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Resume 

Les composants nano électroniques ont fait l'objet d'intérêt marqué, au sein de la communauté des 

concepteurs de circuits radiofréquence au cours de ces dernières années. Non seulement ils peuvent 

présenter des caractéristiques intéressantes, mais ils offrent la perspective d'améliorations de la 

miniaturisation des composants les plus avancés. Les nanotubes de carbone et les nanofils conducteurs 

sont attendus comme pouvant potentiellement constituer des blocs utilisables dans les futurs circuits 

aux très faibles dimensions. Les conducteurs métalliques sont utilisés depuis longtemps pour réaliser 

des composants passifs dans les circuits intégrés radio fréquence, cependant très peu de travaux ont été 

menés sur des conducteurs ayant des dimensions nanométriques et fonctionnant dans le domaine 

millimétrique. L'objectif de cette thèse est d'exploré les propriétés RF de conducteurs métalliques aux 

dimensions nanométriques et la possibilité de les intégrés dans des circuits utilisant des technologies 

CMOS. 

Dans cette thèse, des lignes de transmission et des antennes intégrées sur puce, utilisant des 

nanofils conducteurs, ont été conçues et réalisées en utilisant un processus de fabrication "top-down". 

Les caractéristiques en terme de transmission de signal ont été observées expérimentalement dans le 

domaine millimétrique par la mesure de paramètres S. Deux types de lignes ont été conçus : des lignes 

micro-ruban de faible épaisseur et des lignes coplanaires. Les caractéristiques en fonction de la 

fréquence du signal d'excitation ont été analysées. Différents paramètres comme la largeur, l'épaisseur, 

le nombre de nanofils et la distance entre les nanofils ont été étudiés. De plus, un modèle de 

propagation basée sur des ondes quasi-TEM a été proposé pour obtenir une compréhension fine du 

comportement physique des nanofils. Par ailleurs, une étude approfondies concernant les techniques 

d'épluchage (de-embedding) a été menée afin d'améliorer la précision des mesures. En parallèle, des 

antennes dipôle et IFA, utilisant des nanofils, ont été réalisées pour tester la transmission sans ligne de 

propagation. Différentes dimensions de conducteurs et différents types de substrats ont été utilisés 

pour étudier leurs propriétés et obtenir les meilleures performances. 
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Abstract 

Nano-electronic devices have attracted much attention for the radio frequency engineering community 

in recent years. They not only exhibit compelling characteristics but show promises to enhance the 

miniaturization of modern devices. Carbon nanotubes and conducting nanowires are believed to be 

potential building blocks for ultra-small chip of the future. Metallic wires have long been utilized as 

the passive components in the RF integrated circuit but there are very few studies on their nanoscale 

counterpart particularly up to millimeter-wave frequencies. The focus of this thesis is to explore RF 

properties of metallic nanowires and their potentials to be integrated in CMOS communication 

technology.  

In this thesis, transmission lines and on-chip antennas integrated with metallic nanowires were 

developed enabled by top-down fabrication processes. The signal transmission properties of such 

devices were characterized well into the mm-wave regime based on two-port S-parameters 

measurement. Two types of nano-transmission lines were designed: thin film microstrip lines and 

coplanar waveguides. Their transmission characteristics as a function of frequencies were analysed. 

Different parameters like the linewidth, thickness, number of nanowires, and the distance between the 

wires were examined. In addition, a quasi-TEM propagation model was proposed to provide a further 

insight into the physical behaviours of the nanowires. Moreover, a comprehensive study regarding the 

de-embedding techniques was carried out in order to improve measurement accuracy. Meanwhile, on-

chip dipoles and planar meander-line inverted–F antenna were implemented to test the wireless signal 

transmission of the metallic nanowires. Various wires dimensions and substrates were designed to 

exploit their characteristics thus facilitating better transmission. 
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Chapter 1 

Introduction 

1.1 Overview of Nano-electronics in Radio-
Frequency Technology 

The remarkable research progress in nanotechnology opens up new opportunities for designing novel 

electronic devices. The integration with nanoscale components not only enables the miniaturization of 

the device but increases the capabilities of electronic systems. The aim of nano-electronics is to take 

advantages of the properties of nanoscale matter that are distinctly different from macroscopic 

properties. Researches have been pursued worldwide to find nano-solutions in the fields of signal 

processing, energy harvesting, wireless communication and biomedical sensing just to name a few [1] 

[2].  

In semiconductor electronics, the size of the transistor has a sustained exponential scaling into 

nanoscale dimension (known as Moore’s law). The performance and the integration density were 

significantly improved over the last thirty years. According to the recent versions of ITRS Update, the 

pace of downsizing is less aggressive due to the economic crisis and physical barrier in technology. 

The logic CMOS will encounter eventually its shrinking limitation in 20-30 years [3]. The 

fundamental challenge is the risk of dielectric breakdown as the thickness of the silicon dioxide 

insulator is merely a few atomic layers [4]. The implementation of nanotechnology provides 

alternative technological solution for replacing current planer bulk CMOS. Nanowires (NWs) [5] [6] 

and carbon nanotubes (CNTs) [7] [8] are recognized as potential candidates to substitute the 

macroscopic silicon components in contemporary transistors. With such quasi-one-dimensional 

structures, a transistor can operate near the ballistic limit (no scattering along its length) thus achieving 

extremely high mobility. Recently, CNT field effect transistors (FET) with a sub-10 nm channel length 

have been demonstrated, having at least more than four times improvement in performance compared 

to state-of–the-art silicon circuits [9].  

The advancement in nanoscale transistors has made it possible to turn the focus of research to 

high frequency electronic devices [10] [11]. The advantages found in nanotubes and nanowires such as 

high carrier mobility, high saturation velocity and high cut-off frequency are expected to be especially 

suitable for high frequency operation. The recent studies [12] [13] [14] on the use of CNT-based and 

silicon nanowire based field-effect transistors up to terahertz regime shed light on their analogue RF 

applications. As the size of the active devices approaches nano-metric dimension, to retain the circuit 

speed expected from miniaturization, the interconnect technology must be developed to be suitable for 

these new device concepts. It is natural to think of using nanotubes and nanowires themselves as high 

frequency interconnects in the integrated circuit. They may play an important role in the design of 

future micro and nano-electronics system for transmitting signal between components and connecting 
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devices. Above that, the concept of nano-antenna based on nanotubes and nanowires for wireless 

communication has been proposed to connect nano-electronic devices and the macroscopic world, 

making possible potentially high density circuitry in an advanced miniaturized system [15].  

1.1.1 Nano-transmission Lines 

Today, on-chip transmission lines for silicon monolithic integrated millimeter-wave (mm-wave) 

circuits are fabricated out of metals like copper and aluminium. The dimension of the linewidth and 

wire thickness is no less than 1 μm in the most advanced back end of line (BEOL) CMOS technology, 

thereby ensuring a low conductor loss and a good impedance match [16]. As in all technology scaling 

scenarios, metal losses increase significantly especially when the linewidth and thickness come close 

to a critical value of 100 nm. The DC metal conductivity degrades due to surface and grain boundary 

scattering. Wires are also more vulnerable to electro-migration [17]. In this regard, metallic carbon 

nanotubes outperform metallic nanowires. They exhibit ballistic flow of electrons with an electron 

mean free path of several microns and are capable to carry large current densities [18]. On the other 

hand, due to the lack of sufficient control over quality and geometry during fabrication, metallic 

nanowires may have more advantages than carbon nanotubes from a practical point of view. At this 

stage, CNTs may appear to receive more attention than nanowires. But there is an increasing interest 

in investigating metallic nanowires regarding their RF interconnect application. 

Electrical Properties of Carbon Nanotubes 

Carbon nanotubes are formed of sheets of graphite rolled into cylinders. The diameter is varying from 

0.4 to 100 nm with lengths up to 1 mm [19]. Depending on the direction in which CNTs are rolled up, 

they demonstrate either metallic or semiconducting properties. Metallic CNTs have been considered as 

a promising interconnect material for the future. CNTs can also be categorized into single-walled 

(SWCNT) and multi-walled (comprising multiple concentric cylindrical shells) nanotubes (MWCNT). 

Both of them show excellent high current carrying capacity and thermal conductivities. For SWCNTs, 

it has been demonstrated that ballistic transport can be more easily achieved of the order of a micron. 

Therefore, they are a preferable candidate for interconnect application to MWCNTs [20]. The DC 

electrical properties of SWCNTs can be found in [21]. The resistance of a CNT is a function of the 

bias voltage and the length. For a nanotube with a short length, under small biases, the quantum 

resistance limit (or ballistic transport) can be reached. A CNT of a typical diameter of 1-2 nm exhibits 

high resistance per unit length. The minimum resistance of a single SWCNT is h/4e
2
, which is 

approximately 6 kΩ. Several groups have demonstrated the resistance approaching this value 

experimentally [22]. Such performance shows insignificant improvement over metal interconnects. To 

overcome the large resistance associated with their small radius, it is natural to consider using bundles 

of carbon nanotubes. Their potential to surpass the performance of metal interconnects has been 

discussed in [23]. 

Concerning AC signals, the electrical properties of CNTs are not yet well understood 

experimentally. The pioneering work of Burke provides a qualitative description for the electrical 

model of CNTs at high frequencies [24]. They introduced the Luttinger liquid-based transmission-line 

model to account dynamic RF responses of a SWCNT over a metallic ground plane. While a 

traditional transmission line is modelled as a circuit having a magnetic inductance (LM) and an 

electrostatic capacitance (CE) as shown in Figure 1.1, the Luttinger liquid-based model includes an 

additional kinetic inductance LK and a quantum capacitance CQ (Figure 1.2) [25]. Furthermore, it has 

been theoretically demonstrated that the kinetic inductance can be 10,000 times larger than the 

magnetic inductance. The estimated LK of a SWCNT is in the order of 16 nH/µm. On the other hand, 
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the quantum capacitance is 100 aF/µm, about the same order of magnitude as the electrostatic 

capacitance [26]. The very high inductance per unit length results in an electromagnetic slow-wave 

propagation with a phase velocity in the order of c0/100 to c0/50, where c0 is the speed of light in free 

space [27]. This phenomenon of slow waves makes CNTs very appealing in RF applications as the 

reduction of transmission wavelength can leverage the miniaturization capability in RF integrated 

circuit design.  

 

Figure 1.1 Conventional transmission line model [25] 

 

Figure 1.2 Equivalent circuit model for a carbon nanotube [25] 

Electrical Properties of Metallic Nanowires 

While research in metallic nanowires at high frequencies is still in its early stage, their DC properties 

have been studied for many years thanks to the remarkable advancement in CMOS technology. 

Copper was first introduced as interconnecting wires at the 220 nm technology node in the late 1990s 

[28]. It has a good conductivity among all the metals. Nevertheless, about 10 years later, the industry 

was facing performance limit due to the conductivity as wires must be even smaller. Processors using 

32 nm technology node have already gone into mass production since 2010. The width and thickness 

of the lowest level of interconnects have scaled below 100 nm.  

Nanoscale metallic wires can be obtained with different approaches. They can be fabricated either 

via physical deposition and e-beam lithography or chemical synthesis. For lithographically fabricated 

copper wires, it is known that the electrical resistivity is higher than bulk copper when the lateral 

dimension is scaled below 100 nm. Nanowires patterned by lithography are typically polycrystalline 

and have rough surfaces. Such nanowires suffer from surface and grain-boundary scattering thus 

giving rise to high resistivity [17]. Different models were proposed to evaluate which of these 

mechanisms is more dominating. The resistivity in nanoscale wires has been observed to be much 

greater than the bulk value as can be seen in Figure 1.3 [29] [30]. Chemically synthesized NWs, on the 

other hand, due to the single crystalline nature, exhibit much lower resistivity than that of 

polycrystalline NWs. Studies on the fabrication and characterization of single crystal silver, gold and 

copper nanowires with diameters of the order of 10 nm have been reported recently [31] [32]. These 

wires show a resistivity only twice as higher as that of bulk metals. They are also free of energy 

dissipation and void diffusion and have high failure current densities. Hence, in the domain of 

interconnects, they are quite attractive.  

Just like CNTs, AC characteristics of metallic NWs were first studied theoretically. Similar 

transport properties were proposed to estimate the conductance, capacitance and inductance of metallic 

nanowires [25]. It was shown that metal nanowires do possess an appreciable kinetic inductance as in 

the case of CNTs if their cross section is reduced to the same order as that of CNTs. While the 
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magnetic inductance arises from the motions of charges or current, the kinetic inductance originates 

from the kinetic energy of the electrons. It is then intrinsic to any conductors. Its importance depends 

on the number of subbands or the current-carrying mode (M) in the energy band of the material. For a 

conventional transmission line, M is large enough that CQ and LK can be ignored whereas in the case of 

a CNT, the number of modes is only two. M is approximately equal to the number of half-wavelengths 

(electronic) that fit into the cross section. For copper wires, this quantum effect becomes increasingly 

pronounced when the cross section scales below 10 × 10 nm [25]. Based on Boltzmann’s equation and 

Maxwell’s equations, Hanson [33] derived a general expression for the spatially dispersive 

conductivity, which leads to a common form of intrinsic distributed impedance of CNTs and solid 

NWs. Their CQ and LK were evaluated from GHz up to THz frequencies. He concluded that for a solid 

metal wire with diameter equals to 10 nm, its resistance is approximately two orders of magnitude 

smaller than that of a CNT (The grain boundary and surface scattering effects were ignored) but the 

kinetic inductance is at least three orders of magnitude smaller. The quantum capacitance can be 

almost neglected. Obviously, slow wave propagation effect is not as significant in metallic nanowires 

as in CNT. The fact is that the electron relaxation time of a CNT is about 20 times longer than that of a 

metallic nanowire (the electron relaxation time is the time that an electron resides in a given quantum 

state before changing state as a result of collision with another particle or intrinsic excitation). This 

makes LK acquire a greater significance at moderate frequencies at the order of ~100 GHz. In addition, 

in most of the reported models [25] [34], the skin effect was ignored. For example, the skin depth of 

copper is 300 nm at 60 GHz. It seems to be a plausible assumption that the skin effect is less effective 

in metallic nanowires, although it has never been proven experimentally. 

 
Figure 1.3 Cu resistivity as a function of linewidth, taking into account the grain boundary and interface electron scattering [30] 

1.1.2 Nano-antenna 

A critical unsolved problem in nanotechnology is how to make electrical contact from nano-devices to 

the macroscopic world. For future nano-systems consisting of a high-density circuitry, it is 

technologically challenging if each nano-device has to be connected lithographically. One potential 

solution is to use wireless interconnects [34]. If nanotubes or nanowires can act as antenna, it is 

possible to achieve short range data transfer such as wireless inter-chip and intra-chip communication 

while maintaining high complexity and density of nano-systems.  

The feasibility of using a CNT as an antenna has been studied over the past years [27] [34] [35] 

[36]. Perhaps the most discussed configuration is dipole antenna. Due to the slow wave propagation 

effect, the wavelength of the electromagnetic wave propagating in a CNT is considerably smaller than 

that of the free-space. With this unique characteristic, CNT nano-antenna can be brought into 

resonance in the low terahertz regime [27]. In the case of metal nanowires, depending on the used 
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metallic material, similar phenomena can be found but only at optical frequencies or above [37]. 

Considering a carbon nanotube dipole with its half-length equal to 1 μm, the first resonance in the air 

is at 1300 GHz (phase velocity = 0.017c0) whereas a perfectly conducting metallic dipole with the 

same size would resonate at 75000 GHz [38]. 

However, it is clear that there are several issues to be addressed to make nano-antenna a reality. 

Nano-scale antennas have much lower gain and radiation efficiency than conventional wire antennas 

which is a characteristic of small size antennas. For instance, for a single wall carbon nanotube dipole 

having a diameter of 2.712 nm and a length of 10 µm, the antenna efficiency is at the order of 10
-5

 to 

10
-6

 at the frequency from 10 to 450 GHz whereas the antenna efficiency of a copper dipole with a 

radius larger than a few microns is close to 1, behaving almost like a perfect conductor [38]. This is a 

result of the input mismatching between the CNT and the free space and the associated high conductor 

losses at this size. The radiation properties of metallic nanowires and carbon nanotubes for antenna 

applications in the GHz to THz range have been discussed in [39]. For a small radius dipole below 100 

nm in radius, the working frequency needs to be increased to maintain a certain radiation efficiency. It 

was estimated that a copper dipole having a diameter of 80 nm can maintain radiation efficiency up to 

50% if excited at 1 THz. Otherwise If a working frequency of 10 GHz is required, the radius of a 

copper dipole must be 750 nm. Alternatively, one can consider materials with better conductivity, such 

as MWCNTs or superconducting materials.  

Another possible configuration of nanoscale antennas is the nanoelectronics-based integrated 

antennas. Over the past 40 years, wireless carrier frequencies have increased from 400 MHz in early 

improved mobile telephone systems (IMTS) to 5.8 GHz in today’s IEEE 802.11a WiFi network. At 

millimeter-wave frequencies (>30 GHz) the size of an antenna becomes comparable to the size of a 

typical integrated circuit, thus enabling the use of on-chip antennas. Furthermore, the integration of 

antennas with the RF circuit has been recently received a lot of attention at 60 GHz thanks to the 

unlicensed bandwidth [40] [41]. These antenna elements are typically integrated at Metal 6 (copper), 

the top layer in the back end of the line (BEOL). A representative cross-section image of copper 

interconnects is shown in Figure 1.4 [42]. Considering a dipole configuration, a good performance 

with respect to gain can be obtained using a 30 μm wide and 632.5 μm long wire for a quarter wave 

length radiating element. A more detailed literature review will be provided in Chapter 4 regarding the 

state-of-the-art of on chip integrated antennas. 

 
Figure 1.4 Cross-sectional scanning electron micrograph showing typical CMOS 7S interconnections with tungsten local interconnections 
and six levels of copper wiring [42].  

There is no doubt that the technological progress in integrated circuits will facilitate the 

communication technology at frequencies up to 60 GHz, most likely to surpass several hundred GHz, 

and moving into the terahertz range by 2020 [43]. In this context, the exploration on nanoscale 
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antennas is appealing for they allow an extreme miniaturization. They are compatible with nano-

electronic devices and at the same time suitable to operate at high frequencies. Above all, only at 

higher frequencies, the wavelength is reasonably small to enable efficient on-chip nano-antennas to be 

integrated on semiconductor substrates. In fact, this new class of antenna concept has recently been 

introduced into optical interconnect applications [44]. Zhou et al. [45] developed a prototype on-chip 

dielectric nano-antenna having a linewidth and thickness below 1 μm and length below 10 μm and 

tested it from 190 to 200 THz. As for millimeter-wave wireless interconnect applications, the 

applicability of submicron or deep submicron designs has yet to be demonstrated to understand their 

capability and limitation. Theoretically, using existing technology it should be possible to design small 

low-loss metallic antennas with reasonable performance. Hence they can be integrated into a single 

chip although it is certain that the issue of the transition from classical antennas to nano-antennas 

needs to be worked out in detail.  

1.1.3 High-Frequency Characterization 

An established approach to study integrated RF passive components such as transmission lines and 

antennas is to measure the scattering parameters (S-parameters). Almost all high-frequency 

characterizations for nanowires or nanotubes carried out to date are through two-port S-parameters 

measurement. The test sample can be integrated as a bridging component into a RF device which is 

compatible with on-wafer measurement for instance, a microstrip line or a coplanar waveguide as 

shown in Figure 1.5 [46] [47] [48]. Nanostructures can replace the central conductor as the signal line. 

Appropriate procedures can then be applied to de-embed the contribution of the platform or RF pads 

and thus move the reference plane just before the test device [49]. Such measurement setup makes the 

extraction of transmission characteristics of nano-metric scale devices possible. However, given the 

small dimension of nanowires, it is difficult to have a reliable measurement. New issues emerge such 

as impedance mismatching, reliability of the contact, pad parasitics and small signal level from the 

nanostructures. They most often have a strong influence on the accuracy of measurement result.  

 

Figure 1.5 Generic view of 1) left side: microstrip line 2) right side: coplanar waveguide. They are potential platforms for characterizing 

nanowires, in which the central conductor can be replaced by the intened test sample.  

Contact and Interface Effect 

One inescapable problem that needs to be addressed in the measurement of nanoscale devices is the 

contact and interface effect. Fortunately, these effects can be approximated by lumped elements 

equivalent circuits. However, the determination of exact quantity is challenging due to that fact these 

effects become comparable to the signal being propagated in nanoscale devices. The accuracy of the 

measurement becomes critically important.  

Most of the time, nanowires and nanotubes are in contact with RF pads by using clean room 

techniques including deposition of metallic layers (either sputtering or evaporation) and definition of 

patterns on a photoresist (E-beam or photolithography) [31] [50]. Inevitably, there exists contact 

impedance at the connection. According to the type of contact, it may have a significant contribution 
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to the total impedance. In the case of CNTs, contact impedance is typically modelled as a parallel RC 

circuit in series [26] [47]. Interface effect stands for the physical discontinuity between the pad and the 

nanowire. The width of a RF pad compatible with on-wafer probes is typically 50 μm or more which is 

at least three orders of magnitude larger than a nanowire. Such step change will cause a discontinuity 

in signal transmission. This effect is generally simulated as a shunt capacitance. Sometimes it is in 

series with an inductance on both sides [51]. The significance of discontinuity to the overall RF 

response depends on the characteristics of the line. In general, for a low-loss transmission line, it is 

important to determine the contribution from the interface [52]. Therefore, the design of RF pads 

needs to be carefully considered to facilitate obtaining a good measurement. They should exhibit 

minimum loss and transmission to be discerned easily [53]. In addition, the connection between the 

nanowire and the pads should avoid abrupt change in dimension. A common solution is to use a 

tapered design, in which the width of the pad decreases gradually towards the nanowire as shown in 

Figure 1.6 [47] [48]. 

 

Figure 1.6 Generic view of a coplanar waveguide integrated with a nanowire. The tapered design RF signal pads can be seen. 

Removal of RF Pads Effect 

The essential challenge while characterizing a nanowire or nanotube is the impedance mismatching 

[36]. These nanostructures exhibit very high impedance as compared to the 50 Ω impedance of all RF 

test equipment. This leads to inefficient RF energy feeding to the test material. Besides, due to the 

high losses, the transmission signal is limited. This characteristic will introduce significant inaccuracy 

while de-embedding pad parasitics.  

A vast literature exists today on de-embedding methods for transmission line characterization 

thanks to the advancing interconnect technology in RF circuits. These methods either use equivalent 

two-port analysis or lumped-component approximations. Some are proven to be more accurate than 

the others up to millimeter-wave frequencies [54] [55] [56], thus are already extensively adopted in the 

RF community. However, whether they are reliable or not for de-embedding nano-scale devices up to 

few hundred gigahertz remains open to question. Early works of several groups have employed the 

“open” de-embedding method to remove pad parasitics [57] [58]. This de-embedding method can be 

expressed in a simple algebraic form: 

                  (1-1) 

where      denotes the intrinsic admittance parameters (Y-parameters) of device under test (DUT, in 

this case, it is the nanowire),      denotes the measured admittance of the whole device (including the 

platform and the nanowire) and      is the admittance of the empty device (just the platform without 

the nanowire). The admittance parameters can be calculated from S-parameters. The concept of the 

method is based on an assumption of a circuit model. The pad parasitics leading to the DUT can be 
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solely described by a parallel admittance which can be determined by the measured admittance from 

the empty device. Consequently, the intrinsic response of the nanowire can be obtained through 

subtracting this admittance.  

Another technique to extract the intrinsic response is to build a full circuit model to describe the 

S-parameters of an empty device, and then deduce new circuit elements that could be added to the 

model helping the fitting to the S-parameters of the device with the nanostructure [59]. The advantage 

of this approach is that we can understand better the effect of designed RF pads, avoiding the error that 

might be introduced due the approximation inherited in de-embedding methods. The downside is the 

number of unknown circuit elements involving in the fitting process. Figure 1.7 demonstrates an 

equivalent circuit model of a CNT integrated with a coplanar waveguide [47]. To reduce the amount of 

unknown lumped elements, Kim et al. [48] applied a full-wave model based on ADS Momentum 

(from Agilent) to simulate the empty device. The capacitance due to the coupling effect (CPS) can be 

extracted by fitting to the S-parameters of the empty device. Depending on the physical properties of 

the contact and RF pads, circuit representation needs to be optimized to best describe a nanowire in 

contact with the RF pads in such a way that its intrinsic characteristics can be accurately extracted. 

