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Introduction 

 

The work presented here took place in the Unit for Virus Host Cell Interaction 

(UVHCI) in Grenoble between 2007 and 2010. The main subject of the laboratory is 

interdisciplinary research covering virus structure, assembly and maturation, virus-host cell 

interactions, host and virus gene-expression mechanisms, cell biology of infected cells, innate 

immunity and anti-pathogen drug design. The biological part of my thesis was performed in 

collaboration with the group of Professors Ruigrok and Jamin which focuses on replication of 

negative strand RNA viruses, whereas the major part of the work consisted of electron 

microscopy and image processing and was conducted in the “Virus Structure and Electron 

Microscopy Development” headed by Dr. Schoehn. 

 

Helices in Biology 

Overview 

Helices are everywhere in the biological world, at every scale, in every organism 

(figure 1.1). One of the main structural elements of proteins is alpha helices (figure 1.1A), 

where the  alpha carbons of the amino acids are connected to each other forming a helical path 

and the bases are sticking out of the formed helix (Pauling, Corey, and Branson 1951). As we 

will see, the work done for understanding the geometry of peptide helices, and in the 

particular the interpretation of X-ray fiber diffraction pattern in the 50’s (Cochran, Crick, and 

Vand 1952) was crucial for the future upcoming of the first Three-Dimensional (3D) 

reconstruction from Electron Microscopy (EM) images in the 60’s (DeRosier and Klug 1968). 

The next example of a biological helix, perhaps the most famous, is the double-helical 

arrangement of bases in DNA (figure 1.1B).  Again, its structure was solved using fiber X-ray 

diffraction data obtained quasi simultaneously by several groups in 1953 (Watson and Crick 

1953; Franklin and Gosling 1953; Wilkins, Stokes, and Wilson 1953). 

At the protein level (figure 1.1C), which interests us mainly, helical polymers are also 

ubiquitous in biology: they are found in bacteriophages, viruses and all eubacterial, archaeal 

and eukaryotic cells. If it is clearly impossible to exhaustively list all helical protein polymers, 



10 



11 

 we can still mention as examples F-actin, microtubules, myosin thick filaments, phage tails, 

bacterial pili and flagella, amyloid fibers, viruses capsids and nucleocapsids. The functions 

that are fulfilled by proteins forming helical polymers are probably even more numerous than 

their variety, as often one polymer is used for several different cellular processes. Helical 

protein polymers are for example involved in cytoskeleton (F-actin, microtubules), muscle 

contractility (actin + myosin), secretion machineries (type III secretion system needle), 

protection of genetic material from the environment (virus capsids and nucleocapsids), 

support for long and short range cargo transport (e.g. through interaction of kinesin and 

dynein with microtubules), whole cell movements (flagella), cell division (microtubules), 

membrane deformation and scission (BAR domain containing proteins, dynamin), bacterial 

colony cohesion (type IV pili), force generation for cell crawling (through F-actin 

polymerisation), and so on.  

In addition to the helical protein polymers which form naturally, some proteins can, 

under certain condition, form helical assemblies, which can be exploited for structural 

determination using Electron Microscopy. As examples, we can cite the human erythrocyte 

band 3 membrane domain (Yamaguchi et al. 2010) various ATPases (Pomfret, Rice, and 

Stokes 2007) or the nicotinic acetylcholine receptor (N Unwin 1993). 

 At the scale of organisms, it is again not uncommon to find helical motifs, including 

some bacterial cells (figure 1.1D), parts of plants (figure 1.1E), the placement of scales on a 

pine cone or the left-handed helix of the narwhal tusk. 

 

Flexibility of helical protein polymers 

 

Despite the usual terminology used to describe helical bio-polymers, and in contrary to 

what the gallery of EM reconstructions shown in figure 1.1C would tend to suggest, 

biological protein helices are in reality never truly helices, but always approximate the helical 

symmetry (which will be defined below) to a certain extent. Helices that respect the helical 

configuration more are referred to as ‘rigid’ or ‘regular’ helices whereas those that respect 

helical configuration less are referred to as ‘flexible’ or ‘irregular’. To further clarify the 

terminology, we must say that these definitions are not equivalent to “homogeneous” and 

“heterogeneous” which are often used in EM. For example, a sample of protein helices can be 
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heterogeneous (e.g. if it contains two types of polymers formed by different proteins) and be 

composed of only rigid helices.  

As the Thesis title suggests, we will be dealing with rather flexible helices and thus it 

is worth introducing here how common, or uncommon, flexibility in protein helices is, and 

what kind of flexibility, and also heterogeneities, can be usually observed (figure 1.2). When 

looking over the literature, finding very rigid examples of protein helices is more an exception 

than a rule. The most popular example of a regular helix in EM is Tobacco Mosaic Virus 

(TMV; figure 1.2A), which can even be used as a very accurate “ruler” for determining the 

exact magnification of an EM image. The exceptional regularity of this structure is well 

illustrated by the fact that it has been used to push the resolution of 3D helical reconstructions 

from EM images to unprecedented limits, at different times in EM history (Jeng et al. 1989; 

Ge and Zhou 2011). Moreover, if one looks at the first highest resolution EM structures of 

helical specimens deposited in the Electron Microscopy Data Bank (EMDB : 

http://www.ebi.ac.uk/pdbe/emdb/ ), reconstructions of TMV appear three times (table 1.1). 

Based on the resolution criteria indicated in table 1.1, which can be a good indication of very 

regular structures, we can search for other helices with a comparable rigidity as TMV. Two of 

these are artificially formed helices which often prove to be exceptionally symmetric, as they 

result from the “folding” of a perfect 2D crystal on a cylinder, and which are often explicitly 

named “tubular crystals” (Atsuo Miyazawa, Fujiyoshi, and Unwin 2003; Nigel Unwin and 

Fujiyoshi 2012). If we restrict ourselves to helices formed naturally, we find two structures of 

bacterial flagella (Yonekura, Maki-Yonekura, and Namba 2003; Maki-Yonekura, Yonekura, 

and Namba 2010) and one of F-Actin (Fujii et al. 2010). This is surprising as both of those 

polymers are known to be rather flexible (figure 1.2B), a quality which is required by their 

functions.  

 



13 

 



14 

This first type of flexibility, illustrated in figure 1.2B, is long or middle range bending 

of the helical axis, which is very common among filaments (Trachtenberg, Galkin, and 

Egelman 2005; Resch et al. 2002). To illustrate this type of flexibility more clearly,  figure 

1.2C shows the model explaining how the bacterial flagella is used to generating force for 

motility, which requires a strong helical axis bending (Samatey et al. 2004). A second type of 

variability/flexibility which we will encounter is variation of diameter. Variable diameters can 

be found either within a single helix or among different filaments, as illustrated in figure 1.2D 

and E (Lata et al. 2008; Parent et al. 2012). We can remark that variability of diameter was 

observed frequently for viral capsids like Marburg virus or Ebola (Bharat, Noda, et al. 2012). 

As a third type of variability, figure 1.2F illustrates the fact that, in some cases, even without 

large changes in the helix diameter, several helical states (relative position of the subunits) 

can be observed. This is a very common type of flexibility: it has been shown and debated for 

Actin filaments (E H Egelman and DeRosier 1992; Fujii et al. 2010), viral helical protein 

polymers (E H Egelman et al. 1989; Bhella, Ralph, and Yeo 2004), and other helical 

structures (Y. A. Wang et al. 2006). Finally, figure 1.2G illustrates the fact that often 

different types of flexibility coexist in a sample: in this example, we can see on a single 

filament a far from straight helical axis, a variation of diameter (the bottom portion has a 

larger width), and clearly the coexistence of several type of interactions between subunits. 

To conclude this part, we have seen how common helical symmetry is within 

biological protein polymers, and how commonly those assemblies exhibit different types of 

flexibility. Thus we understand how important it is to use and develop methods for 

reconstructing the structure of these types of biological assemblies, which is the central point 

of this thesis work. 

Before giving a point of view on what could be the reason why helical symmetry is so 

popular in biology, we need to introduce briefly the terminology which will be used 

throughout this manuscript to describe helical structures and the convention used for their 

orientation description. 
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Terminology of helix description  

 

A continuous helix is characterized by a radius r and a pitch P (figure 1.3A, left). 

Biological helices are discontinuous, and the simplest case, to which we will restrain 

ourselves, is similar to a continuous helix on which subunits would be placed at a regular 

interval (figure 1.3A, right). The angle around the helical axis formed by successive subunits 

is called the angular rotation between subunits (ΔΦ, also written Δphi) and the distance along 

the helical axis between two subunits is the axial rise (Δz). In many biological helices, the 

number of subunits per turn (=360/ ΔΦ) is not an integer, which implies that the real repeat of 

the helix along z (called c), contains several turns (usually noted t) and subunits (noted u).  

In the images of filaments what we usually analyze, the helical axis lies near to the 

plane of the EM support (carbon or ice), so that we see the helices from the “side” (along y in 

figure 1.3B). In this manuscript, we will refer to the rotation out of the plane of the support 

(and perpendicular to the helix axis) as the “out-of-plane” angle of the helices, the rotation 
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around the helical axis as the “on-axis” rotation, and the rotation around the viewing axis as 

the “in-plane” rotation (figure 1.3B).  
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An evolutionary point of view? 

 Helical symmetry is the simplest symmetry to build 

  

Due to their wide and sophisticated range of functions, helical polymers are often seen 

as resulting from an elegant and complex biological design. Actually, helical symmetry is the 

simplest form that one can generate from an ensemble of “building-blocks” (here proteins) 

which are in contact with each other by a defined interaction interface (or “interaction rule”). 

This is illustrated in figure 1.4 using the Respiratory Syncytial Virus nucleoprotein crystal 

structure (Tawar et al. 2009) as the building-block (figure 1.4A).  A very specific interaction 

rule, involving two-fold symmetry, is shown in figure 1.4B, and this specific rule generates a 

symmetrical dimer. Another very specific interaction, involving a single rotation between the 

subunits of a number of degrees that is  a divisor of 360, is shown in figure 1.4C (left) and 

will give raise to a closed ring of subunits with C-fold rotational symmetry (figure 1.4C, 

right). By contrast, two completely arbitrary interactions, involving some translation and 

rotation, are shown in figure 1.4D left and 1.4E left. When this interaction rule is applied to 

more building blocks, a helical polymer is formed (1.4D and 1.4E, right). In general, the 

repeated application of an interaction rule involving rotations and translations between two 

subunits would lead to an infinite helix. So, the structure of helical polymers can be seen to 

reflect the simplest mode of interaction between identical copies of the same protein.  

Thus, one could almost say that evolutionary little “effort” was required to create 

helical polymers and that on the contrary it potentially had to fight against those. Indeed, any 

genetic mutation that would lead to the self-assembly of a protein with an interaction rule 

including a translation and a rotation such as described above could have dramatic 

consequences at the cellular and organism level. The potential deleterious effects of the 

formation of non-wanted helical polymers are illustrated by many diseases caused by fibrillar 

aggregates, including Alzheimer’s, Creutzfeldt–Jakob, and Parkinson’s diseases. 
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 Some advantages of helical symmetry 

 

In addition to its simplicity, helical symmetry offers many advantages: we cannot 

review all of them here but mention those that are relevant in the context of our biological 

samples, which will be described below.  

Helices can form very long, sometimes huge, assemblies; no other protein assembly 

has dimensions comparable to naturally occurring helices like microtubules or actin filaments. 

One advantage is that this permits them to confer particular mechanical properties to entire 

cells and, thus, eventually tissues, like elasticity or resistance to compressive and tensile 

forces. Another advantage is that it makes those helices able to interact with substrates of a 

very large size. For example, Titin, the largest known protein, indirectly interacts with Actin 

filaments in muscle sarcomeres. In many viruses, such as TMV shown in Figure 1.2, the 

complete viral genome, which can exceed sizes of several micrometers, is covered by a 

protein, forming very large helical structures. 

 Another advantage of helical symmetry which we would like to illustrate is that very 

small variations in the inter-subunit interactions can lead to huge variations in the morphology 

of the entire assembly, thus potentially conferring very different properties, like the 

availability of binding sites for interacting partners or its compaction state. Figure 1.5 

illustrates this idea with a completely artificial example (using again the RSV nucleoprotein 

crystal structure as a subunit), and shows how strongly an only small inter-subunit interaction 

variation affects the whole morphology. The difference between the helix shown on the left 

and the helix in the middle is that the translation along the helical axis between successive 

subunits is increased by 4 Å: at the level of two subunits, this change may be regarded as very 

subtle, but the effect on the global structure is enormous. If it would be a real object, this 

change may affect its ability to interact with other proteins or its flexibility for example. On 

the right part of the figure, we see how even more subtle changes in the interaction interface 

between subsequent pairs of subunits will dramatically affect the whole assembly if they are 

“propagated” along the helical axis.  

Thus, by acting very locally, and subtly, on a helix, by changing the interaction 

interface between subunits, for example via the environment of the helix (pH, ionic force, 

etc..) or through the binding of an interacting protein, one can confer very different properties 

to the whole object. 
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As already mentioned, the main focus of this thesis is to study existing image 

processing methods to obtain 3D reconstructions from EM images of flexible helical 

polymers, to implement these methods into a useable processing pipeline, and eventually to 

add new tools to the existing ones. The starting points of this work were biological questions, 

and biological objects, which fulfilled most of the characteristics of flexible helices that we 

have described above. So, before going further in the methodology, we would like to 

introduce those questions, and those structures: the nucleocapsids of negative strand RNA 

viruses. 

 

Nucleocapsids of negative strand RNA viruses 

Generalities on negative strand RNA viruses 

 

Negative strand RNA viruses are enveloped viruses with an RNA genome in the 

opposite sense of that of mRNA. They possess either a single viral RNA molecule 

(Mononegavirales order) or a segmented genome. The families of the Rhabdoviridae (Rabies 

virus, Vesicular Stomatitis Virus), Paramyxoviridae (Measles virus : subfamily 

Paramyxovirinae, Respiratory Syncytial Virus : subfamily Pneumovirinae ; Nipah virus; 

Mumps virus), Filoviridae (Ebola virus) and Bornaviridae (Borna Virus) belong to the order 

of the Mononegavirales. The genome of the viruses belonging to the family of Arenaviridae 

(2 RNA segments, Lassa Virus), Bunyaviridae (3 segments, Rift Valley Fever Virus) and 

Orthomyxoviridae (7-8 segments, Influenza virus) is composed of several single-stranded 

RNA molecules of negative polarity. The Measles Virus (MeV) and the Vesicular Stomatitis 

Virus (VSV) are at the heart of the presented work. 

Negative strand RNA viruses have variable morphologies (figure 1.6), can infect very 

different types of host ranging from plants to mammals, and cause many human pathologies. 

The Influenza virus and the Respiratory Syncytial Virus (RSV) can cause severe 

respiratory tract disease. Rabies virus, Nipah virus and some Bunyaviridae are responsible for 

severe encephalitis. Other viruses from this family, including Ebola or Lassa virus can trigger 

hemorrhagic fever.   



22 

 

MeV is known to cause Measles, a disease which is characterized by prodromal 

symptoms of fever, cough, coryza and conjunctivitis followed by the appearance of a 

generalized maculopapular rash (red plaques on the skin). Measles was estimated to cause 

more than 400,000 deaths in 2004, almost half of which were in sub-Saharan Africa, and it 

continues to cause outbreaks in communities with low vaccination coverage (Moss and 

Griffin 2006). Deaths from measles are mainly due to an increased susceptibility to secondary 

bacterial and viral infections, which is attributed to a prolonged state of MeV-induced 

immune suppression. 

VSV primarily affects rodents, cattle, swine, and horses and can cause mild symptoms 

upon infection of humans and other species. In the former, it causes a benign disease 

characterized by vesicular lesions on the mouth, the tongue, the udder and the hoof of the 

animals. In contrast to Rabies, which causes fatal disease in humans and animals, VSV is not 

dangerous to humans. It can thus be easily studied in the laboratory, while retaining the 

advantage that it shares many common structural and functional characteristics with Rabies. 
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More generally, it constitutes an excellent model for the replication and transcription of 

Mononegavirales because it is relatively simple: it carries only 5 genes for which the 

expression regulation signals are less complex than for the other viruses of this order. 

 

Role of Mononegavirales nucleocapsids 

 

For replication and transcription 

 

During infection, after host cell entry, the first activity of these viruses is the 

transcription of the negative viral RNA into messenger RNA (mRNA).  From a structural 

point of view, the RNA of negative strand RNA viruses is never naked, neither in the virions 

nor in the infected cells, but always in a ribonucleoprotein complex. The major protein of this 

complex is the nucleoprotein (N) which tightly and regularly encapsidates the viral RNA, 

forming a helical N-RNA nucleocapsid. In all Mononegavirales, two other proteins are also 

associated with the nucleocapsid : the viral polymerase (RNA-dependent RNA-polymerase; 

L) and its cofactor, the phosphoprotein (P) (Curran, Pelet, and Kolakofsky 1994).  

These N-RNA nucleocapsids provide helical templates for viral transcription and 

replication (Ruigrok, Crépin, and Kolakofsky 2011). One crucial question concerning this 

mechanism, schematically represented on figure 1.7, is how the polymerase can access the 

viral RNA for performing its activity. 
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This question appeared when it was shown how strongly the nucleoprotein protects 

RNA from its environment (Iseni et al. 1998), although part of the bases were shown to be 

accessible to chemical probes, thus to the solvent (Baudin et al. 1994; Iseni et al. 2000). 

Moreover, recent crystallographic studies of Mononegavirales N-RNA complexes have 

shown how the RNA is buried in a nucleoprotein cleft (figure 1.8). Although the 

nucleocapsids are far too big and flexible for crystallization, recombinantly expressed 

nucleoproteins can also encapsidate short cellular (e.g. bacterial) RNAs that close up into N-

RNA rings. In the rings, N-RNA is sterically constrained in a biologically inactive form, but 

the rings have the advantage of being rigid enough for X-ray crystallography. As an 

exception, Borna Disease Virus (BDV) nucleoprotein crystallized as a tetramer in the absence 

of RNA (Rudolph et al. 2003)(not shown on figure 1.8). The other three available 

Mononegavirales nucleoprotein structures, those of rabies virus, VSV, and RSV, crystallized 

in the form of recombinant N-RNA rings containing 10 or 11 N-protomers (Albertini, 

Wernimont, et al. 2006; Green et al. 2006; Tawar et al. 2009).  

These proteins show two main N-terminal (N-ter) and C-terminal (N-ter) domains, 

mostly composed of alpha helices (Figure 1.8, top row: C-ter is red to yellow and N-ter is 

green to blue). The subunits in the three N-RNA rings make extensive contacts between their 
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C-ter-domains, with N-ter extensions (blue “arms” on the figure) reaching to the back of the 

neighboring N to make an additional domain exchange contact. For RSV and VSV, the C-ter 

extension also goes to the back of the N-subunit at the other side for additional contacts. The 

result of those extensive interactions is a very stable N-RNA structure. The C-ter extension of 

RSV N is very flexible and partially invisible in the atomic structure, and the homologous 

domains of Measles and Sendai virus are intrinsically disordered and bind to P (Longhi et al. 

2003; Houben et al. 2007). In the three structures, the RNA binds in a positively charged 

(blue) cleft between the N-ter and C-ter domains (Figure 1.8, bottom row). In the figure, this 

channel appears as a hole in the nucleoprotein (RNA has been removed in this representation). 
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As a protective stable scaffold for viral RNA 

 

As mentioned, the nucleocapsids of Rhabdoviruses and Paramyxoviruses are very 

stable structures. They can support high salt concentrations and high gravity forces during 

long ultracentrifugation (Blumberg et al. 1984; M. H. Heggeness 1980). The nucleoprotein-

RNA interaction is very strong : for VSV, it has been shown that the interaction was resistant 

to a denaturing treatment with 8 M urea (Iseni et al. 1998). Altogether, this confers to the 

nucleocapsid a protective role for the viral genome: 

- The nucleoprotein protects RNA from digestion by RNases which could be used by the cell 

as a defense mechanism (Iseni et al. 2000).  

- It ensures that the viral RNA will not form secondary structures by interacting with itself 

(Baudin et al. 1994). 

- It is also necessary to avoid the formation of double-stranded RNA between the viral 

genome and the viral messenger RNA during their synthesis. 

 

Structures of nucleocapsids 

 

Although the isolated nucleocapsids of negative strand RNA viruses are all composed 

of a viral nucleoprotein (which basic organization does not differ very much between various 

virus families) and the viral genome, their morphology is very variable. The figure 1.9 shows 

EM micrographs of nucleocapsids isolated from virion or formed upon heterologous 

expression of the nucleoprotein. The recombinant nucleocapsids have a similar morphology 

as the viral nucleocapsids, and with a similar stoichiometry of nucleoprotein/nucleotides. The 

figure 1.9 shows that the nucleocapsids of Paramyxoviridae (Sendai, Mumps and Nipah) 

shares morphological similarities: they are relatively compact and have a “herringbone” 

appearance. In comparison, the nucleocapsids of Rhabdoviridae forms a loose coil (Rabies is 

shown here, but the one of VSV is very similar) and for Filoviridae (Marburg) they appear 

even less compact. Influenza virus nucleocapsids present a very different morphology, with a 

supercoiled structure with a terminal loop (Michael H. Heggeness et al. 1982). 
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Due to the highly flexible nature of these assemblies, there are only a few three-

dimensional structures obtained by EM of isolated helical nucleocapsids of negative strand 

RNA viruses described in the literature. From figure 1.9, we can understand that all the 

structures solved so far are from viruses belonging to the Paramyxoviridae (figure 1.10).  

A low resolution reconstruction of Sendai nucleocapsids (E H Egelman et al. 1989) 

shows a arrangement of ~13 subunits per turn with a pitch of 53 Å (figure 1.10A). A structure 

of RSV nucleocapsid (Tawar et al. 2009) (figure 1.10B) indicate a relative higher pitch (69 

Å) which explains the higher degree of flexibility of the corresponding isolated nucleocapsids. 

Other than those, only reconstructions of Measles nucleocapsid have been obtained, either in 

the intact form or digested form (see the next section for more details) (figure 1.10 C, D). In 

(Bhella, Ralph, and Yeo 2004) (figure 1.10 C), cryo-negative stain reconstruction showed 

that there is extensive conformational flexibility within these structures, ranging in pitch from 

50 Å to 66 Å, while the number of subunits per turn vary from 13.04 to 13.44 with a greater 

number of helices comprising around 13.1 subunits per turn. They also showed that in the 

digested form, the pitch becomes shorter, ranging from 46 Å to 52 Å, while more helices have 

a twist of approximately 13.3 subunits per turn. In (Schoehn et al. 2004) (figure 1.10 D), a 12 

Å resolution structure obtained by cryo-EM of the digested form of Measles nucleocapsid 

marks the highest resolution structure obtained so far for nucleocapsids. This structure show 

12.35 subunits per turn, which is different from (Bhella, Ralph, and Yeo 2004), but only a 

small portion of the total amount of images were used to calculate the reconstruction (< 10%). 

Another structure, at much lower resolution (25 Å), showed a different symmetry (11.64 

subunits per turn), but it is not clear if it is really present in the data or an artifact of the 

reconstruction method. 
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We have noted the difference of morphology between Paramyxoviridae (except 

Pneumoviruses like RSV) and other negative strand RNA viruses, especially concerning the 

relative compactness of the former. Behind this observation, as well as behind the relatively 

well conserved number of subunits per turn (~ 13) in those viruses, there is a biological 

reason. SeV and MeV nucleoprotein subunits binds to six bases of RNA. It has also been 

demonstrated that there is an absolute requirement in both the respiroviruses and the 

morbilliviruses for the genome to be of a length that is a multiple of six bases (Calain and 
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Roux 1993). Furthermore, there is evidence that this requirement is more than a simple 

reflection of the N-RNA stoichiometry. Experiments with minigenomes have shown that both 

the genomic and anti-genomic promoters are bipartite (Kolakofsky et al. 2005). They consist 

of a 12 nucleotide region at the extreme 3’ end of the nucleocapsid associated with the first 

two N subunits of the nucleocapsid. A second element consisting of a triplet repeat of 

hexamers (3’ CNNNNN-5’) exists downstream between bases 79 and 96, associated with the 

14th, 15th and 16th N subunits. The position of this second element is such that in the 

nucleocapsid, due to their particular symmetry, we would find these elements on successive 

turns of the helix with the hexamer repeats in-phase with the N subunits. Mutations or 

deletions that affect the spatial relationship between these elements, or change the phase of 

the second element hexamers, are highly deleterious to mini-genome replication. It has been 

suggested, therefore, that these elements may be a “polymerase landing pad”.  

In contrast, the precise length of rhabdo/pneumo- virus genomes does not appear to be 

important; they are not subject to a hexamer (or any integer) rule (Pattnaik et al., 1995; Samal 

& Collins, 1996), and their genomic promoter is not bipartite. However this does not mean 

that the nucleocapsid (and its end part) must not adopt a particular symmetry in order for the 

complex polymerase-phosphoprotein to function optimally.  

 

Targets for anti-viral drugs 

 

Nucleocapsids of negative strand RNA viruses are unique structures in the biology of 

nucleic acids. In our case the nucleoprotein which covers the genome is necessary for the 

activity of the viral RNA-polymerase. The N-RNA complexes can thus be perfect targets for 

the development of specific antiviral molecules without toxic side-effects due to their unique 

belonging to the viral world. The active sites of the viral RNA polymerase, as well as protein-

protein interactions like nucleoprotein-phosphoprotein, phosphoprotein- phosphoprotein, 

phosphoprotein -polymerase are also potentially good target for antiviral drugs. Developing 

molecules which would modify the helical characteristics of the nucleocapsid, thus hindering 

the progress of the polymerase on its template, is a promising research area for novel antiviral 

drugs. For such developments, the 3D structures and the understanding of the molecular 

mechanisms associated to the different components of the nucleocapsid are primordial. 
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Measles project : the biological questions 

 

Measles nucleoprotein is composed of two main parts (figure 1.11 A), NCORE, which 

contains the oligomerisation motif and the RNA binding motif (Karlin 2003), and a C-

terminal region, NTAIL. The latter contains a short sequence (residues 489 to 506) which binds 

the viral phosphoprotein carrying the viral RNA polymerase (Longhi et al. 2003), and other 

cellular factors like hsp70 (Couturier et al. 2010). The molecular recognition element (MoRE) 

(residues 485–502) of the disordered NTAIL interacts with the C-terminal three-helix bundle 

domain, XD, of P (residues 459–507) (Johansson et al. 2003) and thereby recruits the 

polymerase complex onto the nucleocapsid template (Bourhis et al. 2004). 

As for other negative strand viruses, when recombinantly expressed, the nucleoprotein 

of MeV binds non-specifically to cellular RNA and is able to form nucleocapsid-like 

structures (Fooks et al. 1993; Spehner, Kirn, and Drillien 1991) which can be purified. 

Nucleocapsids containing the full-length nucleoprotein (MeVND) are very flexible (Bhella et 

al. 2002).  One can however take advantage of the well-known sensitivity of nucleocapsids of 

negative strand RNA viruses to trypsin digestion (M. H. Heggeness 1980) and the increased 

rigidity of resulting digested nucleocapsids (figure 1.11B). This property enabled Dr Schoehn 

to provide a 12 Å resolution 3D reconstruction of MeV digested nucleocapsid (MeVD) by 

cryo-electron microscopy (Schoehn et al. 2004), as shown in figure 1.10D, left. 

Unfortunately, trypsin digestion removes precisely the domain of our main interest, i.e. the 

NTAIL, which interacts in particular with the polymerase cofactor.  



32 

 

 

At the time of my arrival at the UVHCI, Irina Gutsche had just set up optimal 

conditions for negative staining observation which rigidified the intact nucleocapsids (figure 

1.11B). This opened up the possibility of getting EM images of intact and digested 

nucleocapsids under the same conditions and comparing the two corresponding 

reconstructions. Thus, the idea which constituted the first part of my thesis project was to 
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acquire data sets of intact and digested nucleocapsids by negative staining and to process 

them to 3D reconstructions, which would thus eventually enable to localize the NTAIL domain.  

Concomitantly to this work, a novel important structural information appeared, and 

raised new questions : the atomic structure of the nucleoprotein of respiratory syncytial virus 

(RSV) was solved (Tawar et al. 2009). Belonging also to the Paramyxoviridae, RSV thus 

became the closest species to MeV with a known atomic structure of the nucleoprotein.  

Intriguingly, in this structure, the location of the RNA groove is outwards, whereas it 

is inwards in X-ray crystal structures of N-RNA rings of other negative strand RNA viruses 

like rabies (Albertini, Wernimont, et al. 2006) and VSV (Green et al. 2006). Indeed, the 

lateral contacts between N confer to the RSV N-RNA ring an opposite curvature (figure 

1.12). The internal position of the VSV RNA suggested by the crystal structure was 

confirmed in the virus particle (Ge et al. 2010) where the helical turns with the smallest 

diameter (at the tip of the bullet) have a very similar structure to those of the recombinant N-

RNA rings. For Measles, although an attempt of RNA localization was done on the digested 

nucleocapsids (Schoehn et al. 2004) using labeling with cis-platinum and subsequent cryo-

EM reconstruction, the obtained result was not completely clear concerning the orientation of 

the RNA molecule. Furthermore, we cannot completely exclude important rearrangements of 

the nucleocapsid after digestion. 

It was therefore crucial to find out if the difference of RNA localization in the crystal 

structures (figure 1.12) is due to steric constraints in the ring or if it reflects the intrinsic 

difference in the corresponding nucleocapsids. This would have functional implications, in 

particular for the access of the polymerase to the RNA molecule, as it was discussed above. 
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VSV project : the biological questions 

 

Vesicular Stomatitis Virus (VSV), the prototype Rhabdovirus has a lipid envelope 

enclosing a tightly packed bullet-shaped skeleton. Built by a helical trunk and topped by a 

conical tip, the skeleton contains the negative-strand viral RNA enwrapped by the viral 

nucleoprotein N (figure 1.13A, left). This N-RNA complex is the template for replication and 

transcription by the viral polymerase complex consisting of the phosphoprotein (P) and the 

enzymatic large protein (L). Concerning the structure of the virus particle, the simple wooden 

model of the 60's based (figure 1.13A, right) on 2D negative stain electron microscopy (EM) 

observations of the skeletons (Nakai and Howatson 1968) was proven to be visionary by the 

recent 3D cryo-electron microscopy  reconstruction of the helical trunk of the skeleton inside 

the virus particle (Ge et al. 2010) (figure 1.13B). In this reconstruction the viral matrix 

protein M, which role in the nucleocapsid condensation has been under debate since thirty 

years (Newcomb and Brown 1981), bridges consecutive turns of the N-RNA helix (figure 

1.13B, right). Thus the formation of a rigid nucleocapsid core is proposed to be impossible in 

the absence of M. 

However, in the meantime in Grenoble, Irina Gutsche and Euripides Ribeiro were 

exploring the large conformational rearrangements of purified viral and recombinant N-RNA 

as a function of pH and salt concentration, and found out that, in the absence of other viral 

proteins, the nucleocapsid can fold into bullet-shaped structures (figure 1.13C). Determining 

the 3D structure of these reconstituted N-RNA bullets from cryo-EM images constituted my 

second main project. 
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Nucleocapsids of negative strand RNA viruses are very large helical structures.  

Unlike in other viruses like TMV, these helices are rather flexible, at least in their isolated 

state, making them unsuitable targets for X-ray crystallography. Thus, for these objects, the 

technique of choice for determination of their 3D structure is Electron Microscopy (EM), 

associated with appropriate image analysis techniques, which have proven since many years 

to be suitable for the reconstruction of more or less flexible helical polymers. The following 

section aims at giving a general introduction to electron microscopy and 3D reconstruction as 

well as to the specimen preparation techniques that were used in the course of this work, 

before introducing helical reconstruction. 
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Introduction to Electron Microscopy 

 

Historical points 

Transmission Electron Microscopy (TEM) for the characterization of biological 

objects is now a well-established method which has necessitated more than a century of 

developments. In 1878, Ernst Abbe realized that the optic microscopes had reached a 

fundamental resolution limit and that it was necessary to find new tools to explore objects on 

a smaller scale (or objects at a higher magnification). TEM originated in 1896, when the 

phenomenon known as magnetic focusing was discovered by A. A. Campbell-Swinton: he 

found that a longitudinal magnetic field generated by an axial coil can focus an electron beam. 

In 1899, Wiechert observed that cathode rays (electrons) can be focused by the action of an 

electromagnetic field produced by a solenoid. The elements for building an electromagnetic 

lens are here and, in 1926, Hans Busch presented a complete mathematical interpretation of 

this effect. Based on these previous works, in 1928, Ruska and Knoll built an optical bench 

for electrons, under vacuum, which consisted of a small aperture illuminated by an electron 

beam plus a fluorescent screen to observe the image. A small solenoid was used to create the 

image of the aperture. In 1931, they managed to further magnify the image created by the first 

solenoid using a second one placed between the intermediate image and the screen. The 

magnification at this time was 16x, but rapidly improved over the next years: in 1933, Ruska 

obtained, for the first time, a resolution better than the best optical microscopes. In 1935, 

Knoll published the first images obtained from the scanning of a solid sample by an electron 

beam (signaling the advent of Scanning Electron Microscopy -SEM-). During the next 

decades, the resolution of EM was constantly improved thanks to the multiple interactions 

between the needs of the users and scientific progress in domains as various as electronic 

optics, detectors, informatics and electronics, vacuum science and precision engineering. In 

biology, the need to visualize macromolecular complexes “in vivo” pushed the microscopists 

to develop sample preparation techniques adapted to biological objects which are intrinsically 

very sensitive to electrons. Those included first metal shadowing (Williams and Wyckoff 

1944), then negative staining (Hall 1955; Brenner and Horne 1959) before the development of 

cryo-electron microscopy which made it possible to visualize biological objects at low 

temperatures in a hydrated state, thus closer to physiological conditions (Dubochet et al. 1982; 

Adrian et al. 1984; Dubochet et al. 1988). 
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Basic Principles of Transmission Electron Microscopy  

 

Transmission electron microscopy (TEM) makes use of high energy electrons 

(accelerated by tensions from ~60 to 400 kV) to create an image of thin specimen (~50-150 

nm). The wavelength of electrons, in comparison to visible light, ensures a much better 

resolution in TEM than in optical microscopy. However, due to imperfections of 

electromagnetic lenses, the resolution of EM drops off far before what is expected from the 

De Broglie wavelength of electrons (0.0025 nm for electrons accelerated at 200kV). In 

practice, the resolution of the best electron microscopes is about 0.5 Å. The general scheme of 

a transmission electron microscope is depicted in figure 1.14. It is principally composed of: 

-a system of pumps to maintain high vacuum in the microscope. As the electrons 

interact strongly with matter, they also interact with molecules in the air. The microscope 

vacuum must be kept at ~0.1x10 -5 Pa = 1x10-8 millibars. 

-an electron gun, composed of the source of electrons, a focalization system, and an 

electron accelerator 

-a column containing electromagnetic lenses and diaphragm 

-a sample holder (equipped with a liquid nitrogen based cooling system, for cryo) 

-a detector (screen, CCD camera, films) 
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For the image formation, one usually considers only the objective lens, which is the 

closest to the sample. Indeed, this lens ensures the interaction of the electron beam with the 

sample and the formation of the first magnified image of the object, and thus will mostly (but 

not only) determine the quality of the resulting images.  

 In high-resolution TEM, especially in biology, thin specimens can be 

considered as “phase” objects, i. e., the interactions between the electron beam and the sample 

do not significantly change the wave amplitude associated to the electrons but they modulate 

its phase. By tuning the magnetic lens to produce a defocalization, the exiting wave interferes 

with itself generating a contrast call phase-contrast. Electrons interacting more strongly 

(inelastic scattering, see figure 1.15) with the sample do not follow the phase approximation 
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above and they generate noise at the image level. For this reason, EM constructors try to 

minimize the amount of such electrons by using diaphragms and energy filters in order to 

improve contrast. 

 

 

 

 A more detailed explanation about the physical principles behind the image formation 

process is beyond the scope of the presented thesis and references like (Transmission Electron 

Microscopy: Physics of Image Formation from Reimer and Kohl) should be consulted. What 

is important for this work is the contrast transfer function (CTF) defined by the optical 

characteristics of the electron microscope and the amount of defocus used. This function 

modulates the amount of information transmitted from the specimen to the image depending 

on the spatial resolution. When represented as a plot, the CTF has the form shown in figure 

1.16. 

 

As it can be seen, the CTF has negative and positive parts. That means that (i) there 

are zeros where no information is transmitted. This imposed the combined use of multiple 
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images with varying defocus to fill those gaps and (ii) there are contrast reversals for some 

resolution ranges that must be compensated before combining images to avoid annihilation of 

the information. 

 

 

 



43 

Basic Principles of 3D reconstruction of single-particle 

 

 Single-particle 3D reconstruction is based on the central section theorem (R. A. 

Crowther, DeRosier, and Klug 1970; DeRosier and Klug 1968). It says that the Fourier 

transform of a 2D projection of a 3D object is equal to the slice of the object 3D Fourier 

transform perpendicular to the projection direction (figure 1.17). It allows the recovery of the 

3D information from the 2D images produced by an electron microscope. 

The numerical realization of the above theorem composes the core of all the single-

particle reconstruction softwares available. Some implement it on real space (without using 

Fourier transforms), others do it in the reciprocal space but the result is (theoretically) the 

same. The 3D Fourier transform can thus be recovered from its central sections, either by 

interpolation or by assuming a functional form that depends on a certain number of unknown 

functions. The main advantage of the methods based on functional forms is the fact that the 

number of unknowns must always be less than the number of available data points (images). 

Interpolation schemes allow the reconstruction to be calculated in any situation (even if not 

enough data is available) but the distortions present in the resulting 3D reconstruction cannot 

be controlled.  
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Projection matching 

 

The projection matching technique is a way to obtain the orientation corresponding to 

the 2D projections produced by the electron microscope in the form of single-particle images. 

It consists of the use of a 3D reference from which 2D projections are calculated and 

systematically compared to the real (experimental) images (figure 1.18). If the 3D model is 

sufficiently close to the 3D structure of the sample, the orientations associated to the synthetic 

2D projections can be assigned to the experimental images. This allows a new 3D 

reconstruction to be calculated and to replace the initial model in an iterative process that 

follows until convergence. The method above also determines the center of the particles. 

 

 



45 

Biological sample preparation for Electron Microscopy 

 

We will now give more details on the sample preparation techniques which were used 

for the projects presented in this thesis: negative staining and cryo-EM. Negative staining, 

used for Measles nucleocapsid project, will be comprehensively introduced as I was directly 

involved in EM grid preparation, whereas cryo-EM (used for VSV reconstituted bullets-

shaped N-RNA project) will be more briefly overviewed, as the experimental procedures were 

performed by Dr Irina Gutsche and Dr Guy Schoehn. 

 

The negative staining technique 

Historical background 

 

It has been known since the 1940’s that the enhancement of contrast in electron 

microscopy observations can be achieved through the use of stains, which are dense materials 

that will associate with the structures of interest. The stains were mainly composed of heavy 

atoms, like osmium tetroxide or phosphotungstic acid (PTA). The main focus of research at 

that time was to find conditions to achieve maximum stain absorption with optimum 

preservation of morphology, in buffer conditions that would not destroy the structures. These 

stains were used because they directly and covalently interacted with the sample, so this 

staining technique was what we would call today positive staining. During the 50’s, several 

reports were made on observations of “anomalous” staining pattern. The first was made by 

(Hall 1955) who studied the effects of staining conditions on the structural aspect and 

measurable electron density of the well known viruses of tomato bushy stunt (BSV) and 

tobacco mosaic (TMV). Although the focus of the study was mainly on the effects of stain 

concentration, buffer composition, washing and fixing conditions, some attention was drawn 

to some “anomalous” staining patterns and a hypothesis concerning the kind of interaction 

between stain and sample that would explain these patterns were postulated. Quite visionary, 

the author makes this remark: “Although the effect shown in Fig. 8 is the opposite to what is 

usually sought by the use of electron stains, the visibility of particles of low scattering power 

can be enhanced as well, if not better, by surrounding them with dense material rather than 

impregnating them with dense material”. By the “opposite” effect, he meant the fact that the 
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particles, in imperfect washing conditions and low stain concentration, were seen light on a 

dark background instead of appearing dark on a light background (figure 1.19). This effect 

was also noticed, on TMV again, by (Huxley, 1957), but the first to use and introduce the 

term of “negative staining” were (Brenner and Horne 1959), that observed the same 

phenomenon with T2 bacteriophage. In the following years, the negative staining technique 

became the standard for EM observation of viruses (Horne, Hobart, and Ronchetti 1975) or 

other biological objects, resolving both the preservation and contrasting problem. 

 

 

 

Principal of the method  

 

 The basic principle of the negative staining method is relatively simple: it involves the 

use of a stain, composed of heavy atoms, that will interact strongly with the electrons of the 

beam in the microscope (more scattering), and thus give raise to a higher contrast within the 

images. Whereas for positive staining, the stain directly interacts with the sample, the idea 

here is that it replaces the hydration shell around the proteins until, ideally, all hydrated 

volumes are filled with it, forming a cage embedding the protein and protecting it from 
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surface tensions. Next, the ensemble stain-protein is dried as rapidly as possible, and the layer 

of stain should  protect the shape of the protein. In the microscope, this shell of stain around 

the biological material is much more stable than the material alone, thus preventing rapid 

specimen degradation due to irradiation by the electrons, a major problem for biological EM.  

Although each commonly used stain do not meet all the qualities listed below, one can 

say that an ideal stain should have these properties: 

- High density  

- Ability to protect specimen against dehydration effects  

- High solubility  

- Non-chemically reactive with the specimen  

- High melting and boiling points  

- Uniform spreading on the support film  

- Amorphous structure (i.e. structureless) when dry  

 

Experimental setup 

 

 One can probably find as many negative staining experimental setups as EM 

laboratories in the world. Furthermore, one could say that any single negative staining 

experiment is unique, without being far from the truth. Indeed, most of the grid preparation is 

performed manually, and each step is subject to many parameters. Among these parameters, 

one can cite : 

-environment: temperature, humidity…:  

-specimen support:  most of the negative staining protocols propose the use of a physical 

support for the specimen, usually a thin continuous carbon film, although holey carbon film 

can also be used for particular aims (Hanson and Lowy 1963). The thickness of this film can 

be variable depending on the requirements of the experiments: use of single or double carbon 

layer; size of the specimen and buffer composition (some components can be destructive for 

the carbon film). The time needed for the proteins to adsorb to the carbon film depends on the 
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protein and on the carbon film properties, in particular its hydrophobicity (which can be 

reduced by glow-discharge), and thus is a parameter to experimentally determine. 

-stain: the choice of the negative stain can be crucial, and thus a good negative staining 

experiment involves assaying as many stains as possible before drawing conclusions on the 

structural aspect of the specimen. If, for example, a variety of stains are used and similar 

staining patterns are obtained, then it is likely that the features revealed are consistent with 

genuine specimen morphology. On the other hand, the property of a particular stain in having 

an effect on the sample (oligomerisation state, protein conformation/flexibility) can be used in 

some cases: an illustration of this will be shown in the next section on Measles nucleocapsids. 

Different stains are commonly used, and for most of them, one can also vary their 

concentration and the pH of solution, both having potential effects on the staining. A table 

containing a list of commonly used stain and their properties, reproduced from (Bremer et al. 

1992), is shown in table 1.2. 
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-specimen concentration: an advantage of negative staining is that the required concentration 

of sample is relatively low. An appropriate concentration is not only needed to have enough 

views of particles when recording images or screening a grid, but very importantly to obtain a 

good staining. Due to the way that the stain deposits around proteins and to the drying 

process, too low a concentration will cause the stain thickness between each individual 

particles to be almost zero. Also, due to the tensions at the surface of the stain film, it might 

be more frequent that the entire particles are not surrounded by stain, especially if their size is 

big. If the concentration is higher, the proximity of particles will “support” the stain film 
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between particles, and the surface tension in the proximity of every particle will be lower, and 

thus result in a higher likelihood of obtaining a well embedded specimen. Nevertheless,  too 

high a concentration can lead to protein aggregation during grid drying, to superposition of 

views of the particles that would make any image analysis impossible and cause the stain 

thickness to be so high that the particles would be barely visible. Due to the different 

properties of proteins (electrostatic surface, hydrophobicity, shape …) and of the carbon 

surface, the adequate concentration has to be experimentally determined. A commonly used 

starting value for this search is ~0.1 mg/ml. 

-staining protocol: many possible protocols to apply the negative staining are described. The 

most widely used is based on the support of specimen on a single continuous carbon layer and 

the staining is achieved through the “droplet method”. In our study, although the droplet 

method was also tried, the main protocol used for routine observations was based on a simple 

continuous carbon layer and specimen floating on a large amount of stain. When image 

analysis was planned, we used a protocol involving two carbon layers to catch the specimen 

in between. A visual step by step description of the protocol for the double carbon layer 

technique is poorly documented in the literature, and thus is depicted in figures 1.20. 
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Optimization of observation conditions with negative staining : example of Measles 

nucleocapsids 

 

Considering the variety of conditions listed above, it seems to always be important, 

especially for a new project, to try a variety of conditions (staining protocol, pH, temperature, 

concentration of specimen, stain and buffer, etc.) when preparing specimens for microscopy 

using negative staining techniques. Quite often, under varied conditions, different features of 

a specimen will be enhanced, and either complementary or perhaps even contradictory 

information may be obtained. In the next section we will detail an example of a search for 

sample preparation condition for EM image acquisition using negative staining, which will in 

the meantime introduce the type of images we have been working on for the Measles 

nucleocapsids project. 

 

Effect of salt concentration on nucleocapsid compaction 

 

Striking effects of parameters such as ionic strength, pH or salt concentration on the 

ultrastructure of viral proteins assembly are widely described (Salunke, Caspar, and Garcea 

1989; Lepault et al. 2001). More specifically, the effects of salt concentration on the structure 

and rigidity of nucleocapsids of several Paramyxoviridae have been reported (M. H. 

Heggeness 1980) and were already used to obtain conditions where nucleocapsid rigidity was 

enhanced for facilitating the reconstruction process (E H Egelman et al. 1989). However, 

similar data in the particular context of Measles nucleocapsids are not available. We thus first 

tried to find salt conditions which enhanced the rigidity of the nucleocapsids, while trying to 

conserve homogeneity among the sample (Figure 1.21).   
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When using uranyl acetate as a stain and a salt concentration of 150 mM (NaCl), the 

nucleocapsids are very flexible (Figure 1.21A). One can also observe ring-shaped structures, 

either isolated, or attached at the extremities of some of the longer helices. This observation 

suggests some fragility of the nucleocapsids: the last turn of the helix looses its interaction 

with the precedent turn and adsorbs then horizontally on the carbon. When a higher salt 

concentration was used (Figure 1.21B : 300 mM NaCl ; Figure 1.21C : 1.5 M), the sample 

aspect is not homogeneous anymore : one can observe structures similar to the one seen at 

lower salt concentration, and other more rigid helices showing an apparent lower pitch, to a 

various extent. In the extreme case shown on figure 1.21C, one can even see three different 

compaction states on the same area (noted - , +- and ++ from less to more compact).  

The reasons for the lack of homogeneity observed among the samples in the presence 

of high salt concentration are not clear, notably because of the complexity of the interactions 

between the sample, the carbon film and the stain, and because of the fast drying. 

Interestingly, one can remark a certain degree of cooperativity in the nucleocapsids 
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compaction phenomenon. Indeed, we never observed a helix that would be compact only on a 

part of it (Figure 1.21C is a good illustration of this). It is not easy to say, with our 

experimental setup, if this cooperativity happens in solution or results from interaction with 

the carbon and the stain. By using metal shadowing, a transition between two very different 

compaction states occurring within a single helix was observed with the nucleocapsids of 

Sendai virus (E H Egelman et al. 1989), but we don’t know the frequency of such observation. 

This observation suggests a role of the stain in the phenomenon of cooperativity. 

We also observed that the compacted nucleocapsids had a tendency of being grouped 

on the carbon surface (this can be appreciated on the left part of Figure 1.21B). This could be 

due to conformational rearrangements transmitting from one particle to the other, to 

heterogeneity at the surface of the carbon film (e.g. variable hydrophobicity), or to local 

salinity variations caused by dehydration. This last hypothesis is favored by the fact that such 

areas usually show a thicker stain layer, which is known to be related to the presence of a 

higher salt concentration. 

Considering the lack of homogeneity observed by assaying different salt 

concentrations, and the difficulties of interpretation of the structures obtained with high salt, 

we then tested the effects of the choice of the negative stain on nucleocapsid morphology. 

 

Effect of the choice of stain and preparation technique 

 

When using Sodium Silico Tungstate (SST ; pH 7.5) or Methylamine Tungstate 

(Nano-W; pH7.5 ) instead of Uranyl Acetate, and a salt concentration of 150 mM NaCl, the 

nucleocapsids show a more rigid appearance in comparison to UA (150 mM NaCl), with a 

visibly lower pitch, in a quasi-homogeneous manner (Figure 1.22). These important changes 

could be explained by the difference in pH between the stains, that would modify the charges 

at the surface of the nucleoprotein and thus the electrostatic interactions, or by direct 

interactions between the stain and the nucleocapsids. These more compact structures are quite 

different from the ones obtained by increasing the salt concentration, with a greater 

measurable pitch, and, more importantly, a visibly better definition of the subunits (clearer 

stain pattern). In SST, longer structures are observed, but closer examination shows that they 

consist of several pieces of nucleocapsids interacting with each other via their extremities. 
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Moreover, in Nano-W, the nucleocapsid appear more rigid, and thus we selected this negative 

stain for the image acquisition.  

 

 

In addition to the stains, we also varied the protocol for grid preparation. As described 

above (figure 1.20), the double carbon technique may ensure a better embedding of the 

specimen into the stain, especially for high molecular weight samples (Deckert et al. 2006). 

For helices, this is particularly important to preserve the symmetry of the particles. When 

applied to the Measles nucleocapsid, this technique proved to be efficient, with a better 

quality of staining, and has even slightly further enhanced the rigidity of the structures (figure 

1.22, bottom right). A more uniform distribution of the stain and the eventual interaction of 

the nucleocapsids with both carbon films could be reasons for this unexpected effect. 

 To be consistent in the grid preparation technique between our two Measles 

nucleocapsid samples (trypsin-digested and intact), we applied the same protocol to both 

samples, and acquired images for further processing. Figure 1.23 shows a typical micrograph 

of Measles non-digested nucleocapsids (MeVND) and digested nucleocapsids (MeVD). The 

entire image processing which will be described later was performed starting from such 

images. 
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Cryo-Electron Microscopy 

Historical notes on cryo-EM  

 

Although the negative staining technique had brought so much to the biological EM 

field since the 50’s, providing a simple and easy high contrast imaging technique and making 

possible the first 3D reconstructions, the fact that the preservation of specimen was far from 

ideal pushed the community to find new ways of better preserving the specimens. Indeed, 

once thin protein crystals were examined, it was clear that conventional negative stains fell far 

short of the ability to preserve the crystalline order at the resolution needed to visualize and 

trace the polypeptide chain (P. N. T. Unwin and Henderson 1975). On the other hand, the 

quality of the microscope was such that the theoretical resolution limit of the instrument was 

enough to resolve such fine structures. What was needed was a way to preserve the hydration 

of the crystals (or other samples) to avoid deformations due to dehydration, to adsorption on 

the supporting film and to the stain itself.  

The idea of keeping hydrated samples at a cold stage (now referred as cryo-electron 

microscopy) to preserve native structures was not new (with mainly contributions from 

Fernandez-Moran in the 50’s), but it’s value for high-resolution was shown only much later 

when the same protein crystals that showed insufficient electron diffraction with negative 

staining (usually less than 8 Å) were observed in a frozen-hydrated state. Taylor and Glaeser  

used liquid nitrogen to freeze thin catalase crystals (Taylor and Glaeser 1974), without cryo 

protectants, and obtained electron diffraction patterns with a resolution of 3.4 Å, marking the 

beginning of high-resolution biological EM. However another problem had to be solved : 

although the temperatures used for cooling down the water were extremely low (-180), the 

cooling rate was such that ice crystals were formed, introducing another artifact and possible 

deformation source in the observations. The theoretical possibility of cooling water without 

formation of ice crystal (water remains amorphous = vitreous water) was known since a long 

time, but a practical setup for achieving such results was only first described in the Nature 

journal by (Brüggeller and Mayer 1980), and consisted in a violent projection of a small 

droplet of liquid material into the cryogen. In the meantime, a group of electron microscopist 

in the European Molecular Biology Laboratory (EMBL) in Heidelberg, and especially 

Jacques Dubochet, showed how to vitrify thin water layers by immersion in liquid ethane, 

giving raise to the nowadays worldwide used method for cryo-electron microscopy of 
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biological specimens (Dubochet and McDowall 1981). In both cases, the key of success relied 

in increased cooling rates due to small sample sizes, which size was fortunately exactly 

compatible with observation by transmission electron microscopy. Amazingly, the major 

inherent difficulties to this new technique (mainly, how to form a thin enough and uniform 

aqueous layer, how to avoid any carbon support, how to surmount the very low contrast, 

reduce beam damage, etc…) found elegant solutions in the next very few years (the 1980-

1984 period ; to cite among others : (Dubochet et al. 1988; Adrian et al. 1984; Dubochet et al. 

1982). 

Subsequently, a number of three-dimensional reconstructions appeared, in particular of 

helical objects (Mandelkow and Schultheiss 1986; Trinick et al. 1986; Lepault and Leonard 

1985). The first single-particle reconstructions, done on highly symmetrical specimens 

preserved unstained in vitrified ice, included an icosahedral virus reconstruction (Vogel et al. 

1986) and clathrin coated vesicles (Vigers, Crowther, and Pearse 1986). The first 3-D 

reconstruction of an asymmetric structure by cryo-EM appeared 5 years later (J Frank et al. 

1991). By today’s standards, the resolution of these early reconstructions was modest, but 

they showed that preservation was greatly improved when the specimen was not dried and 

they opened the way to the extensive list of 3-D structures of frozen-hydrated specimens that 

were to come. 

Experimental aspects of cryo-EM 

 

 

  The key to of obtaining of good cryo-EM grid is the speed of freezing, in order to 

obtain vitreous water and to avoid ice crystal formation (opaque to electrons). This very high 

speed freezing is achievable through : 

-the low mass of the grid (and thus its low calorific capacity) 

-the speed to plunge the grid in the cryogen 

-the choice of the cryogen. As we mentioned, liquid nitrogen, although cold enough, has a too 

low calorific capacity. Instead, liquid ethane (or a mix propane/ethane) is a good cryogen. 

 The mechanical support for plunge-freezing can be called “guillotine” (Dubochet et al. 

1982), and consist of a system to trigger the plunging (figure 1.24), a tank with liquid 
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nitrogen containing a smaller tank filled with liquid ethane, a support for storage of freshly 

prepared grids.  

 

 

Example of application of cryo-EM : the reconstituted bullets of VSV 

 

N-RNA was vitrified (Irina Gutsche and Guy Schoehn) on carbon-coated quantifoil 

3.5/1 grids (Quantifoil Micro Tools GmbH, Germany).  The grids were observed with a 

Phillips CM200 transmission electron microscope with a LaB6 filament at 200 kV. Images 

were recorded under low electron dose conditions at 27,500x magnification on Kodak SO-163 

films and negatives were digitized with a Zeiss scanner (Photoscan TD) to a pixel size of 2.55 

Å at the specimen level. The figure 1.25 illustrates two typical micrographs of reconstituted 

bullets without M (left) and with M (right). One can note the presence on both pictures of 

views close to the helical axis. All further image processing for VSV was done starting from 

images similar to those. 



