1∑
j=1

V j,Vi)〈ū(.,Vi)〉Ti

=

∫
I×Q

Ξ
q
`
(s,Xs−)〈ū(., q)〉sNX(dsdq).
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Thus the duality formula (7.60) holds under P`. We extend this to any Q in R(P`) with
η ∈ L1(Q) as usually, see also the proof of Theorem 6.69. Take bounded functions φ,ψ :
Rd
→ R, then Dūφ(X0) = 0 and Dūψ(X1) = 0. The duality formula still holds for the

bridges of P` since

E`

(
φ(X0)ψ(X1)F(X)

∫
I×Q

ū(s, q)NX(dsdq)
)

= E` (φ(X0)ψ(X1)DūF(X))

−E`

(
φ(X0)ψ(X1)F(X)

∫
I×Q

Ξ
q
`
(s,Xs−)〈ū(., q)〉sNX(dsdq)

)
,

But Q can be decomposed into a mixture of the bridges of P` by Definition 4.12. Thus the
duality formula is also satisfied by Q. �

The duality formula (7.35) does not contain sufficient information to characterize the
reciprocal class ofP`: We already remarked, that neither a gradient of a potential condition,
nor a rotational invariant appear in the formula. An example to refute the idea of a
characterization of the reciprocal class R(P`) by the duality formula (7.60) was given in
Example 7.39, where two compound Poisson processes with different reciprocal classes
where solution of the same duality formula.
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Conclusion

In this thesis we studied the characterization of classes of stochastic processes by du-
ality formulae in various settings. The first part was dedicated to the characterization of
processes with independent increments by a duality formula that is well-established in
Malliavin’s calculus. The second part was devoted to the characterization of the reciprocal
classes of various processes by duality formulae. In particular we were able to present
new results concerning the reciprocal classes of pure jump processes. Let us now point to
various open questions related to this work.

Our first result was a characterization of infinitely divisible random vectors by an inte-
gration by parts formula. Following the ideas of Stein’s calculus, this characterization is a
key to the study of approximations of the distribution of infinitely divisible random vectors.
The next step in the derivation of such approximation results would be the computation of
a solution to Stein’s equation

g f (z)(z − b) − A∇g f (z) −
∫
Rd
∗

(g f (z + q) − g f (z))qL(dq) = f (z) − E ( f (Z)).

The distance between the distribution of a random vector V to an infinitely divisible random
vector Z is then computed usingE (

g f (V)(V − b) − A∇g f (V) −
∫
Rd
∗

(g f (V + q) − g f (V))qL(dq)
) < ε

⇒ |E ( f (V)) − E ( f (Z))| < ε,

see also Remark 1.4 and the comments after Theorem 3.1.
Next we have shown, that processes with independent increments are the unique càdlàg

processes satisfying a specific duality formula. On the one hand this indicates, that ap-
proaches similar to Stein’s calculus could be applied in the setting of càdlàg processes, see
e.g. Chen, Xia [CX04] for results on Poisson process approximation. On the other hand
our characterization result could be used to construct Gibbs-states on the configuration
spaceD(I)Z

d
. See e.g. Dai Pra, Rœlly and Zessin [DPRZ02], who use a duality formula to

show that the set of weak solutions of a class of infinite dimensional stochastic differential
equations coincides with a set of space-time Gibbs fields for a certain potential.

At the end of the first part of this thesis, we give a new proof of a characterization of
infinitely divisible random measures on Polish spaces. Our approach implies that similar
characterizations should indeed hold for arbitrary random objects whose distribution is
fixed by projections on random vectors that have infinitely divisible distributions, e.g.
infinitely divisible random fields in the sense of Lee [Lee67] and Maruyama [Mar70].

The second part of this thesis begins with a recapitulation of a result by Rœlly and
Thieullen concerning the characterization of the reciprocal class of Brownian diffusions by
a duality formula, see Theorem 5.34. Our characterization of Brownian diffusions in the
class of semimartingales with integrable increments presented in Theorem 5.14 indicates
that the hypotheses connected to Rœlly, Thieullens characterization result might be relaxed.