Clearly, the validation of a model requires many tests and preferable on samples of different 

configurations and fabrication processes.  

 

Figure 1.7 Equivalent circuit model of a test platform with a CNT. The dotted circle represents the circuit elements invoked when a CNT is 

placed between the pads. Cp and Rp denote the capacitance and resistance of the RF pads, Cps denotes the parasitic capacitance of the signal 

pad coupling, Rc and Cc denote the contact resistance and capacitance between the CNT and the pads, and R, L, C are the resistance, 
inductance, capacitance of the CNT [47]. 

Circuit Modelling of Nano-transmission Lines 

Once the parasitic effect is removed from the signal, it is then possible to estimate the electrical 

properties of the nano-transmission lines. A representation for the lumped circuit model of a CNT 

itself consists of kinetic inductance along with an intrinsic resistance. The quantum capacitance is 

sufficiently small so it is not expected to be measurable [60]. Because of the much larger impedance 

than 50 Ω, the validation of each circuit element in a CNT has proven to be extremely difficult. 

Plombon et al. [26] has demonstrated that the resistance of an individual SWCNT is in the range of 10 

to 30 kΩ/μm and LK is around 8 to 43 nH/μm based on several measurements up to 20 GHz. Given the 

limited accuracy in measuring a single CNT, the multiple CNTs configuration is in fact a more 

appropriate solution to study their transport characteristics. Measurements of parallel arrays of CNTs 

were performed that yielded more stable and consistent results. They found that the total inductance of 

CNT bundles is consistent with a scaling of Leff~LK/N (N is the number of CNTs). The extracted Rbundle 

is on the same order with the dc resistance. 
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High frequency characterization of metallic nanowire remains very little explored. From the 

result presented in [61], the contact resistance and conductivity of a single 300-nm-diameter platinum 

nanowire were extracted up to 50 GHz. Quantum effects (the concept of LK and CQ) were neglected 

and the contact was assumed to be an ohmic contact. Figure 1.8 plots the estimated contact resistance 

and conductivity from the S-parameters. Their result left out the extraction of physical meaningful 

transmission properties of nanowires. The major issues facing were primarily accuracy of the 

calibration and measurement noise at high frequencies.  

 
Figure 1.8 Estimated contact resitance and conductivity of Pt NWs [61] 

1.2 Motivation 

The high-frequency nano-electronics will continue to be one of the most dynamic research fields in 

nanotechnology. Experimental implementations are only starting. The challenge in nanoscale 

measurements has led to a slow progress in delivering the advancement. However, the characterization 

of the nanostructure properties is of paramount importance to establish the relationship between the 

functionality and their characteristics. Most studies reported in this domain are about carbon nanotubes. 

Little effort has been placed on metallic nanowires in both theoretical and experimental aspects. 

Nevertheless, metallic wires have long been the conventional material for passive devices applications. 

The distributed passive devices such as transmission lines in a silicon technology are typically built at 

the top two metallic layers in the back-end-of-the-line (BEOL). The minimum thickness is normally 

no less than 1 µm. As the continuous scaling of active components extends its capability well into 

mm-wave range, there is a need to develop high quality passive components to complement the 

integration density forming a system in a package. Making use of lower metallization layer to design 

passive component is a potential solution for this can bring together integrated RF circuitry in a 

compact way. Contrary to conventional transmission lines, the transmission properties of such thin-

film RF module are not fully understood. Nanowires made of the same material may have dissimilar 

properties due to the influence of crystal structure, surface condition and aspect ratio. It is clear that 

much work is needed to explore full potential and limitation of nanoscale metallic lines all the way up 

to mm-wave frequencies. 

Another scalable and cost-effective solution for nano and micro-electronic components 

integration is miniaturized on-chip antennas. The downscaling of circuit elements below 100 nm for 

complete system interaction on chip will apply to radiation elements eventually. Due to the lack of 

accurate model and characterization, the dimensional scaling of integrated antenna particularly at mm-

wave frequencies is rarely investigated. The possibility to use nanoscale metallic on-chip antennas as 

building blocks for next-generation devices has motivated this study. 
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1.3 Objective 

The objective of this thesis is to characterize the electrical properties of metallic nanowires for 

millimeter-wave transmission lines and antenna applications. The study is intended for exploring the 

transmission characteristics of metallic nanowires over a broadband of gigahertz frequencies with 

experimental and theoretical approach. The goal is to establish a relationship between their electrical 

performance and the geometrical and structural characteristics. 

1.4 Scope of This Work 

The nanowires fabricated in this study were defined by patterning metallic film using top-down 

lithography-nano-machining processes. In this way, alignment and positioning of nanowires can be 

specified and controlled. Nanowires were realized into transmission lines and on-chip antennas for 

characterizing their transmission up to 220 GHz. Such prototypes were made on standard silicon 

substrates because of familiar processing techniques. The minimum produced linewidth is on the order 

of 10 nm. But excessive metal loss may make characterization of such single wires unrealistic. Here, 

various linewidths ranging from 2 µm down to 50 nm and thickness from 200 to 50 nm were designed, 

evidencing the transition from the classical to the submicron and deep submicron wire regime. To 

develop a reliable test platform for characterising nano-transmission lines, two types of vehicles were 

tested: microstrip line and coplanar waveguide. The characterization was done through S-parameters 

measurement. From which, transmission line and antenna characteristics can be extracted. Theoretical 

modelling was also performed to verify the accuracy of the measurement and provide a physical 

understanding of the results. The simulation was carried out using ADS Momentum and ADS circuit 

simulation tools from Agilent. 

Various transmission line de-embedding methods were reviewed. It is also the aim of this work to 

provide a systematic extraction procedure for nano-transmission lines and to dispel ambiguous data. 

Considerable focus was placed on the techniques for determining parasitics. Contact impedance and 

line to pad transition were taken into consideration in the extraction scheme. For the first time, a 

complete analysis was reported regarding transmission characteristics with line dimensions in the 

previously inaccessible regimes up to mm-wave frequencies. It is clear that excessive metal loss will 

make single nanoscale metallic wires inaccessible for technological applications. Multiple line devices 

and their relationship to the electrical parameters were characterized. 

On the first try, the attempt was to evaluate the potential of metallic miniaturized antennas 

integrated on silicon substrate. To realize antennas with reasonable performance, the linewidth was 

constrained to at least 1 µm. But the thickness can be designed closer to nano-meter regime. The 

signal transmission of this type of antenna occurs predominantly inside the substrate. The work was 

therefore restricted to short distance intra-chip communication. The determined transmission gain 

between an antenna pair from two-port S-parameters measurement was only in the central forward 

direction. The input impedance may give an approximation about radiation capacity. The study is 

useful both to understand how nano-antennas differ from traditional antennas and to provide useful 

guidelines for designing integrated nano-antennas. 
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1.5 Outline 

The thesis is organized as follows. First, characterization of submicron Al thin film microstrip line will 

be presented in Chapter 2. The analysis will reveal specific problems linked to characterization of 

nano-scale components integrated in a micro-scale test vehicle. In Chapter 3, a simple CPW test 

structure will be proposed to characterize Al and Au nano-transmission lines. The transmission 

characteristics of various line dimensions and device structures will be plotted and discussed. 

Inadequacies in the de-embedding techniques will be identified to improve the accuracy of 

transmission line measurement. Next, in Chapter 4, on-chip dipoles and planar inverted-F antennas 

integrated on different substrates will be used to evaluate the performance of nanoscale wires for 

wireless communication. The measured antenna characteristics in relation to the dimensional scaling 

will be presented. Finally, the key findings obtained in this work will be summarized in Chapter 5. 

Some potential future work will also be pointed out. 
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Chapter 2 

Parameters Extraction of 
Submicron Thin Film Microstrip 
Lines 

In this chapter, metallic nanoscale wires integrated into microstrip line feature will be tested. 

Microstrip lines are extensively used for transmitting signals in Si-based monolithic 

microwave integrated circuit (MMICs). Typically, in current CMOS technology, microstrip 

lines are realized at the top metal layer in the back end of the line (BEOL) with its thickness 

in the order of a few microns. However, the feasibility of using lower level metal layer in 

BEOL with smaller thickness and linewidth is very little explored since intuitively the 

conduction loss is an issue. One special advantage of microstrip lines is low substrate losses. 

The ground metallization can confine electromagnetic waves within the dielectric layer. 

Therefore, transmission performance will not suffer from lossy substrates such as low-

resistivity silicon wafers [62]. As an initial approach for nanowires characterization, 

microstrip line structure can be an attractive vehicle.  

The chapter starts by introducing the fabrication processes. Next, the characterization 

method will be presented. Preliminary S-parameters results will then be given. In the 

following section, an equivalent-circuit model based on transmission line theory will be used. 

ADS Momentum simulation will be also included for reference. The extracted experimental 

and theoretical transmission parameters of the lines will be presented and discussed. Finally, a 

modified circuit model will be introduced to accommodate the parasitic effect, allowing a 

more accurate prediction for the intrinsic electrical properties of the line over a wide range of 

frequencies. 

2.1 Test Structure Fabrication 

The thin-film microstrip line (TFML) structures of this study were fabricated on standard low 

resistivity silicon substrates. First, a 0.5 μm LPCVD silicon dioxide layer was deposited on 

both sides of silicon wafers for signal isolation. On top of it, a 0.5 μm thick aluminum (Al) 

layer as the ground plane of the device was realized by sputtering. A PECVD silicon oxide (εr 

= 3.9, tan δε = 0.001) of 0.3 μm was deposited to serve as a dielectric layer for the TFML. 

Next, photolithography and a buffered oxide etching (Silox Vapox III) were used to pattern 

via holes. Silox Vapox III is a commercial buffered oxide etchant from Transene Company. It 

provides great etching selectivity between aluminium and SiO2 layers. Its etch rate is about 
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250 nm/min. To define the microstrip area, the ground pads and the signal pads, an Al film (σ 

= 3.77 × 10
7
 S/m) with thickness of 0.5 μm was sputtered and patterned with lithography. The 

photoresist was Shipley S1813 (about 0.5 µm). The exposed area was etched using Al wet 

etchant at 45ºC. This etchant consists of several different acids with the dominant one being 

H3PO4. The etch rate is about 300 nm/min. It should be noted that a good control of etch time 

is very important. Since wet etch is an isotropic process, the etchant would also attack the 

sidewall of the protected area, resulting in the undercut or even complete removal of Al lines. 

The process time should then be long enough to remove all the open area but not over-etch 

the Al lines. After photoresist stripping in acetone, the TFML structure and the pads can be 

obtained. A schematic drawing of each fabrication step is presented in Figure 2.1. The final 

structure layout can be seen in Figure 2.2 and a closer look at the transition before the line and 

the pad is shown in Figure 2.3. There are three kinds of line length (l) in this study including 

100, 200 and 500 μm. Tapered signal pads were designed to minimize signal discontinuity, 

although they were not optimized for 50 Ω. Note that the pads are compatible with the two-

port network S-parameter measurement which will be discussed later. The distance between 

the signal and the ground pad is 100 µm (Figure 2.2). The accurate thickness of the TFML 

was observed by scanning electronic microscopy (SEM). Values are presented in Figure 2.1 

next to the illustration of the side view. It should be mentioned that due to the limitation of the 

photolithography process, only lines with linewidth larger than 1 µm can be realized.  

 

 

Deposition of the isolation 

layers, the ground plane and the 

dielectric layer 

 

Via hole oxide etching in Silox 

Vapox III 

 

Deposition of the Al layer for 

the pads and the microstrip line 

 

Wet etching to define the pads 

and microstrip line area 

Figure 2.1 Fabrication steps of the TFML structure. The measured linewidth is 1.28 µm. 
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Figure 2.2 Photo of a fabricated 200 µm-long TFML and pads Figure 2.3 Close look at the transition between the line and the 

pad. Note that the pad and the line are in the same layer. 

2.2 Scattering Parameter Measurement 

Two-port scattering parameter (S-parameters) measurement is applied for examining the high-

frequencies conduction of the transmission lines as a function of frequency. From S-

parameters, it is possible to derive transmission line parameters, namely characteristic 

impedance (Zc) and propagation constant (γ) over a wide frequency band. They are the two 

essential physical parameters that characterize transmission lines. Characteristic impedance is 

comparable to the resistance that determines the amount of current that flows in a DC circuit 

whereas propagation constant describes the change of amplitude and phase of wave during the 

transmission. In the case of a lossy line, Zc and γ are complex number. In which, the real 

component of γ is called attenuation constant (α), representing losses during signal 

propagation. The imaginary component is called phase constant (β), which determines the 

speed of the propagation wave (v= ω/β). 

2.2.1. S-parameters Basics 

RF signals are sent out from both ports. Some part of the signal bounces back. Some of it 

scatters and transmits to another port and some of it disappears as losses. S-parameters 

quantify how RF signal transmits through a device from one port to another. A typical two-

port network is shown in Figure 2.4 [63]: 

 

Figure 2.4 A two-port network [63]. Typically, port 1 is considered as the input port and port 2 is considered as the output port 

A set of S-parameters is a mathematical matrix that relates the outgoing waves b1, b2 to the 

incoming waves a1, a2 as 

l 100 µm 

Via 
Ground Pad 

Signal Pad 
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Looking at the S-parameter coefficients individually, we have: 
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S11 is equivalent to the input reflection coefficient and S21 is the forward transmission 

coefficient. Since test structures in this work consist entirely of symmetric passive 

components, the network is reciprocal. This also means S11 = S22 as well as S21 = S12. Apart 

from S-parameters, a linear two-port network can also be characterized by a number of 

equivalent circuit parameters, such as ABCD matrix (transfer matrix), impedance and 

admittance matrix. One can convert to another by using adequate equations. 

2.2.2. Measurement Setup 

The S-parameters of the TFML devices were measured using ANRITSU ME7808C 

Broadband Vector Network Analyzer (VNA) and a semi-automatic Cascade S300 station. 

The tests were conducted from 1 to 65 GHz using RF probes in GSG configuration with a 

pitch of 100 µm provided by Cascade Microtech. The VNA was calibrated using the Cascade 

Impedance Standard Substrate (ISS, 104 –783). Specifically, three types of standards were 

utilized, including thru, short and load, as shown in Figure 2.5. The material of this substrate 

is alumina. Load-Reflect-Reflect-Match (LRRM) calibration method was applied by using a 

commercially available software package WinCal from Cascade Microtech. LRRM has 

proven to offer the best accuracy and repeatability. It is also the least sensitive approach to the 

placement of the probe over the pad [16]. The details of this calibration procedure can be 

found in [64]. After the calibration, the reference plane is at the end of the probe tips, 

meaning that all errors up to the probe tips are removed. The calibration was verified on the 

thru standard within the general recommended limits of ± 0.1dB up to 65 GHz before testing. 

Each measurement was made with 201 frequency points using 128 averages in a 100 Hz 

resolution IF bandwidth. The settings for IF bandwidth and averaging determine the effective 

noise. IF bandwidth is roughly proportional with the reciprocal of the sweep time. Point-by-

point feature was adopted for averaging. This means additional measurements, in this case 

128 data points, at each given frequency point are taken at once. In this way, the displayed 

data can be fully optimized during a single sweep. Generally, reducing IF bandwidth and 

increasing the point averaging can both minimize the noise although the sweep time is 

compromised. The chuck was electrically connected to the ground probes. Three test samples 

with different line lengths and the de-embedding structures were measured. 
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Figure 2.5 The standards used in the calibration. From left to right, thru, short and load are shown. 

2.2.3. De-embedding Procedure 

De-embedding is the act of removing the reference plane close to the device under test (DUT, 

in this case, it is the nanowire). A schematic explanation is shown in Figure 2.6. After the 

calibration, the reference plane is situated at the end of the probe tips. However, the RF pads 

used to access the DUT are inherent in the measurement. This could sometimes alter entirely 

the measured characteristics, especially when the device is small.  

  

Figure 2.6 Schematic explanation of the effect of de-embedding. Left: the reference plane is at the end of probe tips and in front 

of the fixtures (RF pads) after calibration. Right: New reference plane is created after de-embedding the error boxes of the 
fixtures [65]. 

There are many de-embedding schemes for removing the effects of test fixtures from 

device measurements. Each fixture needs to be first modelled. Then, appropriate techniques 

can be selected for de-embedding process. That said, the most difficult part is to create an 

accurate model. Generally, an initial fixture model can be derived by an observation of its 

physical structure. To account the actual behaviour of these fixtures, measurements made on 

de-embedding structures are required [66]. The de-embedding structures designed in this test 

include open and short, as shown in Figure 2.7. The fabrication process is the same as that 

describe in Section 2.1. 

  

Figure 2.7 De-embedding structures for the TFML. The left photo shows a open device and the right one is a short device 

The de-embedding technique used in this work is short-open method, which is given by 

[67]: 
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where Zopen, Zshort are the two-port impedance parameters measured on the open and short 

devices. Zmeas is the measured two-port impedance of the device and Ydut are the Y-parameters 

after de-embedding. The admittance is then converted to S-parameters. This type of purely 

lumped de-embedding technique can remove the effects of shunt capacitance and series losses 

of the RF pads. From the S-parameters, the transmission line parameters: characteristic 

impedance Zc and propagation constant γ can be evaluated as [68]: 
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where Z0 is the impedance of the measurement system (50 Ω in our case), l is the length of the 

NW and K is defined as follows: 
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Note that the plus and minus symbols in Equations (2-4) and (2-5) are used for correcting 

unrealistic values. For instance, propagation constant should never be negative. 

2.2.4. Preliminary Results 

Figure 2.8 and Figure 2.9 show the measured S-parameters in magnitude before and after de-

embedding. One can immediately identify the bad measurement from the reflection 

coefficients, S11. The measurement of l = 100 µm suffers from the bad contact when landing 

the probes onto the pads. It is relevant to mention that the thickness of the pads is rather thin 

(about 0.4 µm) for the probe tips. Very often, the tips penetrated through the pads and 

touching the underlying oxide. Poor probe-pad contact introduces additional parasitics. In 

response to this, reflection coefficient appears significantly different from the others. Despite 

the bad probing characteristics, the transmission coefficients S21 behave quite well as shown 

in Figure 2.9. As expected, the longer the line, the higher the insertion loss (insertion loss is 

defined as -20     |   |). Besides, the insertion loss increases with increasing frequency. It 

can be seen that the pad design is not optimal. For one, the parasitics of the pads is much 

larger than the intrinsic device signal. This might introduce additional errors and uncertainties 

after de-embedding. 
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Figure 2.8 Comparison of the magnitiude of S11 before and 

after de-embedding 

Figure 2.9 Comparison of the magnitiude of S21 before and 

after de-embedding 

2.3 Modelling 

As mention earlier, a transmission line can be modelled as a two-port network if the line is 

uniform along its length. Its behaviour can be described by two parameters: characteristic 

impedance (Zc) and propagation constant (γ). Typically, a transmission line has its constants 

of resistance (R), inductance (L), capacitance (C) and conductance (G) per unit length lumped 

together. They are distributed along the length and cannot be separated individually [69]. 

Therefore, a transmission line can also be modelled as a distributed circuit model. This 

conventional transmission line model will be used as a first approach for the simulation of 

nanoscale transmission lines, and the assessment of its applicability will be described in the 

next section. 

2.3.1. Implementation of a Lumped Circuit Model 

A TFML can be described by an equivalent-circuit model as shown in Figure 2.10 if a quasi-

TEM propagation is satisfied. Note that the light blue layer represents the SiO2 sandwiched 

between the conductors where the propagation takes place. R, L, C, and G per unit length 

depend on the properties of the materials and the geometrical dimension of the microstrip line. 

Similar to Zc and γ, the quantity of these elements is irrelevant to the line length. F. Schnieder 

and W. Heinrich have implemented a closed-form model to determine individually the circuit 

elements with a sufficient accuracy [62]. The approximation is particularly suitable for small 

dimension conductors. In this work, only the quasi-static analysis was considered and the 

distributed elements of these lines were calculated based on the close-form formulas 

developed by them. There are two reasons why this model was chosen: (1) The close-form 

formulas provide an understanding to the impact of each physical parameters to the 

transmission properties of the line, (2) The model is valid for a broad frequency range, 

starting from DC, medium frequency up to the beginning of the skin effect region. Once R, L, 

C and G circuit elements are obtained, theoretical Zc and γ can be estimated using the 

following equations:  
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To verify the model, the calculation result will be compared with the measurement. Also, 

results from ADS Momentum are included for comparison. The simulation set up will be 

explained in the next section. 

 

Figure 2.10 Ilustration of the equivalent circuit model in a TFML structure 

2.3.2. ADS Momentum Simulation 

Momentum is one of the features in Agilent ADS simulator, as shown in Figure 2.12. It uses 

Method of Moments (MoM) to computes S-parameters for RF passives, high-frequency 

interconnects and parasitic modelling. It is based on 2D component layouts and provides 

users a 3D perspective of current flow in conductors or slots and far-field radiation patterns. 

The defined patterns in the layout are first meshed with rectangular and triangular cells. Each 

cell is described by an equivalent circuit. The current can then be solved by applying 

Maxwell’s equation and Kirchoff voltage laws in the equivalent network [70]. One of the 

important advantages of using MoM is that it consumes less time to simulate microwave 

components compare to full 3-D simulators. Another benefit is that it accepts arbitrary design 

geometries, including multi-layer structures. To simulate a thin-film microstrip line, a centre 

conducting strip was created. The layout of the device can also be found in Figure 2.11. 

Notice that RF pads were omitted from simulation. Meanwhile, single port was selected to 

excite the either side of the conductor. The dielectric layers and the ground plane in the thin-

film microstrip line structure can be generated using the substrate definition interface 

demonstrated in Figure 2.12. With this setup, S-parameter as a function of frequency can be 

obtained. 
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Figure 2.11 ADS Momontum user interface showing the simulation setup for TFML 

 

Figure 2.12 Substrate defination interface in Momentum 

2.3.3. Theoretical and Experimental Comparison 

The experimental R, L, G and C can be calculated from Zc and γ using the Equations (2-7) 

and (2-8). Then, the following equations can be derived: 

    {    }     {    }   

(2-9) 

    {    }     {    }   
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Figure 2.13 and Figure 2.14 present theoretical and experimental R and L per-unit length up to 

65 GHz. It can be seen that above 15 GHz, R extracted from the measurement of l = 100 µm 

appears different from the others but corresponds well to Schneider and Heinrich’s theoretical 

value. R approximated from the close-form formula gradually increases with increasing 

frequency. This means that the physical behaviour of the line in the frequency band of 

analysis is within the medium frequency region. As for the inductance, the actual values are 

very cohesive and fit well with Schneider’s model. We can see that L decays as the frequency 

increases. Meanwhile, ADS Momentum as a whole has an inferior performance in 

determining R and L. 

Figure 2.15 shows that there is significant discrepancy between the measurement and the 

simulation. The capacitance is underestimated by the model. It can be seen that the values 

from l = 200 and 500 µm are almost identical. This suggests that such additional capacitance 

inherent in the measurement is not a random phenomenon. A possible source for this 

inconsistency is likely due to inadequacy while de-embedding pad parasitics. Note that the 

capacitance extracted from l = 100 µm is significantly higher than the others. This is probably 

caused by poor probe-to-pad contact as mentioned earlier.  

  
Figure 2.13 Resistance per unit length vs frequency Figure 2.14 Inducance per unit length vs frequency 

 
Figure 2.15 Capacitance per unit length vs frequency 
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2.3.4. Full Circuit Model 

As it appears that the de-embedding lacks accuracy, it is necessary to identify the source of 

uncertainty. Several authors have reported the issue of step discontinuity when characterizing 

submicron-thick small microstrip lines at millimeter-wave frequencies [52] [71] [72]. They 

have observed that the determination of transmission line parameters is very sensitive to 

parasitic effect at the transmission line end. The open end leads to scattered electrical field. 