60 

 

 



61 

Introduction to helical reconstruction 

 

Methods evolution: from classical methods to single-particle approaches 

Historical points 

 

 The first ever published reconstruction of a three dimensional object from a set of 

electron microscopy images was one of a helical object, the bacteriophage T4 tail (DeRosier 

and Klug 1968). This work presents a general method of 3D reconstruction from EM images 

of any type of object, with or without symmetry. The method relies on the fact that the Fourier 

transform of a two-dimensional projection of a three-dimensional object is identical to the 

corresponding central section of the three-dimensional Fourier transform of the object. The 

choice of its first application to a helical object is however not a pure coincidence. Ten years 

earlier, one of the authors (Klug) was indeed already implicated in fiber diffraction studies 

(Klug, Crick, and Wyckoff 1958), which followed the helical diffraction theory initially 

developed by (Cochran, Crick, and Vand 1952). This reciprocal space formulation was 

necessary to solve the structure of DNA (Watson and Crick 1953) and to understand the 

geometry of polypeptides (Bamford, Hanby, and Happey 1951) .  

In the years following the structure of the bacteriophage T4 tail, the general theory of 

structure determination from projections was continuingly enriched, and almost all the 

introduced concepts are still used nowadays (R. A. Crowther, DeRosier, and Klug 1970).  The 

theory of reconstruction of structures with helical symmetry (Fourier-Bessel reconstruction 

method) became also more advanced, and different steps of its practical application were 

extensively described (DeRosier and Moore 1970). Thus, it is not a surprise that many of the 

three-dimensional structures published in the following years were of helical objects (Moore, 

Huxley, and DeRosier 1970; Wakabayashi et al. 1975; Amos and Klug 1975; P. N. Unwin 

and Klug 1974; R A Crowther and Klug 1975). 
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Brief description of the classical method 

 

 What made, and still makes, helices such an appealing target for three-dimensional 

reconstruction, except the fact that the mathematical background is known since the first 

hours of EM?  As noted in the earliest paper, the reason for this attractiveness is the 

following: a projection of a helix contains many different views of the structure (the subunit), 

and in theory “a single view may often provide sufficient information to derive the three-

dimensional structure” (R. A. Crowther, DeRosier, and Klug 1970).  

We will not detail here the theoretical background of the Fourier-Bessel helical 

reconstruction method, which we will now refer to as the “classical method”, but a simple 

way to understand how one can combine the helical diffraction theory from (Cochran, Crick, 

and Vand 1952) and the reciprocal space formulation for three-dimensional reconstruction 

from projections (DeRosier and Klug 1968) is the following. In 3D, the Fourier transform of a 

discontinuous helix is 0 everywhere except on the so called “layer planes”, which positions 

are determined by the descriptors of helical parameters, expressed as pitch P and axial rise, or 

number of turns and subunits in the repeat, t and u (figure 1.26A,B). The relationship between 

layer planes position and helical parameters is called the “selection rule” (Klug, Crick, and 

Wyckoff 1958), and also involves an integer n, which can take multiple values for each layer 

plane (the solutions of the equation given by the selection rule) and defines the order of 

Bessel functions contributing to this layer plane (figure 1.26B). What is not obvious at a first 

glance is that the involvement of the Bessel functions in the theory in only due to the use of 

cylindrical co-ordinates for this reciprocal-space formulation, and not to the helical symmetry 

in itself (i.e., in these co-ordinates, Bessel functions would be used whatever the symmetry of 

the object studied). The particularity for helices is that Bessel terms will be systematically 

zero, unless their order n satisfies the selection rule, which is thus the “true characteristic of a 

helical structure” (Klug, Crick, and Wyckoff 1958). The figure 1.26C shows the 

characteristics that the Bessel functions will confer to the 3D Fourier transform: its amplitude 

is cylindrically symmetric about the meridian, but the phase (colors) oscillates azimuthally, 

depending on the Bessel order of each layer plane, with n oscillation in one full revolution. If 

we now consider the projection of a helix as generated by the electron microscope, we 

understand from (DeRosier and Klug 1968) that the transform of the projection will be a 

central section in the described transform of the helix as schematized on figure 1.26D. 

Therefore, the central section will cross the layer planes, which will give rise to the so-called 
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layer lines in the observed transform. This crossing will be perpendicular to the layer planes if 

the helix was imaged exactly perpendicularly to the helix axis (figure 1.26D, left), or slightly 

inclined if the helix has an out-of-plane tilt (figure 1.26D, right). Thus, if we start from the 

Fourier transform of a single projection of a helix, which is at the beginning only one section 

in 3D transform of the original object (thus not enough to reconstruct), we understand that by 

determining the order of the contributing Bessel functions to each layer line (a process called 

indexing), and defining the out-of-plane tilt of the particle, one will be able to “reconstruct” 

the information originally present on each full layer plane, by using the above-mentioned 

properties of the Bessel functions. An inverse transformation of this reciprocal information, 

now three-dimensional, will then enable to recover the desired real-space density information. 

To determine the order of the Bessel function from the initial transform of the 2D projection, 

one just needs to understand the argument of the Bessel function which characterizes the 

distribution of amplitudes, and which depends on the reciprocal radius and the real-space 

radius of the particle (figure 1.26E), while knowing the behavior of a Bessel function as a 

function of its order and its argument X (figure 1.26F) : it will be given by a measure of the 

reciprocal distance of the first maximum seen on each layer line, knowing the particle radius.  
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Limitations of the classical method 

 

The classical method as described above can suffer from several following limitations.  

First, if one uses the method on a single projection as described in the earliest paper, 

the resolution that can be achieved will be limited by the relatively poor signal of a single 

image and the limited number of views of the subunit. A way to overcome this, would 

obviously be to combine information from several projections, if they correspond to objects of 

the same helical symmetry parameters (Wakabayashi et al. 1975). As a clear counter-

argument to the one that the classical method is limited in resolution, one must cite recent 

studies making elegant use of the classical methods and culminating in reconstructions at 

resolutions below 5 Angstrom (A Miyazawa et al. 1999; Atsuo Miyazawa, Fujiyoshi, and 

Unwin 2003), which could in some cases be used even for ab initio building of an atomic 

model (Yonekura, Maki-Yonekura, and Namba 2005) !  

Another limitation comes from the fact that, for each layer line, there are 

systematically several solutions n of the selection rule, so that several Bessel functions of 

different orders contribute to them simultaneously (DeRosier and Moore 1970). Depending on 

the different order n on the same layer line, Bessel functions can overlap even at low to 

middle resolution, in which case it will be very difficult to index the transform and extract the 

layer line information properly. Fortunately, many structures do not suffer from the Bessel-

overlap problem until high resolution (sometimes even until resolution which was anyway 

impossible to achieve for other reasons), thanks to the behavior of Bessel functions of high 

order n (figure 1.26E,F) which are effectively 0 until a certain radius in reciprocal space, i.e. 

until a certain resolution. If only these higher order terms overlap with a lower order term on a 

particular layer line, the Bessel-overlap is not a problem anymore. Another type of Bessel-

overlap occurs when two Bessel functions of relatively close order contribute to two different 

layer lines that are at a very close reciprocal height, so that they cannot be distinguished from 

the Fourier-transform of the original projection. A number of methods were designed to solve 

or at least limit this problem, including decomposition algorithm combining data from 

different views (R A Crowther, Padrón, and Craig 1985) or tilting the specimen (Stewart and 

Kensler 1986). One should also note recent developments of the classical method, which seem 

to efficiently overcome this problem (H. Wang and Nogales 2005). 



66 

A last but not least restriction of the classical methods is that they are limited by the 

requirement of high helical order in the sample to be studied. Below certain regularity, the 

indexing of the Fourier transform which is a prerequisite of the method will become 

impossible. 

 

Overcoming limitations of classical methods by single particle approaches 

 

To overcome this problem, new computational methods based mainly on single 

particle image processing techniques (eventually combined with classical helical 

reconstruction), have thus appeared, first described in (Bluemke, Carragher, and Josephs 

1988). Most of the developments of these methods had actually only emerged since the 

beginning of the 2000’s, and were successfully implemented to address a number of problems 

in helical assemblies (E H Egelman 2000; E. H. Egelman 2007; Holmes et al. 2003; Sachse et 

al. 2007; Li et al. 2002; Pomfret, Rice, and Stokes 2007). The relative novelty of such 

approaches leaves room for constant developments of many “adds” of sub-steps in the 

processing and significant improvements (Ramey, Wang, and Nogales 2009; Ge and Zhou 

2011; V. Korkhov and Sachse 2010), as well as discussions about the best way to use this or 

that approach. During my thesis, I tried, as far as possible, to follow some of those 

improvements and to take them into account for the image processing, although this was not 

always possible due to the high rate of introduced changes. We also tried to take part in the 

methods evolution, by providing our own “adds”, as we will see later. 

The single particle-like algorithms cited above share some common points. First, for 

the use of these algorithms, images of several helical filaments are chopped into small 

fragments, each containing typically a few to tens of turns of the helix. Then, similarly to 

single particle processing, fragments can be sorted based on their features to reduce 

heterogeneity, which we will further detail in the result section of this manuscript. A 

reconstruction of the filament can be then calculated by placing each segment in 3D space 

according to its relative orientation through iterative alignment and sorting.  

The principle difference between currently existing methods is the way to take the 

helical symmetry into account.  
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In the most widely used method, the so-called iterative helical real space 

reconstruction, IHRSR (E H Egelman 2000), the algorithm determines the local helical 

symmetry present in a reconstructed volume, imposes this symmetry, and then uses this new 

volume as a reference for a subsequent cycle of projection matching (figure 1.27). 

 

 The determination of the helical parameters on the non-perfectly symmetric volume, 

which is done by the program called hsearch, takes the following steps. First, a starting guess 

for the axial rise Δz is imposed for a refinement of the angular rotation ΔΦ. The best solution 

for ΔΦ is determined by calculating the mean square deviation between voxels of density at 
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different symmetry-related positions in the volume, and varying ΔΦ. The minimum in the 

mean square deviation defines the best fitting ΔΦ. The found value of ΔΦ is then fixed for a 

refinement of Δz using the same approach, and the two steps are iterated once. In practice, all 

these calculation are done in cylindrical coordinates (E H Egelman 2000). Once the “best” 

pair of ΔΦ and Δz are obtained, the helical symmetry is imposed on the volume (using the 

program himpose), and this newly symmetrized volume is used for a new iteration of 

projection matching and reconstruction, and the whole process is repeated until stabilization 

of the helical parameters and of the reconstruction features. One important advantage of the 

method is its easy automation which allows including it into an automatic reconstruction 

procedure as used for truly single particle objects, and does not require as much manual 

intervention as in the classical method. In our hands, and also noted by others (Edward H 

Egelman 2010; Y. A. Wang et al. 2006), the main disadvantage is the requirement of quite 

precise initial guesses for the algorithm convergence, and the possible failure to find the 

correct solution (see the reconstruction part later in this manuscript). Another negative point 

might be the relatively “inaccurate” way of imposing the symmetry (using himpose program), 

because it implies interpolation in 3D which may affect the very high resolution terms of the 

structure. For this reason, a very recent improvement of the symmetrisation algorithm was 

implemented to minimize interpolations errors (Ge and Zhou 2011).  

This last point makes a good transition to another method that was published the first 

year of my thesis and on which we focused (Sachse et al. 2007), because it has been 

developed partly to compensate the “inaccurate” way of taking into account the helical 

symmetry in IHRSR. This method also relies on an iterative projection-matching based 

algorithm (figure 1.28).  
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One major difference however, is exactly the way of imposing the symmetry. The 

authors note that during the segmentation procedure (which is usually done using the “90% 

overlap” rule (E H Egelman 2007)), many symmetry-related views are not taken into account, 

because the distance between successive cropped segments along the filaments is larger than 

the axial rise Δz. In order to recover these views and in the same time impose the helical 

symmetry, they propose to include each segment in the reconstruction as many times as the 
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number of missing views. To do this, additional copies of each segment are generated during 

the alignment, each one shifted along the helical axis by a multiple of the axial rise and 

included in the reconstruction with a multiple of the rotation angle between the subunits 

(according to the imposed translation). To avoid including empty areas near the edges of the 

segments, after translation along the helical axis, the segments are windowed in a smaller 

image. In addition to exploiting all possible views initially present in the images, this 

symmetrisation procedure is also more correct than himpose when using a weighted back-

projection algorithm (Radermacher 1988) or  iterative algebraic reconstruction methods (ART 

; (P Penczek, Radermacher, and Frank 1992)) for reconstruction. This is due to the fact that 

the weights (or in the second case the “correction factor”) that are calculated from the 

distribution of data in Fourier space are affected by symmetrisation in 3D (as done by 

himpose) in an “input images independent manner”, whereas this is not the case when 

multiple version of each image are included in the reconstruction. Additionally to this new 

symmetrisation procedure, the method of (Sachse et al. 2007) introduces an alignment 

parameter validation scheme that exploits the geometry of filaments : we will come back to 

those validations later in the manuscript (part “Introduction into the developed scripts”).  

We mostly investigated, and thus detailed, the two methods cited above, but we can 

refer to different ways of applying single particle approaches for helical reconstruction  

(Holmes et al. 2003; Ramey, Wang, and Nogales 2009), which should be further explored in 

the future. 

 

Plan of the manuscript 

 

The manuscript is basically articulated around the successive steps of image 

processing. After the images of several helical filaments were chopped into small fragments, 

we applied classification procedures to sort images upon helical parameters, diameter, and 

other structural features. Although the classification of truly single-particle is widely 

described in the literature, this is not the case for helical samples. Thus, the first part of the 

thesis provides a detailed discussion of our results for each project, after an introduction on 

classification methods.  In addition to the classification of real images, this part includes our 
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method for classifying power spectra (amplitudes of Fourier Transform), which we used 

mainly as a way to detect and sort symmetry heterogeneities. 

The second part of the manuscript focuses on the symmetry determination step, which 

is a prerequisite for 3D reconstruction. In these regards, I introduce our efforts to develop a 

new method that works on a single 2D real-space projection of a helix. The details of the 

method, as well as its application to ideal cases and real data set are presented. This work 

raised interesting considerations concerning ambiguities of helical parameter determination, 

which is extensively discussed based on the results of our method. 

The next step of the processing, the 3D reconstruction by single-particle approaches, 

constitutes a small part of the manuscript (part 3), in which we discuss some encountered 

difficulties and possible solutions, and offer perspective for improvement of this part of the 

processing. The reasons why this part is only briefly developed are twofold. First most of the 

methods are already described in our article (Desfosses et al. 2011) and in the manuscript in 

preparation (Desfosses, Ribeiro, Schoehn, Blondel, Guilligay, Jamin, Ruigrok and Gutsche, in 

preparation). Second the ways that we used to combine processing steps described in the 

literature and eventual new approaches are mostly detailed in the next part : “Introduction into 

the developed scripts”. 

Indeed, an important part of my work consisted in setting up a processing pipeline that 

can be used by others, facilitates the use of single-particle approaches described in the 

literature and add some new possibilities. The last part of the manuscript presents this pipeline 

and gives guidelines to use it, similarly to a software manual. It also describes two other 

scripts, the one that applies the symmetry parameter determination on 2D projection described 

in the second part, and the other one that determines symmetry at the 3D volume level. 
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Results and Methods 

 

PART 1 : Two-dimensional classification and Introduction to 

Multivariate Statistical Analysis  

Purpose and history 

 

The amount of images that can be produced by an EM experiment is easily very large. 

Naturally, no human eye can reasonably analyze several thousand of images and gain any 

useful information out of them. Furthermore, restricting the analysis to randomly chosen 

small subset of those images, is not only a statistical nonsense, but also impossible due to the 

superposition of the expected ideal image with random noise, imaging artifacts (especially for 

negative staining), and low signal-to-noise ratio (especially for cryoEM). 

Firstly however, one common initial step when starting a new project and after having 

recorded micrographs and selected particles, is to try to gain understanding of the structural 

characteristics of the sample from the 2D images, which classically implies a human visual 

inspection. Therefore it appears necessary to find a way to compress the total amount of data 

in order to be able to extract useful information from a large set. What do we mean here by 

“useful information”? In particular, one may want to answer the questions such as: is the 

sample homogeneous? What is the global shape –characteristic dimensions- of the object(s)? 

Is(are) the object(s) symmetrical? Is there conformational flexibility?  

Secondly, in the case of a data set that presents heterogeneity, whether it arises from 

conformational variability or from composition (e.g. in the case of protein complexes) of the 

observed particles, one absolutely needs to distinguish between various states and separate 

them into more homogeneous subsets if one wishes to use averaging of images for 3-

dimensional reconstruction purposes (Klaholz, Myasnikov, and Heel 2004). 

Finally, compressing the total amount of information in order to separate the data set 

into classes of similar images makes possible to compute class-averages with increased SNR. 

This is not only useful to visually characterize the sample as already mentioned, but is often 

needed in order to construct a first initial model in the case of an unknown structure, should 

one wish to use common lines techniques (Serysheva et al. 1995) or random-conical tilt 
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(Radermacher et al. 1987). As we will see in the next part of this manuscript, creating those 

higher SNR class-averages can also be useful to determine the symmetry of the object of 

interest, for example in the case of helical sample. 

 The first attempts to reduce the high complexity of large experimental datasets used 

alignment and averaging of original images (Markham, Frey, and Hills 1963; Joachim Frank 

1975). Several methods were employed, ranging from the use of a complex physical apparatus 

in the first descriptions of EM image averaging (Markham et al. 1964), to more modern 

computing methods, in particular the largely and currently used auto- and cross-correlation 

functions for this purpose (Joachim Frank et al. 1978; Joachim Frank, Verschoor, and Boublik 

1981). An important problem that should be taken into account prior to averaging is however 

that single molecules can lie in different orientations on the support film. Moreover, one also 

has to consider possible genuine structural variations in the sample as well as possible 

systematic variations in stain distribution when using staining techniques. A significant step 

towards the solution of those problems was the introduction of multivariate statistical analysis 

(MSA) methods, usually in the form of correspondence analysis (Marin van Heel and Frank 

1981; Joachim Frank and van Heel 1982), which leads to a large reduction of the total data 

volume and thus facilitates the understanding and the classification of the data set for 

averaging purpose. Being probably the most widely used method, it will be described in more 

detail. 

 

General description of the existing methods 

 

It is not the point here to give a detailed mathematical background of the method, that 

can be found for example in (Joachim Frank and van Heel 1982), but since it is of primary 

importance to have at least an “intuitive” or a “visual” understanding of the classification 

method to be able to interpret our analysis and results, we will introduce the basics of 

commonly employed classification methods. 
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Principles of correspondence analysis illustrated on a model data set 

Data set description 

 

The figure 2.1 illustrates the successive steps of this classification method based on 

the principal component analysis, using an example chosen by Marin Van Heel for his PhD 

thesis: a purely artificial data set of 64*64 pixel images representing human-shaped heads. 

The figure 2.1A shows the sources of variability that was introduced in this artificial data set, 

to simulate the variability that can be found among real images. Three parameters were varied 

on the heads: the shape of the head (round or long), the size of the mouth (large or small) and 

the direction of the look (left or right). Thus, eight combinations of those parameters are 

possible, and the aim of the classification will be to identify the three different sources of 

variability and then to separate images according to their characteristics. It must be noted that 

although in this example the different images correspond to different objects (except the 

variation of look direction that could correspond to 180 degrees flipped view), the same 

general reasoning and method outline would apply to different views of the same object. To 

be more realistic, a random noise is then added to the images, to create 10 different copies of 

each of the possible head-characteristic combination (figure 2.1B).  
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Data representation in the eigenvector space 

 

We have thus the “experimental observations”, that are the 64*64 elements of an array 

that represent the images, as realized in 80 independent sets of measurement, from which one 

wishes to identify common trends and clusters. A way to do this is to measure the “inter-

images variance direction”. First, all the measurements are arranged in a 4096 * 80 

(4096=64*64) matrix, as shown on the figure 2.1C : each of the measured intensities of the 

4096 pixels of each image are distributed in the columns, whereas each image now constitutes 

an individual raw. From this matrix one can then calculate the χ2 distances between any two 

rows or two columns, to give a new symmetrical matrix containing those distances, which 

represent thus the variances among the initial images. This new matrix is finally used to 

calculate the eigenvectors and corresponding eigenvalues that characterize the inter-images 

variance directions, according to the following steps : 

-The strongest variance direction (= biggest direction of extension of the data) is represented 

by the first eigenvector (i.e. also factorial axis or eigenimage), and the coordinate system of 

the data cloud is rotated/ shifted such as the first unit vector of the new coordinate system 

points in the direction of the maximum inter-image variance (first eigenvector). In our 

concrete example, the first factorial axis corresponds to the variation of the head shape (figure 

2.1D). 

-One then determines the next maximum inter-image variance (second eigenvector), 

orthogonal to the first. The fact that each new eigenvector is orthogonal to all the precedent 

indicates that they characterize independent variations (non-correlated). Once again, one re-

orients the coordinate system in regard to the new factorial axis. In Van Heel’s artificial data 

set, the second biggest direction of extension of the data is related to the variations in the 

direction of the look (figure 2.1D). 

-This step can be repeated to calculate eigenvector 3 (corresponding to the mouth size in our 

example, figure 2.1E), then eigenvector 4, and so on. Therefore, one can express in 

decreasing order all the independent variances of our data.   

In this way, each image can be represented by an expansion of eigenvectors or factors, 

which are ordered by their relative importance. 
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An alternative explanation of the method, equivalent but maybe intuitively more 

accessible, is the following: each image can be represented by a point in a multidimensional 

space where each axis is used to represent the intensity of one pixel of the image. Thus, the 

number of dimension of this space is equal to the number of pixels in the original image. 

According to their characteristic, the points corresponding to the different images in the data 

set may form separated clusters in this space, and/or show common trends illustrated then by 

grouping the images when looking along certain direction of the multidimensional space. 

Determining the directions of extension of the data cloud in the multidimensional space is 

then similar to determining the eigenvectors/factorial axis mentioned above. One would try to 

recover the preponderant vectors that, once combined, would make possible to place each 

image into the space. The representation in figures 2.1D and 2.1E can be related with the 

current explanation, each point would represent an image and one would look at the 

multidimensional space along the direction perpendicular to the eigenvectors 1 and 2 (for 

figure 2.1D) or 2 and 3 (figure 2.1E). In this explanation, it becomes clear that the coordinate 

system representing the extension of the data in the multidimensional space defines an 

intensity value for each pixel, meaning that each vector can actually be represented as a pair 

of “positive” and “negative” eigenimages. 

 

The meaning of eigenimages 

 

The figure 2.1F illustrates for our artificial example the eigenimages corresponding to 

the first 5 factorial axes. Because one can read the direction of variation in two opposite ways, 

there is always a “negative” and a “positive” version of the eigenimages. It must however be 

noted that in the usual software performing correspondence analysis only one of the two 

versions of the eigenimages are shown, so only one will be shown in our real-case examples. 

Having introduced only three different sources of variability in the artificial data set, we can 

remark that only the first three of those show relevant information, the last two only show a 

noise pattern. Thus, although each artificial image of the data set was the combination of 

various sources of variability, the method was able to identify each of them separately. In a 

real case, it means that even if different sources of variability contribute to each image, like 

when structural heterogeneity is present in addition to the distribution of views, one can in 

theory separately distinguish each of those using MSA.  
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  As the method of calculation of the factorial axis suggests, the successive eigenimages 

should reflect the decreasing order of the variances of the data: the first eigenimages 

correspond to the greatest degree of variability, the second to the second highest, and so on. In 

this artificial example however, the three different characteristics of the head were introduced 

exactly in the same relative amount, and exactly the same number of noisy images were 

created for each characteristics combination. Thus in this particular case the order of the 

eigenimages does not arise from the prevalence of one source of variability, but most 

probably from the fact that the images were more “affected”, in term of number of pixels 

concerned, by the changes in the width of the head, less by the look direction, and even less 

by the mouth size. If only 5 % of the images represented a thinner head, the corresponding 

pair of eigenimages would not be the first in the order.  

 

The benefits of data reduction 

 

We should also note the large reduction of data that was achieved: instead of the 

64*64 = 4096 density values per image, each image can now be described as a combination of 

only a few eigenimages associated with relative weights. In the chosen example only three 

eigenimages were sufficient, and it is remarkable that for a real data, usually less than 10 are 

already sufficient (Marin van Heel and Frank 1981) ! This huge compression of the total 

amount of data will then make the next step, the classification of the images, much simpler. 

As will be described in our experimental examples of classification, one can also benefit from 

the reduction of the data into a few eigenimages in order to classify images only according to 

some of the eigenimages. For example, in Van Heel's example, one could have first classified 

images according to the look direction using the weight of the corresponding eigenimages. 

 

Classification strategies 

 

The literature on classification of large image data sets is rich (Ohi et al. 2004; White 

et al. 2004), and we will not go into the details of different methods used as it is not necessary 

for the understanding of our results. The general classification strategies all rely on distance 

measurements to evaluate similarity between images studied. From those similarities 
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measurements, the classification algorithm will then aim at partitioning of images into classes. 

Classification strategies can be globally divided into two main categories: 

-Direct methods (figure 2.2A), like the widely used k-means clustering (PA Penczek, Zhu, 

and Frank 1996), where the images are grouped based on their distance from a set of 

predefined classification centers. To refine the classification and make it more “data-based”, 

one can take the centers of mass of the newly determined classes as new classification centers, 

and repeat the procedure until stabilization of the classes’ content. In this method, the number 

of classes chosen is simply related to the number of classification centers used for data 

clustering. 

-Hierarchical procedures (figure 2.2B), in particular the Hierarchical Ascendant Classification 

(HAC) procedure implemented in the IMAGIC software (M. van Heel et al. 1996) used in this 

work for classification purposes. In this method, one starts with as many classes as there are 

images, and then merges two most similar classes at a time to form bigger classes until one 

ends up with one class containing all the images. The “stop signal” of this merging procedure 

is thus just given by the final number of classes wanted. The algorithm can be represented by 

a tree in which the merging of classes can be followed. 
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Classification and image alignment 

 

Until now, for the sake of clarity we omitted the fact that in practice 

MSA/classification is usually coupled to a step of alignment of raw images. The aim of the 

alignment is to get rid of three different sources of variability among the images: rotation in 

the plane, translations in x, and translations in y. In this way, one can avoid creating classes 

which differ only in translation and in-plane rotation of the object while being redundant in 

terms of the actual viewing direction. Additionally, alignment enables grouping more images 

in fewer classes, which both improves the SNR in the classes and reduces the data size, thus 

making the analysis easier. Moreover, the class-averages will show less blurring due to 

averaging of misaligned images. To keep the classification procedure as unbiased as possible, 

one will try to use as alignment references only data that was produced without a priori 

considerations: the class-averages themselves. The figure 2.3 illustrates the iterative 

procedure that is often used to couple MSA, classification and multi-reference alignment. As 

shown in the figure 2.3, often not all the classes are used as references for the alignment of 

the data set, firstly because one wants to keep for each characteristic out-of-plane view only 

one in-plane rotation class, and secondly because one might wish to discard some classes, for 

example if they show a poorer quality than others (less detailed), eventually that correspond to 

particles other than the actual object of study (for example individual components of a 

complex of interest), or show a bad centering. However, this selection step makes the 

alignment procedure more biased, and one needs to be as careful as possible to always select 

the most representative classes, while paying attention to avoid redundancy of references. For 

the above-mentioned reasons, it is clear that if one wishes to extract detailed information from 

a classification of the data, one need to carefully execute several manual tasks and perform a 

lot of visual inspection; these time-consuming but clearly crucial steps are described in many 

application examples, like in (Burgess et al. 2004). Moreover, it should be specified that the 

above example of the means of integrating the classification into an iterative procedure is, 

although common, not the only way of processing, and additional steps may be added to this 

general pipeline. Just as an example, it has been proposed to refine the classification of the 

data according to more subtle changes than the viewing direction, for example the presence or 

absence of a small ligand, by re-classifying images that were already grouped in an 

orientation class (Klaholz, Myasnikov, and Heel 2004; Elad et al. 2008). 
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Further considerations and our examples of applications 

 

 We have seen so far how MSA and HAC can be used to classify noisy images, 

heterogeneous in viewing direction and/or presenting genuine structural variability. It should 

be noted that very different methods were proposed, and applied, for classification of noisy 

heterogeneous EM images, including the use of self-organizing maps (SOM ; (Marabini and 

Carazo 1994; Radermacher et al. 2001)), or topology representing networks (Ogura, Iwasaki, 

and Sato 2003), the latter claiming in one paper much better performance over other methods. 

However, it is not fully clear if the relative non-success (in term of broad use by the EM 

community) of alternative methods is due to non-clearly announced disadvantages or if it is 

just a result of a loss in the unavoidable competition between software packages available for 

similar tasks, where the outcome depends not only on efficiency and precision, but also on 

factors like user-friendliness, accompanying advertisement, etc. 

 Various applications of the MSA/HAC methods are very widely described in the 

literature, thus it might seem unnecessary to dedicate one part of this manuscript on the 

application of classification techniques to our data. However, we will see now three 

application examples, each one for a particular reason.  

The first example concerns classification of top-views, i.e. along the helical axis, of 

very short helical segments, or rings/pseudo-rings, of recombinant Measles N-RNA and of 

reconstituted VSV N-RNA bullets. These single-particle-like examples are on one hand a 

good illustration of how one can sort a heterogeneous data set with different particle 

sizes/characteristics, and on the other hand how symmetry (or here “pseudo-symmetry”) 

information can be extracted from the analysis of the eigenimages and classes. Although not 

explicitly described in our articles (Desfosses et al. 2011) (Desfosses, Ribeiro, Schoehn, 

Blondel, Guilligay, Jamin, Ruigrok and Gutsche, in preparation), this rough information on 

symmetry was useful to further gain confidence in values independently obtained from the 

analysis of side-views of the helical particles. 

The second example focuses on the classification of side-views of helical segments for 

both Measles and VSV nucleocapsid projects, and gives new insights into application of 

classification methods to helical specimens. Indeed, the literature mainly describes 

classification of isolated single particles, and it is very rare to find information about 

classification of helical particles. In particular, the eigenimages accompanying classification 
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are almost never shown, and no explanations concerning their interpretation and the way they 

can be used are provided. One notable exception is the work of Nogales group (Ramey, 

Wang, and Nogales 2009), which shows the use of classification to address heterogeneity 

issues in a relatively didactic manner, although the eigenimage analysis is only briefly 

described, and which was published while we were in process of performing our analysis. 

As a third example of classification, we will introduce our method that uses 

classification of power spectra of helical segments in order to sort them according to 

symmetry parameters. 

 

Classification of real images 

Rings / Pseudo rings classification 

Ring-shaped nucleocapsid structures 

 

 The atomic scale structural information available for the nucleoproteins of negative -

strand RNA viruses arisen from the natural ability of recombinant N to bind short RNA 

segments and induce their circularization into rings of various sizes (Albertini, Clapier, et al. 

2006; Chen et al. 2004). In 2006, two groups were able to isolate and crystallize rings of N-

RNA of rabies virus (Albertini, Wernimont, et al. 2006) and of VSV (Green et al. 2006), 

thanks to the efforts spent in the biochemical separation of the samples according to the rings' 

size. Since then however, only one new nucleoprotein structure of a negative-strand RNA 

virus, namely the one of RSV (Tawar et al. 2009), was solved based on such a circular 

arrangement. When looking at recombinant Measles N-RNA by negative stain EM, we can 

also see rings, or ring-like structures, in variable relative amount depending on the expression 

batch, on the purification conditions and on the enrichment of the sample in only very long 

helices by glycerol cushion pelleting. However, nobody has so far succeeded in isolating (not 

even to mention in crystallizing) homogeneously sized Measles N-RNA ring. Furthermore, 

and there is still no proof that the observed rings are indeed truly circular , and that what we 

observe on the EM micrographs are not opened rings or very short helices viewed along the 

helix axis. In particular, we could not reproducibly and convincingly show clear side-views of 

ring structures, which would definitely address this question, although the existence of true 
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rings does not necessarily imply that we can easily observe side-views by negative staining, 

due to potential strong preferential orientation on the carbon film, as it was already described 

for other negative strand RNA viruses, like rabies virus (Iseni et al. 1998; Schoehn et al. 

2001). During this work, although we were mainly interested in the structure of the actual 

helical nucleocapsids, a significant amount of time was spent in attempts to isolate and obtain 

homogeneous rings samples, by combined use of CsCl gradients, glycerol gradients and 

native gels, without much success (results not shown).  

 

The number of subunits in the ring-shaped structures as an indicator of the helical 

symmetry 

 

However, even not purified to great homogeneity, the rings or “pseudo-rings” 

structures of Measles N-RNA are not uninteresting in the light of our structure determination 

pipeline. Indeed, their advantage is that the subunits can appear clear viewed from the top, 

and that one may count their number in one turn of a ring-like structure. Therefore, we may 

appreciate the variability of number of subunits that can be seen in one turn and further relate 

the diameter of the observed ring-like structures to the number of subunits that they contain in 

order to compare this information with the diameter of our helical nucleocapsids. Moreover, 

determining the major pseudo-symmetry population of the rings can give an indication of the 

most stable lateral arrangement of the nucleoprotein on the RNA string. Altogether, even if 

these insights may not allow to directly infer the possible symmetries of the long 

nucleocapsids due to potential rearrangements of the nucleoproteins between short and long 

N-RNA structures, they can improve our confidence in the symmetry parameters of our 

structures. 

As far as the reconstituted VSV N-RNA bullets observed in amorphous ice are 

concerned, that some bullet-like structures were systematically found to be very tilted out of 

the plane of the ice, and sometimes until the structures appear as a large ring. These structures 

most likely contain more than one helical turn, therefore we have to keep in mind the 

superposition of the contribution of those turns in the final projection image, and thus 

carefully interpret our observations. 
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We performed 2D-classification of ring-like structures of Measles and VSV N-RNA, 

by following the method described above, using the IMAGIC software. The raw filtered 

images were subjected to MSA and classified using HAC to produce high SNR class-

averages. A subset of representative class-averages was chosen as references for multi-

reference alignment of the initial images (using translations only, except for the last alignment 

cycle for VSV). These steps were repeated until the alignment parameters stabilized and the 

appearance of class-averages did not further improve. The reason to use only translational 

search for the alignment of the images is that a rotational alignment could make the main 

symmetry contribution less clear from the observation of the eigenimages because the total 

sum of images (first eigenimage) would already contain this information, thereby eliminating 

the source of variation among the images that we actually aim to observe. As the IMAGIC 

software manual specifies: “Looking at the eigenimages of the (rotational) unaligned data-set 

is a powerful method for an unbiased finding of the particle's symmetry” (GmbH Image 

Science Software, 2010). Furthermore, for ring-like structures, the in-plane rotation variability 

information should be clear from the eigenimages. However, for VSV, due to the very low 

number of initial images to classify (~200), a last rotational alignment was performed in order 

to merge images that only differed by an in-plane rotation into common class to be able to 

have a sufficient SNR to visualize the subunits. The principal results of the classification of 

the ring-like structures are shown for Measles on figure 2.4 and for VSV on figure 2.5.  

 

Classification of Measles virus N-RNA pseudo-rings 

Eigenimages as indicators of the circular symmetry 

 

For Measles, we have a good example of how we can by apply the classification 

procedures to a raw data set where the noise makes difficult to extract the information that we 

are interested in (figure 2.4A), and which represent a highly heterogeneous data set. When 

looking at the first eigenimages of the translationally aligned data set (figure 2.4B), we can 

see that the main contributions to the image are circularly symmetric, ranging from C12 to 

C14. From eigenimages 2 and 3 (the first being the total average of images), we see that the 

eigenvectors can be grouped two by two, regarding the symmetry they represent. The 

difference between the two is an in-plane rotation of 360/2n degrees for a Cn symmetry, thus 

a rotation of half the angular distance between subunit, or, to employ the terms from (M. van 
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Heel et al. 1996) on a similar case, ‘‘90°’’ out of phase in a rotational sense. Although usually 

not represented, each eigenimage that we see has an inverted version that implicitly exists, 

where a white pixel would be black and inversely. Thus, the eigenimages 2 and 3, for 

example, both have a contrast inverted version so that there are in total four positions 

represented by the eigenfactors for each “subunit” (a bright white spot) : at 0 degree rotation 

(arbitrary), at 1 * (360/13)/4, at 2 * (360/13)/4, and at 3 * (360/13)/4 degrees rotation. Thus 

those eigenvectors sample regularly the different possible position of the subunit in one 

“asymmetric unit” of the C13 symmetry, and we can logically conclude that their combination 

makes possible to represent the variability of in-plane rotation for rings of this pseudo-

symmetry. The same reasoning can be applied for the eigenimages pairs 4 and 5 (C14 

symmetry), 6 and 7 (C12 symmetry). The order of the eigenimages reflecting the relative 

predominance of a particular contribution to the images, we can draw the conclusion from this 

analysis that the preferred pseudo-symmetry of those short helices/rings is 13 subunits per 

turn. Thus, the lateral contacts between subunits may be energetically more favorable for this 

pseudo-symmetry, providing an additional argument for our later trials for symmetry 

determination from side view of longer helical segments. It can be noted that the 3D 

reconstructions actually showed later that this a priori favored 13 subunits per turn symmetry 

is very close to the one of the majority of the nucleocapsids segments (~12.9 subunits per 

turn). From the eigenimages alone, it seems difficult to conclude anything regarding the fact 

that N-RNA of Measles could form truly closed rings, as would be needed for crystallization, 

or not. Indeed, although we see circular symmetries on the first eigenimages, we first have to 

keep in mind that a projection perpendicular to a ring plane would look almost identical to a 

projection along the helical axis of a very short helix, e.g. of only one turn. Secondly, if those 

symmetrical contributions are the most preponderant, the images are actually the expansion 

(combination) of several eigenimages, and the next ones usually represent asymmetrical 

contributions, like the eigenimage 9 in figure 2.4B. 
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Interpretation of the class-averages 

 

The figure 2.4C shows some the final class-averages obtained by our classification 

procedure. The high level of signal makes now possible to manually count on the class-

averages the number of subunits that they represent, that vary, as predictable from the 

eigenimages, from 12 to 14. We can also see that some classes show a less clear definition of 

subunits (some are noted with a ‘-“ on figure 2.4C) on one side of the ring, that would be an 

indication that those parts actually correspond to the superposition with the begin of a second 

turn of a very short helix. On the other side, some class-averages look much more symmetric 

and regular in appearance (some are noted with a “+” on figure 2.4C). Again, this is not a 

sufficient proof that such truly symmetric structures exist, as this regular aspect might simply 

result from averaging of several non-perfectly closed rings together. Upon a more thorough 

examination of the well-defined class-averages (figure 2.4D) for each pseudo symmetry, we 

can see that the apparent diameter ranges from ~190 Å for the 12-rings to ~210 Å for the 14-

rings and is of ~200 Å for the 13-rings. These values will again be useful to compare with the 

observed diameter of the longer helical segments and to gain more confidence in the results of 

independent methods of symmetry determination. 

 

Classification of VSV N-RNA pseudo-rings 

Meaning of eigenimages and pattern in class-averages 

 

For VSV, we could isolate from our set of 88 cryoelectron micrographs around 200 

ring-like structures (a subset is shown in figure 2.5A). As already mentioned, these rings most 

likely represent projections of (close to) 90 degrees tilted short bullet-like structures. Due to 

the low number of images to classify, both the clarity of eigenimages and the quality of class-

averages that can be expected is significantly lower. The eigenimages of the non-rotationally 

aligned data set (figure 2.5B) are indeed difficult to interpret except maybe the two first after 

the total average (i.e. number 2 and 3). The eigenimage number 2 shows that the preponderant 

contribution to images (source of variance) points either toward the interior of the ring (as 

seen by the white circle) or toward the exterior (the strong black circle would be white in the 

inverted version of this eigenimage). This contribution being also relatively constant over the 
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periphery, one can presume that this eigenimage points to a diameter variability of the ring-

like structures. The later analysis of the helical segments would tend to confirm this 

interpretation. The eigenimage number 3 shows a contribution to the images that is actually 

not circular, but slightly ellipsoid. Associated to this pattern, there is a strong contribution at 

the exterior of the ellipsoid in the direction parallel to the small axis of the ellipsoid (figure 

2.5B, orange arrows). Together, these observations suggest that this eigenimage represents the 

trunk of short VSV N-RNA bullets that are less than 90 degrees tilted out-of-plane of the ice: 

the end of the “hollow cylinder” structure would then show an ellipsoid projection, with 

densities corresponding to the projection of the rest of the trunk going out of this ellipsoid in 

the direction where the rest of the trunk is tilted, so parallel to the small axis of the ellipsoid. 

After iteration of the classification procedure, we could obtain a subset of class-averages 

(figure 2.5C) from which a subunit pattern could sometimes be identified. The latter became 

clearer when adding the possibility of rotational search during the alignment (figure 2.5D, for 

example classes surrounded by a blue circle).  This pattern (figure 2.5E, orange arrows) 

consists of two distinguishable stronger densities (figure 2.5E, green arrows), connected by a 

lower density region, in agreement with the bi-lobed appearance of nucleoproteins of negative 

strand RNA viruses at low resolution (Schoehn et al. 2001).  
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Determination of the circular symmetry 

 

The fact that we observe this subunit pattern is interesting in itself. Indeed, this pattern 

should be smeared out unless we either have bullets portion with only less than two turns (so 

that at least on a portion of the ring-like structure there is no interference of the projections of 

N from successive turns), or the N densities almost superpose in subsequent turns (which 

would mean that the number of subunits per turn is very close to an integer). We can 

reasonably exclude the first option, as such extremely short bullets trunks were never 

observed in any other orientation within the ice and thus can be supposed to be inexistent. 

Thus we can hypothesize that a non-negligible set of the bullets trunk that were averaged into 

the classes showing the subunit pattern indeed contain a nearly or exactly integer number of 

subunits per turn. On some class-averages the number of subunits per turn can be 

straightforwardly counted by hand (e.g. for the one surrounded by blue circles on figure 

2.5D).  A better and more precise estimation can be made by using for instance routine 

implemented in IMAGIC that takes an image and a rotational symmetry as input arguments 

and gives a “probability” (no further details are given in the software documentation) that this 

symmetry is actually correct. By iterating over all the symmetries that one wishes to test, one 

can obtain a plot of symmetry probability as a function of the symmetry tested. We made such 

plots on several class-averages that gave a clear subunit pattern, and we show on figure 2.5F 

one representative plot, calculated from the class-average shown on figure 2.5E. This plot 

shows a maximum of the symmetry probability at 33 subunits per turn, and another clear peak 

at 11 subunits per turn (i.e. a divisor of 33).  Despite these indications, we cannot simply 

assume this value of 33 as being the number of subunits per turn for two main reasons. First 

because of the small number of N-RNA bullet top views and the consequently poor statistics, 

and second because this value was determined only from the classes showing the subunit 

pattern. For the remaining classes, we do not know if a pattern is not recognizable because the 

symmetry is too far away from an integer, because the corresponding trunks are too long (so 

that even an almost integer symmetry would become blurred by the number of turns), because 

the tilt is too far from 90 degrees, because of a low SNR, or for any other reason. However, 

we can a posteriori note that the 33 subunits symmetry was independently determined during 

the analysis of the side-views of bullets trunks for 3D reconstruction purposes as being a 

major symmetry of the N-RNA bullet trunks.  
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Further considerations and more examples of applications of classification methods 

 

Up to now, we described the usage of the ring-like structures we observed in the case 

of the Measles and VSV nucleocapsids as an example of how one can take advantage of 

classification in order to extract information of a data heterogeneous in various aspects. 

Although useful, this ring-like data set was actually just a by-product of our sample 

preparation.  We will see now the trials that were made to use classification to gain more 

knowledge about the long helical particles and to find a way to obtain more homogeneous 

data sets. This processing step is only rarely described in the literature for helically 

symmetrical objects. 

Examples will be shown both for the negative stain images Measles non-digested and 

digested nucleocapsids and for the cryo-EM images of VSV bullets, but not necessarily in an 

equal manner. One of the reasons for this differential presentation lies in the genuine 

differences between the preparations of the two types of nucleocapsid in terms of structure or 

heterogeneity for example. In addition, during the course of this thesis we gained more and 

more insights into the interpretation of different steps of classification. In these lines, the 

interpretation and the use of the eigenvectors will be presented in more detailed for VSV and 

the information extracted from the class-averages will be deeper explored for Measles. 

 

Classification of verticalized helical segments 

 

For the helical filament, we used the classification procedure described on figure 2.3 

using the IMAGIC software, with some particular additional steps adapted to our objects. As 

the helical segments were pre-verticalized using the coordinates of the extremities of the 

respective long filament, we could restrain the rotational alignment search to only roughly -

10/+10 and 170/190 degrees. Also, for the selection of class-averages to use as alignment 

references, we could use the particular geometry of the helices. For example, 1D projection of 

the 2D classes along the helical axis can be used to judge about the correct centering of the 

classes. Other particularities of the classification procedure that we can use will be more 

detailed later. 
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 We saw in the previous part how classification can be used to sort heterogeneous data 

set on the 2D level. For the sake of the 3D reconstruction process however, we do not want to 

necessary reconstruct each different “state” of the particles. First because we might be 

interested in only reconstructing the major population to have a chance of actually getting an 

acceptable result, because some states may be too much underrepresented, or because some 

heterogeneities just correspond to damaged particles or other “bad” particles like the ones 

suffering from staining artifacts, flattening, or (in our case of helical objects) any deformation 

that would break the helical symmetry. Thus, the first step of classification is often used to 

discard images.  

 

As a way to get rid of bad  images 

 

 The figure 2.6 shows examples of “good” (figure 2.6A) versus “bad” (figure 

2.6B,C,D) class-averages for the three samples (VSV N-RNA bullets, digested and native 

MEVNC) we are interested in. Several criteria that are easily identifiable were retained for 

assigning a class to the “bad particles”. In the case of Measles non-digested nucleocapsids, as 

could be already be judged from the raw micrographs, many filaments show a long range 

bending of the helical axis in the plane of the carbon filament. When the bending degree is too 

high, it can even be detected on the smaller windowed segments, and several class-averages 

representing such segments (figure 2.6B) can thus be used to discard corresponding images. 

Sometimes also a discontinuity in the projection pattern can be a hint of a helical symmetry 

break or can result from an accidental boxing of junction between ends of two different 

filaments. As we already mentioned, the HAC can produce classes containing various 

numbers of members. In the case of a truly single particle project, due to possible non uniform 

distribution of views, classes with very few members may represent underrepresented 

orientation on the grid. In our case however, due to the helical symmetry and our overlapping 

segments boxing scheme, we cannot have underrepresented views. Thus, classes containing 

only very few members (figure 2.6C) can indicate that they represent rare features of the 

segments like unusual symmetry or particle distortions and thus corresponding images can be 

reasonably discarded for the next steps of the processing.  Due to the averaging of fewer 

particles, those classes often show fewer details. Other types of classes sometimes also show 

fewer details, with a blurred aspect, even if they sometimes contain more images (figure 
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2.6D). This indicates a failure of the classification algorithm to regroup images with truly 

similar features. The reason of the failure is usually not known: it could lie in a low SNR, in 

images showing unique or rare features, in imaging artifacts, etc… Thus getting rid of 

corresponding images at this step can at least not be a bad choice. 

 After discarding images, a classical aim of the classification is to identify 

heterogeneities, and naturally distinguish heterogeneities due to view angle from the ones due 

to structural differences, to separate images into more structurally homogeneous classes.  
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As a way to identify heterogeneities 

 

For the non-digested Measles nucleocapsid, a clear source of heterogeneity appeared 

to be the distance between the densities pointing outward the helix (figure 2.7A). This 

variability could arise either from differences in out-of-plane tilt, as an out-of-plane tilted 

helix would have a 2D projection were those densities would appear closer to each other, or 

due to variability in the helical pitch. We cannot completely discard the first possibility, but 

we judge unlikely that it is the main explanation for several reasons. First we are dealing with 

a negative stain data set, which means that the particles are absorbed to a carbon film and 

should not present a very high out-of-plane tilt, whereas the differences in measurable inter-

turn distances would require a very high out-of-plane tilt to be explained. Secondly, images 

belonging to the same filament were found to sometimes belong to various inter-turn 

distances classes (results not shown ; it can be noted that this was also observed by (Bhella, 

Ralph, and Yeo 2004), Figure 5). Thus we have to consider that those helices can present a 

certain degree of variability in their pitch and take this into account for the 3D processing. 

However at this point, the data was not separated into pitch classes as we had at that time no 

easy and automatic way of dealing with pitch variability (like a simple automatic pitch 

measure) but was instead done on the power spectra level as will be shown later (reference to 

the part with PS classification). 

For Measles digested nucleocapsids that show much more rigid and straight helices we 

might expect less heterogeneity, and indeed, contrary to the non-digested nucleocapsids, no 

strong pitch variability was observed. However, still some striking differences could be 

observed between certain classes. In particular, whereas ~95 % of the images belong to 

classes which show a very characteristic projection pattern, around 5 % are grouped in classes 

showing a very different pattern (figure 2.7B). It can be noted that the characteristic pattern of 

the majority of the segments is amazingly similar to what is shown in (Schoehn et al. 2004), 

Figure 3, from cryo-images of a similar specimen, suggesting a relatively good preservation 

of the specimen in our negative-stain preparation. As mentioned, we can rule out the 

possibility that the low-represented classes represent particular view angles because we must 

have an even distribution of the views. Thus, they could represent a rare symmetry of the 

digested nucleocapsids or an artifact like flattening. Another hypothesis, tempting to 

formulate because of the sample preparation needed, would be that those classes represent 

partially digested nucleocapsids or alternatively more digested nucleocapsids (the SDS gels 
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often showed subtle bands at slightly different sizes that the expected one after digestion, 

results not shown). If one compares the projection pattern of this population with the one of 

the non-digested nucleocapsids (for example the lowest pitch on figure 2.7A), we can indeed 

note similarities which would tend to confirm this hypothesis and suggest an incomplete 

digestion. Whatever the explanation, this is a good example of how a heterogeneity problem, 

which was not necessarily expected based on the raw micrographs, can be detected by 

classification and taken in account to clean our data set from such too different images. 

However, the question: “Do all the other classes really represent projections of identical 

objects, for example in term of symmetry?” does not have any clear answer. If detecting one 

source of heterogeneity actually shows that it exists, not detecting heterogeneity doesn’t mean 

that it doesn’t exist. This shows a limitation of this human inspection-based method, and 

highlights the need of associating automatic methods to the classification step to for example 

identify symmetry corresponding to the classes, as will be proposed later in this manuscript 

(part on helical symmetry determination on 2D projection). 

 For the VSV bullets, we can also appreciate even larger variability of the aspect of the 

class-averages (figure 2.7C). Not only the pattern of the inner part of the projection seems to 

be very variable (figure 2.7C, left), but the first inspection of the classes also suggest 

diameter variability (figure 2.7C, right). The understanding and the ways to deal with those 

variability has been more deeply explored while trying to make use of the eigenimages, and 

thus we will look at it in more details in the next part (“going further…”). 
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 After having discarded “bad” images, identified sources of heterogeneities and refined 

the classification, we are able to get “good” class-averages with a high SNR, from which we 

would like to extract information at 2D level. The figure 2.8 shows such good class-averages, 

using the goodness criteria of Imagic, called “Overall Quality” which, although again obscure, 

takes for sure at least into account the mean variance among images contained in a class, thus 

reflecting the homogeneity of the members of this class. For VSV, we also show two classes 

with not such a good quality score (figure 2.8D) because these still provide valuable 

information. We can mention that for helical objects, looking at the power spectrum of each 

class will also give important indications, in particular regarding the regularity, i.e the 

straightness / the symmetry preservation, of the classes. As a chapter will be dedicated to the 

PS analysis, this issue will not be discussed here.  

When looking at the projection pattern of the digested nucleocapsid (figure 2.8A), we 

remark that, within a single class-average, and whatever the class chosen (see figure 2.7B 

and 2.6A), there is a repetition of motifs along the helical axis every three helix turns 

(highlighted by circles on the bottom part of the figure 2.8A). A true repetition of a motif in 

the projection is in theory only attained after a translation of the repeat distance c along the 

helical axis, after u turns. Here, the visual assessment, although very convincing, is not 

quantitative and thus we cannot conclude that the exact repeat is attained, but we can say that 

the helix contains in three turns a number of subunits at least very close to an integer. Thus, 

we expect the number of subunits per turn to be close to X.33 subunits per turn if the number 

of units in the repeat u is odd and X.67 if u is even. The work of (Schoehn et al. 2004) on 

cryo-EM images of Measles digested nucleocapsid resulted in two reconstructions obtained 

by a single particle-based approach. The reconstruction with the higher resolution shows 

12.35 subunits per turn, the one with the lower resolution has 11.64 subunits per turn, whereas 

a combined Fourier-Bessel/single particle approach gave a symmetry of 12.33 subunits per 

turn. Remarkably, these values are compatible with our observations.  
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 For the non-digested nucleocapsids, the situation is very different (figure 2.8B). First 

the classes usually show fewer details, in particular for the inner part of the helix projection, 

making the analysis more difficult/ less precise. This could be an effect of the symmetry, but 
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most likely it mainly comes from the fact that, as already shown above, these helices are less 

ordered. Contrary to the digested nucleocapsids, for the native ones the “three-turn” repeat is 

not observed, and instead the classes show a density pattern that seems to repeat each turn 

(figure 2.8B, bottom), which would suggest that the number of subunits per turn might be 

close to, or exactly, an integer.  

 For VSV, the higher diversity of projections type makes the interpretation more 

uncertain. A good class as defined by IMAGIC shows almost no inner pattern (figure 2.8C). 

Given the high number of subunits per turn expected for these objects, the inner part of the 

projection is a complex superposition of many subunits from the near side and the far side of 

the helix, potentially explaining this observation. On the exterior part of the projection, we 

can recognize the global bi-lobed nucleoprotein shape, which appearance in subsequent turns 

seems almost constant (figure 2.8C, bottom, green marks). Thus, as for Measles non digested 

nucleocapsid, we may expect a close to, or exactly, integer number of subunits per turn. As 

shown on figure 2.8C (bottom, red circles) the slight inner densities seen close to the edge of 

the projection appeared quasi stacked in the direction of the helix axis, but not exactly. 

Interestingly, some less represented classes (and with a worst IMAGIC goodness score), but 

showing a different and “discrete” inner pattern, also show this kind of quasi stacking of 

densities (figure 2.8D). The structure of the full VSV virion exhibits exactly a half number of 

subunits  per turn (37.5), which gave rise to a particular pattern in the 2D projection where 

motifs were found to be identical after a translation along the helical axis corresponding to 

two helix turns (Ge et al. 2010). Although we cannot be very precise from the rough 

observation of the classes, we can at least exclude such a half integer value of symmetry, and 

rather suppose based on the several observations that we have, that the symmetry is almost an 

integer number of subunits per turn.  

 Before closing this part on the conclusions drawn from the class-averages observation 

for our three projects, an important point has to be made. This part of the manuscript was 

written after the 3D reconstructions were calculated and symmetries determined: thus our 

look on these data is now strongly biased by our a posteriori knowledge, and it is much easier 

to do those interpretations, although they all seem reasonable and justified. A part of the 

classification work (on Measles) was done at the very beginning of the thesis, and at that time 

our way of analyzing the results was yet less advanced. However, it also shows that using a 

posteriori information to re-interpret older data makes possible to gain knowledge, in our case 
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in the potential classification outputs, in order to have more tools and insights for a new 

project. 

 In the figure 2.8, we have seen “good” class-averages and the information we can 

draw from them. These results are however not quite easy to get; indeed one needs to do 

careful multi-reference alignment by choosing “representative and good” classes, understand 

the kind of variability represented from the classes, separate the data set into more 

homogeneous subsets to improve the classes, etc. It can be sometimes difficult to sort out 

these issues based on the classes themselves, and thus a better understanding of the 

eigenimages accompanying the classification and their possible use is important. 

Going further: trying to investigate the meaning of eigenimages 

 

 When looking at the eigenimages, one should keep in mind that their order is crucial: 

the first eigenimages represent the most important contributions in our images. In a relatively 

similar manner, one can say that the more a dataset is homogeneous (less variations), the less 

eigenimages are required for its description. As an extreme example, Marin van Heel's 

artificial data set necessitated only three eigenimages to be described (figure 2.1F). One 

should also remember that the eigenimages are associated with a weight, specific to each 

image of a data set, that represents their contribution to the formation of this particular image. 

