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Contrairement à l’EKS-seq, l’EKS-par extrait correctement le MCG du fœtus

même quand le MCG maternel et le MCG fœtal se chevauchent entièrement dans

le temps. Ceci est particulièrement visible entre t = 2s et t = 3s et entre t = 6s

et t = 7s pour le premier fœtus et entre t = 1s et t = 2s et entre t = 7s et t = 8s

pour le second fœtus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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Chapter 1

Introduction

Congenital1 heart disease is the most common type of birth defect [1] and the leading cause of

birth defect-related deaths [2]. Approximately, one out of 125 babies born each year have some

form of congenital heart defects [3]. Some of these defects are so slight that the baby appears

healthy for many years after birth and some other can be so dangerous that they may lead to

birth defect-related death [4]. Genetic syndrome, inherited disorder, or environmental factors

such as infections and drug misuse are among the causes of cardiac anomalies [5,6]. Advances in

medical and surgical treatments over the past decades have led to more than 85% of these infants

surviving to adulthood [7, 8]. Most interventions, however, have not been curative and about

half of adults with congenital heart disease face the prospect of further surgery, arrhythmia,

heart failure, and if not managed appropriately premature death [9].

Since heart defects originate in the early weeks of pregnancy when the heart is forming [3],

the regular monitoring of the fetal heart and the early detection of cardiac abnormalities may

help obstetrics and pediatric cardiologist to prescribe proper medications in time, or to consider

the necessary precautions during delivery.

The electrocardiogram (ECG) signal may provide useful information about the fetus’ heart

condition for detecting the fetus at risk of damage or death in the uterus. Although fetal echocar-

diography can be used for detecting R-peaks and monitoring the heart status, extracted fetal

ECG (fECG) can provide more information for medical groups. Nevertheless, except for during

labor, fetal electrocardiography has not proved an effective tool for imaging specific structural

defects and hence the medical analysis of fECG signals is still in its infancy. This is, partly

due to a lack of availability of gold standard databases, partly due to the less complete clinical

knowledge concerning fetal cardiac function and development, and in part, due to the relatively

low signal to noise ratio (SNR) of the fetal ECG compared to the maternal ECG (mECG) [10].

Indeed, despite of the rich literature in the field of ECG processing, the extraction of fECG from

maternal abdominal ECG sensors remains a difficult problem for the biomedical engineering

community. As a result, since the technology to reliably extract fECG is still unavailable, fetal

monitoring today is based only on the fetal heart rate and does not incorporate characteristics

of the fECG waveform characteristics that are the cornerstone of cardiac evaluation [10]. This

1A congenital defect is an abnormality that is present at birth.
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Figure 1.1: A typical example of noisy mixed ECGs recorded on an abdominal electrode and
corresponding maternal and fetal ECGs.

means that the most critical source of information from clinical practice is excluded since most

cardiac defects have some manifestation in the morphology of ECG, which is believed to contain

much more information as compared with conventional sonographic methods [11].

The fECG can be measured by placing electrodes on the mother’s abdomen (see Figure

1.1). However, this signal has very low power and is mixed with several sources of noise and

interference. These include fetal brain activity, electromyogram (EMG) signals (from both the

mother and fetus), respiratory activity, and power line interference. Moreover, its variability is

increased by factors related to gestational age, position of the electrodes, skin impedance, etc.

Nevertheless, the main contamination is the maternal ECG [12], since its amplitude is much

higher than that of the fetus [12]. As a result, the basic problem is to extract the fECG signal

from the mixture of mECG and fECG signals, where the interfering mECG is a much stronger

signal.

In spite of the rich literature devoted to the filtering of fetal cardiac signals, due to the

complexity of the problem there are still many open issues that need improved signal processing

techniques. One of the such complexities from the signal processing perspective is that there is

no specific domain (time, space, frequency, or feature) in which the fetal ECG can be totally

separated from the interfering signals [13]. Therefore, sophisticated signal processing techniques

are required to address this problem.

In this study, the objective is to improve the signal processing aspects of fetal cardiography

and to obtain better insights of this problem, by developing new techniques for the modeling and

filtering of fetal ECG signals recorded from electrodes placed on the maternal abdomen. The

basic idea behind the developed methods is to refine currently existing models or design novel

techniques to capture weak traces of fetal ECG signal using a minimal number of electrodes.