To account for this effect, additional circuit elements need to be considered at the transition 

between line and pad. Typically, step discontinuity can be described by a circuit structure 

with two equivalent series inductances and one shunt capacitance. At the first attempt, the 

network model of the discontinuous effect is simulated with a shunt capacitance Cd, shown in 

Figure 2.16. Such assumption was also utilized in [54]. The two-port T network is equivalent 

to the contribution of a transmission line. 

 

Figure 2.16 Circuit model of the complete test strucutre, line and the pads 

Z1, Z2 and Z3 are calculated using: 
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where Zc is characteristic impedance given by Equation (2-7) and βc is obtained using: 
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An optimized Cd can be found through the fitting process in ADS simulator that minimizes 

the difference between the measured and simulated transmission line parameters. Results will 

be presented in the following section. 

2.4 Results and Discussion  

In this section, the extracted result and the theoretical prediction will be first presented. The 

properties of the TFMLs will then be revealed. An attempt to validate the full circuit model 

points out the limitation of the de-embedding technique. In the last section, the sensitivity of 

transmission parameters to parasitic residue will be addressed. 
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2.4.1. Extraction of Transmission Line Parameters 

The experimental characteristic impedance and propagation constant of the lines with l = 200 

and 500 µm are presented in Figure 2.17 to Figure 2.20. The simulated values from close-

form approximation (Section 2.3.1) and ADS Momentum are included for comparison. It 

should not be surprising that the measurement differs significantly from the simulation. This 

is actually a direct result of the higher capacitive component found in Section 2.3.3. It can be 

seen that the extracted Zc are much lower than the theoretical ones while the losses and phase 

constant show the contrary. These results suggest that new elements must be added to the 

simulation to better represent the measurement. 

 
 

Figure 2.17 Real part of Zc for the measured and simulated 

TFMLs 

Figure 2.18 Imaginary part of Zc for the measured and 

simulated TFMLs 

  
Figure 2.19 Attentuation for the measured and simulated 

TFMLs 

Figure 2.20 Phase constant for the measured and simulated 

TFMLs 

2.4.2. Preliminary Validation 

Let us therefore reconsider the model with the additional circuit element described in Section 

2.3.4. Figure 2.21 and Figure 2.22 demonstrate the fitting result to the extracted Zc and γ from 

the measurement of l = 200 µm. The best fitting was obtained by applying a Cd value being 

14 fF. The remarkable agreement gives confidence to the assumption of lumped Cd. A 

significant correction in Zc is noticeable with the addition of Cd across the frequency range. 

The attenuation constant α shows similar trends and approaches the experimental value. In 
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other words, the extracted transmission line parameters can be erroneously determined 

because of capacitive parasitic.  

  

Figure 2.21 Real (left) and imaginary part (right) of Zc for the 
measured and simulated 200 µm-long TFML 

Figure 2.22 Attenuation (left) and phase constant (right) for 
the measured and simulated 200 µm-long TFML 

2.4.3. The Impact of Pad Residual Capacitance 

Having identified the problem which plagues measurements, it would be interesting to see 

how parasitic capacitance can adversely affect the measured characteristics. The parasitic 

contribution can be isolated from the line by comparing the raw S-parameters (calibrated only) 

to the simulated ones. Next, similar step can be applied to search for the best fitted Cd 

although in this case Cd represents the pad and the pad-line discontinuity lumped together. 

Figure 2.23 to Figure 2.26 show the fitting result for two sets of measurements (l = 200 and 

500 µm). A good agreement up to 65 GHz is found for both cases by lumping a capacitive 

component of about 640 fF. With this knowledge, we can discuss the level of uncertainty in 

the measurement due to the capacitive parasitic residue. 

  

Figure 2.23 Experimental and simulated S11 of l = 200 µm Figure 2.24 Experimental and simulated S21 of l = 200 µm 
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Figure 2.25 Experimental and simulated S11 of l = 500 µm Figure 2.26 Experimental and simulated S21 of l = 500 µm 

Figure 2.27 to Figure 2.30 demonstrate the sensitivity of the extracted transmission line 

parameter in response to capacitive parasitic residue in percentage. Two line lengths were 

considered in the simulation: 200 and 500 µm using close-form approximation. 

Sim_Schnieder denotes the theoretical prediction of the intrinsic line, therefore the ideal case. 

To simulate the effect of residue, a quantity of capacitance was deliberately included at both 

ends of the line. Therefore, the dataset of l = 200 µm, error = 5% represents a 200 µm-long 

intrinsic line embedded with a shunt capacitance of 32 fF (as 5% out of 640 fF) at both ends 

of the transmission line. The results show that even a small quantity of capacitance can lead to 

an erroneous reading deviating from an ideal case. Moreover, the shorter the line is, the more 

offset can be observed. 

  

Figure 2.27 Variation of real part of Zc as a result of capacitive 
parasitic residue  

Figure 2.28 Variation of imaginary part of Zc as a result of 
capacitive parasitic residue  
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Figure 2.29 Variation of attentuation as a result of capacitive 
parasitic residue 

Figure 2.30 Variation of phase constant as a result of 
capacitive parasitic residue 

2.5 Conclusion 

The fabrication, characterization and modelling of submicron Al thin-film microstrip lines up 

to 65 GHz have been presented in this chapter. Microstrip lines have advantages over other 

types of transmission lines, because of its low substrate loss, making them natural candidate 

to be a characterization platform for nanowires. The closed-form expressions were used to 

estimate the RLCG circuit elements. Unlike traditional transmission lines, such TFML 

structure has significant attenuation and its characteristic impedance shows strong 

dependence on frequency at the lower frequency region. The extracted transmission line 

parameters from measured and simulated results suggested that capacitive parasitics remain 

embedded in the measurement data after de-embedding. The accuracy of transmission line 

characteristics is significantly undermined. The capacitive component is most likely attributed 

to the electrical discontinuity between pad and line. The effect of this parasitic residue was 

examined using sensitivity analysis. Unfortunately, the dimension of the line is not entirely at 

nano-metre level due to technological constraints. In the following chapter, another type of 

characterization platform: coplanar waveguide will be tested. Transmission lines 

characteristics with both linewidth and thickness down to 100 nm will be presented. 
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Chapter 3 

Characterization of Metallic 
Nanoscale Transmission Lines 
up to mm-wave Frequencies 

In this chapter, we will continue on the path of characterization nanoscale transmission lines. 

A new structure will be applied as a test platform for aluminium and gold lines and the 

frequency range is extended up to 210 GHz. The cross-sectional area of the wires is at the 

lower range of nanometric scale. The fabrication, measurement and modelling of nanoscale 

metallic lines will be presented. The aim of the work is to understand the high-frequency 

transmission properties of nano-lines in relation to the line geometry (linewidth, thickness and 

length) and device configuration (single or multiple lines structures). At the same time, the 

presented results are intended to establish a reliable characterization scheme.  

The chapter is divided into three parts. Section 3.1 is dedicated to the characterization of 

single aluminium nano-lines up to 100GHz. Another test set comprised of single and multiple 

gold nano-lines will be examined in Section 3.2. These nano-lines are realized on 

conventional oxide-isolated silicon substrate. Different methodologies will be tested to extract 

intrinsic frequency-dependent transmission line properties. Their sources of uncertainty are 

pointed out. Eventually, a modified de-embedding procedure is adopted that has successfully 

improved the accuracy of transmission line measurements. The extracted intrinsic 

transmission line parameters of these nano-line devices are then compared and discussed in 

detail. In Section 3.3, the measured characteristics of the nano-lines up to 210 GHz are 

presented. The chapter will then be concluded with a summary of important characteristics of 

the nano-lines, which can be utilized wisely while designing passive components. Meanwhile 

the guidelines for designing a robust characterization platform are given.  

3.1 Single Aluminium Nano-lines 

To study the electrical properties of nanowires at high frequencies, they need to be integrated 

into a micron size platform in order to be compatible with the test equipment. A coplanar 

waveguide (CPW) was designed that consists of contact pads to test the nanoscale lines. It 

also serves as the ground planes for signal propagation. One of the main advantages of CPW 

is that all conductors lie on the same plane. There is no need for via holes as the TFML 

structure in Chapter 2. It is known that aluminium has a good conductivity and excellent 

adhesion to the SiO2 layer; hence it is a good starting point as a metallic nano-line material.  
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Section 3.1 starts with the device fabrication and description of the measurement setup. 

Next, a quasi-TEM model is presented to simulate wave propagation in the transmission lines 

which is employed throughout the whole chapter. A step-by-step method to subtract parasitics 

from the pads and contacts will be proposed. Later the source of uncertainty and level of 

inaccuracy of the methodology will be pointed out and therefore further improvement is 

required. At the end of the section, an alternative method for de-embedding with enhanced 

accuracy will be addressed. The new method will be used in Section 3.2 for the new test 

structures that yield more accurate measurements. 

3.1.1. Test structure Fabrication 

The test device includes an individual Al metal line embedded in the middle of a CPW 

structure (the two ground planes and RF pads) as shown in Figure 3.1. Table 3.1 summarizes 

the geometric parameters of the devices-under-test (DUT). The reason for these choices of 

dimension is to cover the range from micro- to nano-scale wires. Nanoscale characterization 

requires high precision. A conventional micro-transmission line can be a perfect complement 

to visualize the accuracy of measurement as well as the validity of model. 

The substrate is a standard silicon wafer (resistivity: 5-10 Ω.cm) with a 500 nm thick 

SiO2 layer on the front and back side. The Al wire for sample Nos.1-3 were fabricated by 

electron beam lithography (EBL) and lift-off method. First, line features were patterned in 

JBX-6300FS Electron Beam Lithography System with PMMA 950 K 4% (0.3 µm thick) as 

resist. Next, an Al layer was deposited by evaporation with a deposition rate of 0.1 nm/s. 

After a subsequent lift-off process in acetone, Al lines can be obtained. The line for sample 

No.4 was fabricated in a single step together with the CPW structure. 

 

Figure 3.1 SEM image of a nano-size Al wire embedded in a CPW structure 

Table 3.1 Geometric parameters of the lines in CPW configuration. The gap distance is 20 µm. 

Sample No. Linewidth (µm) Thickness (nm)

1 1 50

2 0.5 100

3 0.1 100

4 8 500
 

To define the CPW structure, standard lithography was applied using AZ5412E as resist 

(1.3 µm thick), followed by evaporation of a 500 nm thick Al layer (deposition rate: 2 nm/s) 

and lift-off process. It should be mentioned that Al layer is much thicker than that of sample 

Nos.1-3. It is to avoid RF probes penetrating through the structure during the measurement. In 
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addition, before the Al deposition, the samples were treated with 25 second of argon 

bombardment. It is to clean the surface and remove the oxide layer. The size of the whole 

CPW structure depends on the length of the line (l). To ensure a fair assessment, five different 

lengths were chosen for evaluation (l = 17, 42, 92, 192 and 492 µm). A part of the signal pad 

with 100 µm in length was designed to be a tapered shape as shown in Figure 3.1. The 

distance between the two ground planes (gap) is fixed at 20 µm. Figure 3.2 shows a scanning 

electron microscopy (SEM) image of sample No.3 connected to the pad. It is worthy to 

mention that the nanostructure obtained by this approach is polycrystalline and has a rough 

surface, as can be seen in Figure 3.3. The devices for de-embedding were fabricated at the 

same time. Figure 3.4 shows the thru de-embedding device which will be used extensively in 

this chapter. 

  

Figure 3.2 Contact between the nano-size wire and the pad Figure 3.3 Top view of the Al wire 

 

Figure 3.4 Thru de-embedding test structure 

3.1.2. Scattering Parameters Measurement 

The procedure for the S-parameters measurement is similar to what has been described in 

Section 2.2.2, but here the test frequency is from 1 to 100 GHz. Figure 3.5 demonstrates the 

top view while probing on the CPW structure. 
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Figure 3.5 Complete test device with GSG probes 

3.1.3. Simulation Based on Quasi-TEM Model 

In the literature, the transmission properties of metallic CNTs are described based on the 

Luttinger liquid theory, in which, an additional kinetic inductance LK and a quantum 

capacitance CQ are introduced to account the effect of quantum transport. Since quantum 

effects have never been experimentally observed in metallic wires, a classical transmission 

line theory will be applied without invoking new concept as a first approach. A conventional 

CPW on a dielectric substrate with a centered strip conductor and two infinite ground planes 

at the sides supports a quasi-TEM mode propagation [73]. As mentioned in Chapter 2, a 

traditional transmission line can be described by a RLGC model. In common practical cases, 

CPW is designed on top of multiple dielectric layers therefore has more complicated lumped-

elements expressions in the transmission line theory. To account the physical parameters 

related to the fabrication processes while still satisfying a quasi-TEM mode, a general circuit 

representation is used, as shown in Figure 3.6 

 

Figure 3.6 Equivalent quasi-TEM circuit model for the intrinsic CPW device 

where Z is the total impedance per unit length of the longitudinal circuit and Y is the total 

shunt admittance per unit length. The relationship between the distributed circuit components 

and the transmission line parameters can be expressed as follows: 

  √                    √
 

 
 (3-1) 

The frequency dependent Z and Y are obtained using close-form approximation and ADS 

Momentum simulation, respectively. This method is simple and computationally efficient but 

valid only for quasi-TEM mode analysis. 

 

l 

Ground plane 

Signal pad 
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Model Elements Evaluation with Close-Form Approximation 

The total series impedance is given by: 

             (3-2) 

where R is the conductor loss per unit length and L is the inductance per unit length. R and L 

in relation to the physical parameters of the CPW devices can be estimated by the close-form 

formulas found in [74]. Their variations as a function of frequency are also covered in the 

description. While the close-form expression is known to be quite accurate up to the milli-

meter wave frequencies for modern monolithic microwave integrated circuit (MMIC) 

coplanar lines, it is limited to devices with a single-layer substrate [73]. For CPW devices 

with multilayer dielectrics, such as in our case, it is more difficult to obtain a simple 

expression of circuit component for the substrate (Y). 

Model Elements Evaluation with Simulation Tool 

A complementary simulation based on full-wave electromagnetic modelling using ADS 

Momentum was implemented to estimate the shunt component Y. In ADS Momentum, CPW 

structures can be simulated as two coupled slot lines (representing the distance between the 

ground planes and the signal line) as can be seen in Figure 3.7. Coplanar mode was selected 

for signal excitation at either side of the slot lines. Notice that the RF pads were omitted from 

the simulation. Using the simulated S-parameters, Zc and γ can be derived. Next, using 

Equation (3-1), we can obtain Y. The simulated Z, on the other hand, is not valid for this 

application due to the fact that the signal line can only be considered as a perfect conductor in 

the simulation setup. The estimated Z from the close-form approximation is more realistic to 

describe the designed CPW devices than the one simulated here. 

 

Figure 3.7 ADS Momentum interface showing the simulation setup of a CPW structure  
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3.1.4. Parasitics Subtraction  

Pad Parasitics Subtraction 

The “thru-only de-embedding” method was applied in this study to remove the effect of the 

pads. It only requires a thru test structure [75]. This method belongs to a cascade-based 

technique. A thru test structure can be represented by two identical two-port networks in 

series, as shown in Figure 3.8. 

 

Figure 3.8 Two port network of the thru de-embedding test structure 

Their S-parameters can be derived from 

          
         

           
 (3-3) 

          √
 

 
 (         )  (      

 ) (3-4) 

where Sxxt denotes the measured S-parameters of the thru pattern and Sxxp denotes the S-

parameters of the pad. The de-embedding is performed by converting the S-parameters into an 

ABCD-matrix and then followed by a matrix operation as 

       
          

   (3-5) 

where Tp is the ABCD-matrix of the input and output pad and Tm is the measured ABCD-

matrix of the CPW device. Tdut is the ABCD-matrix after de-embedding which can be also 

converted to S-parameters. Finally, the transmission line parameters, characteristic impedance 

Zc and propagation constant γ are evaluated using the formulas described in Section 2.2.3. 

Such de-embedding procedure is directly applied on sample No.4. Since the line was made in 

a single step with the CPW structure, there is no need to address the contact impedance. 

Contact Impedance Removal 

In the case of Sample Nos.1-3, the contact between the line and the pad is not perfect. It is 

necessary to characterize contact impedance for obtaining the intrinsic response of the device. 

1) Low-Frequency Impedance Measurement  

To identify the contact impedance, the electrical conductance of the CPW devices was 

examined at lower frequencies. The impedance measurement was performed using an Agilent 

4284A LCR Meter. The frequency sweep was set from 4 kHz to 1 MHz. The offset, DC bias 

current and DC bias voltage were set to zero and the amplitude level of the oscillated input 

voltage was 1 mV. The measurement was carried out with Karl-Suss PM5 wafer probe station. 

The probes were also provided by Karl-Suss (single tip, PH120 Precision Probe Manipulator). 
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Two probes were placed separately on the signal input and output pad to measure mean 

current crossing the wire. 50 data points were acquired per sweep. Before the measurement, 

open-short calibration technique was employed. The impedance of the device was obtained 

automatically in a form of resistance and reactance. In such frequency range, it can be 

expected that there is no wave propagation inside those CPW devices with l = 17 µm. Hence, 

the line can be assumed as a pure resistor. An equivalent circuit model was suggested to 

estimate the impedance of the device, shown in Figure 3.9. Such model has a physical basis 

and is consistent with those proposed by other authors [26] [76]. The impedance of the circuit 

model can be simulated in ADS from Agilent. Not knowing the resistance of the wire, the 

bulk Al conductivity, 3.77 × 10
7
 S/m was used for an initial estimation. In addition, the 

contact impedance was assumed to be identical at the two sides of the wire which is the case 

when a perfect alignment is achieved. 

  
Figure 3.9 Circuit model of the CPW devices at low frequencies 

2) Evaluation of Contact Impedance Using Circuit Modelling 

Figure 3.10 shows the measured and simulated results for two representative devices, sample 

Nos.2 and 3 with l = 17 µm. A good agreement is obtained by fitting a constant value for Rc 

and Cc in both devices across the entire frequency range. In the case of sample No.2, Rc is 4.3 

MΩ and Cc is 199.84 fF whereas for sample No.3, Rc is 29.3 MΩ and Cc is 106.9 fF. The 

assumed metal losses of the wires are 9 and 45 Ω for sample Nos.2 and 3, respectively. Such 

values have negligible contribution in the model. In fact, during the fitting process, it can be 

noticed that the variation of R has no effect on the overall impedance in this frequency range 

and the resulting impedance is primarily dominated by Rc and Cc. Most importantly, Rc is 

considerably large, suggesting that there is a dielectric component at the contact between the 

line and the pad. This could be attributed to the remaining native aluminium oxide layer 

formed on the surface of the Al wire before the fabrication of the CPW structure. It is possible 

that the argon treatment is not sufficient. The fit value of sample No.3 demonstrates a smaller 

capacitance and a higher loss at the contact than that of sample No.2. This can be understood 

physically since the contact surface area between the sample No.3 and the pad is about five 

times smaller. 

 
Figure 3.10 Measured and simulated impedance of the CPW devices with l = 17 µm at low frequencies 
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3) Subtraction of Contact Impedance 

Having obtained the circuit elements of the contact, we can proceed to extract the intrinsic 

properties of the CPW devices at high frequencies. The new de-embedding scheme based on 

the cascade configuration is modified, as shown in Figure 3.11  

 

 Figure 3.11 Parasitic circuit model of the CPW device 

The contact impedance can be included in the two-port network by using an ABCD-matrix as 

   [
 

  

           
  

] (3-6) 

where ω is the angular frequency. Rc and Cc are taken from the low frequency measurement 

and modelling. Then, to subtract the pads and the contacts, we perform the next matrix 

operation: 

       
     

          
     

   (3-7) 

Tdut represents the intrinsic performance of the CPW device in ABCD-matrix. Finally, it is 

converted to S-parameters and the transmission line parameters, Zc and γ can be calculated 

[68]. 

4) Validation at High Frequencies 

To confirm whether the extraction method of contact impedance remains valid at high 

frequencies, the S-parameters of a simulated intrinsic device (calculated using the quasi-TEM 

model described in Section 3.1.3) with addition of the contact impedance obtained from the 

low-frequency measurement at both sides of the line were compared to the measured S-

parameters up 100 GHz de-embedded by the thru without contact impedance subtraction. The 

above S-parameters can be derived using 

                (3-8) 

     
         

   (3-9) 

where Tp is the ABCD-matrix of the input and output pad, Tc is ABCD-matrix of the estimated 

contact impedance and Tm is the measured ABCD-matrix of the CPW device. T1 and T2 are 

then converted to S-parameters. If these two S-parameters are similar to each other, it implies 

that Rc and Cc determined at low frequencies (from 4 kHz up to 1 MHz) remain applicable at 

high frequencies (from 1 GHz up to 100 GHz). As an example, Figure 3.12 and Figure 3.13 

show the comparison of the derived S-parameters for the case of sample No.2 with l = 192 μm. 

The quasi-TEM model without addition of contact impedance is also included for comparison. 

It can be observed that the theoretical results are in a very good agreement with experimental 
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data when RcCc model has been taken into account, particularly at lower frequency region. 

This indicates that this circuit model describes adequately the contact impedance. 

Furthermore, as there is no significant difference above 70 GHz between the quasi-TEM 

model datasets with and without RcCc model (less than 5% in the magnitude of S11 and S21), it 

infers that the effect of contact impedance can be ignored when the frequency is sufficiently 

high. 

  

Figure 3.12 Comparison of S11 for sample No.2, l = 192 µm Figure 3.13 Comparison of S21 for sample No.2, l = 192 µm 

3.1.5. Results and Discussion  

The results are examined as follows. First, the raw measurement (calibrated) as well as de-

embedded data will be shown, illustrating the impact of parasitics subtraction. The extracted 

transmission line parameters in relation to different line geometries will be presented. 

Simultaneously, the level of credibility of the extracted characteristics will be discussed in 

detail. In addition, several factors are identified that could influence the accuracy of the de-

embedded data.  

De-embedded S-parameters 

Figure 3.14 to Figure 3.17 show the magnitude and phase of the experimental S11 and S21 from 

sample No.3 with different lengths obtained using the modified de-embedding technique. 

Sample No.3 was chosen for examination since it has the smallest cross-sectional area among 

all the samples (the thickness and the linewidth closer to 100 nm). It can be found that the 

magnitude of S11 tends to be closer to zero as the length of the line increases. The responses 

are very similar between those devices with the wire length above 92 µm. The return loss is 

less than -2 dB (at least 80% of the incident power is reflected to the source). The reflection is 

nearly like an open device. On the other hand, S21 shows obvious dependence on the length of 

the nano-line. Insertion loss (insertion loss is defined as -20     |   |) rises with the increase 

of the length but is slightly reduced with increasing frequency. More than a 30 dB insertion 

loss is observed when the line length reaches 492 µm. That is less than 3% of the incident 

power is transmitted through the line. S21 exhibits a series capacitive component probably 

because the contact impedance is under-de-embedded, leaving a residual capacitance.  

One can notice noise in the vicinity of 65 GHz. The sources of error are likely due to 

drift of the calibration and the poor probe to pad contact. The significant degradation of signal 

to noise ratio is a result of the nature of the measurement system. Our broadband VNA 

combines the 40 MHz to 65 GHz output from a stand-alone VNA and the 65 GHz to 110 GHz 

output from a millimeter-wave module. There is increasing power loss due to the cable 
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assemblies when operating the stand-alone VNA closer to 65 GHz. In addition, the cut-off 

frequency of the waveguide in the millimeter-wave module is around 70 GHz. To obtain a 

clearer signal trace, it is often necessary to re-calibrate the VNA to improve the signal to 

noise ratio. 