 

Meaning of eigenimages for Measles projects 

 

The first 16 eigenimages of an aligned data set for each Measles project are shown on 

figure 2.9 (A : digested, D : non-digested). After the total sum of images (eigenimage 1), both 

samples exhibit contributions (figure 2.9A,D eigenimages 2 and 3), that has a constant pattern 

for each turn, that visibly reflects the global aspect of the images. This means density blobs 

pointing outward the helix, each spaced along the helical axis by a distance corresponding to 

the pitch, and which radial position reflects the helix diameter. These two eigenimages are 

already sufficient to notice significant differences between the native and the digested 

nucleocapsids. The next contribution (figure 2.9A,D eigenimage 4) can be attributed to a 

remaining non perfect centering of the segments, as will be explained on the VSV example. 

For the digested sample (figure 2.9A), after the unclear eigenimage 5, we see contributions 
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(eigenimages 6 and 7) that also show a pattern that is identical in each turn but with a 

different aspect. Interestingly, the same kind of pattern is also observed for the non-digested 

sample, but slightly further away in term of contribution importance (figure 2.9D 

eigenimages 8 and 9). We can only hypothesize here that these contributions could represent 

out-of-plane tilt of the filaments, which in the case of Measles makes appearing on the 

projection the bi-lobed shape of the nucleoprotein (as simulated from low-resolution filtered 

version of reconstruction of (Schoehn et al. 2004) ; results not shown). This could be verified 

a posteriori, for example by plotting the contribution of those eigenimages to individual raw 

images as a function of the out-of-plane tilt as found by projection matching during 3D 

refinement. Interestingly, before this putative out-of-plane contribution, we can observe for 

Measles non-digested nucleocapsids three eigenimages (figure 2.9D number 5,6,7) that are 

not present for the digested sample, presenting a “discontinuous aspect”. We can exclude that 

they are used to represent broken filaments, given the attention with which the micrographs 

were boxed, and strengthened by the fact that even if some broken segments were still 

included in the data set, they would represent a minority of the images and thus would not 

require 3 eigenimages, with such a high degree of importance as inferred from their position. 

We saw from the analysis of real-space classes that one main source of variability observed 

for this sample was the helical pitch. These eigenimages are actually compatible with this, and 

we see two reasons for this. First, they show density contributions that are differently spaced 

(the orange bars of same size drawn on figure 2.9D, eigenimages 2 and 5,6,7 illustrate this 

“stretching” or “compression” of densities). Second, when one computationally superposes 

two eigenimages of the type describing the global major pitch of helices of two different 

pitches (for example the eigenimage number 2 from the digested and the non-digested data 

set), the appearing pattern (figure 2.9E) is very similar to the one in the eigenimages 5,6 and 

7 (figure 2.9D). However, the reason why three eigenimages are needed to explain this 

variability (and not two as usually required to reflect the variability in the translation along the 

y axis) is not clear. One can envision a potential role of the bending of helices that would also 

result in a stretching/compressing of density in the helix direction. Naturally, this could be 

verified by several ways. One possibility would be to classify the images only according these 

eigenimages (eventually in addition to eigenimages number 2 and 3), create a few classes and 

see if the difference appearing is bending or pitch. Another way would be to use an 

independent method to separate images according to pitch (for example reference-based, as in 

(Bhella, Ralph, and Yeo 2004), or based on power spectrum), perform the classification on 

these subsets and see if this type of eigenimages disappear.  
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For the digested sample, although the class-averages seemed to show a repeat of the 

motifs every three pitches, the first 7 eigenimages we have described so far have a periodic 

pattern repeated every pitch along the helical axis (figure 2.9A). Indeed, the three turn-repeat 

is represented by the next 5 eigenimages (figure 2.9A ; number 8 to 13). A closer view on 

eigenimages 2 and 8 illustrating this fact is depicted on figure 2.9B. Thus the combination of 

these two eigenimages for instance allows creating a projection pattern that reflects both the 

pitch and the repeat. For the non-digested sample, we do not see such a pattern.  A departure 

from an exact motif repetition every turn is depicted only later in the eigenimage order (e.g. 

figure 2.9D eigenimage 16), and does not show any short distance repeat, but a progressive 

variation of the pattern in each turn. This fact supports the previously ventured that native 

nucleocapsids may have a close to integer number of subunits per turn. This is supported by 

eigenimages 13 and 15 (figure 2.9D), which show quasi vertical arrangement of densities 

(eigenimage 10 most probably corresponds to diameter variability as will be shown for the 

VSV data set). The particularly well defined eigenimage 15 (figure 2.9D) even shows how 

the quasi vertical arrangement of density motifs slightly varies from turn to turn (the red 

symbol depicts the gradual increase of the density at the right side of the eigenimage, that is 

correlated with a decrease at the other side). This eigenimage shows even more interesting 

details, for example it makes apparent the lateral and vertical arrangement of smaller density 

motifs. For the digested sample, others eigenimages also contain such kind of finer 

information, as for example the eigenimage shown on figure 2.9C. One is tempted to interpret 

these patterns in terms of subunit arrangement along the helical path and among successive 

turns, but we found it too hazardous to further interpret this because of the fact that the near 

and the far side of the helix are merged in the projection. Interestingly, the number and 

arrangement of density motifs seen perpendicularly to the helix axis in the eigenimages was 

found to agree with the final number of subunits per turn in the reconstruction of the non-

digested MeVNC – indeed, there are slightly more than 5 density stripes in the eigenimage 

(figure 2.9C), i.e. just about a half of the number of subunits per turn, so that these motifs 

could reflect the front or the back side of the helical lattice. This should be further examined 

and proven, for example by creating artificial data set with pseudo-helices that would actually 

be made of two halves with two different helical lattices, projecting them so that the two 

lattices are superposing, and performing a classification of such simulated 2D projections. 

The ability of the eigenimages to discriminate the two different lattices, or not, should then 

appear clearly. 
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Meaning of eigenimages for the VSV project 

 

 For the VSV bullets (figure 2.10), the eigenimage number 2 of a non-aligned vertical 

data set (figure 2.10A) shows vertical stripes that are not symmetric in respect to the helix 

axis (contrary to the eigenimage 9), but that are relatively constant along the tube. We can 

note the similar eigenimages number 4 observed for both Measles project (figure 2.9A,D). As 

each eigenimage has an implicit inverse version, it shows that the data set has as a strongest 

variance source towards “the right” or towards “the left” of the helical axis. This suggests that 

this eigenimage could represent the centering variability among the segments. However for a 

non-trained eye, as it was our case, it can be not obvious. A way to understand to what this 

eigenimage corresponds is to classify the images only as a function of the variation it 

describes. In other words, we can give the HAC algorithm only the relative weight with which 

this particular eigenimage contributes to the formation of each image as a basis for 

partitioning. Doing this and generating only a few classes (10 of which are shown on figure 

2.11A), one can actually see that the difference among classes is the centering. From those 

class-averages, one can now choose the best centered ones by looking at their 1D projection 

along the helical axis, and use them to do a multi-reference alignment of the badly centered 

data set allowing only for translation search perpendicularly to the helix axis. By classifying 

the obtained aligned data set, we can observe that the eigenimage thought to correspond to 

centering discrepancies disappears, confirming the original hypothesis. This is an important 

point: to confirm that one has correctly identified a variability source among the images 

(orientation/centering/heterogeneities), one should be able to classify according to this 

variability source and observe the disappearance of the corresponding eigenimage upon either 

alignment of the images or separation of the data set into subsets. In our case (and more 

generally for helical samples), one can thus use the presence, or the relative numbering of 

such an eigenimage to judge about the correct centering of the images. This may even be done 

during the reconstruction process on the images aligned to the projection matching references 

to assess the outcome of the alignment. 
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 Another eigenimage that differs from the majority of the others that describe the global 

structure of the filament is the eigenimage number 9 at the figure 2.10A, that became number 

8 on figure 2.10B in its inverse version. We see again stripes parallel to the helix axis at the 

edge of the structure, but this time the pattern is mirror-symmetric around the helical axis. 

Thus we have a source of variability that is independent of the position along the helix axis 

and that points symmetrically towards the exterior of the structure: this brought us to think 

about diameter variations, that could be in a certain extent already seen from the micrographs, 

the top views (figure 2.5B, eigenimage number 2) and the class-averages of the side-views 
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(figure 2.7C, left). Again, we verified this by classifying the images only using this 

eigenvector, this time not in order to obtain references for multi-reference alignment as we did 

for the centering, but in order to split the data set. A small number of classes (100) was 

generated to clearly see the differences (figure 2.11B shows some of those) and to split the 

data set, but a higher number (400) was used to obtain a finer plot of diameters as shown in 

the VSV manuscript (Desfosses, Ribeiro, Schoehn, Blondel, Guilligay, Jamin, Ruigrok and 

Gutsche, in preparation). As expected, the main difference between the generated class-

averages is their apparent diameter. The figure 2.12A shows class averages of two extreme 

diameters and their corresponding 1D density profiles of the projection along the helix axis. 

Based on this, we can see that we can use this classification step for an automatic separation 

of the images. From the measurable diameter of their corresponding class average (which can 

be for example assessed as the distance between corresponding zero-crossings in the 1D 

density profile), the images can be separated according to their diameter. 
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 An automatic splitting of the data was proposed to be done directly on the raw images 

based on their 1D projection for example in the IHRSR++ modified version of original 

Egelman’s scripts (e.g. in (Parent et al. 2010)). One should however be aware of two issues. If 

raw images are used directly, the SNR is very low (especially for cryo) and thus the measure 

of diameter can become quite imprecise. However this is not the case when measuring on a 

class-average, which is one advantage of our procedure. A second problem, and this is true 

when working on raw images as well than on class-averages, is that one has to take in account 

the fact that the angle of view of the particle may influence the 1D profile in such a way that it 

could lead to a different measure of the diameter. Of course this influence will also depend on 

the symmetry of the helix and the shape of the subunit. In order to get an idea of the extent to 

which the on-axis angle view can influence the measured diameter in our case, we simulated a 

3D model with dimensions and number of subunits per turn in the same range of those 

expected for VSV. This model was projected at each direction around the helical axis every 2 

degrees and an automatic measure of diameter using the proposed procedure was done. Here 

the difference between extreme values was very small, around 5 Angstrom (figure 2.12B), 

and thus images were split only if they corresponded to classes with measurable diameter 

difference superior to this value. However, as mentioned, this difference depends on the 

symmetry and we are here in an extreme case, because of the very high number of subunits 

per turn, i.e. low angle between subunits, so the profile will change only a little when rotating 

around axis. A very schematic drawing on figure 2.12C makes clearer what we could expect 

for an opposite case, i.e. with a relative strong influence of the view angle on the measured 

diameter. 

 Once the data was properly centered and separated in diameter classes, we can use 

MSA on each subset to see the remaining eigenimages, and of course further refine the 

classification outcomes. As expected, we can see, for one diameter class on figure 2.10C (and 

the same was also observed for the other diameter subsets), that the eigenimage identified as 

corresponding to diameter variability disappeared. 

 The remaining eigenimages (on figure 2.10C, from a data set which is already aligned 

and homogeneous in diameter, eigenimage number 2 to 13) are  present as couples with a 

relative shift of a quarter of the pitch in the y direction, and show strong differences in the 

inner pattern. Although they should describe the general structure of the helices, we can ask 

ourselves what the differences among the pairs actually represent. To try to answer this 

question, one can rationally think of what kind of features in the sample, or what kind of 
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variability can explain these eigenimages. Visibly they do not show enough details to 

represent the organization of the subunit nets and the possible variability in it. Notably some 

eigenimages further in term of importance –figure 2.10C number 19, are showing more 

details which one might indeed be tempted to interpret as subunits network, even if we didn’t 

hypothesize more about it at that time. Could the difference between remaining eigenimages 

be due to variations of the pitch? If one manually measures the distance between two turns 

(easily discernible at the left and right edges of the images), one can eventually see some 

small differences between these eigenimages. But these differences are so small, that they 

seem insufficient to explain why the inner pattern of the images is so different. Another 

remaining source of variability that would also explain the small variations in measurable 

distance between turns at the 2D projection level would be a variation of out-of-plane angle of 

the particles in the ice. Again, a way to understand better the meanings of these eigenimage is 

to compare them to what one would obtain using a synthetic reconstruction, as it was done for 

variability of diameter depending of view angles. This time the reconstruction shown in 

figure 2.12B was used to create projections, with a variability of out-of-plane angle in 

addition to on-axis variation. Either no out-of-plane was allowed, or +/- 4 degrees (2 degree 

step), or +/- 12 degrees (2 degree step). The figure 2.13 shows the eigenimages obtain from 

the MSA performed on each of those data sets. As expected, the more different out-of-plane 

versions of the images were created, the more information-containing eigenimages are 

required to describe the data set. We can note that even in the case with the highest extent of 

out-of-plane variability (figure 2.13C), we need less eigenimages to represent the data set 

than in the real case. One reason for this observation would be the discrete out-of-plane 

variability of the simulated data contrary to a continuous variability in the real case, the latter 

thus presenting more fine differences that need to be described. Interestingly, although the 

eigenimages for the simulated data with the highest extent of out-of-plane are not really the 

same than in the real data, we can make some similar observations. The first eigenimages 

(number 2 and 3 both for real data set on figure 2.10C and artificial data sets on figure 

2.13A,B,C) show a “discontinuous” projection pattern, with the highest contribution at the 

edges of the structure, whereas the next ones show “lines” of density from left to right 

(eigenimages 4 and 5 on figure 2.13B,C and reminiscent eigenimages 4 to7 on figure 2.10C), 

that accounts for low out-of-plane tilt (because they are present already when only 4 degrees 

of tilt was simulated (figure 2.13B)). Next eigenimages for the simulated data set (figure 

2.13C, number 6 to 9) corresponding to higher out-of-plane tilt show a more complex pattern 

comparable to the real data set (number 8 to 13 on figure 2.10C).  
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An interesting independent validation of the fact that these kinds of eigenimages 

explain the out-of-plane variability of the filament was made a posteriori, once we had a 

reconstruction of the reconstituted VSV bullet trunks. Two sets of images were created during 

the classification step, one with images corresponding to classes that we would identify as 

“in-plane” (with the “discontinuous” pattern represented by first eigenimages) and another set 
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of images corresponding to images that showed the “out-of-plane” pattern. As these two sets 

of images were compared by projection matching to the reprojection of our current 

reconstruction of the bullets, one could indeed see a good match between our predictions 

based on visual inspection and the outcome of the projection matching (figure 2.14).  
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So, we have seen how one can take useful information from the classification step and 

from the analysis of the eigenimages to extract what kind of variability is present among our 

sample, and to improve the homogeneity of the images. Some perspectives to improve this 

step of the processing, and how to couple it better to the other steps, will be presented now. 

 

 Criticism and perspectives for classification of real images 

  

 One important criticism of the analysis presented above is its unquantitative nature.  

Indeed, we show neither how and how many particular steps of the classification helped to get 

a better final result on the 3D level, nor exactly which measures or values extracted from the 

classification can be used in an automatic manner to decide which image should be included 

in the next processing steps. We can also say that the relative use of the real-space 

classification step for the Measles projects is poor in contrast to what could have been done. It 

was mostly used to get rid of images corresponding to clearly (as visually assessed) badly-

resolved, curved, or discontinuous classes, but not in order to separate different helical states, 

as could for example have been done for Measles non-digested nucleocapsid that showed 

clear pitch variability. Instead, reference-based methods were used (Desfosses et al. 2011), 

which can clearly suffer from more bias than reference-free classification. For VSV, it was 

crucial to use the presented diameter classification in order to be able to obtain a 3D 

reconstruction without symmetry imposition that showed distinguishable subunits densities (it 

was not possible before). However fine effects on the 3D reconstruction quality of including 

images belonging to particular classes were not further examined. 

 The main reason of this lack of quantitative assessments is the fact that the 

classification and the reconstruction steps were insufficiently coupled. Testing different 

parameters of classification, creating pools of images corresponding to various combinations 

of classes (for each classification trial/parameters), requires a lot of manual steps and the 

outcomes are currently not easily associable with objective quantitative measures (e.g. 

reconstruction resolution, convergence ability of the IHRSR procedure, symmetry parameters 

after refinement). A few scripts were written during the VSV project to include the class 

membership as given by IMAGIC into the selection files for SPIDER, but this was not 

sufficient as it still required a lot of manual steps and did not give easy ways of judging the 

outcome. 
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 We think that it could be useful to associate classification and reconstruction not only 

in the forward way, but also in the reverse direction, i.e. improve classification and the way 

we can use it based on the reconstruction outcomes. For example, there are many simple 

questions for which we have no answer, like : To which type of classes the images included in 

the best reconstruction belong? Are these classes associated to a particular combination of 

eigenimages weights? Can we associate symmetry parameters to the use of particular 

eigenimages in the case of heterogeneous sample? Regarding the reconstruction outcome, 

should we separate images when corresponding classes show diameter differences of 1, 5, 10, 

15 Angstrom? What is the best balance between better resolution thanks to a finer pitch 

sorting and worst resolution due to the decrease of the number of included images?… 

 To answer those questions, one needs tools to plot/visualize/analyze in a parallel 

manner the data available from the classification and from the reconstruction steps. But 

upstream to plotting, above all, one needs tools to store all those data, even in the most 

complicated cases: for example when each image was used in several classification attempts 

with different parameters, when one would like to test various combinations of images 

belonging to particular classes, and start a 3D refinement, for each combination, from a set of 

different helical symmetry parameters…  

One promising way to deal with such complexity may be the use of databases, where 

all possible information on each segmented image, each corresponding filament, each class of 

any classification trial, each reconstruction test, would be stored. Then an image can be 

virtually associated with as many parameters as wanted. For example, it would be 

straightforward to apply image selection filters like “keep only images that were found to 

belong to classes with intra-class variance below than X in each of my N tests, that have an 

associated weight of Y for this eigenimage type, that were always found to correlate well with 

reconstructions refinement which converged to a symmetry of Z subunits per turn, etc….”. 

The use of databases has recently been added in the world of EM software via the 

EMAN2/SPARX packages (Hohn et al. 2007; Tang et al. 2007), and one should thus explore 

this new data storage system and apply it if suitable to the requirements of processing of 

helical structures and in particular to for a smart coupling of classification and reconstruction.  
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Classification of power spectra 

Rationale 

 

We have seen in the introduction that a remarkable property of projection of helices 

was their particular signal in Fourier space, with discretization of the information on layer 

lines on which again the information is not distributed evenly. Roughly speaking, whereas in 

the case of a projection of an asymmetrical structure useful coefficients are distributed 

everywhere in the Fourier space, for helices we have a “condensation” of the signal, making it 

also much more visible, even when looking at the Fourier Transform of a single projection 

image. The precise position of the amplitude peaks of information is dependent on the helical 

symmetry, as well as on the out-of-plane tilt angle of the particles which has a precise and 

predictable effect. Thus, if one could apply classification techniques to FT (or preferably first 

to the Power Spectra -PS-, to have pixels containing real values instead of the complex ones 

that contains the phase information in the FT) of images of helical particles, one should be 

able, thanks to the relatively strong signal, to separate images according to the helical 

symmetry (and eventually out-of-plane tilt). Moreover, the process of class-averaging should 

make possible to significantly enhance signal for each symmetry class, thus providing useful 

for retrieval of the symmetry parameters from the PS. 

The idea of using MSA techniques to classify power spectra of images (or modified 

power spectra) instead of their real-space version is not new. It was for example applied on 

rotationally averaged power spectra of micrograph pieces to assay local quality of cryo-EM 

images taken on carbon-coated grids with thin carbon film (Gao et al. 2002). It has also been 

used to sort power spectra of picked particles according to similar CTF parameters (Sander, 

Golas, and Stark 2003), after high-pass filtering of power spectra to raise the relative signal of 

the frequency range with fast sign changes of the CTF.  

 However, using the power spectra of images as a basis to classify images of helical 

objects, in the same way as one would do with the real original images, is to our knowledge 

not described in the literature.  

 We can ask ourselves about the advantages, if any, of classifying the PS of images 

instead of their real-space version, because they are in the end representing almost the same 
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information, with even a loss of the phase information in the case of the PS. There are actually 

multiple advantages: 

-precisely because we only look at the square of the amplitudes and thus get rid of the phase 

information, we do not have the translation variability information between similar images. 

For classification of the real-space images we had to consider that two different classes might 

be created only by taking in account differences in translation. We also had to 

calculate/interpret eigenimages that just reflected translational variability. For the MRA of the 

images against the classes, we had to give a non-negligible search range for translations to 

account for badly centered images. Altogether, this represented an important waste of 

calculation time and made the analysis more complicated. Classification of PS would 

therefore in principle allow to create fewer classes (much quicker analysis / easier to split 

data), and restrain the alignment during MRA to rotational search only. 

-the on-axis variability is also not considered when looking at the PS: only the phases vary for 

various on-axis angles whereas the amplitude of the FT is constant (see introduction, figure 

1.26C). In contrary, the on-axis view can have a very strong effect on the motifs in the real-

space projection, due to the varying superimposition of the near and far side of the helix. This 

fact is for example well illustrated by the moiré pattern varying along a microtubule 

projection (Chrétien et al. 1996). For our classification purpose, we are not particularly 

interested in splitting data corresponding to various on-axis views, as we mainly want to 

separate helical symmetries. We see consequently the advantage of classifying the PS instead 

of the real-space images. 

-Finally, although the interpretation of PS is not straightforward, we expect that their 

classification can visually show symmetry heterogeneities better than classification of the 

real-images (at least when looking at the class-averages on the real-space level). This point 

will be widely illustrated using the example of Measles Digested nucleocapsids. 

 

Method description 

 

We propose here one method for classification of Power Spectra, but it should be 

mentioned that it is still in progress and that the current description only reflects our first 
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attempts. More ideas of the method improvement will be given in the perspective part. The 

general steps of the iterative procedure are illustrated on figure 2.15.  

 

 

The PS of the pre-verticalized (using boxing) initial images, which can be low-pass 

filtered, and preferentially padded into a larger image before PS calculation to decrease the 

frequency sampling step, are classified by MSA-HAC to produce class-averages with higher 

SNR (step I). At this step, one may try various classification parameters, like the mask used 

for MSA, the number of classes to compute, etc., in an object-dependent manner. After 

classes were calculated, each raw image is divided by the rotational average of the 

corresponding class average (step II): the aim of this step is to increase the signal at higher 

frequencies in comparison to the typically strong low frequency contribution. For helices, this 

is particularly useful to lower the contribution of the strong reflection at the equator. As one 
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would then also do for real images, we choose a subset of representative and “well-defined” 

class-averages for a subsequent MRA of the modified raw images (step II). Here, 

representative and “well-defined” class-averages can be obviously more clearly assessed than 

for the real images classes. If we identify several symmetries by observing variation in the 

position of the layer lines and/or in the intensity maximum on the layer lines, then one should 

keep at least one class of each detected type. The “well-defined” criteria can be directly 

judged from the highest resolution reflections in the PS classes. This criteria must be applied 

for each symmetry class (if several) detected and not beforehand, because different 

symmetries can potentially be associated by variation of the regularity. Because one 

variability source that we want to get rid of during the classification is the remaining in-plane 

rotation (the segments are not perfectly vertical before PS calculation), we should also keep 

for MRA only classes that do not show in-plane rotation. In the first rounds of classification, 

if one chooses only a low number of classes, the expected random distribution of the 

remaining small in-plane rotations of the segments around 0 degrees should ensure that the 

classes will actually show a vertical pattern (due to the averaging procedure): in our hands, we 

found it to be the case. As mentioned, the selected class-averages will then be used as 

references for a MRA of the individual PS that were divided by the rotational average of their 

corresponding class average (step II). Due to the property of PS, no translational search is 

necessary for this alignment step. Once an in-plane rotation is found for each PS, it is applied 

to the non-transformed PS (step III) that will be used for a new classification round. Steps II, 

III and IV are then iterated until the classes and the determined angles of rotation stabilize. 

The fact that we currently use the non-transformed PS for the new classification rounds can be 

arguable. Indeed, we mentioned that we wanted to relatively enhance the signal at higher 

resolution, and this is now only done for refinement of in-plane rotation search. Actually, the 

reason why we did not use the transformed PS for each new classification cycle is related to 

the current design of the procedure: each PS is divided by the rotational average of the 

corresponding class, so that all the PS from one class are modified similarly. As this 

modification is strong, we can then expect that all images modified similarly will be then 

again classified together, despite of genuine but slighter differences that they could show. 

Naturally this should be quantitatively verified, and other possible better procedures will be 

proposed in the perspective section. 

We will now see, based on MeVND and MeVD examples what type of results can be 

expected from this method and what are the difficulties encountered. 
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Some results 

As a way to better visualize helical diffraction 

 

A usual way of increasing the SNR in the PS of images is to compute the total sum of 

the PS of the segments (E H Egelman 2007; Narita et al. 2001; Y. A. Wang et al. 2006). To do 

this while not losing signal, the segments must not only be well rotationally aligned, but also 

possess the same symmetry, which is often not really the case.  

The figure 2.16 show for MeVD (A) and MeVND (B) the total sum of power spectra 

(left) of the verticalized segments (from boxing) and for each, two chosen PS class-averages 

as calculated using the procedure described above (right). As expected from our first 

observations, we can see that the total sum of PS from MeVD images shows higher resolution 

details than the total sum of PS from MeVND images. In particular, whereas the total sum of 

MeVND PS shows only one clear layer line at  1/60 Å-1 (and eventually a very faint second 

layer line at 1/30 A-1 indicated by a green arrow), the PS sum for MeVD shows a clear last 

layer line at 1/25 A-1 (green arrow). 
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Compared to the total sum, we can observe from the two class-averages shown on the 

right for each sample that the classification procedure indeed significantly improved the 

quality of the PS, in term of higher resolution signal. For MeVND, it is striking: the second 

layer line at ~1/30 Å-1 not really observable from the total sum of PS is now well defined 

(green arrows). We can even observe on this layer line a peak further away from the meridian 

(yellow arrows) that could indicate the contribution of a Bessel term of higher order on this 

same layer line (because its intensity is higher than the precedent intensity peak on the same 

layer line). Similarly, on the first layer line at ~1/60 Å-1 more peaks are visible further away 

from the meridian (orange arrows), either due to repulsion of Bessel functions or to the 

contribution of another Bessel term. So we see that on this example, simply looking at the 

total sum of the PS would have led to the wrong conclusion of a very poor ordering of the 
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structure in the range of resolution below 60 Å. In contrary, the classification of the PS show 

that at least a part of the segments can give raise to diffraction signal up to 1/30 Å-1. 

For MeVD, we cannot see on the class-averages additional layer lines at higher 

resolution than the already observed one at ~1/25 Å-1 (green arrows), suggesting that we were 

already close to the resolution limit. However, two layer lines between the ~1/25 Å-1 and the  

~1/50 Å-1 layer lines are now much better recognizable (orange arrows). In principle, these 

layer lines might help to index unambiguously the diffraction pattern. In addition, similarly to 

the MeVND example, we can appreciate the improvement of the quality of the PS class 

average in comparison to the total sum of PS via the appearance of more repulsion of the 

Bessel functions (as exemplified by the yellow arrows). 

 To summarize, we have seen as a first advantage of our method of PS classification 

how we can improve the quality of PS. Now, as we have done for real images, we will see 

how one can use this classification to discard images. 

As a way to discard images 

Poorly diffracting images 

 

For any type of protein or protein complex studied by EM, a limit for obtaining good 

resolution structures is the regularity/homogeneity of the objects studied. For helices, a simple 

way of appreciating the regularity of the helical assembly is to measure at which resolution 

the PS of images still shows layer lines with intensity peaks. The presence or absence of a 

layer line being a relatively strong change, we can expect that our classification procedure 

would make possible to detect and group such different PS. Indeed, when creating many 

classes, we can observe for MeVND that some classes show the second layer line at 1/30 Å-1 

(figure 2.17A) whereas other don’t (figure 2.17B). So we can see that in this case, PS 

classification may provide a way to select images corresponding to more regular objects. 

However, and this is a general remark not only applicable to MeVND, this must be done 

cautiously : if different classes actually represent different symmetries, some symmetries 

might be are associated with less order, and one might still wish to get a 3D structure for each 

symmetry class, even if a poor quality. 

For MeVD, the layer line at 1/25 Å-1 is always seen, illustrating the higher ordering of 

those structures, and no effort was done to sort classes upon more finer changes, like the 
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presence or absence of more or less repulsion of Bessel functions. One of the reasons for this, 

and this is also valuable for the presence of the second layer lines in MeVND example and 

more generally for PS classification, is the following:  we have to think about the possibility 

that the position of the peaks that we use as an indicator of the regularity coincide with a 

region close to a zero of the CTF, where the amplitude of the signal is damped anyway.  
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One-sided staining 

 

 An unpredicted result that came out of our procedure of PS classification was that 

several classes, both for MeVD and MeVND, were showing an asymmetrical PS pattern 

(figure 2.17C) in respect to the meridian. Reflecting this, several eigenimages representing a 

relative important contribution given their rank (usually in the first 10) showed asymmetric 

patterns (figure 2.17D). This type of asymmetry is due to the fact the only one side (the near 

or the far side) of the helix contribute to the formation of the image (Klug and DeRosier 

1966). Thus, despite our efforts to ensure a complete embedding of the particles in stain using 

a double carbon sandwich technique (Frank, 1996), it seems that a part of our images actually 

represent filaments that were only partially embedded in stain. Although such a partial 

embedding can be useful if one wishes to assess the hand of a helical reconstruction (V. 

Korkhov and Sachse 2010), we must avoid it for 3D reconstruction purpose because it 

disrupts the true helical symmetry. PS classification is therefore a valuable way to discard 

such images, which were not detected in the classification of real images. 

 

As a way to separate different symmetries 

The variability of pitch of MeVND 

 

As already seen from the classification of real-space images, MeVND sample seemed 

to exhibit large pitch variability, which we expect to even more clearly appear in the PS 

classification. The figure 2.18 shows eight PS class-averages on which the position of the 

first layer line relatively to the equator varies. To represent this important source of 

variability, a high ranked eigenimage (number 3) shows very clearly the variable position of 

the first layer line (Figure 2.18, bottom right corner). It is clear that a variation of pitch can 

explain this behavior: the closer the layer line is to the equator, the higher the pitch of the 

corresponding structure. However we should keep in mind that another source of variability 

can account for variation of position of the layer lines: the out-of-plane tilt (as seen in 

introduction, figure 1.26D). When there is out-of-plane tilt, the FT of the 2D projection 

corresponds to a central section that is tilted relatively to the helix axis (figure 1.26D, right), 

which means that it crosses the layer planes at a different reciprocal spacing; the higher the 
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out-of-plane tilt, the larger the spacing. The difference in layer line position is simply given 

by  L α =L * cos α  

with L(α) being the position of the layer-line when an out-of-plane tilt of α degrees is applied, 

and L the position of the layer-line when no out-of-plane tilt is present. The out-of-plane tilt 

alone is however not sufficient to account for the difference in the layer-line positions that we 

observe for MeVND. For example, the effect of a 12 degrees out-of-plane tilt (which is 

already fairly high) at the layer line positioned at ~27 pixels from the origin and the closest to 

the equator (figure 2.18, top left class), would be only an approximately 0.6 pixel shift ( 

27/cos 12 = 27.6), whereas we observed up to 5 pixel displacement (if one compares for 

example class 1 and class 8 on figure 2.18). 

We have a second indirect proof that the effect that we see is not due to out-of-plane 

tilt but lies on the pitch variability. A visual comparison between the classes shown at figure 

2.18 shows that the further away the first layer line is (thus presumably the smaller the pitch), 

the more pronounced higher resolution signal can be observed (second layer line appearing). 

The eigenimage corresponding to the layer line position variation (figure 2.18, bottom right 

corner) highlights this effect: the “white signal” corresponding to higher pitch is associated 

with less order, in comparison to the “black signal” (low pitch). In the light of the “out-of-

plane tilt hypothesis” no logical explanation for such a behavior can be found, whereas in the 

light of the “pitch variability hypothesis” the explanation is straightforward. The helices with 

a higher pitch have less contact between turns; they are less “packed”, and thus more flexible. 

Therefore if we want to restrict our 3D reconstruction attempts to the most regular structures, 

we should go for the smaller pitch classes.  

 In our PS classification procedure, the sorting according to pitch as exemplified on 

figure 2.18 was done manually, but it would be easy to set up an automatic procedure. One 

could choose a well-defined layer line (like in MeVND the first layer line), and calculate for 

each PS class-average the 1D projection of the class average along the layer lines direction: its 

maximum value could then be used to automatically sort images based on their pitch. 
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Two helical states of MeVD 

 

 For MeVD, the classification of real images showed that a small proportion of the 

images (~ 5%) belonged to classes with a very different pattern than the majority of the 

segments and to what was already described (Schoehn et al. 2004). Those images were 

removed from the data set and therefore we expected the remaining images to represent a 

relatively homogeneous sample. For example no pitch variability was suspected from the first 

analysis. However, in our attempts of 3D reconstruction using the IHRSR method (E H 

Egelman, 2000) with those images, we were systematically observing problems of 

convergence of symmetry parameters, suggesting a heterogeneity issue. The classification of 

PS and subsequent inspection of the class-averages gave an explanation to this problem: there 

were clearly at least two different type of helical symmetry in the sample, recognizable by 

two types of pattern in the PS class-averages, which we will name “Type 1” (figure 2.19A) 

and “Type 2” (figure 2.19B), the later representing ~ 30 % of the images. The main 

differences clearly appear by comparing the sum of each type of class-averages (figure 

2.19C) : the two layer lines between the equator and the layer-line at 1/50 Å are closer to each 

other in the Type 2 classes than in the Type 1 (figure 2.19C, blue arrows). Moreover, the first 

intensity maximum on the layer line at 1/25 Å appears further away from the meridian in the 

Type 2, in comparison with the Type 1 were it seems that only one peak is present (figure 

2.19C, orange arrows). We tried to identify what could be the source of this heterogeneity. 

We first looked at the distribution of the two types of PS patterns among the micrographs and 

found out that it was not an even distribution: one micrograph typically contained only one 

type of images, and furthermore, the micrographs containing “Type 2” images were grouped 

in one image acquisition session at the microscope (which corresponded to one grid, and one 

batch of sample). As a possible source of heterogeneity, we thought about flattening, which 

could have happened more extensively on this particular grid, due to the condition of grid 

preparation, that are never 100% reproducible (e.g. dehydration rate). However, we tried to 

simulate the effects of flattening on the power spectra of images by creating a flattened 3D 

“pseudo-helical” model, and looking at the PS of its projection, and we could never reproduce 

the differences that we see between classes of Type 1 and 2. A second option might be that 

the sample itself was different, for example if incomplete digestion by trypsin occurred, which 

could be barely detected on the regular SDS gels if only a few more amino acids are present. 
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After sorting the images based on their PS type, we could easily obtain convergence of 

symmetry parameters using IHRSR procedure, and interestingly we found two different 

numbers of subunits per turn, respectively 12.33 and 12.38 for types 1 and types 2 images 

(figure 2.19D), which indeed can give rise to the differences we were observing in the PS. 

We double checked these final values by taking images of type 1, making a reconstruction 

and searching for the helical symmetry starting from final symmetry parameters found from 

type 2 images, and vice versa. The parameters again converged to those initially found. 

Whether this slight change in the symmetry could be explained by the presence of a few more 

amino acids, or if we have to think about other explanations is still unknown. 

Anyway, this example showed that a heterogeneity that was not detected in our first 

approaches and that prevented the reconstruction process could be detected by classification 

of the PS. Furthermore, if we can trust the final values found for the symmetry of type 1 and 

type 2 images, it shows that a very small variability can be resolved by this way. In order to 

assess if the real-space classification also “detected” this heterogeneity, it would be interesting 

to check if the images corresponding to the different type of PS classes were systematically 

partitioned into different real-space classes, or not. Based on our knowledge from the PS 

classification, we should also examine the PS of real-space class-averages more carefully and 

try to find the same patterns. 

 

Encountered problems and some perspectives 

 

From the first results that we obtained, it seems that for helical samples the 

classification of PS can successfully complement real-space classification. However, the 

details of the method and the use of its outcome were not optimally pushed. The validation of 

the improvements it allowed were also not systematically done, except for MeVD were the 

sorting of the two different symmetries was crucial for correct structure refinement. The same 

remarks that were made regarding classification of real images, concerning perspectives for a 

better validation and use of the classification outputs (e.g. use of database), hold true for the 

PS classification as well. We will now see the principal difficulty encountered, and discuss 

perspectives to circumvent this problem and more generally to improve the method of PS 

classification. 
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CTF effects 

 

We already noted above that the use of classification of power spectra of individual 

images using MSA had to our knowledge only been done in order to classify images 

according to their CTF, thanks to the strong contribution of the Thon rings to the signal. In 

(Sander, Golas, and Stark 2003), the authors note the following: “It may therefore be taken 

that the subsequent classification is really based upon CTF parameters and not upon structure 

factors”. Here we have shown that at least in the case of a helical sample, the structure factors 

can be an important property of the images based on which the individual PS will be 

classified. Indeed, we have seen both for MeVND and MeVD that we could distinguish 

several helical states based on PS classification. This suggest that the CTF determination and 

correction approach proposed in (Gao et al. 2002; Sander, Golas, and Stark 2003) could be 

difficult to apply when many helical filaments are present in the images, especially if different 

symmetries coexist, eventually even in the case where the rotational average of the power 

spectra and not simply the original power spectra are classified (Gao et al. 2002). 

However, it is true that an evident source of variation and of similarities among 

images that should be particularly well visible in reciprocal space is indeed the CTF. For the 

sake of simplicity, this issue was not mentioned above. It is however true that the results of 

our classifications were also strongly influenced by the CTFs, which can be seen as a 

potential drawback of our method. Considering the PS classification of MeVND, we can see 

already in the eigenimage number 2 (the first after the total average) that concentric circles 

which look quite similar to Thon rings appear (figure 2.20A, left). Actually, in this 

eigenimage, the signal corresponding to the helical component (equator + one layer line), 

appears only in one “direction” (here strong black signal, but the inverted version is implicit), 

with no variability source, as it is for example for the next eigenimage, that we showed at 

figure 2.18, bottom right corner. On the contrary, the contrast of the concentric circles 

alternates between black and white, which means that that the variability explained by this 

eigenimage is actually the position of the Thon rings. Other eigenimages further away in the 

ranking also clearly show the CTF contribution (figure 2.20A, number 4 and 9). Moreover, if 

one looks carefully at several class-averages, one can see classes that exhibit a similar helical 

pattern (at least at the level of our inspection), but that seem to only differ in the position of 

the Thon rings (figure 2.20B). Thus, due to the CTF effects, we have to consider when 
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looking at different PS class-averages that the only difference between them may in some 

cases arise only from the position of the Thon rings. 
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Reduction of CTF effects 

 

To try to restrict the classification to only the structure factors of the sample and not to 

take the CTF variations into account, we made preliminary trials of the use of different masks 

for MSA, which only encompass the visible helical signal (figure 2.20C, right), rather than 

just using a mask that excludes the equator which showed to improve the classification 

(figure 2.20C, left). However, this could not completely counter-act the problem of 

classification according to CTF and requires more manual intervention. We can understand 

this failure by just considering that some intensity maximum that should be in the PS (e.g. a 

first maximum of a Bessel function along a layer line, thus a strong signal for classification) 

can be just canceled out in some images, due to a minimum of the CTF at the same resolution 

shell. The use of masks for PS classification should be further tested and evaluated. 

 One way to circumvent the problem of classification according to CTF, would be to 

classify images that were acquired at similar defocus. First a separation of the data set 

according to defocus would be done (e.g. using software like CTFTILT or CTFFIND3), and 

the described PS classification would be done on images from same defocus groups. 

However, depending on the defocus range used to group images, this would result in much 

less images to classify in each group, and thus a lower expected SNR in the class-averages. 

Furthermore, a subset of images, particularly if it is small, is not necessarily representative of 

the ensemble of the data, especially when lots of heterogeneity exists. Finally, this method 

would add an additional difficulty, which would be to identify in the PS class-averages 

coming from different defocus groups which ones actually represent the same symmetry and 

which ones don't. 

 Another way to diminish the influence of the CTF, would be to apply to the raw PS a 

function that compensates for the CTF oscillations after modeling those oscillations (i.e. 

mainly the defocus and the decay of amplitudes), using a regular CTF determination software. 

This could be done for example by using an appropriate CTF correction with a Wiener filter. 

Of course this would never be able to compensate for the variability in positions of the zeros 

of the CTF for which we have no signal from the sample, and which could matter for the 

classification. 
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Improvement of individual PS alignment 

 

 We mentioned during the method description that one should keep as references for 

alignment of the PS only class-averages that do not exhibit in-plane rotation (i.e. that are 

perfectly vertical), as this is a source of variation that we want to get rid of. In practice, we 

barely eliminated classes for this reason, and hoped that by generating only a few classes at 

the beginning, one would average the uncertainty of in-plane and thus have a vertical class-

average and that the alignment/classification iterations would have a tendency to correctly 

verticalise the PS. However, this would not work if there is a systematic bias in the in-plane 

orientation that is likely to happen due to manual boxing. Thus, instead of the manual step of 

class-average selection, one could easily imagine a way to verify that the PS class-average is 

actually vertical, and correct for eventual in-plane rotation. To do this, one could use the 

vertical mirror symmetrical property of the PS of helices: one would compute the difference 

between the left and the right side of the PS as a function of in-plane angle applied, and find 

the minimum of this function. Of course this would not work in the case of PS of one-sided 

stained filaments. Therefore they should be removed beforehand. On the other side, it can be 

envisioned that during this procedure of finding the minimum of the difference left/right of 

the PS, the classes corresponding to one-sided segments would be automatically detected 

(because the minimum would not be as pronounced as for good classes).  

 

A better way to enhance higher resolution signal 

 

 In order to classify images upon finer variation in the PS, in particular at higher 

resolution, we think that a good way of higher frequency signal enhancement would be useful. 

What we did up to now was simple: we often used a mask for MSA that removed the strong 

equator contribution, and additionally sometimes the lowest frequencies, but not tested 

systematically the effects of using various masks. For the alignment of the PS using the PS 

class-averages as reference, we used a division of the raw PS by the rotational average of 

corresponding class-average for higher resolution signal enhancement purpose. One 

possibility to enhance high resolution signal for the classification itself, would be to divide 

each PS by its rotational average and classify those modified PS, and not divide by the 

rotational average of corresponding class-average that introduce too strong features. One 
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could also play with different ways of correcting for CTF decay (as proposed above for 

reduction of CTF effects). To summarize, there is a lot of space for improvement of this part 

of the method and different possibilities should be systematically tested and validated. 

 

Gain more benefit from eigenimages 

 

For the classification of real images, we saw how we could improve the classification 

outcomes by putting more efforts into the understanding of the eigenimages and use of their 

weighting for classification (e.g. classification according to diameter for VSV). The same 

approaches should be used for the classification of PS to obtain separation of images 

according to precisely defined criteria like one-sided staining, pitch variability, etc. For 

example, once the images are separated into finer pitch classes, one could eventually detect 

finer variability in the structure of these subsets, by using a classification workflow similar to 

the one described in (Elad et al. 2008). 

 

Better differentiate pitch variation versus out-of-plane tilt 

 

As we could see during the analysis of classification of PS of MeVND, it can be tricky 

to differentiate if the differences in layer line heights that can be observed are due to pitch 

variability or to various out-of-plane angles of the corresponding segments. Especially if the 

pitch variations are small, and with higher resolution data, this difficulty could be limiting. A 

way to overcome this problem would be to not only consider the PS, but keep the phase 

information available at some points of the procedure. Indeed, calculating the difference of 

the phases on the left and right side of the PS (at the same meridional and equatorial position), 

is a way to detect out-of-plane angle (Wakabayashi et al. 1975). A potential way of including 

the phase information in our classification procedure would be to first classify the left/right 

phase difference map of the images in order to split the data set into out-of-plane angle groups 

that would then be further separately classified. This may be however not so simple, for 

example due to the influence of centering of filaments on phases distribution, as well as to the 

in-plane angle that is not perfectly defined at the beginning. The possible ways of taking into 

account the phases for the PS classification procedure should be further explored and tested. 
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PART 2 : Ab initio symmetry guess and the ambiguities in helical 

symmetry 

 

General remarks on the existing methods  

 

 Except for a few methods of reconstruction of helical filaments that do not require 

prior information on the symmetry (angular reconstitution: (Paul et al. 2004); (Hodgkinson et 

al. 2005)), virtually all the currently used methods critically rely on the precise knowledge of 

the helical symmetry parameters. In the oldest, classical method the symmetry parameters are 

obtained by the analysis of the Fourier transform from a filament projection ((Klug, Crick, 

and Wyckoff 1958)  ; (DeRosier and Klug 1968) ;(DeRosier and Moore 1970)). This analysis 

is not always straightforward, and can be hampered both by problems due to the symmetry 

itself, when the indexing of the diffraction pattern is impossible (Bessel-overlap), or by the 

irregularity of the filaments resulting in an interpretable diffraction pattern. Although analysis 

of FT can be helped by specific programs ((Ward et al. 2003) ; (Whittaker, Carragher, and 

Milligan 1995) ; (Toyoshima 2000);  (Metlagel, Kikkawa, and Kikkawa 2007) ; (Owen, 

Morgan, and DeRosier 1996) ; (Beroukhim and Unwin 1997); (Yasunaga and Wakabayashi 

1996)), it requires good knowledge of the underlying theory as well as significant human 

intervention. Nevertheless, this method has the advantage of being fully ab initio, and does 

not necessitate additional information except of relatively easily obtainable ones, like the 

radius of the particle. The “real-space methods” described in the literature are also based on 

the exact knowledge of symmetry. In the case of IHRSR (E. H. Egelman 2007), the procedure 

is able to refine to correct symmetry parameters only when starting from an initial guess very 

close to the true values (See above, see (Edward H Egelman 2010)). A more recently 

described method (Sachse et al. 2007) that uses constraints on the alignment derived from the 

helical symmetry, also requires a very precise knowledge of the symmetry, even if a recent 

extension of this method  (Low et al. 2009) makes it possible to refine the symmetry 

parameters starting from roughly determined ones. Still, both available real space methods do 

indeed rely on the initial helical symmetry estimations which are either classically derived 

from the FT (V. M. Korkhov et al. 2010) or imported from previous studies. In a recent paper 

(Ramey, Wang, and Nogales 2009), propose a method for an “ab initio reconstruction of 

helical samples with heterogeneity, disorder and coexisting symmetries”. However, in this 
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paper, the “ab initio” term refers to the use of a 2D-reference free classification step, and what 

they further call “ab initio symmetry estimation” is based on the  classical way of the FT 

indexing. 

In the scope of the present work, we therefore searched for alternative means to obtain 

an initial guess of the symmetry, that do not rely on manual analysis of FT (since it seemed to 

be not feasible in our case, and since it is not always an easy task), and that require as little 

human intervention as possible. Two ways were explored: the first, based on 2D real images 

and the second, based on their power spectra. Most of the effort was invested in the first 

method which is described in detail below. 

 

Proposed method of ab initio symmetry determination on 2D real images 

Method summary  

 

 The basic idea at the heart of the method we propose is relatively simple. It consists in 

inspecting nearly all conceivable symmetries and identifying which is most likely to be true. 

To do that, we cut out of a 2D real image successive segments along the helix axis, and assign 

view angles to each of them, in order to reconstruct a 3D model. Via the angle assignment and 

the shifts between the segments, we can impose any symmetry we want on the 3D model. 

This 3D model is then reprojected, and the average cross-correlation between the segments 

and the corresponding reprojections is recorded for each tested symmetry. We anticipate that 

an inspection of the profile of the average cross-correlations as a function of the imposed 

symmetry parameters, will allow to determine which parameters are true. 

 Although simple, this method raised several questions and problems, that will be first 

detailed, and pointed out a central problem in helical reconstruction on which an original 

point of view will be given : the ambiguities in symmetry parameters determination. 

 

 Theoretical considerations 
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The proposed method is based on the hypothesis that assigning the correct view angles 

to a set of 2D images of a given 3D object, would allow to reconstruct a 3D model which 

projections would have a higher correlation with the initial images than a 3D model 

reconstructed from the same images, but with wrongly assigned view angles. Despite the fact 

that this assumption is at the basis of the projection matching method, one has to consider the 

possibility that two different 3D models can share several identical projections and thus that 

there might be no unique solution for assigning the “correct” angles to a set of images, in 

terms of correlation level between the images and the reprojections of the reconstructed 3D 

model. In the frame of this hypothesis one can propose that starting from an ensemble of 2D 

images of any 3D object (with or without symmetry), one could determine the correct 3D 

model/models by testing all different combinations of view angles for the input images while 

calculating 3D models and recording the CC between the reprojections of these models and 

the original images. In practice, such approach is computationally too demanding for a 

common single-particle. Indeed, if one assumes that the images of individual particles are 

centered, the number of combinations of the angles (one in-plane and 2 out-of plane) to test 

would be:  

 = (       ) (          ) (        )    
 

where dpsi, dtheta and dphi are the angular sampling in degrees, and N the number of 

assessed images. Even if one has only 10 images and considers an angular sampling of 4°, the 

number of combination to test would be 7290000. In the case of a helix, there exists a 

symmetry-dependent relation between the translation along the helical axis and the on-axis 

angle view of the helix. It means that knowing the helical parameters, if one constructs a set 

of segments regularly placed along a straight helix, all view angles will depend on the 

assignment (out-of-plane, in-plane, on-axis rotation) of the first segment. In line with the 

above, if one wishes to exhaustively test every combination of angles in order to compute a 

reconstruction from a set of images regularly placed along the helix axis,  considering that the 

on-axis view angle of the first image is arbitrary (not a variable), the number of combination 

would be : 

 = (        ) (          )   
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This number does not depend on the amount of images, but only on the angular sampling of 

the in-plane and the out-of-plane angles to be assigned to the first segment, on which values 

will depend all the angles of the next segments. If one now consider a helix that does not have 

out-of-plane tilt (or a known one), and that the in-plane rotation is known, there is no more 

combination to test: the view angles of the ensemble of segments will only depend on the 

helical symmetry. Accordingly, it is possible to reconstruct a 3D volume from a helix 

projection by segmenting the projection and assigning view angles corresponding to the 

symmetry, to each segment. Inversely, we propose that in a case where we don’t know the 

helical parameters, one can “exhaustively” investigate every possible symmetry by assigning 

different sets of view angles to segments along a projection. Since for each symmetry the 

view angles of all segments on the projection are related each other, this approach is not as 

computationally demanding as a similar exhaustive approach would be for other single 

particles, and the number of reconstructions to compute is equal to the number of different 

helical parameters to test. An overview of the method is presented in Figure 3.1. 
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 Step by step method description (Figure 3.1) 

 

(I) The input projection is segmented into successive images along the helical axis, 

and view angles are assigned to each segment according to the symmetry (starting from an 

arbitrary on-axis angle for the first image). In theory, any kind of projection can be used as 

input, as long as the helical axis of the image is correctly centered and the in-plane and out-of-

plane angles are known. In practice, our current version of the method script is designed for a 

projection with the helical axis vertically aligned and with the out-of-plane angle of zero. In 

addition, for an ab initio estimation of the symmetry (e.g. for a new project), it appears to be 

easier to run this procedure on class-averages (as obtained by reference-free classification) 
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rather than on much noisier raw images, although this is not a rule. Not only should the 

extracted segments be regularly placed along the helix axis, but also the distance between 

each segment must be a multiple of the tested axial rise. Indeed, if it is not the case, then we 

would be looking at views of different objects (see Figure 3.2).  

 

This restriction signifies that interpolation must occur when segmenting the projection, 

except in the cases where the tested axial rise is a multiple of the pixel size. It also means that, 

given the fact that our input projection is generally limited in length, the number of segments 

that can be extracted from it will depend on the symmetry tested (the smaller axial rise, the 

more segments can be extracted). The symmetry tested will also affect the homogeneity of the 

filling of the angular space. As will be shown below, all these points could have effects on 

later steps of the procedure.  

(II)  Using the segmented images and the corresponding view angles, a 3D volume is 

calculated by back-projecting the segments using interpolation in Fourier space (SPIDER 

command BP 3F). As the number of images that will be used for reconstructing the volume is 

generally very limited, we have to keep in mind the potential effects of the reconstruction 

algorithm, in particular the effects of interpolation when the 3D Fourier space is so sparsely 

filled.  
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(III) The computed 3D volume is then reprojected using the directions defined by the 

assigned view angles of the segments, and (IV) a normalized CC between each input image 

and the reprojections of the volume is calculated, inside the area defined by the usable density 

on the input images. As the number of images included in the reconstruction is small, we 

expect to have a high correlation for each individual image and its corresponding reprojection, 

as the input image itself will highly contribute to CC (conservation of information during 

back-projection and reprojection). We expect that when the wrong symmetry is imposed (as 

in a case of a wrong angles assignment in an asymmetric situation) this correlation will 

decrease due to the influence of the other images included in the volume. 

(V) From these individual CCs, an average correlation is calculated and associated 

with the current tested symmetry parameters. For clarity reasons, this average CC between 

segmented images and corresponding reprojections of the calculated reconstruction will be 

later referred to as ACC (for Average Cross Correlation). Other parameters such as the 

number of images included in the reconstruction and the standard deviation of the CCs 

between images and reprojections are also recorded.  

The five steps described above are repeated for every symmetry tested, and the ACC   

is plotted as a function of the imposed helical parameters. 

 Critical points. Illustrations by a case study of RSV nucleocapsids 

 The very limited number of subsequent segments 

 

As mentioned, in our method the symmetry-dependent number of segments that can be 

extracted from a single input projection is usually very low. Firstly, this number cannot 

exceed int(L/Δz)*N, where L is the length of the projection, Δz the axial rise and N the 

number of starts for N-start helices. Secondly, in order to include more than one subunit in the 

reconstructed volume and while paying attention to avoiding the image borders, the number 

of views is even lower because at both extremities, the distance between the center of the 

extracted segment and the border should be less than the half of the length of the final 

reconstructed volume.  

Let us consider an example of a 360 Angstroms long class-average of the intact 

measles virus nucleocapsid. Such a class-average contains 6 helical turns with a 60 Angstrom 

pitch (Figure 3.1), and if we wish to include two-helical-turn segments (i.e. 120 Angstroms) 
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in the reconstructions, then the distance between the center of the first and the last segments 

that can be extracted will be 240 Angstrom (360 – 2 x 60). If we test imposition of 

symmetries between 8 and 16 subunits per turn (i.e. axial rise varying between 7.5 and 3.75 

Angstrom), the number of segments that can be extracted will vary from 32 (= 240 / 7.5) to 64 

( = 240 / 3.75). Despite the fact that each segment contains several views of the subunit, such 

low numbers of images are usually far too low for attempting a meaningful reconstruction, 

and may be considered as a problem for the method. The angular space (here we will consider 

only the on-axis angular space) will indeed be very sparsely filled, and, even more 

embarrassing, this filling will strongly depend on the symmetry. For example, while testing a 

symmetry with an angular rotation Δφ between subunits being is a divisor of 360, the number 

of different available views will only be equal to 360/Δφ.  

Effects of number of segments on the cross-correlation and considerations on 

interpolation  

 

Some effects of number of images and filling of angular space on CC are shown in 

Figure 3.3. The panel A shows a 3D model constructed based on the Xray crystal structure of 

the RSV nucleocapsid ((Tawar et al. 2009) EMD-1622), such that it contains at least one full 

repeat (dashed yellow line, attained after 23 turns -225 subunits-), to have the optimum 

sampling of angular views. The panel B shows its projection, from which portions of variable 

length were used as input images to impose the true symmetry using the described method. 