The lower number of observations, the less available information about fetal ECG. Therefore,

mECG, fECG and noise should be modeled accurately to obtain good results. Moreover, since
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fECG can change from an observation to another due to the factors related to gestational age,

position of the electrodes, etc, the proposed method should be robust enough to cover various

possible scenarios.

The hereby proposed methods are based on the cardiac signal morphology and its quasi-

periodic nature. We do not go into the procedure of fetal ECG generation or the medical

interpretation of the obtained results. We will show that the same methods are applicable to

other cardiac monitoring modalities such as the magnetocardiogram (MCG), which are morpho-

logically similar to the ECG. Therefore, throughout the manuscript, unless specifically noted,

all the methods developed for the ECG are also applicable to MCG recordings. Moreover, due

to the generality of the proposed methods, the same procedures are also applicable to single or

multichannel adult ECG recordings and can be used in real-time cardiac monitoring systems.

1.1 Overview of the Thesis and Contributions

A practical clinical monitoring system of fetal cardiac activity can be based on a small number

of electrodes located on mother’s abdomen, and on a sound sensitive sensor. In such a context,

in the present study, we first concentrate on a refined model of the signal recorded on a unique

electrode to see what performance can be obtained with only one electrode via this parametric

method. Then, we go a step further and add more channels to assess possible performance

improvement using multichannel recordings. However, we limit our methods to utilize a minimal

number of electrodes (usually only 2). Finally, the performance of a novel nonparametric method

which is applicable to single-channel recordings is evaluated. In what follows, we will have a

brief overview of each chapter.

Chapter 2

In this chapter, a selection of the related literature are reviewed according to their method-

ologies, which include linear or nonlinear decomposition and adaptive filtering. Each of these

methodologies has merits and flaws that have been explained. Moreover, the number of utilized

electrodes in each approach is highlighted. Then the current modalities used in fetal cardiac

activity monitoring are recalled and the advantages of electrocardiography modality over them

are described to clarify the reasons behind the attempts in extraction of fetal ECG.

At the end of this chapter, we will define the problem of interest and the objectives of this

research regarding the limiting factors of the currently existing methods and the number of

utilized electrodes.

Chapter 3

In this chapter, we present an extended nonlinear Bayesian filtering framework, based on Kalman

filter, for extracting ECGs from a single-channel as encountered in the fetal ECG extraction from

abdominal sensor. The recorded signals are modeled as the summation of several ECGs. Each of

them is described by a nonlinear dynamic model, previously presented in [14] for the generation
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of a highly realistic synthetic ECG. As a result, each ECG has a corresponding term in this

model and can thus be efficiently discriminated even if the ECG waves overlap in time. This

is the main advantage of the proposed method over the method in [13, p. 50] for fetal ECG

extraction. The parameter sensitivity analysis for different values of noise level, amplitude and

heart rate ratios between fetal and maternal ECGs has been performed to present the conditions

in which, the proposed method is efficient. This framework is finally validated on the extractions

of fetal ECG from actual abdominal recordings, as well as of actual twin MCGs.

The full version of the idea with quantitative results on synthetic data and qualitative results

on actual data has been also presented in [15].

Chapter 4

Tensor decomposition is an important topic in signal processing, which has found numerous

applications in many other areas. This chapter is devoted to customize this method to event-

related source extraction with a focus on our problem of interest, i.e. fetal ECG extraction.

The deterministic blind separation of sources having different symbol rates, proposed in [16] has

been adopted in this chapter for fetal ECG extraction. However, using the classic optimization

used in this method to determine the dominant components of the fECG tensor, one fails to

find fetal components. Since in the mixture of maternal and fetal ECGs, the mECG signal is

much more powerful, it prevents the algorithms to capture the signal of interest, fECG, which

has much lower power. In order to overcome this problem, two robust criteria for deterministic

tensor decomposition are proposed to cope with interference from other sources that impede on

the extraction of weak signals.

The influence of different parameters on the robustness of the proposed method is examined

by means of simulations. Then its performance in fetal cardiac signal extraction from dual-

channel actual recordings is assessed. Finally, its application on fully automatic fetal R-peak

detection is presented. The latter can be found in [17].