  

Figure 3.14 De-embedded S11 magnitude from sample No.3 Figure 3.15 De-embedded S11 phase from sample No.3 

  

Figure 3.16 De-embedded S21 magnitude from sample No.3 Figure 3.17 De-embedded S21 phase from sample No.3 

Figure 3.18 to Figure 3.23 show the comparison of the experimental S11 and S21 from 

sample Nos.1 to 3 with l = 192 µm based on difference levels of parasitic subtraction. Three 

datasets are compared: raw S-parameters without de-embedding (calibrated), S-parameters de-

embedded with a thru and S-parameters first de-embedded with a thru and followed by 

subtraction of contact impedance. It can be observed that the pads contribute significantly to 

the transmission and their loss is not negligible. In the case of sample Nos.1 and 2, an offset 

of signal level in magnitude for both S11 and S21 below 40 GHz can be seen after the 

subtraction of contact impedance. The correction however, is not so much noticeable for 

sample No.3. The simple fact is that the extracted contact impedance based on a circuit model 

and low frequency ac measurement will present certain level of errors which inevitably leads 

parasitic residues.  
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Figure 3.18 Comparison of S11 for sample No.1, l = 192 µm Figure 3.19 Comparison of S21 for sample No.1, l = 192 µm 

  

Figure 3.20 Comparison of S11 for sample No.2, l = 192 µm Figure 3.21 Comparison of S21 for sample No.2, l = 192 µm 

  

Figure 3.22 Comparison of S11 for sample No.3, l = 192 µm Figure 3.23 Comparison of S21 for sample No.3, l = 192 µm 

Extracted Transmission Line Characteristics 

With the proposed calculation approach, it is possible to calculate the characteristic 

impedance (Zc) and propagation constant (γ) of the samples using the corresponding line 

geometry and physical parameters.  

Figure 3.24 to Figure 3.31 show the frequency dependence of Re(Zc), Im(Zc), α and β of 

the intrinsic CPW devices. The simulated and measured results are compared. Each type of 
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sample has three sets of extracted experimental data from different line lengths (l = 92, 192 

and 492 μm), ensuring a more reliable assessment. It should be mentioned that the datasets of 

l = 17 and 42 μm are too noisy to be presented. The simulated results are shown in solid line. 

It can be observed that sample No.4, having a relatively large linewidth and thickness, 

exhibits reasonably well-matched characteristic impedance and attenuation below 5 dB/mm at 

the maximum frequency, as seen in Figure 3.24 and Figure 3.25. The model agrees 

sufficiently well with the experimental data, indicating that the thru-only method is 

appropriate for subtracting pad parasitics. The bulk Al conductivity, 3.77 × 10
7
 S/m was used 

in the calculation. One can see that the imaginary characteristic impedances of the datasets 

diverge slightly from each other at high frequencies, probably resulted from the error 

produced by the de-embedding method. l = 492 μm exhibits the largest offset of 9 Ω at 90 

GHz compared to the theoretical value. It is known that the error is a function of the DUT size 

since the reference plane is established at the center of the thru test structure [75].  

  

Figure 3.24 Measured and simulated Zc of sample No.4 Figure 3.25 Measured and simulated γ of sample No.4 

The measured characteristic impedances of sample Nos.1 and 2 decay gradually with 

increasing frequencies. The same trend is found in the model, as shown Figure 3.26 and 

Figure 3.28. In the close-form formulas, while calculating R and L, the Al conductivity was 

intentionally decreased to 1.6 × 10
7
 S/m to meet the extra conductor losses observed in the 

measurement. In this way, the model gives the best fit in the propagation constant as well as 

the characteristic impedance. The comparison of the imaginary Zc shows obvious 

inconsistency between the datasets in the low frequency region. Take sample No.1 for 

example, the Im(Zc) of l = 92 μm is two times more than that of l = 492 μm at 15 GHz. Based 

on the analysis from the previous section, this type of error present at low frequencies is most 

likely due to contact impedance residue. For the same reason, we can also observe in Figure 

3.27 and Figure 3.29, an apparent divergence in α below 30 GHz. Despite the mismatch, 

overall trend in relation to the frequency can be identified at the mid and high frequency 

range. These two samples have similar transmission line properties as their cross-sectional 

areas are the same. The attenuation rises with increasing frequency and reaches 30 dB/mm at 

100 GHz.  

At high frequencies, one can notice that certain dataset shows less agreement with the 

theoretical value. The source of error is probably due to poor probe-to pad-contact. Table 3.2 

summarizes the discrepancy between the simulation results and measurement for sample 

No.2. In the case of sample No.2, for a single frequency, f = 90 GHz, the difference between 

datasets can reach 19% for α and 8% for β when l = 492 μm and 192 μm are chosen for 

comparison. Although it is less noticeable visually, it should be mentioned that the difference 
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for Re(Zc) and Im(Zc) is 14% and 11%. Meanwhile, l = 492 μm demonstrates the best 

agreement with the model having less than 5% error in α, β and Re(Zc). This corresponds 

with the sensitivity analysis in Chapter 2. Transmission lines with longer lengths are less 

susceptible to parasitic residue, hence yielding more precise result. Nevertheless, the 

prediction for the imaginary impedance is less satisfactory; the discrepancy reaches as much 

as 35%. The accuracy and the repeatability of the measurement in general can be improved by 

re-probing or frequent cleaning of probe tips.  

  

Figure 3.26 Measured and simulated Zc of sample No.1 Figure 3.27 Measured and simulated γ of sample No.1 

  

Figure 3.28 Measured and simulated Zc of sample No.2 Figure 3.29 Measured and simulated γ of sample No.2 

Table 3.2 Discrepancy between simulation results and measurements for sample No.2. The variation of α is estimated as 
          

     
. The other parameters are calculated in the same manner. 

% variation

Re(Zc) Im(Zc) α β Re(Zc) Im(Zc) α β Re(Zc) Im(Zc) α β

l  = 92 µm -7.0 60.2 6.6 -17.1 -13.6 49.2 -0.3 3.5 -10.6 33.4 16.7 -9.2

l  = 192 µm -4.5 20.7 6.9 -10.7 -8.5 15.7 7.8 0.6 -18.3 19.9 21.6 -1.9

l  = 492 µm -1.8 15.6 -1.1 -2.0 3.0 24.9 -4.3 0.1 -5.3 35.4 -1.2 -3.2

30 (GHz) 60 (GHz) 90 (GHz)

 

In the case of sample No.3 with both linewidth and thickness close to 100 nm, the 

absolute characteristic impedance goes down to 450 Ω at 100 GHz. Similarly, it can be seen 

that in Figure 3.30 and Figure 3.31, there is a discrepancy between the experimental and 

simulated Im(Zc) and α with inconsistency between datasets below 30 GHz. Notice that l = 

492 μm has a rather ambiguous α and β at high frequencies compared to the other datasets. 
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The excessive losses in this line result in a very small transmission signal, making it difficult 

to extract an accurate attenuation constant. A more detailed analysis of this phenomenon will 

be delivered in Section 3.2.5. Considering the other two devices with shorter lengths, the 

percentage difference between them in α and β is less than 5% at 90 GHz. One can observe 

that the attenuation becomes considerably large over the whole frequencies, reaching 80 

dB/mm at 100 GHz. It is interesting to note that the phase constant β is higher than the other 

sample types, indicating that there is slower wave propagation in this structure. Meanwhile, α 

is underestimated by the model over the whole bandwidth. Disagreement can also be seen in β 

in the high-frequency region. The discrepancy between the measured and simulated α is 25% 

and 18% for β at 90 GHz when l = 192 μm is chosen. The slow wave propagation phenomena 

was described in [77] for the general lossy transmission line case. The author derived the 

transmission parameters in the complex plane and found that the phase velocity in a lossy 

transmission line is always less or equal to that in the ideal case. Important or not, the 

physical effects associated to general losses are always covered in the conventional 

transmission line theory. The discrepancy between the theoretical and actual value could 

suggest two things: 100 nm is a critical dimension. The conductivity drops considerably lower 

than to 1.6 × 10
7
 S/m or there is new concept associated with quantum effects that should be 

considered. Such observation will be elaborated further in Section 3.2 by using the new test 

structures. 

  

Figure 3.30 Measured and simulated Zc of sample No.3 Figure 3.31 Measured and simulated γ of sample No.3 

Impact of Misalignment on Extracted Parameters 

Let us discuss the level of uncertainty that can possibly degrade the accuracy in this de-

embedding procedure. The apparent difference between the experimental results below 30 

GHz could be due to the error in the estimated contact impedance. The assumption that the 

contact impedances at both sides are identical could potentially introduce errors in the 

extraction since there is always certain degree of misalignment. Figure 3.32 and Figure 3.33 

demonstrate the effect of misalignment to the extracted transmission line parameters of 

sample No.2 with l = 192 μm. In the case of perfect alignment, each contact contributes to 

50% of the total impedance in the low frequency measurement. Case 1 assumes that the left 

contact is responsible for 25% of the total impedance and 75% from the right one. Case 2 is 

with the reversed order. The corresponding Rc and Cc can be estimated using the method 

described in Section 3.1.4. The transmission line parameters for each case can then be 

obtained. Six data points are selected from each dataset, namely 15, 30, 45, 60, 75 and 90 

GHz. The result without contact impedance correction and the developed model are also 
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included for comparison. The maximum variation between the perfect alignment and the 

cases of misalignment for both Zc and γ is observed at 15 GHz. The percentage difference is 

less than 5% for Re(Zc) at other frequencies. The same applies to Im(Zc), except at 15 GHz, a 

variation up to 10% can be seen for both cases. As for γ, the misalignment can affect the 

derived result as much as 9% in α and 13% in β at 15 GHz. This readily explains why there 

was a significant variation in the extracted results between devices from the same design 

below 30 GHz in the previous section. Such correction, however, is necessary since the 

accuracy is improved by making the experimental datasets shift closer to the theoretical value.  

  

Figure 3.32 Measured and simulated Zc of sample No.2 with l = 
192 µm. Case 1: left contact contributes to 25% of the total 

contact impedance. Case 2: left contact contributes to 75% of the 

total contact impedance 

Figure 3.33 Measured and simulated γ of sample No.2 with l 
= 192 µm. Case 1: left contact contributes to 25% of the 

total contact impedance. Case 2: left contact contributes to 

75% of the total contact impedance. 

Impact of Signal Pad Coupling on Extraction Parameters 

Another important issue worthy to be addressed is the signal pad coupling. Several authors 

have reported the significance of such effect while characterizing nanoscale devices at high 

frequencies and therefore it should be subtracted [26] [48] [53]. The length of the nano-

devices under test in those studies is typically less than 10 μm. The capacitive coupling 

between signal pads should naturally be taken into consideration in circuit analysis. Based on 

the calculation here, the minimum wire length is 92 μm for having a clear transmission line 

behavior in the frequencies of interest; thereby the coupling effect is initially omitted in the 

proposed de-embedding procedure. To evaluate the uncertainty caused by such assumption, it 

is useful to estimate the coupling impedance using the S-parameters measurement of an empty 

CPW device as shown in Figure 3.34. 

 

 

Figure 3.34 Open de-embedding test structure (empty device) 
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The coupling impedance can be extracted from the following procedures [26] [78]: 

 

      
             

   
(3-10) 

       
   

(3-11) 

Topen represents the measured ABCD-matrix of the open device Tp is the ABCD-matrix of the 

input and output pad. Zco represents the coupling impedance between signal pads. Figure 3.35 

shows the extracted Zco of empty devices with different distances (L2, L3 and L4, each 

represents l = 92, 192 and 492 µm, respectively). A circuit model is included for analysis to 

provide a better physical understanding (Figure 3.36). It simply consists of two parallel RC 

circuits in series, representing the capacitive coupling and corresponding loss within the two 

different layers, the SiO2 layer and the silicon substrate. As can be seen in the figure, the 

extracted coupling reactance, Im(Zco) changes from capacitive to slightly inductive with 

increasing frequency while the circuit model demonstrates a lossy capacitive pad coupling 

mechanism in the whole frequency range. The inductive component could suggest that there 

may be another mode of signal propagation. During the fitting process, it was found that the 

further the distance between the signal pads is, the smaller the values of Cox and CSi are, 

meaning a weaker capacitive coupling. 

 
Figure 3.35 Extracted coupling impedance from the open devices. L4 open: open device with l= 492 µm. L3 open: open device 

with l= 192 µm. L2 open: open device with l= 92 µm. 

 

Figure 3.36 Circuit model of the coupling impedance Zco 

Assuming such coupling exists and remains unchanged when there is a nanowire placed 

in between the CPW structure, we can subtract it as following: 

      
     

          
     

   (3-12) 

             (3-13) 

Ydut represents the admittance of an intrinsic CPW device. Yin is the admittance of the 

measurement after subtraction of pads and contact impedances. Finally, Ydut is converted to S-
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parameters and Zc and γ of the intrinsic device can be obtained. As an example, Figure 3.37 to 

Figure 3.40 show the transmission line parameters for sample Nos.2 and 3 with l = 192 μm 

after subtraction, labelled as “De-embedding2”. The result without removal of parasitic 

coupling labelled as “De-embedding1” and the developed model are also shown for 

comparison. In the plot of α, it can be noticed clearly that the difference between with and 

without elimination of coupling impedance increases as the frequency increases. After the 

subtraction, the attenuation increases by 30.7% and 10.0% for sample Nos.3 and 2 at 90 GHz, 

respectively. As for Re(Zc), Im(Zc) and β, no apparent dependence on the frequency is found 

in terms of the differences in percentage. The fluctuation of the trace rather reflects the 

fluctuation in the extracted coupling reactance. According to this result, it is acknowledged 

that the existence of lossy capacitive coupling between the signal pads. The removal of this 

coupling parasitic is undoubtedly physically meaningful although in practice, it is difficult to 

determine the actual value. Above all, the measurement of an open device is very sensitive 

and prone to calibration errors. At this moment, it is unknown whether the attempt of 

subtraction improves accuracy or the contrary in this test result. Further examination will be 

presented in Section 3.2. 

  
Figure 3.37 Extracted and simulated Re(Zc) of sample No.2 

and 3 with l = 192 µm. De-embedding1: first de-embedded 
with a thru and followed by subtraction of contact impedance. 

De-embedding2: first de-embedded with a thru, followed by 

subtraction of contact impedance and parasitic pad coupling.  

Figure 3.38 Extracted and simulated Im(Zc) of sample No.2 

and 3 with l = 192 µm. De-embedding1: first de-embedded 
with a thru and followed by subtraction of contact impedance. 

De-embedding2: first de-embedded with a thru, followed by 

subtraction of contact impedance and parasitic pad coupling.  

  
Figure 3.39 Extracted and simulated α of sample No.2 and 3 

with l = 192 µm. De-embedding1: first de-embedded with a 

thru and followed by subtraction of contact impedance. De-

embedding2: first de-embedded with a thru, followed by 

subtraction of contact impedance and parasitic pad coupling.  

Figure 3.40 Extracted and simulated β of sample No.2 and 3 

with l = 192 µm. De-embedding1: first de-embedded with a 

thru and followed by subtraction of contact impedance. De-

embedding2: first de-embedded with a thru, followed by 

subtraction of contact impedance and parasitic pad coupling 



CHAPTER 3 

 

46 

 

3.1.6. Alternative Extraction of Parasitics 

It appears that the accuracy of the extracted parameters is very sensitive to the estimated 

contact impedance, especially at low frequencies. In the following section, an alternative 

solution is developed that excludes a direct estimation of the contact impedance. 

Methodology 

A popular de-embedding technique for transmission lines at mm-wave frequencies is the two 

line method [54]. This method makes use of two uniform and symmetric transmission lines of 

the same dimension but with arbitrary length. The intrinsic transmission line properties can be 

extracted through two-port network de-embedding. The detailed description and derivation 

will be omitted here but can be found in [54]. Such method assumed that parasitic 

contribution can be modelled solely by a lumped parallel admittance. In principle, the two 

line method is also applicable for a lumped series impedance assumption. The proposed 

solution resembles the one suggested by [54]. However, the thru-only method is added to 

remove pad parasitic. Assuming the contact impedance is identical for both lines and can be 

expressed as a series impedance lumped at both sides of the transmission line, it is possible to 

correct the contact impedance with the two line method. Under this assumption, we obtain: 

 

                            
       

      
   

 

               
   

 

          
 

(3-14) 

 

where Tl2-l1 is the ABCD-matrix of an intrinsic transmission line of length L2−L1. Tc is 

ABCD-matrix of the contact impedance and Tl2 and Tl1 are the measured ABCD-matrix of the 

CPW device with line length being L2 and L1. T’l2 and T’l1 are the ABCD-matrix after de-

embedding with a thru. In which, we also have: 
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(3-15) 

 

ZL represents the series contact impedance. T’l2-l1 can be expressed as a series combination of 

the intrinsic transmission line and the parasitic contact impedance: 
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(3-16) 

 

Zl2-l1 represents the Z-parameters of the intrinsic impedance. By connecting Z’l2-l1 in series 

with a port-swapped version of itself, thus cancelling out the effects of the contact impedance: 

       
            (       )

 
 

 

(3-17) 

 

Note that     ([
      
      

])  [
      
      

]. Next, the Z-parameters are transformed to S-

parameters. We can then extract the characteristic impedance (Zc) and the propagation 

constant (γ). Given that Zl2-l1 is symmetric, ZL can be calculated from: 
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(3-18) 

 

Contact Impedance Estimation 

The experimental results from Sample Nos.1 and 2 will be used for preliminary examination. 

Their contact impedance can be extracted by the method mentioned above, as shown in 

Figure 3.41 to Figure 3.44. For each sample type, since there are three sets of measurement 

from different lengths (L4 = 492 µm, L3 = 192 µm and L2 = 92 µm), the de-embedding can 

be performed with three combinations (L2-L3 = 100 µm, L3-L4 = 300 µm and L2-L4 = 400 

µm). The contact impedances evaluated from Section 3.1.4 based on the low-frequency 

measurement are included in the datasets to establish a reference point. It can be seen that 

both the modelled and experimental results reveal a strong capacitive behaviour. The contact 

resistance derived from the circuit model (Figure 3.9) at this frequency range is negligible 

whereas the ones extracted from Equation (3-18) shows the contrary. There is an additional 

resistive component in the contact impedance composition. Ideally, the contact impedances 

obtained from the three datasets should be not far from each other. The difference between 

datasets is probably due to the measurement uncertainty. Some even exhibit non-physical 

negative resistance at high frequencies. If the proposed de-embedding technique is valid, we 

should be able to accurately reconstruct the S-parameter of the original measurement using 

only the extracted values for Zc, γ, and ZL. When plotted next to the raw S-parameters of 

sample No.2 with L3 (Figure 3.45 and Figure 3.46), the S-parameters reconstructed using ZL 

from L2-L3 differ significantly at mm-wave frequency range. In contrast, the one with L3-L4 

is relatively close to the raw measurement. Hence, it is reasonable to say that this negative 

resistance given by the extracted ZL is rather an erroneous reading. In addition, it is also 

possible to see the discrepancy at low frequencies in magnitude between the raw S-parameters 

and those ones reconstructed using ZL given by low frequency measurement and circuit 

modelling. This implies that the contact reactance is slightly underestimated by the method 

derived in Section 3.1.4 which is also readily evident in Figure 3.42 and Figure 3.44. 

  

Figure 3.41 Contact resistance estimated from the two line 

method and the circuit model for sample No.1; where L4 = 

492 µm, L3 = 192 µm and L2 = 92 µm 

Figure 3.42 Contact reactance estimated from the two line 

method and the circuit model for sample No.1; where L4 = 492 

µm, L3 = 192 µm and L2 = 92 µm 
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Figure 3.43 Contact resistance estimated from the two line 
method and the circuit model for sample No.2; where L4 = 

492 µm, L3 = 192 µm and L2 = 92 µm 

Figure 3.44 Contact reactance estimated from the two line 
method and the circuit model for sample No.2; where L4 = 492 

µm, L3 = 192 µm and L2 = 92 µm 

  

Figure 3.45 Comparison between S11 raw data and 

reconstructed from the two line method using the contact 

impedance extracted L3-L4 and L2-L3 as well as the directly 
obtained from circuit model 

Figure 3.46 Comparison between S21 raw data and 

reconstructed from the two line method using the contact 

impedance extracted L3-L4 and L2-L3 as well as the directly 
obtained from circuit model  

Parameter Extraction 

Figure 3.47 to Figure 3.52 show the frequency dependence of Re(Zc), Im(Zc), α and β of the 

intrinsic CPW devices de-embedded with the new method. The simulated and measured 

results are compared. Each type of the sample has three sets of extracted experimental data 

from different combinations of lines (L2-L3 = 100 µm, L3-L4 = 300 µm and L2-L4 = 400 

µm). The simulated results are shown in solid line. One can notice that the traces are much 

smoother and the variation between datasets is minimized compared to the results we reported 

previously. It is in fact more likely that these datasets de-embedded with the new method are 

more accurate. For one, better agreement with the proposed quasi-TEM model observed in the 

case of sample No.2 gives confidence to the accuracy of this de-embedding procedure. If 

considering the case of L2-L3, the discrepancy of imaginary characteristic impedance has 

minimized to 9.3 and 8.4% at 30 and 60 GHz, respectively as opposed to 20.7 and 15.7% as 

presented in Table 3.2 for the case of l = 192 µm. When examining the results from sample 

No.1, mismatch between datasets is also noticeable in particular at the lower frequencies. The 

imaginary characteristic impedance extracted from L2-L3 is underestimated due to over-de-

embedding of contact reactance. Note that in Figure 3.42, the derived contact reactance from 

L2-L3 is higher than the others. The attenuation is lower than the model predicted across the 
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whole frequencies. It appears that the accuracy of the model deteriorates in this particular case. 

This issue will further be discussed in Section 3.2. Meanwhile, in the case of sample No.3, the 

extracted values have significant error, therefore cannot be reliably analysed. 

  

Figure 3.47 Measured and simulated Zc of sample No.4 Figure 3.48 Measured and simulated γ of sample No.4 

  

Figure 3.49 Measured and simulated Zc of sample No.1 Figure 3.50 Measured and simulated γ of sample No.1 

  

Figure 3.51 Measured and simulated Zc of sample No.2 Figure 3.52 Measured and simulated γ of sample No.2 
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3.2 Single and Multiple Gold Nano-lines 

The proposed new de-embedding procedure is much less sensitive to measurement errors and 

parasitic residues, making it adequate for high-frequency characterization. In the following 

section, similar tests will be implemented but using gold nanowires. This is to avoid oxidation, 

thus minimizing the influence of contact impedance. A new CPW structure with a smaller 

occupied area will first be demonstrated which helps improve the accuracy of measurement. 

Next, the transmission properties of different device configuration will be investigated, 

including single and multiple lines devices. The effect of gap size and distance between 

nanowires will also be studied. The idea of putting several nanowires in parallel is to resolve 

excessive metal loss due to dimensional scaling. However, parallel combination of nanowires 

will result in different signal propagation properties, such as decrease in effective inductance. 

Besides, paralleling nanowires may interact with each other. It is worthwhile to examine how 

the transmission characteristics of a parallel nanowire system scale with the numbers of wires. 

At the end of this section, inadequacy of this de-embedding procedure is eventually revealed. 

It will be shown that de-embedding method should be adapted according to the frequency 

range to ensure a more accurate interpretation of measurement result.  

3.2.1. New Test Structure Design and Fabrication 

The fabrication steps are similar to those described in Section 3.1.1. However, gold (Au) was 

used as the material for the lines instead of aluminium. For better adhesion on the oxide-

coated Si substrate, it is necessary to deposit a thin layer of Chromium (Cr) before Au 

deposition. Table 3.3 summarizes the geometrical parameters of all the devices-under-test 

(DUT). Some devices include parallel multiple lines in the same signal path. The material for 

the CPW structures remains aluminium. They were designed either to be compatible with 50 

µm-pitch or 100 µm-pitch GSG probes. Two gap distances were chosen: 12 and 20 µm. 

Figure 3.53 shows two 50 nm wide Au wires embedded in a CPW structure. It can be seen 

that in Figure 3.54 the signal pads lie over the line, ensuring a sufficient contact area. 

Compared to Al nanowires, the surface of these Au nanowires is much smoother, as can be 

observed in Figure 3.55. 