In his original article [Cla90] Clark derived reciprocal invariants for diffusions with
non-unit diffusion coefficient, that is solutions of the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt,

for some b ∈ C∞b (I×Rd,Rd) and σ ∈ C∞b (I×Rd,Rd×d) such that σtσ− εId is potive definite
for some ε > 0. His invariants permit to distinguish reciprocal classes: We presented his
result restricted to Brownian diffusions in Theorem 5.26. A corresponding characterization
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of the reciprocal class of diffusions with non-unit diffusion coefficient by a duality formula
does not yet exist. It would be interesting to note, if such a duality formula still exhibits
the similarities to the deterministic Newton equation presented in Remark 5.72.

We characterized the reciprocal class of nice unit jump processes in the sense of a com-
parison of invariants in Theorem 6.58 and by a duality formula in Theorem 6.69. Both
results might be extended to the reciprocal classes of Markov unit jump processes that are
not nice in the sense that the reference intensity `(t,Xt−)dt is unbounded, ` has values in
the whole of [0,∞). The dynamical scope of such processes is larger: A unit jump process
must leave a certain state y ∈ R almost surely until a given time t ∈ I, if ε→

∫
[0,t−ε] `(r, y)dr

explodes for ε → 0. On the other hand, the unit jump process is forced stay in a certain
state y ∈ R almost surely in a given time interval [s, t] ⊂ I if `(r, y) = 0, ∀r ∈ [s, t].

In the last section of this thesis, we characterized the reciprocal class of compound Pois-
son processes by a duality formula in Theorem 7.36 under the assumption of incommen-
surable jump-sizes. We found a reciprocal invariant for nice jump processes in Theorem
7.54 without using the assumption of incommensurability. The first result indicates, that it
should be possible to characterize even nice jump processes with incommensurable jumps
by the duality formula (7.60). It is not verisimilar to prove such results for processes with
commensurable jumps. In Example 7.39 we have given evidence, that the duality formula
(7.35) containing the stochastic derivative of Definition 7.30 is not suited to characterize the
reciprocal classes of jump processes with commensurable jumps. Alternative definitions
of stochastic derivatives might be a key to find a duality formula that characterizes the
reciprocal class of compound Poisson process with commensurable jump-sizes.
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Appendix A. Stochastic calculus of pure jump processes

In this section we present a few aspects of the stochastic calculus associated to pure
jump semimartingales on the space of càdlàg paths. This calculus is the basis of many
results in Sections 2, 6 and 7. In particular we state the Girsanov theorem for pure jump
processes, which is a key to the proof of duality formulae. Our presentation is based on the
introduction to semimartingales by Jacod and Shiryaev in [JS03], the proofs are omitted.

Let X be the canonical process onD(I,Rd). The random jump measure

NX :=
∑

s:∆Xs,0

δ{(s,∆Xs)}

on I ×Rd
∗ is well defined.

Definition A.1. Let P be a probability on D(I,Rd). Then X is called a pure jump process under
P if

P
(
NX(I ×Rd

∗ ) < ∞
)

= 1 and P
(
∃t ∈ I : Xt − X0 ,

∫
[0,t]×Rd

∗

qNX(dsdq)
)

= 0.

The last condition is an equality of processes two up to evanescence. If X is a pure jump
process under P, it is also a semimartingale since it has finite variation. The space-time
version of Itô’s formula has a convenient form.

Theorem A.2. Let X be a pure jump process underP and f : I×Rd
→ R such that f (., x) ∈ C1(I)

for any x ∈ Rd. Then the Itô-formula

f (t,Xt) = f (s,Xs) +

∫
(s,t]

∂t f (r,Xr−)dr +

∫
[s,t]×Rd

∗

( f (r,Xr− + q) − f (r,Xr−))NX(drdq) P-a.s.

holds for any s < t ∈ I.