Chapter 5

Although the robust tensor decomposition methods presented in Chapter 4 succeed to capture

weak event-related sources, e.g. fECG, the dynamics of the sources, i.e., slight variations from

one event to another, are lost. The reason is that the tensor decomposition model assumes

identical temporal patterns for each source. In the case of ECG signal, valuable inter-beat

dynamics of ECG signal are lost, since all extacted ECG beats have exactly identical shapes up to

their amplitudes. In this chapter, a generic nonlinear Bayesian filtering framework is developed to

recover such dynamics of event-related sources from multichannel recordings. This model is used

within a Kalman filtering framework, whose mixing matrix and state parameters are obtained

from the loading matrices of the tensor decomposition. Therefore, the proposed method in

this chapter can be considered as the second step of the proposed method in Chapter 4. The

method is applied to actual electroencephalogram (EEG), ECG and MCG and its performance

is compared with the performance of other source separation methods. A preliminary version of
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this method is reported in [18].

In the case of fetal ECG extraction, the proposed method in this chapter can be consid-

ered as the multichannel extension of the single-channel extended nonlinear Bayesian filtering

framework, proposed in Chapter 3. Thereby, the performances of these two methods are com-

pared via simulation to check possible improvement obtained by adding another channel to the

single-channel recording.

In the last section of this chapter, a new method based on dynamic time warping is proposed

to enhance the phase state estimate of ECG signal. This method does not assume a linear phase

for ECG signal and exploits information of all available channels for phase state estimation.

Although it is not expected to be used in the fetal ECG extraction application, it can be

employed to simultaneously filter normal and abnormal ECG beats. The material of this section

has been published in [19].

Chapter 6

In this chapter, we pursue a different approach for analyzing ECG signal. Instead of explicitly

considering the shape of ECG signal and assigning a parametric model to extract ECG, we rely

on exploiting statistical characteristics of ECG.

Gaussian processes are widely used in statistical modeling because of properties inherited

from the normal distribution. Assuming ECG signal as a Gaussian process, it can be fully

described by its second-order statistics. In this chapter, we present suitable covariance functions

for maternal and fetal ECGs for ECG denoising and fetal ECG extraction. The proposed method

is fairly general and can be used in other applications, in which the second-order statistics of

desired source can be described.

The primary and simplified versions of the proposed method have been published in [20]

and [21], respectively.

Chapter 7

In the last chapter, we summarize the findings of this research and their points of strength

and weakness, as compared with previous methods. We will also present some of the possible

directions of research that are left as open challenges for future studies in this field.





Chapter 2

State of the Art

2.1 Introduction

In this chapter, the state of the art in fetal cardiac signal extraction is reviewed and limiting

factors and challenging issues are clarified. Since the history of the problem is old and there

are many methods in the literature, it is not possible to cover all the existing methods in their

details. Moreover, a number of the existing methods have employed a combination of techniques

to overcome the complexity of the problem. Therefore, we will review a selection of the available

literature which had a significant role in the evolution of the problem of interest. The significant

works are categorized according to their methodologies and then the number of utilized electrodes

is highlighted. The more detailed literature of each proposed method is presented separately in

the corresponding chapter.

2.2 Fetal ECG Extraction Methodologies

Since the first demonstration of the fetal ECG carried out in 1906 by Cremer [22], various

methods for fECG monitoring have been proposed to obtain information about the heart status.

These methods aimed at fetal heart rate analysis or fetal ECG morphology analysis. Although

fetal ECG morphology contains much more clinical information compared to the heart rate

analysis alone, most of the previous studies have been only directed to fetal R-R intervals

extraction using the R-peaks or ensemble averages of the fetal ECG waveforms [13]. This is due

to the very low SNR of fetal ECG signals, which leaves the complete morphologic study of the

fetal ECG as a challenging problem. According to the review [10], existing fECG extraction

approaches in literature can be categorized by their methodologies, which include linear or

nonlinear decomposition and adaptive filtering.

Linear or nonlinear decomposition methods are common approaches in which, single or multi-

channel recordings are decomposed into different components using suitable basis functions.