The panel C shows the plot (red curve) of ACC as a function of the number of views used 

(i.e. of the length of the input image), and the standard deviation (green curve) of CC 

calculated between segmented images and reprojections. Panels D and E show plots of the 

correlation as a function of the view angle, for different number of views used for 

reconstruction (67, 165 and 225 views in panel D ; 224,225 and 226 views in panel E). 
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Admittedly, the differences in correlation presented in this example might seem to be 

insignificant, and thus not worth an examination. However, this test case is on the contrary 

very revealing, because the 3D object of study was created artificially, and is therefore 

perfectly symmetric and ideally centered, which can never be a prerequisite if analyzing the 

real data. Moreover, it happens that due to the helical symmetry of this test object, the angular 

space tends to be correctly filled. Indeed, the angular rotation between subunits is 36.8 °, so 

that after one turn there is a shift of angular views of 8° in regard to previous turn => after 5 

full turns, the lack of view between 0° and 36.8°, 36.8° and 73.6° etc.. is almost regularly 

filled (with 8, 16, 24 and 32 degrees views for the empty space between 0 and 36.8 °, and so 

on). On the whole, the example of the RSV nucleocapsid presented in Figure 3.3 not only 

allows to globally illustrate our method, but also to better understand the following results on 

a variety of different test cases that will be presented later. We will see that the effects in term 

of CC variations can actually be much stronger (up to 15-20%), due in particular to shorter 

initial images and/or to more unfavorable symmetry. 

The panel 3C shows the decrease in correlation between the segmented images and 

reprojections of reconstructed model as a function of the number of views used. At the first 

glance, this result can look surprising, because we are all used to an improvement of the 

correlation when more and more images are included in the reconstruction. However, if one 

considers a “reconstruction” built from one image only (say with the on-axis angle = 0°), we 

would expect to have 100% correlation with the original image when reprojecting this 

reconstruction in the appropriate direction, simply due to the conservation of information 

during the steps of back-projection and reprojection. When adding a second image to the 

reconstruction according to the symmetry (with an assigned on-axis angle of 36.8° in this 

example), the fact that this angle is not 0, 90, 180 or 270 degrees implies a necessity for an 

interpolation. In fact, the interpolation needed to include this image into the reconstruction 

will slightly deteriorate not only the reprojection in the direction of this image, but also in the 

direction of the first one. The same holds true as more and more images are added, which 

might be a reason for such an observation even despite the true symmetry being imposed. 

We can also note that the interpolation needed to add this second image cannot be 

performed in an optimal way because it is not possible to benefit from information contained 

in neighboring planes in the 3D Fourier space (we will have only zeros, except at the common 

line between the transforms of the first and the second image; therefore the effects of such a 

“bad” interpolation might be greater). 
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When a wrong symmetry is imposed, then the negative effect of the number of images 

becomes even more pronounced, since the influence of the addition of each new image, 

although affecting only the area around one single line in reciprocal space of each of the other 

images placed, will be inconsistent. Altogether, these considerations on the influence of the 

image number on CC enable to apprehend the profile of ACC as a function of the symmetry 

imposed, i.e. for a fixed pitch as a function of the number of subunits per turn. They imply 

that the observed decrease of ACC with the increasing imposed number of subunits per turn is 

normal and does not necessarily mean a movement away from the true symmetry value. 

 

Effects of angular view  on the cross-correlation and more on interpolation 

 

Our first tests of the method, either when imposing a true or a false symmetry, 

frequently showed differences of up to 15% in correlation between the segmented images and 

the corresponding reprojections of the reconstructed volume, depending on the segmented 

image. The first and the last segmented images had much lower CC with reprojections, and 

visually, one could observe that there was a small shift between these images and 

corresponding reprojections (difficult to show here by a figure), and that these reprojections 

had a “blurred” aspect, comparing to the other ones. A way to understand this, is to imagine 

how the view angles are filled during the segmentation of the input image. Let us take a very 

simple case of segmentation, say of a projection of a helix with 3.8 subunits per turn (Δφ ≈ 

94.7°), from which we extract 12 views. The Figure 3.4 shows the assignment of the view 

angles for each of the 12 extracted segments, numbered 1 to 12. The distinctive characteristics 

of the segments extracted from the middle of the projection (images 5, 6, 7 and 8) is that they 

are placed closer between two images in term of angular views. This means that, when filling 

the Fourier space for reconstruction, the needed interpolations can be done much better than 

for the first (1,2,3,4) and last four (9, 10, 11, 12) images.  Here again, these effects and their 

amplitude are symmetry-dependent. 
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The figure 3.3D, shows the correlation as a function of the view angle for several 

given numbers of images used for a reconstruction from the projection of the artificially made 

RSV model. Again, stronger variations were observed in less favorable cases, but with 

globally the same characteristics. We can see that the more images are used, the less 

variations in CC are observed. This can be explained by a  better filling of view angles, closer 

to the “ideal” profile where the number of views equals the number of subunits (225) in the 

whole repeat. The same can also be appreciated in figure 3.3C, where the standard deviation 

of cross-correlation between segmented images and reprojections is plotted in green.  

 

Effects of views at 180° and implications for particular symmetries  

 

In figure 3.3E, we see what happens if either one less or one more than the optimal 

number of 225 views, are used for reconstruction. The lack of the 36.8° on-axis view causes a 

decrease of CC between segmented images which assigned view angle is close to this value 

and the reprojections corresponding to these angles. This is in accordance with the remarks 

made above about the effects of filling of the Fourier space: images with assigned angles near 

36.8° will lack information for a proper interpolation comparing to the other views. Inversely, 

the effect of including two times the 0° view causes an increase of CC for this view and its 

neighborhood. Interestingly, we observe in both cases inverse effects on the CC of images 

with assigned on-axis angles at ≈180° away from these views (that is, at almost the same 

plane in Fourier space). Thus, the contribution of a view at 180° has a negative effect on CC, 

even when the true symmetry is imposed, which can be due to interpolations effects and/or to 

a non-perfect centering (that would cause a shift of the 180° view in respect to the 0° view). 
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These 180° effects are interesting, since when we wish to test symmetries that have an even 

(or nearly even) number of subunits per turn, we will only have views that are 180° apart each 

other. If it is the true symmetry, then we will eventually observe a weaker increase of ACC 

comparing to false symmetries imposed, both due to these effects and to a poor angular 

sampling. If it is not the true symmetry, then the opposite views will affect each other 

strongly, in an incoherent manner, and thus a strong decrease of ACC for these symmetries is 

expected, more than for other false symmetries. For an odd (or nearly odd) number of 

subunits per turn, there is one view that is repeated at each turn, and thus a weaker negative 

effect is expected. 

 

Intermediate conclusions 

 

In conclusion, these preliminary remarks are important to keep in mind in order to 

correctly analyze the CC profiles that will be shown in the next parts: Whatever the true 

symmetry is, the individual and mean correlations that will be measured between segmented 

images and corresponding reprojections will be affected by the described effects of the 

number of images, the angular sampling and the filling of Fourier space in a symmetry-

dependent manner, and in an “input image dependent manner” (e.g as far as the available 

length is concerned). This will interfere with an “ideal” profile, depending only on the 

difference between the imposed symmetries and the true one.                                                                                                                                                            

 

Applications to different helical structures 

Different types of data plots to facilitate analysis 

 

A typical 3D plot of ACC as a function of the imposed helical parameters is depicted 

in figure 3.5A (3D view) and 3.5B (top view of the 3D plot). We can observe a global 

variation of ACC according to the imposed pitch, centered on the nearest value to the true 

pitch (here 23 Å). This bell behavior of the ACC as a function of the pitch, observed for all 

projections of one-start helices tested up to now (both theoretical or experimental 

projections),  is quasi-independent of the number of subunits per turn imposed (figure 3.5C). 
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The plot of ACC as a function of the number of subunits per turn shows more “high-

frequency” oscillations, and also shows similarities within different pitch imposed (figure 

3.5D. In this case however, one can observe more variability in sharpness, relative height and 

precise position of the peaks (in some cases even more than in presented one). Due to the 

behavior of ACC as a function of pitch, one can reduce the calculation time by first refining 

the pitch, and then imposing the pitch found and refine the number of subunits per turn. 

Moreover, the value of pitch can be often relatively easily obtained by other ab initio methods 

(measure on PS, direct measure on real images…). Thus, for the sake of clarity and simplicity, 

in the following part we will consider only the 2D plot of ACC as a function of the subunit 

number, while the pitch will be kept fixed. 
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Description of the test methodology 

 

Before applying the method to experimental data, we tested it for several “ideal” test 

cases, i.e. which are perfectly symmetric and for which we know precisely the symmetry 

parameters (figures 3.6 to 3.10, legends in the following text). Thus, several helical EM 

maps, at various resolution, were downloaded from the EMDB. Some representative results 

will be shown here : the structure of TMV (Figure 3.6A ; (Clare and Orlova 2010)), of RSV 

nucleocapsid (Figure 3.7A ; (Tawar et al. 2009)), of Flagellar Hook (Figure 3.8A ; (Fujii, 

Kato, and Namba 2009a)), of the Bacteriophage fd (Figure 3.9A ; (Y. a Wang et al. 2006)) 

and of the Nitrilase (Figure 3.10A  ; (Thuku et al. 2007)). From these maps, a projection was 

calculated with in-plane and out-of-plane angles set to 0 (Figure 3.6 to 3.10, panels B). 

Features of the maps like their resolution and the symmetry parameters are indicated in the 

text box included in the figures. The method described in Figure 3.1 was applied to each of 

these projections. The length of the segments to cut out from the projection and to include in 

the reconstruction was chosen in order for each segment to contain at least 2 turns of helix, 

except for the 5-start helix (Figure 3.9), for which the pitch of the one-start helices was too 

high for such segmentation. The pitch information was fixed to the known value, and the 

number of subunits to test was incremented every 0.01 subunits per turn. The choice of this 

step is such that the very exact value of number of subunit per turn in the structures will not 

be tested, as the precision of the real values is usually higher than 0.01, but values reasonably 

close will be included in the test. The range of symmetry tested here is huge to better 

appreciate the global behaviors of the CC profiles but this is not necessarily what one would 

always do in a real case, as we often have some knowledge to restrict the search range. The 

plot of ACC as a function of the number of subunits per turn imposed is shown in Figure 3.6 

to 3.10, panels E. The panels F on these figures provide a magnified view of this plot around 

the true value.  
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Results on the test cases -Overview 

 

What first appears when looking at the ACC profiles on a wide range of tested 

symmetries (Figures 3.6 to 3.10, panels E), is that on the one hand, the true symmetry, 

indicated by a vertical blue line, does not appear as a unique solution in term of ACC peak, 

except for the case of the several-start helix (Figure 3.9E). On the other hand, a peak of ACC 

corresponding to the real helical parameters is observed in most of the cases in a close vicinity 

to the true solution (Panels F). However, it is not always the case (Figure 3.10D), and tests 

with other structures downloaded from the EMDB were not systematically successful. 

Visually, the reconstructed volume corresponding to the peak of CC (Panels C), and its 

reprojection (Panels D) are very similar to the original structure (Panels A) and projection 

(Panels B), despite the low number of images included in the reconstructions.  

As expected, the plots show a strong decrease of ACC for integer number of subunits 

per turn, especially for even number of subunits per turn. This is more likely due to the 
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mentioned problems of angular sampling and “180° effects” than to departure from the true 

symmetry. We see that even of the case of the helix which symmetry is the closest (among 

our examples) to an integer number of subunits per turn (Nitrilase, Figure 3.10 ;4.89 subunits 

per turn) , the ACC drops very rapidly to reach one minimum for the nearest integer value.  

In order to get a better feeling of the difficulties in finding the true helical symmetry 

and of the non-uniqueness of the solution, a visual comparison of projections of 3D structures 

with different symmetries corresponding to different peaks of CC appears informative (see 

Figure 3.11 for an illustration of these ambiguities using RSV test). The volumes obtained by 

applying different ambiguous symmetries to the input projection are very different in term of 

the shape of the subunits (Figure 3.11B), but their projections (Figure 3.11A), as well as the 

PS of the projections (here not shown) are similar, even if one considers a projection of a 

high-resolution case such as TMV. The current example on RSV illustrates that some peaks of 

correlation can be easily discarded as false solution when the 3D structure has no biological 

sense (e.g : on Figure 3.11, the 8.89 symmetry). Furthermore, at this point, any prior 

knowledge on the subunit, like its global shape, the number of domains or contacts between 

subunits, would help to decide which solutions are more likely to be true.  
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The overview on the results of these tests on ideal cases gives us an idea of what can 

be expected from the method. On the one hand, an unambiguous symmetry determination 

seems impossible except may be of several-start helices (which we plan to analyse more 

extensively in the near future). On the other hand, even if spurious solutions appear 

unavoidable, the true solution also appears in most of the cases as a maximum of ACC. Thus, 

the uncertainty in the symmetry determination is reduced to a restricted number of 

possibilities given by the ACC maxima. Since one normally possesses additional information 

on the symmetry and/or on the subunit assembly, our method allows to restrict the uncertainty 

even more and leads to the true symmetry determination. 

Finally, we have to keep in mind that the present examples were done with perfect 

images, in the absence of any noise, so that real cases with noise could introduce further 

ambiguities. Having gained all the presented knowledge from artificial test cases, we are now 

ready to analyze some real examples and compare them with the artificial ones.   
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Results on the real cases –Overview  

 

Three different cases will be shown here, covering both negative staining and cryo 

images as well as one-start and several-start helices. In all the cases, the input image used to 

test the method is a class-average, resulting either from an ab initio classification using MSA, 

or from projection matching, as will be specified on the figures. The Figure 3.12 shows the 

results on a non-digested MeVNC class-average (Figure 3.12A) obtained by MSA. The 3D 

ACC plot (Figure 3.12B) shows the bell shape behavior of ACC as a function of the imposed 

pitch, independent from the number of subunits per turn imposed, and enable to determine the 

precise pitch for this class-average. The ACC profile according to the number of subunits per 

turn shows two major peaks around 11 and 13 subunits per turn. Despite the fact that the 

absolute values are slightly greater for 11 than for 13, the experience we have acquired on 

artificial data (as far as possible effects of number of images and angular sampling are 

concerned) inspire caution and teach us to take such small differences of ACC with care, and 

to rely on the profiles of ACC rather than on the exact values. Indeed, the values of ACC for 

peaks corresponding to lower number of subunits (7 and 9, not shown on the figure) are even 

greater than for 11 and 13, and ACC tends to decrease with an increase of the number of 

subunits per turn. This tendency is in accordance with a decrease of ACC as a function of the 

number of images included in reconstruction (more subunits per turn => smaller axial rise). 

Another important point in this example is that, despite the fact that integer numbers of 

subunits per turn are usually strongly disadvantaged by the method, they appear here as ACC 

peaks. The method was repeated over several different class-averages, and the results always 

showed an increase of ACC for –or close to (less than 0.1 subunits per turn away)- odd 

number of subunits per turn. Together with the final reconstructions that were obtained (~odd 

number subunits per turn), this suggests that the method is able, at least in the present case, to 

overcome the problems posed by such symmetry. 

The Figure 3.12C shows the reconstructions and their reprojections corresponding to 

the two peaks at 11 and 13 subunits per turn. The hand of reconstructions is arbitrary 

imposed, as it is not determinable from the projection. As expected, although the shape and 

the assembly of the subunits are fully different, the projections of both reconstructions are 

similar. Without any other information, we would probably have to consider both solutions as 
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possible. In this case however, we can take an advantage of the presence of ring-shaped top 

views (which could be short segments of helices) on the electron micrographs. The 

corresponding class-averages are represented at the Figure 3.12D. The major “symmetry” is 

the 13-fold, even if pseudo-rings with less or more subunits are also present, whereas the 11-

fold symmetry was almost never observed. Together with the comparison of the 11 and 13 

subunits/turn reconstructions with the 12 Å cryo-EM reconstruction of the digested 

nucleocapsid (Schoehn et al. 2004), this provides a strong evidence for the 13 subunits/turn 

symmetry as being the true one.  

 

 

 

 The Figure 3.13 shows the results on a cryoEM class-average (obtained by projection 

matching) of the digested measles nucleocapsid (Figure 3.13A) taken from the work of 

(Schoehn et al. 2004). The Figure 3.13B shows the corresponding 3D ACC profile, viewed 

perpendicular to the number of subunits per turn axis. Again, several solutions (11.67, 12.33 
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and 13.67 subunits per turn) gave a comparable ACC, and a survey of a wider symmetry 

range shows supplementary ambiguous solutions. Two of these solutions, the ones that make 

sense regarding the diameter of the helix and comparison with the top views, are shown at 

Figure 3.13C. Interestingly, almost exactly these two symmetries were found by (Schoehn et 

al. 2004) using the IHRSR method (Figure 3.13D), the 12.35 solution leading to better 

resolution and being more consistent with the metal shadowing experiment. 

  

 

When applied to our class-averages of our images of the same sample by negative 

staining, we found the same two solutions (or very close to), the only difference between 

these tests being a poorer quality of the reconstructed volume from negative stain class-

averages. Similarly as for the non-digested sample, the additional information that we dispose 

suggests that the ~12.3 subunits/turn solution was the true one, which enabled us to use it as a 

starting point for refinement of the structure of digested MeVNC by negative staining EM. 
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 As a last example of the application of the method in an experimental case, we chose a 

class-average, obtained by MSA, of images of TspO in a helical form (V. M. Korkhov et al. 

2010) (Figure 3.14A). This example is revealing because the final reconstruction obtained by 

these authors was a several-start helix, and the artificial several-start projection tested above 

showed a particular behavior of the ACC (Figure 3.7). However, to begin with, we will not 

consider the projection as arising from a several-start helix – first, we are not supposed to 

know it, and second, there is no apparent reason that would hinder the determination of the 

helical parameters of the one-start helix that is repeated C-fold symmetrically in the whole 

assembly.  

Considering that we have absolutely no prior information on this sample, we tested a 

huge range of helical parameters, with a pitch varying from 30 to 1400 Å every 5 Å and a 

number of subunits per turn from 5 to 40 every 0.2 Å, making in total ~50000 different 

symmetries tested. Despite the high complexity of this test, the ACC profile as a function of 

pitch and number of subunits per turn (Figure 3.14B) is relatively simple and shows a very 

different profile comparing with what we usually observe. There is no bell shape behavior of 

the ACC according to the pitch independent to the number of subunits per turn imposed, and 

in contrary we observe a dependency of ACC both on the pitch and on the number of subunits 

per turn. To understand the nature of this dependency, we can look at this same ACC plot, but 

as a function of angular rotation between subunits Δφ and of axial rise Δz (Figure 3.14C). 

The ACC profile then clearly shows that the multiples of Δz ≈ 32 Å give globally higher 

ACC, whatever Δφ is imposed. This distance corresponds to the spacing between the apparent 

horizontal striations on the class-average, suggesting that the one-start helix that we try to 

detect has one subunit per stack, implying that the whole assembly consists of several one-

start helices related by rotational symmetry (otherwise one subunit would correspond to an 

entire stack ring, that is not compatible with the known MW of the protein -18kDa-). To 

further refine the parameters of the one-start helix, we then did a search on both Δφ (on a 

wide range) and Δz (around 32 Å) but with a finer step of search (0.01 Å on Δz and 0.01 ° on 

Δφ). Figure 14D shows a slice through the generated 3D plot for the Δz giving the highest 

correlations (Δz = 32.32 Å). Angular rotation of Δφ = 9.49 ° gives unambiguously the highest 

correlation. These values are very close to the one corresponding to the final reconstruction 

published in (V. M. Korkhov et al. 2010) ; Δz = 32.67 Å and Δφ = 9.53. Based on this data 

alone, we are unable to discriminate if these small differences are due to imprecision of our 

method, to a lack of very precise information on the class-average, or to a real difference 
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between the helical parameters corresponding to this particular class-average and the one 

corresponding to the whole set of images included in their final reconstruction. 
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As mentioned, the helical parameters are incompatible with only one one-start helix, 

so we then tried to impose the presence of several one-start helices with the determined 

parameters. The Figure 3.14D shows the ACC plot as a function of the number of starts 

(rotational symmetry). The highest correlation remains for a 1-start helix, but this could be 

also due to the lower number of images in this reconstruction. For more starts, two levels of 

correlation can be observed: a higher one, for 2,3,4,6 and 12 starts, and a lower one for 

5,7,8,9,10,11 (and also for the tested values higher than 12 –not shown here-) number of 

starts. Visually, any imposition of a number of starts other than a divisor of 12 tends to distort 

the shape of the subunit present in the one-start helix and to smooth the reconstructed volume. 

On the contrary, imposition of a number of starts that is a divisor of 12 reinforce the subunit 

density without distortion, with an optimal reinforcement for the 12-start helix. This is a 

strong indication that the number of start in the whole assembly should be 12, which is indeed 

the true number in the reconstruction of (V. M. Korkhov et al. 2010). 

Together with the fact that among the tests on ideal projection, the only one giving the 

true solution without ambiguities was the one on a several-start helix (Figure 3.9), the present 

example gives us indications that the method can be particularly successful when the number 

of starts is higher than one.  

In these three tests on experimental cases, we could obtain the helical parameters, 

either using some additional information (for Measles) or no information at all (TspO). In any 

case, the time needed to perform the tests is very short. The most time-consuming part is the 

further analysis of the results, which can be reasonably done within a day. The method is thus, 

as it is, a valuable alternative for ab initio symmetry determination. Several ideas to improve 

it and to try to overcome some of its intrinsic limitations, as well as ideas of how to optimally 

use it in a real case, for a new project, will be discussed in the “conclusion and perpective” 

part later.  

But first we will come back to the ambiguities that were encountered when trying to 

determine from one projection the helical parameters with our method, and try to answer 

several questions. How are the ambiguous symmetry parameters distributed? What, in the 

description of such helices, is ambiguous? How come that volumes apparently that different 

can indeed share identical projections? 
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The non- randomness of the ACC pattern 

 

In this part and below, we will focus on the description of the ambiguities for the one-

start helices. Firstly because the symmetry determination for the several-start helices was not 

really ambiguous, and secondly, although it is true that other symmetries than the real one 

also gave peaks of ACC in a similar fashion as for the one-start helices (Figure 3.9E, green 

vertical lines), the particularities encountered when dealing with the several-start helices, as 

well as the complications in explaining at the same time the results for the one-start and the 

several-starts, argue for a separate treatment of these subjects. However, when possible, a link 

between what we will observe and deduce for the one-start helices and the particularities of 

the results for several-start helices will be made. 

Interestingly, the peaks of ACC corresponding to the ambiguous symmetries are not 

“randomly” distributed as a function of the symmetry tested. If one takes a closer look at the 

variation pattern of CC rather than on exact values, it becomes apparent that there is a pseudo-

periodicity of the ACC pattern of 2 subunits per turn, and there are pseudo axial symmetries 

around axes defined by integer numbers of subunit per turn. Through these two operators, the 

most important peaks are related to the peak corresponding to the true symmetry. Some of 

these related ACC peaks are indicated by green vertical lines on the ACC plots on Figures 3.6 

to 3.10 (panels E) while the true symmetry is indicated by a vertical blue line. For example, 

considering the test on TMV (Figure 3.6E), there is a peak for the true solution at 16.33 

subunits per turn, but also at 18.33, 14.33, 12.33... (corresponding to the periodicity of 2 

subunits per turn), and there are peaks at 15.67, 17.67, 13.67 subunits per turn (corresponds to 

the pseudo axial symmetry around integer values). The peaks related to the true one by only 

few operators show values of ACC almost equal to the one for the true symmetry (variations 

in ACC of less than 10-4), while for the peaks requiring more operators, the ACC values tend 

to decrease. This decrease is not always obvious from the figures presented, as the symmetry 

range which we show here is often too restricted, however we can see the beginning of this 

decrease on the example of RSV nucleocapsid (Figure 3.7E, black arrow). Other important 

peaks of ACC, not directly related to the true symmetry by the two operators and showing 

usually lower values of ACC, are also present on the ACC plots. Some of these are indicated 

by asterisks in Figures 3.6, 3.7 and 3.8. A careful empirical analysis of the symmetries 
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corresponding to these peaks reveals however that they are not totally unrelated to the true 

symmetry. For example, if we inspect the zoom on the ACC plot for the flagella hook (Figure 

3.8F), we see two peaks (asterisks) for 5.22 and 5.78 subunits per turn, whereas the true 

symmetry is 5.56. Using the “axial symmetry around integer values” operator, we can go from 

the true value 5.56 to 6.44, and then from 6.44 to 3.22. These symmetries manifest many 

common features, the 3.22 symmetry including all the Fourier coefficient of the 6.44 

symmetry. Seen in real space, we can imagine the symmetry of 3.22 number of subunits per 

turn helix being exactly similar to the one of the 6.44 helix, just by considering two adjacent 

subunits of the 6.44 helix as a single one in the 3.22 helix. Then, from this value of 3.22, we 

can go to 5.22 by using the same operators as before. Likewise, we can find the 5.78 peak, by 

following this path: 5.56 => 6.44 => 8.44 => 4.22 => 6.22 => 5.78. This reasoning might be 

regarded as far-fetched, but all the symmetries being on this path show high values of ACC, 

and the same kind of relationships is found in all the other examples we could test so far. For 

RSV (Figure 3.7F), the 9.11 peak can thus be obtained by following the path: 9.78 => 10.22 

=> 5.11 => 7.11 => 9.11 (note: the 8.89 symmetry, directly related to 9.11, also shows a peak 

of ACC – see Figure 3.11C). Similarly as before, the more operations are needed to reach 

such a symmetry, the lower the corresponding ACC is. On Figure 3.7E, for example, we see 

the peaks indicated by asterisks disappearing rapidly, as the number of subunits increases. The 

existence of the relationships, involving the N to N/2 number of subunits per turn transition, 

in addition to the two other operators, also explains why more high ACC peaks are found 

towards lower number of subunits per turn (this is particularly observable on Figures 3.7E 

and 3.8E). Indeed, each of the symmetry parameters closely related to the true ones will give 

a related peak at N/2, which will in turn give other closely related peaks by applying the two 

previously described operators. 

Given these empirical observations, we asked ourselves if these ambiguities in 

symmetry determination and the relationship between the true symmetry and the related 

ambiguous ones, arise from the method we designed or if they are inherent to the structures 

(or to their projection) themselves. A search over the literature shows evidence that the second 

option is true. The most remarkable example we could find comes from (Edward H Egelman 

2010), where a test on IHRSR procedure convergence was done using as input images 1000 

projections of a TMV structure (Sachse et al. 2007), and starting with different initial helical 

parameters. The algorithm used by these authors led to several different stable solutions, and 

the ones shown in the paper (16.33, 15.67, 14.33 and 12.33 subunits per turn) were an exact 
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subset of solutions we found by our method. Many other examples in the literature show the 

same kind of ambiguities (some are shown in Figure 3.15), although surprisingly nobody has, 

to our knowledge, described these particular relationships between ambiguous symmetries. 



166 

 



167 

Inspite of the fact that our proposed method does indeed suffer from the same 

ambiguity problems than for example the IHRSR method, one clear advantage of our method 

is that there is no need for running many cycles of PM, choosing initial symmetry parameters 

and symmetry search parameters, etc.. in order to be able to find after hours and hours of 

calculation and waiting for parameters stabilization that several 3D models can correspond to 

the images, since with our method we get all the possible ambiguous solutions in one time, 

from one image.  

It would be tempting to find a way to make a distinction between the ACC peak 

corresponding to the true symmetry parameters and the false-positive ones, directly from our 

ACC plots, without any additional information. For example, the peaks indicated by asterisks 

on Figures 3.6, 3.7 and 3.8 rapidly disappear when looking at their relatives for higher 

number of subunits per turn, and thus this could be an indication that they are far from the real 

parameters, but without rigorous mathematical explanations for the behavior of ACC and for 

the ambiguities, any such empirical choices should be done with great care. Nevertheless, 

some ideas about how to try to overcome these ambiguity problems will be given in the 

“conclusions and perspectives” part later below. 

First however, some original considerations on both reciprocal and real-space 

description of such “ambiguous” helices, can still help to understand the sources of the 

observed ambiguities. 

 

Towards a better understanding of symmetry ambiguities 

Some mathematical relationships between ambiguous helices 

 

Let us consider three one-start helices A, B and C of the same pitch P composed of 

one atom per asymmetric unit, and with the number of subunits per turn N(A) , N(B) and 

N(C) following these rules  

{   =       =       =               (1) 
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Where N is an integer and f a non-integer with  0 < f <= 0.5 (f is the fractional part of the 

number of subunits per turn). The helices A and B represent the cases where we observe what 

we called an “axial symmetry” of ACC around integer number of subunits per turn, and the 

helices A and C the observed “periodicity” of ACC of 2 subunits per turn. To simplify, we 

suppose that these helices have an exact repeat after a distance c in z direction.  

The number of turns t to reach this distance for each helix is related to the number of 

asymmetric units u in the structure by :  

{     =        =        =             (2) 

Using (1) : 

{          =            =               =         (3) 

As N and u are integers, these equations imply that   =   =   =    with the product     being an integer. As the helices A, B and C have the same pitch P, their repeat  =     

will thus occur at the same axial distance. The Figure 3.16 shows the superposition of the 

helix nets of such helices by taking as example 4.8 (red circles, for helix A, called helix A1), 

5.2 (blue circles, for B, called B1) and 6.8 (green circles, for C, called C1) atoms per turn, 

with a pitch of 20 Å.  
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If one uses the same notation as before, the values for N, f, t , c and u for these helices would 

then be: 

{  
   =   =     =    =         =        =        =    

According to (Cochran et al., 1952, eq (4) ), the transform of a discontinuous helix is finite 

only in planes at height   =                  (4) 
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with n and m which can assume every integral value, positive or negative, and p being the 

axial rise per subunits in Angstrom (p is equal to the pitch P over the number of subunits per 

turn). Solutions for n are the orders of the Bessel functions occurring at this height. As we 

assumed that there is an exact repeat =    =     , we can multiply equation (4) by     

and obtain :      =        =         (5) 

 

where l is an integer that represents the l-th layer line (this formula is the so-called selection 

rule (Klug, Crick, and Wyckoff 1958)). The transform is thus confined to layers for which   =      =          (6) 

Having the same repeat, the helices A, B and C will have finite transform at the same heights, 

but since they have different axial rise p (and thus also different u), the order of Bessel orders 

on each layer line must be different. Let us look, as an example, into the solution (n,m) of the 

equation (6) for values of l=0 , l=1 ,and l=4 for the illustrative helices A1, B1 and C1 (the 

selection rule for Bessel functions can also be geometrically expressed on the n,l plots, shown 

in Figure 3.17, limited to |n|<=u and |l|<=u). 

 =   { =                       =                        
 =   { =                       =                       

 =   { =                        =                       

  =   { =                       =                        
 =   { =                       =                       

 =   { =                       =                       

 

Helix B1 (5.2 subunits per turn) u = 26 

Helix A1 (4.8 subunits per turn) u = 24  
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 =   { =                       =                        
 =   { =                      =                       

 =   { =                       =                       

 

Helix C1 (6.8 subunits per turn) u = 34 
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On a particular layer line, due to the selection rule, the difference between successive 

values of n is always equal to u, and the difference between successive values of m is always 

equal to t.  

We now can try to deduce relationships for values of n for these different helices. First we can 

write 

 

{  
    =            =            =          

               (7) 

And by replacing the axial rise p by the pitch over the number of subunits per turn as 

expressed in (X): 

{  
    =                =                =                   

          (8) 

If we now look at layer line at same heights, so that 

{  =     =                   (9) 

 

we can first deduce particular relationships of m values between helices A and B and helices 

A and C by multiplying left and right side of (9) by P and using the expression of   given in 

(8) : 

{           =                         =                     (10) 

 

{              =                         =                   (11) 
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The left part of equations (11) being an integer, to be always true, we must have : 

{  =      =                   (12) 

These relationships for values of m can be visually appreciated on Figure 3.17 (purple lines 

and numbers);so we can now deduce a relationship between the possible orders of Bessel 

function for helices A, B and C on each layer line, using equations (8), (9) and (12): 

{  =            =                       (13) 

 

A particularity derived from these relationships is that for each layer line, the Bessel 

functions occurring for ambiguous helices will have the same parity (because they differ by a 

multiple of 2). A possible implication of this will be discussed below. If one assigns orders for 

Bessel function on the PS of helices A1, B1 and C1, we can see that these relationships are 

indeed verified (example on Figure 3.18A). In a more complex case than a helix composed of 

single atoms, these relationships are also verified, if one considers for example the illustration 

of the ambiguity in power spectra in ((Egelman 2010), Figure 6.8A-D) (some are shown in 

Figure 3.18B). The indexing of the power spectrum shows for a helix with 15.67 subunits per 

turn (equivalent to helix A in our example) values of n of 16 and 17 on layer lines 1 and 4, 

respectively, while for the 16.33 (≈helix B) values are    =            and    =           . The non-verification of relationship for layer line 2 results from 

an erroneous indexing on the Figure (the -17 order should be a -15) in Egelman’s paper. 
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The need for radial density redistribution 

These relationships now pose a problem: how helices that exhibit different orders of 

Bessel function for each layer line can be ambiguous at some point? If one first consider the 

modulus of the FT, each layer line is filled with Bessel functions of first kind Jn(2πRr), with 

R being the radius in reciprocal space (distance from meridian) and  r the radius of the helix 

in real space. As our ambiguous helices have maximum intensities in FT at the same 

reciprocal radius R, there must be a change in r. If we consider our case of helices A, B and C 

with atoms all placed at same radius, can we make the FT of B similar to FT of A, for 

example, by a single change in r ? We should then have the maxima of  Jn(A)(2πRr(A)) and 

Jn(B)(2πRr(B)) occurring at the same reciprocal radius for each layer line, while satisfying the 

relation between n(A) and n(B) from Eq.(13). For example, taking the layer line 4 of helices 

A1 and B1, and considering their Bessel functions of lowest order, -4 and +6, respectively, if 

helix A1 has, say, a radius of 50 Angstrom, then, to match the position of the first maximum, 

helix B1 should have a radius of ~70 Angstrom (Figure 3.19A).  

 

But as we can see, it is not possible that the next maxima of the function occur at same 

radial distance. These “repulse” of Bessel functions can however be present in the transform 
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(see Figure 3.18, red arrows), even at low resolution for Bessel functions of lower order. So 

we see that even when considering one simple layer line, there is no ambiguity in the 

description of helices of type A, B and C. Furthermore, if one wishes to respect the equalities 

of Bessel functions for each layer line, this would be even more impossible. So why do we 

still observe these ambiguities? Indeed, the reason lies in the initial settings of the problem 

itself - we are starting on the 2D projection, without any a priori knowledge about the 3D 

volume, in particularly concerning the number of atoms in each asymmetric unit, and their 

radial and angular position.  

Taking the example of a helix composed of one atom per asymmetric unit and 4.8 

units per turn (Figure 3.20A), we thus can see that when an ambiguous symmetry is imposed 

on its projection (Figure 3.20B), for example here 5.2 subunits per turn (Figure 3.20D), the 

reconstructed volume contains a more complex distribution of density than when imposing 

the original 4.8 subunits per turn (Figure 3.20C), with contributions at various radii and at 

various angular position (Figure 3.20D). Due to these contributions, the transform of the 

helix include the summation of many terms of the form of  Jn(A)(2πRr(A)). It is not 

mathematically shown here that such summation could make possible to produce an identical, 

or very similar, signal in Fourier space, but it is reasonable to admit that the more terms are 

included, and the more freedom is given for placing the densities, the closer the transform of a 

such complex helix can be to the one of the original simple helix. The Figure 3.19B show 

how the summation of only 4 Bessel functions of the 6th order with various r values (to 

simulate the 4th layer line of the transform of an a helix with 5.2 subunits per turn, composed 

of more than one atom in the asymmetric unit) can approximate the position for the maxima 

of a Bessel function of 4th order (4th layer line of an helix with 4.8 subunits per turn with one 

atom per unit).  
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Of course, our real cases are not as simple as the helices composed of one atom per 

asymmetric unit, as the true initial volume itself has a complex density distribution, thus with 

many different contributions to the transform. But the basics are the same : an ambiguous 

helix to the true one, sharing identical (or very similar) projection, thus identical (or very 

similar) section in FT, must show a highly different distribution of densities, with in particular 

the radius of maximum density being adjusted. On Figure 3.21, some ambiguous volumes 

appearing when analyzing the projection of the RSV nucleocapsid structure are shown at a 

high threshold of visualization, thus revealing the highest density regions that are placed at 

different radii for the 3 reconstructions. These effects of radius gives thus a possibility for 

eventually reducing the number of ambiguous volumes for a given projection, using  

restrictions on the radius of reconstruction, both on inner and outer radius. It is interesting to 

note that such restrictions can be used in the Egelman’s IHRSR method when imposing the 

symmetry on the reconstruction, thus probably helping to reduce the number of stable 

solutions. However, our experience of these restrictions using IHRSR show that some 

ambiguities still persists. A simple test to gain understanding of the radius-restriction related 

possible decrease of ambiguities would be to compare the ACC plots for different types of 

radius restrictions. 
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Comparison with experimental observations 

 

Now, how these relationships and findings help us to explain our observation, and the 

ACC profiles obtained through the different tests ? First, as shown, the ambiguous helices, 

due to their symmetries, give raise to layer lines at same heights. The relationships of Bessel 

functions for each layer line, that must then be respected, induce an adjustment of the 

densities (both radially and angularly) in the volumes. Considering the one-start helices, the 

more “operators” (axial symmetry around integer values and periodicity of 2) are needed to 

go from the true symmetry to the ambiguous ones, the more potentially not respectable 

equalities of Bessel functions orders appear, whatever radii r in real space are given as 

argument of Jn(A)(2πRr(A)). Moreover, not every r values are possible, as the width of the 

box, when segmenting, is one physical limitations for it. This is likely why we observe a 

decrease of ACC after a number of use of these “operators”.   
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For the helices with additional rotational symmetry (several starts), that were not 

described in this section, there is an additional restraint on the Bessel functions that occur at 

each layer line : their order must be an integral multiple of the number of starts (the right side 

of equation (2) would then by multiplied by the number of starts). Thus, even if different 

several-start helices can give rise to transform with layer lines at same heights in the same 

manner as for the one-start helices, with some defined relationships between Bessel orders, it 

is more difficult for the densities to rearrange in a way that the peaks on all the layer lines are 

situated at same positions. However, we can still observe other ACC peaks than the true one, 

related by the same “operators” as described before, even if at lower ACC values (Figure 

3.9E), identically as for the one-start when a lot of operators were needed to go from the true 

symmetry to such peaks, so when not all equalities could be respected. 

 

Case of other helices giving rise to diffraction at the same heights 

 

Another question arising from the observation of the ACC plots and subsequent 

theoretical consideration  is why other symmetries that are not related to the true symmetry by 

the described “operators”, but that still give rise to signal in Fourier space at the only same 

layer lines, are not associated to high values of ACC. The simplest case is when a symmetry is 

imposed with exactly one more (or one less) subunits per turn than for the true helix. Then it 

can be shown that between these symmetries, the relationships of Bessel function order are 

such that the orders parity is not always the same on each particular layer line, depending on 

the value of m (even m : same parity ; odd m : different parity) in contrast to what we 

calculated for our ambiguous helices (Eq. 13). As we saw in introduction, in a projection 

image, the phases along a layer line on opposite sides of the meridian are constrained to 

differ, theoretically, by either 0° or 180°, depending on the order of the Bessel function on 

this layer line. If n is even, the difference is 0° whereas if n is odd the phase will differ by 

180°. Thus, two 3D volumes having such symmetry relationship (N and N+-1), due to the 

differences of parity of n, have 2D projections that are fully incompatible each other. Of 

course, if all m values, for all layer lines (giving signal at the resolution we are considering) 

on both projection were even, it would be different, but we can in practice ignore such case. 

Depending on the symmetry of the true volume at the origin of the projection we are studying, 

it is possible that other symmetries than the (N+1) give raise to transform with layer lines at 
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same height. For examples, if the original symmetry is 9.3 subunits per turn (repeat after ten 

turns), the 9.1 symmetry also have same repeat, and thus layer lines at same heights. Such 

cases were not rationally studied, that should be done, for example using deducible 

relationships for the fractional part of the number of subunits per turn, to see if one can prove 

–or not- that such pairs of symmetry don’t have always same parity of n values for each layer 

lines, but every cases examined upon there showed parity differences.        

   

Consideration on resolution 

Resolution seems to be an important point to mention here: intuitively, one would say 

that the higher the resolution, the less possible it would be to construct ambiguous models. 

This hypothesis is presented as an affirmation in (Edward H Egelman 2010), however neither 

he or ourselves have proofs for this (otherwise he could have shown that the IHRSR 

procedure always converges when the projections of the high resolution TMV structure are 

not filtered). Within our tests, the structure of the highest resolution is also the one of TMV 

(Figure 3.6), and the ambiguities are present to the same extent as in the tests on projection of 

lower resolution structures (for example RSV). We should also keep in mind that the 

ambiguities might arise not directly from the low resolution of projections, but from the low 

resolution of the resulting reconstruction, which is constructed from a too limited number of 

views of the asymmetric unit.  

 

What happens to the views that could not be included in the reconstruction 

 

What is also important to note, is that the demonstrated relationships between the 

Bessel functions for each layer lines, and the corresponding adjustments of density 

distribution do not need to be verified on all the Fourier space, only for the central sections 

corresponding to the assigned on-axis views to the segmented images. However, even in the 

case of the projection of the very long constructed model of RSV (Figure 3.3), that is an 

optimum case, in term of length (at least much better of what we could have experimentally) 

to fill the Fourier space when assigning the views –whatever the symmetry is- , we observed 

the same ambiguities for determining the symmetry (results not shown), showing that many 

FT central sections can be similar for ambiguous volumes.  
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This idea that not all Fourier coefficients had to respect the demonstrated 

relationships, lead us to the question of what happened to the central sections that do not 

correspond to any view included in the reconstructions, so where the coefficient are only 

obtained by extrapolations from the adjacent planes that correspond to views that were 

included in the reconstruction. The Figure 3.22 shows a comparison between projections of 

the original helix with 4.8 atoms per turn (Figure 3.20A) and projections of reconstructed 

volumes, imposing either 4.8 subunits per turn or the ambiguous 5.2 symmetry. The 

projections were made with out-of-plane angles up to 6° every 2° and the on-axis angle views 

were made all around the helix axis with a 2° step, so that almost all the projections that we 

are looking at, are along views that were not included when reconstructing these two helices. 

When one look at the projections with view angles that are close to that of a view that was 

actually included in the reconstruction (Figure 3.22A : same out-of-plane angle, on-axis view 

~2° far), both reconstruction with 4.8 and 5.2 subunits per turn show very similar projections, 

and also, as expected, similar to the original one. Concerning the 4.8 subunits per turn helix 

(Figure 3.22, 2
nd

 column), when one looks at views that are farer from included ones, the 

quality of reprojections decreases and artifacts become visible. The departure of an on-axis 

view from an included one cause mostly, when little (Figure 3.22B) or no (not shown) out-of 

plane angle is imposed, a stretching of the projection of the small spheres perpendicularly to 

the axis of the helix, due to lack of information in this direction. Every increase of out-of-

plane angle used for reprojecting the volume causes then a decrease of the quality of the 

reprojections, and artifacts are also visible along the direction of helix axis (Figure 3.22C 

and D). But, at least, the position of the reprojection of the spheres is respected in regard to 

the one for the original helix, that is not the case in the reprojections of the helix with 5.2 

spheres per turn (Figure 3.22, 3
rd

 column). Indeed, only a few projection of spheres are 

visible where there are expected (orange arrows), some are placed between two expected 

densities (red arrows), and the other are not really visible at all. So, as could be expected, the 

helix 5.2 does not make any sense at other planes that the one that were included. Of course 

these effects might depend, in other cases, on the true -and ambiguous- symmetries, that will 

influence the filling of view space. Also the fact that we look here at an extreme example, 

where most of the densities in the initial true volume are 0, might have an effect of the 

strongness of the artifacts. However, these observations go in the same sense than an 

empirical observation made in (E. H. Egelman 2007) were it is stated that the wrong 

ambiguous structures give, when used as a model for PM against raw images, an uneven 

distribution of number of image per reference. In the light of what we observed here, we can 
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suppose that the references that correspond to views for which the projection of the 

ambiguous structure was indeed similar to the one of the true symmetry will be preferred to 

the one corresponding to views for which significant differences in the projection should 

occur. 

Taken together, all these observations raises interesting perspectives for the method, 

and a number of them will be reviewed now, after a summary of the obtained results.  

 

Conclusion on symmetry determination on single 2D projection and further 

perspectives  

Results summary, positive and negative points  

 

We showed through the use of the described method on several ideal cases and 

experimental cases that the true symmetry is, in almost every case, related to an increase of 
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the measured ACC between reprojections of  reconstructed volume and  original segmented 

images. We thus have a way, from a single image, to measure a reliable “probability” that this 

image corresponds to a particular symmetry. This approach of pseudo-exhaustively imposing 

the symmetries to test and measuring their plausibility is to our knowledge new, at least for 

helices projection (one can mention here the ab initio approach to reconstruct models from 

images of icosahedral objects from (Navaza 2003). Although the underlying theory is totally 

different, the idea of being fully ab initio and the exhaustive search for the view angles share 

some similarities with our approach). 

For helices presenting additional rotational symmetry, we had cases with unique 

solutions detectable by ACC measure. An on-going experimental project in the lab, that 

present a 6-fold rotational symmetry (it is a bacteriophage tail) tends to confirm the success of 

the method on images (class-average) of such objects. However, this should be further 

confirmed by more tests and the theoretical description of the ambiguities (or not) for such 

helices should be done. For helices without rotational symmetry, several solutions gave 

comparable ACC values and indeed, the projections corresponding to these ambiguous 

symmetries are undistinguishable (at least in the way that we “look” at them). This confirms 

many observations and predictions made in the literature. Through the playing with concepts 

related to the description of ambiguous helices in reciprocal and real space, we were able to 

gain understanding of the sources of ambiguities. Signal in reciprocal space is confined at the 

same layer lines, and then the relationships between orders of Bessel functions on these layer 

lines are such that it is possible that different arrangements of densities in the 3D volume, 

especially concerning radial positions of densities, give raise to similar central sections of 

their 3D FT (similar projections). However, the fact that the relationships between Bessel 

functions’s order cannot be always respected by such rearrangement means that we have only 

a limited number of ambiguous symmetries. Thanks to that, using simple additional 

informations that we might dispose (top-views, information on subunit, literature), it is 

possible in experimental cases to deduce from the ACC plot and inspections of the different 

plausible volumes to decide for the true symmetry. Of course, using more additional 

information that provides for example information on surface lattice (metal-shadowing, AFM, 

quick-freeze/deep-etch EM) or mass per unit length measurement (knowing the MW of the 

subunit), we could even more easily discard many if not all of the ambiguous solutions. 

However, this would destroy one main advantage of the method, that is its simplicity and 

rapidity of application. 
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 Beyond the ambiguities problems, as a negative point, we also need to mention the 

object-dependant effects that we had to face. The success of the use of the method thus 

depends on the information that we have. Projection length, number of different views that it 

contains and how these views fill the angular space (these parameters being symmetry-

dependant). In that regard, a case like the TMV was ideal, whereas an helix with almost an 

integer number of subunit per turn is less (although the method still worked for the non-

digested nucleocapsid of Measles). 

 One major positive point of this method development, and particularly of the analysis 

of the kind of results that could be obtained, is that it lead to a new way to describe 

ambiguities in helical symmetry determination, that were often observed in the literature –but 

not really explained-, and to establish relationships between ambiguous symmetries. Thus, 

even if using another method to determine the helical symmetry, like the Fourier-Bessel 

approach, one would be able to predict which other symmetries, that might not have been 

detected in a first place, are likely to be true, and then for example try to reconstruct with 

these symmetries to see if they make more sense. Furthermore, these descriptions helped to 

point out some critical points that can help to reduce the problems of symmetry determination, 

like restrictions on reconstructions radii. We also could deduce particular relationships 

between Bessel orders for each layer lines of FT of ambiguous helices, and this could help 

when working with experimental cases. As an example, one could start from the possible 

solutions given by our method, and by looking at experimental FTs while taking in account 

what we predict to be present in the FTs, like the relatives orders of Bessel functions for 

several layer-lines for different ambiguous symmetries, and looking at the intensities in the 

diffraction peaks (as this is for example done in (Y. A. Wang, Yu, et al. 2006), one could 

distinguish which solution is more likely to be true. More generally, the understanding of 

ambiguities that we gained through our analysis gives us the possibility to predict what to 

expect when analyzing experimental data. 

Advantages of the method over existing procedures  

With regards to the Fourier-Bessel approach 

 

Until now, the only well-known method that really aims to determine the helical 

symmetry ab initio is the classical Fourier-Bessel method. It is to note that after the writing of 

this manuscript part, a paper describing an alternative method for reconstructing helices, and 
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providing also possible ways to determine the helical symmetry was published (Lee, 

Doerschuk, and Johnson 2011) but cannot be discussed for comparison here due to its 

complexity and novelty). Despite the development of many programs that makes the task 

easier, this approach still require time and a good understanding of the underlying theory to be 

successful. In comparison to it, our approach is very fast and simple, although we saw that 

analyzing the complex ACC plots resulting from it is not always straightforward. Possibilities 

for improving this part will be discussed below. The Fourier-Bessel method also requires, 

being able to do the indexing, quite long and well-diffracting helix portions (this requiring 

sometimes computational straightening of images). Although in our approach the length as 

well as the rigidity of the projection that we analyze can also influence the quality of the 

results, we are not that much limited: as an example, running the method on “low-diffracting” 

small class-averages of negatively stained measles nucleocapsid images provided us the 

needed symmetry information. Concerning the ambiguities in symmetry determination in the 

classical method, there is not that much description of it in literature (maybe the refractory 

cases were not published?). In the light of what we saw, it is anyway evident that somehow 

similar ambiguities problems will be encountered in our method and the classical, as the FT of 

projection of ambiguous volumes are similar. As an example, to assign Bessel orders to 

particular layer lines in the FT, one has to use a value of the radius of the helix, and the one 

that can be normally easily measured on the input image is the outer maximal radius, that only 

help to define a maximum limit for the values of n, thus inducing ambiguities in the indexing.  

With regards to the IHRSR approach 

 

 Although IHRSR approach is not really originally designed to give an ab initio 

determination of the symmetry,  it can be seen as a way of determining the helical symmetry, 

as by starting with more or less roughly determined parameters, the method should be able to 

converge to the true parameters. Thus, starting from many different points, one could in 

theory also “quasi-exhaustively” sample the parameter space and find solution(s). However, 

as we saw, not only the starting helical parameters are crucial regarding the final solution 

found, but also the parameters for symmetry search (increment for search of rise and rotation). 

In the end this makes many variable that one should test, and for each of them it would 

implies calculating and refining many reconstructions by PM procedures, so that it would be 

very time consuming and require to bring together many information to study the convergence 

of helical parameters. In comparison, we are getting the possible solutions with our method 
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from single images (or class-averages) very quickly, and we do not depend on initial 

parameters or variable for symmetry search once we have defined a range of reasonable 

parameters to test and a sufficiently fine search step. Our method is thus complementary to 

IHRSR, as it would give us starting points for symmetry parameters refinement that are 

almost already exact (thus speeding up the refinement procedure), and we would be able to 

predict in which different possible local solutions the IHRSR procedure may lead us, thus 

gaining significant time in the analysis. 

 

Possible improvements and applications 

While globally keeping the method as it is 

Improving display of the results 

 

Up to now, the basic output of the script for symmetry determination is a text table 

containing the symmetry parameters (number of starts, rise and rotation per subunit, and 

corresponding pitch and number of subunits per turn), the average correlation ACC associated 

to these parameters, the number of images included in the reconstruction and the standard 

deviation of the CCs for each symmetry tested. From this table can easily be extracted the 

symmetry parameters giving the highest correlations, but we saw that looking only at the 

absolute values of ACC was not so informative. Instead, one can use a plotting program to 

display the 2D or 3D profiles of ACC as a function of the symmetry parameters, and analyse 

these profile to extract the potential solutions. Optionally, one can also tell the script to keep 

the segmented image stacks, the reconstructions, and the reprojections stack for each of the 

tested parameters. This is usually done once we have detected potential solutions to visually 

inspect each corresponding reconstructions (and eventually also reprojections). In practice, 

our current way of analyzing the results present some weakness. One need to plot the result, 

to manually record which parameters are associated to local maxima of ACC (and it can be 

quite a lot for a large search), then for each of these parameters one has to re-launch the script 

by using an option to keep the reconstruction, then open each of the reconstruction with a 

visualization program (like pymol, chimera), and finally compare them, while trying to keep 

an eye to which point in the ACC plot there are related. All these steps are very time 

consuming, usually longer than the generation of the ACC profile itself, and not 
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straightforward (like visualizing in the same time a reconstruction and corresponding position 

of symmetry parameters in the ACC plot). This will cause us to tend to avoid to look at too 

much reconstructions for each analyzed image, for example the one that correspond to minor 

peaks in ACC, that could be a major problem when dealing with very noisy data and/or data 

with unfavorable symmetry (in regard to the method). Furthermore, it prevents us to do the 

analysis on a larger scale (many class-averages) in a reasonable time scale. So we propose, for 

a real improvement of the efficiency of data analysis rather than for any superficial aesthetic 

reasons, to create a dedicated visualization program, with the required following 

characteristics: 

-For plotting the ACC values as a function of the symmetry parameters, it should make 

possible to get interactively (mouse) and in real-time those different values when moving 

through the graph, as well as additional information (number of images included in the 

reconstruction, standard deviation of CCs, etc). 

-It should give the possibility to detect and record the symmetry parameters associated with a 

given number of local ACC maxima, to display them and save corresponding reconstructions 

-It should make possible to display side-by-side the results for several images, using 

automatically calculated compensatory factors to be able to compare ACC plots that have 

different range of absolute values (this was usually the case when looking at results for 

experimental data) 

-When the symmetry search is done by varying two parameters in the same time (like pitch 

and number of subunits per turn), one should be able to interactively pick 2D slices of the 

resulting 3D plot, and superpose them (for example to look at the ACC profile according to 

the pitch for various chosen number of subunits per turn imposed, that can help to improve the 

strategy for parameters search) 

-And most importantly, for each symmetry tested, 3D surface representation (at  a few 

different visualization thresholds) as well as representative slices (like a top-view and a side 

view) should be recorded, without writing to the disk all the corresponding reconstruction (it 

can becomes a huge amount of data, when testing thousands of parameters). Then the user 

could move through the plot of ACC (2D or 3D) and directly look at these representative 

views of the corresponding reconstruction. Our experience showed that the visualization part 

was of great importance to discard or retain certain symmetries, and this kind of tool would 
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totally change the potential of this method. Even more, if one have any idea of the shape of 

the subunits, such a fast exploration of possible 3D volumes that can be obtained from a 2D 

image, helped by an objective measure such as the ACC, could lead to a more easy 

determination of the symmetry. 

Adopting a more exhaustive scheme of data set analysis 

 

 In the present report, we showed results on experimental data set for only one class-

average for each of the chosen object. Of course, we have tested the method and analyze the 

results on several class-averages for each of them, but regarding to the total amount of data 

that we had in our hands (several hundreds of good class-averages), our tests were done on 

only a very small fraction of the whole data. We propose that this method should be applied 

on almost all the class-averages that are obtained ab initio from the raw images (after 

discarding class-averages of very poor quality, showing for example high degree of bending). 

This might thus be an automatic and ab initio way for sorting images according to the 

symmetry, when heterogeneity is present in the data, and that do not depend on any initial 

model. However, due to the fact that a part of the class-averages will correspond to images 

that have an out-of-plane angle different than 0, such exhaustive test would first require that 

the ability of the method to determine the out-of-plane angle as well is proven, that is 

currently under test. 

 Another way of analyzing more exhaustively the data set would be to treat 

individually every individual raw filament, for a sorting purpose. The low signal over noise 

ratio in the raw images would thus be compensated by the fact that the length of the analyzed 

projections would then be much greater, that is an advantage for several reasons like for 

example a better filling of angular space. 

 Both of these approaches require experimental validation. 