If f does not depend on time, the Itô-formula reduces to the canonical sum

f (Xt) − f (Xs) =

∫
(s,t]×Rd

∗

(
f (Xr− + q) − f (Xr−)

)
NX(drdq) =

∑
s≤r≤t

(
f (Xr) − f (Xr−)

)
.

Following [JS03, Theorem II.1.8] there exists a predictable random measure Ā on I × Rd
∗

such that

E

(∫
I×Rd

∗

ū(s, q)NX(dsdq)
)

= E

(∫
I×Rd

∗

ū(s, q)Ā(dsdq)
)

for any predictable ū : I × Rd
∗ × D(I,Rd) → R+. This implies that for any predictable

ū ∈ L1(Ā ⊗ P) the process

(A.3) t 7→ X̃ū
t :=

∫
[0,t]×Rd

∗

ū(s, q)(NX(dsdq) − Ā(dsdq))

is a martingale. It is easy to see, that the solution of the Doléans-Dade integral equation

Yt = 1 +

∫
[0,t]

Ys−dXs is given by t 7→ Yt =
∏
s≤t

(1 + ∆Xs).

This is just an application of the Itô-formula with respect to the pure jump process Y. The
Doléans-Dade exponential of the compensated process X̃ū has the following convenient
form
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Theorem A.4. Let X be a pure jump process under P. If X̃ū is the compensated process defined in
(A.3) for some ū ∈ L1(Ā ⊗ P), then the Doléans Dade expontial of X̃ū is given by

Yū
t = 1 +

∫
[0,t] Yū

s−dX̃ū
s , ∀t ∈ I

⇔ Yū
t = exp

(
−

∫
[0,t]×Rd

∗

ū(s, q)Ā(dsdq)
)∏

s≤t(1 + ū(s,∆Xs)), ∀t ∈ I.

This follows again with Itô’s formula, see [JS03, Theorem I.4.61]. The Doléans-Dade
exponential is an important tool in the formulation of the Girsanov theorem for pure jump
processes.

Theorem A.5. Let X be a pure jump process under P with intensity dĀ. IfQ� P with density G
and density process Gt = E (G|F[0,t]), then X is a pure jump process under Q with intensity `dĀ,
where ` : I ×Rd

∗ ×D(I,Rd)→ R+ is predictable and satisfies

E

(∫
I×Rd

∗

u(s, q)`(s, q)Gs−NX(dsdq)
)

= E

(∫
I×Rd

∗

u(s, q)GsNX(dsdq)
)

for any predictable ū : I ×Rd
∗ ×D(I,Rd)→ R+.

We say that X is a pure jump process without fixed jumps under P if the intensity Ā is
of the form

Ā(dsdq) = dsAs(dq).

In this case the density process Gt of the preceeding theorem has the following convenient
representation.

Theorem A.6. Let X be a pure jump process without fixed jumps under P and with intensity
dsAs(dq). Let Q � P with density G and density process Gt = E (G|F[0,t]) such that X has
intensity `(s, q)dsAs(dq) for a predictable function ` ∈ L1(Ā⊗P) underQ. Then G is the Doléans-
Dade exponential of t 7→

∫
[0,t](`(s, q) − 1)(NX(dsdq) − dsAs(dq)), that is

Gt = 1{Gt>0} exp
(
−

∫
[0,t]×Rd

∗

(`(s, q) − 1)dsAs(dq)
)∏

s≤t

`(s,∆Xs).

If X has fixed jumps, the form of G is somewhat more involved, although G is still a
Doléans-Dade exponential. The following partial converse is one of the main tools in the
derivation of duality formulae in Sections 2, 6 and 7.