The basis functions can be selected based on the coherence with the time, frequency, or scale

characteristics of the fetal components. In [23], a wavelet transform-based method was developed

to extract fECG from an abdominal electrode. This method is based on the detection of the

29
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singularities obtained from the composite abdominal signal, using the modulus maxima in the

wavelet domain. A reconstruction method was then used to obtain the fetal ECG signal from

the detected fetal modulus maxima. The obtained result from synthetic and real data presented

good detection of singular points locations, but the amplitude of the extracted fECG was not

accurate [23]. In another study [24], a new mother wavelet was designed to achieve optimal

denoising and compression results in fetal electrocardiography. This mother wavelet, which is

called abdominal ECG mother wavelet uses Gaussian functions to model ECG waves and has a

more similar shape to an ECG signal compared to more common mother wavelets. Singular value

decomposition (SVD) was also used by assuming that the mixed signals can be configured to

be algebraically orthogonal to each other and this orthogonality can be exploited for extracting

fECG [25]. Nevertheless, linear decomposition methods using either fixed basis functions (e.g.,

wavelets), or data-driven basis functions (e.g., singular vectors) have limited performance in

decomposition of nonlinear or degenerate mixtures of signal and noise [10]. Therefore, they are

not expected to estimate well fetal ECG where fetal signals and other interferences and noises

are not linearly separable [13].

Blind or semi-blind source separation methods, which are categorized as linear decompo-

sition approach, have also been used for fECG extraction. These methods are based on the

assumption of independent components for the maternal and fetal signals, or of the existence of

some temporal structure for the desired signals [26–28]. For instance, assuming an ECG signal

as a multidimensional signal, a blind source subspace separation method was proposed in [29]

to separate mECG and fECG subspaces in multichannel recordings. They also compared the

performance of their method with that of a class of SVD-based methods and concluded that

their method is more efficient. Nonetheless, most of these methods are rather generic and are

not fully customized to the characteristics of the ECG signal. In [30], quasi-periodic nature

of ECG has been exploited to extract an independent subspace based on periodicity of fECG

signal. This method was then combined with a model-based signal processing tool to better

cancel mECG according to a deflation procedure [31]. However, since the deflation procedure is

iterative and a filter is applied several times to the mixture, some parts of the fECG signal can

be corrupted during this procedure. Another attempt to customize the existing generic meth-

ods to the ECG signal was using multidimensional independent component analysis (MICA) for

separating out the fECG from the mECG and the rest of the interferences [32, 33]. MICA is

an extension of independent component analysis (ICA), based on a linear model such as that

used in ICA: however, in contrast to ICA, the components are not assumed to be all mutually

independent. Instead, it is assumed that the components can be partitioned into groups, which

are statistically independent but components belonging to the same group may be dependent.

This method was then refined in [34] to more efficiently work in a larger number of scenarios.

Wavelet decomposition was also combined with blind source separation methods for extracting

and denoising fECG signals. In [35], the problem of fetal ECG extraction was addressed using

BSS in the wavelet domain. They showed that this method can be particularly advantageous

when mixing environment is noisy and time-varying. In BSS methods it is usually assumed

that signals and noises are mixed in a stationary and linear manner. However, fECG and other
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interferences and noises are not necessarily stationary mixed and linearly separable [13]. An

algorithm based on non-stationary ICA and wavelet denoising was proposed in [36] for fetal

ECG extraction. In their study, they maintained that according to the low amplitude and

poor SNR of the fetal ECG recorded at the abdominal region of a pregnant woman, the signal

processing algorithm needs to remove the maternal ECG, reduce motion artifact and enhance

extracted fetal ECG signal. To do so and because of non-stationary nature of the ECG signal,

they employed a non-stationary ICA method to eliminate maternal signal from the composite