Improving the analysis of ACC peaks 

 

 As we saw through the analysis of the relationships between helical parameters giving 

rise to ambiguity in symmetry determination on 2D projection, one can now predict for each 

symmetry parameters, which are the other parameters that may produce equivalent projection 

images, and particularly one can predict relationships between Bessel orders on each layer 
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line for a set of ambiguous symmetry. These relationships implies that even if a pair of 

symmetry parameters are related to the true one by the described “operators”, it might be that 

the underlying relationships between Bessel orders cannot be compensated by redistribution 

of the densities, especially when Bessel function of very high orders are implicated. In such 

cases, we predicted a decrease of ACC for corresponding parameters. This hypothesis, 

although observed experimentally, should be more objectively confirmed, by analyzing the 

relative heights of the ACC peaks related to the true parameters and correlate this with the 

possibility or not to verify the relationships of Bessel orders (until a certain resolution). Once 

such correlation is confirmed, one could use this to determine, among a population of ACC 

peaks, which is the one more likely to correspond to the true parameters by using a reasoning 

like : “If these parameters are true, then one should observe a decrease of ACC for those other 

related parameters, because the relationships between Bessel orders could not be verified, but 

we don’t observe this, so we move to the next ACC peak and  repeat the same reasoning..etc.. 

until the predictions match the observations at best” 

Looking for helices other than the elementary one  

 

 In the examples that we have shown, we were interested in finding one pair of helical 

parameter : it was the one of the elementary helix, that is the one associated with smallest 

distance (taking in account rise and rotation) between one subunit to the next, and that is very 

often also the one that is the most obvious when visually looking at an helix, at least without 

rotational symmetry ( For the helices with rotational symmetry, those parameters correspond 

to the helix running the most parallel to the helical axis, that is with the smallest rotation 

between subunits). However, one can construct one helical assembly by using many other 

ensembles of helices than the elementary one, and the parameters of all those helices depends 

on the parameters of the elementary helix. Thus, for each potential solution of elementary 

helix parameters found by the first analysis of the ACC profile, one could predict which other 

parameters corresponding to the other related non-elementary helices should give high ACC, 

and verify at which extent it is the case. One has to note that this method would be limited by 

the number of views that can be inserted in the reconstruction that will be even lower than 

when imposing the parameters of the elementary helix. If this approach would be able to 

reduce the ambiguities to a only a few solutions (or at best only one), should be verified 

experimentally. 
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Measuring the resolution of reconstructions 

 

 This is something that was not tried, mainly because we were dealing with small 

amount of images, that one don’t like to separate into even smaller ensemble, and because 

there was no clear way of dealing with the fact the number of images was dependant on the 

symmetry parameters, that could have influence the measure of resolution by FSC. However, 

one can imagine to take, for this specific measure of FSC, the same number of images for all 

reconstructions (of course this is better when the parameters search range in not so huge so 

that some parameters give rise to only very few segmented images), and separate into two 

datasets. The way of separating images, “one over two” image for each dataset, or images 

corresponding to the two halves of the original input image, should be appreciated with tests 

on known cases, as will be the positive effects of adding this measure to the current measures. 

Adding a correction factor to the measured ACC 

 

 When looking at which factors had an influence on the measured ACC, we understood 

that not only the departure of the imposed parameters to the true one (and related ambiguous 

one), but other factors had an influence like the number of images included in the 

reconstruction and the filling/ sampling of angular space, that are both symmetry dependent. 

Thus, some trials were attempted to “correct” the measured ACC in order to limit the 

influence of such factors. However, no really good way of doing it was yet found. Dividing 

the ACC by the standard deviation of CCs between individual images included in the 

reconstruction and reprojections (we might expect higher standard deviation for false 

parameters) gave in some cases interesting results, but not systematically. Other way of 

correcting the ACC, like correcting the measured values by values obtained from a random 

noise image without helical symmetry (that may suffer from effects like number of images 

and filling of angular space as well) should be attempted. 

Exploiting the views that could not be included in the reconstruction  

  

We saw earlier that projecting reconstructions corresponding to the true or to 

ambiguous symmetry parameters along views that were not used for reconstructing the 
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volumes might be a way to differentiate between true or false ambiguous parameters, and may 

explain empirical observations made in (Egelman 2007). 

 We should verify this by using reconstructions of the different ambiguous volumes 

(first for an ideal test case, then on experimental data) constructed from one projection and 

use them as references for PM against many projection of the known structure, and establish a 

correlation between how far apart are view parameters to one used for reconstructing the 

reference from the single projection and views preferences after PM. Of course, we already 

used models with different ambiguous symmetries of measles for PM, and no difference in the 

global correlations were found to permit to distinguish one of the symmetry as being the true 

one. However, no particular care was taken about the angles of projection of these models and 

further reference distribution. Thus, even if there was certainly for the wrong models, 

projection views far from one used in reconstruction (thus of bad quality), the raw images 

might have shift in the helix direction to match with the closest projection that had an angle 

close to one used when reconstructing the model.  

A possible way of using the method would then be to compare each of the possible 

solutions to the raw images by PM, and carefully analyze the evenness of reference 

distribution. 

 

While changing important points of the method 

Decreasing a deleterious effect of including very few images in reconstructions 

  

As we it was already noted, if one look at the plots of ACC according to the symmetry 

parameters, the absolute values that are measured are usually all very high, whatever the 

symmetry is imposed. If one look at the examples on experimental class-averages of measles 

(Figures 3.12 and 3.13), all ACC values are above 0.96, with less as 0.02 difference between 

highest and lowest value ! We can attribute this in part to the fact that, particularly when a low 

number of images is included in the reconstruction, each input image contribute itself highly 

to the CC, because of conservation of information during back-projection and reprojection, 

thus biasing the measure. Moreover, the way that the other images included in the 

reconstruction influence this high contribution depends on the imposed symmetry : when 

views are close each other, one can expect a stronger influence than when views are more a 
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part each other. This symmetry-dependent effects and the fact that anyway the individual CCs 

are too much influenced by the windowed segments themselves, are some things that we 

would like to avoid. Thus, one can propose to calculate, for each tested symmetry parameters, 

a number of reconstruction equal to the number of windowed images, while always avoiding 

using one different windowed  image. For example, if for a pair of symmetry parameter, we 

segment the input projection into four images numbered 1 to 4, one would calculate one 

reconstruction with images 1,2,3 ; another with images 1,2,4 ; another with 1,3,4 and finally a 

last one with images 2,3,4. Then, in that case, to calculate the CC of reprojection of the 

reconstruction with the image 1, one would use the reconstruction made with images 2,3,4 ; 

etc… 

More generally, one would avoid using a reconstruction including the segmented image X to 

calculate the CC with segmented image X. This would of course lead to a large increase of the 

number of reconstruction to calculate, but the benefits might be sufficient to try this. 

 

Using a more appropriate reconstruction algorithm  

  

 In the current implementation of the proposed method, the algorithm of reconstruction 

is a back-projection algorithm (spider command BP 3F) adapted to any single particle of any 

symmetry. We propose here to use a helical-symmetry oriented reconstruction strategy, which 

could greatly improve both the speed, and more importantly the capacity of the method to 

produce the expected results. The most evident of such a strategy is the classical Fourier-

Bessel method, which is somehow paradoxal as one of the first aims for developing our 

method was to avoid using the classical method. However, here, of course, it wouldn’t consist 

in indexing the FT of the input images, but assuming every symmetry parameters that one 

would like to test, and automatically derive a 3D reconstruction using the Fourier-Bessel 

algorithms.  

This would actually be a fully different approach: in our current way of calculating the 

reconstruction, the images are « forcing » the reconstruction to “look like” them when 

reprojected. In this alternative approach, as we are taking in account only the Fourier 

coefficients that correspond to the symmetry that we want to test (layer line extraction), if the 

input image don’t follow this particular symmetry, no meaningful reconstruction can be 
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calculated in most of the cases. To illustrate this with an extreme case, if the input image is a 

projection of a perfect helix without noise (that was almost the case in some ideal examples 

presented above), and if we try to impose many of other symmetry than the true one, one 

would only pick Fourier coefficient equal to 0, and thus the correlation of the reprojection of 

such a reconstruction with the original image would be 0 % (in comparison, we had at least 88 

%  for the projection of TMV at 5 angstrom resolution with our current method…). Of course 

in a real case, this effect would not be as dramatic, but one could anyway hope for a much 

better contrast in the measured CCs because most of the non-helical noise would be 

eliminated, thus facilitating the analysis of the results. 

Not only the contrast of correlation would be improved, but many of the above 

discussed problems could be solved : 

- No effects of number of images included in the reconstruction 

- No problems of the symmetry dependent uneven sampling of angular space ( and 

sparse filling of Fourier space) 

- Reduced effects of interpolations (no need of shifting the original image to 

window it into smaller segments) 

- Increased calculation time (many of the Fourier coefficients are just not taken in 

account) 

One problem should unfortunately still remain : the ambiguous symmetry solutions. As we 

could show, the ambiguous symmetries have layer lines at same heights. Thus, when 

imposing ambiguous symmetries using the classical Fourier-Bessel method, one would 

anyway extract Fourier coefficient containing information, and the reconstructed volumes 

would probably make sense and have reprojection similar to the initial image. To which 

extent the number of ambiguous solutions could be reduced by using this new way of 

calculating reconstruction, is something that need to be verified experimentally. Anyway, if 

almost any other problems that we encountered when using our method in its current 

implementation are reduced, this proposed perspective is still one of the most promising. 
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PART 3 : Towards 3D reconstruction  

  

 During this work, methodological developments mostly concerned ab initio 

determination of helical symmetry parameters and sorting of helical segments by 

classification. As for the 3D reconstruction procedure as such, we mostly used well described 

methods like the iterative helical real-space reconstruction method IHRSR (E H Egelman 

2000) and a rigorous alignment parameters validation strategy (Sachse et al. 2007). A part of 

my work consisted in understanding these methods, evaluating their strengths and 

weaknesses, applying them, and setting up a pipeline for image processing primarily for in-

house usage. This resulted in a fairly universal script for helical reconstruction which will be 

described later (part “Introduction into the developed scripts”). Generally, the methods we 

used for reconstruction are described in our article about the measles virus nucleocapsid 

(Desfosses, Goret, Farias Estrozi, Ruigrok, & Gutsche, 2011) and the VSV N-RNA bullets 

(Desfosses, Ribeiro, Schoehn, Blondel, Guilligay, Jamin, Ruigrok and Gutsche, in 

preparation) included in the appendix of the present manuscript. Here I will provide more 

extensive comments on several important aspects of the reconstruction methods and give 

some perspectives for reconstruction of helical objects. 

  

Measles : reconstruction using IHRSR 

 

 Roughly speaking, we used Egelman’s IHRSR method, with some additional steps of 

image selection and other adjustments (see “Introduction into the developed scripts” part). In 

our first attempts, we were facing many difficulties to obtain a correct reconstruction, mainly 

because the refinement of the symmetry parameters leads to multiple solutions, most of 

which, if not all of them were actually wrong (Figure 4.1). We realized the huge importance 

of the starting point for symmetry search, much more critical than was suspected from the 

literature. Furthermore, the ‘search step’ parameters for axial rise and angular rotation, as 

required by hsearch program to define the grid range and spacing that will be used to 

determine the best fitting helical symmetry on the reconstructed volume, had strong effects on 

final results and were crucial in order find the correct symmetry of the structure. 
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After using the classification of 2D images and developping methods of the symmetry 

estimation based on 2D class-averages which were described earlier in this manuscript, we 

could finally use the IHRSR approach with success. As an example, for MeVD, we already 

mentioned how a not yet explained heterogeneity, detected on the PS class-averages solution 

(See classification, figure 2.19), prevented the IHRSR refinement from convergence to a 

stable and reproducible symmetry, although the variability turned out to be very small (two 

population of either 12.38 or 12.33 subunits per turn). The problem of convergence in cases of 

heterogeneity is reported in several IHRSR-based papers, for example in (Y. A. Wang et al. 

2006). The use of our method for symmetry parameter estimation, which gave us precise 

starting points (~12.3 for MeVD and ~13 for MeVND), allowed us to restrict the starting 
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point to a very narrow range and use smaller values for the ‘search step’ parameters, which 

made possible to obtain stable symmetry parameters. 

To conclude on this part, we can say that the Measles case teaches us useful lessons on 

the use of the IHRSR method, which were sometimes not clear from the literature. The 

IHRSR method was, in the initial paper describing it, advertised as “a robust algorithm for the 

reconstruction of helical filaments using single-particle methods” (E H Egelman, 2000), 

mainly because one could start the reconstruction with a featureless initial model as a smooth 

cylinder (E. H. Egelman 2007). It is noted in another 2007 paper that the “The reconstructed 

volume […] will be almost indistinguishable (at 12 Å resolution) for a large range of different 

initial reference volumes and starting symmetries, which is why the algorithm is called 

‘robust’” (E H Egelman 2007). In my hands, the robustness of the method was not so clear. I 

spent some times to exhaustively test the effects of starting symmetry parameters and the 

‘search step’ parameters on a relatively homogeneous data set (MeVD after the classifications 

step), and I realized how precise and “lucky” one has sometimes to be in order to find the 

combination of parameters that will allow a correct refinement. Interestingly, a more recent 

paper on the method (Edward H Egelman 2010) highlights these critical points, which should 

be taken into account when using IHRSR. 

 

VSV nucleocapsids : reconstruction without symmetry imposition 

  

  For determination of the structure of the VSV N-RNA bullet trunks we were 

facing two main difficulties. First, the data set was highly heterogeneous as could be judged 

from diameter variability (see classification part). Even after the classification steps, it was 

never completely clear if we had finally succeeded in obtaining a homogeneous subset of 

segments. The final relatively low-resolution reconstruction would tend to show that it was 

not the case. If it were to be done again, I would try to push the sorting of the dataset even 

more, even if at the end would be left only with a couple of filaments (which would be, due to 

the very high number of subunits per turn, already enough to get a better resolution than what 

the one we currently have). The second difficulty arose from the fact that we had no 

indication of the symmetry(ies). Clearly, the smaller diameter of our reconstituted bullets in 

comparison to the full virion structure (Ge et al. 2010) indicated that we had less subunits per 

turn. We tried to estimate this value by establishing a relationship between diameter (=> 
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circumference) and number of subunits per turn for the known structures (either the viral 

nucleocapsid or the crystallized N-RNA ring (Green et al. 2006)), and extrapolating this value 

to our structures. However, the uncertainties related to the measures lead only to a rough 

estimate between ~31 and ~35 subunits per turn. Using these estimations as starting points for 

the IHRSR method to converge to the true symmetry parameters was always unsuccessful 

(results not shown): if the ‘search step’ values were too small, the initial parameters remained  

virtually unchanged, so that we ended up with as many final parameters as initial guesses. 

When these values were set higher, the procedure systematically converged to non-relevant 

solutions (~ 20-22 subunits per turn). The very small angular rotation and axial rise (due to 

the high number of subunits per turn), may be one of the reasons for this high sensitivity, in 

addition to the fact that remaining heterogeneity may be present.   

 To circumvent those difficulties, I used an approach that does not require initial 

symmetry guess (only the pitch, which can be easily determined from the images), which is 

based on reconstruction without symmetry imposition, in a way that is, to my knowledge, not 

described in the literature for helical samples. In their 2001 paper, (Narita et al. 2001), use an 

approach without symmetry imposition for reconstructing the quasi helical actin-

troponin/tropomyosin complex, but they started from a helically symmetric initial model, 

whereas we started from a smooth helix with only a defined pitch. The main difficulty that I 

encountered in my first attempts to reconstruct without symmetry imposition, was that the 

volumes became so asymmetric upon reconstruction iterations that parts of the helix were 

very badly defined, or deformed (Figure 4.2 B,C). This was due to the fact that the 

distribution of views per on-axis angle became more and more uneven upon PM iterations 

(Figure 4.2A). A way to solve this problem was therefore to limit the number of images for 

each on-axis angle bin before including them in a new reconstruction. We therefore included 

this possibility in our reconstruction pipeline (see part “Introduction into the developed 

scripts”). In order not to lose too many images during this additional selection step, we also 

tried to understand what made the distribution of on-axis views so uneven. In our stack of 

images, we necessarily have a quasi-even distribution of the views, due to the helical 

symmetry (especially for VSV N-RNA bullet trunks which have a very high number of 

subunits per turn) and the presence of many different filaments. However, when looking at the 

y-shifts distribution as determined by projection matching (the shifts along the helical axis), 

we realized that many images had big y-shifts, despite of the fact that many different on-axis 

view references were created. This seemed illogical when one considers that if the number of  
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on-axis references is high, each image should be able to find a reference it would match 

without requiring a big y-shift. Remarkably however, some projections are systematically 

preferred and cause images to shift in y-direction more than they should in order to match 

with them. A potential explanation of this phenomenon might lie either in an uneven density 

distribution in the reference volume, or in interpolations effects (on-axis views at 0, 90, 180 

and 270 degrees have for example a general tendency to be preferred, especially when the 

reference structure is a smooth helix). In the SPIDER release that I used during the thesis 

(version 17.05), only one value for both x and y shifts search ranges could be given, therefore 

in order to restrict the search range to a lower value (1 to 3 pixel), I opted for a preliminary 

rigorous centering, which then allowed to reduce the y-shifts found by PM. This was thus 

included in our procedure (see “Introduction into the developed scripts”), and made possible 

to obtain a more even on-axis view distribution while keeping enough images per view. More 

recent SPIDER releases and some other packages (e.g. EMAN2), already include a possibility 

of having different search ranges for x and y shifts. However, the centering of the segments 

will always help to reduce the x-shift search range thus reducing the computation time. 
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By applying the selection of an even number of images per on-axis view in addition to 

the centering of the segments, we could, starting from a smooth helix, obtain reconstructions 

for VSV N-RNA bullet trunks, with or without the M protein added. After several PM 

iterations, the symmetry of the reconstructed volume became apparent (Figures 4.3 and 4.4). 

This symmetry was then imposed on the volume and the structures were “refined” using 

IHRSR with very small symmetry search range parameters. 
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Perspectives  

General remarks 

 

Obviously, there is room for improvement of our current reconstruction procedures. 

For example, the symmetrisation based on multiple inclusion of images according to the 

helical symmetry (Sachse et al. 2007), which is an appropriate way of taking into account the 

symmetry, was not completely included in our reconstruction pipeline (some troubleshooting 

is still required to make it work properly). Additionally, a recent high-resolution work on 

TMV (Ge and Zhou 2011) introduces several modifications of the original IHRSR procedure, 

notably the inclusion and the use of a better version of the himpose program and a new 

method to guide the generation of the reference volume projections taking into account the 

helical symmetry. A quantitative comparison between this approach and the one of (Sachse et 

al., 2007) on the exact same data set, especially concerning the two symmetrisation methods, 

is necessary in order to know what to use in the future. One can also cite another recent 

methodological paper that proposes a completely new and promising view on the 

reconstruction of helical objects (Lee, Doerschuk, and Johnson 2011). However, both the 

complexity of this paper and the fact that no more recent articles applying this method have 

been published make it impossible to correctly discuss it here. What I would like to briefly 

discuss now, as a perspective, are some ideas that emerged during the writing of this 

manuscript and that should be relatively easy to test, and may improve single-particle 

approaches for helical reconstruction. 

 

Combining the classical helical reconstruction method and single-particle 

approaches ? 

 

When I reviewed  the literature on helical reconstruction, one thing that surprised me 

was that the separation between the “classical method”, or “Fourier-Bessel reconstruction” 

(DeRosier & Klug, 1968; DeRosier & Moore, 1970)  and the various more recent single-

particle approaches (E H Egelman, 2000; Sachse et al., 2007) was so strong. In some papers 

(e.g. Schoehn et al., 2004), both approaches are used, for example, via determining the 

symmetry parameters and a low-resolution model by the classical approach and then refining 
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the structure with a purely single-particle approach. However, both methods are never really 

mixed. The reason why this surprised me, is that, clearly, both methods have strengths and 

weaknesses (see introduction) and it seems reasonable to combine them to give rise to a 

stronger more general method. For example, in the single particle approach, the decision if a 

particle should be included in a reconstruction or not is usually independent of the helical 

symmetry (e.g. based on cross-correlation coefficient with model’s projection), whereas in the 

“classical method”, particularly precise symmetry-adapted criteria exist. I can cite as an 

example the work of (Wakabayashi et al. 1975) which makes use of several possible selection 

criteria like selection of images with symmetrical layer-lines or calculation of the difference 

of phase angles of the amplitude peaks on the opposite sides of the FT in comparison to what 

is expected from helical symmetry (DeRosier and Moore 1970). I do not see any reason why 

these checks of preservation of helical symmetry couldn’t be done in addition to other 

selection criteria used in a classical single-particle approach (plus other selection criteria 

adapted to the rough geometry of filaments, see part “Introduction into the developed 

scripts”). 

Another big difference between classical and single-particle approaches lies in the 

reconstruction process itself: in the former, the reconstruction is done by using only the 

Fourier coefficients found on the layer lines, whereas the later uses all Fourier coefficients as 

for an asymmetrical object. For the single-particle approach the question is the following: if, 

given a certain helical symmetry that is assumed at some point of the procedure, many Fourier 

coefficients of the images are not relevant (actually they should be 0 in an ideal noise-free 

projection), then why do we include them in the 3D reconstruction ? Is this inclusion useless, 

does it only introduce more noise ? 

To take this into account, one may, for example, refine particle orientation by using the 

single-particle approach, and compute reconstruction on each segment using Fourier-Bessel 

approach. But then one could go further and ask: why refining particle orientation using all 

Fourier coefficients and not only the relevant ones ? Of course, the precise position of the 

relevant Fourier coefficients depends on the orientation, which is the parameter we want to 

improve using only the positions of relevant Fourier coefficients, which depend on the precise 

orientation… etc… “like a dog chasing its tail” ! However, we are usually in a slightly 

different case: the orientation parameters are already roughly known with a precision that can 

be judged from the resolution that we can obtain by combining our images in a reconstruction. 

Thus, depending on resolution, one can assume an average error in orientation of the 
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segments, in particular in the in-plane and out-of-plane angles which are relevant here, 

because the on-axis view doesn’t influence the layer lines position. One can take this average 

error into account to keep more Fourier coefficients than one would keep if the orientation 

was perfectly known, and use only these coefficients to refine particle orientation. To 

summarize, what I propose is to do a Fourier-space masking of images in order to keep only 

relevant Fourier coefficients for a given helical symmetry, thereby reducing effects of the 

noise from the images. These coefficients are positioned on the layer-lines but not all along 

each layer line because depending on the Bessel function order on each layer-line, the 

coefficients near the meridian can also be non-relevant (DeRosier and Moore 1970). In order 

to take into account the uncertainty in particle orientation, one should then “blur” the mask to 

avoid removing useful information.  

The idea is actually similar to what electron microscopists were doing since the 

beginning of EM by using optical (and later computational) Fourier-filtering (Klug and 

DeRosier 1966), not only for helical specimen (Figure 4.5A ; (DeRosier and Klug 1968)), but 

also for 2D crystals (Figure 4.5B ; (Kiselev, Lerner, and Livanova 1971)) and for projections 

along symmetry axis of other type of symmetrical objects. (Figure 4.5C ; (Baker, Drak, and 

Bina 1989)).   
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The main difference between those earlier applications of Fourier-filtering and our 

proposal is that, in particular in case of helices, they were applying this method mostly in 

order to remove noise for visualization purpose (R A Crowther and Klug 1975) or to make 

appear separately near and far side of the helical net (Klug and DeRosier 1966), whereas we 

propose to include the Fourier-masking as a part of the single-particle reconstruction approach 

for helical structures. One way to include it in the reconstruction process would be:  

(0) a 3D reconstruction is first obtained using one’s favorite single-particle approach, views 

are assigned to each image, and symmetry parameters are determined  

(1) from the resolution of the reconstruction, one then estimates the average error of views 

determination (in-plane and out-of-plane) 

(2) each image is padded into a larger image, ideally into the largest image as possible to have 

a finer frequency sampling in Fourier space,  and then Fourier-transformed 

(3) using the symmetry parameters, the errors on views, the out-of-plane and in-plane angles 

found for each image, a binary Fourier-mask of the size of the padded image in (2) is created 

for each image which only contains relevant “blurred” layer-lines and on each layer-line only 

relevant Fourier coefficients (given order of Bessel function). 

(4) The FT of the image (2) is multiplied by the created Fourier-mask 

(5) The multiplication product is back-Fourier-transformed and an image of the original size 

is cropped out of this large Fourier-filtered image 

(6) these Fourier-masked images are used for a refinement of view determination by 

projection matching using the previous structure as reference, a new 3D structure is calculated 

and the steps (1) to (6) are repeated using newly determined values for the views and 

resolution. The process stops when no changes in views determination and 3D structure are 

detected. 

 Additionally, one could also Fourier-filter the projections of the reconstruction used as 

reference for PM. The advantage would be the exact knowledge of the views. All details of 

the method should be explored and tested using simulated and real data. 
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PART 4 : Introduction into the developed scripts 

 

Preliminaries 

 

One of the aims of this thesis, since the host laboratory had only little experience in 

helical reconstruction at the time of its beginning, was to set up a dedicated pipeline for the 

image processing. It consisted thus in setting up the known/used procedures and eventually to 

improve them and add new processing procedures. Thus, part of the work consisted in writing 

scripts to use this pipeline in an efficient manner by any user in the lab.  I will detail here, for 

some of the most important scripts, the input arguments to give, as well as the output files. 

Furthermore, under the light of what was written in the main text of the manuscript, some 

advices on how to optimally use the scripts, and the critical points to take care of, will be 

given. 

 Considering the preprocessing of images, a set of scripts was written to box particles 

with chosen parameters (size of box, overlap, distance of boxes to extremities of filament), 

determine and correct for CTF (based on CTFFIND3), Fourier-filter images, eventually 

verticalize or mask the images… but these script will not be described here as this part of 

processing was not yet optimally designed, and as it is a part that any user may want to 

perform in his own manner (for example the way of correcting the CTF). Some simple scripts 

were also designed for image classification with IMAGIC, and others to extract from the 

IMAGIC classification outputs, the information needed to create files telling the SPIDER 

package which images had to be used in the reconstruction (selection file), as a function of 

their class number. Those scripts are not coupled together to form a defined pipeline because 

they still require intermediate manual steps, and therefore they will not be presented here. The 

ones that attained a certain degree of maturity, and that will be detailed in this part, are: 

-the master script to make the 3D reconstructions by projection matching (PM) and all related 

steps 

-the script for helical symmetry parameters estimation on 2D projections, that runs the method 

largely described in the part 2 of this manuscript. 

-a script for ab initio helical symmetry parameters estimation on 3D volume 
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Reconstruction pipeline using the script helix_rec.csh 

General organization / purpose  

 

  Once the images are prepared in the desired way (CTF-corrected, filtered, 

masked, verticalized or not), and once an initial model is available (a solid cylinder, a smooth 

helix, or a model derived from the symmetry determination on 2D projections), one is ready 

to begin with the reconstruction procedure. In order to adapt it to different projects and 

strategies, one single script dedicated to the reconstruction and offering a lot of flexibility to 

the user was created. Once this master script is launched, the user does not need to stop it until 

a final reconstruction is obtained because it gives the possibility to vary any parameter 

between each projection matching cycle, and to test different ways to calculate the 

reconstruction with the possibility to undo some steps if necessary. Therefore, one of the 

advantages of using this script is that the user does not need to work with many different 

scripts and manually edit parameters inside these scripts. However, most of the scripts are 

usable independently of the master script if necessary. The general organization of the 

processing pipeline and the way the most important scripts are connected to the master script 

are shown on Figure 5.1. Comparing to the original IHRSR procedure (Egelman, 2000), the 

main advantages are : 

-the interactivity (via the subroutine eliminate_images.csh detailed later) 

-the possibility to use many different images selection parameters 

-the multiple ways of taking symmetry into account or not 

-at each step of the processing, a trace of which exact parameters were used  is kept 

-statistics are kept in an easily readable format for each iteration cycle of PM 

-the plotting interface to assess data quality/consistency 

-no need to open and edit any script (SPIDER or other) manually 

-thus the possibility of easily testing different sets of parameters and their effects 
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-a more appropriate way not to overestimate resolution by FSC in case of overlapping boxed 

segments from filaments 

-the implemented parallelization scheme for use on CPU clusters.  

 

There are still many possibilities to improve this part of the processing, but I only 

show here what is ready to use accompanied by comments on what can be modified. 

The basic workflow of the master script is shown at Figure 5.1: 3D model projections 

(step 1), alignment parameters search by projection matching (step 2), alignment of images 

(step 3), calculation of a normalized CC between aligned images and corresponding 

projection (step 4), selection of images to include in the reconstruction and parameter setting 

(step 5), and reconstruction taking the symmetry into account (steps 6 and 7). When launching 

the script for the first time, the user has to enter parameters for steps 1 to 4, but all the values 

can be changed later if wished during step 5. There is otherwise no user prompting between 

steps 1 and 5, only optionally after step 6 (reconstruction). As we will see, it is also possible 

to deactivate the interactive prompting at any time to run  the scripts in a more automatic 

manner. 
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Launching the master script for the first time 

 

I will now detail the parameters that need to be entered as arguments when launching 

the script for the first time (Figure 5.2). All these parameters can be changed later. All other 

parameters are set up later (step 5). To keep a trace of the options used, all arguments entered 

are stored in a file called my_options_x.txt with x being a digit incremented for each new 

instance of the script launched. 

 

 

 

1, 2 and 3 : These arguments are the root to the input images for alignment parameters search 

(1), reconstruction (2) and calculation of the normalized cross-correlations (CC) (3). Very 
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often, one uses the same images for these three steps, but one may want to do differently, like 

for example by using masked images for alignment parameters search and CC calculations, 

but including unmasked images in the reconstruction. Alternatively, one may wish to use 

different Fourier filters for the images for alignment parameters search and for the ones to 

include in the reconstruction, etc. 

The format of input images is the SPIDER format, and they should be individual files (not in 

a stack), with a numbering containing always the same number of digits (like for e.g 

img_00001.spi ; img_00100.spi etc.) that is given in argument 4. The root to the images 

consists in the absolute or relative path to the images without the extension and without the 

digits defining the image numbers. 

5 : A SPIDER selection document file (Joachim Frank et al. 1996). This file contains the list 

of images to consider for all steps of the processing. If one wishes to consider all the images 

given as input, one can use the script mk_seldoc.csh to automatically generate a selection file 

with all images present in a specified folder. Otherwise, it can contain only some images, for 

example, the ones selected by a classification step. At each PM cycle, a different selection file 

can be used (if the user asks for), or created according to a selection criteria from alignment 

parameters and statistics. 

6 and 7 : Image size in pixels and pixel size (in Å per pixel) respectively. 

8 : This is the maximum out-of-plane angle (in degrees) that will be used to create the 

references for projection matching. Entering 0 here means that no out-of-plane will be used, 

similarly, by entering 12, only references with out-of-plane of maximum plus or minus 12 

degrees will be created. Usually, this value cannot be estimated a priori, but one can check the 

distribution of images according to the out-of-plane angle of references after one cycle of 

projection matching to verify if the value entered here was big enough. One can also choose 

to limit this value to gain calculation time. In this case however, images matching the highest 

out-of-plane angle imposed should be excluded from the reconstruction because they would 

also probably contain images that have a higher out-of-plane angle. 

9 and 10 : This is the angular increment used for the out-of-plane rotation angle , and for the 

on-axis rotations, respectively, to generate reference projections from the input volume. A 

way to calculate this value is to decide which resolution one is aiming to and use the geometry 

of a single-axis tilt series as in (R. A. Crowther, DeRosier, and Klug 1970): the number of 
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equally spaced projections needed for an object of diameter D to obtain a resolution of d is 

πD/d. The minimum increment (in degrees) is therefore (180*d)/(πD), but one would typically 

use a slight oversampling. With helices, it is often the case that the dimension along the helix 

axis is bigger than the direction perpendicular to the helix axis, and so one may want to use a 

different value for these arguments 9 and 10. One may also accept to have a lower resolution 

at the top and bottom edges of the structure (considering that the projection has the helical 

axis aligned vertically) to reduce the angular increment for the out-of-plane angle in order to 

reduce the calculation time. 

11 and 12 : respectively first and last projection matching cycle number. The script uses a 

numbering to identify which files were created at a given PM cycle. At the cycle number ‘i’, 

the volume called rec_sym_{i-1}.spi is used as input. Thus, although not entered as an 

argument, an initial volume called rec_sym_{i-1}.spi must be present in the current 

directory. All the output files, except the reconstructions (before/after the optional 

symmetrization step), are stored in a folder called c’i’. As for each of the other arguments, the 

last cycle number can be changed later if needed. 

13 : Input file containing initial guess for symmetry parameters, in a format  readable by 

Egelman’s programs hsearch and himpose. Although this file is not always needed (when one 

does not wish to impose and/or search for the symmetry of the 3D volume), it is asked here as 

an obligatory argument. This will be changed in the future. 

14 : This is the search range in x and y in pixels for alignment parameters search (SPIDER 

command AP SH). In the SPIDER versions before the 19.09 release (the one used during this 

work), only one value defining both x and y translation search range is used by the alignment 

parameters search command APSH. Thus, one should enter here one value as the first part of 

the argument (x) and a negative value for y (not taken into account). The minimum translation 

search range is usually not easily predictable. Therefore one should run a first PM cycle with 

a big search range and use the resulting distribution of x shifts (perpendicular to helix axis) to 

restrict this value (the y shifts, along helix axis, are not so informative for helices as they do 

not reflect the centering of helix segments). Using a range limit slightly bigger than the 

maximum ensures that every image can be properly aligned. 

15 : This is the search step in pixels for alignment parameters search. It should be a divisor of 

both the search range in x and y. To set this value, one has to take into account the desired 

resolution (basically one can multiply the search step in pixels by the pixel size to have an 
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idea of the precision of the search for a given step, although the real precision is higher, as the 

algorithm in AP SH makes a sub-pixel refinement). 

16 : This is the resolution limit in Å to filter the reconstruction during each cycle of PM. The 

input images are not affected by this filter. 

17 : Radius of the object in pixels. This value is used to restrict the projection of the volume 

to  this size and to create a mask for CC calculations. This is useful when one expects some 

flexibility in the filament of interest and wants the alignment to focus on the central part of the 

images because the 3D reconstruction might be of poor quality on its extremities. 

18 : Here one, or optionally two, tables have to be entered, with a number of lines 

corresponding to the number of images to use. The first one is a table that assigns each image 

to a filament number. It is created during the preprocessing, after particle boxing, in order to 

keep a trace of the correspondence images/filaments (using the script 

correspondence_img_fil.csh). It can be useful to calculate statistics for individual filaments 

and it is used during the reconstruction process to separate images into two sets to calculate 

the FSC while avoiding to include overlapping images of the same filament into the two 

different volumes (whereby avoiding overestimation of the resolution). It is also used for 

other image exclusion criteria as will be shown later.  The second table is the table that 

associates each image to an in-plane angle, as could be deduced from the boxing: the angle 

assigned to each segment of a filament is the one defined by the position of the extremities of 

the filament. This table is also created during preprocessing (by the script 

correspondence_img_inpl.csh), and it will be used during the 3D reconstruction procedure to 

check if the in-plane angle found by projection matching is not too far from the one we 

already roughly know (Sachse et al., 2007), as well as for polarity checks (Fujii, Kato, and 

Namba 2009b). This table is optional, as one can use the script on images already verticalized, 

in which case such table would be useless. 

19 : Number of processors to use, for parallelization purpose. Almost every step of the 

process is parallelized, i.e. projection of the volume, alignment parameters search, alignment 

of images and normalized CC calculation. One can thus give a different value for each of 

those steps, separated by commas. If only one value is given, then the same value is used for 

all steps. Usually the most time consuming step is the alignment parameters search. That 

would thus require a higher value than the other steps. For the other steps, setting to a too 

large value can lead to reduced global computation time due to overhead. 
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20 : This specifies the step of the processing where the script should begin.  If the script has, 

for any reason, being interrupted in the middle of a PM cycle, one can restart it at the step 

where it has been stopped by typing jumpX where X is the step to begin with, as indicated on 

Figure 5.2.  If one starts normally, one should thus type “jump1”. 

21 and over : These are optional arguments, that will not be detailed here, and that concern 

the currently used parallelization systems (like memory requirement specification). The one to 

note, however, is the option --local that ensures that every step runs locally, eventually on 

several CPUs if asked accordingly in option 19. 

 

The user-interaction interface and the modes of interactivity 

 

Once the first 4 steps of the first cycle of PM had been done, and later between every 

PM cycle if the interactive mode is still on (we will see how to set it to off), a histogram of 

CC between reprojection of current model and each aligned image is displayed fur the current 

cycle, and the interactive interface shown in Figure 5.3 appears (it corresponds to the 

terminal output of the subroutine eliminate_images.csh shown in Figure 5.1). 
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As shown on the Figure 5.3, the interface is composed of four parts. The first part sets 

up the parameters used for selection of images to be included in the reconstruction and/or 

eventually to create a new selection file (see option 27). The second is to set up parameters 

about the way helical symmetry is taken into account (or not), and/or additional rotational 

symmetry around Z. The third is related to reconstruction parameters like FSC calculation, 

and the fourth offers various other options as seen in Fig 3. To choose an option or modify 

parameters, one needs to enter the corresponding number (as asked at the bottom part of the 

interface), and questions will then be asked to the user through the terminal. To each option 
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there are one or more related questions. For the sake of space, I cannot detail each of those 

here. Nevertheless, I tried to make the questions as clear as possible to the user. 

When one finishes the setup of parameters (detailed below), one out of three modes 

can be selected : 

-‘NO’, and no other questions will be asked until the next PM cycle at the same 

elimination and parameters setting step. An exception is when one has set the option 23 to 

‘YES’, in which case the user has the choice to come back to the elimination and parameters 

setting step after a reconstruction trial. 

-‘CHECK’ : During the setup of the image selection parameters, one can at any time 

check how many images will be included in the reconstruction, how many images are 

excluded by each selection step and how the CC histogram profile (and CC statistics) will be 

affected by each elimination type. To do this one can type “CHECK” and the mentioned 

information will be displayed on the terminal and plotted in separated windows. 

-‘GO’ if one wishes to keep all parameters as they are, and just iterate the PM cycles 

until the last cycle. This will unset the interactive mode and no more prompting will be done 

unless there is a crash in the procedure (e.g. if zero images are selected for reconstruction by 

the current selection parameters), or if the user stops the mode “GO” by erasing the file called 

“CURRENTMODE” located in the folder where helix_rec.csh is running. In this case, in the 

next image elimination step, the usual user prompting will be done. Alternatively, it is 

possible to force the script to be in mode “GO”, even before reaching the elimination (step 5). 

To do so, put a tcsh file called “thrsinput” containing  all needed variables (a template file for 

“thrsinput” is available) in the current folder: this file will then be sourced at the elimination 

step and no prompting will be done anymore. In this case, if the user wants to quit the mode 

“GO” later in the PM iterations, she/he should remove this file in addition to 

”CURRENTMODE”. 

Before setting up the parameters for image selection, one usually needs to plot the 

information available from the alignment parameters table and check the evolution of PM 

statistics through the iterations. This is done using the option 28 that will open a new interface 

with the different plotting options (see Figure 5.4 for the plotting interface). 
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Image selection parameters 

 

Especially when dealing with helices, many different image selection criteria can be 

added to the basic CC criteria. The selection options that are currently included in the script 

are described below. For each option, default values (as “reasonable” as possible) are shown 

at the first printout of the “menu” as illustrated by Figure 5.3.  Thus, none of the options 

described below are “mandatory fields”. If some parameters were interactively changed (by 

choosing the corresponding option number and by answering the appearing question(s)), the 

menu is reprinted on the terminal with updated values. The last line of the parameters entries, 

beginning with ‘#command’, specifies that one can also type any command using the shell syntax 

starting the line with the character ‘#’ (e.g. ‘#ls’). This command will be executed and its output 

printed on the terminal, and the elimination and parameters setting interface will be reprinted.  

The list of options : 

1 : The maximum in-plane angle deviation allowed, in degrees, either from 0 or 180° if the 

input images are vertical or from the mean in-plane angle of the corresponding filament, if the 

images were not verticalized. To tell the script if the images are verticalized or not, one needs 

to set up option 21 and, if the images are not verticalized, one then needs to give a table with 

the correspondence between images and the mean in-plane angle of the filament (from 

boxing) if this was not given when launching the script helix_rec.csh. A too large deviation of 

in-plane angle is an indication of a wrong alignment of images or a high flexibility of the 

filament. 

2 : This is the maximum out-of-plane angle deviation allowed from 0°. On the right side of 

the text line corresponding to this option some statistics for this parameter is displayed 

(between brackets) : the average value (avg), the minimum and maximum value (min and 

max) and the standard deviation (stddev). This statistics is also displayed for parameters 4, 5 

and 7. This information is useful for detect weird ion of behavior of the alignment, for 

example, when the average (for parameters 2, 4 and 5, out-of-plane, x and y shifts) is far from 

0. To setup a limit for the out-of-plane angle deviation, one needs to plot the distribution of 

images according to the out-of-plane angle. If this distribution shows no clear fall-off towards 

higher out-of-plane angles, with nearly no images attributed to the highest angles, one has to 

stop and analyze. Such a behavior probably means that the chosen maximum out-of-plane 

angle to create the reference projections was not big enough, so the images with bigger out-
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of-plane angle had fallen into the highest out-of-plane subset, and/or that some proportion of 

“bad” particles (wrongly aligned) has fallen in this subset. In any case, one should then set the 

limit to the last angle that manifests a notable fall-off of the distribution of images per out-of-

plane angle. It should also be noted that if a set of images is heterogeneous in pitch, it might 

affect the distribution of out-of-plane angles (images with a lower pitch than the model will 

match projections with higher out-of-plane angles). Therefore, this issue should be clarified 

before the reconstruction step. 

3 : Maximum deviation of out-of-plane angle from the global out-of-plane angle of 

corresponding filament. The global out-of-plane angle is defined as that of the majority of 

segments for each filament. This criteria is important as a big deviation can indicate a wrong 

alignment of an image or a curvature of a particular filament out of the plane (a flexible 

filament). Setting this value to 0 ensures that the selected images will correspond to filaments 

that are straight enough (especially when this selection is coupled to another selection based 

on the in-plane angle, see 1), and that the alignment of these images is consistent within the 

filament orientation (a sign of good alignment). 

4 : Maximum x-shift (perpendicular to helix axis) allowed, in pixels. Again, one should first 

plot (option 24) the x-shift distribution before setting this value. If the distribution shows that 

many images have a x-shift that is at the limit of what was allowed by the alignment 

parameter search range, it may indicate that these images are indeed strongly shifted, or that 

they are badly aligned and thus should be excluded from the reconstruction. Ideally, no 

images should be shifted by the maximum x-shift allowed for the search, as this maximum 

should be set up slightly over the expected maximum. 

5 : Maximum x-shift (perpendicular to helix axis) allowed between successive segments 

from same filament, in pixels. Due to the geometry of helices, successive images on the 

same filament should have very similar shifts perpendicular to the helix axis (x-shifts). If the 

projection matching has found too different successive x-shifts, it can be a sign of wrong x-

shift assignment. However, for curved filaments, or to take in account an imprecise boxing 

(with the axis defined by the center of successive boxes along the filament deviating from the 

true axis of the filament), here one can allow a small difference between x-shifts of successive 

segments. One should also consider that for small distances between the boxed filament 

segments (higher the overlap between boxes), this threshold should be small. 
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6 : Maximum y-shift allowed (parallel to helix axis), in pixels. Big y-shifts values or y-shifts 

at the limit of the search range are, contrary the x-shifts, not an indication of a bad alignment. 

However, allowing too big y-shifts can produce a bias in reference distribution. Indeed, when 

an image shifts in the y direction to match a projection, it matches with an on-axis view that is 

further away from the on-axis view of the unshifted image (because y translations are 

equivalent to on-axis rotations). Given the fact that some on-axis views naturally tend to give 

higher correlation with images (due to interpolations, for example for views at 0° , 90° , etc ; 

or to a slightly asymmetric reconstruction), the images will tend to shift in y direction to 

match with these projections, whereby leading to a bias of the on-axis distribution. However, 

one can choose to not limit the y-shifts but to take care of the on-axis distribution (see 

selection option 11). 

7 : Minimum and maximum CC accepted between images and projections of the current 

model. This is an obvious selection criteria, although one has to keep in mind that the CC 

might also depend on factors like for example the defocus used when acquiring the 

micrograph. To set up these two threshold values, one should look at the histogram of CC that 

is automatically displayed when the script arrives at the step 5, and also have a look at the CC 

as a function of image number (which illustrates the variations among different micrographs, 

telling us for example in which extent the defocus influences the CC in our set of images). It 

can seem surprising to give the possibility to set an upper limit to the CC, but this can be used 

for example when the histogram of CC distribution show two (or more) distinct populations 

among images, to reconstruct separately the low CC population and the high CC population. 

8 : This option is to ensure that every image from the same filament included in the 

reconstruction shows the same polarity (orientation in regard to the filament orientation). As 

the global polarity of each filament is not known in advance, it is defined as the one of the 

majority of the segments for each filament during each alignment. This option should 

naturally not be used in case of apolar filaments. Alternatively, one can see how many images 

would be discarded when this option is set to YES (using the CHECK mode): in the case of a 

high number (close to half of the total number of images), one would have an indication of an 

apolar structure. 

9 : Especially when the translation search range is large, successive overlapping images might 

match with the same projection while being translated by a different y-shift. In that case, I 
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offer here the possibility to keep only one of the successive images with this characteristics. 

Indeed, they would otherwise just  be included twice. 

10 : This option is used to set a maximum number of images per matching reference to keep. 

It was created when no out-of-plane angle was used in the procedure, such as setting a limit of 

number of images matching with each reference was equivalent to limit the number of images 

per on-axis angle (option 11 is now used for this purpose). Thus, it is now somehow obsolete, 

except if one needs for any reason to keep the same amount of images per out-of-plane angle 

for example. 

11 : This option is used to set a maximum number of images to keep per on-axis angle. As we 

saw in the main text, this selection step is particularly crucial to be able to make 

reconstructions without symmetry imposition while avoiding that the model becomes more 

and more asymmetric, with some view angles that are always more populated. In adduition, 

even when using a symmetry search (and imposition) step, a model that is more regular in 

terms of on-axis views distribution will better preserve the symmetry, therefore making the 

symmetry search task easier. To set a threshold value for the number of images to keep per 

on-axis angle, since the distribution of angles is not continuous, I rather ask for a number of 

images to keep per on-axis bin : that means that if, for example, 90 bins are chosen, the 360° 

view space is divided in 90 windows of 4 degrees each. Only the desired number of images is 

then retained for each window: the selection criterion between images in each window is 

simply the CC, as no better obvious criterion was found. To level out the number of images 

per on-axis angle in an optimal way, one should use a number compatible with the angular 

increment used for the on-axis angle variation for projecting the model, by dividing the 360° 

on-axis view space by this increment: this optimal number is the default value for this option. 

It is also asked here if one wishes to set this number of images to keep per on-axis bin “now” 

or after performing all the eliminations according to the other selection criteria. If one choses 

“now”, a histogram showing the distribution of the number of images is displayed (with the 

number of bins in the histogram equal to the number of bins one wishes to consider to 

eliminate images), and one can set a threshold value. However, this distribution will consider 

all the images, and thus can be different from the one obtained after all the other image 

selections, in particular the ones concerning the absolute numbers of images in each bin. To 

overcome this problem, one can ask the script to select the threshold value later: in that case, 

the distribution histogram is displayed after the other eliminations are done, and the 

interactive threshold setting is done using this updated distribution. 
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Symmetry related parameters 

 

 In addition to the selection parameters, one can select different options concerning the 

symmetry (12 to 16), if the default values are not suitable. Again, all the values that will be 

entered here can be changed during the PM cycles if wanted. 

12 : Here one can choose to use or not use the hsearch program (E H Egelman, 2000) to 

search for a pair of refined helical parameters from initial symmetry guess parameters 

(defined in the symdoc file given as input to the script, which can be changed at any time by 

option 15). Differently to what is proposed in the original IHRSR procedure (E. H. Egelman, 

2007), one can use here the program for symmetry search independently from the program 

that imposes the symmetry. This can be useful for example if one wishes to wait until the 

symmetry parameters found by the hsearch program are stable through successive PM 

iterations before applying them, which would help to avoid imposing a symmetry far from 

reality. 

13 : This options specifies if one wishes to impose the helical symmetry on the reconstructed 

3D volume. The symmetry that will be imposed will be read from the symdoc file given as 

input to helix_rec.csh, and eventually updated by the hsearch program. Therefore, one can 

enforce a symmetry in every cycle, e.g. if one has determined it using other means, without 

using the hsearch program at all. 

14 : Up to now, two possibilities to impose the symmetry are proposed. The user can opt to 

run either the himpose program (E H Egelman, 2000) or a script (helimpose.csh) that applies 

the symmetry through averaging of many volumes generated from the input volume by 

rotations and translations as defined by the symmetry. The himpose program is much faster, 

but our experience showed that it can crash in some particular situations (depending of the 

size of the input/output volumes, distribution of density in the initial volume, etc), so that the 

helimpose.csh script can be preferred. I personally could not detect major differences in the 

output volumes generated by both approaches. To impose the symmetry using multiple 

inclusion of each 2D input image as described in (Sachse et al., 2007), I designed individual 

scripts, but more tests and troubleshooting are needed before including this option in the 

presented script. 
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15 : Here the user can enter parameters for search and imposition of the helical symmetry for 

programs hsearch, himpose and helimpose.csh. These include : 

- The increment that is used when searching around the rotation per subunit value (delta phi, 

in degrees) and around the rise per subunit value (delta z,  in Å) in hsearch . One should note 

that the search is made over a range of -10 to +10 times the search increment. 

- The inner and outer radius for the helical search and imposition with hsearch and himpose 

/ helimpose.csh. In general, the inner radius will be 0.0, except for hollow tubes, where it will 

have a value greater than 0. Contrary to the original IHRSR procedure, one can use a different 

value for the search and for the imposition. This allows to perform the search on a part of the 

helix that follows the expected symmetry, for example in the case of a partially decorated 

filament, and to impose the symmetry on the whole structure. 

- The length of the volume to consider for helimpose.csh in pixels. The script helimpose.csh 

can use only a sub-volume of the input reconstruction to calculate all the translated-rotated 

versions to average. The length of this sub-volume (i.e. distance along helical axis) is given 

here. The “speedfactor” parameter specifies that the translated-rotated volumes to average 

will be created using the transformation (speedfactor * axial rise) and (speedfactor * angular 

rotation). Although quicker, using a value greater than 1 here will affect the quality of the 

symmetrized map (the helical symmetry will not be perfectly respected). 

16 : When the structure shows an additional rotational symmetry around the helical axis, it 

can be entered here. The symmetry can be imposed when reconstructing the volume, using 

multiple inclusions of each image and additional 3D symmetrisation, and/or after helical 

symmetry has been imposed on the 3D volume. In the future, the possibility to enter a 

rotational symmetry perpendicular to the helical axis will be added to the script. 

 

Reconstruction/FSC/3D-masking related parameters 

 

 The options 17 to 19 set miscellaneous parameters related to the reconstruction 

process: 

17 : This option is used both to tell the script if one wishes to calculate a Fourier Shell 

Correlation (FSC) curve at the reconstruction step and how the images have to be split to 
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generate the two volumes used for the FSC calculation. Although FSC-based criteria (Harauz 

and van Heel 1986) are widely used to assess resolution of reconstructions (and also very 

widely discussed (Marin van Heel and Schatz 2005)), we do not necessarily need a resolution 

estimation at each cycle of reconstruction, especially during earlier projection matching 

iterations. Furthermore, its calculation significantly slows down the procedure because three 

reconstructions have to be calculated instead of one, thus systematically setting this option to 

YES may be inefficient. Splitting the images for calculating “independent” reconstructions is 

often done by separating the data set into “odd and even numbered” images, or by splitting 

into two halves (first half of the images in one reconstruction, second half in the other). In the 

processing of helical objects, we often use overlapping segments as input images: thus, two 

subsequent images that would be included in the two reconstructions for FSC calculation 

would contain a large part of overlapping data, which means that the two reconstructions will 

be not independent. This in turn would result in a serious overestimation of the resolution (in 

particular due to noise correlation). In our hands, it could lead to almost no crossing of the 0.5 

threshold limit, even at the Nyquist frequency. The “two-halves” splitting method also does 

not seem always right because it may be influenced by the way the micrographs were 

acquired (e.g. using defocus series). Therefore, I give to the user the choice of using a 

different way of splitting the images, adapted to the filamentous nature of the sample (option 

“FIL-BASED”): the images from the same filament are all included in one of the two 

independent reconstructions to ensure that they do not contain overlapping correlated data. 

Because the filament length might be very variable, and because we want to include as many 

images in each reconstruction as possible, we check before adding the images of a new 

filament to one reconstruction’s “image list” which list contains less entries and the images 

are added to the smallest list. Although this filament-based splitting method seems more 

appropriate for the case of helical samples, I still leave to the user the possibility to use an 

“odd an even” splitting scheme or a random image separation. 

 Finally, the user should keep in mind that the FSC criterion is reliable only when truly 

independent reconstructions are calculated, and when the images included in the two 

structures have never “seen” each other. In our current procedure (and in most EM 

publications), this is not true because the particles from both half data sets are aligned to a 

single, overall reference 3D reconstruction that is derived from a previous alignment cycle 

(see (Grigorieff 2000) for discussion on the consequences of this procedure). Although it is 

not yet done routinely by the EM community, one should from the very first PM iteration start 
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with different initial models derived from different set of images, ideally coming from two 

batches of proteins preparation, and refine each structure independently, with different sets of 

images. Only in this case one would be able to speak about independent reconstructions, and a 

FSC calculation between the two refined structures would be truly meaningful. 

18 : I give here the possibility to apply a cylindrical mask to the reconstructed volume. The 

mask can help to erase densities in the middle of the helix (by specifying an inner radius) 

and/or densities at the outside (outer radius and length). To avoid applying sharp edges (= 

strong features) on the reconstruction, I propose to smooth the mask via low-pass filtering (for 

which a value conform to the pixel size is given by default). The aim of the masking is mainly 

to get rid of persistent noise in regions where no density is expected, and/or eventually to get 

rid of densities arising from proteins (or lipids, etc.) in the images which we want to mask out 

for example because they do not follow the helical symmetry. It is usually not necessary to 

use this option with himpose program because it already offers similar constraints (but with a 

sharp-edged mask). 

19 : This option provides the possibility of using different reconstruction algorithms available 

in SPIDER. We now commonly use back-projection using interpolation in Fourier space 

(command BP 3F) but weighted back-projection or various iterative reconstruction algorithms 

would be worth testing. 

 The next options (20 to 28) offer various possibilities to the user: 

20 : This option is used to change any parameters that were set up in the first launching 

instance of the script (see Figure 5.2 and comments above). 

21 :  Reducing the y-translation search range for alignment is crucial for reconstruction 

without symmetry imposition. This prevents images from aligning to references requiring a 

too big translation parallel to helical axis, which in turn can cause clustering of image 

distribution to certain references thus leading to more and more asymmetric 3D 

reconstructions.  Before SPIDER release 19 (I used version 17 during the thesis work), only 

one value was used for both x and y search range. Because x-shifts must always be searched 

over a relatively large range (due to imprecise centering during boxing), I added this option of 

centering filaments to progressively reduce the x-shifts search over PM iterations. This is 

done by giving here the possibility to center the images by applying the x-shifts found in the 

current PM iteration and re-boxing (extracting) the images. To avoid useless and harmful 
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interpolations, the closest integer of each x-shift is actually used. This option works only for 

already verticalized images. To ensure a good centering, one can center the images using the 

alignment parameters obtained from a first model (even a featureless model like a smooth 

helix), and repeat the centering one or more times after the model has been refined. In any 

case, taking care of the distribution of x-shifts is a way to verify that the centering was well 

done. Using this centering a few times, we can reduce the search range for alignment 

parameters to as low as one or two pixels. When this option is used, it is asked for a minimum 

of CC that each image should present before applying the x-shifts to it. Indeed, one could 

consider that images with a very low CC have not found the correct x-shift. It will also be 

asked after shifting if one wishes to change the input images of the script to the shifted ones. 