 

Figure 3.53 SEM image of two parallel nano Au wires embedded in a CPW structure 
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Table 3.3 Geometric parameters of the gold lines in CPW configuration 

Sample No.
Linewidth 

(µm)

Thickness 

(µm)

Single/Multiple 

line

Interline 

distance 

(µm)

Gap (µm)

A1 0.1 0.1 X 1 20

A1’ 0.1 0.1 X 1 12

A2a 0.1 0.1 X 2 0.2 20

A2’
a

0.1 0.1 X 2 0.2 12

A2b 0.1 0.1 X 2 1 20

A5
a

0.1 0.1 X 5 0.2 20

A5b 0.1 0.1 X 5 1 20

B1 0.2 0.1 X 1 20

B1’ 0.2 0.1 X 1 12

B2
a

0.2 0.1 X 2 0.2 20

B2b 0.2 0.1 X 2 1 20

B5
a

0.2 0.1 X 5 0.2 20

B5b 0.2 0.1 X 5 1 20

C1 1 0.05 X 1 20

D1 0.1 0.05 X 1 20

E1 0.05 0.05 X 1 20

E2 0.05 0.05 X 2 1 20

F1 8 0.5 X 1 20  

  

Figure 3.54 Contact between the nano-size wires and the pad Figure 3.55 Top view of an Au wire 

3.2.2. Scattering Parameters Measurement 

The experimental setup and the measurement procedure resemble those described in Section 

2.2.2, except that the measured frequency ranges from 1 to 110 GHz and the configuration of 

the GSG probes is for 50 µm-pitch RF pads. Figure 3.56 and Figure 3.57 show the top view 

of the test device with the probes under optical microscope. 
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Figure 3.56 Complete test device with 50 µm pitch GSG 

probes 

Figure 3.57 The test device with the probes at lower 

magnification  

3.2.3. DC Resistance Measurement 

I–V measurements were conducted on an HP 4155 semiconductor parameter analyser. The 

DC resistance was measured at different applied currents in the range of 100~700 µA with a 

compliance voltage at 2 V. The measurement was carried out with Karl -Suss PM5 wafer 

probe station. The probes are also provided by Karl -Suss (single tip, PH120 Precision Probe 

Manipulator). Two probes were placed separately on the signal input and output pad to 

measure the total resistance. 25 data points were acquired. Three sample types were selected 

for testing (sample Nos.C1, D1 and E1). The measured resistance with respect to different 

line lengths is plotted in Figure 3.58. Note that the obtained value is a sum of the resistance 

consisting of probe to pad contacts, pads, pad to line contacts, and the line itself. It is possible 

to isolate the line resistance using the measured resistance of different lengths although the 

extracted resistance per unit length is very sensitive to measurement errors. However, the 

result suggests that the contact between the line and pad is an ohmic contact (purely metal to 

metal). And based on the linear fitting, such contact impedance should be less than 40 Ω and 

the conductivity is about 2.4 × 10
7
 S/m in the case of Sample No.D1 (the bulk gold 

conductivity is 4.2 × 10
7
 S/m).  

 

Figure 3.58 Total DC resistance of three different sample types. w and t denote the linewidth and thickness of the lines. 
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3.2.4. Verification of the New Subtraction Method 

The method described in Section 3.1.6 for the extraction of transmission line parameters will 

be applied on these new samples. The contact impedance can also be estimated. The extracted 

contact impedance ZL is an approximation for the actual impedance. Figure 3.59 shows the 

contact impedance of sample Nos.B1 and C1. The impedance indicates a capacitive behaviour 

with a positive resistance. In an attempt to understand the physical behaviour of the extracted 

contact impedance, simulation is performed using the circuit model in Figure 3.60. The best 

fit is obtained by tuning the individual circuit elements using R1 = 15 Ω, R2 = 34 Ω, C1 = 

0.34 fF, C2 = 300 fF for sample No.C1. In case of sample No.B1, R1 = 63 Ω, R2 = 280 Ω, C1 

= 0.16 fF, C2 = 108 fF were obtained. The R2C2 model accounts for the variation of contact 

resistance as a function of frequency. The roles of each element are as follows. R2 has a 

strong influence on the maximum value for both the resistance and the reactance whereas C2 

is responsible for the frequency where the maximum value occurs. At very high frequencies, 

the contact resistance is approximated by R1. C1 represents the influence of signal 

discontinuity at the transition between the line and the pad as was discussed in Chapter 2. The 

addition of such component is to optimize the resistance at high frequencies. As the value of 

C1 is relatively small, the effect of such capacitance can be neglected. Therefore, the 

assumption that the contact impedance can be modelled solely by a lumped series admittance 

is not violated, the new proposed de-embedding method should be valid for these samples. It 

is interesting to note that the estimated contact impedance is found to be somewhat larger than 

that obtained in DC measurement.  

 

Figure 3.59 Extracted contact impedance using the two line method 

 
Figure 3.60 Circuit model of a Au nano-transmission line with contact impedance 
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3.2.5. Results and Discussion 

The results are examined as follows. First, it will be demonstrated that the smaller CPW 

structure combined with the 50 µm-pitch GSG probes yields better measurement results. Then, 

the coupling effects between signal pads will again be addressed and the possibility to 

improve the de-embedding will be discussed. The extracted characteristics of the nano-lines 

in relation to their geometry and structure will be shown. Later, the physical limitations 

impeding the de-embedding method will be revealed. The fundamental technique is then 

extended to be more elaborate in order to maintain an accurate measurement well into mm-

wave regime. 

Impact of Pad Design on Extracted Parameters 

Figure 3.61 to Figure 3.64 show the frequency dependence of Zc, γ and distributed parameters 

R, L, G and C of sample No.F1 de-embedded with the new method. The simulated and 

measured results are compared. The geometry of sample No.F1 is identical to that of sample 

No.4 in Section 3.1, representing a conventional micro-scale transmission line. It was 

fabricated at the same layer as the CPW structure with linewidth and thickness being 8 and 

0.5 µm, respectively. There are three sets of extracted experimental data from different 

combinations of lines (L2-L3 = 100 µm, L3-L4 = 300 µm and L2-L4 = 400 µm). The 

simulated results are shown in solid line. It is not surprising to see that the estimation for the 

contact impedance is close to zero, as shown in Figure 3.65. The improvement using the 50 

µm-pitch pads and probes can be noticed from the better agreement with the proposed model 

compared to those results obtained from the 100 µm-pitch setup (Figure 3.47 and Figure 3.48). 

It is in fact more likely that this set of measurement has better accuracy. For one, Im(Zc) 

should approach zero at high frequencies. For a low loss transmission line, when the 

frequency increases to a certain level, where R ≪ ωL and G ≪ ωC. Zc can be simplified to 

√    which is purely real.  

As shown in Figure 3.63, the closed-form formula depicts the increasing resistance 

across a broad frequency range. Such increase is related to the initial stage of skin effect since 

the linewidth is larger than the skin depth (0.32 µm at 65 GHz with a conductivity being 3.77 

× 10
7
 S/m). There is observable deviation between the theoretical and experimental values at 

high frequencies. The conductance value simulated in ADS Momentum agrees very well with 

the experiment. By contrast, the model does not capture the frequency dependence of 

inductance and capacitance above 20 GHz.  

  
Figure 3.61 Measured and simulated Zc of sample No.F1 Figure 3.62 Measured and simulated γ of sample No.F1 
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Figure 3.63 Measured and simulated R and L of sample No.F1 Figure 3.64 Measured and simulated G and C of sample 

No.F1 

 
Figure 3.65 Extracted contact impedance ZL 

Figure 3.66 to Figure 3.69 further demonstrate the improvement in accuracy using 50 

µm-pitch probes and pads. The dataset of L2-L3 from sample No.C1 is used for illustration. 

The best indicator to evaluate the measurement accuracy is the extracted R, L, G and C. It is 

evident that the measurement with 50 µm pitch test set is much closer to the theoretical value 

and yields physically reasonable characteristics. This implies that reducing the size of the 

pads and the implementation of smaller pitch GSG probes helps to improve the accuracy of 

the measurement. In other words, parasitics from the test set should be minimized despite the 

availability of de-embedding techniques. Note that the Au conductivity applied in the 

simulation is 1.9 × 10
7 
S/m which is 16% higher than that of Al nanowires. 

  

Figure 3.66 Measured and simulated Zc of sample No.C1 with 

different pad designs 

Figure 3.67 Measured and simulated γ of sample No.C1 with 

different pad designs 
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Figure 3.68 Measured and simulated R and L of sample No.C1 

with different pad designs 

Figure 3.69 Measured and simulated G and C of sample 

No.C1 with different pad designs 

Impact of Signal Pad Coupling on Extraction Parameters 

In Section 3.1.5, the issue of signal pad coupling was revealed. Due to the substantial 

uncertainty presents in the result, it was difficult to determine if the de-embedding technique 

should be adjusted to account for this parasitics. In this section, the path will be continued to 

analyse this effect to the test result. Figure 3.70 shows the extracted Zco of 50 µm-pitch CPW 

empty devices of various separation distances using the method described in Section 3.1.5. 

These empty devices show similar behaviours as those of 100 µm-pitch ones (Figure 3.36). 

However, the capacitive coupling effect is less pronounced between these signal pads. 

Considering the curve of Im(Zco) with l = 92 µm, it tends to be slightly inductive at above 36 

GHz. As mentioned earlier, it is likely that there is another mode of propagation excited 

between the pads, which will offset Im(Zco), making it significantly less capacitive. At 110 

GHz, a small inductance of approximately 3 nH can be derived. 

 

Figure 3.70 Coupling impedance between 50 µm pitch signal pads at different distances. L4 open: open device with l = 492 µm. 

L3 open: open device with l = 192 µm. L2 open: open device with l = 92 µm. 

 

To determine whether it is necessary to consider such parasitics, it is helpful to verify the 

accuracy of the extracted parameters after subtraction. As an example, we take sample No.B1 

having the linewidth and thickness being 0.2 and 0.1 µm using only the dataset of L2-L3 for 

verification (Figure 3.71 to Figure 3.74). The observation is similar to that in Section 3.1.5 in 

which the major difference between with and without subtraction of Y12 (coupling admittance 

between the signal pads) lies in the attenuation constant. Here at 90 GHz, an increase of 15% 

in α is obtained and the discrepancy between the extracted and simulated data is minimized 

from 8.4 to 4.6%. A noticeable difference can be observed in R and L as shown in Figure 
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3.73. The result after the removal of Y12 seems more reliable. For one, R and L are less 

sensitive to the frequency, and correspond better to the simulation. Since there is a noticeable 

improvement in the extracted result, it is reasonable to believe that the removal of signal pad 

coupling should be included in the de-embedding technique. 

  

Figure 3.71 Measured and simulated Zc of sample No.B1 with 

and without removal of coupling effect 

Figure 3.72 Measured and simulated γ of sample No.B1 with 

and without removal of coupling effect 

  

Figure 3.73 Measured and simulated R and L of sample No.B1 
with and without removal of coupling effect 

Figure 3.74 Measured and simulated G and C of sample 
No.B1 with and without removal of coupling effect 

Performance Comparison of Single and Multiple Nano-lines 

The discussion in the previous section completes the de-embedding procedure which will be 

applied to the test structures. Apart from single nano-lines, multiple nano-lines will also be 

characterized. The performance of single and multiple nano-lines for a given dimension will 

be compared in the following section. It is important to see how the transmission line 

parameters scale with number of nano-lines (N). The information is helpful not only to 

provide a design rule for passive RF components but to identify limitation in the measurement 

setup. The sets of measurement in this analysis are from sample Nos.A1 and B1. The 

linewidths of these samples are 0.1 and 0.2 µm, respectively with the same thickness of 0.1 

µm.  

The first set of data presented is from sample No.B1. Sample Nos.B2
a
 and B5

a
 refer to 

two and five nano-lines carrying currents in a parallel path with the identical cross-section as 

sample No.B1. The interline distance is 0.2 µm. Figure 3.75 to Figure 3.78 show the 

measured and simulated Zc and γ. In each figure, there are three groups of traces, sample 

Nos.B1, B2
a
 and B5

a
. Three datasets extracted from different pairs of nanolines (L2-L3, L3-

L4 and L2-L4) are included for every group. Quasi-TEM model for the single transmission 

line is added as a reference. Each group has a distinct trace so it is easy to distinguish one 
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from another. Sample No.B5
a
 having the most amounts of metal lines naturally has the lowest 

characteristic impedance and propagation constant. The result extracted from multiple nano-

lines either from sample No.B2
a
 or B5

a
 demonstrates a consistent trend. As for the single line, 

the dataset associated with the measurement of L4 (L3-L4 and L2-L4) shows a significant 

deviation in Zc from the model, in particular at frequencies above 30 GHz. This could be 

attributed to small transmission signal given from L4. The only well-behaved curve is from 

L2-L3 which agrees sufficiently well with the model. For better understanding the 

performance of these structures, one should consider the effective distributed RLGC 

parameters of the devices (from Figure 3.79 to Figure 3.82). It is interesting to note that R is 

nearly constant at all frequencies, meaning that these lines do not suffer from skin effect. 

Besides, the effective resistance of multiple lines is simply the resistance of a single nano-line 

divided by the number of lines (N). As for L and C, not surprisingly, we observe a reduction 

in inductance and an increase in capacitance per unit length as N increases. However, it 

appears that the devices with multiple lines are not simply the parallel combination of the 

circuit for a single line. Due to the proximity between the nano-lines, there is coupling effect 

between the lines, introducing mutual inductance and capacitance. As a consequence, the total 

effective inductance and capacitance do not scale linearly with N. The higher effective 

capacitance is naturally accompanied by higher dielectric loss, thereby higher G.  

  

Figure 3.75 Measured Re(Zc) of sample Nos.B1, B2a and B5a 

(from top to bottom). Each sample type has three datasets (L2-
L3, L3-L4 and L2-L4). The proposed model for sample No.B1 

is included. 

Figure 3.76 Measured Im(Zc) of sample Nos.B1, B2a and B5a 

(from bottom to top). Each sample type has three datasets (L2-
L3, L3-L4 and L2-L4). The proposed model for sample No.B1 

is included. 

  

Figure 3.77 Measured α of sample Nos.B1, B2a and B5a (from 

top to bottom). Each sample type has three datasets (L2-L3, 
L3-L4 and L2-L4). The proposed model for sample No.B1 is 

included. 

Figure 3.78 Measured β of sample Nos.B1, B2a and B5a (from 

top to bottom). Each sample type has three datasets (L2-L3, 
L3-L4 and L2-L4). The proposed model for sample No.B1 is 

included. 
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Figure 3.79 Measured R of sample Nos.B1, B2a and B5a. The 

proposed model for sample No.B1 is included. 

Figure 3.80 Measured L of sample Nos.B1, B2a and B5a. The 

proposed model for sample No.B1 is included. 

  

Figure 3.81 Measured C of sample Nos.B1, B2a and B5a. The 

proposed model for sample No.B1 is included. 

Figure 3.82 Measured G of sample Nos.B1, B2a and B5a. The 

proposed model for sample No.B1 is included. 

Another set of measurement is sample No.A1 (0.1 µm thick and wide). Likewise, 

Sample Nos.A2
a
 and A5

a
 refer to two and five nano-lines with the identical cross-section as 

Sample No.A1 (Figure 3.83 to Figure 3.87). A similar problem arises in certain datasets. We 

begin to see distortion in trace at high frequencies even for those ones of L2-L3. When 

examining measurement data, it can be seen that Zc at the frequency above 60 GHz for 

sample No.A1 and No.A2
a
 are not reliable. Yet, the plots of α and β from sample No.A2

a
 still 

provide a trustable reference. It should be noted that for better illustration, the datasets of L3-

L4 and L2-L4 from these two sample types are intentionally omitted. The proposed model for 

the single line device agrees well with the experimental data up to 40 GHz. If the line still 

respects the conventional transmission line theory, the model is a good indication of what 

should be expected at the frequencies above. Consequently, the extracted R is plagued by the 

inaccurate Zc and γ after calculation (Figure 3.87). It is relevant to mention that the estimated 

metal conductivity is 1.9 × 10
7
 S/m. Such Au line reaches up to 5000 kΩ per unit length, 

presumably remaining constant at all measured frequencies.  
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Figure 3.83 Measured Re(Zc) of sample Nos.A1, A2a and A5a. 
The proposed model for sample No.A1 is included. 

Figure 3.84 Measured Im(Zc) of sample Nos.A1, A2a and A5a. 
The proposed model for sample No.A1 is included. 

  

Figure 3.85 Measured α of sample Nos.A1, A2a and A5a. The 

proposed model for sample No.A1 is included. 

Figure 3.86 Measured β of sample Nos.A1, A2a and A5a. The 

proposed model for sample No.A1 is included. 

 

Figure 3.87 Measured R of sample Nos.A1, A2a and A5a. The proposed model for sample No.A1 is included. 

Table 3.4 summarizes the discrepancies between the simulation results and measurement 

for sample Nos.A1, B1 and C1. Only the datasets from L2-L3 are taken into account. The 

new de-embedding procedure yields a significantly improved accuracy comparing to the 

result presented in Table 3.2. Within approximately 5% error for all the four parameters is 

achieved in the case of sample No.B1. In particular, the extracted Im(Zc) shows dramatic 

improvement when the proposed technique is used. The model agrees less with the result 

obtained from sample No.C1, especially at mm-wave range. This is in agreement with what 
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was observed earlier in Section 3.1.6 in the case of sample No.1. A good indication to 

examine the accuracy of the model is the correspondence of RLGC elements. Figure 3.69 (it 

can be found in Section 3.2.5) shows that the percentage difference between the theoretical 

and actual values in capacitance could reach as much as 20% at 110 GHz. It is likely that the 

mesh density was set too low for the slot lines in ADS Momentum. In addition, sample No.A1 

exhibits unusually large discrepancy at 90 GHz. This is related to the trace distortion which 

was discussed earlier. This issue will be address later. 

Table 3.4 Discrepancy between simulation and measurements for sample Nos. A1, B1 and C1 using L2-L3 dataset. The variation 

of α is estimated as 
          

     
. The other parameters are calculated in the same manner. 

% variation

Re(Zc) Im(Zc) α β Re(Zc) Im(Zc) α β Re(Zc) Im(Zc) α β

Sample No. C1 6.3 8.2 -5 -2 9.8 11.1 -4 -5 16.7 18.8 -8 -8

Sample No. B1 5.2 3.3 0.4 2 0.4 -2.8 0.5 -0.6 -2.7 -3.9 4.6 -2

Sample No. A1 -6.4 6.6 1.6 2.5 -0.9 0.2 -13 -4.9 34.3 -92.6 -25 -15

30 (GHz) 60 (GHz) 90 (GHz)

 

Impact of Gap Distance on Extraction Parameter 

For coplanar wave guides, the electromagnetic field is mainly concentrated between the 

ground planes and the central conductor. Depending on the choice of slot width (distance 

between the signal line and ground plane), the transmission line characteristic can be 

modified [79]. In this study, two types of gap distance are considered in the design: 12 and 20 

µm. The gap is defined as the distance between the two ground planes (see Figure 3.53). The 

effect of gap distance is evaluated and plotted in Figure 3.88 to Figure 3.91 for sample 

Nos.B1 and A2
a 
and only the traces of L2-L3 are taken into consideration. With a smaller gap, 

a noticeable shift of curve can be found in the real part of characteristic impedance, 

approximately 10% at the range around 90 GHz. Other parameters show less than 5% 

percentage difference, which is within the uncertainty range of the original measurement. As 

a reference, a repeatability test is performed on a second device for sample type No.B1’. If 

ignoring jitter in the signal, the maximum variation is 5% in all parameters. Similar behaviour, 

perhaps obscured by the distortion in the trace at mm-wave range, is observed in the two line 

device for sample type No.A2
a
. The result implies that the gap distance seems to have only a 

mild influence on the transmission line characteristics. 

  

Figure 3.88 Measured Zc of sample Nos.B1 and B1’. Sample 

No.B1: single line, linewidth= 200 nm, gap distance = 20 µm. 

Sample No.B1’ and Sample No.B1’, repeat: single line, 

linewidth= 200 nm, gap distance = 12 µm 

Figure 3.89 Measured γ of sample Nos.B1 and B1’. Sample 

No.B1: single line, linewidth= 200 nm, gap distance = 20 µm. 

Sample No.B1’ and Sample No.B1’, repeat: single line, 

linewidth= 200 nm, gap distance = 12 µm 
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Figure 3.90 Measured Zc of sample Nos.A2a and A2’a. Sample 
No.A2a: double line, linewidth = 100 nm, interline distance = 

200 nm, gap distance = 20 µm. Sample No.A2’a: double line, 
linewidth = 100 nm, interline distance = 200 nm, gap distance 

= 12 µm.  

Figure 3.91 Measured γ of sample Nos.A2a and A2’a. Sample 
No.A2a: double line, linewidth = 100 nm, interline distance = 

200 nm, gap distance = 20 µm. Sample No.A2’a: double line, 
linewidth = 100 nm, interline distance = 200 nm, gap distance 

= 12 µm.  

Impact of Inter-line Distance on Extraction Parameters 

It was shown that impact of gap distance is rather minor. Another interesting design factor in 

multiple line devices is the separation distance between the lines. Figure 3.92 to Figure 3.99 

show the influence of interline distance to the extracted Zc and γ. This set of data is based on 

nano-lines with linewidth being 0.2 µm and thickness 0.1 µm and only the traces of L2-L3 are 

taken into consideration. Sample Nos.B2
a
 and B5

a
 refer to two and five nano-lines with 

interline distance being 200 nm whereas Sample Nos. B2
b
 and B5

b
 are with 1000 nm. As 

show in Figure 3.94, the increase in interline distance introduces more attenuation but such 

effect is only found for the device with five nano-lines. Specifically, more than 30 % of 

change is seen at 90 GHz. When examining closely, Re(Zc) and Im(Zc) are both slightly 

lower across the frequency range. At 30 GHz, the differences are approximately 12% and 

they become less and less significant at frequencies above this point. We can also consider 

RLCG parameters to further interpret the result (from Figure 3.96 to Figure 3.99). The 

observed increase in α can be attributed to the increase in dielectric loss (G) which is 

associated with the comparatively higher effective capacitance. The effective inductance has 

dropped substantially but this only begins to have influence on Zc and γ at high frequencies 

since R is dominant in the frequency of analysis. In fact, at low frequencies, Zc can be 

approximated be √   . At the high frequencies, the expression for Zc becomes 

√(      )  (   ). With this knowledge, it is then possible to explain the variation of Zc. 

Further supporting the impact of interline distance on transmission characteristics, Figure 

3.100 and Figure 3.104 show another set of data using multiple nano-lines with linewidth and 

thickness being 0.1 µm. The result indicates that the influence of a wider separation distance 

is more significant when linewidth is smaller. For instance, lower characteristic impedances 

are readily evident at low frequencies. The difference reaches 20% at 30 GHz. It should be 

noted that the accuracy of Sample No.A2
a
 appears less accurate than Sample No. A2

b
 at mm-

wave frequencies. The simple fact is that the trace for Re(Zc) appears discontinuous at the 65 

GHz, the transition frequency of our measurement system. 
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Figure 3.92 Measured Re(Zc) of sample Nos.B2a, B2b, B2a and 
B5b 

Figure 3.93 Measured Im(Zc) of sample Nos.B2a, B2b, B2a and 
B5b 

  

Figure 3.94 Measured α of sample Nos.B2a, B2b, B2a and B5b Figure 3.95 Measured β of sample Nos.B2a, B2b, B2a and B5b 

  

Figure 3.96 Measured R of sample Nos.B2a, B2b, B2a and B5b Figure 3.97 Measured L of sample Nos.B2a, B2b, B2a and B5b 
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Figure 3.98 Measured C of sample Nos.B2a, B2b, B2a and B5b Figure 3.99 Measured G of sample Nos.B2a, B2b, B2a and B5b 

  

Figure 3.100 Measured Re(Zc) of sample Nos.A2a, A2b, A2a 

and A5b 

Figure 3.101 Measured Im(Zc) of sample Nos.A2a, A2b, A2a 

and A5b 

  

Figure 3.102 Measured α of sample Nos.A2a, A2b, A2a and 

A5b 

Figure 3.103 Measured β of sample Nos.A2a, A2b, A2a and A5b 
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Figure 3.104 Measured C of sample Nos.A2a, A2b, A2a and A5b 

Based on this analysis, we can see that the multi-line devices are favourable for signal 

transmission. They have less metal losses and better impedance matching with the test 

equipment. Although it is true that the attenuation remains far more than that of the actual 

state-of-the-art classic line, (the attenuation of a microstrip line in 65 nm technology node is 

typically lower than 2 dB/mm at 100 GHz), it was shown that α can be effectively minimized 

with increasing the numbers of nano-line (a decrease by 50% was seen with five parallel 

nano-lines at 100 GHz) Most importantly, the multi-line devices provide more freedom of 

design because the transmission characteristics can be controlled by changing the numbers of 

nano-lines, the distance between lines as well as the linewidth which makes them an attractive 

alternative to conventional CPW structure.  