Theorem A.7. Assume that the predictable function ` : I×Rd
∗ ×D(I,Rd)→ R+ is such that the

Doléans-Dade exponential

Gt = 1 +

∫
[0,t]×Rd

∗

(`(s, q) − 1)Gs−(NX(dsdq) − dsAs(dq))

is well defined and a martingale. Then X is a pure jump process under the probability G1P with
intensity `(s, q)dsAs(dq).



Index of notation
Distribution of a...

Brownian motion, 3
Brownian diffusion, 44
Brownian motion with drift, 44
Poisson process, 6, 76
Poisson process with intensity α > 0, 85
nice unit jump process, 92
compound Poisson process, 119
nice jump process, 132
PII - process with independent increments, 10
Lévy process, 14
Markov process, 31
reciprocal process, 33

δ(u) - compensated integral, 79
I = [0, 1] - time index, xxi
∆I - ordered subsets of I = [0, 1], xxi
∆I×Q - ordered subsets of I ×Q, 116∫
I

utdXt - Itô-integral d = 1, xxi∫
I

ut · dXt - Itô-integral, xxi∫
I

ut ◦ dXt - Fisk-Stratonovich-integral, xxi
κtv - commutation-relation operator, 82
Λ - jump-size reference measure, 118
O(ε) - Landau notation, xxi
o(ε) - small Landau notation, xxii
χ - cutoff function, 8

Canonical spaces
C(I,Rd) - d-dimensional continuous paths, 42
D(I,Rd) - d-dimensional càdlàg paths, xxi
D(I) - one-dimensional càdlàg paths, xxi
J1(I) - unit jump paths, 74
J(I,Q) - pure jump paths, 116

Canonical setup
X - canonical process, xxi
∆Xt - jump at time t ∈ I, xxi
(F[0,t])t∈I - canonical filtration, xxi
NX - canonical jump measure, 18, 117, 141

E - elementary test functions
Ed - d-dimensional, xxii
Ē - on space-time, 16
C - continuous, differentiable functions
C

n
b (Rd,Rm) - bounded, xxii
C

n
c (Rd,Rm) - compact support, xxii

S. - smooth and bounded functionals
Sd - cylindric, xxii
SJ1 - of jump-time, 77
SJ - of jump-time and -size, 127

Γ( . ) - set of admissible...
Γ(x, y) - deterministic trajectories, 57
Γc(x, y) - deterministic control vectors, 57
Γ(µ01) - diffusion distributions, 61

Γc(µ01) - diffusion drifts, 62
Γ(µ01) - unit jump distributions, 104
Γm(x, y) - jump combinations, 119

J( . ) - Hamiltonian action/cost function
J(ω) - deterministic motion, 57
J(Pb) - diffusion case, 61
J(Pγ) - unit jump case, 105

Ψ, Ξ - reciprocal invariants of...
Ψ

i, j
b , Ξi

b - Brownian diffusions, 50
Ψ

i, j
c , Ξi

c - deterministic motion, 58
Ξ` - nice unit jump process, 95
Ψ

q,q̄
` , Ξ

q
` - nice jump process, 135

P reference probability
P0 - initial distribution, 34
P1 - final distribution, 34
P01 - endpoint distribution, 34
Px - pinned initial condition, 34
Px,y - pinned endpoint conditions, 34
hP - h-transform, 36
R(P) - reciprocal class, 34

θε. , π
ε
. - perturbation of...

θεu - paths, deterministic, 15
θ̄εū - paths, random, 17
πεu - jump-times, 76
πεū - jump-times and -sizes, 128

135



136
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XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages 101–203. Springer, Berlin, 1988.

[FPY92] Pat Fitzsimmons, Jim Pitman, and Marc Yor. Markovian bridges: Construction, Palm interpretation,
and splicing. Cinlar, E. (ed.) et al., Seminar on stochastic processes, 1992. Held at the Univ. of
Washington, DC, USA, March 26-28, 1992. Basel: Birkhäuser. Prog. Probab. 33, 101-134., 1992.
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[Mec67] Joseph Mecke. Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete, 9:36–58, 1967.
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