22 : This is the equivalent of the previous option (16), but adapted to non-verticalized 

images, so that the applied integer shifts to correct the centering are both in x and y 

directions. However there should be no shifts applied in the direction of the helical axis, as 

this would change the initially chosen partial overlap between images and possibly lead to  

100% overlap for some images.  Note that this option is not yet perfectly working, and some 

images are not centered properly. 

23 : As we saw, there are many parameters for selection of images and some other parameters 

for symmetry search and imposition, and thus the number of possible combinations is high, so 

the user might wish to test the effect of different parameters on the reconstructions before 

using one of those for the next round of PM. This is possible by entering YES to this option. 

For each parameter trial, the reconstruction, as well as the FSC curve and the statistics of 

elimination, are kept. When the interactive mode is unset (when ‘GO’ was entered at the 

selection step) this option is not available and set automatically to “NO”. 

24 : At each cycle, once all parameters for image selection and symmetry and 

reconstruction options are set, a file containing the values for all these variables is created 

and placed in the directory of the corresponding PM cycle (named cX/ where X is the cycle 

number). This file is useful to keep a trace of values that were used, but it can also be loaded 

by the script using this option to load the parameters in the current instance of the script. This 

can be convenient for example if one runs a reconstruction from two different set of images in 

parallel but wishes to use strictly the same selection and symmetry parameters: then, for one 

of the runs, one can simply load this file created by the other run. 
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25 : This option allows to load a similar file as described above but containing all the “fixed 

parameters”, which means the ones that were set up when running the script for the first time 

(and which can be eventually changed later using option 20). 

26 : This option is used to tell the script if one works on verticalized or non-verticalized 

images. In the case of working with non-verticalized images, one then needs to enter the name 

of the file that contains the correspondence between images and in-plane angles as recorded 

during the boxing. This information is used to check filament polarity (option 8) and to limit 

the deviation of the in-plane angle (option 1) in respect to the filament. 

27 : Once one is confident enough about the reconstruction, one can decide to reduce the 

number of images taken into account for the next steps of the procedure by creating a new 

“selection file” containing only the best images. This is done by applying a discard scheme on 

the current selection file using all the image selection criteria as set up in options from 1 to 11 

(using current PM alignment). This is a way for example to discard images that are never 

properly aligned vertically (high in-plane angle deviation) or centered. 

28 : This option opens the plotting interface (Figure 5.4). This plotting interface is a part of 

the process that should be easily improved in the future by adding new plotting options. As a 

non-exhaustive list, we have: 

-plot characteristics of selected individual filaments  

-plot in-plane angles as a function of the distance along the filaments (Sachse et al., 2007) for 

individual filaments or groups of filaments to assess the curvature and eventually to associate 

this to a new selection criterion. 

-plot distribution of x-shift differences from one segment to the next 

-for individual filaments or groups of filaments, plot on-axis angle as a function of the 

translation along the filament axis in comparison with the expected one when symmetry is 

imposed. This would highlight problems of deviation from the expected symmetry, or 

wrongly aligned segments. 
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Once the user has finished with plotting, the terminal prompting returns to the 

elimination and parameters setting interface. 

 

Outputs of helix_rec.csh 

Terminal output : 

During the run of helix_rec.csh, the terminal displays the current step of the process, the 

associated relevant parameters used, and in the case of parallelization over multiple CPUS the 

number of terminated jobs over the total number of jobs. Any error message related to wrong 

parameters entries or crash of some part of the procedure will also be displayed. 

Outputs files : 

 

As already mentioned, the script helix_rec.csh uses a numbering system (three-digit number 

that we will call X below) to refer to the projection matching iteration cycle. The basic output 

files of the script are the reconstructions, called rec_nosym_X.spi (before symmetrization) 

and rec_sym_X.spi (after symmetrization). In the case where no symmetrization was 



232 

performed, those volumes are the same. A copy of rec_sym_X.spi in CCP4 format and with a 

correct pixel size is also created. Then, a repertory called c_X is created at each PM cycle and 

it contains: 

-the angles used to calculate  projections 

-the original alignment parameters file (Euler angles, shifts, matching projection) as created 

by SPIDER 

-the same alignment parameters but containing the normalized CC coefficients between the 

input images and the projections used for alignment parameters search. 

-the same file, but filtered according to any selection parameters used during step 5. These 

files are useful to see the effects of the selections on the statistics of the remaining images 

(e.g. in-plane distribution, out-of-plane, etc..). These files can be given as input to 

mega_plot.csh for visualization. 

-if asked so, a file containing the FSC data as given by SPIDER,  as well as a curve in 

postscript format with additional labels like the FSC 0.5 crossing resolution estimate. The two 

reconstructions used for FSC calculation are also stored. 

-the files containing all the parameters and selection thresholds used for current cycle. These 

files can be loaded by another instance of the script using the options 24 or 25 at step 5. 

Additionally, the file containing the threshold values (and symmetry + reconstruction options) 

can be copied in any directory where helix_rec.csh is running and named ‘thrsinput’ to 

automatically switch this particular instance of helix_rec.csh to the non-interactive mode 

‘GO’ by using the given values. 

-a text file containing some statistics extracted from the alignment parameters files before and 

after selection of images. 

Determination of symmetry on 2D projection 

Input arguments and general advices 

 

The new method for automatic determination of helical symmetry parameters based on 

2D projection was largely described in the dedicated chapter. Here I will just show the script 
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that does this in practice and in particular the arguments that are needed. The Figure 5.5 

shows the initial print-out of the script which arguments are described below. 

 

1 : The input projection image in SPIDER format (single file – not a stack). The helix axis 

must be aligned with the Y axis of the image and centered. Note that only an input image with 

an odd number of pixels in x direction can ensure a true centering. 

2 : Self-evident. 

3 : When cutting the input image into successive segments, a window with the given 

dimensions is applied on the image. The length of this window (Y dimension) is particularly 

important as it will define the number of turns included in the reconstruction, as well as the 

possible number of segments that can be cut out from the input image (the bigger this 

dimension, the less segments can be extracted without that the upper and lower edge of the 

window getting out of the input image). 
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4 : Once a reconstruction is calculated, a minimum inner radius and maximum outer radius 

can be imposed using this option. Alternatively, if ‘no’ is given here as argument, no masking 

will be done. Masking is done by multiplying the reconstruction by two binary cylinders with 

the correct dimensions. These values have a great importance as a tight masking produces less 

ambiguous peaks on the average cross-correlation (ACC) (see the corresponding part of the 

manuscript). 

5 : Pixel size in Å. This value should be reasonable in respect to the expected quality of the 

reconstruction as well as to the expected precision of symmetry parameters determination. It 

must be kept in mind that every segment extracted from the input image will suffer 

interpolation due to rotations and to shifts of non-integer pixels and thus a value of at least 3 

times less than the expected resolution of reconstruction should be used. However, a lower 

value can be used to achieve a higher precision of symmetry parameters determination (see 

comments on precision for argument 9). 

6 : Range and step for the number of starts to try. By number of starts I mean the number of 

sub-helices composing the whole assembly which are related by rotational symmetry around 

the helix axis. This additional symmetry is imposed by the multiple use of the extracted 

segments and assignment of proper on-axis angles. Unless one knows in advance that there is 

a particular rotational symmetry in his object, one should first try to determine the helical 

parameters of the one-start helix that is repeated N times in the assembly. Indeed, imposing an 

additional rotational symmetry can increase the ambiguity of parameters determination, in 

particular for the angular rotation between subunits. 

7 : The script accepts as input either range and steps for pitch and number of subunits per turn 

or axial rise (delta z) and angular rotation between subunits (delta phi). The way to express 

the symmetry parameters must be given here by giving ‘pitchssu’ or ‘dzdphi’ as argument. In 

practice, the SPIDER subroutine that runs all the needed steps for each symmetry, uses the 

“axial rise and angular rotation” expression of helical parameters, and thus a conversion will 

be done when using here the ‘pitchssu’ mode. The precision of this conversion is not a 

limiting factor (10-5 range) because  the precision of the shifting operation (command RT SQ) 

made by SPIDER for segmenting the input image is much lower (10-2 range). 

8 : Range and step, in Angstroms for pitch OR axial rise to test (depending on the argument 

given in 7). Due to the precision of the SPIDER shifting operation, using a step for axial rise 
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search (in ‘dzdphi’ mode) lower than 0.01 has no sense, as the test would then just be 

redundant. 

9 : Range and step for number of subunits per turn OR angular rotation (in degrees) to 

test (depending on the argument given in 7). Again, the precision of the angles used by 

SPIDER for reconstructing is in the order of 10-3, therefore one should adapt the search step 

consequently. Evidently the minimal step would thus be 10-3 for angular rotation. For the 

number of subunits per turn, one could theoretically use a smaller step until reaching the 

precision limit of the angles assignment in SPIDER. For example a step of 10-3 can lead to a 

difference of about 0.002° ( 360/12.333 – 360/12.334 = 0.0024). 

One may argue here that there is no sense of choosing a too fine angular and translational 

search grid, as both the input image (raw image or a class-average), and the obtainable 

reconstruction do not usually contain enough information (or resolution) to consider such fine 

details. However, especially when the input image contains a long portion of helix, a small 

difference of assigned rotation angles between subunits or a small difference in translation can 

make a notable difference after many turns. If one considers for example the image of TMV 

shown in Figure 3.6, that contains ~10 turns of helix (~163 subunits), an inaccuracy of only 

0.05° for the angular assignment and 0.05 Å for translations (which is what can be obtained 

when using a step for search of 0.1 for these values) would lead to errors of more than 8 

degrees and 8 Å for the last segments included in the reconstruction. Comparing to the actual 

parameters of the helix ,  ~22° between subunits  and  ~1.4 Å rise per subunit, the errors 

would represent, for these last few segments, respectively 36 % and 570 % ! Moreover, our 

experience showed that the variations of ACC as a function of the helical parameters can be 

quite rapid. The zoom on the ACC plot for the Flagellar hook example (Figure 5.6) shows for 

instance that if one would have chosen a step of 0.1 for the subunit per turn search (that might 

seem reasonable at a first glance), depending on the starting point of course, one may not 

detect the peak of ACC corresponding to the right parameters. 



236 

 

10 : Range and step for out-of-plane to test. This option is not yet implemented (one should 

enter 0,0,1 here). 

 

The ranges and steps chosen as arguments 6, 8, 9 and 10 will determine the total 

number of parameters to test. For each of these arguments the number of different parameters 

N is N(arg)=(last-first)/step, and the total number of combinations is therefore 

N(6)*N(8)*N(9)*N(10). This can easily give rise to huge numbers, so the user should not 

refine all parameters at the same time. A good way to proceed, at least for helices without 

rotational symmetry, is to check first that the rough ACC profile as a function of the pitch 

shows the same maximum, whatever the number of subunits per turn imposed (that is usually 

the case), and then refine the pitch by imposing an arbitrary number of subunits per turn. Then 

one can use the determined pitch to precisely sample the search for the number of subunits per 

turn. 

11 : The spacing factor argument defines the spacing along the helix axis for segmentation of  

the input image. When its value is set to 1, a segment is windowed every ‘axial rise’ pixels 

along the helix axis, thus allowing to extract as much segments as possible from the input 

image. Larger values will lead to a segmentation every ‘spacing factor’*‘axial rise’ pixels, 
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that will reduce the number of total segment and thus decrease the computing time for 

segmentation, reconstruction, re-projection and CC calculation. However this would result in 

a loss of information and as we are already limited by the length of the projection, a value 

other than 1 should be only used for preliminary tests . 

12 : The helix handedness cannot be determined from a projections and the cross correlation 

between projections of two volumes of opposite handedness and the input images are strictly 

equal. Nevertheless the script offers the possibility to create right or left-handed volumes (for 

visualization purposes or usage in other processing steps). In practice, this is done by either 

positively or negatively incrementing the on-axis view of extracted segments. 

13 : Resolution cut-off in Angstroms. A Fourier Gaussian low-pass filter is applied to the 

input image before segmenting (SPIDER command FF). Thus even a non-filtered raw image 

extracted from a micrograph can be analyzed. Filtering attenuates some negative effects of 

interpolation when shifting the input image for segmenting and it makes the available 

resolution more reasonable in respect to what can be expected for the reconstructed volume. 

14 : The mode of parallelization refers to the way the processes are distributed among the 

processors. Using the option ‘no’ will cause all the processes to run on the local node (no 

parallelization) using all its available processors. To take advantage of a computer cluster, the 

script is currently made for using the mosix parallelization system, and the user can either 

define a total number of cpus to use (option ‘cpus’), or choose how many cpus will be used on 

each available node (option ‘node’).  In practice the option ‘node’, for a same number of  cpus 

used, offers much faster calculation times. When parallelization is used, then the total number 

of parameters to test is distributed among the requested number of cpus. Because different 

parameters will result in a very different the number of extracted segments and therefore 

greatly influence the calculation time, I designed a way to distribute the parameters which 

takes this disparity into account, such as the global mean time of calculation for each CPU 

will be similar. 

15 : Output directory 

16 : This option serves to keep extra output files that are not kept by default when 0 is put as 

argument. For each symmetry tested, it can be : stack of segmented images, 3D 

reconstructions, re-projections of reconstructions, and the angles table used for each 

reconstruction. The files that are kept are defined by the number that will be entered here : a 
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binary value corresponds to each optional output, as indicated. This argument contains the 

sum of these values corresponding to all output files one wishes to keep. For example, putting 

here 15 (= 1 + 2 + 4 + 8 = 2^0 + 2^1 + 2^2 + 2^3) would mean to keep all optional outputs . 

17 and over : These are optional arguments that will not be exhaustively detailed here. The 

option --local ensures that every step runs locally. In this case, the reconstruction is done 

using the MPI implementation in SPIDER. Thus, once one has chosen a small subset (or one 

pair) of helical symmetry parameters to analyze its effect on the corresponding reconstruction, 

it will be quicker to run the command locally. The option --filtrec=val will cause the script to 

create an additional version of the reconstruction(s) that are low-pass filtered using the ‘val’ 

cut-off in Angstroms. 

 

Outputs of the script  

 

The main output of the script is the text table containing: 

-the symmetry parameters: number of starts, rise and rotation per subunit, and corresponding 

pitch and number of subunits per turn 

- the average cross correlation (ACC) associated to these parameters 

-the number of images included in the reconstructions 

-the standard deviation of the CCs for each symmetry tested. 

This table gives a second one, sorted by ACC, and a third one which format is compatible 

with the use of the ‘pm3d’ plotting mode in gnuplot (3D plots with colored scale). 

A file containing the arguments used to launch the script is also kept. 

The other optional outputs are listed in the description of option 16 of the script. 
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Determination of helical symmetry parameters on 3D volume 

Method description 

 

Classically, in the IHRSR method, one starts the reconstruction process by assuming a 

starting helical symmetry, and the symmetry parameters are refined over the projection 

matching iterations by applying a least-square fit algorithm (E H Egelman, 2000) on the 

reconstructed non-perfectly symmetric volume using the program hsearch. In most of the 

cases, I could successfully use this program, but for two reasons we were brought to develop 

our own way for helical symmetry determination on a 3D volume that will be briefly 

described here. The first is that for some of our volumes, depending on their dimensions and 

their density distribution, the hsearch program crashed. The second reason is methodological: 

the hsearch program uses initial helical parameters, and also a search step, for its refinement. 

Thus, one has to know relatively precisely the symmetry in advance, that is not necessarily the 

case (e.g. for the VSV N-RNA bullet trunks). In addition, the search step of hsearch can also 

play an important role: sometimes, a solution is just not “seen” by the algorithm. 

As a solution to these issues, we proposed to use an “exhaustive” approach for 

symmetry determination on 3D volumes (Figure 5.7). Given the fact that due to the helical 

symmetry a pair of translation/ rotation along/around the helical axis will bring a volume to an 

equivalent position, one can take the input volume and calculate the CC of this volume with 

itself after translation and rotation (Figure 5.7A) and expect a higher CC when the correct 

transformation is imposed. By testing all rotations between 0 and 360 degrees and a 

reasonable translation range, one can then obtain a map of CC coefficients as a function of 

these two parameters (Figure 5.7B). On this map, one can already have a picture of the 

helical net, follow the helical path, and eventually count the number of subunits per turn. To 

have a more quantitative estimation of the helical parameters, one can then calculate a power 

spectrum of the 3D translational and rotational autocorrelation plot (Figure 5.7C) and 

measure the position of the peaks:  their reciprocal distance (along horizontal or vertical axis) 

to the origin will be directly related to the main repetitive distances that are the rotation 

between subunits and the pitch (I restricted the method to one-start helices). Of course, for 

noisy and far from perfectly symmetric reconstructions (exemplified for VSV reconstruction 

with no symmetry imposition on Figure 5.7D, E, F), the very first two pairs of peaks in the 

power spectrum might not correspond to the right helical parameters, for example due to 
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artifacts like high intensity region in the power spectrum, and we have to consider more pairs 

then the first intense peak. The method gave rise to a simple script (Figure 5.8) which will 

now be described in more details. 
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Input arguments 

 

1 : The input volume in SPIDER format. The helix axis must be aligned with the Z axis and 

the volume should be centered. Again, only an input volume with an odd number of pixels in 

x and y directions can ensure a true centering. 

2 : Mask for CC calculation (SPIDER format, same size as the input volume, it should 

contain voxels of values 0 and 1 only). The cross-correlations between input volume and the 

translated and rotated input volume will be calculated only within the volume defined by the 

mask. Therefore, the size of the mask should take into account the first and the last 

translations to apply to the initial 3D volume for CC calculations and the size of the initial 
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volume. For example, if the input volume is 400 Å in length and one wishes to apply 

translations between -100 Å and + 100 Å, then the mask should be 200 Å in length (this 

corresponds to the overlapping part between all translated volumes and the initial volume). 

3 : Self-evident 

4 : First translation to apply to the volume, in Å. I recommend using a multiple of the pixel 

size, to avoid interpolations when translating the volume, combined to the use of a step for 

translations that is a divisor or a multiple of the pixel size. The first and last translations 

should also take into account the volume length and the mask size (see comments for 

argument 2 ). 

5 : Last translation to apply to the volume, in Å. 

The optimum distance between the first and the last translations to apply should be a multiple 

of the pitch, to have an exact number of repetitions in this direction in the CC image, and thus 

to have less artifacts in the FT such as spreading of peaks in vertical direction (E H Egelman 

and DeRosier 1992). This length (last translation – first rotation), can thus be optimized in 

two steps,  first to get an idea of the pitch and second to be set as a multiple of the pitch (and 

eventually more steps to refine this value if needed). 

6 : Step for translations to be applied to the input volume for CC calculations. Again, using 

divisor/multiple of pixel size is an advantage. 

7 : First rotation to apply to the volume, in degrees. For the determination of parameters to 

work properly, 0° should be given there. 

8 : Last rotation to apply to the volume, in degrees. For the determination of parameter to 

work properly, 360° should be given there. 

9 : Step for rotations to apply to the volume, in degrees. 

10 : Once every translation and rotation is applied to the volume and all cross-correlations 

between the transformed volumes and the initial volume are calculated, the script generates a 

2D image representing the CCs as grey values with the rotations in X and the translations in 

Y. This image is then Fourier transformed and the position of peaks in the FT are calculated 

using SPIDER command BBBB. This command only searches for a given number of peaks 

that should be given here as argument. As the FT is symmetric, the number to put here should 
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be even. The position of peaks in FT is related to the repetitive pattern in the 2D CC image, 

i.e. to the symmetry parameter (repetitions in translations and rotations). For highly 

symmetric 3D volumes, the first peaks are sufficient to determine the symmetry parameters, 

and thus a low value can be used here. In the case of volumes with a less clear symmetry, 

other artifacts leading to high values in FT before the peaks that are related to the symmetry 

can be observed in practice. Therefore the value to enter here should be higher. 

11: Name of output directory. 

12: Number of cpus to use (for parallelization) 

 

Output files : 

 

The script will first calculate all the CCs between translated-rotated volumes and the initial 

volume, transform this information into a 2D image, calculate a power spectrum (PS) and 

extract the position of the maximum of the PS. Then, based on the result, it will calculate 

possible pairs of helical parameters (pitch, number of subunits per turn), print them on the 

terminal and store them in a text file. The 2D image representing all CCs as well as its PS is 

also stored. Sometimes this real 2D image provides even more information about the the 

symmetry parameters than the proposed values. For each pair of parameters, the handedness 

of the corresponding one-start helix is also given. 
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Conclusion and perspectives 

 

In this work, we used single-particle approaches for helical reconstruction and 

obtained low resolution three-dimensional reconstructions of two forms of MeV 

nucleocapsids and of reconstituted bullets of VSV N-RNA. In this section we will summarize 

the results and the main steps that lead to them, give perspectives for their improvements, and 

discuss possible directions of research for the biological questions addressed in the present 

work. Much more detailed perspectives can also be found in the corresponding specific parts 

of the manuscript. 

Image processing of helical specimen 

 

In the image processing part, we have tried to grasp from the literature the most 

relevant methods. We also added our own steps in order to build an effective processing 

pipeline that can be now used in the laboratory by others. This includes the use of particle 

classification based on their real-space and reciprocal-space representation, a novel approach 

for estimation of helical parameters from a 2D projection, and the implementation of a user-

friendly script for helical 3D reconstruction. 

 

2D-Classification 

 

The nucleocapsids of negative strand RNA viruses are generally rather flexible 

helices. In particular, we had to face helical axis bending and pitch variability for MeV non-

digested nucleocapsids, high heterogeneity of diameters of reconstituted VSV bullets, and at 

least two different symmetries for digested MeV nucleocapsids. Two-dimensional 

classification methods are common processing tools to sort out heterogeneity/flexibility issues 

in EM images, and constitute a necessary step before 3D reconstruction. However, for helical 

particles these steps are only very sparsely documented in the literature. Thus, in this 

manuscript, we analyzed and explained in detail how one can use 2D-classification for 

flexible helical specimens, while giving examples of results based on our data. In particular, 

we described possible interpretation of eigenimages from the real-space data to identify the 
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main source of variability within the data sets in order to sort the images in more 

homogeneous populations. 

 In addition to classification of the real-space representation of the images, we 

introduce an original method of classification based on the power-spectra (PS) of the images. 

We show that, for helical specimen, this method enables detection and separation of different 

helical conformations, while getting rid of some of the drawbacks of classification of real-

space representation of images (like the influence of translational and on-axis rotation 

variability). As we show for images of digested MeV nucleocapsids, this method can 

eventually allow to detect small variability of helical parameters that cannot be identified 

based on the real-space class-averages. Furthermore, this classification method produces 

reciprocal space representation of the data with a higher signal to noise ratio in the PS-class-

averages than obtained by just summing up the power-spectra of the entire data set, and 

detects departure from helical symmetry (e.g. one-side stained filaments). As a perspective, 

we can say that the method of PS classification requires deeper insights and further 

improvements. In particular, new strategies must be developed in order to minimize the 

influence of the CTF on the classification outcomes, to improve the in-plane alignment, and to 

give a relatively bigger weight to the higher resolution terms of the data.  

Altogether, the different classification steps allowed us the obtain results for the 3D 

reconstruction that we couldn’t obtain before. Among others, for the two types of Measles 

Virus nucleocapsids, we could obtain convergence of symmetry parameters to relevant 

solutions using IHRSR refinement, which was not the case with the entire unsorted data set. 

For reconstituted VSV bullets, which were completely refractory to IHRSR refinement, the 

sorting upon variable diameter made it finally possible to obtain a reconstruction without any 

symmetry imposition which allowed us to roughly determine the number of subunits per turn. 

As we further specified in the corresponding part of the manuscript, a general remark 

and perspective for the 2D classification step is that it must be better integrated into the global 

reconstruction process, in order to test more systematically the effects of various classification 

strategies on the final reconstruction(s). One promising way to deal with such complexity may 

be the use of databases, where all possible information on each segmented image, each 

corresponding filament, each class of any classification trial, each reconstruction test, would 

be stored. 
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Ab initio helical symmetry parameter determination 

  

 Virtually all currently used methods of helical reconstruction critically rely on the 

precise knowledge of the helical symmetry parameters. These can be obtained by analysis of 

the Fourier transform of images, but this step can be difficult or even impossible, and requires 

a lot of manual intervention. A major part of the thesis was dedicated to description, 

validation, and use of a new method for ab initio determination of helical parameters. This 

method is based on a 2D projection image of a helix: a series of symmetry related views is 

extracted from this image, corresponding orientations are assigned in order to reconstruct a 

3D model, and the “quality” of this model is assessed by calculating cross-correlation (CC) 

between it reprojections and the original image. We have shown using several artificial 

examples and real cases (with known answer) that, in most of the cases, we indeed obtain a 

maximum of CC for the right helical parameters. However, when the parameter search is 

extended over a larger range, we systematically observed (except in cases with several start 

helices) other maxima of CC of a similar magnitude. A deeper look at the ambiguous 

parameters, as well as theoretical considerations, enabled us to give an original point of view 

on the ambiguities in helical parameters determination from a 2D projection, and to propose 

general rules to predict ambiguous solutions, that happened to coincide very well with data 

available from the literature, when failure of helical reconstruction to find a unique solution 

was described.  

 The determined rules appear to be very useful in practice: if one obtains helical 

parameters for an unknown object (e.g. by FT analysis or IHRSR refinement), one would 

directly know which other parameters are also likely to be true, and eventually test them as 

alternatives for structure refinement. To give a concrete example, the reconstruction of RSV 

nucleocapsid made in (Tawar et al. 2009) showed 9.8 subunits per turn, but neither fitted very 

well with the parameters extrapolated from the ring crystal structure (10.35) nor achieved the 

expected resolution. Using our rules, one would know that it is worth trying refining the 

reconstruction around the values of, at least, 10.2 and 11.8 subunits per turn. Another concrete 

example of the utility of knowing those rules, is the interpretation of the results from 

(Schoehn et al. 2004) on digested Measles nucleocapsid reconstruction from cryo-EM images. 

The authors obtained two reconstructions: a first reconstruction with 12.35 subunits per turn 

at 12 Å resolution and a second reconstruction with 11.64 subunits per turn at 25 Å resolution, 

the latter being difficult to interpret. As this second solution is predicted by our “rules”, we 
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now know that it most probably is a result of the intrinsic symmetry parameters ambiguity, 

and do not consider it further for interpretations. 

 We give in the corresponding part of the manuscript many specific ideas of how to 

improve this method and its application, including a better display of the results in order to 

enrich their interpretation, a more systematic application to different class-averages for real 

data sets, developing ways of reducing the ambiguities (e.g. exploiting the sections in the 3D 

Fourier-Transform of the reconstruction which only arises from interpolation from adjacent 

planes), or using other reconstruction algorithm. Another important perspective would be to 

deeper analyze cases where the helical parameter determination failed to find a maximum of 

CC for the true parameters, which are not extensively documented in the present manuscript. 

Understanding why and in which conditions this happens will be an advantage for using this 

method. 

 

Reconstruction 

 

Improving the 3D reconstruction step was not really an objective of this work. The 

main contribution was to build an easy-to-use processing pipeline (see next paragraph) in an 

effort to include most of the known methods, i.e. IHRSR refinement (E H Egelman 2000) and 

extensive validation of alignment parameters (Sachse et al. 2007).  

The only original approach that we used for reconstruction was for reconstituted VSV 

bullets, were we show that it is possible to obtain a reconstruction from which the helical 

parameters can be at least roughly determined, without imposing any symmetry on the 

starting model. This was made possible mostly by carefully restraining to a constant number 

the amount of images per on-axis view included in the reconstruction, in order to avoid 

progressive assymetrisation of the reconstruction through projection matching refinement. 

The perspectives for 3D reconstruction are numerous. First we should incorporate in 

the processing pipeline a symmetrisation based on multiple inclusion of each 2D image 

(Sachse et al. 2007), which we tried, but found out that it required some trouble-shooting 

before including it in the stable version of the reconstruction script. We also proposed that 

“single-particle” approaches should be more tightly coupled to classical FT-based approaches. 

This can be done through the inclusion in the reconstruction pipeline of well-known 
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(Wakabayashi et al. 1975) image/filament selections based on the property of their FT (e.g. 

phase checks), or through the use of Fourier-filtered images for alignment parameters 

refinement, for which we proposed a protocol.  In addition to these perspectives, we would 

like to cite recent publications (Bharat, Davey, et al. 2012; Bharat et al. 2011) that introduce 

new methods combining cryo-Electron Tomography and single-particle approach to solve the 

structure of highly heterogeneous helical specimen. Briefly, for each micrograph acquired for 

single-particle reconstruction, a tilt series of the same area is also recorded and used for 

calculating a tomographic reconstruction. The tomogram is used both to assess the quality of 

the filaments (e.g. flattening and bending), and to determine the symmetry parameters of each 

individual filament. This allows to strictly select the images to process for the single-particle 

reconstruction and provide the necessary helical parameters. Thus, this approach addresses 

major problems that we have described in this manuscript: heterogeneity/flexibility, filaments 

distortions, and facing unknown multiple helical parameters. 

 

Building a user-friendly interface for 3D reconstruction and other steps of 

the processing 

 

One of the aims of this thesis, since the host laboratory had only little experience in 

helical reconstruction at the time of its beginning, was to set up a dedicated pipeline for the 

image processing. Thus, part of the work consisted in writing scripts to use this pipeline in an 

efficient manner by any user in the lab.  The idea is that a user should not have to open or edit 

any script (especially the not-so-friendly scripts using SPIDER syntax) to go through all the 

processing steps, but instead uses a series of commands which are documented so that each 

input argument is clear. Ultimately, I wanted to group most of the processing in a single user-

friendly “master” script which would guide the user from the raw micrographs to the final 

reconstruction.  

This aim was not fully accomplished, but an important part of the processing, the 

iterative projection-matching for 3D reconstruction and accompanying image selection, gave 

rise to a relatively advanced interactive script, which we have described in detail, providing a 

thorough explanation on each parameter and giving recommendation for its use. This includes 

suggesting many options for model projection, alignment parameters search, reconstruction, 
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resolution estimation, data analysis through a plotting interface, and most importantly offering 

different ways of taking (or not) the symmetry into account and different possibilities for 

image selection based on various criteria. This script is also meant to be used in a flexible 

fashion by making it possible to vary parameters between projection matching iterations and 

to test the effect of different combinations of image selection criteria on the quality of the 3D 

reconstruction.  

In addition, the method for ab initio symmetry determination based on 2D projection 

has also been implemented in such a way that it can be easily used, as well as another script 

for symmetry determination on 3D volume based on exhaustive search. We described both 

scripts, providing explanations on the input arguments, and gave advise for their use. 

An extensive use of the designed scripts was done by a post-doc in Dr. Guy Schoehn 

group (Gregory Effantin), both for symmetry determination and for reconstruction steps. 

Structures of ESCRT-III proteins polymers, resulting from these applications were recently 

published (Effantin et al. 2012), and a new article, on a helical bacteriophage tail, is in 

preparation (Gregory Effantin, personal communication). 

 

Measles and VSV nucleocapsids structure 

Orientation of Measles Virus nucleoprotein in the nucleocapsid 

 
 

A remarkable difference between the Rhabdovirus and RSV N-RNA rings is that the 

RNA binds at the inside of the rings for Rhabdoviruses, and the outside of the ring for RSV. 

The internal position of the VSV RNA suggested by the crystal structure was confirmed in the 

virus particle (Ge et al. 2010), where the helical turns with the smallest diameter (at the tip of 

the bullet) have a very similar structure to those of the recombinant N-RNA rings. Here, we 

corroborate the external position of the RNA at the outside of the RSV N-RNA by docking 

the RSV N-RNA crystal structure in our helical reconstruction of measles N-RNA, in its two 

forms (digested and non-digested). 

 This reconstruction also showed that the C-terminal domain of recombinant N points 

towards the inside of the helical coil, which was the second major question that we wanted to 

address. The NTAIL, the extreme C-terminal part of the protein (residues 400-525), presumably 
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natively unfolded (Longhi et al. 2003),  plays a central role in viral replication and 

transcription by providing the site for binding of the polymerase-phosphoprotein complex. 

We could not directly resolve the precise location of this domain by comparing our two maps 

of MeV nucleocapsids (+/- NTAIL), but the global orientation of the subunits already had 

important implications: as the inside of this helix is much too narrow to accommodate the 13 

N-tails per helical turn of the nucleocapsid, this explains why the intact nucleocapsid forms a 

loose coil (and removal of NTAIL result in a tight coil), and predicts that the NTAIL must escape 

the interior of the helix between helical turns (prediction strengthened by unfolding of the 

helix by antibodies directed against a His-tagged NTAIL). 

Subsequently to the MeV publication (Desfosses et al. 2011), an article from a group 

of collaborators (Jensen et al. 2011) reported an in situ structural characterization of NTAIL in 

the context of the entire nucleocapsid based on NMR and SAXS data. They demonstrate that 

NTAIL is highly flexible in intact nucleocapsids and that the phosphoprotein binding site 

(MoRE; residues 485–502) is in transient interaction with NCORE. Together with our docking 

results, they were able to build a model explaining both how the C-terminal part of NCORE can 

be oriented toward the helix interior while maintaining the binding site for the polymerase 

cofactor accessible. In this model, the first 50 disordered amino acids of NTAIL form an 

articulated spacer that allows the MoRE to escape from the interior of the capsid via the 

confined interstitial space between successive turns of the helix (see publication in the annex). 

In this model, the NTAIL is placed in the close vicinity of the RNA, providing a mechanistic 

rationalization of the entire disordered domain of the nucleocapsid. The remaining residues 

(~500-525) are again more mobile. When we added anti-His antibody to the nucleocapsid 

containing a histidine-tagged nucleoprotein at its extreme C-terminus, we observed that most 

of the nucleocapsid could not fold into a usual helical assembly. This suggests that the last 

residues of N probably folds back toward the interior of the nucleocapsid, and are not 

completely facing the solvent. 

 A higher resolution EM structure of both Measles digested and non-digested 

nucleocapsids would eventually make possible to locate the MoRE bound to NCORE, if it has a 

specific binding site. More perspectives on resolution improvement are given in the last 

section of this part. 

 Finally, to bridge the gap between isolated nucleocapsids and the transcription/ 

replication complex, structures of nucleocapsids bound to the N-binding domain of the 
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phosphoprotein P (C-terminal domain) would be very useful (the full phosphoprotein being 

too flexible). During this work, a step toward this goal was done by cloning and expressing 

this domain of P and by performing preliminary binding assays and observations by negative 

staining. We found that the domain effectively binds, and observed an effect on nucleocapsid 

morphology. To go further, first the binding conditions should be optimized (toward a 

stoichiometry of ideally 1 to 1), and then, similarly to what was done for the Measles intact 

nucleocapsid, a screen of observation conditions by negative staining should be done to obtain 

a low-resolution reconstruction. Optimally, cryo-EM on the complex between the 

nucleocapsid and the C-terminal of P should then be attempted. 

 

VSV reconstituted bullet-shape N-RNA 

 

Our discovery that information necessary for packing of viral genetic material into 

helical bullets is contained in the nucleoprotein alone opens up new perspectives for studying 

of nucleocapsids as excitingly versatile nanomachines controlled by pH and ionic strength. 

We now can attempt a thorough step-by-step analysis of the virion assembly mechanism. The 

issue of tip nucleation is still unresolved. Presently we tend to consider the tip-to-trunk 

transition in the light of the quasi equivalence concept originally conceived for icosahedral 

assemblies. This attractive direction needs to be explored both experimentally and 

theoretically and higher-resolution structures are clearly necessary in order to transform the 

current speculations into a reliable model. 

At the present stage, we were unable to induce a notable change in symmetry 

parameters of the helical trunk by adding the matrix protein M. The reason for this behavior 

might lie in the acidic pH necessary for the in vitro bullet folding. Alternatively, it might also 

reside in the way of sample preparation and the resulting sub stoechiometric decoration of the 

bullets by the M protein. We have several ideas of different preparation strategies to improve 

the binding stoechiometry. A co-expression of M and N in insect cells can also be envisioned.  

Finally, one should keep in mind that the virion also contains a non-negligible amount 

of the phosphoprotein P. The exact position of the P-L complex in the viral particle is yet 

unknown and can eventually be addressed by electron tomography. Based on the crystal 

structure of the decameric N-RNA ring decorated by the C-terminal N-binding domain of P, 
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the phosphoprotein binds between loops of the C-terminal domains of two neighbouring N 

protomers (Green and Luo 2009). Thus, a docking of the crystal structure of N into the bullet 

trunk reconstruction of (Ge et al. 2010) would suggest that P is located inside the bullet. One 

can therefore imagine that at the outside the bullet is rigidified by a helical scaffold of M, 

whereas at the inside it is additionally maintained by a network of P. We already started to 

analyze the morphology of VSV N-RNA in the presence of P, and this study needs to be 

pursued. 

Finally, even if the reconstituted VSV bullets are a very useful tool for in vitro 

analysis and reconstitution based on purified components, it would be interesting and 

important to study different in vivo intermediates of virion assembly. This can be addressed 

with the help of mutant VSV viruses devoid of fusogen envelope glycoprotein G (Avinoam et 

al. 2011). 

Toward higher resolution  

 

One major drawback of our structural studies of the nucleocapsids of negative strand 

RNA viruses is the poor resolution of the obtained 3D reconstructions, which limited the 

biological interpretation. For the Measles project, it is not so surprising due to the use of the 

negative staining technique, but there is no such easy justification for VSV. For VSV, one 

main reason might be the strong heterogeneity of the data set which could have probably be 

even more extensively addressed, even although our classifications procedures finally made it 

possible to obtain a reconstruction without symmetry imposition which indicated the rough 

symmetry of the majority of the particles. If the data set had to be reanalyzed, a finer sorting 

of the segments according to their symmetry would be worth trying, even if this would 

significantly lower the number of images included into the final reconstruction. Tests that 

were made a posteriori showed that our method of helical parameter determination could be 

applied to portions of raw images, eventually giving a tool for a finer sorting of images. Other 

recently described methods for selection only of the best preserved tubes and of sorting 

according to symmetry by combining tomography and single-particle approaches should also 

be considered (Bharat, Davey, et al. 2012).  

For Measles, the rigid digested nucleocapsids are certainly a good target for acquiring 

new cryo-EM data sets and trying to apply all possible new standards for image processing to 

improve the reconstruction of (Schoehn et al. 2004). The relatively precise knowledge of the 
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symmetry will also largely help to achieve this goal. In a higher resolution structure, the RNA 

molecule may become visible and thus definitely confirm the docking of the crystal structure 

into the map. If the non-digested nucleocapsids are clearly too flexible to be directly studied 

with cryo-EM (at pH 7.5, 150 mM NaCl), the observation that we made from condition 

screening by negative staining clearly showed that pH and ionic force have an influence on 

the morphology of the nucleocapsid, eventually making them more regular. This shows that a 

screening of condition for cryo-EM image acquisition have a chance to give an improvement 

in the rigidity of nucleocapsids, potentially to a state where a 3D reconstruction can be 

attempted. Together with a higher resolution of the digested nucleocapsid, this may provide 

the information needed for localizing parts of the NTAIL domain like the MoRE and precise the 

model provided by NMR data (Jensen et al. 2011). 

Finally, more effort should be spent on trying to isolate and crystalize Measles N-RNA 

rings, which would then provide crucial missing information to combine with higher 

resolution structures of the helical assemblies. 
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Recombinant measles virus nucleoprotein-RNA (N-RNA) helices were analyzed by negative-stain electron
microscopy. Three-dimensional reconstructions of trypsin-digested and intact nucleocapsids coupled to the
docking of the atomic structure of the respiratory syncytial virus (RSV) N-RNA subunit into the electron
microscopy density map support a model that places the RNA at the exterior of the helix and the disordered
C-terminal domain toward the helix interior, and they suggest the position of the six nucleotides with respect
to the measles N protomer.

The RNA genome of nonsegmented negative-strand RNA
viruses is tightly and regularly encapsidated by the viral nu-
cleoprotein N, providing flexible helical templates for viral
transcription and replication. Upon heterologous expression,
nucleoproteins associate not only with long cellular RNAs to
form helical nucleocapsids undistinguishable from the viral
ones but also with short cellular RNAs that noncovalently close
up into N-RNA rings. In the rings, N-RNA is sterically con-
strained in a biologically inactive form, but the rings have an
advantage of being rigid enough for X-ray crystallography.
Conversely, the helical assemblies are challenging for electron
microscopy (EM) analysis because of their flexibility but are
the biologically relevant ones.

The atomic structures of N-RNA rings of rabies virus and
vesicular stomatitis virus (both rhabdoviruses) (1, 10) reveal
the shielding of RNA between two domains of N in a positively
charged cleft situated inside the rings. Extended N- and C-
terminal domains reach out to neighboring N protomers in
order to stabilize and rigidify the structure. Recently, the struc-
ture of N-RNA rings of respiratory syncytial virus (RSV; a
paramyxovirus) was determined (24). The global architecture
of the nucleoprotein is very similar to that of the rhabdovi-
ruses, although there are 7 ribonucleotides (nt) instead of 9
bound to each N protomer. However, the lateral contacts be-
tween adjacent N subunits of the ring confer to it an opposite

curvature, which results in an outward RNA groove location.
RSV N has an N-terminal exchange domain similar to that of
rhabdovirus N, but the C-terminal domain is slightly different,
as it is not clearly involved in contacts between subsequent N
protomers. Is this inversion of the subunit orientation due
simply to steric constraints in the ring, or does it also take place
in a helical nucleocapsid? Tawar and coworkers modeled an
RSV N-RNA helix but could not directly dock the atomic
structure of RSV N into their helical EM reconstruction (24).

A sequence alignment between RSV N and measles virus N
(MeV N), both paramyxovirus nucleoproteins, is difficult to
interpret because of the lack of amino acid identity. However,
a comparison of the secondary structure elements observed in
the RSV N structure, with a secondary structure prediction for
MeV N (6) (Fig. 1), shows even more similarity than that
between rhabdovirus and RSV N. This comparison also shows
that the �-hairpin projecting from the distal end of the RSV N
protomer (24) is conserved between these two paramyxovirus
nucleoproteins. One important difference lies in the length of
the highly disordered C-terminal domain, the N tail, that is 31
residues long (360 to 391) for RSV N (24) but 126 residues
long (400 to 525) for MeV N (16). A short sequence in the
MeV N tail (residues 489 to 506) folds into a dynamic helical
structure that is stabilized by binding of the viral phosphopro-
tein that carries the viral RNA-dependent RNA polymerase
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† Supplemental material for this article may be found at http://jvi
.asm.org/.

� Published ahead of print on 24 November 2010.

FIG. 1. Predicted secondary structure of MeV N compared to secondary structure elements in the atomic structure of RSV N. �-Helices are
represented as red boxes, �-strands as blue arrows.
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(12, 13, 16). The N tail is also involved in binding host proteins,
such as hsp70 (5, 26) and interferon regulatory factor 3 (14,
15). So far, the location of the N tail on the helix is not known,
although it is usually shown on the outside in cartoons that
illustrate transcription and replication of paramyxoviruses (see
Fig. 9 in reference 3). The helical model derived from the
recombinant N-RNA ring structure of RSV, however, would
place the N tail toward the helix interior, which would have
consequences for the contacts between subsequent helical
turns.

The helical structure of the intact measles virus N-RNA
under cryoelectron microscopy (cryo-EM) conditions is

highly flexible and difficult to determine by Fourier-Bessel
image analysis or even by single-particle-based approaches
(2, 21). However, once the N tail is removed by proteolysis,
the structure becomes more regular and rigid and thus ame-
nable to helical reconstruction by cryo-EM (21). Here, we
show that the nondigested nucleocapsid structure can be
addressed in negative-stain electron microscopy by trapping
the sample between two layers of carbon film and by using
NanoW stain (from Nanoprobes) instead of the more tra-
ditional uranyl acetate (Fig. 2). This preparation technique
enables to image intact measles virus nucleocapsids as well
as their trypsin-digested counterparts and has the advantage

FIG. 2. Fields of view of negatively stained MeV nucleocapsids. (A) Intact nucleocapsids with 2% uranyl acetate and a single carbon layer. (B
and C) Intact (B) or digested (C) nucleocapsids with NanoW in a double carbon layer and a representative class average of power spectra.
(D) Recombinant C-terminally His-tagged nucleocapsids bound to anti-His-tagged antibody.

FIG. 3. Three-dimensional reconstructions of MeV nucleocapsids. (A and D) Digested nucleocapsid, (B and E) intact nucleocapsid,
(F) cryo-EM reconstruction of digested MeV N (21). The fit of the RSV N-RNA atomic structure is shown as an overlay. The N-terminal �-hairpin
fits nicely into the density (arrow). The RNA is shown as a red ribbon. (C) Docking precision for panel A. Shown is the correlation upon rotation
of the monomer (see the supplemental material).
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of maintaining the helix in a more rigid state. For this
analysis, recombinant MeV N was produced, and a fraction
of it was trypsinated as described previously (21) and im-
aged with a transmission electron microscope. Overlapping

segments of the visually most rigid helices were selected
with Boxer (17), contrast transfer function (CTF) corrected
with CTFFIND3 (18) and Bsoft (11), and aligned and clas-
sified with Imagic (25). An additional classification of power

FIG. 4. RNA binding to MeV N based on RSV N-protomer fitting and energy minimization for solvent-exposed bases. Protein-oriented bases
are in green, solvent-oriented bases are in blue, and the backbone is in light blue. (A) Enlarged view of RNA binding. (B) Schematic diagram for
a comparison of RNA interaction with MeV N and RSV N. The numbering is as in reference 24. The gray nucleotides are on the neighboring N
protomers. (C) Top view of the helical fit.

VOL. 85, 2011 NOTES 1393

255



spectra of individual image frames and a sorting based on
artificial smooth helical volumes improved the homogeneity
of different subsets separated according to diameter and
helical parameters. The major subsets were used for angular
assignment and three-dimensional (3D) reconstruction in an
iterative projection-matching procedure similar to that for
IHRSR (7, 8) with the SPIDER package (9, 22), starting
from a smooth helix of a chosen pitch as the initial model
(for details, see the supplemental material).

Final three-dimensional reconstructions of trypsin-di-
gested and intact measles nucleocapsids at a resolution of 25
Å are shown in Fig. 3. Removal of the N tail leads to a
compaction of the helix, with the pitch shortening from 57.2
Å to 48.7 Å and a diameter constriction from 200 Å to 190
Å, in line with the previous cryo-negative-stain EM work
(2). The number of subunits per turn in the digested nu-
cleocapsid was found to be 12.33, the same as that previ-
ously obtained for such species under cryo-EM conditions
by Fourier-Bessel analysis of the most regular helix coupled
to IHRSR (21). Thus, in this case, the double-carbon layer
negative-stain microscopy and the NanoW stain seem to
maintain the helical structure without modifying the helical
parameters. The intact nucleocapsid helix accommodates a
nearly integer number of 12.92 subunits per turn, which
agrees with the 5% increase in diameter. The overall shape
of the nucleoprotein subunit is nevertheless very similar in
both reconstructions, corroborating previous arguments in
favor of the intrinsic N-tail disorder (2, 16).

Given the predicted structural similarity between RSV and
MeV N, the atomic model of the RSV nucleoprotein monomer
(Protein Data Bank [PDB]accession number 2WJ8) was used
for fitting into the obtained 3D volumes with VEDA (http:
//mem.ibs.fr/VEDA), a new graphical version of URO (19)
(Fig. 3). For fitting, MeV nucleoprotein helices were consid-
ered to be left-handed based on previously published metal
shadowing results (21), and a modified PDB file of the RSV N
protomer with only 5 nt corresponding to nt 2 to 6 was used,
given that MeV N-RNA contains 6 nt per N protomer (4, 23)
and not 7. Interestingly, without any constraints imposed dur-
ing fitting, the fit ensures the continuity of RNA bound to
measles virus N. Atomic coordinates of two RNA segments
bound to consecutive subunits were extracted from the thus-
obtained MeV nucleocapsid model, an additional ribonucle-
otide (corresponding to number 7 in Fig. 1D in reference 24)
was inserted, and energy minimization was performed with
VEGA software (20) to obtain a continuous, physically realis-
tic RNA molecule. Since bases 2, 3, and 4 bind in a cavity on
the RSV-N protein, their coordinates were kept fixed, while
those of the solvent-facing ribonucleotides, 5, 6, and 1, were
optimized. Figure 4 illustrates the possibility of easily con-
structing a 6-nt RNA with three bases facing the protein, as in
the RSV N-RNA rings, and three bases stacked and pointing
away from the protein into the solvent.

This fit of the atomic structure of RSV N into the negative-
stain EM reconstructions is also consistent with the previously
published cryo-EM structure of the digested MeV nucleocap-
sid (21) (Fig. 3F) and the RNA position predicted therein by
cis-platinum RNA labeling. It suggests that the RNA is indeed
localized at the exterior face of the helix, as in the RSV N-
RNA rings, and not as in rhabdoviral N-RNA rings. Although

the disordered C-terminal domain could not be resolved in the
reconstruction of the intact nucleocapsid, the fit suggests that
this crucial domain would point toward the helix interior. In
addition, binding of anti-His-tagged antibody to C-terminally
His-tagged nucleocapsids prevents correct helix formation
(Fig. 2D) (see the supplemental material), indicating that the
N tail domain may come out at a site where it interferes with
contacts between two subsequent turns of the N-RNA helix,
contributing to its flexibility.

We thank Francine Gérard and Euripedes Ribeiro de Almeida from
the group of Marc Jamin (UVHCI) for help with initial production of
MeV N and Guy Schoehn from UVHCI-IBS for discussions and ad-
vice.

A.D. was financed by a Ph.D. fellowship from the Rhône-Alpes region.
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Supplementary electron microscopy and image analysis methods  

 
Negative stain electron microscopy 
For preparation of negatively stained grids, the sample was applied to the clean side of a thin 
carbon film on the carbon-mica interface and stained either with 2 % (w/v) uranyl acetate or 
with 2% NanoW stain (Nanoprobes). For the preparation of double layer carbon grids, a 
carbon film with the absorbed sample was floated on a drop of NanoW. A 400-mesh copper 
grid was put on top of the floating carbon film and the whole was turned upside down and 
used to catch a second layer of carbon film floating on another drop of NanoW. Thus the 
sample was entirely and uniformly stained and trapped between two thin layers of carbon. The 
grids were observed under low-dose conditions with a JEOL 1200 EX II transmission electron 
microscope with a tungsten filament at 100 kV.  Images were recorded on Kodak SO-163 
films at a nominal magnification of 40,000 times. Selected negatives were then digitised on a 
Zeiss scanner (Photoscan TD) at a step size of 7 micrometer giving a pixel size of 1.75 Å at 
the specimen level.  
 

Image processing software 
Image processing was carried out in an integrated approach, combining different software 
packages for different steps in the analysis procedure. In particular, the EMAN software 
package (6) was used for particle selection; CTFFIND (7) for contrast transfer function 
determination, BSOFT (5) for the CTF correction; Imagic (15) for multivariate statistical 
analysis, classification and multireference alignment steps; Spider (4, 13) for projection 
matching and 3D reconstruction; the hsearch and himpose programs from the IHRSR package 
(2, 3) for symmetry search and imposition; URO (Navaza et al, 2002) and VEDA 
(http://mem.ibs.fr/VEDA) for crystal structure fitting; VEGA for RNA modelling (9); Pymol 
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(http://www.pymol.org/) and Chimera (10) for visualisation. 
 
Image preprocessing 
Micrographs were selected based on concentration, length and apparent rigidity of measles 
virus nucleocapsids present and on the CTF quality and parameters determined for each 
micrograph by CTFFIND3. Extremities of filaments were selected with the helix option of the 
EMAN Boxer tool, while paying attention to avoid picking too flexible and/or discontinuous 
segments. Originally, 400*400 pixel overlapping segments were extracted every 6 pixels 
along the filament axis. On the whole, 25244 segments of 1798 filaments of the intact 
nucleocapsids and 73794 images of 1461 filaments of the digested nucleocapsids were 
selected. These individual images were corrected for CTF by phase-flipping with the bctf 
program from BSOFT, and then each helical segment was verticalised using the in-plane 
rotation angle calculated from the coordinates of filament extremities, clipped into 200*200 
pixel images to remove empty areas caused by verticalisation, normalised and band-pass 
filtered (low frequency cutoff = 350 Å ; high frequency cutoff = 16 Å). A version of binned 
images (final size 35nm*35nm) was generated for the reconstruction steps. 
 
Classification of helical segments 
The 200*200 pixel images were iteratively aligned and classified in the IMAGIC software 
package as typically done for single particles and as described for example in (11). This 
permitted removal of slightly curved and discontinuous segments and to initially separate 
images into subsets of different diameter, pitch, out of plane tilt and azimuthal angle. 
 
Classification of power spectra 
The 200*200 pixel images were padded into 800*800 pixel images for the calculation of  the 
raw power spectra (PS), from which a 200*200 pixel clipped version (corresponding to 
frequencies up to 1/14 Å-1) was created for multivariate statistical analysis (MSA) and  
classification in the IMAGIC software package. Class-averages of power spectra showed 
increased signal of helical diffraction. These class-averages were rotationally averaged, and 
each raw PS was divided by rotationally-averaged version of the corresponding class-average 
to amplify the weak features at higher resolution. These modified raw PS were then 
rotationally aligned against the class-averages and the procedure of MSA and classification 
was reiterated. The mask used for MSA was first a simple filled circle, and after one cycle of 
classification, a more complex mask was created around areas containing diffraction peaks, in 
order to force the classification to reflect the precise position of the peaks and not the position 
of the Thon rings of the CTF. This classification step enabled separation of the data set into 
more homogeneous subsets of segments of different helical symmetry. Only classes clearly 
showing the second layer line were taken for further analysis. 
 
Sorting according to pitch 
A set of smooth helices with a fixed diameter corresponding to the one measured on class-
averages of individual helical segments and with different pitches was created for both 
digested nucleocapsids (explored pitch range between 44 and 54 Å to conform with the total 
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sum of power spectra) and for native ones (explored pitch range between 54 and 72 Å). 
Reference projections were made from each model and used in a projection matching 
procedure with Spider to assign each raw image to a pitch class. This enabled to further refine 
the subsets provided by classifications of helical segments and their power spectra. The major 
subsets (pitches of 47 and 48 Å for the digested and of 56 to 62 Å for the native nucleocapsid) 
were used for angular assignment and 3D reconstruction. Each pitch subset (two subsets for 
digested and three subsets for the intact nucleocapsid) was treated independently up to the 
final reconstruction.  
 
3D Reconstruction 
Either the entire image set or subsets of images derived from the various classification 
procedures described above, where used in an iterative projection matching procedure similar 
to IHRSR, starting from a smooth helix of chosen pitch as initial model. At each projection 
matching cycle, the aligned images were selected according to correlation, in-plane rotation 
and shift. Moreover, only helical segments of the same polarity as the one of the original 
filament were included in the reconstruction. The reconstructed volumes were filtered to 16 Å 
before every new projection matching cycle.  
The initial guesses for the number of subunits per turn were either used as variables to study 
the convergence of IHRSR procedure, or assessed by ab initio symmetry estimation based on 
corresponding class averages. In the second case, less iterations were needed to achieve 
convergence. Briefly, a set of 3D volumes was created for each representative class average 
by applying different helical parameters (i.e. shifts and rotations) followed by back projection. 
The helical parameters used to create the volume which reprojection correlated best with the 
original class average, were chosen as an initial estimate for IHRSR. For the digested 
nucleocapsid, helical parameters of 12.33 subunits per turn and a pitch of 48.7 Å could be 
unambiguously determined. For the native nucleocapsid, two solutions of 12.92 subunits per 
turn and 57.2 Å axial rise or 10.95 subunits per turn and 56.6 Å axial rise appeared possible 
and projections of the two obtained reconstructions were indistinguishable at our level of 
resolution. However, the shape of the subunit in the 10.95 subunits per turn reconstruction and 
the inter-subunit contacts were very different from those obtained for the digested 
nucleocapsid and from all previously described analysis of measles virus N (1, 12) and of 
RSV N (14). Thus, these helical parameters were rejected as an erroneous solution. Each pitch 
class gave similar number of subunits per turn. The reconstructions shown correspond to the 
most populated class. On the whole, 6305 segments were included in the final reconstruction 
of the native nucleocapsid, and 11309 segments were included into the reconstruction of the 
digested state. The resolution of the reconstructions was estimated by splitting the data into 
two independent sets (all segments of the same filament were included in the same 
reconstruction to be sure that the two data sets were indeed independent and that no bias was 
introduced by overlapping data) and calculating two reconstructions with which the Fourier 
Shell Correlation was calculated as a function of resolution. The conservative FSC=0.5 
criterion was used to estimate the resolution, which was found to be around 25 Å for both 
reconstructions. 
 