Limitation of the Extraction Procedure 

It seems that the degradation of accuracy found in the extracted parameters is not due to the 

limitation of measurement system. One of the best indicators to identify the source of error is 

S-parameters. Figure 3.105 to Figure 3.107 shows the magnitude of S21 parameter taken 

directly from the measurement of the test samples along with the simulated ones. It should be 

noted that the pads are not taken into account in the simulation which explains slightly less 

losses. In the case of sample No.C1, the measured S-parameters follow the simulated ones for 

all the lines of different lengths (L2, L3 and L4). However, this is not the case for sample 

Nos.B1 and A1. We can see that the measured data from L4 deviates from the theoretical 

value. It could even be argued that the deviation is observed for sample No.A1 in L3. In 

principle, transmission line properties do not depend on line length. There seems to be no 

reason why the simulation agrees well in the case of sample No.C1 but fails to satisfy the 

others. In Figure 3.108, the magnitudes of S21 parameters of the open structures from different 

lengths are compared. We also include the measurement with the probes in the air out of 

contact with the substrate. The result implies that there is propagation of signal between pads. 

Most importantly, the level of this receiving signal becomes comparable to the L4 

measurements of sample Nos.B1 and A1 at high frequency region. It is likely that the 

transmission signal given by these lines is so small that the contribution from the test structure 

parasitics becomes equally important. In consequence, it is difficult to isolate the signal 

coming from the intrinsic device. Besides, the treatment of the two line method requires 

subtracting the RF response of another line and the contact impedance. Although not 

explicitly demonstrated here, it is relevant to mention that the extracted contact impedance ZL 
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includes error and it becomes increasingly intolerable as the size of nano-line decreases. In 

the next section, thru-only de-embedding technique will be reconsidered which improves the 

degree of accuracy at mm-wave frequency. 

  
Figure 3.105 Magnitude of S21 for sample No.C1 Figure 3.106 Magnitude of S21 for sample No.B1 

  
Figure 3.107 Magnitude of S21 for sample No.A1 Figure 3.108 Magnitude of S21 from the empty open structures 

and when probes are in the air. L4 open: open device with l = 

492 µm. L3 open: open device with l = 192 µm. L2 open: open 

device with l = 92 µm. 

Other De-embedding Technique 

Unfortunately, the measurement errors will always be present either from calibration or 

instrumentation. The error can propagate to all the S-parameters through the de-embedding 

calculus. In particular when insertion loss is large, even a small measurement error can 

obscure the device characteristics. It has been shown that the validity of the technique, 

summarized earlier, is limited by the small transmission signal. To minimize over de-

embedding, we reconsider thru-only method to examine the precision. In Section 3.1.5, the 

misfit between the measurement and the model was quantified. While the analysis concerned 

the de-embedding inaccuracy due to the underestimation of contact impedance below 30 GHz, 

at the frequencies beyond, the contact impendence residue has negligible effect on both Zc 

and γ. Figure 3.109 to Figure 3.114 compare the extracted Zc and γ. L2-L3 refers to the de-

embedded result using modified two line method while L3 represents the one de-embedded 

with thru-only method. It should not be surprising to observe some discrepancy at lower 

frequencies in sample No.B1 (linewidth and thickness equal to 0.2 and 0.1 µm, respectively.). 
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On the other hand, we see that the trace of L3 closely follows that of L2-L3 and the model at 

frequencies above 70 GHz. As for sample No.A1 (linewidth and thickness equal to 0.1 µm), 

the high-frequency characteristics are plagued by errors in L2-L3. In contrast, the trace of L3 

maintains a continuous frequency-dependent curve above 70 GHz, despite of the observable 

disagreement with the model. The extracted result shows that the propagation delay (v = ω/β) 

is longer and has far more attenuation than the theoretical values. This actually corresponds to 

the claim in Section 3.1.5 when evaluating the 100 nm wide Al nanowire (sample No.3). Here, 

the misfits between the model and the extracted α and β are about 13.0% and 12.5% at 90 

GHz, respectively (In Section 3.1.5, α is 25% and 18% for β were found at 90 GHz when l = 

192 μm for sample No.3). Figure 3.114 (showing the case of two nano-lines with the same 

dimension as sample No.A1) further supports the limited precision of extracted α and β at 

high frequencies using two line method when the linewidth scales down to 100 nm. One gets 

8.8% and 10.9% less in α and β at 100 GHz, respectively comparing to the values de-

embedded with thru-only method. This result clearly reveals that according to the frequency 

range, different de-embedding procedures should be applied while characterizing nano-

transmission line.  

  

Figure 3.109 Comparison of de-embedded Zc for sample 
No.B1 

Figure 3.110 Comparison of de-embedded γ for sample 
No.B1 

  

Figure 3.111 Comparison of de-embedded Zc for sample 

No.A1 

Figure 3.112 Comparison of de-embedded γ for sample 

No.A1 
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Figure 3.113 Comparison of de-embedded Zc for sample 
No.A2b 

Figure 3.114 Comparison of de-embedded γ for sample 
No.A2b 

Having gained the insight from the new analysis, we revisit the measurement and 

perform the extraction using thru-only de-embedding method, only to confirm the previous 

statement. The results of the single-line devices with different dimension are plotted in Figure 

3.115 and Figure 3.116. Only the frequency range above 65 GHz is examined this time. 

Sample No. F1, having a dimension closer to typical transmission lines in the advanced RF-

CMOS technology is included for establishing a point of reference. Theoretical values are 

included for comparison, shown in dotted line. Narrow conductors, like sample Nos.B1 and 

A1 show that their propagation delays (v = ω/β) are much longer and the characteristic 

impedances are far more frequency-dependent than those of the wider lines. The high 

resistance has made the nanowire slower compared to conventional transmission lines. Good 

agreement can be seen between the model and the actual values, except for sample No.A1. At 

90 GHz, its Re(Zc) is 27.8% lower than the simulation while α and β are 13.0% and 12.5% 

higher, respectively. Im(Zc), on the other hand, matches perfectly with the theoretical value. It 

is likely that elements like inductance/capacitance associated with quantum transport effect 

need to be added to physically interpret the additional latency and losses in sample No.A1. 

However, it is true that they might not be as impressive as in the case of a CNT [27]. 

An interesting design problem is: can we make use of the appearance of slow wave while 

avoiding high conduction losses by utilizing a multiple nanowire system? Let us examine the 

performance of a parallel combination of nanowires and a single wire having the same 

amount of conductor. Sample No.A2
b
 and B1 will be a perfect example (Figure 3.117 and 

Figure 3.118). Sample No.A1 is included for comparison. If comparing sample Nos.A1 and 

B1, 39.5% increase in β can be observed at 90 GHz. Yet, the increase is only 5.6% if two 

nanowires of the same dimension as sample No.A1 are used instead (sample No.A2
b
). Its 

attenuation is effectively reduced but still higher than Sample No.B1 by 16%. A reasonable 

trade-off may be made to achieve desired circuit performance. 
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Figure 3.115 Comparison of Zc between different sample types. 

Dotted lines are the corresponding simulated results. 

Figure 3.116 Comparison of γ between different sample 

types. Dotted lines are the corresponding simulated results.  

  

Figure 3.117 Comparison of Zc between different sample types Figure 3.118 Comparison of γ between different sample types 

3.3 140-210 GHz Characterization  

Having performing a thorough characterization up to 110 GHz, it would be interesting to see 

how these nano-transmission lines behave at even higher frequencies. New measurement was 

carried out in VTT technical research centre in Finland using 140-210 GHz measurement 

setup. This included an HP 8510B VNA from Agilent as well as a millimeter-wave VNA 

extension module provide by Oleson Microwave Labs. The measurements were calibrated 

using the LRRM algorithm provided by the WinCal software from Cascade Microtech, and 

the standards from Picoprobe (WR-5, for G-band). The RF probes were with GSG 

configurations and 100 µm pitch provided from Picoprobe. Each measurement was made with 

401 data points using 3 for averaging factor in a 10 kHz IF bandwidth. 

As can be seen in Figure 3.119 and Figure 3.120, the transmission lines behave in a 

similar manner above 140 GHz. The attenuation tends to saturate at high frequencies and the 

phase velocity remains constant all along the frequency. It is interesting to note that the 

imaginary Zc approaches zero while real Zc is independent of frequency. This indicates that 

the characteristic impedance is determined by L and C. In a sense, the high frequency will 

make the metallic nanowires behave like conventional transmission lines at low frequency. 
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Figure 3.119 Experimental Zc of sample No.2 up to 210 GHz Figure 3.120 Experimental γ of sample No.2 up to 210 GHz 

3.4 Conclusion 

In this chapter, the broadband transmission characteristics of individual and multiple metallic 

nanowires were reported by means of a CPW platform on a standard silicon substrate. 

Different linewidth ranging from 8 µm to 100 nm and thickness from 500 to 100 nm were 

analysed. Most of these nanowires exhibit characteristic impedances much higher than 50 Ω. 

Some interesting properties were found. It was observed that the characteristic impedance of a 

single nano-line reduces as increasing frequency. At a certain frequency above (about 140 

GHz), Zc approaches to a fixed value, behaving as a loss less line. This also means that the 

issue of impedance mismatching can be overcome by increasing operating frequency. 

Naturally, this frequency depends on R, L, C and G of the nanoline. Meanwhile, attenuation 

increases with increasing frequency. However, it appears that attenuation becomes less 

frequency-dependent above 140 GHz. The corresponding loss parameter R is a fixed value 

across the frequency range, suggesting that skin effect is ineffective. Perhaps the most 

important observation is the phase velocity. The dimensional scaling results in a significant 

latency in wave propagation. The proposed model agrees very well with the experiments, 

suggesting that quasi-TEM propagation prevails in these nanowire devices. However, the 

apparent discrepancy observed between the theoretical and experimental values was observed 

for the smallest nanowire having a linewidth and thickness below 100 nm. It is likely that 

quantum transport effect (LK and CQ) begins to manifest in the nanowire with such critical 

cross-sectional area. 

Due to the high resistivity, nanowires should be only reserved for short-distance 

transmission. Multiple nano-line devices were then proposed to alleviate the technological 

challenge raised due to high conductor losses. It was found that RLGC parameters scale 

effectively with the numbers of nanowires (N). The effective R remains irrelevant to the 

frequencies and decreases almost linearly as N increases. The characteristic impedance and 

attenuation can therefore be improved. Specifically, in the case of a 100 nm wide and thick 

nano Au wire, it was observed that the attenuation was reduced from 60 to 30 dB/mm at 100 

GHz by just adding four more wires in parallel. Such characteristic makes multiline device 

competitive to the state-of-the-art lines. On the other hand, the phase constant clearly drops 

when more wires are included. That is to say the slow wave propagation effect becomes less 

impressive in a parallel nanowire system. In addition, mutual interaction exits between 

parallel nanowires. By increasing the distance between the wires, it is also possible to reduce 
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the characteristic impedance at the cost of an increase in the attenuation. If taking into 

account all the design parameters (the linewidth, thickness and the numbers of nanowires, the 

interline distance), one can imagine possible applications such as phase shifters or nano-

resonators by implementing metallic nanoscale transmission lines. As it turns out that the 

physical behaviour of metallic nanowires are quite similar to those of metallic CNTs. 

Another focus in this chapter is to develop a de-embedding technique that could leverage 

the accuracy of the extracted transmission line characteristics. Due to extremely small 

transmission signal and high impedance mismatch attributed to nanowires, parasitic effects 

need to be handled with care. In this chapter, the effects of contact impedance and pad-to-pad 

coupling were discussed. As the importance of parasitics depends strongly on the frequency 

response, it is suggested that different de-embedding procedures should be used according to 

the frequency of analysis. Nevertheless, to achieve a successful nanoscale RF 

characterization, test structures should be designed to avoid parasitics. This includes 

minimizing the pad-line discontinuities, pad-to-pad coupling, and extra substrate loss as well 

as contact impedance. 
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Chapter 4 

Nanocale On-chip Integrated 
Millimeter Wave Antennas on 
Various Substrates 

Integration of antennas with RF electronics on one chip has received great attention since the 

past ten years. It has been regarded as a potential solution to resolve the bottleneck for signal 

transmission in future development of ultra-large scale integration (ULSI) or system-on-chip 

[80]. The RF clock distribution using integrated antennas was developed by Floyd et al. It 

largely reduces the chip area used in interconnection and virtually eliminates the dispersion 

problem [81]. The concept of using integrated antennas is also extended to wireless chip area 

network, namely data communication between chips (inter-chip) or within a chip (intra-chip) 

[82]. Thanks to the recent development in silicon-based monolithic integrated millimeter- 

wave circuits, small antennas can be integrated with a system on a single chip using standard 

CMOS technology, such as 60 GHz application. As the operating frequency of RF circuits 

continues to increase, CMOS transceiver design has already been implemented in the 90-170 

GHz range [83]. RF signals will require an antenna size that is comparable to its wavelength. 

As an example, a quarter-wave antenna for operating frequency at 90 GHz is only about 240 

µm long when integrating on silicon. The lengths are easily scaled. But to be compatible with 

a miniaturized system, all dimensions must be scaled. This means that the thickness and width 

of antennas should also be close to nano-metric scale. Integrated antennas can benefit from 

the increasing processing capability to be compatible with nanoscale communication 

networks. However, integration with such miniaturized antenna has not yet come in to the 

picture due to the fact that antenna performance deteriorates severely because of losses in 

metal layer as well as in the conventional silicon substrate (resistivity = 5~10 Ω-cm) [41]. 

These are the fundamental limitations of material characteristics for operation at RF 

frequencies. Different solutions were proposed for minimizing substrate losses, such as 

integration with high resistivity silicon substrate [84] or Si-on-quartz (SOQ) [85]. However, 

little work has been carried on miniaturized on-chip antenna with a target frequency above 60 

GHz. In this work, the effect of small and thin metal lines on wireless signal transmission in 

various kinds of substrates will be examined to understand their characteristics and limitations. 

The research was made using dipoles and planar inverted–F antenna (PIFA), two most 

commonly used and easily implemented planar antennas, in the frequency range of 1-110 

GHz and 140-210 GHz. This study is meant to provide a glance of the state-of-the-art and 

evaluate the potential in dimensional scaling with regard to short-distance wireless 

communication. 
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4.1 Past Work in On-chip Integrated Antennas 
for Millimeter Wave Applications 

Previous researchers have reported on-chip antennas using CMOS process for operating in the 

60 GHz band for wireless personal area network (WPAN) applications. In 2008, Guo and 

Chuang have realized a planar meander-line inverted–F antenna on standard silicon substrate 

[40]. The antenna was fabricated with a 0.18-µm CMOS process. The chip size was given as 

0.815 × 0.706 mm
2
. The transmission gain was measured with a probe station and network 

analyser. The maximum gain they found was -15.7 dB at 60 GHz. Using Ansoft HFSS 

simulator, a radiation efficiency of 10% was obtained. At the same year, Hsu et al. reported a 

CPW-Fed Yagi antenna using standard 0.18 µm CMOS technology [86]. The maximum 

power gain was measured as -10.6 dBi at 60 GHz (dBi is the unit for the relative power gain 

of an antenna compared with a lossless isotropic source. The negative power gain suggests 

that it probably includes conductor, substrate or impedance matching loss [87]. More 

information about the antenna power gain can be found in Appendix A). The simulated 

antenna radiation efficiency was about 10%. The chip size was 1.1 × 0.95 mm
2
. With the 

same technology, these same authors have also implemented a triangular monopole antenna, 

reported a maximum gain of -9.4 dB with radiation efficiency of 12% [88]. In 2012, Titz et al. 

presented the design and measurement of a 350 µm long IFA and a 1 mm long dipole antenna 

integrated at Metal 6 in the BEOL (Figure 1.4) having thickness less than 1 µm with 130 nm 

CMOS technology. Their individual radiation pattern was measured. A maximum gain of -8 

dBi and -14 dBi were obtained, respectively. The simulated efficiency was found to be 10% 

[89]. The radiation efficiency is relatively poor, which unfortunately is the typical 

performance reported to date. For comparison, typical radiation efficiency for antennas in free 

space is in the order of 70% or more. Not to mention that the physical dimension (width and 

thickness) of these antennas is far from nanoscale level. The lossy substrate is mainly 

responsible for the power dissipation, making them less competitive than chip-to-board 

transition or low loss transmission lines.  

The electromagnetic coupling can be performed via waves radiated into space and waves 

guided by layered media. Therefore, by optimizing the properties of the substrate, it is 

possible to maximize the antenna gain and minimize the substrate loss. Depending on 

applications, small-size antennas are also capable for short-range wireless-interconnections. 

They should be designed to launch effectively surface waves rather than space wave for short 

distance communication. Zhang has evaluated the gain for intra-chip communication in the 

frequency domain from 10 to 110 GHz for a 1 mm long monopole antenna pair using 

aluminium layer of 2 µm thickness and 10 µm width on both low and high resistivity silicon 

substrate. They have observed a high S21 window close to -20 dB in 15 to 30 GHz and 25 to 

60 GHz at a separation distance of 5 mm on the high resistivity Si substrate [90]. On the 

contrary, poor antenna characteristic was found on the low-resistivity Si. Through time-

domain analysis, they further concluded that surface wave was the dominant path of the 

received signal. For the similar application, Triantafyllou et al. demonstrated a -10 dB in S21 

for a 2 mm long dipole pair fabricated on SOI silicon substrate (on top of a high resistivity 

silicon substrate) at a distance of 2.5 mm [91]. These antennas were fabricated in Metal 6 in 

the BEOL with linewidth close to 10 µm in 130 nm CMOS technology. The antenna was 

designed resonating at 30 GHz. The wave propagation mechanism for intra-chip 

communication has been investigated by Yan and Hanson [92]. It was found that with a 
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guiding layer, surface wave propagation can be effectively enhanced to achieve higher gain. 

In the work of He et al., a 0.36 mm thick diamond layer was inserted between the silicon 

substrate and the heat sink [93]. The transmission gain of a 2 mm long and about 2 µm thick 

dipole pair on a 100 Ω-cm Si substrate can reach -6.8 dB at 26 GHz with a separation distance 

of 1 mm. It is interesting to note that they have observed no obvious gain improvement 

between the dipole pair with different widths (5, 10, 30 and 100 µm) when frequency 

exceeded 30 GHz.  

Indeed, no realization of metallic nanoscale on-chip antennas for millimeter-wave 

frequencies was found in the literature since they are considered intuitively poor antenna 

candidates. While the applications below and around 60 GHz were well explored, the picture 

for the frequency above remains sketchy. The utility and value of these nanoscale antennas 

remains open for discussion. After all, as the CMOS device dimension continues to scale 

down, operating speeds and cut-off frequencies of CMOS devices will exceed 100 GHz in the 

near future, this will inevitably apply for antennas and other radiation elements in integrated 

circuits for on-chip and chip-to-chip communication [94].  

4.2 Design of the Test Structures 

Two kinds of antenna architecture were adopted in this study. They are dipoles and inverted-F 

antennas (The basics of dipole and inverted-F can be found in Appendix A). The dimensions 

of the antennas were designed to cover a wide range of frequencies from 20 up to 140 GHz. 

Those operating at lower frequencies (below 60 GHz) can provide a reference to compare 

with the performance of the state-of-the-art on-chip antennas. Considering the strong 

attenuation in low-resistivity silicon substrate, different types of integrated substrate were 

implemented to better observe the characteristic of nanoscale antennas. The details are 

described in the following section. 

4.2.1. On-Chip Dipole Antennas Integrated on Standard 
Silicon and Porous-Silicon Substrate (Test set 
No.1) 

Dipole antennas are preferred for wireless chip area networks since they can minimize the 

noise and interference signal generated by other circuits, making them a proper candidate for 

short distance signal transmission between ultra-large-scale integrated circuits (ULSIs). 

Figure 4.1 shows the geometry of the designed on-chip planar dipole fed by a slot line. For 

dipoles, the total length (         ) is about a half wavelength of the operating 

frequency. Dipoles are easily controlled and realisable antennas. It is known that the distance 

of the gap (Ls) and the length and the width of the feed line (Lt and Wt) have a strong 

influence on the impedance match of the antenna [95] [96]. In principle, they should 

contribute only a slight variation in the resonant frequency. 



CHAPTER 4 

 

76 

 

 

Figure 4.1 Geometry of an on-chip dipole antenna on top of the dielectric layer (blue) and silicon substrate (grey) 

In this test set, the intention is to characterize small-size dipole antennas integrated on 

porous silicon substrate. Porous Si substrate technology has been demonstrated to improve the 

performance of transmission lines up to the mm-wave range as result of its low dielectric 

losses [97]. Porous silicon layer can be locally formed with a thickness reaching up to 200 

µm. Two sets of dipoles were designed. Most importantly, it is compatible with standard 

CMOS processes, making it attractive to be integrated with RF passive devices. Each has two 

dipoles facing each other with a separation distance R (Figure 4.2). The geometry parameters 

are summarized in Table 4.1. In addition, another test set with the same design was fabricated 

on a standard silicon substrate of low resistivity (1-10 Ω.cm). The fabrication was realized in 

the Institute of Microelectronics (IMEL), NCSR Demokritos, Athens. It should be noted that 

this cooperation was within the framework of Nanofunction (Network of Excellence).  

 

Figure 4.2 Schematic of a dipole pair facing each other at a distance R 

Table 4.1 Geometric parameters of the on-chip dipole antennas (Test set No.1) 

Sample No. Ld (µm) Wd (µm) Lt (µm) Wt (µm) Thickness (µm) Ls (µm) R (µm) 

1A 1000 4 20 5 0.25 50 1000

1B 1000 3 250 50 0.25 50 1000

1C 500 2 80 50 0.25 50 1000

1D 400 2 93 5 0.25 50 7000
 

4.2.2. On-Chip Dipole Antennas Integrated on High-
Resistivity Silicon Substrate (Test set No.2) 

Dipole antennas with even smaller geometries were further implemented on oxide–isolated 

high resistivity silicon to examine antenna properties. The operation range was designed 

closer to millimetre wave range. The antenna structure was first tested in ADS Momentum, 
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providing an estimation of transmission performance. The geometric parameters of the 

designed pairs are listed in Table 4.2. It can be noticed that the thickness of these dipoles is 

0.1 µm. The arm length varies from 400 to 200 µm. The separation distance was reduced to 

700 µm to improve the transmission gain. An asymmetric dipole (sample No.2C) was 

included to study the effect of different excitation positions. The geometric configuration is 

illustrated in Figure 4.3. Meanwhile, the impact of length and width of the feed line was 

examined.  