 
Docking of the atomic model of RSV nucleoprotein N into the electron density maps 
The atomic model of the RSV nucleoprotein monomer was extracted from the published Xray 
crystal structure of the RSV-N decameric ring (pdb id 2wj8). The residues 2 to 35 and 361 to 
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375, as well as ribonucleotides 1 and 7, were removed prior to docking into the EM densities. 
We used VEDA (http://mem.ibs.fr/VEDA), the graphical version of URO (8), to fit the atomic 
model while taking symmetry into account. The resolution used during the fit was limited to 
25 Å. The atomic model of RSV N was placed at eight different initial positions (with the 
RNA facing the inside or the outside of the helix, the C-terminal domain of N pointing 
inwards or outwards, the N subunit tilted to the left or to the right), and final positions with 
optimized correlations between the EM density map and the atomic model were calculated. 
To get a better insight into the docking precision, the variation of the correlation upon rotation 
of the best fit (RNA at the exterior, C-terminal domain of N pointing inwards and the outer tip 
of the N-protomer tilted to the left) around its principal axes of inertia is plotted in Figure 3C. 
The best fit with a correlation of 80.2 % at 25 Å resolution corresponds to the RNA 
localisation towards the exterior of the helix and the disordered C-terminal tail oriented 
towards the helix interior. As a control, the previously published 12 A cryoEM structure of 
digested MeV nucleocapsids (12) was subjected to the same fitting procedure (Figure 3F). 
Based on the continuity of RNA and on the interprotomer contacts, this fit proved itself to be 
the best model at 12 Å resolution as well. Thus, the same fit of the RSV N-RNA atomic 
structure is valid both for negative stain and cryoEM reconstructions.  
 
Supplementary methods of expression and purification of recombinant measles virus N–
RNA and NH6-RNA 
 
Full-length measles virus N, Halle strain was expressed in Sf21 insect cells and purified as 
described (12). In addition, for the purpose of C-terminal localisation, the same N was cloned 
into a pet22b vector (from Novagen) with or without an added hexahistidine tag fused at the 
C-terminus. These constructs are referred to as pet22b/NH6 and pet22b/N. The sequence of the 
coding region was checked by sequencing (MWG). BL21(DE3)RIL E. coli strain was 
transformed with pet22b/NH6 or pet22b/N and grown overnight to saturation in LB medium 
containing 100 µg/ml ampicillin and 34 µg/ml chloramphenicol. An aliquot of the overnight 
culture was diluted 1/100 in LB medium and grown at 37°C. At OD600 of 0.6, isopropyl β-D-
thiogalactopyranoside was added to a final concentration of 0.1mM, and the cells were grown 
at 37°C for 3h. The induced cells were harvested, and collected by centrifugation. The 
resulting pellets were resuspended in 150 mM NaCl, 20 mM Tris–HCl (pH 7.5) in the 
presence of the protease inhibitor cocktail completee-EDTA free (from Roche) and sonicated. 
N-RNA was further purified as the one from insect cells. Trypsin treatment of recombinant 
measles virus N–RNA was done as described (12).  
 
Supplementary results of interaction of antiH6 antibody with NH6-RNA 

 
Based on the position of the C-terminus of RSV N in the fit, the C-terminal domain of MeV 
nucleoprotein would point towards the interior of the helix. However, a possibility remains 
that the flexible linker could extend the C-terminal domain to the exterior of the helix. A 
complementary argument for the internal location is provided by engineering a full-length 
measles virus N with a hexa-histidine tag fused at the extreme C-terminus. Expressed in E. 
coli, this construct was incubated with an anti polyhistine-tag antibody and centrifuged 
through a glycerol cushion to eliminate unbound antibody. More precisely, an excess of anti 
polyhistine-tag antibody (from Sigma) was added to purified NH6-RNA (and to non tagged N-
RNA purified from E. Coli for control). This mixture was deposited on top of a 450 µl 30% 
(v/v) glycerol cushion and centrifuged for one hour at 45,000 rpm and 4 °C in an SW55 rotor 
(Beckman; 192,000g). The pellet was resuspended in 200 ml of buffer and the remaining 
glycerol dialysed away in 150 mM NaCl, 20 mM Tris–HCl (pH 7.5). The presence of 
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antibody and nucleoprotein in the supernatants and pellets was checked by SDS-PAGE. The 
dialysed re-suspended pellets were used for negative staining. 
Whereas typical helical nucleocapsids could be observed in the tagged preparation prior to 
antibody binding as well as in the non tagged control, the antibody bound C-terminally tagged 
nucleocapsids gave rise to clearly distorted aggregates (Figure 2D), reinforcing the proposal 
that the N-tail is indeed located towards the helix interior. Its interaction with the antibody 
prevents correct helix formation. 
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Online abstract: 

The typical bullet shape of Rhabdoviruses is thought to rely on the matrix protein stabilising the 

nucleocapsid coil. We reconstitute the bullet shaped nucleocapsids of Vesicular Stomatitis Virus in 

vitro, analyse their nucleation and growth, and provide cryoEM reconstructions of the bullet tip and 

the helical trunk. These findings bridge the gap between the isolated N-RNA in form of an undulating 

ribbon, and the tight bullet shaped virion skeleton. 

 

Vesicular Stomatitis Virus (VSV), a Mononegavirales and the prototype Rhabdovirus, 

encloses a bullet-shaped skeleton made up of a helical trunk topped by a conical tip. The skeleton 

contains a nucleocapsid template for viral replication and transcription formed by the negative-strand 

viral RNA coated with nucleoprotein N. Cryo-electron microscopy (cryoEM) analysis of the entire 

virion recently culminated in a 10 Å 3D resolution reconstruction of the skeleton trunk where the viral 

matrix protein M bridges the consecutive turns of the N-RNA helix1. Here we analyze the 

polymorphism of purified viral and recombinant N-RNA (Fig. 1, Supplementary Figs. 1 and 2), show 

that it can fold into flexible bullet-shaped structures in the absence of other viral components and 

provide cryoEM 3D reconstructions of both the tip and the trunk (Fig. 1, Supplementary Methods and 

Supplementary Figs. 3, 4 and 5 ). 

 At neutral pH, purified N-RNA forms an undulating ribbon at 150 mM NaCl (Fig. 1a) but 

auto-assembles into a unidirectional necklace of conical tips at low ionic strength (Fig. 1b, c). The tip 

reconstruction suggests that tip nucleation may start with a ten subunit-turn compatible with the 

crystallized recombinant N-RNA decameric rings2. The tip features ~5 turns (Fig. 1e) with the 

diameter of the cone's base reaching ~390 Å. These measures of the in vitro reconstituted N-RNA tips 

agree with the 450 Å outer diameter of the virion N-RNA trunk proposed to be achieved after ~7 turns 

based on the 2D class averages1. 

 Protonation of N at pH 5 and at low ionic strength allows the conical tips to progress into full 

bullets morphologically similar to the viral skeletons (Fig. 1g, h). The distribution of trunk diameters 

illustrates their flexibility and ranges from 370 to 415 Å while centered at ~390 Å consistent with the 
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five-turn tips (Supplementary Fig. 4). A ~25 Å resolution 3D reconstruction of this diameter set (Fig. 

1f) contains about 33 N subunits per turn in agreement with estimations based on observed top views 

(Fig. 1d) and on the dihedral angle between N subunits in the virion bullet1 (Supplementary Methods). 

The polymorphism of the VSV nucleocapsid, and in particular the ribbon-to-tip and the tip-to-

trunk transitions can be considered in the light of the quasi-equivalence concept conceived for capsid 

proteins of icosahedral viruses3  and expanded to helical arrangements4. Quasi-equivalent subunit 

assembly is thought be based on molecular switches that include environment sensitive elements and 

are often comprised of disordered segments at subunit interfaces5. Here we highlight the role of 

electrostatic interactions in both tip nucleation at neutral pH and in tip-to-trunk transition, probably 

triggered by neutralization of carboxyl clusters at low pH. 

The proper assembly of icosahedral capsids with large T numbers and of the Mononegavirales 

nucleocapsids involves auxiliary proteins. The N-RNA of Ebola virus from the filovirus family of 

Mononegavirales requires the matrix protein for condensation into a flexible helix, further stabilized 

by additional viral proteins6. As for the bullet trunk of the VSV virion, its is actually composed of two 

nested helices: an inner N-RNA helix and an outer M-protein helix supposed to confer the bullet shape 

architecture to the nucleocapsid core1,7,8. Here we show that isolated nucleocapsids can adopt a bullet-

shaped structure solely under the effect of pH and ionic strength, and rule out the requirement of other 

viral components. However, the conformational variability and/or flexibility of the reconstituted 

nucleocapsids, in particular in terms of their diameter and exact helical symmetry (Supplementary Fig. 

4), indicates that the role of an outer scaffold of M in the virion skeleton might be to rigidify the 

nucleocapsid fixing it precisely at 37.5 subunits per turn as observed in the cryoEM reconstruction1. 

Partial decoration of nucleocapsids by M at pH 5 tightened the N-RNA diameter distribution without 

modifying the global subunit arrangement (Supplementary Methods and Supplementary Figs. 4 and 

5). The 14-GKKSKK-19 residues of M9 may play a cementing role at neutral but not at low pH where 

the negative charges of N are already neutralized and N-RNA forms bullets on its own. Our study 

demonstrates that the information necessary for packaging of the VSV genetic material into bullets is 

contained in the nucleoprotein alone thus providing a tool for step-by-step analysis of the virion 

assembly. 
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Fig. 1. VSV N-RNA polymorphism. a. Loosely coiled N-RNA ribbons (negative stain). b. Strings of 

tips (negative stain). c. Strings of tips (cryoEM). d. Representative class averages of tips (from c) and 

helical trunks (from h, top view of a ~33 subunit/turn bullet and side view). e. 3D CryoEM 

reconstruction of conical tips (blue) with N subunits (red) placed based on the crystal structure of the 

VSV N-RNA ring deformed to account for the change in tip radius and subunit inclination. f. 3D 

CryoEM reconstruction of the ~33 subunit/turn helical trunk. g, h. N-RNA bullets (cryoEM). 
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Supplementary Materials: 

Supplementary Methods 

Supplementary Figures 1, 2, 3, 4, 5 
References (10-27)  

 

Supplementary Methods 

 

Biochemical Sample Preparation 

N-RNA purification from virus infected cells 

VSV nucleocapsids were isolated from virus infected cells. Cells were harvested 3 days post-infection 

and collected in 2 ml of hypotonic buffer (50 mM NaCl, 10 mM Tris-HCl pH 7.4, 1 mM EDTA). The 

cells were lysed and the supernatant was loaded onto a 20-40% CsCl gradient in 150 mM NaCl, 20 
mM Tris-HCl pH 7.5 (buffer A) and centrifuged for 16 h at 30000 r.p.m. at 4 °C in an SW41 rotor. 

Nucleocapsids were recovered by puncturing the tube at the level of the visible band and were 

dialyzed against the same buffer without the CsCl. These purified nucleocapsids contained less than 
0.001 % of M compared to the M:N ratio in purified virus as determined by Western blot analysis.  

Recombinant N-RNA production in insect cells  

cDNA of VSV-N protein of the Indiana laboratory strain (Orsay) originally cloned in a pBluescript II 
vector10, was amplified by PCR and introduced into the pFastBac HTB plasmid, using RsrII and XhoI 

restriction sites. The Bac-to-Bac baculovirus (AcMNPV) expression system (Invitrogen) was used to 

generate recombinant virus. For protein production, Spodoptera Frugiperda Sf 21cells were grown in 
suspension in SF-900 serum free medium (Gibco BRL) to 0.5 x 106 cells/mL and then infected with 

AcMNPV encoding VSV N protein with a ratio of 1% (volume of virus / volume of cell culture). 

Protein expression was monitored using the fluorescent marker eYFP, co-integrated in the virus with 
the gene of the protein11. When the specific signal of eYFP reached a plateau 4-5 days after infection, 

cells were harvested by pelleting at 800g for 10 min and then suspended in buffer A (10 mL/L of cell 

culture) containing completeTM protease inhibitor cocktail tablets (Roche) and DNAse I (Sigma). Cells 
were disrupted by three cycles of freezing in liquid nitrogen and thawing at 37°C. Debris was 

removed by centrifugation for 20 min at 16000 g, 4 °C and the supernatant was layered onto a 

continuous CsCl gradient as described above. The N-RNA was then dialyzed in buffer A, layered onto 
a 15% glycerol cushion (v/v in buffer A) and centrifuged as described for the CsCl gradient above. 

The capsid in the pellet was resuspended in buffer A and stored at 4°C. Protein concentrations were 

measured by absorbance spectroscopy using the Bio-Rad Bradford assay. 
Formation of N-RNA bullets 

Immediately before EM analysis, N-RNA samples were extensively dialyzed against MilliQ water at 

room temperature. The sample was centrifuged at 16,000 g for 1 min at room temperature and the 
quality of the preparation in the supernatant was checked by SDS-PAGE. The pH of the preparation 

was then adjusted to 5 or to 7.5 by adding NaAc or Tris-HCl buffer respectively up to 5 mM final 

buffer concentration. The ribbon-bullet rearrangement relies neither on minor viral contaminants nor 
on the viral RNA but on the nucleoprotein alone, because it takes place no matter if the N-RNA is 

purified from virus or if the nucleoprotein is expressed in insect cells (Supplementary Fig. 1) where it 

binds cellular RNA12.   
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Interaction of N-RNA with M and M-N-RNA bullet preparation for EM 

VSV M was purified from virus by solubilisation with CHAPS as described13. Before the interaction 

studies with N-RNA, M protein was subjected to a dialysis against MilliQ water, then centrifuged at 
80,000 g for 20 min in an Airfuge ultracentrifuge (Beckman Coulter) equipped with a A100/18 rotor 

in order to remove nucleation sites for self polymerization. We first tested if M could bind to N-RNA 

at both pH 5 and 7 at low salt. For this, N-RNA in 5 mM NaAc pH 5 or 5 mM Tris-HCl pH 7 was 
incubated with M at 20°C during 10 min. The final N-RNA concentration was 5 μM. M was added to 
N-RNA in a 1:3 M:N-RNA molar ratio. The mixtures (20 μL) were loaded on top of a 15% (v/v) 
glycerol cushion of 400 μL in the buffer of the binding conditions and centrifuged at 25,000 rpm for 
2h at 20°C (SW55Ti rotor using Ultra Clear tubes of 0.8 mL). After centrifugation, 20 μL of sample 

from the top of the glycerol cushion were recovered and the pellet was suspended in 5 μL SDS-PAGE 

sample buffer. 10 μL of each sample was loaded on a 12% SDS-PAGE and proteins were detected by 
silver staining. Free N-RNA pelleted through the cushion whereas free M remained at the top. At both 

pH values M was found in the pellet when mixed with N-RNA (Supplementary Fig. 2). For the EM 

analysis of the interaction of N-RNA bullets with M, water-dialysed  N-RNA and water-dialysed M 
were mixed at a 1:1 ratio and the pH adjusted to 5 with NaAc buffer (5 mM final buffer 

concentration). Addition of more M resulted in too much background noise in the EM images. 

 
Sample preparation and Electron microscopy 

Negative stain EM 

For preparation of negatively stained grids, the sample was applied to the clean side of a thin carbon 
film on the carbon-mica interface and stained with 2 % (w/v) uranyl acetate. 

CryoEM 

N-RNA was vitrified as described14 on carbon-coated quantifoil 3.5/1 grids (Quantifoil Micro Tools 
GmbH, Germany).  The grids were observed with a Phillips CM200 transmission electron microscope 

with a LaB6 filament at 200 kV. Images were recorded under low electron dose conditions at 27,500x 

magnification on Kodak SO-163 films and negatives were digitized with a Zeiss scanner (Photoscan 
TD) to a pixel size of 2.55 Å at the specimen level. The defocus of the images used for further 

analysis was approximately 2 to 5 µm as determined from the power spectra. The 88 best micrographs 

were selected for further analysis. 
 

CryoEM image analysis 

Image processing software 

Image processing was carried out on a 40 processor Linux cluster in an integrated approach, 

combining different software packages for different steps of analysis. In particular, the EMAN 

software package15 was used for particle selection; CTFFIND16 for contrast transfer function 
determination, BSOFT17 for the CTF correction; Imagic18 for multivariate statistical analysis, 

classification and multireference alignment steps; Spider19,20 for projection matching and 3D 

reconstruction; the hsearch and himpose programs from the IHRSR package21,22 for symmetry search 
and imposition; URO23 and its graphical version VEDA24, were used for crystal structure fitting; 

Pymol25 and Chimera26 for visualisation. Supplementary Figure 3 summarizes the flowchart of the 

image analysis of the helical trunk of the bullet. 
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2D image processing (steps 1 and 2 in the flowchart Supplementary Figure 3) 

Coordinates of the extremities of the helical trunks were recorded with the helix option of the EMAN 

Boxer tool15, while paying attention to avoid picking flexible and/or discontinuous fragments. 
Originally, 612*612 Å overlapping segments were extracted every 10.2 Å along the trunk axis. 

Approximately 1000 trunks of N-RNA were selected, which resulted in ~65000 segments. The 

original in-plane angle and filament assignment of the images were recorded for further alignment 
validation27. Individual images were corrected for CTF by phase-flipping, low-pass filtered to 15 Å, 

normalised (mean=0; sigma=1), and masked by an accordingly rotated smooth-edged rectangular 

mask of 200 Å length and 560 Å width. A vertical version of these images was created for the 
classification steps. 

The vertical masked images were iteratively aligned perpendicularly to the helical axis and classified 

in IMAGIC. The eigenvector describing the variability in diameter was used for separation of the 
initial dataset into subsets of different diameters of 390±40 Å (Supplementary Fig. 4). This is 

significantly lower than the 450 Å outer diameter of the entire virion nucleocapsid1 but is consistent 

with the fewer curls of the in vitro observed tips (see main text). If the dihedral angle between 
adjacent N subunits in the reconstituted bullets corresponds to the one in the virion, then one can 

estimate that the in vitro N-RNA bullet trunks would contain between ~31 and ~35 subunits per turn 

as opposed to 37.5 subunits per turn determined for the virion skeleton1. For further analysis, a subset 
of ~20000 images was obtained by merging classes with diameters of 390±5 Å. 

3D Reconstruction (steps 3 and 4 in the flowchart Supplementary Figure 3) 

The first trials to perform reconstructions using procedures with helical symmetry search and 
enforcement (IHRSR) did not converge and were very sensitive to initial symmetry parameters as well 

as to symmetry search parameters. We therefore decided to start with a reconstruction without any 

symmetry constraints. A smooth and continuous helix of the pitch determined from the class-averages 
was used as a starting model for projection matching (PM). The first cycle improved the filament 

boxing in the direction perpendicular to the helical axis by shifting the images by the integer number 

of pixels closest to the translation value determined by PM. During the subsequent PM cycles, this 
boxing was repeated when translations obtained by PM significantly deviated from zero. The images 

that could not be unambiguously centred were discarded. This rigorous centring procedure was crucial 

for minimization of the translational search range during PM, which prevents images from alignment 
with references requiring too large a translation parallel to helical axis (which in turn can cause 

clustering of image distribution to certain references thus leading to more and more asymmetric 3D 

reconstructions). For the same purpose, for reconstructions after each PM cycle, the same number of 
images per on-axis view (perpendicular to the helical axis) was selected based on correlation with the 

reference. Cross-correlation based selection and other standard single particle-based selection 

procedures that impose alignment restrains were applied27. 
After approximately 20 cycles, individual subunits were clearly distinguishable (Supplementary Fig. 

5b) and the helical symmetry could be visually assessed as ~33 subunits per turn consistent with the 

rotational symmetry determination of the top view class averages (Fig. 1d) and with estimations based 
on the entire virion nucleocapsid diameter and symmetry. The stacking of the N subunits in 

subsequent turns appeared quasi vertical, which is notably different from the 37.5 subunits/turn 

symmetry of the helical trunk of the entire virus1. ~12000 segments of N-RNA were included in the 
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final reconstruction. The PM-reconstruction cycling was then continued with the same image selection 

criteria as above, supplemented with a step of refining (with the hsearch program of the IHRSR 

package) and imposing (with the himpose program of the IHRSR package) the symmetry after each 
iteration. The symmetry parameters converged to 32.8 subunits per turn. The final reconstruction 

including ~6000 images of N-RNA was filtered to 22 Å (Supplementary Fig. 5a). 

Analysis of M-N-RNA images and 3D Reconstruction without symmetry application. 

The methodology applied was the same as for the N-RNA in the absence of the matrix protein M. 

From ~1000 trunks and ~80000 initially selected segments of M-N-RNA, ~20000 segments were 

included in the final reconstruction obtained without any symmetry constraints which converged to 
~32 subunits per turn for the M-N-RNA complex (Supplementary Fig. 5c). Contrary to the N-RNA 

reconstruction, in the case of M-N-RNA additional stripes of density were noticed all around the map 

and always at the same distance to the nucleoprotein helix. A comparison with the map of the M-N-
RNA helix in the intact virion1 indicated that these densities might correspond to the M protein. The 

relatively low density of M in comparison to the nucleoprotein part can be explained by a non-uniform 

and non-stoechiometric binding of the matrix protein to the nucleoprotein. This would agree with the 
raw images, where the M density was not clearly visible, and with biochemical data indicating that 

only partial decoration of the N-RNA bullets could be achieved in vitro because of the previously 

described self-polymerization of M13. The reason for the gap between N and M lies in the strong 
Fresnel fringes surrounding the nucleoprotein helix. Since the decoration of nucleocapsids by the M 

protein was clearly sub-stoechiometric, a further symmetry refinement and application (step 4 in the 

flowchart Supplementary Figure 3) seemes inappropriate. 
Reconstruction of separate bullet tips 

Negatives were recorded and scanned as for bullets and binned to 5.1 Å at the specimen level. A 

generous semi-automatic particle selection with the EMAN boxer routine lead to an extraction of a 
total of 6928 subframes of 128*128 pixels containing individual tips  which were CTF-corrected with 

CTFFIND and BSOFT and low-pass-filtered at 15 Å with Imagic. The data set was translationally but 

not rotationally aligned relative to the rotationally averaged total sum of the individual images. This 
translationally centred data set was subjected to multivariate statistical analysis and classification. 

Characteristic class averages were then used as a set of references for multi reference alignment of 

each sub frame with Spider19,20 and the new translational parameters were used to update the boxer 
coordinates and extract better centred particles. This procedure was repeated several times until the 

classes became stable and the individual frames well centred. Representative class averages were 

examined and circular top views as well as typical side views of the tip containing five prominent 
striations (as the one presented in Figure 1d in the main text) were identified. Five class averages 

which looked most reminiscent of a side view of the tip were each assigned 180 different angles while 

keeping the views perpendicular to the tube axis. Thus, five crude 3D volumes of the tip were created 
by back projection and then averaged together to produce a start model for iterative projection 

matching with Spider. After ~20 cycles the 3D reconstruction was stable and showed a notable 

helicity, even if individual N subunits could not be visualised. 4400 particles were included in the 
final reconstruction which resolution was estimated via Fourier shell correlation to be around 40 Å 

according to the 0.5 criterium. The X-ray crystal structure of the N10 VSV-N-RNA ring2 (2GIC.pdb) 

was placed at the top of the tip for visual comparison with Pymol (Fig. 1e). 
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Supplementary Fig. 1. Negative stain EM images of bullets formed from recombinant VSV N 

expressed in insect cells and bound to cellular RNA.  

Supplementary Fig. 2. Binding of the Matrix protein (M) to N-RNA at pH 5 (a) and 7 (b). 

N-RNA at a final concentration of 5 μM was incubated in the presence of M at a molar ratio of 1:3 
M:N-RNA for 10 min at room temperature. After centrifugation of the mixture through a 15% (v/v) 

glycerol cushion at pH 5 (A) or 7 (B), samples of supernatant (S) and pellet (P) were resolved on a 

12% SDS-PAGE and detected by silver staining. Lane 1, protein standards with molecular mass 
indicated on the left; lanes 2 and 3, N-RNA alone; lanes 4 and 5, N-RNA:M in a 3:1 molar ratio; lanes 

6 and 7, M alone. 

Supplementary Fig. 3. Flowchart of the image analysis procedure for the helical bullet trunk. 

Supplementary Fig. 4. Histograms of diameter distribution for the trunk segments. The upper 

panel shows the diameter distribution of the N-RNA helical trunks in the absence of M (red), the 

lower in the presence of M (turquoise). 

Supplementary Fig. 5. 3D cryoEM reconstruction of the N-RNA helical trunk reconstituted in 

presence and absence of M. a. The front half of the 3D volume of the N-RNA bullet trunk (left) and 

a 20 Å thick central slice through this volume (right). b. the same as in a but shown for the 
intermediate volume calculated before helical symmetry refinement, i.e. after step 3 in the flowchart 

Supplementary Figure 3)  (shown for a comparison with c). c.  The front half of the non symmetrised 

3D volume of the M-N-RNA bullet trunk (left) and a 20 Å thick central slice through this volume 
(after step 3 in the flowchart Supplementary Figure 3)  

 

References: 

1.  Ge, P., Tsao, J., Schein, S., Green, T. J., Luo, M. & Zhou, Z. H. Science 327, 689-693 (2010). 

2. Green, T. J., Zhang, X., Wertz, G.W.  & Luo, M. Science 313, 357-360 (2006). 

3. Caspar, D.L. & Klug, A. Cold Spring Harb Symp Quant Biol. 27, 1-24 (1962). 
4. Caspar, D.L. Biophys J. 32, 103-135 (1980). 

5. Johnson, J.E.  &  Speir, J.A. J. Mol. Biol. 269, 665-675 (1997). 

6. Bharat, T.A., Noda, T., Riches, J.D., Kraehling, V., Kolesnikova, L. et al., Proc. Natl. Acad. 

Sci. U. S. A. 109, 4275-4280 (2012). 

7. Newcomb, W. W.  & Brown, J. C. J. Virol. 39, 295-299 (1981). 

8. Newcomb, W. W.,  Tobin, G. J., McGowan, J. J.  & Brown, J. C. J. Virol. 41, 1055-1062 

(1982). 

9. Dancho, B., McKenzie, M.O., Connor, J.H.  & D.S. Lyles  J. Biol. Chem. 284, 4500-4509 

(2009). 
10. Iseni, F., Baudin, F., Blondel, D. & Ruigrok, R.W. RNA 6, 270-281 (2000). 

11. Bieniossek, C., Imasaki, T., Takagi, Y. & Berger, I. Trends in Biochemical Sciences 37, 49-57 

(2012). 
12. Iseni, F., Barge, A., Baudin, F., Blondel, D. & Ruigrok, R.W. J. Gen. Virol. 79, 2909-2919 

(1998). 

13. Gaudin, Y., Barge, A., Ebel, C. & Ruigrok, R.W. Virology 206, 28-37 (1995). 

271



14. Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault , J. , McDowall, A.W. & Schultz, P.  

Q. Rev. Biophys. 21, 129-228 (1988). 

15. Ludtke, S.J., Baldwin, P.R. & Chiu, W. J. Struct. Biol. 128, 82-97 (1999). 
16. Mindell, J.A. & Grigorieff, N. J. Struct. Biol. 142, 334-347 (2003). 

17. Heymann, J.B., Cardone, G., Winkler, D.C. & Steven, A.C. J. Struct. Biol. 161, 232-242 

(2008). 
18. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. J. Struct. Biol. 116, 17-24 

(1996). 

19. Frank, J., Rademacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M. & Leith, A. J. Struct. Biol. 
116,190-199 (1996). 

20. Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A. & Frank, J. Nat. 

Protoc. 3, 1941-1974 (2008). 
21. Egelman, E.H. Ultramicroscopy 85, 225-234 (2000) 

22. Egelman, E.H. J. Struct. Biol. 157, 83-94 (2007) 

23. Navaza, J., Lepault, J., Rey, F.A., Alvarez-Rúa, C. & Borge, J. Acta Crystallogr. D Biol. 

Crystallogr. 58, 1820-1825 (2002) 

24. http://mem.ibs.fr/VEDA 

25. http://www.pymol.org/, DeLano 2002 
26. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. & 

Ferrin, T.E. J. Comput. Chem. 25, 1605-1612 (2004). 

27. Sachse, C., Chen, J.Z., Coureux, P.D., Stroupe, M.E., Fändrich, M. & Grigorieff, N. J. Mol. 

Biol. 371, 812-835 (2007). 

 

272

http://mem.ibs.fr/VEDA
http://www.pymol.org/


Fig. S1 

 

 
 

 

 
 

 

 
 

 

 
Fig. S2 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

40 nm 

273



Fig. S3 
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Fig. S4 
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The genome of measles virus is encapsidated by multiple copies of

the nucleoprotein (N), forming helical nucleocapsids of molecular

mass approaching 150 Megadalton. The intrinsically disordered

C-terminal domain of N (NTAIL) is essential for transcription and

replication of the virus via interaction with the phosphoprotein

P of the viral polymerase complex. The molecular recognition ele-

ment (MoRE) of NTAIL that binds P is situated 90 amino acids from

the folded RNA-binding domain (NCORE) of N, raising questions

about the functional role of this disordered chain. Here we report

the first in situ structural characterization of NTAIL in the context of

the entire N-RNA capsid. Using nuclear magnetic resonance spec-

troscopy, small angle scattering, and electron microscopy, we

demonstrate that NTAIL is highly flexible in intact nucleocapsids

and that the MoRE is in transient interaction with NCORE. We pre-

sent a model in which the first 50 disordered amino acids of NTAIL

are conformationally restricted as the chain escapes to the outside

of the nucleocapsid via the interstitial space between successive

NCORE helical turns. The model provides a structural framework

for understanding the role of NTAIL in the initiation of viral tran-

scription and replication, placing the flexible MoRE close to the

viral RNA and, thus, positioning the polymerase complex in its

functional environment.

NMR ∣ SAXS ∣ ensemble description ∣ dynamics ∣ unfolded protein

Measles virus (MeV) is a member of the Paramyxoviridae
family of the Mononegavirales order of negative sense, sin-

gle stranded RNA viruses. The viral genome is encapsidated by
multiple copies of the nucleoprotein (N) forming a helical
nucleocapsid. Transcription and replication of the viral RNA
are initiated by an interaction between N and the polymerase
complex, composed of the phosphoprotein (P) and the RNA-
dependent RNA polymerase (1). N consists of two domains:
NCORE (residues 1–400), responsible for the interaction with
the viral RNA and for maintaining the nucleocapsid structure,
and a long intrinsically disordered domain, NTAIL (residues
401–525) serving as the anchor point for the polymerase complex
(2, 3). The molecular recognition element (MoRE) (residues
485–502) of the disordered NTAIL interacts with the C-terminal
three-helix bundle domain, XD, of P (residues 459–507) (4) and
thereby recruits the polymerase complex onto the nucleocapsid
template (5, 6).

The realization that intrinsically disordered proteins (IDPs)
are functional despite a lack of structure (7–9) has revealed en-
tirely new paradigms that appear to redefine our understanding
of the role of conformational flexibility in molecular interactions
(10–12). Until now most IDPs have been studied in isolation,
or in the presence of a single interaction partner, although it
is evident that a real physiological environment could influence
the nature and relevance of apparent intrinsic disorder. In this
context resolving the question of whether the protein is actually
disordered in situ is of paramount importance. In this case
the mechanistic role of the extensive disorder present in NTAIL

is particularly intriguing, because the MoRE is located at a
distance of 90 apparently unfolded amino acids away from the
folded NCORE domain that binds the RNA (13). In order to
resolve the mechanism by which the remote interaction between
NTAIL and the polymerase complex initiates transcription and
replication, it is necessary to develop an atomic resolution under-
standing of molecular disorder in the context of the intact
nucleocapsid. Here we use Nuclear Magnetic Resonance (NMR)
spectroscopy, small angle scattering (SAS), and electron micro-
scopy (EM) to describe the conformational behavior and
mechanistic role of NTAIL in situ.

Results

NTAIL Populates a Dynamic Equilibrium Comprising Preencoded Helical

Conformers at the Phosphoprotein Recognition Site. In this study we
have developed an atomic resolution ensemble description of iso-
lated NTAIL fromMeVusing recently developed tools designed to
provide quantitative descriptions of conformational equilibria in
IDPs on the basis of experimental NMR data (14–16). Chemical
shifts (17, 18) and residual dipolar couplings (RDCs) (19, 20),
measured in a weakly ordering alignment medium were com-
bined to directly probe the level and nature of residual structure
in NTAIL, revealing that while the majority of NTAIL behaves like
an intrinsically disordered chain, the MoRE exists in a rapidly
interconverting conformational equilibrium between an unfolded
form and conformers containing one of four discrete α-helical
elements situated around the interaction site (Fig. 1, Fig. S1,
Tables S1 and S2). All of these α-helices are found to be stabilized
by N-capping interactions mediated by side chains of four differ-
ent aspartic acids or serines that precede the observed helices
(21, 22). N-capping stabilization of helices or turns represents
an important mechanism by which the primary sequence encodes
prerecognition states in disordered proteins, and has been ob-
served in the proteins Tau (23), Sendai virus NTAIL (19), the
N-terminal transactivation domain of p53 (24), and the ribosomal
protein L9 (25).

A crystal structure of the chimeric complex between a short
construct of NTAIL and XD shows that NTAIL docks as a helix
between residues Q486 and A502 (26). This helix is similar to
the longest of the four helical elements present in isolated
NTAIL. Changes in chemical shifts and RDCs (Fig. 2) confirm that
upon binding to XD, the MoRE of NTAIL folds into a helix. How-
ever the decreasing values of secondary structure propensity
(SSP) (17) and the RDCs towards the ends of the helix indicate
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some residual degree of dynamics in the complex. In addition,
exchange line broadening persists for residues surrounding the
two smallest helices (H1 and H2) present in the conformational

equilibrium, even for a large excess of XD compared to NTAIL.
There is therefore evidence that both conformational selection
from the equilibrium free-form ensemble, and coupled folding
and binding, drive the interaction between NTAIL and XD, testi-
fying to the complexity of this highly dynamic interaction.

NTAIL Remains Flexible in Intact Nuclecapsids and Binds Transiently to

the Capsid Surface. Although the MoRE folds upon binding, the
remainder of the 90 amino acid long N-terminal chain between
the interaction site and NCORE remains flexible (Fig. 2), again
raising the intriguing question of the functional role of this long
strand. To extend the investigation of NTAIL to a physiologically
relevant environment, we have therefore used solution state
NMR to characterize the conformational behavior and flexibility
of 15N, 13C labeled nucleocapsids. From EM (Fig. 3) we estimate
the molecular mass distribution of the objects in the NMR sample
to fall in a range between 2 to 50Megadalton that would normally
preclude detection of solution state NMR signals of a folded
globular protein (27). The heteronuclear single quantum coher-
ence (HSQC) spectrum of the intact capsids however reveals that
NTAIL remains flexible when attached to the nucleocapsid. Com-
parisons of 1H-15N (Fig. 3), and 13C-13C (Fig. S2) correlation
spectra of the isolated NTAIL domain and intact nucleocapsids
show that the NMR resonances superimpose, demonstrating that
the local conformational behavior of residues 450–525 of NTAIL is

A

B

C

Fig. 1. Ensemble description of the MoRE of NTAIL. (A) NTAIL preferentially adopts a dynamic equilibrium between a completely unfolded state and different
partially helical conformations each represented by a single cartoon structure for clarity. All helices are stabilized by N-capping interactions through aspartic
acids or serines (blue residues). The location of the helices within the MoRE is shown in the primary sequence. (B) Comparison of experimental (blue) and back-
calculated (red) DN-HN RDCs from the model of NTAIL shown in (A). (C) Comparison of experimental (blue) and back-calculated (red) Cα secondary chemical shifts
from the model of NTAIL shown in (A).
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Fig. 2. The MoRE of NTAIL folds upon binding to the XD domain of P protein.
(A) SSP (17) of NTAIL obtained from experimental Cα and Cβ chemical shifts in
free (red) and P (XD) bound (blue) form. (B) N-HN RDCs in free (red) and
bound (blue) form of NTAIL.
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retained in situ. However, signals for the first 50 amino acids
(residues 401–450) are absent, while large variations of peak
intensities indicate differential flexibility along the remainder
of the chain, with the MoRE having particularly low intensi-
ties (Fig. 4A).

To further probe the conformational dynamics of NTAIL, we
have measured 15N R2 spin relaxation rates in isolated NTAIL
and intact nucleocapsids (Fig. 4B). Isolated NTAIL shows uniform
R2 relaxation rates throughout the sequence, except in the MoRE
where the presence of residual helical structure results in elevated
rates. 15N R2 values of NTAIL in the capsid exhibit a very different
profile. In the center of the MoRE (around residue 495) R2

values are similar to the rates in the isolated NTAIL domain,

indicating that the MoRE is in slow exchange, while the larger
relaxation rates observed at the edges of the MoRE indicate that
the same exchange rate appears faster (smaller chemical shift dif-
ferences) for these sites. These results suggest that the MoRE of
NTAIL slowly exchanges on and off the surface of the nucleocap-
sids. Analysis of the intensity of the peaks shows that more than
95% of the MoRE population is bound. The R2 values increase
dramatically around residue 460, which, combined with the ab-
sence of signals of the first 50 residues of NTAIL, indicates that
the first stretch of 50 amino acids of the unfolded domain is
conformationally restricted. We note that the C terminus of the
protein also interacts, either directly with the capsid, or folds back
onto the MoRE as it interacts with the capsid.

NTAIL Exfiltrates from Inside to Outside of the Capsid Helix Through the

Interstitial Space Between Successive NCORE Helical Turns. MeV nu-
cleocapsids have previously been visualized by EM, exhibiting
a characteristic herring-bone appearance (5, 28–31). Nothing is
known about the location and conformational state of NTAIL
in intact nucleocapsids because NTAIL does not appear to contri-
bute coherently to the reconstructed density from EM, however it
is apparent that both the structure and dynamics of the nucleo-
capsids are significantly modulated by NTAIL. Whereas full-length
capsids adopt flexible structures, the capsids become significantly
more compact and rigid upon cleavage of the disordered tail
(Fig. 3 A and B) (5, 32, 33). EM also reveals that the diameter
of the capsid decreases from 200 to 190 Å and that the pitch
decreases from 57.2 to 48.7 Å upon removal of NTAIL (34).

The atomic resolution structure of NCORE of MeV is unknown,
however, the structure of the N-RNA complex of Respiratory
Syncytial Virus (RSV), another member of the Paramyxoviridae
family, was recently solved using X-ray crystallography (35), and
docked into the EM density map of MeV N-RNA on the basis of
secondary structural homology (34). Notably, this coarse docking
places the C terminus of NCORE, and therefore the N terminus of
NTAIL, at the interior of the helix capsid, raising intriguing ques-
tions about the position of NTAIL within the capsid. Due to steric
hindrance, the 13 copies of NTAIL per turn of the capsid helix
cannot reside in the interior of the capsid and remain flexible
enough to give rise to NMR signals. We have therefore investi-
gated whether the disordered NTAIL can escape from the interior
of the MeV nucleocapsid helix, as reconstructed using EM, by
building explicit models that obey random coil statistics for the
conformational sampling of the primary sequence, while avoiding
the NCORE domains in the capsid. This model (Fig. 5) demon-
strates that NTAIL can indeed exfiltrate from the interior of
the capsid via the interstitial space between the NCORE moieties.
Importantly, reorientational sampling of the chain calculated
over the entire ensemble (Fig. 4C), demonstrates that maximal
angular freedom is only achieved after approximately 50 amino
acids, providing a reasonable explanation for the lack of solution
NMR signals up to residue 450. In this case the first 50 amino
acids of NTAIL retain conformational disorder, which would also
explain why they could not be resolved in the EM reconstruction
of the capsids (34).

Small Angle Scattering Confirms Transient Binding of NTAIL MoRE to

Capsid Surface. Small angle X-ray and neutron scattering (SAS)
provides important information concerning the dimensions of
NTAIL in intact nucleocapsids. Despite significant polydispersity
in terms of length, the cross-sectional radii of gyration, RC, of the
capsids can be accurately determined from these data. SAS
analysis of the scattering length density distribution around the
nucleocapsid symmetry axis gives RC values of ð78.0� 0.6Þ Å
and ð69.5� 2.4Þ Å for the intact and cleaved forms respectively
(Fig. 6, Fig. S3). The expected value of RC calculated from the
atomic coordinates of RSV N-RNA docked into the recon-
structed electron density of the cleaved MeV capsid gives very
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Fig. 3. Electron microscopy and NMR studies of Measles virus nucleocapsids.
(A) Electronmicrograph (negative staining) of the 13C, 15N labeled nucleocap-
sid sample used for solution NMR studies. (B) Electron micrograph of trypsin-
digested 13C, 15N labeled nucleocapsids. The solution NMR spectrum of this
sample was empty. (C) Superposition of the 1H-15NHSQC spectrum of isolated
NTAIL (blue) and intact nucleocapsids (red).
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HSQC spectrum of intact nucleocapsids. The intensity profile was calculated
as the ratio of the intensities (I) in the capsid spectrum and the intensities in
the spectrum of the free NTAIL domain (I0). (B) Comparison of 15N R2 relaxa-
tion rates measured on a 1 GHz spectrometer in the free form of NTAIL (blue)
and in intact nucleocapsids (red). (C) N-H angular order parameter S2 aver-
aged over an ensemble of 5,000 conformers of NTAIL that were calculated as
shown in Fig. 5 and described in the Methods section.
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good agreement with experiment (68.0 Å), while the calculated
model of the capsid with the full-length chain gives a value of
83.8 Å when the MoRE is entirely free, and 78.4 Å when the

center of the MoRE is positioned less than 8 Å from any of the
folded domains of the capsid. The NMR-based model of a tran-
sient interaction between the MoRE and the capsid is therefore
strongly supported by the SAS data. These results also provide a
steric explanation for the observed decrease in pitch between
intact and cleaved capsids (34), as parts of the disordered
NTAIL reside in the interstitial space between the NCORE lobes.

Discussion
Measurements of NMR, SAS, and EM on nucleocapsids there-
fore provide the basis for the development of an in situ ensemble
model describing the conformational behavior of NTAIL in intact
nucleocapsids. On the basis of this model we are able to provide a
structural framework for understanding the dual role of the 125
amino acid intrinsically disordered NTAIL domain. The first 50
disordered amino acids form an articulated spacer that allows
the MoRE to escape from the interior of the capsid via the
confined interstitial space between successive turns of the helix.
The remainder of the chain, on the other hand, is more mobile,
and retains the conformational sampling that exists in the isolated
form of the protein. This sampling includes the conformational
equilibrium of rapidly interconverting helical elements in the
MoRE that is predefined by the primary sequence. At the same
time the MoRE exchanges on and off the surface of the nucleo-
capsids, with the majority of conformers in contact with the
capsid. The NMR and SAS data indicate that at any given time
approximately one of the 13 copies of the nucleoprotein per
helical turn is completely free in solution, while the remainder
are bound to the capsid surface. While we currently have no
information about the position of the binding site, or whether this
binding is specific, such a mode of action would provide an effi-
cient mechanism by which NTAIL could “catch” the viral polymer-
ase complex when in free solution, and colocalize the complex on
the nucleocapsid surface, thereby initiating transcription and re-
plication of the viral RNA. Interestingly the RNA is sequestered
on the outer surface of the RSVand MeV capsids (34, 35), which

Fig. 5. Proposed model of the location of NTAIL in intact nucleocapsids. The
three-dimensional coordinates of the RSV N-RNA subunit docked into the
EM density map of MeV N-RNAwere used (34). The conformational sampling
algorithm flexible-meccano was used to build chains from the C terminus of
the folded domain of NCORE (successive NCORE monomers are coloured green
and yellow). Amino-acid specific conformational sampling allows the chain to
escape from the interstitial space of the capsid helix. (A) Representation of
the conformational sampling of NTAIL from a single N protein in the capsid.
Different copies of NTAIL (red) are shown to indicate the available volume
sampling of the chain. The first 50 amino acids of NTAIL are shown. (B) Repre-
sentation of the conformational sampling of NTAIL from a single N protein in
the capsid, shown along the axis of the nucleocapsid. (C,D) Representation of
the 13 NTAIL conformers from a single turn of the nucleocapsid. In the inter-
ests of clarity, (B–D) deliberately show more conformers outside the capsid,
and fewer bound to the surface, than are probable at any one time (see text).
The position of the RNA is shown in blue.
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from SAXS and SANS data (Fig. S3) from the cleaved (blue) and noncleaved
(red) helical capsids.
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would place the RNA in the immediate vicinity of NTAIL as it
emerges from the interstitial space, providing a mechanistic
rationalization of the entire disordered domain of the nucleocap-
sid. Further structural and dynamic information will be necessary
in order to determine the subsequent sequence of events that
follow this initial recognition step, and ultimately lead to tran-
scription and replication.

Methods
Cloning, expression, and purification of the isotopically labeled isolated
MeV NTAIL domain and the C-terminal domain of P (XD) were described
previously (13). Cloning, expression, and purification procedures for MeV
nucleoproteins are described in SI Text (34). Random cellular RNA forms
the basis of the reconstituted nucleocapsids which are therefore of variable
length.

NMR Experiments. All NMR experiments were carried out at 25 °C. For the
measurement of RDCs 13C, 15N labeled NTAIL was aligned in a liquid crystal
composed of poly-ethylene glycol (PEG) and 1-hexanol (36) giving rise to a
residual deuterium splitting of 21 Hz. 1DN-HN,

1DCα-C0 and 1DCα-Hα RDCs were
obtained using 3D BEST-type HNCO and HN(CO)CA experiments modified to
allow for coupling evolution in the 13C dimension (37). Spectra were acquired
with a sweep width of 7.5 kHz and 512 complex points in the 1H dimension
and a sweep width of 1.32 kHz and 36 complex points in the 15N dimension.
For the 13C dimension, the spectra were acquired with a sweep width of
1.2 kHz and 60 complex points (HNCO-type spectra) and 3 kHz and 60 com-
plex points [HN(CO)CA-type spectrum]. Estimates of experimental errors on
the RDCs were obtained through repeated measurements: 1.0 Hz (1DN-HN),
2.0 Hz (1DCα-Hα) and 0.5 Hz (1DCα-C0 ). Spectra were processed in NMRPipe
(38) and analyzed using Sparky (39) and CCPN (40).

The complex between NTAIL and XD was obtained by preparing a sample
containing 0.14 mM 15N, 13C NTAIL and 1.4 mM unlabeled XD. The complex
was aligned in a liquid crystal composed of PEG and 1-hexanol giving rise to a
residual deuterium splitting of 26 Hz. 1DN-HN were obtained for NTAIL in the
complex using a 2D IPAP SOFAST-HMQC (41) experiment containing 1,024
complex points in the 1H dimension and 150 complex points in the 15N dimen-
sion. All RDCs (free and bound form of NTAIL) were measured at a 1H reso-
nance frequency of 600 MHz. 15N R2 relaxation rates of NTAIL in its free form
and in the context of intact nucleocapsids were measured at a 1H frequency
of 1,000 MHz. Standard pulse sequences were used and the spectra were
recorded with a sweep width of 14 kHz and 1,024 complex points in
the 1H dimension and a sweep width of 3 kHz and 100 complex points in the
15N dimension (42).

Asteroids Description of the Molecular Recognition Element of NTAIL from NMR

Data. Experimental RDCs and Cα chemical shifts were used in a combined
approach to obtain an ensemble description of the MoRE of NTAIL using
the minimal ensemble approach (19). A representative ensemble description
of the NTAIL MoRE (defined between residues 485–502) was obtained by
generating ensembles of NTAIL each consisting of 10,000 conformers using
flexible-meccano (14) with varying helix lengths and positions within the
MoRE. One hundred and twenty different ensembles were created to cover
the entire MoRE with helices with a minimum length of four residues and a
maximum length of 18 residues. Furthermore, an ensemble without helices
comprising 50,000 conformers was generated. The alignment tensor of each
conformer in the ensembles was calculated using PALES (43, 44) and ensem-
ble-averaged RDCs were obtained for each of the 121 ensembles. Ensemble-
averaged chemical shifts were calculated using SPARTA (45) using 1,000
conformers, except for the completely unfolded ensemble where 5,000
conformers were used.

The number of helices, N, necessary to describe the experimental data,
and the position and length of the helices, were determined by incrementing
N. For each step, the genetic algorithm ASTEROIDS (16) was used to select N
helical ensembles and their associated populations such that the predicted
population weighted RDCs (Fig. 1B, Fig. S1) and chemical shifts (Fig. 1C) were
in agreement with the experimental values using:

OCALC ¼ ΣN
k¼1

pkOk þ ð1 − ΣN
k¼1

pkÞOU : [1]

Ok and OU are the simulated ensemble-averaged observables for the kth
helical and unfolded ensemble, respectively, and pk is the population asso-
ciated with the kth ensemble. A χ2 function is calculated over all residues of
the MoRE. Model selection is achieved by optimization of the population and
a scaling factor for the RDCs corresponding to the degree of alignment

(Table S2). Experimental Cα chemical shift uncertainty used in the combined
target function was estimated as 0.3 ppm. The ASTEROIDS selection used
2,000 successive generations and was repeated 10 times for each run to en-
sure a well defined solution for each value of N (16). Standard F-statistics
were used to test the significance of one model over the other (Table S1).

Modelling of NTAIL in the Context of the Capsid. NTAIL was built onto the atomic
resolution model of NCORE derived from docking of the RSV NCORE structure
into the EM density of MeV N-RNA capsids. Disordered NTAIL conformers were
built using the flexible-meccano algorithm that sequentially constructs pep-
tide chains by randomly sampling amino acid specific dihedral angle distribu-
tions (14). Steric clashes are avoided with the folded domains of all copies of
NCORE in the capsid. Angular order parameters relative to the capsid frame
were calculated over 5,000 conformers in a single ensemble of independent
copies of NTAIL from the same N protein as described (46).

Small Angle X-Ray Scattering. SAXS experiments were carried out on intact
and trypsin-digested nucleocapsids at concentrations of 0.35 mM (intact
capsids) and 0.25 mM (digested capsids). All sample volumes were adjusted
to 50 μL, and were measured on the high brilliance beamline ID02 at the
European Synchrotron Radiation Facility (ESRF) Grenoble, France, using a
quartz capillary with 2 mm optical path-length. Scattering data were
recorded at a sample-detector distance of 1.5 m at a photon wavelength λ ¼

0.996 Å (E ¼ 12.46 keV). Both samples and the buffer were exposed for five
times 0.1 s. No radiation damage was observed in any case. The corrected
one-dimensional intensities IðQÞ (Q ¼ ð4π∕λÞ sin θ, where 2θ is the scattering
angle) from the buffers were subtracted from the respective sample inten-
sities using the SAXS Utilities program (47).

Small Angle Neutron Scattering. Small Angle Neutron Scattering (SANS)
experiments were carried out on intact and trypsin-digested nucleocapsids
at concentrations of 0.35 mM (intact capsids) and 0.05 mM (digested capsids).
All sample volumes were adjusted to 200 μL and were measured on the
instrument D22 at the Institute Laue-Langevin (ILL) (Grenoble, France) in
Hellma® quartz cuvettes 100QS with 1 mm optical path length. Scattering
data were recorded at instrumental configurations (collimator/detector)
2 m∕2 m, 8 m∕8 m, and 17.6 m∕17.6 m at a neutron wavelength λ ¼ 6 Å.
At each configuration, the samples, the buffers, the empty beam, an empty
quartz cuvette, as well as a boron sample (electronic background) were
measured. Exposure times varied from 30 min to 3 h according to sample
and collimator/detector setup. Transmissions were measured during 2 min
for each sample. Raw data were reduced using a standard ILL software
package (48), normalized to an absolute scale after the various detector
corrections and azimuthally averaged to obtain the one-dimensional
scattering curve.

Calculation of Cross-Sectional Radius of Gyration from Scattering Data. Assum-
ing capsid structures (hollow cylinders with an overall length much larger
than the diameter), scattering curves were analyzed in terms of rod-like
shaped particles. Cross-sectional radii of gyration, RC , were extracted from
linear fits of SAXS and SANS data according to (49):

ln½IðQÞQ� ¼ ln½Ið0ÞQ� −
1

2
R2

CQ
2: [2]

Ið0Þ is the cross-sectional part of the scattering. The range of validity of
the approximation was reasonably fulfilled in both cases (intact form:
0.92 ≤ RCQ ≤ 1.43; cleaved form: 0.79 ≤ RCQ ≤ 1.22).

The experimentally determined cross-sectional radii of gyration (Eq. 2)
were compared to the ones calculated from the atomic resolution structure
of RSV docked into the EM density map of MeV N-RNA using the radial co-
ordinates ri of the N atoms in a unit sectorial element around the cylindrical
axis of symmetry:

R2

C ¼
1

N
Σir

2

i : [3]
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SI Methods

Recombinant Protein Production and Purification. Cloning, expres-
sion, and purification of the isotopically labeled isolated measles
virus NTAIL domain and the C-terminal domain of P (sometimes
known as XD) were described previously (1, 2). Experiments
were carried out in 50 mM phosphate buffer at pH 7 with
50 mM NaCl.

Cloning, Expression, and Purification of Intact Measles Virus Nucleo-

capsids.The cloning procedure of the measles virus nucleoprotein
gene (strain Edmonston B) into the expression vector pET22b
(þ) was described previously (3). The vector was transformed
into Escherichia coli Rosetta™ (λDE3)/pRARE strain (Novagen)
for expression of the recombinant protein. Unlabeled protein was
obtained in Luria-Bertani medium, while the uniformly isotopi-
cally labeled 15N and 15N∕13C protein samples were produced in
M9 minimal medium supplemented with 1.0 g∕L of 15NH

4
Cl,

2.0 g∕L of 13C glucose and Minimum Essential Medium (MEM)
vitamins (Gibco). The cells were grown at 37 °C until the op-
tical density (OD) at 600 nm reached 0.6 and the protein expres-
sion was then induced with 0.5 mM isopropyl-1-thio-β-D-
galactopyranoside (IPTG) for 14–16 h at 30 °C. Cells were
harvested by centrifugation and then suspended in lysis buffer
(10 mL∕L of bacteria culture) containing 20 mM Tris-HCl,
150 mM NaCl at pH 7.5 (buffer A), supplemented with 1 mM
MgSO4, complete™ protease inhibitor cocktail tablets (Roche),
DNAse I (Sigma), and lysozyme (Fluka) and incubated for
30 min on ice. Cells were completely disrupted by sonication
on ice and the debris was removed by centrifugation for
20 min at 16;000 × g, 4 °C. Typically, 5–8 mL of the supernatant
was layered onto a continuous gradient of 23–26 mL of CsCl
(20–40% w∕w in buffer A). The gradient was centrifuged at

25,000 rpm for 15 h at 12 °C (SW28 Beckman rotor using
UltraClear™ tubes of 38.5 mL), and the visible nucleocapsid band
was collected by puncturing the tube. The sample was dialyzed
into buffer A and layered onto a glycerol cushion 15% (v∕v in
buffer A) and then centrifuged as described for the CsCl gradient.
The capsid on the bottom was resuspended in 50 mM sodium
phosphate buffer pH 7.0 with 50 mM NaCl and dialyzed in
the same buffer overnight. Sample was centrifuged at 16;000 × g,
1 min at 4 °C and the quality of the capsid preparation in the
supernatant was checked by SDS-PAGE and electron microscopy
(negative staining) as previously described (3). Protein concentra-
tions were measured by absorbance spectroscopy using BioRad
Bradford’s method based-protein assay. The yield of 15N- and
15N∕13C-labeled measles virus nucleoprotein was about 78 mg∕L.
The protein solution was frozen in liquid nitrogen and stored at
−80 °C at final concentration ranges of 0.2 to 0.4 mM. Trypsin-
digested nucleocapsids were obtained as described previously
and comprised residues 14–405 (4).