Table 4.2 Geometric parameters of the on-chip dipole antennas (Test set No.2) 

Sample No. Lds (µm) Ldg (µm) Wd (µm) Lt (µm) Wt (µm) Thickness (µm) Ls (µm) R (µm)

2A
1

400 400 2 40 2 0.1 14 700

2A
2

300 300 2 40 2 0.1 14 700

2B 300 300 2 90 2 0.1 14 700

2C 300 100 2 40 2 0.1 14 700

3A
1

300 300 1 40 2 0.1 14 700

3A
2

200 200 1 40 2 0.1 14 700

3B 300 300 1 40 1 0.1 14 700
 

 

Figure 4.3 Geometry of an asymmetric on-chip dipole antenna on top of the dielectric layer and silicon substrate 

4.2.3. On-Chip Planar Inverted-F Antennas Integrated 
on High-Resistivity Silicon Substrate (Test set 
No.3) 

Another popular planar on-chip antenna is the planar inverted-F antenna (PIFA). It has been 

widely applied within the mobile phone market. The length of the PIFA is about a quarter 

wavelength of operating frequency. This provides the possibility to further reduce the size of 

the antenna at high frequencies. The layout of the designed inverted-F antenna is presented in 

Figure 4.4. Basically, a PIFA consists of a single line next to a ground plane and connected 

with a short circuiting line, and a feed line. A similar design has already been adopted by 

other authors [98]. Such configuration is compatible with GSG probes, at the same time 

minimizing the radiation loss and coupling between the ground pads. It is noted that the 

distance between the feed line and the shorted line (Ldg) and their length (Lt) play an 

important role on impedance matching. Table 4.3 summarizes the geometric parameters of the 

tested antennas.  
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Figure 4.4 The layout of an inverted-F antenna with ground planes on top of the dielectric layer and silicon 

substrate 

Table 4.3 Geometric parameters of the on-chip inverted-F antennas (Test set No.3) 

Sample No. Ld (µm) Lds (µm) Ldg (µm) Wd (µm) Lt (µm) Wt (µm) Thickness (µm) R (µm)

4A1 500 400 100 2 100 2 0.1 700

4A2 400 300 100 2 100 2 0.1 700

4A
3

300 200 100 2 100 2 0.1 700

4B
1

500 300 200 2 100 2 0.1 700

4B2 400 200 200 2 100 2 0.1 700

4B3 300 100 200 2 100 2 0.1 700

4C
1

500 400 100 2 40 2 0.1 700

4C2 400 300 100 2 40 2 0.1 700

4C3 300 200 100 2 40 2 0.1 700

4D
1

500 400 100 1 100 2 0.1 700

4D
2

400 300 100 1 100 2 0.1 700

4D3 300 200 100 1 100 2 0.1 700
 

4.3 Fabrication and Characterization 

4.3.1. Test Structure Fabrication  

Test set No.1: Dipole Antennas Integrated on Porous-Silicon and 
Standard Silicon Substrate 

The porous silicon substrate was prepared as follows. First the porous Si membrane was 

locally formed on a highly-Boron doped silicon substrate with an adequate mask. The details 

can be found in [99]. The thickness of the membrane is 150 µm with an estimated permittivity 

close to 3.5. Next, a 500 nm thick TEOS silicon oxide (Tetraethylorthosilicate) was deposited 

on top of it. The antenna structures and the RF pads consist of a single Aluminum (Al) layer 

with 250 nm thickness. The E-gun evaporator was used for metal deposition. They were 

fabricated through standard lithography and lift-off method. The dimension of the RF pads 

was 100 µm in length and 50 µm in width with a distance between pads being 50 µm. They 

are designed for 100 µm-pitch GSG probes. In addition, another batch of antennas was 
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realized on a low-resistivity silicon wafer. Just like the porous silicon substrate, a TEOS layer 

with 500 nm thickness was deposited for signal isolation. It should be noted that the thickness 

of the Si substrate is around 500 µm. Therefore, after the formation of the porous silicon layer, 

there should remain approximately 350 µm thick silicon underneath. 

Test set Nos.2 and 3: Antennas Integrated on Oxide-Isolated 
High-Resistivity Silicon Substrate 

A commercially available high-resistivity silicon wafer was used as substrate for this test set 

of antennas. The specifications are P-type, Boron doped with a minimum resistivity over 2000 

Ω.cm and a thickness around 525 µm. A 500 nm PECVD oxide was first deposited before 

fabricating the antenna patterns. Unlike the procedure mentioned earlier, antennas were 

fabricated in a separated step before defining the RF pads. Electron beam lithography (EBL) 

and lift-off method (PMMA 950 K 4%, 0.3 µm thick) were applied to achieve the 100 nm 

thick Cr-Au dipoles and PIFA structures (90 nm thick Au over 10 nm thick Cr). After this 

process, we proceeded to realize the RF pads by standard lithography and lift-off method 

(AZ5412E as resist, 1.3 µm thick). The RF pads consist of a single Al layer with 500 nm 

thickness. Figure 4.5 to Figure 4.9 show the top view of the fabricated dipole antennas and 

PIFA under optical microscope. The antennas were designed in pairs and placed parallel to 

each other at a specific distance R. As can be seen in the figures, the tapered transition 

adopted in the signal pads is to minimize the effect of discontinuity. In the case of the dipole 

antennas, the tapered design is also necessary for the ground pads allowing a closer distance 

between the arms (Ls). The RF pads arrangement is GSG configuration with the pitch being 

50 µm. Given the large surface area of the ground plane, the RF pads of the PIFA are 

compatible with 50 µm as well as 100 µm pitch GSG probes. Figure 4.10 shows the 

connection between the RF pads and the antenna. A considerable overlap between the two 

components can be seen at the contact. Meanwhile, there is a noticeable step change due to 

different metal thickness. Note that the marks observed on the pads are due to the probing. 

  

Figure 4.5 Photo of a dipole pair with pads integrated on oxide-
coated high-R Si wafer 

Figure 4.6 Photo of a single dipole with pads integrated on 
oxide-coated high-R Si wafer 
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Figure 4.7 Photo of an asymmetric dipole with pads (sample 

No.2C) 

Figure 4.8 Photo of a PIFA pair with pads integrated on oxide-

coated high-R Si wafer 

  

Figure 4.9 Photo of a single PIFA with pads integrated on 

oxide-coated high-R Si wafer 

Figure 4.10 SEM image showing the connection between the 

pads and the antennas 

4.3.2. On-chip Antenna Characteristics 

Propagation Mechanism 

An on-chip communication system with a multi-layer structure is known to have different 

wave propagation components: surface waves by the air-wafer surface, space waves via the 

air and guided waves within the layers [90]. Of all these components, the propagation 

channels through the surface wave and guided layer is expected to be most critical. The 

excitation of the surface wave can be either advantageous or disastrous, depending whether it 

can contribute to the main beam radiation. In some applications such as inter-chip 

communication or WPAN applications, surface wave power is even treated as losses, and it 

becomes increasingly important as the substrate thickness increases. Otherwise, it is a natural 

candidate for transmission enhancement in an intra-chip system. Through an optimization of 

the dielectric structure, more energy can be carried by surface waves, therefore contributing to 

the receiving signal. Yet, special attention needs to be paid to avoid destructive interference 

between the multiple wave components [92]. As the frequency increases, different modes of 

surface waves can be excited, namely TE and TM modes. The cut-off frequencies of these 

modes depend on the thickness and dielectric constant of the substrate, and can be evaluated 

using the equations below [91]: 
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where c0 is the speed of light, d and εr are the thickness and the relative dielectric constant of 

the substrate. Considering a silicon substrate with a standard thickness of 525 µm, we can 

expect to see TE1, TM1, TE2 and TM2 in the frequency band of our analysis. Specifically, they 

occur at 43, 86, 130 and 172 GHz, respectively. 

Radiation Efficiency 

Radiation efficiency is a measure to tell how well an antenna can convert the receiving power 

to radiation power. There are several definitions of radiation efficiencies associated with 

antennas. In general, the overall efficiency is given as [87]  

             (4-3) 

where etotal is total efficiency, er is reflection (mismatch) efficiency and ecd is antenna 

radiation efficiency. er and ecd are calculated as follows: 

     |   |
  (4-4) 

    
  

     
 (4-5) 

where Rr denotes the radiation resistance and RL is the loss resistance. Note that this equation 

only considers the losses within the antenna structure. The loss resistance consists of 

conduction and dielectric losses. ecd can be difficult to compute but it can be determined by 

measuring the radiation pattern. Radiation patterns are graphical representations of 

electrometric power distribution in free space. Although the radiation pattern is not available 

in this work, an attempt was made to estimate the radiation resistance Rr to gain further 

insight into the capability of a single on-chip antenna irrespective of whether the radiation is 

in the air or inside the substrate. Assuming the feed line and the antenna are properly matched, 

the antenna impedance at the terminal can be given as: 

           (4-6) 

where RA and XA are the antenna resistance and reactance at the terminal, respectively. At 

resonance, the imaginary part would disappear. Then Equation (4-6) becomes ZA = RA. Since 

the term RA is the sum of Rr and RL, we get 

         (4-7) 

With S-parameters measurement, the input impedance Zin at the terminal can be determined 

using: 
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where ZS is impedance towards the source (50 Ω in our case). We know that Zin is also the 

impedance towards the antenna, hence should be equivalent to Rr + Rl according to Equation 

(4-7). Rl can be roughly estimated by calculating the resistance of the conductor assuming that 

other losses such as dielectric losses are negligible. Rr can thus be obtained which can be an 

indicator of the antenna resonance efficiency.  

4.3.3. Characterization Method 

Antenna Transmission Gain Definition 

Two-port S-parameters measurement is the most extensively used method to evaluate the 

transmission performance of integrated antenna pairs. An antenna pair placed face-to-face 

with a distance R can be tested immediately on the probe station. One antenna is used as a 

transmitting antenna and another as a receiving antenna. From free-space Friis power 

transmission formula, the maximum antenna power gain (in the central forward direction of 

the antenna) is given by [100]: 
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where Gt and Gr are the power gain of the transmitting and receiving antenna, respectively. In 

our case, Gt is equal to Gr since the two antennas are identical. 𝝺 is the free space wavelength 

at the operating frequency. This equation is valid for a free space environment. Typically, the 

figure of merit used to evaluate intra-chip antenna characteristics is Ga, known as the antenna 

transmission gain. It is calculated from two-port S-parameters, expresses as [101]: 
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α represents the propagation losses in a lossy substrate. Ga also includes the mismatch losses 

S11 and S22. If the impedance of the antennas matches with that of the test equipment, the 

transmission gain can be approximated by |   |
  since (  |   |

 )(  |   |
 )    . 

Description of the Measurement Setup 

The on-wafer measurement consists of two range of frequency bandwidth. All the devices 

were tested at the IMEP-LAHC laboratory from 1 to 110 GHz. The test set Nos. 1 and 3 were 

further tested in VTT Technical Research Centre of Finland, Helsinki. The frequency range 

covers from 140 to 210 GHz. The procedure of the measurement is described in Chapter 3.  

4.4 Results and Discussion 

In the following section, the experimental S-parameters and the corresponding extracted 

antenna parameters are presented. Their characteristics with respect to the physical 
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parameters will be discussed. In addition, the simulated results obtained from ADS 

Momentum are compared  

4.4.1. Test set No.1: Dipole Antennas Integrated on 
Porous-Silicon and Standard Silicon Substrate 

Figure 4.11 and Figure 4.12 show the measured S-parameters as a function of frequency from 

test set No.1 on two different substrates. The S-parameters were de-embedded with an open 

device. The parasitics of the RF pads can then be subtracted. It is believed that the open de-

embedding should be sufficient since the series resistance of the pads can almost be neglected 

as compared with the antenna structure. Note that an open device consists of the RF pads 

without any antenna structures. In the figures, S11 results are plotted next to S21, located at the 

upper region of the graph. The resonance frequency can be identified where the phase of S11 is 

zero. For the same antenna design, it can be observed that the resonance frequency (denoted 

as f0) is significantly higher on the porous silicon substrate than on the standard low-R silicon 

substrate. For example, sample No.1A demonstrates a resonance frequency about four times 

higher on the porous silicon substrate, as listed in Table 4.4. This is primarily attributed to the 

lower permittivity of porous silicon. We can refer to a simple estimation of f0 for an integrated 

half wave length dipole based on the physical parameters, given by [102]: 

       
  

 √    
   (4-11) 

where c0 is the speed of light and L is the total length of the dipole. εeff accounts the effective 

permittivity of the traveling wave. We know that the electromagnetic wave generated from 

the dipole travels inside the substrate as well as in the air. The relationship between the 

effective permittivity, the geometry and material parameters of an on-chip dipole can be 

found in [103]: 
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εr is the relative dielectric constant of the substrate. w is the width of the conductor while h is 

the thickness of the substrate. When h is much larger than w, εeff can be approximated as 
    

 
. 

Using Equation (4-11), we can estimate the effective permittivity of sample No.1A on the 

porous silicon (denoted as 1A-P-Si), being about 2.2. As a consequence, we obtain a relative 

dielectric constant of about 3.4, which is not too far from our expected εr for the porous 

silicon layer (εr = 3.5). This also suggests that the silicon substrate below the porous silicon 

layer has little effect on the wave propagation. It is relevant to mention that the relative 

dielectric constant of silicon is about 12. In the case of 1A-Si, the estimated εeff is over 30. 

Such non-physical result in fact indicates that the resonance frequency is underestimated. A 

shift of the resonance peak was noticed towards lower frequencies of about 6 GHz after de-

embedding with an open device while a shift of 1 GHz was observed for dipoles on the 

porous silicon substrate. This infers that the uncertainty introduced due the de-embedding is 

more pronounced on a lossy substrate.  

Compared to sample No.1A, sample No.1B has a feed line of larger surface area. It was 

supposed to yield better impedance matching to compensate the reduction in conductor width. 

However, based on the calculated Zin, this improvement is only observed on the low-R silicon 
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substrate. In addition, f0 has been slightly modified. It can be seen that decreasing the dipole 

width from 4 to 3 µm has resulted in a drop by 10 dB in insertion loss on the porous silicon 

substrate but a less significant value by 3 dB on low-R silicon substrate was found. 

  

Figure 4.11 Experimental S-parameters of the dipoles on the porous 
silicon substrate. S11 is situated at upper level while S21 is at the lower 

level. Open represents the open device. 

Figure 4.12 Experimental S-parameters of the dipoles on the low-R 
silicon substrate. S11 is situated at upper level while S21 is at the lower 

level. Open represents the open device. 

Concerning sample No.1C, the length of the dipole has been reduced by half of the value 

from sample No.1A. It is not surprising to see that the resonance frequency increases by a 

factor of 2. The measured resonance frequency of 1D-P-Si is not obtained within the 

maximum range of the equipment which is 110 GHz as it has even shorter dipole length (L = 

850 µm) while the one of 1C-P-Si is located at 105.9 GHz. The attempt to scale down the 

dipole linewidth may increase the conduction loss but it can be somewhat compensated 

through the reduction of dipole length. If RL reduces while Zin increases, this leads to an 

increase in radiation resistance. In a sense, the size reduction may be actually desirable if 

geometry of the dipole and feed line is optimized. The estimated radiation resistance is about 

61.9 % of the total impedance for 1C-P-Si whereas for 1B-P-Si, it is 40.8 %. Although 1B-P-

Si indeed has better reflection efficiency, the overall efficiency is lower. It is thus reasonable 

to see that at the same separation distance R, the transmission gain of 1C-P-Si is higher 

despite having a much smaller occupied area (wd = 2 µm, L = 1050 µm). 

Over the whole frequency range, there is no sharp resonance dip found for 1C-Si and 

1D-Si. The bandwidth of the antennas on Si is in general greater than those on porous silicon. 

Note that the bandwidth here is defined as the frequency range where |S11| is larger than -10 

dB. Although the return loss may appear acceptable, 1C-Si shows a Ga value of -42.0 dB at a 

separation distance of 1 mm. This is attributed to the lossy substrate. After about 15 GHz, the 

transmission on low-R silicon substrate is heavily attenuated. This characteristic prohibits 

antenna applications at high frequencies. In contrast, porous silicon substrates, which 

demonstrate significant lower losses can be a good candidate for inter-chip antenna 

application at millimeter-wave frequencies. It should be noted that due to the huge distance 

between the pairs of 1D-Pi-Si and 1D-Si (7 mm), the insertion loss is almost identical to that 

of an open device from 30 to 110 GHz. 

In principle, sample No.1C should have worse matching than sample No.1D due to the 

longer dipole length if the effect of feed line is deliberately ignored. Likewise, a feed line 

with a wider linewidth was designed in order to improve the matching. Interesting enough, 



CHAPTER 4 

 

85 

 

there is improvement in return loss only on low-R silicon substrate which is consistent to 

what we have discussed before. It is readily apparent that the dipoles fabricated on the porous 

silicon substrate are relatively insensitive to the different design of feed lines because of the 

high resistivity nature of porous silicon. This behaviour has also been observed in [85]. 

Table 4.4 Summary of the experimental result from Test set No.1. The values of S11 and S21 in the table were taken at the 

resonance frequency 

Sample No. 1A-P-Si 1A-Si 1B-P-Si 1B-Si 1C-P-Si 1C-Si 1D-P-Si 1D-Si

f0 (GHz) 49.2 12.8 46.2 16.9 105.9 42.9 >110 46.8

|S11| (dB) -25.2 -12.3 -16.6 -44.7 -12.6 -12.5 -9.5

|S21| (dB) -29.1 -33.7 -38.8 -36.4 -33.2 -42.5 -62

bandwidth (>10 dB, GHz) 6.6 8.5 4.9 >100 >20.3 40.5 x

Zin (Ω) 55.8 82.0 67.4 50.6 80.6 81.1 100.4

e r (%) 99.7 94.1 97.8 100.0 94.5 94.4 88.8

RL (Ω) 30.8 27.5 39.9 37.1 30.7 28.0 24.5

e cd (%) 44.8 66.5 40.8 26.7 61.9 65.5 75.6

Ga (dB) -29.1 -33.2 -38.6 -36.4 -32.7 -42.0 -61.0
 

  

Figure 4.13 Measured and simulated S-paramters up to 210 

GHz for sample Nos.1A and 1D on the porous silicon 

Figure 4.14 The experimental phase of S21 up to 210 GHz for 

sample No.1A 

Figure 4.13 shows the measured and simulated S-parameters for 1A-P-Si and 1D-P-Si up 

to 210 GHz. Besides the primary resonance peak at 49.2 GHz, another sharp resonance peak 

is observed at 145 GHz. The performance of the antenna is reasonably good. The return loss 

and insertion loss are -14.9 dB and -30.0 dB, respectively. The measured phase response of 

S21, shown in Figure 4.14, is linear or nearly linear, suggesting that there is a dominant mode 

supporting the signal propagation. This is usually more desirable. Otherwise, if there are 

multiple wave components in the field, the signal will be distorted due to frequency 

dispersion [92]. The resonance frequency of 1D-P-Si is out of the measured frequency range 

but it is expected to occur between 110 to 140 GHz. Both measured and simulated data show 

similar trends, although there is discrepancy in the level of magnitude and f0 is 

underestimated.  
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4.4.2. Test set No.2: Dipole Antennas Integrated on 
Oxide-Isolated High-Resistivity Silicon Substrate 

Figure 4.15 and Figure 4.16 show the measured S-parameters of the test dipoles. It can be 

seen that the transmission gain increases slowly in the frequency range between 30 to 60 GHz 

for all the dipoles. This shows that the surface wave begins to dominate the field. The wave 

component could be TE1 mode since its cut-off frequency is at 43 GHz (derived from Section 

4.3.2). Above this range, a high S21 window can be seen which favours signal transmission 

[90]. Table 4.5 lists the experimental S-parameters results of the dipoles. Likewise, the 

effective permittivity can be estimated using Equation 4-11. If sample No.2A
2
 is considered, 

we can obtain εeff equal to 6, which makes the dielectric constant of the high-R silicon wafer 

being about 11.  

  

Figure 4.15 Experimental S-parameters of the dipoles on high- 

resitivity silicon substrate 

Figure 4.16 Experimental S-parameters of the dipoles on high- 

resitivity silicon substrate 

Table 4.5 Summary of the experimental result from Test set No.2 

Sample No. 2A1 2A2 2B 2C 3A1 3A2 3B

f0 (GHz) 77.8 93.7 86.6 96.8 100.5 >110 98.6

|S11| (dB) -10.0 -16.4 -13.8 -14.5 -9.9 -8.8

|S21| (dB) -25.9 -31.9 -33.9 -33.7 -41.3 -40.2

bandwidth (>10 dB, GHz) x 23.5 22.9 21.5 x x

Zin (Ω) 96.2 67.8 75.7 73.2 97.0 107.0

e r (%) 90.0 97.7 95.8 96.5 89.8 86.8

RL (Ω) 59.7 46.6 53.2 46.7 85.8 91.0

e cd (%) 37.9 31.3 29.7 36.2 11.5 15.0

Ga (dB) -25.0 -31.7 -33.5 -33.4 -40.4 -39.0
 

Sample No.2A
1
 has the highest gain among all the tested structures. When separated by a 

distance of 700 µm, the 814 µm long and 2 µm wide dipole pair shows a transmission gain of 

-25.0 dB at 77.8 GHz. Radiation loss accounts for 37.9% of the total input impedance. It is 

obvious that the conduction losses increase significantly as result of the small metallization 

thickness (0.1 µm). When the dipole size reduces down to 614 µm, f0 can reach about 93.7 

GHz as observed in sample No.2A
2
. The gain degrades by 6.7 dB although we get a better 

impedance matching at resonance with a broad impedance bandwidth. Only 31.3% of the total 
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impedance takes parts in the radiation. In addition, it appears that the feed line should be 

made as short as possible to have a better matching. Sample No.2B has a feed line twice as 

long as that of sample No.2A
2
. It can be noticed that the impedance is slightly worse and the 

resonance frequency has shifted. Sample No.2C is an asymmetric dipole, having one arm 

being 300 µm and another shorted one being 100 µm. It has a similar performance as sample 

No.2A
2
, if not better. This type of design is in favour of size reduction without sacrificing too 

much the performance. 

The dipole width of Sample No.3A
1
 is scaled down to 1 µm. This has led to a larger 

impedance mismatching and a slight increase in resonance frequency. It is not surprising to 

see that the transmission gain decreases substantially since the proportion of the total power 

could dissipate in radiation falls to 11.5%. Further decreasing the linewidth of the feed line 

could make the antennas more compactible for integrating with nano-devices. Sample No.3B, 

having its feed line width reduced to 1 µm, has a poorer matching. Yet, the energy that could 

possibly distribute to radiation is about 15 %. The transmission gain is as good as sample 

No.3A
1
. Figure 4.17 shows the experimental phase of S21 of sample No.2A

2
. The phase has a 

linear profile above 65 GHz. Therefore, at resonance, the signal transmission between the two 

dipoles occurs through a dominant mode.  

 

Figure 4.17 The experimental phase of S21 up to 110 GHz for sample No.2A2 

The simulation was performed up to 210 GHz for sample Nos. 2A
2
 and 3A

1
 using ADS 

Momentum. A demonstration of simulation setup can be seen in Figure 4.18. As shown in 

Figure 4.19, the theoretical resonance frequency is approximately the same as the 

experimental one within an error of 1%. However, there is noticeable discrepancy in the 

magnitude of S11 at resonance by as much 14.0% for sample No.2A
2
 and 18.1% for sample 

No.3A
1
. Due to the size of the antenna, only the first resonance frequency appears in the 

frequency band of analysis. 
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Figure 4.18 Simulation setup of an dipole pair in ADS Momemtum 

 

Figure 4.19 Measured and simulated S11 up to 210 GHz for sample Nos.2A2 and 3A1 

4.4.3. Test set No.3: PIFA Integrated on Oxide-Isolated 
High-Resistivity Silicon Substrate 

Figure 4.20 to Figure 4.23 shows the experimental S-parameters of the planar inverted-F 

antennas with various dimensions up to 210 GHz. Each figure contains three traces 

representing different antenna length (500, 400 and 300 µm). It is important to emphasize that 

no de-embedding procedure was applied since the ground plane was embedding with the RF 

pads. It would be more ideal if we could isolate the probing pads from the ground planes. 

Unfortunately, no such test structure was available in our experiment. Hence, the analysis is 

based on the CPW line, the ground plane and the PIFA itself as a whole component. Similar 

to the on-chip dipoles, a significant increase of transmission coefficient S21 is observed from 

30 to 50 GHz which corresponds to the excitation of TE1 mode. Likewise, there is a high S21 

window above 50 GHz. Besides, ripples can be observed in the frequency response of S21. 

This is likely due to the appearance of parasitic propagation modes near to the RF pads. The 
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origin of this phenomenon is unknown. But it is most probably related to the behaviour of 

high resistivity silicon substrate as this issue did not come about on low resistivity Si. It is 

known that oxidized high resistivity substrate suffers from parasitic surface conduction (PSC) 

effect due to the accumulation of charges beneath SiO2/Si interface [104].The crosstalk 

between the pads could potentially interfere with the main propagated signal. The effect is 

particularly pronounced in this case because the ground plane occupies a large surface area. 

Despite of this, we can identify the contribution of the antenna by comparing its signal level 

with that of the open structure. One can see that above 140 GHz, S21 is very little affected by 

the addition of the antenna. It appears that signal transmission is mainly attributed to pad-to-

pad coupling. Further supporting this observation, although Sample No.4B
3
 exhibits a 

resonance frequency at 170.4 GHz, the impact of the antenna to S21 is almost negligible.  

In general, the transmission gain of the PIFA is relatively good considering their limited 

size. Table 4.6 lists the results of all test PIFAs. Sample No.4A
1
 has a length of 500 µm. with 

the corresponding gain being about -28.9 dB. When line length reduces to 400 µm as 

demonstrated by sample No.4A
2
, fo is increased by 22.8% while the gain and impedance 

matching are only slightly suffered. It was found that the impedance matching can be easily 

controlled by changing the length of the feed and shorted line or optimizing the space 

between them. If we examine sample No.4B
1
, we see that increasing the distance between 

feed and shorted lines from 100 to 200 µm has reduced slightly the reflection coefficient. But 

by doing so, the gain is sacrificed and the resonance frequency is also affected. On the other 

hand, the impedance matching is substantially improved when the feed line length reduces by 

half as observed in sample Nos.4C
1
 and 4C

2
. The determination of transmission gain in 

relation to different features is difficult due to the rapid fluctuation in signal with frequency. 

Non-linear profile in the phase can be observed as shown in Figure 4.24, suggesting 

interference of multiple signal propagations. 

Figure 4.23 shows the S-parameters of sample No.4D in various lengths. These samples 

have almost the same feature as sample No.4A series except that the width of the radiating 

element (Wd) was reduced to 1 µm. As expected, the reflection coefficient is higher. Similar 

transmission gain, if not better, can be obtained when operating at resonance while the 

resonant frequency is slightly affected. 

  

Figure 4.20 Experimental S-parameters of sample Nos.4A1, 

4A2 and 4A3 on high resistivity silicon substrate 

Figure 4.21 Experimental S-parameters of sample Nos.4B1, 

4B2 and 4B3 on high resitivity silicon substrate 
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Figure 4.22 Experimental S-parameters of sample Nos.4C1, 
4C2 and 4C3 on high resitivity silicon substrate 

Figure 4.23 Experimental S-parameters of sample Nos.4D1, 
4D2 and 4D3 on high resitivity silicon substrate 

Table 4.6 Summary of the experimental result from Test set No.3. The values of S11 and S21 in the table were taken at the 

resonace frequency 

Sample No. 4A
1

4A
2

4A
3

4B
1

4B
2

4B
3

4C
1

4C
2

4C
3

4D
1

4D
2

4D
3

f0 (GHz) 62.6 81.1 110-140 78.4 110-140 170.4 64.2 84.9 110-140 65.3 80.6 110-140

|S11| (dB) -13.8 -11.3 -14.5 -14.8 -23.6 -21.3 -10.6 -10.0

|S21| (dB) -29.3 -30.8 -35.6 -19.6 -31.4 -26.7 -30.0 -30.3

bandwidth          

(>10 dB, GHz)
14.2 21.3 26.7 25.6 35.4 40.3 6.5 x

Zin (Ω) 75.7 87.4 73.2 72.2 57.1 59.4 91.9 96.2

Ga (dB) -28.9 -30.1 -35.3 -19.3 -31.4 -26.6 -29.2 -29.4  

 

Figure 4.24 The phase of S21 for sample Nos.4C1 and 4C2 

4.5 Conclusion 

The transmission characteristics of nanoscale on-chip antennas were investigated up to 210 

GHz. Dipoles and inverted-F antenna pairs were considered in this study. Various dimensions 

were tested. The thickness of these antennas ranged from 250 down to 100 nm with minimum 

length and linewidth being 300 µm and 1 µm, respectively. The antenna pairs were integrated 
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on a single chip with a separation distance about 1000 µm or less. They were realized on three 

kinds of substrates, including oxide-coated low resistivity Si wafer and oxide coated high 

resistivity Si wafer as well as porous silicon coated Si wafer. Two-port S-parameter 

measurement was applied for characterization. Apart from the reflection and transmission 

coefficient, some basic antenna parameters were also examined resonance frequency, 

transmission gain, input impedance and bandwidth. Although no radiation pattern was 

measured, the radiation loss was estimated for evaluating the efficiency of the antennas.  

It was shown that a low loss substrate is essential for millimeter-wave antenna 

application. Signal suffers severe attenuation above 40 GHz for those antennas realized on 

standard silicon substrates. Overall, integration with high resistivity Si substrate has better 

performance than porous silicon coated Si substrate in terms of transmission gain. Besides, 

the high dielectric constant of silicon allows considerable size reduction without an over 

increase in operating frequency. The transmission gains obtained with these miniaturized 

antennas are not so far from the typical values with a state-of-the art micro-sized antennas 

(less than -20 dB). In the case of the dipole test structure, a transmission gain of -25 dB at 

77.8 GHz can be achieved with a 814 µm long, 2 µm wide and 100 nm thick dipole pair at a 

separation distance of 700 µm. Further decreasing the arm length to support even higher 

operating frequency leads to a reduction of radiation efficiency. It was demonstrated that the 

transmission gain was degraded to -31.7 dB at 93.7 GHz if the length of the dipole decreased 

to 614 µm although the reflection efficiency was improved. The feed line should be designed 

as short as possible for better matching. Its width can be scaled down at the same order as the 

dipole since the gain is little affected. However, the reflection coefficient is sacrificed. Thanks 

to the surface wave, signal transmission is significantly enhanced and demonstrates a single 

path propagation.  

The inverted-F antennas appear to be a rather suitable feature for on-chip miniaturized 

antennas. The transmission gain is less sensitive to the size reduction, either for the length or 

the linewidth. The operating frequency remains inversely scale with the length. A 

transmission gain of -26.6 dB at 84.9 GHz can be achieved with a 400 µm long, 2 µm wide 

and 100 nm thick PIFA pair at a separation distance of 700 µm. The impedance matching can 

be significantly improved by shrinking the length of feed line and shorted line without 

sacrificing the gain. At the frequency above 140 GHz, the coupling between the signal pads is 

dominating the signal transmission. In consequence, the implementation of the antenna 

appears ineffective. It was observed that the phase and magnitude of S21 fluctuate rapidly with 

frequency, indicating the signal suffers from the interference of multi-mode propagation. This 

issue is probably due to the accumulation of charges at the SiO2/Si interface, a well-known 

characteristic of SiO2-passivated high resistivity silicon reported by several authors. This 

problem can be mitigated by depositing a polysilicon layer between Si and SiO2 [105] [106].



 

 

 



 

93 

 

Chapter 5 

Conclusion 

Nanowires reveal an enormous and yet undiscovered opportunities for the RF engineering 

community. Research continues on the design, modelling and measurement techniques to 

uncover their interesting properties. In this context, the central question of this thesis was 

discussed: what are the electrical transmission properties as a function of nano-metric 

geometry and frequency in metallic nanowires at millimeter-wave frequency? The 

transmission characteristics of metallic nanowires were evaluated from two aspects: 

1) By exciting the nanowires in transmission line modes. Nanowires were integrated in 

micro-scale test structures that are compatible with the test equipment. Their 

electrical characteristics as transmission lines on silicon substrates were extracted. 

2) By exciting the nanowires in antenna modes. Nanowires were realized as both 

transmitting and receiving on-chip antennas. Wireless transmission characteristics of 

the integrated nanoscale antennas in Si chips were extracted. 

Two features of nanowire-integrated transmission lines were characterized including 

microstrip lines and coplanar waveguide using characteristic impedance and propagation 

constant. RLGC lumped element model was utilized to understand the transmission lines 

behaviour in relation to the frequencies. Two types of on-chip antennas were designed 

including dipoles and planar inverted-F antennas. Some basic antenna parameters including 

resonance frequency, transmission gain and input impedance as well as radiation loss were 

evaluated. We now summarize the answer to the central question according to the 

applications.  

5.1 Metallic Nano-Transmission Line 
Characteristics 

In the case of CPW structures, although being far from 50 Ω, both real and imaginary 

characteristic impedances of the nano-transmission lines decrease sharply with increasing 

frequency (1 to about 70 GHz), providing a wide range of characteristic impedance. At high 

frequencies (above 140 GHz), the impedance approaches to certain values corresponding to 

those of low-loss approximation. Moreover, the smaller the conductor, the higher the 

frequency where this fact occurs. The change of substrate loss as a function of frequency 

translates into the change of signal attenuation. In addition, substrate loss is reduced by 

decreasing the linewidth of nanowires. However, such reduction in substrate loss cannot 

compensate the excessive conductor loss due to downsizing. The conductor loss was shown to 

be constant across the frequency range, implying that skin effect is ineffective. It was found 

that the conductivity of gold metallic nanowires was about 55% lower than its bulk 
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counterpart. And its resistance at AC per unit length was approximately 20% higher than the 

one at DC. The result also showed that just like CNTs, high resistance makes metallic 

nanowires slower compared to the conventional transmission lines. An additional increase in 

phase constant was observed for nanowires with linewidth and thickness scaling down to 100 

nm. This could be attributed to the increase in kinetic inductance although its quantity has a 

minor significance. 

It has been observed that microstrip line structures have two advantages over CPW 

structures: low substrate loss and flexibility in controlling characteristic impedance. As the 

silicon substrate is shielded by a ground plane, the transmission resides only in the SiO2 layer, 

thus minimizing the conduction loss. Besides, the thickness of the oxide layer can be reduced 

to the same order as that of the conductor in such a way that characteristic impedance can be 

adjusted closer to 50 Ω. Although it is also possible to control the characteristic impedance of 

a coplanar waveguide, it is more technologically challenging. These factors indeed make 

microstrip lines an ideal vehicle to characterize nanowires. However, in practice, there are 

additional considerations in realizing a desirable test platform. First, grounding microstrip 

lines requires via holes. It was also found that the ground plane underneath should be as far 

away from the RF GSG pads as possible to avoid huge parasitic capacitance. These 

requirements will make the fabrication process more difficult than that of CPW structures. 

This is the reason why the central results in this study were derived predominately from CPW 

test platform. 

Multiple parallel transmission line configurations were investigated. The concept is the 

same as using CNT bundles to reduce losses and impedance. Unlike CNTs which can be 

densely packed, metallic nanowires have a practical limit which is imposed by fabrication of 

the very narrow interline distance. It was found that the more the number of nano-lines in the 

signal path, the lower impedance and the conductor loss although slow wave propagation 

effect is compromised as observed in this study. An advantageous aspect is that paralleling 

combination results in different performance on the effective lumped element L and C. For 

example, by varying the distance between lines and the gap, one can fine tune the effective L 

and C. This provides RF circuit designers various choices of miniature transmission lines for 

desired characteristics. However, special attention must be paid to the associated rising 

substrate losses.  

5.2 On-chip Nano Antenna Characteristics 

In this part of the work, the capabilities of current silicon technologies were studied to allow 

the implementation of nanoscale on-chip antennas with acceptable performances. Metallic 

wires with thickness down to 100 nm and minimum feature size of 1 µm were designed in 

dipole and planar inverted-F antenna structures. The length of these devices was devoted to 

systems working at mm-wave frequencies. The minimum arm length of the dipole and PIFA 

structure is 300 µm, allowing an operating frequency to be over 110 GHz on a high resistivity 

Si substrate. Obviously, the radiation efficiency of a small antenna can hardly compete with a 

classical antenna. It was shown that a half-wavelength dipole operating at 100 GHz with 

linewidth of 1 µm suffers from severe ohmic losses. The resulting radiation efficiency was 

very poor. Other characteristics observed due to dimensional scaling include larger bandwidth 

and higher input impedance. The impedance matching or reflection efficiency can be 

improved by reducing the length of feed line for both kinds of antennas. An input return loss 

of -23.6 dB at 64.2 GHz can be achieved for a 500 µm long, 2 µm wide and 100 nm thick 
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PIFA structure accompanied by a 40 µm long feed line on a SiO2-coated high resistivity Si 

substrate. 

As the communication of the integrated antenna pair occurs mostly through the Si 

substrate, a high resistivity substrate is indispensable for operating at mm-wave frequency. It 

was demonstrated that the transmission gain can be significantly improved by using porous 

silicon and high resistivity substrates. The maximum transmission gain is -25 dB at 77.8 GHz 

with a 814 µm long, 2 µm wide and 100 nm thick dipole pair at a separation distance of 700 

µm on a high resistivity Si chip. PIFA test structures are actually quite favourable for size 

reduction for the effect of the wire dimension on the performance is not overly important. The 

transmission gain of a 400 µm long, 1 µm wide and 100 nm thick PIFA pair at a separation 

distance of 700 µm is about -29.4 dB at 80.6 GHz which does not have a big difference 

comparing to the 2 µm wide pair.  

Surface waves were found to be an important contributor to signal propagation in short-

distance applications. In the integrated dipole antennas, the signal transmission was actually 

assisted by the generation of TE1 surface wave, demonstrating a single path propagation. 

Likewise, the enhancement in signal level in the PIFA test device was observed although the 

receiving signal was somewhat corrupted due to multipath propagation. Therefore when 

designing integrated small antennas, it is suggested to make use of surface waves as a vehicle 

to improve transmission either within dielectric layers or over the air. This can allow more 

flexibility to modulate the trade-off between the size and the radiation efficiency. 

Constrained by limited radiation efficiency, nanoscale antennas require a careful 

optimization of arrangement of metal shapes and dielectric regions to suit a specific 

application. It is true that there is still a long way to make presently realized on-chip nano-

antennas into a possible real-world implementation. More research is needed to address issues 

like required external power, heating and the risk of crosstalk with circuits. 

5.3 Validity of the Model 

It was shown that both the thin film microstrip lines and the nanowire-integrated CPWs 

satisfied quasi-TEM behaviour. Their distributed circuit elements namely R, L, G and C can 

be derived from close-form expressions and ADS Momentum simulator. The measured 

results from different nano-lines show high correlation with the theoretical circuit model up to 

110 GHz. According to the description of close-form formula, the conductor loss of the 

selected nanowires with linewidth lower than 1 µm remains below the DC limit in the 

frequency of analysis, from which, it is possible to derive the conductivity of the metallic 

nanowires assuming the resistivity of the ground plane is negligible. Meanwhile, the 

inductance curve of the nanowires saturates towards its DC limits since the current 

distribution is uniform inside the conductor. One of the limitations in these approximate 

solutions is the assumption that the signal and ground conductor has the same thickness. That 

said, no deterioration in accuracy in the test devices was observed, possibly because the signal 

conductor thickness dominates the behaviour. The expressions for capacitance and 

conductance in the case of the thin film microstrip line were taken from a convention 

microstrip line model. It appears that it still yields a good accuracy for submicron dimensions. 

ADS Momentum provides a close prediction of lumped impedance in the multi-layered 

substrate. Special attention should be paid to the mesh setting. The number of cell in 

transverse direction for the conductor should be at least three.  
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One of the general limitations for the models is the negligence of quantum transport 

effect. If the transverse dimension continues to scale down, this approximation will be 

violated. In this case, additional circuit elements may need to be taken into account. Most 

likely, the metallic nanowires may possess kinetic inductance and quantum capacitance which 

conventional TEM model ignores. It was noticed that there was a deviation from the model 

when the linewidth scales close to 100 nm. An additional limitation lies in the quasi-TEM 

propagation assumption. This can be violated if the actual wavelength becomes comparable to 

the dimension of the pads and transmission lines. Higher order modes are probable to be 

excited and interact with the first fundamental mode, which may adversely affect propagation 

characteristics. 

The models adopted in this work provide a very efficient estimation for the lumped 

circuit elements in metallic nano-transmission lines. Compared to other commercially 

available simulators such as HFSS and CST, nanoscale mesh cells typically result in large 

memory consumption and overall computational time becomes excessively long. Here, the 

close-form expressions may be lengthy but can be easily implemented in ADS simulator. 

5.4 Accuracy of the Measurement and 
Extraction  

The experimental determination of transmission line parameters requires precise knowledge 

of test structure and contact impedance. Their contribution to the RF responses as a function 

of frequency has been systematically explored in Chapter 3. And they are believed to be quite 

important, therefore needed to be removed. However, each subtraction step introduces some 

errors and uncertainties which propagate to the parameter in the calculation. That is why an 

accurate approximation of parasitics is critically important for a successful de-embedding. It 

was found that contact impedance dominates the uncertainty in transmission line 

measurement at the lower frequency region (lower than 70 GHz). Two-line method was 

shown to be the most efficient way to eliminate contact impedance. However, it tends to over-

de-embed nanolines with feature size below 100 nm above 70 GHz. It is because that the 

captured contact impedance is not within the uncertainty range of the original measurement. 

Therefore such subtraction should be omitted at this frequency range. In addition, the 

coupling between the signal pads needs to be removed from the measurement. It is important 

that this effect never dominates the overall signal. Otherwise, the accuracy of the extraction 

would be degraded.  

Measurement invariably has an uncertainty interval. This interval is the result of many 

causes. One source of uncertainty is caused by poor contact when landing the probes onto the 

pads. Fortunately, this can be rapidly identified if the S-parameters are not symmetrical as the 

system is a reciprocal network. Adequate force should be applied to break through the 

naturally formed layer of Al2O3 covering the pads, but not too strong to penetrate them. 

Random errors were occasionally observed in the measurement, most often occurred at mm-

wave frequency regime. They can be rapidly recognized as noise and repeatability problem, 

such as the calibration drift. Finally, the uncertainty may be increased due to unwanted 

temperature variation in the instrumentation. However, such influence is hardly perceptible in 

the measurement. 
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5.5 Possible Future Work 

A well-known characteristic of research is that it is never finished. The research presented 

here could lead to more questions. They can be categorized as follows: 

Concerning nano-transmission line characterization, several points can be further elaborated: 

1) How can the accuracy of the measurement be improved? 

2) What are the remaining parameters to be considered in the model? 

3) What is the limitation in terms of scaling in feature size?  

It was shown that the accuracy of the measurement was greatly influenced by the test vehicle. 

The strong coupling between the signal pads hindered the extraction of parameters at mm-

wave frequency. It is known that pad parasitic removal is more difficult to achieve when the 

pad is large and the device is small. Unfortunately, the feature size of the RF pads is limited 

by the probe tips. It must be large enough to accommodate the contact as well as the 

overtravel to ensure a successful probing. Despite of this, one can reduce the pad parasitic 

reactance by utilizing a low-loss substrate, for instance high resistivity Si and porous silicon 

substrates, thus improving the accuracy of the de-embedding method. 

The model proposed in this work did not consider the quantum effect. The model should 

take into account extra circuit elements such as kinetic inductance and quantum capacitance. 

These influences are probably not very significant in the metallic nanowires under test. 

However, their modelling would allow a clear picture of the influence on dimensional scaling. 

In addition, the model did not cover the case of multiple lines transmission. Parallel line 

mutual coupling should be included in the circuit modelling. The prediction of multiple line 

characteristics is vital. It can provide interesting data to RF circuit designers. Particularly, the 

influence of structural parameters for instance gap and interline distance to the overall 

performance of a transmission line. Moreover, it is a key to study nanowires with feature size 

lower than 50 nm. Since characterization of single nanowires is too sensitive to parasitic and 

noise, multiple parallel nanowires would be a better choice for the tested components. From 

this, it follows that how far can we continue to scale down the feature size of nanowires while 

still have a reliable measurement? With the test setup in this work, the limitation was 

encountered at a critical size of 100 nm. To answer this question, more experimental work 

will be required. There would be more uncertainties in the extracted S-parameters. In any 

case, it should be interesting to see what the limits are on the development of traditional RF 

transmission line.  

One part that is not fully finished in the study of nanoscale integrated antennas is the 

radiation pattern measurement. The question here is how these antennas will perform via 

radiation in the air? The properties of the antennas such as the gain and radiation efficiency 

should be understood thoroughly before the realization of a wireless communication system. 

Furthermore, the design of the antenna must be optimized to be more suitable for radiation in 

the air. This can involve the modification of the antenna structures and the choice of different 

substrates.
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Appendix A 

Antenna Basics 

A1. Basic Parameters 

There are many parameters affects the performance of an antenna. Apart from radiation 

efficiency, input impedance and transmission gain discussed in Section 4.3, directivity and 

gain are just as important. The directivity of an antenna is defined as “the ratio of the 

radiation intensity from the antenna in given direction to the radiation intensity averaged over 

all directions”. Most often, the direction of directivity is not specified. In such case, the 

direction of the maximum radiation intensity is implied and the maximum directivity is given 

by:  

     
      
  

 (A-1) 

where Dmax is the maximum directivity, Umax is the maximum radiation intensity and Pr is the 

total radiated power. D is a dimensionless quantity. It is generally expressed in dBi since the 

definition of directivity also implies “the ratio of the radiation intensity of a nonisotropic 

source in a given direction over that of an isotropic source”. Note that radiation intensity of an 

isotropic source is: 

   
  
  

 (A-2) 

which leads to  

     
    
  

 (A-3) 

The directivity of an isotropic source is unity. A more directive antenna means an antenna 

with a more focused radiation main beam. Its maximum directivity will always be greater 

than unity. In other words, directivity gives an indication of the directional properties of the 

antenna as compared with those of an isotropic source.  

The gain, on the other hand, is a parameter that measures the directivity of a given 

antenna. It is defined as “the ratio of the intensity, in a given direction, to the radiation 

intensity that would be obtained if the power accepted by the antenna were radiated 

isotropically”. Its relationship to the directivity can be derived as follows: 

  
   

   
       

   

  
        (A-4) 

where Pin is the input power received by the antenna and ecd is the radiation efficiency 

which was mentioned in Section 4.3.2. The relative gain is another definition for antenna 
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gain, which is defined as the power gain ratio in a specific direction of an antenna to the 

power gain ratio of a reference antenna in the same direction. The input power must be the 

same for both antennas.  

              
    

    |   
 (A-5) 

The reference gain could be a dipole, horn or isotropic lossless antenna whose power gain is 

already known. The information presented in this section could be found in [87]. 

A2. Dipole Antenna 

A dipole is a very basic antenna structure consisting of two split wires, not necessarily of 

equal length. Unlike monopole antennas, a dipole antenna does not require a ground plane. 

When we drive an alternating current into the dipole, the two wires produce alternating 

electric and magnetic fields, thus generating the radiation. The amount of radiation will be 

proportional to the dipole current. The current distribution also determines the radiation 

pattern. The most commonly used antenna is the half-wave length dipole. "Half-wave" term 

means that the length of this dipole antenna is equal to a half-wavelength at the frequency of 

operation. Such dipole is also in resonant at integral multiples of its resonant frequency. The 

following reasons make half-wavelength dipole very popular: 1) A reasonable directivity 

about 2.15 dB. 2) Its radiation pattern is omnidirectional which is required by many 

applications (omnidirectional means that the radio wave power radiates uniformly in all 

directions in one plane). The maximum power radiates in horizontal directions, dropping to 

zero directly above and below the antenna. 3) The input impedance is not sensitive to the 

radius and is about 73 Ω, which is well matched with a standard transmission line of 

characteristic impedance 75 or 50 Ω.  

A3. Inverted-F Antenna 

The Inverted F antenna is a variant of the monopole where the top section has been folded 

down so as to be parallel with the ground plane. This parallel section introduces capacitance 

to the input impedance of the antenna, which is compensated by implementing a shorted line 

connected to the ground plane. The ground plane serves as a perfect energy reflector and acts 

as the other part of the dipole. In general, the required ground plane length is roughly one 

quarter (λ/4) of the operating wavelength. Its dominant resonance occurs at around one-

quarter of the operating wavelength. The advantages of an inverted-F antenna include 

reduction in size, reduction in backward radiation and moderate high gain in both vertical and 

horizontal polarizations. The last feature is very useful in certain wireless communications 

where the antenna orientation is not fixed.  
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