Capsid EM Negative Staining (Sample Quality Control). Noncleaved
and cleaved capsids were resuspended and dialyzed in the same
buffer used for the NMR studies (e.g., 50 mM sodium phosphate
buffer pH 7.0 50 mM NaCl). Samples were centrifuged at
16;000 × g, 1 min, 4 °C and the quality of the capsid preparation
in the supernatant was checked by SDS-PAGE and electron mi-
croscopy. Briefly, the capsids were diluted to a concentration of
about 0.1 mg∕mL and were adsorbed onto the clean face of a
carbon film on mica, negatively stained with 2% (w∕v) uranyl
acetate and observed under low-dose conditions with a JEOL
1200 EX II microscope at 100 kV and a nominal magnification
of 40;000X.

1. Longhi S, et al. (2003) The C-terminal domain of the measles virus nucleoprotein is
intrinsically disordered and folds upon binding to the C-terminal moiety of the phos-
phoprotein. J Biol Chem 278:18638–18648.

2. Gely S, et al. (2010) Solution structure of the C-terminal X domain of the measles virus
phosphoprotein and interactionwith the intrinsically disordered C-terminal domain of
the nucleoprotein. J Mol Recognit 23:435–447.

3. Desfosses A, Goret G, Farias Estrozi L, Ruigrok RWH, Gutsche I (2011) Nucleoprotein-

RNA orientation in the measles virus nucleocapsid by three-dimensional electron

microscopy. J Virol 85:1391–1395.

4. Schoehn G, et al. (2004) The 12 A structure of trypsin-treated measles virus N-RNA.

J Mol Biol 339:301–312.
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Fig. S1. Comparison of different types of experimental (red) and back-calculated (blue) RDCs in the molecular recognition element of NTAIL. The back-
calculated RDCs were obtained as a population-weighted average corresponding to the conformational equilibrium depicted in Fig. 1 (main text).
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Fig. S2. 13C detected correlation spectra from free NTAIL (green) and full-length capsid (red) recorded at a 1H frequency of 700 MHz and 25 °C. The spectrum of
the free NTAIL was acquired using the CBCACO pulse sequence (1, 2) with 1,024 and 192 complex points and sweep widths of 10.5 and 12.7 kHz in the direct and
indirect dimensions, respectively. The spectrum of the intact capsid was acquired using the HCBCACO pulse sequence (3) with 1,024 and 192 complex points and
sweep widths of 10.5 and 12.7 kHz in the direct and indirect dimensions, respectively.

1 Duma L, Hediger S, Lesage A, Emsley L (2003) Spin-state selection in solid-state NMR. J Magn Reson 164:187–195.
2 Bermel W, et al. (2006) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919.
3 Bermel W, et al. (2009) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281.

Fig. S3. Small angle neutron scattering data IðQÞ of the intact capsid and the cleaved, trypsin-digested form (no NTAIL) in a double-logarithmic representation.
The data of the cleaved form are noisier as a consequence of the lower concentration.
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Table S1. Data reproduction from ensembles with different combinations of helical conformers

Number of helical conformers χ
2* Number of optimized parameters† Helical conformers‡ Population (%)§ Significance¶

1 433 4 485–502 34
2 231 7 486–498 22 P < 0.0001

492–502 37
3 186 10 485–502 19 P < 0.0001

492–497 32
494–499 23

4 163 13 485–502 13 P ¼ 0.0041
489–502 10
492–497 30
494–499 22

5 154 16 485–502 13 P ¼ 0.1043
489–496 12
492–497 19
492–502 12
494–499 21

*The target function for the χ
2 included all 114 experimental data points (three types of RDCs and Cα chemical shifts).

†One helix implies the optimization of three parameters: starting amino acid, final amino acid, and the population. In addition, a scaling factor is
optimized to take into account the absolute level of alignment for the RDCs.

‡Range of the invoked helices.
§The population of the invoked helices. The remaining conformers are completely unfolded.
¶Significance of the improvement of this model as compared to the simpler model calculated using a standard F-test.

Table S2. The six best ASTEROIDS solutions assuming that NTAIL samples four

specific, helical conformers in conformational equilibrium with a completely

unfolded form

Solution χ
2 Helical conformers Population (%)

1 163 485–502 13
489–502 10
492–497 30
494–499 22

2 167 485–502 16
489–499 8
492–497 30
494–499 20

3 168 485–502 12
489–497 17
492–501 19
494–499 19

4 169 485–502 11
489–497 18
492–502 19
494–499 21

5 170 485–502 14
491–495 23
492–501 17
494–499 24

6 173 485–502 17
492–497 23
492–499 13
494–499 19
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SUMMARY

The hematopoietic colony stimulating factor-1

receptor (CSF-1R or FMS) is essential for the cellular

repertoire of the mammalian immune system. Here,

we report a structural and mechanistic consensus

for the assembly of human and mouse CSF-1:CSF-

1R complexes. The EM structure of the complete

extracellular assembly of the human CSF-1:CSF-1R

complex reveals how receptor dimerization by

CSF-1 invokes a ternary complex featuring extensive

homotypic receptor contacts and striking structural

plasticity at the extremities of the complex. Studies

by small-angle X-ray scattering of unliganded

hCSF-1R point to large domain rearrangements

upon CSF-1 binding, and provide structural evidence

for the relevance of receptor predimerization at the

cell surface. Comparative structural and binding

studies aiming to dissect the assembly principles of

human and mouse CSF-1R complexes, including

a quantification of the CSF-1/CSF-1R species

cross-reactivity, show that bivalent cytokine binding

to receptor coupled to ensuing receptor-receptor

interactions are common denominators in extracel-

lular complex formation.

INTRODUCTION

Receptor tyrosine kinases (RTKs) are a large family of metazoan-

specific cell surface receptors that play essential roles in diverse

cellular processes (Lemmon and Schlessinger, 2010). The hall-

mark of signaling via RTKs lies in cytokine-induced activation

of the receptor extracellular segments, which initiates a cascade

of intracellular signaling following activation of the intrinsic tyro-

sine kinase activity of RTKs. Class III RTK (RTKIII) groups four

pleiotropic hematopoietic receptors: the prototypic platelet-

derived growth factor receptor (PDGFR), colony stimulating

factor-1 receptor (CSF-1R), KIT, and fms-like tyrosine kinase III

receptor (Flt3). Collectively, intracellular signaling via RTKIII has

a major impact in the development and homeostasis of the

cellular repertoire throughout the hematopoietic system. RTKIIIs

are characterized by a modular structure featuring five extracel-

lular Ig-like domains followed by a single transmembrane helix

(TM) and intracellular split kinase domains (Lemmon and Schles-

singer, 2010). A remarkable aspect of RTKIII activation is that the

cognate protein ligands are all dimeric with similar dimensions

despite their grouping into two fundamentally different folds

(four helix bundles versus all-b cystine-knot scaffolds) (Jiang

et al., 2000; Oefner et al., 1992; Pandit et al., 1992; Savvides

et al., 2000; Wiesmann et al., 1997; Zhang et al., 2000). Recently,

interleukin-34 (IL-34) was identified as a second ligand to

CSF-1R (Lin et al., 2008), thus adding a perplexing dimension

to RTKIII signaling because IL-34 bears no sequence similarity

to the currently known cytokine ligands for RTKIII/V or other

proteins.

Activation of the extracellular segment of human CSF-1R

(hCSF-1R) by its two cytokine ligands, hCSF-1 and IL-34, is

the cornerstone of signaling cascades central to immunity

because CSF-1R:cytokine-signaling complexes are essential

for the proliferation, differentiation, and functionality of cells

derived from the mononuclear phagocytic lineage, such as

monocytes, tissue macrophages, microglia, osteoclasts, and

antigen-presenting dendritic cells (Chihara et al., 2010; Chitu

and Stanley, 2006; Lin et al., 2008;Wei et al., 2010). Furthermore,

signaling via wild-type hCSF-1R and mutants thereof has been

implicated in a wide range of pathologies in humans, such as

arthritis, atherosclerosis, tumor growth, and metastasis (Chitu

and Stanley, 2006).

CSF-1R is arguably the most intriguing member of the RTKIII

family for two main reasons: (i) CSF-1R is the only known RTK

that is activated by two unrelated protein ligands, and (ii)

CSF-1R activation demonstrates restrictive species specificity.

For instance mouse CSF-1 (mCSF-1) does not signal through

hCSF-1R and other primate CSF-1Rs, yet, hCSF-1 can activate

CSF-1R from all primate and nonprimate species tested thus far

(Garceau et al., 2010). IL-34, the recently identified second

ligand for CSF-1R, appears to follow suit, in that human IL-34
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does not activate mCSF-1R, whereas murine IL-34 does signal

through hCSF-1R (Wei et al., 2010).

Despite the prominence of hCSF-1R and hCSF-1 in the

biomedical literature over the last 3 decades, structural charac-

terization of the extracellular complex has remained elusive,

whereas structures of the intracellular kinase domain have only

recently become available (Schubert et al., 2007; Walter et al.,

2007). Such insights are the missing link to the structural and

functional diversity of RTKIII/V extracellular complexes, and

would help provide a nearly complete picture of the entire

CSF-1 ligand-receptor signaling complex given the available

structure of the CSF-1R intracellular kinase domains. A recent

flurry of studies of RTKIII/V extracellular complexes led to a

structural paradigm for RTKIII/V activation, whereby the recep-

tors bind via their N-terminal Ig-like domains to the activating

dimeric cytokine and concomitantly make homotypic contacts

between their membrane-proximal domains (Chen et al., 2008;

Leppänen et al., 2010; Liu et al., 2007; Ruch et al., 2007; Shim

et al., 2010; Verstraete et al., 2011b; Yang et al., 2008, 2010;

Yuzawa et al., 2007).

A recent structural study of mCSF-1 in complex with the first

three extracellular domains of mCSF-1R (mCSF-1RD1–D3)

revealed unexpected monovalent binding of mCSF-1 to one

mCSF-1RD1–D3 molecule leading to a binary complex (Chen

et al., 2008), in contrast to predictions based on earlier studies

of the homologous murine and human c-kit receptors in complex

with stem cell factor (SCF). Although this first structural snapshot

of a partial mCSF-1R complex is informative in its own right, it

cannot be readily extrapolated to represent CSF-1R activation

in general, given the complexity of species cross-reactivity in

CSF-1R signaling. Furthermore, the reported binary mCSF-

1RD1–D3:mCSF-1 complex does not offer realistic insights into

possible homotypic receptor interactions, a likely critical element

of receptor activation.

Here, we dissect the structural modularity and thermo-

dynamic-binding fingerprints of the extracellular human and

mCSF-1:CSF-1R assemblies. Together, our comparative

studies provide a comprehensive set of structural and mecha-

nistic insights that now helps to establish a consensus for the

assembly of hematopoietic CSF-1 ligand-receptor complexes.

RESULTS AND DISCUSSION

Biochemical and Thermodynamic Characterization

of Full-Length CSF-1R Ectodomain Complexes

(CSF-1:CSF-1RD1–D5)

To enable structural and biophysical studies of human and

mCSF-1:CSF-1RD1–D5 complexes, we produced recombinant

glycosylated human and mouse CSF-1RD1–D5 in transiently

transfected HEK293T cells in the presence of kifunensine, which

limits N-linked glycosylation to Man5–9GlcNAc2 glycan struc-

tures (Chang et al., 2007). Recombinant human and mouse

CSF-1 was produced by in vitro refolding of inclusion bodies

after protein expression in E. coli. Preparations of purified re-

combinant hCSF-1 and glycosylated hCSF-1RD1–D5were analyt-

ically fractionated by field-flow fractionation (FFF), followed

by quantification of their molecular weight (MW) via online

multi-angle laser light scattering (MALLS). This led to MW deter-

minations of 35 and 76 kDa, for hCSF-1 and hCSF-1RD1–D5,

respectively. These values are in excellent agreement with the

electrophoretic mobility of dimeric hCSF-1 and monomeric gly-

cosylated hCSF-1RD1–D5 on SDS-PAGE (Figure 1A). Titration of

hCSF-1RD1–D5 with excess molar amounts of cognate CSF-1 re-

sulted in a monodisperse molecular species that exhibited a

marked shift in elution profile to a much larger particle (145 kDa

as determined by MALLS) when compared to the unbound

CSF-1R ectodomain (Figure 1A). Considering the experimental

accuracy of MW determination by MALLS, we could infer that

the apparent CSF-1:CSF-1RD1–D5 complex could be rationalized

in terms of one hCSF-1 dimer and two copies of hCSF-1RD1–D5.

We employed isothermal titration calorimetry (ITC) to establish

the affinity, thermodynamic profile, and stoichiometry of the

CSF-1:CSF-1RD1–D5 complex. Our results show that the com-

plex is characterized by bivalent binding of hCSF-1 to the

receptor ectodomain (one hCSF-1 dimer to two molecules of

hCSF-1RD1–D5) and that the ensuing high-affinity complex (equi-

librium dissociation constant [KD] = 13.6 nM) is the result of

a markedly exothermic binding event coupled to an entropic

penalty (Figure 1B; see Table S2 available online). The nanomolar

(nM) affinity value we report here for the soluble full-length extra-

cellular complex differs significantly from previously reported KD

values of �50–100 pM for native hCSF-1R based on cell assays

(Roussel et al., 1988). Similar differences have already been

observed for a number of systems, including the homologous

KIT and Flt3 (Graddis et al., 1998; Lemmon et al., 1997; Lev

et al., 1992; Streeter et al., 2001; Verstraete et al., 2011b), and

can be attributed to the absence of the TM region and the

two-dimensional spatial confinement of the membrane. Upon

extending our analysis to the mCSF-1:CSF-1R ectodomain

complex, we found that mCSF-1 also binds its cognate mCSF-

1RD1–D5 in a bivalent fashion to form a high-affinity ternary

complex (KD = 21.7 nM) (Figure 1B) with a similar thermodynamic

profile, indicating that the assembly of human and mouse ecto-

domain complexes is likely based on common principles.

Characterization of the CSF-1 Ligand-Receptor

Species Cross-Reactivity

We took advantage of the availability of human andmouse extra-

cellular CSF-1Rs and ligands to quantify their cross-reactivity

and to lend further cross-validation to the binding stoichiome-

tries determined for the human and mouse complexes. To our

knowledge, this has never been reported while the biomedical

literature is heavily populated by studies of hCSF-1 activity in

a murine cellular background and vice versa. Such information

could have important implications in the design and interpreta-

tion of cellular assays testing cytokine:receptor activity from

a particular species in a heterologous background. Our experi-

ments revealed bivalent binding of CSF-1 ligands to receptors

in both cross-reactivity experiments, consistent with the binding

behavior of human and mCSF-1R to their cognate ligands

(Figure 2). We calculated a KD of 66.2 nM for the hCSF-

1:mCSF-1RD1–D5 interaction, which agrees well with the ability

of hCSF-1 to activate all nonprimate CSF-1R tested so far. On

the other hand, mCSF-1 binds nearly 500-fold less tightly to

hCSF-1RD1–D5 (KD = 2.8 mM) than to its cognate receptor, thus

corroborating the observation thatmCSF-1 is not able to activate

primate CSF-1R in a cellular setting (Figure 2). Together, our

binding studies on the assembly of cognate and noncognate
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CSF-1 ligand-receptor complexes show that bivalent cytokine

binding to receptor is a conserved mechanistic aspect of the

extracellular ligand-receptor interaction.

Electron Microscopy Structure of the Complete

Extracellular Assembly of the hCSF-1:CSF-1R Complex

We approached structural characterization of the complete

extracellular-signaling complex of hCSF-1R with hCSF-1, based

on images of negatively stained hCSF-1RD1–D5:hCSF-1 complex

obtained by electron microscopy (EM). The recombinant hCSF-

1RD1–D5:hCSF-1 complex used in the EM analysis was obtained

by preparative size-exclusion chromatography (SEC) as a highly

monodisperse molecular species. Multivariate statistical anal-

ysis (MSA) and classification of circa 18,500 particles indicated

the presence of a 2-fold symmetry axis. Thus, an ab initio 3D

reconstruction was produced by angular reconstitution with

imposed C2 symmetry and further improved by iterative

projection matching to generate a 3D reconstruction of the

hCSF-1RD1–D5:hCSF-1 extracellular complex to�23 Å resolution

(Figures 3A and 3B).

The reconstructed 3D molecular envelope of the hCSF-1RD1–

D5:hCSF-1 complex reveals a central triangular toroidal structure

featuring a pair of appendages extending away from each other

at the top of the ring in a plane perpendicular to the toroid,

and two in-plane legs of electron density emanating from the

bottom of the ring (Figure 3B). Clear features in the electron

density strongly suggested that dimeric hCSF-1 binds bivalently

to two hCSF-1RD1–D5 receptor molecules at the head of the

particle, and that the two receptor molecules engage in homo-

typic interactions away from the ligand-binding epitope. Manual

placement of homology models of hCSF-1RD1–D5 derived from

the structure of the extracellular segment of human KIT (Yuzawa

et al., 2007), and of the crystal structure of hCSF-1 (Pandit et al.,

1992), into the EM map confirmed this initial interpretation, and

showed that the volume of the EM map could readily account

for all components of the hCSF-1R extracellular complex. To

improve our preliminary model against the experimental EM

envelope, we employed a computational approach based on

molecular dynamics protocols, which produced 20 different

models that were subsequently averaged to yield the final model

(Figure 3B; Figure S1A).

The hCSF-1RD1–D5:hCSF-1 complex now joins the human

KITD1–D5-SCF (Yuzawa et al., 2007) and the human Flt3 ligand-

receptor (Verstraete et al., 2011b) complexes as the third

complete extracellular RTKIII complex structurally characterized

to date, and offers important architectural and functional

insights. First, it reveals that the cytokine-binding epitope on

hCSF-1R is defined by domains 2 and 3 (Figure 3B). With the

exception of the Flt3 ligand-receptor interaction, this feature of

receptor-ligand engagement has emerged as a consensus blue-

print of RTKIII activation in all other structurally characterized

RTKIII complexes thus far (binary mCSF-1RD1–D3:mCSF-1

complex, Chen et al., 2008; KITD1–D3(5):SCF, Liu et al., 2007;

Yuzawa et al., 2007; and PDGFRD1–D3:PDGF-B, Shim et al.,

2010). Second, it shows that receptor homotypic interactions

can be attributed to a broad interaction interface between the

tandem D4 domains of hCSF-1R, whereas the membrane-prox-

imal D5 domains diverge away to a separation of �65 Å (Fig-

ure 3B). Homotypic receptor interactions have long been consid-

ered as the driving force for the cooperative character of

Figure 1. hCSF-1RD1–D5 Forms a Ternary Assembly with hCSF-1

(A) Isolation of hCSF-1RD1–D5:hCSF-1 by FFF. Formation of the complex leads to a marked shift in elution profile away from the individual protein components

after titration with a molar excess of hCSF-1. The different protein components employed are annotated. The inset shows an SDS-PAGE strip of the isolated

complex. The disulfide-linked dimeric nature of hCSF-1 is confirmed because the samples are lacking BME. Slight smearing of the hCSF-1RD1–D5 band is due to

a certain level of heterogeneous glycosylation (Aricescu et al., 2006). The insets show molecular mass determination by MALLS. The measurements confirm the

dimeric nature of hCSF-1 and suggest a hCSF-1RD1–D5monomer and a hCSF-1:hCSF-1RD1–D5 1:2 stoichiometry of binding. Derivedmolecular masses and fits to

the experimental LS data are shown.

(B) Titration of hCSF-1 into hCSF-1RD1–D5 (left panel) and mCSF-1 into mCSF-1RD1–D5 (right panel). Both CSF-1 ligands form a high-affinity ternary complex (n =

1:2) with their cognate receptors.
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extracellular complex formation and activation in RTK. Recent

studies on RTKIII receptors KIT and PDGFR showed that

receptor contacts mediated by a conserved dimerization

sequence fingerprint mapped to the EF loop of D4 are important

for receptor activation (Yang et al., 2008; Yuzawa et al., 2007)

(Figure 3C). Consistent with the proposed key role of the

consensus dimerization motif, structural studies on Flt3, the

only RTKIII/V receptor lacking this sequence fingerprint, showed

that the Flt3 ligand-receptor assembly is devoid of homotypic

receptor interactions (Verstraete et al., 2011b).

Whereas our structural studies show that hCSF-1RD4 plays

a direct role in the CSF-1 extracellular ternary complex, the

possible contribution of D5 still remains unclear. The

membrane-proximal D5 in KITD1–D5-SCF does not make interac-

tions with its tandem D5 and the corresponding C termini come

to 15 Å from each other (Yuzawa et al., 2007). Furthermore, the

crystal structure of the complete extracellular Flt3 ligand-

receptor complex has recently shown that the two Flt3D5
approach each other to about 25 Å (Verstraete et al., 2011b). In

hCSF-1R this separation is much larger, thus highlighting the

possible conformational diversity of the membrane-proximal

domains. Reconciling such interdomain distances in terms of

growing evidence on the importance of TM domains in RTK acti-

vation (Finger et al., 2009; Li and Hristova, 2006) is not obvious.

Yet, it would appear that the linker regions between D5 and the

TM domains of RTKIII (typically 10–15 amino acids) would offer

the necessary spatial freedom to allow such intramembrane

interactions to take place, whereas the D4–D5 interface could

help orient such associations. Finally, our studies show that

the N-terminal D1 extends well away from the core of the

complex without making any interactions with the ligand or other

receptor domains. Our computational models show consider-

able rigid-body flexibility around the D1–D2 linker (Figure S1A).

Figure 2. Thermodynamic Characterization

of Noncognate Extracellular Human and

Mouse CSF-1 Receptor-Ligand Complexes

Thermodynamic measurements of the human

and mouse CSF-1RD1–D5:CSF-1 species cross-

reactivity. In each case CSF-1 was titrated into

noncognate CSF-1R. hCSF-1 is able to form a

high-affinity complex with mCSF-1R D1–D5 (left

panel), whereas the mCSF-1:hCSF-1RD1–D5 inter-

action is of much lower strength (right panel). Both

complexes display a 1:2 CSF-1:CSF-1R stoichi-

ometry of binding.

Indeed, the corresponding negative-stain

electron density for D1 only became clear

in later rounds of image classification.

Interestingly, Flt3D1 in the Flt3 ligand-

receptor complex also emanates away

from the core of the complex (Verstraete

et al., 2011b). It is currently not clear

what the possible role of such flexible

D1 modules might be, but it has been

suggested that D1 might participate in

intermolecular interactions at the cell

surface (Verstraete et al., 2011b).

However, the apparent conformational independence of D1 in

human Flt3 and CSF-1R is not a conserved structural feature

within the RTKIII family because structures of the binary

mCSF-1RD1–D3:mCSF-1 complex, as well as the ternary

KITD1–D3(5):SCF and PDGFRD1–D3:PDGF-B complexes, shows

that D1 bends downward to interact with D2. We carried out

additional measurements on hCSF-1RD1–D5:hCSF-1 by small-

angle X-ray scattering (SAXS), which consistently corroborate

our EM findings, in that the scattering data indicate a P2-

symmetric ternary complex with flexible D1 and large divergence

of the membrane-proximal D5 (Figure S1B; Table S1).

Structural Plasticity of hCSF-1RD1–D5 Revealed by SAXS

Analysis of the Unbound Receptor

We carried out measurements on hCSF-1RD1–D5 by SAXS to

generate structural insights into unbound hCSF-1R and any

possible domain rearrangements that might occur upon ligand

binding. The X-ray scattering by hCSF-1RD1–D5 within a broad

concentration range was only consistent with a dimeric species

(Figure 4; Table S1). Interestingly, the MW for hCSF-1RD1–D5 as

determined based on our SAXS data is exactly twice the MW

determined via analytical FFF-MALLS measurements conduct-

ed at lower concentrations (Figure 1A). This suggests that

monomeric and dimeric species for hCSF-1RD1–D5 can exist in

equilibrium, albeit with a rather poor KD. Molecular envelopes

derived from ab initio reconstructions and rigid-body modeling

agree remarkably well with each other and point to awell-defined

dimeric assembly that lacks internal symmetry (Figure 4).

Despite the dramatic deviation from the 2-fold symmetry

observed in the receptor:ligand complex (Figure 3B), we note

that the extended conformation of the unliganded receptor

resembles the bound conformation observed in the EM struc-

ture, hinting that preferential structural sampling might facilitate
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productive ligand binding. The observed hCSF-1R dimerization

in vitro is consistent with previously reported cellular studies

that showed the propensity of CSF-1R to form dimers at the

cell surface of CSF-1-dependent BAC1.2F5 cells (Li and Stanley,

1991). Thus, the structural view of unbound hCSF-1R analysis of

the SAXS data may represent dimeric forms of hCSF-1R at high

levels of receptor expression or when the receptors are constitu-

tively activated in disease scenarios. In this respect extracellular

receptor predimerization could also play an important role in

generating the ultrahigh affinities observed in a physiological

setting. Interestingly, a number of other RTKs, such as the

IGF1 (Lawrence et al., 2007), EGFR (Chung et al., 2010; Mi

et al., 2011), and Eph (Himanen et al., 2007) receptors, do form

oligomers in the absence of cytokine ligand. Nonetheless,

hCSF-1RD1–D5 would have to undergo dramatic domain rear-

rangements to bind hCSF-1. Such conformational switching

has already been observed in the related human KIT (Yuzawa

et al., 2007) and human VEGFR (Ruch et al., 2007). Together,

our data reinforce the notion that extracellular complex forma-

tion is cooperative and relies on an intricate interplay of

receptor-ligand interactions, and intramolecular and homotypic

receptor contacts.

Human and Mouse CSF-1RD1–D3 Can Form Stable

Ternary Complexes with Cognate CSF-1 Ligands

A previous structural study of mCSF-1 in complex with the first

three extracellular domains of mCSF-1R (mCSF-1RD1–D3)

revealed an unexpected binary complex, whereby a mCSF-1

dimer binds monovalently to a single mCSF-1RD1–D3 molecule

(Chen et al., 2008). This is in striking contrast to full-length ecto-

domain that forms a ternary complex with cognate or noncog-

nate ligand (Figures 1–3). To address this apparent discrepancy

in behavior between full-length and truncated receptors and to

explore the contribution of the D4–D5 module to the mechanism

of ternary complex formation, we produced recombinant glyco-

sylated human and mCSF-1RD1–D3 to enable structural and

biophysical studies.

Although the full-length ectodomains could readily reach their

endpoint assembly even with substoichiometric molar amounts

of hCSF-1 using either SEC or FFF methods (Figure 1A), the

CSF-1RD1–D3 constructs behaved differently (Figure 5). Titrating

hCSF-1with amolar excess of hCSF-1RD1–D3 only leads tominor

shift on SEC as a shoulder peak of the unbound CSF-1RD1–D3

peak (Figure 5A). This behavior is consistent with previous find-

ings (Chen et al., 2008). However, upon titrating hCSF-1RD1–D3

with a stoichiometric excess of cytokine ligand, a clear shift

can be obtained in the elution profile of hCSF-1RD1–D3 on SEC

corresponding to a well-defined and markedly larger molecular

species (Figure 5A). We sought to obtain more direct evidence

into the molecular composition of the two species observed in

SEC by attempting to determine their MW via analytical FFF-

MALLS. Preparation of the hCSF-1:hCSF-1RD1–D3 complex by

either a molar excess of hCSF-1 or hCSF-1RD1–D3 consistently

revealed an �65 kDa assembly, consistent with binary complex

formation (Figure 5B). This clearly contradicted the chromato-

graphic observation of two different kinds of complexes via

SEC (Figure 5A). In an effort to resolve this apparent discrep-

ancy, we applied the peak fraction obtained via SEC by titrating

a molar excess of hCSF-1 to hCSF-1RD1–D3 to FFF followed by

MALLS measurements. This fraction falls apart into two peaks,

and the largest molecular species represented a 65 kDa particle

as determined by MALLS (Figure 6A). Therefore, we wondered

whether the kinetics of molecular diffusion underlying the FFF

method combined with a possible instability of the hCSF-

1:hCSF-1RD1–D3 at such low concentrations might affect the

integrity of the complex. To address this, we first subjected

the distinct peak of the hCSF-1:hCSF-1RD1–D3 complex isolated

by SEC (Figure 5A) to crosslinking with formaldehyde followed
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Figure 3. Architecture of Liganded hCSF-1RD1–D5

(A) Three-dimensional reconstruction of the hCSF-1RD1–D5:hCSF-1 complex fromEMdata. A gallery of representative class averages (above) and reprojections of

the final 3D reconstruction (below) under similar orientations is shown.

(B) Angle, front, top, and side orientational views of the reconstructed particle superimposed with computational models of the complex.

(C) Conservation of the D4-D40 dimerizationmotif acrossmembers of the RTKIII and RTKV families. Residues 374–393 present on the D4 bE strand and EF loop of

hKIT are alignedwith corresponding sequences of h/mCSF-1R, hFlt3, hPDGFR, and hVEGFR. Conserved residues are highlighted. hFlt3 lacks the completemotif

and has been shown to be devoid of homotypic receptor contacts (Verstraete et al., 2011).

See also Figure S1.
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by fractionation via FFF and MALLS measurements. Indeed, this

approach led to a dramatically different elution profile on FFF

characterized by a single peak corresponding to a molecular

species of 109 kDa (Figure 6A). This indicates that both binary

and ternary hCSF-1:hCSF-1RD1–D3 complexes are possible de-

pending on experimental conditions, and that an apparent

prerequisite for the formation and stability of the ternary complex

is the presence of a stoichiometric excess of ligand.

We employed ITC to further characterize the interaction

between hCSF-1RD1–D3 with cognate hCSF-1 and to obtain

insights into the contribution of the membrane-proximal module

D4–D5 to the extracellular assembly (Figure 6B). First, the

binding isotherm could be accurately fitted using a ‘‘one set of

binding sites’’ model, and there was no evidence for two sequen-

tial or independent binding sites with different affinities. Impor-

tantly, the complex displayed a 1:2 stoichiometry of binding

revealing bivalent binding of hCSF-1 to hCSF-1RD1–D3, in

complete agreement with the association mode of the full-length

ectodomain complex (Figure 1B). Nonetheless, the strength of

the interaction and the corresponding thermodynamic profile

differs drastically from that of the hCSF-1RD1–D5:hCSF-1 interac-

tion (Figure 6B; Table S2). Notably, hCSF-1 binds 15-fold less

tightly to hCSF-1RD1–D3 than to full-length extracellular hCSF-

1R (KD = 213 nM versus KD = 13.6 nM). Thus, the absence of

the membrane-proximal module D4–D5 provides a significant

enthalpic loss of �15 kcal mol�1 coupled to an entropic gain.

The observation of the bivalent hCSF-1RD1–D3:hCSF-1

complex via ITC (n = 0.5) is in stark contrast to the monovalent

binding mode reported for the mCSF-1RD1–D3:CSF-1 interaction

(Chen et al., 2008), thus creating a puzzling paradox with respect

to mechanistic aspects of receptor binding and activation. It

Figure 4. Plasticity of Unliganded hCSF-1RD1–D5

Structural analysis of unliganded hCSF-1RD1–D5 by SAXS.

Experimental scattering curves are shown in black to

a maximal momentum transfer of s = 0.25 Å�1 (nominal

resolution 25 Å), and the individual data:fit pairs are put on

an arbitrary y axis to allow for better visualization. Curve ‘‘i’’

shows rigid-body optimized fit of dimeric hCSF-1RD1–D5.

Modeling was constrained by specifying ambiguous

contact distances for the D4–D5 and D40–D50 modules

(circled). Curve ‘‘ii’’ shows rigid-body optimized fit of

receptor domains for monomeric hCSF-1RD1–D5. The

upper inset shows the calculated distance distribution

function for modeled dimeric and monomeric receptors,

and their fits with the experimental function. The rigid-

body SASREF model and ab initio GASBOR bead model

are displayed side to side to highlight agreement in overall

shape reconstruction. See also Table S1.

would indeed seem unlikely that complex

formation would bear such fundamental differ-

ences in the two homologous systems given

the preponderance of conserved sequences

on human and mCSF-1 and CSF-1R involved

at the interaction epitope (Figure S2). To resolve

the apparent disagreement between the two

sets of findings, we characterized the assembly

of the mCSF-1:CSF-1RD1–D3 complex by ITC.

Our results based on several experimental

replicas show unequivocally that the stoichiometry, corre-

sponding affinities, and thermodynamic profile for mCSF-

1RD1–D3:mCSF-1 are equivalent to those of the human counter-

part (Figure 6B). Furthermore, we conclude that the relative

contribution of the membrane-proximal domains to complex

formation is similar in the two systems indicating a conserved

role for the D4–D5 in the assembly of the extracellular complex.

Thus, both the human and mCSF-1 ligand-receptor assemblies

appear to share a common interaction mode, based on the

inherent capacity of CSF-1 to bind bivalently to its cognate

receptor. It is currently unclear why the ITC measurements by

Chen et al. (2008) on the mCSF-1RD1–D3:CSF-1 interaction

deviate so fundamentally from the data we present here.

Nonetheless, our combined SEC/FFF/MALLS analysis of the

CSF-1:CSF-1RD1–D3 complex provides a rationale for the crys-

tallographic observation of the intriguing mCSF-1:CSF-1RD1–D3

binary complex (Chen et al., 2008), in the sense that we have

shown that both ternary and binary assemblies can be formed

for the CSF-1:CSF-1RD1–D3 complex depending on experimental

conditions.

To provide further structural insights into extracellular complex

formation and to investigate further the bivalent mode of CSF-1

binding to CSF-1R revealed by our ITC analysis (Figure 6B), we

measured SAXS data for the hCSF-1RD1–D3:hCSF-1 and

mCSF-1RD1–D3:mCSF-1 complexes (Figure 6C; Table S1). Both

complexes were prepared via SEC by saturating CSF-1RD1–D3

with a molar excess of cognate CSF-1, and were conservatively

pooled (Figure 5A). Our data analysis reveals that the crystal

structure of the binary mCSF-1:mCSF-1RD1–D3 complex (Chen

et al., 2008) is grossly incompatible with the SAXS data (Fig-

ure 6C, curve i), thereby directly challenging the claim that
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mCSF-1 cannot dimerize mCSF-1R in the absence of the

membrane-proximal module D4–D5 (Chen et al., 2008). Both

the molecular parameters obtained directly via SAXS and struc-

tural modeling of the data showed unambiguously that hCSF-

1RD1–D3:hCSF-1 and mCSF-1RD1–D3:mCSF-1 can form stable

ternary complexes with P2 symmetry in solution (Figure 6C,

curves ii–iii), thus providing a structural basis for the observed

binding stoichiometries via ITC (Figure 6B). Furthermore, we

note that the overall features of hCSF-1RD1–D3:hCSF-1 in solu-

tion are consistent with the corresponding segment in the

hCSF-1RD1–D5:hCSF-1 EM model, in that D1 points upward,

albeit at a slightly different angle (Figure 6C, curve iii).

A Common Assembly Mechanism for Human

and Mouse CSF-1 Ligand-Receptor Complexes

The integration of our findings on both the human and mouse

CSF-1 ligand-receptor complexes puts our study in position to

help resolve a puzzling mechanistic paradox for the assembly

of extracellular CSF-1 ligand-receptor complexes that arose

from a recent study on the mouse system (Chen et al., 2008).

The premise of this study was that mCSF-1 is unable to dimerize

its cognate receptor in the absence of the membrane-proximal

domains D4 and D5. The authors proposed that formation of

a binary complex lowers the affinity of the second binding site

on the dimeric cytokine, calling upon a ‘‘negative cooperativity’’

scenario, and extrapolated their reasoning to a distinct mecha-

nistic proposal for CSF-1R activation entailing two steps. In a first

step, the ligand and receptor form an initial binary complex with

low affinity that can only proceed to the ternary complex upon

the simultaneous formation of cytokine-receptor interactions at

the opposite binding epitope coupled to homotypic receptor

interactions.

The diverse biochemical and structural evidence we reported

here illustrates that the assembly of human and mouse extracel-

lular CSF-1 complexes is driven by two common overriding prin-

ciples. In the first instance, the cytokine ligands have the inherent

capacity to offer two receptor binding sites leading to ternary

complex formation. Thus, bivalent binding of CSF-1 can take

place to the pool of monomeric and dimeric CSF-1R at the cell

surface. Second, assembly of the high-affinity complex is

dramatically enhanced as a result of well-defined homotypic

interactions between extracellular domain 4 modules. This is

an example of positive cooperativity, and in the case of CSF-1,

this is reflected in a pronounced enthalpy gain upon formation

of the ternary complex. This also implies that binding of cytokine

ligand to already predimerized CSF-1R would invoke a re-

orientation of the ectodomains to prime their role in the signaling

complex. Together, these two sequential steps constitute a clear

consensus for the binding events that lead to the assembly of

high-affinity human and mCSF-1 ligand-receptor complexes. It

remains to be seenwhether IL-34, the newly discovered cytokine

ligand for CSF-1R, will follow suit.

EXPERIMENTAL PROCEDURES

Production of Recombinant CSF-1 and CSF-1R Ectodomain Variants

and Complexes Thereof

Recombinant human and mCSF-1 were produced as inclusion bodies in

a prokaryotic expression system based on a previously described approach

(Verstraete et al., 2009) and were purified to homogeneity following in vitro

refolding. The fragment encoding residues 1–149 corresponding to the a splice

variant of human and mCSF-1 was cloned into the pET-15b vector (Novagen).

After expression in the BL21(DE3) CodonPlus-RP (Novagen) E. coli strain,

h/mCSF-1 accumulated as inclusion bodies. The inclusion bodies were

washed three times and then solubilized in 6.5 M GnHCl, 100 mM NaPO4

(pH 8.0), 10 mM Tris, and 10 mM b-mercaptoethanol (BME). Next, denatured

h/mCSF-1 was refolded by rapid dilution in refolding buffer (100 mM Tris

[pH 8.5], 1 M L-arginine, 3 mM GSH, 1.5 mM GSSG, and 0.2 mM PMSF) at

277 K. The clarified refoldingmixture was loaded onto a HisTrap FF 5ml affinity

column, eluted, and subsequently purified by SEC using a Prep-Grade HiLoad

Figure 5. hCSF-1 Can Make Both a Monovalent and Bivalent Complex with hCSF-1RD1–D3

(A) Isolation of the hCSF-1RD1–D3:hCSF-1 complex by SEC. Titration with either a molar excess of hCSF-1RD1–D3 or hCSF-1 leads to different complexes. A

marked shift in elution profile away from the individual protein components can only be observed after titration with a molar excess of hCSF-1. The resulting peak

fraction has as such been analyzed by SAXS (Figure 6C). The different protein components employed are annotated.

(B) Only the binary complex can be observed by FFF, regardless of stoichiometric excess of any component.
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Figure 6. Human and Mouse CSF-1RD1–D3 Can Form Ternary Complexes with Cognate CSF-1 Ligands

(A) The ternary hCSF-1RD1–D3:hCSF-1 complex is transient on FFF. Injection of the isolated SEC peak fraction (Figure 5A) on FFF reveals a disassembly of the

complex. A 110 kDa species indicative of a ternary complex can only be observed after incubation with a crosslinking agent, suggesting that a ternary complex is

inherently less stable. The insets show an SDS-PAGE strip of the isolated noncrosslinked complex and molecular mass determination by MALLS.

(B) Thermodynamic profile of hCSF-1RD1–D3:hCSF-1 and mCSF-1RD1–D3:mCSF-1. Both thermograms can be accurately fitted by a ‘‘one set of binding sites’’

model and display a 1:2 CSF-1:CSF-1RD1–D3 stoichiometry of binding.

(C) Structural analysis of hCSF-1RD1–D3:hCSF-1 (left panel) and mCSF-1RD1–D3:mCSF-1 (right panel) by SAXS after isolation by SEC (Figure 5A). Experimental

scattering curves are shown in black to a maximal momentum transfer of s = 0.25 Å�1 (nominal resolution 25 Å), and the individual data:fit pairs are put on an

arbitrary y axis to allow for better visualization. Curve ‘‘i’’ shows a comparison of the experimental scattering with calculated scattering from the monovalent

mCSF-1RD1–D3:mCSF-1 structure (PDB code 3EJJ). This binary model lacks significant scattering mass as judged by the gross incompatibility with the lowest

angle experimental data. Curve ‘‘ii’’ illustrates a comparison of the experimental scattering with calculated scattering from a bivalent model derived from the

mCSF-1RD1–D3:mCSF-1 structure (PDB code 3EJJ) in which an additional CSF-1RD1–D3 arm was generated by applying a pure 2-fold symmetry operation about

the ligand dimer interface (circled). Curve ‘‘iii’’ shows rigid-body optimized fit of the bivalent CSF-1RD1–D3:CSF-1 complex with specified CSF-1:CSF-1RD2 core

contacts and moving domains D1 and D3. The upper insets show the calculated distance distribution function for the modeled ternary complexes (blue or green)

and for PDBid 3EJJ (red), and their fits with the experimental function (black). The lower insets display the experimental Guinier region (black) and the calculated

Guinier region of the rigid-body refined ternary models (blue or green) and the binary PDBid 3EJJmodel (red). The shaded area indicates the range of fitting forRG

analysis (RG$S% 1.3).

See also Figure S2 and Table S2.
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16/60 Superdex 75 column (GE Healthcare). To remove the N-terminal His

tag, h/mCSF-1 was subsequently incubated overnight at room temperature

with 1 U of biotinylated thrombin (Novagen) per milligram of h/mCSF-1.

Proteolytic cleavage was monitored by SDS-PAGE. Biotinylated thrombin

was removed using a streptavidin-agarose column (Novagen). Thrombin-

treated h/mCSF-1 was purified using a Source 30Q anion-exchange resin,

followed by gel filtration chromatography on a Superdex-75 column (GE

Healthcare). The fractions corresponding to h/mCSF-1 were pooled and

used for further experiments.

Recombinant glycosylated human and murine CSF-1R ectodomain variants

were produced in transiently transfected HEK293T cells in the presence of

kifunensine based on established protocols (Aricescu et al., 2006; Chang

et al., 2007; Verstraete et al., 2011a). The recombinant CSF-1R ectodomains

carried a C-terminal 6xHis tag. h/mCSF-1R was purified by affinity chromatog-

raphy from the supernatant using a Talon FF column (Clontech). The eluted

fractions containing the purified protein were subsequently injected onto

a Prep-Grade HiLoad 16/60 Superdex 200 column (GE Healthcare). The

fractions corresponding to h/mCSF-1R were pooled and used for further

experiments.

Human and murine CSF-1RD1–D5:CSF-1 and CSF-1RD1–D3:CSF-1 com-

plexes were isolated by gel filtration chromatography on Superdex-200

column (GE Healthcare) after incubation of CSF-1R ectodomains with excess

molar amounts of purified cognate CSF-1.

MALLS

The molecular masses of CSF-1, CSF-1R, and the CSF-1R:CSF-1 complexes

were determined by MALLS. Protein sample was injected into a HPLC-driven

(Shimadzu) FFF module (Wyatt Technology) equilibrated with a 20 mMHEPES

(pH 7.5), 150 mM NaCl running buffer. The FFF module was coupled to an

online UV detector (Shimadzu), an 18-angle light scattering detector (DAWN

HELEOS), and a refractive index detector (Optilab T-rEX) (Wyatt Technology).

Typical concentrations used were 1–10 mM of protein species. A RI increment

value (dn/dc value) of 0.185 ml/g was used for the protein concentration and

molecular mass determination. FFF cross-flows were varied to optimize the

resolution of separation. Data analysis was carried out using the ASTRA V

software.

EM

For preparation of negatively stained hCSF-1RD1–D5:hCSF-1 complex, purified

sample at �0.2 mg/ml in PBS was applied to the clear side of carbon on

a carbon-mica interface and stained with 2% (w/v) uranyl acetate. Images

were recorded under low-dose conditions with a JEOL 1200 EX II microscope

at 100 kV and at a nominal 40.0003 magnification. Selected negatives were

digitized on a Zeiss scanner (Photoscan TD) to a pixel size of 3.5 Å at the spec-

imen level. Image processing was carried out using the boxer routine from the

EMAN software package (Ludtke et al., 1999) for particle selection, CTFFIND3

(Mindell and Grigorieff, 2003) for contrast transfer function determination, bctf

from the bsoft package (Heymann et al., 2008) for CTF correction, Imagic (van

Heel et al., 1996) for MSA, classification, and angular reconstitution, and

Spider (Shaikh et al., 2008) for projection matching. UROX (Siebert and Nav-

aza, 2009) was used for structure fitting.

A generous semiautomatic particle selection with the EMAN boxer routine

led to the extraction of a total of 18,432 individual particle subframes of

80 3 80 pixels that were corrected with respect to the contrast transfer func-

tion, and low-path filtered at 15 Å resolution. The data set was translationally

aligned relative to the rotationally averaged total sum of the individual images.

The aligned data set was subjected to MSA, which suggested the presence of

a 2-fold symmetry axis. Characteristic class averages were used as a set of

references for multi-reference alignment (MRA) followed by MSA and classifi-

cation. After several iterations, representative class averages were selected to

generate a crude initial model of the hCSF-1RD1–D5:hCSF-1 complex by

angular reconstitution in C2 symmetry. Iterative projection matching of the

model led to a 3D reconstruction with a well-defined global core correspond-

ing to the ligand and hCSF-1RD2-D5, and a protruding weak density cloud,

which we interpreted as D1 linked via a flexible linker to D2 in the complex

core. To isolate a population of hCSF-1R1RD2-D5:hCSF-1 particles with

a better-defined orientation for D1, a set of models with the same core fitting

the EM envelope, but different orientations of D1 protruding into the weak

density cloud, was created based on the mCSF-1R1RD1–D3-mCSF-1 crystal

structure (Chen et al., 2008). These models were converted into EM density

and averaged together, which reinforced the density of the core in comparison

to D1, thus supporting the notion that D1 is flexible. The average model was

used for more rounds of projection matching, which allowed a better definition

for the position of D1. A total of 9,421 particles were included in the final recon-

struction, which approached 23 Å resolution as estimated via Fourier shell

correlation (FSC) according to the 0.5 criterion.

Modeling of the hCSF-1RD1–D5:hCSF-1 Complex

into the EM Envelope

A homology model for hCSF-1RD1–D5 based on PDB entry 2E9W (Yuzawa

et al., 2007) was fit into the 3D envelopes from EM with the EMAP module

(Wu et al., 2003) of the CHARMM (Brooks et al., 2009) package to generate

initial positions of the complex. A self-guided Langevin dynamics (Wu and

Brooks, 2003) simulation of 1,000 ps was performed, including an implicit

solvation model, to search the conformational space to reach the conforma-

tions satisfying the EMmap constraints. The final conformation wasminimized

with constraints to maintain the C2 symmetry.

SAXS

Data were collected at beamlines X33 of the EMBL at DESY (Hamburg) and

ID14-3 at ESRF (Grenoble) using a robotic sample changer (Roessle et al.,

2008). The measurements were carried out at 298 K, within a momentum

transfer range of 0.01 Å�1 < s < 0.6 Å�1, where s = 4psin(q)/l, and 2q is the

scattering angle. All samples were measured at solute concentrations ranging

from 0.5 to 10.0 mg/ml in 50mMNaPO4 (pH 7.40), 100mMNaCl, with intermit-

tent buffer solution (50 mM NaPO4 [pH 7.40], 100 mM NaCl), and the radiation

damage was monitored using standard procedures. The data were processed

and extrapolated to infinite dilution, and the Guinier region was inspected

using the program PRIMUS (Konarev et al., 2003). The radius of gyration

(Rg), the forward scattering (I(0)), the maximum particle dimension (Dmax),

and the distance distribution function (p(r)) were evaluated using GNOM (Sver-

gun, 1992). The molecular masses of the different constructs were calculated

by comparison with the reference bovine serum albumin (BSA) samples. DAM-

MIN (Svergun, 1999) and AUTOPOROD were used to obtain the excluded

volume and Porod volume of the particles, respectively. GASBOR (Svergun

et al., 2001) was used to obtain the higher resolution ab initio bead models

for the unliganded hCSF-1RD1–D5; 15 independent runs with an average NSD

value of 2.3 were structurally aligned and averaged with DAMAVER (Volkov

and Svergun, 2003). X-ray scattering patterns from structural models were

calculated using the program CRYSOL (Svergun et al., 1995). Constrained

rigid-body refinement of the h/mCSF-1RD1–D3:h/mCSF-1 complexes was

carried out in SASREF7 (Petoukhov and Svergun, 2005) with imposed P2

symmetry and specified CSF-1:CSF-1RD2 contacts. Constrained rigid-body

refinement of the hCSF-1RD1–D5:hCSF-1 complex was carried out in SASREF7

with imposed P2 symmetry, specified CSF-1:CSF-1RD2 contacts, and ambig-

uous contact distances for the D4-D40 interface. Constrained rigid-body

refinement of the unliganded receptor was carried out in P1 symmetry, and

refinement convergence was optimal upon definition of ambiguous distance

contacts at the D4-D40 interface.

ITC

Calorimetric measurements were carried out using purified h/mCSF-1 and

h/mCSF-1R samples dialyzed exhaustively against 20 mM HEPES (pH 7.5),

150 mMNaCl. Experiments were carried out using a VP-ITC MicroCalorimeter

at 310 K, and data were analyzed using the Origin ITC analysis software

package. Titrations were always preceded by an initial injection of 3 ml and

were carried out using 10 ml injections applied 300 s apart, with continuous stir-

ring. The data were fit to the ‘‘one binding site model,’’ and apparent molar

reaction enthalpy (DH�), apparent entropy (DS�), association constant (KA),

and stoichiometry of binding (N) were determined. Several titrations were per-

formed to evaluate reproducibility.
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Thesis Summary  
Flexible helical protein polymers exemplified by actin filaments, microtubules and bacterial flagella are 

ubiquitous in biology. Due to their size and intrinsic irregularities, the structure of these polymers cannot be solved by X-
ray crystallography. Since half a century, three-dimensional (3D) reconstruction from two-dimensional (2D) Electron 
Microscopy (EM) images appears as a method of choice to solve the structure of large helical polymers. However, 
depending on the degree of flexibility of the analyzed helices, the 3D reconstruction process can still be a daunting task. 
For the most regular helices, the classical reciprocal space-based Fourier-Bessel approach can allow both to determine 
the helical symmetry and to calculate 3D structures. For more flexible structures, recent “single-particle” approaches 
consist in segmentation of long irregular helices into short (i.e. locally more regular) segments and their processing as 
asymmetrical objects with defined symmetry-imposed constraints (Egelman, 2000; Sachse et al., 2007). However, two 
major difficulties remain: the heterogeneous data must be sorted into homogeneous populations and the helical symmetry 
for each population has to be determined. In the presented work, we explored various single-particle approaches, 
developed new analysis methods, and implemented most of them into a user-friendly processing pipeline. The target 
biological objects were helical nucleocapsids of two negative strand RNA viruses, Measles (MeV) and Vesicular 
Stomatitis Virus (VSV ; the prototype for Rabies), the latter being particularly flexible in terms of helical parameters 
(diameter, number of subunits per turn). Nucleocapsids are formed by the viral genomic RNA coated by the 
nucleoprotein and serve as a template for viral replication and transcription. To overcome the heterogeneity problem, we 
used 2D classification, described general processing protocols and applications for helical segments, and introduced a 
new classification method based on the power spectra of the images. The determination of helical symmetry(ies) was 
addressed by a novel approach relying on ab initio exhaustive search of helical parameters whereby we start from a 
single 2D image, reconstruct as many 3D structures as parameters to test by cropping the image and assigning views to 
the obtained segments, and calculate the cross-correlation (CC) of the reprojection of the 3D model with the initial 
image. Applied to artificial data sets, the method was effectively able to detect a maximum of CC for the true symmetry 
parameters, but also showed intrinsic ambiguities of helical symmetry determination on which we extensively comment. 
Altogether, the result of this method-oriented work allowed us to address several biological questions. First, the 3D 
reconstruction by negative stain EM of two forms of nucleocapsids of MeV coupled to a docking of a homologous 
crystal structure enabled us to determine the orientation of the nucleoprotein and of the RNA in the nucleocapsids. 
Secondly, we assessed the structure of in vitro formed nucleocapsids of VSV and showed that assemblies close to the 
native viral nucleocapsids can be formed in the absence of any other viral proteins, thus providing new insights into the 
assembly of this virus. As a perspective of this work, our pipeline of flexible helical analysis is being extended and 
successfully used for other projects. 
 Les biopolymères hélicoïdaux flexibles sont ubiquitaires dans le monde biologique. Du fait de leur taille et de 
leur irrégularité, leur structure ne peut pas être résolue par cristallographie aux rayons X. Depuis un demi-siècle, la 
reconstruction 3D à partir d’images 2D obtenues par microscopie électronique (ME) s’est imposée comme une méthode 
de choix pour résoudre les structures de polymères hélicoïdaux. Cependant, en fonction du degré de flexibilité des 
hélices, le processus de reconstruction peut s’avérer être une tâche délicate. Pour les hélices les plus régulières, la 
méthode classique basée sur les méthodes de Fourier-Bessel permettent en même temps de déterminer les paramètres 
hélicoïdaux et de calculer des reconstructions 3D. Pour les structures plus flexibles, des approches récemment 
développées consistent à segmenter les long hélices en courts segments, localement plus régulier, et les traiter comme des 
particules isolées, tout en ajoutant des contraintes basées sur la symétrie (Egelman, 2000; Sachse et al., 2007). Deux 
difficultés majeures subsistent : les données, hétérogènes, doivent être séparées en sous-ensembles plus homogènes, et la 
symétrie doit être déterminée pour chaque sous-ensemble. Dans le travail présenté, pour résoudre ces problèmes, nous 
avons exploré différentes méthodes de particules isolées, développé de nouvelles approches, et implémenté la plupart 
dans une suite de modules de traitement d’image orientée utilisateur. Les objets biologiques étudiés ont été les 
nucléocapsides hélicoïdales et flexibles des virus de la Rougeole (MeV) et de la stomatite vésiculaire (VSV). Les 
nucléocapsides sont constituées du génome viral (ARN simple brin), couvert par la nucléoprotéine, et servent de matrices 
pour la transcription et la réplication virale. Pour palier a l’hétérogénéité des données, nous avons utilisé la classification 
2D, décrit des protocoles de traitement et leur application aux segments hélicoïdaux, et introduit une nouvelle méthode 
de classification basée sur le spectre de puissance des images. Pour la détermination des paramètres de symétrie, nous 
proposons un approche nouvelle, ab initio, se basant sur une recherche quasi-exhaustive des paramètres et dans laquelle 
l’information de départ est une simple image 2D. Cette méthode a été testée sur des données artificielles et a montré 
qu’elle permet d’obtenir un score localement maximum  pour les paramètres réels, même si sur un champ plus large, 
plusieurs solutions apparaissent possibles, montrant ainsi l’ambigüité intrinsèque de la détermination des paramètres de 
symétrie hélicoïdale sur une image 2D, que nous caractérisons et  commentons en détail. Dans l’ensemble, les résultats 
de cette thèse orientée méthodes nous ont permis de répondre a plusieurs questions biologiques. Premièrement, les 
reconstructions 3D obtenues par coloration négative de deux formes de nucléocapsides de MeV associées au recalage 
d’un structure cristallographique d’une protéine homologue nous ont permis de déterminer l’orientation de la 
nucléoprotéine et de l’ARN viral dans les nucléocapsides. Deuxièmement, nous avons résolu la structure de 
nucléocapsides de VSV reconstituées in vitro et avons montré que des assemblages proches de ceux trouves dans le virus 
natif peuvent être formés en l’absence de toute autre protéine virale, apportant un nouveau regard sur l’assemblage de ce 
virus. En perspective de ce travail, notre suite de modules de traitement d’image adaptés aux hélices flexibles est 
maintenant étendue et utilisée avec succès pour d’autres projets. 
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