ECG signal recorded at abdomen. Wavelet transform was then used to remove baseline wander

and enhance fECG signal. The wavelet-ICA method proposed in [37,38] was adopted and fitted

to the problem of fECG extraction in [39]. In this method, a multichannel ECG recording is first

decomposed by biorthogonal wavelets [40], since the wavelet functions belonging to this family

have a shape that is close to the ECG shape. Then, the wavelet components (approximations

and details) related to fECG are selected by visual inspection and a new dataset is built with

them. Finally, this new dataset is processed by ICA to extract fECG components. This method

was compared with the non-stationary ICA and wavelet denoising method in [36]. They showed

that the Q, R, and S waves of fECG are better visible using their method. However, P and T

waves are not visible in the fECG extracted by this method. The performance of four major BSS

algorithms (the joint approximate diagonalization of eigen matrices algorithm [41], the original

fixed-point algorithm [42], Infomax algorithm [43], and a specific contrast function based on

minimization of mutual information between the components at the output of separator [44]) in

fECG extraction has been investigated in [45]. The four algorithms are exerted on dual-channel

simulated data to observe the ability of each in extracting fECG. As discussed in the paper, these

methods are able to recover fECG if the input SNR is high. In another work, a new technique

was proposed to accelerate the traditional ICA method used in fECG extraction [46].

Some theoretical problems that arise in noninvasive extracting fECG especially the diagnos-

tically important fetal P-waves and T-waves early in pregnancy for beat-to-beat diagnosis were

discussed in [47] by some well-known extraction methods such as averaging/subtraction approach

and ICA. They reported that these methods are not accurate in an extraction problem in which

the number of sources exceeds the number of observations especially when the signal of inter-

est has very low amplitude and it is surrounded by noise. For example, averaging/subtraction

method, in which fECG is extracted by a large number of synchronized maternal ECG beats

and removing this average from abdominal mixed signal and finally extracting averaged fECG,

is unable to well present the valuable temporal variations in R-R, P-R and Q-T intervals. In

ICA extraction method some theoretical conditions are required. For instance, in this method,

it is considered that the abdominal noise is negligible although this noise can be strong or as

mentioned before it is considered that signals and noises are linearly mixed which in reality is not

true. These assumptions reduce the precision of extracted P and T waves and also the duration

of intervals in the fECG signal.

Nonlinear transforms have been also used for mECG cancellation and fECG extraction. These

transforms are rather ad hoc and require some prior information about the desired and undesired

parts of the signal [13]. In these methods, a state-space representation of noisy signal and of its
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delayed versions is constructed and the state-space trajectory is smoothed using conventional

or principal component analysis (PCA) smoothers [48–50]. The samples are then transferred

back to the time-domain representation. Although these methods are interesting since they are

applicable to as few as one single maternal abdominal channel, the selection of the required

time-lags for constructing phase space representation is empirical and the important inter-beat

variations of the cardiac signals can be wiped-out during the state-space smoothing. Moreover,

they demand higher computational complexity in comparison to linear methods, and the correct

embedding dimension can vary as the noise statistics change [10].

Adaptive filtering is another common approach for mECG cancellation and fECG extrac-

tion [51]. The conventional adaptive filtering is based on training an adaptive filter for either

removing the mECG using one or several maternal reference channels [51,52], or directly train-

ing the filter for extracting the fetal QRS waves [53, 54]. However, existing adaptive filtering

methods for mECG artifact removal, either require a reference mECG channel that is morpholog-

ically similar to the contaminating waveform or require several linearly independent channels to

roughly reconstruct any morphologic shape from the references [51]. Both of these approaches are

practically inconvenient and with limiting performance, because the morphology of the mECG

contaminants highly depends on the electrode locations and it is not always possible to recon-

struct the complete mECG morphology from a linear combination of the reference electrodes [10].

Therefore, an adaptive filter that does not require any excess reference electrodes or at most a

single reference without the morphological similarity constraint is of great interest. The Kalman

filtering framework, which can be considered as a member of the general class of adaptive fil-

ters, is a promising approach that uses only arbitrary mECG and fECG references for mECG

cancellation and fECG enhancement. In [14], a set of state-space equations was used to model

the temporal dynamics of ECG signals, for designing a Bayesian filter to denoise ECG. This

Bayesian filtering framework was then used in [13] to extract fECG from single channel mixture

of mECG and fECG. However, as it has been mentioned in [13], the filter fails to discriminate

between the maternal and fetal components when the mECG and fECG waves fully overlap in

time. Practically, it has been shown that for fECG extraction, blind source separation methods

outperform adaptive filters [55]. An important advantage of spatial filtering over conventional

adaptive filters is their ability to separate mECG and fECG with temporal overlap but it often

requires more than two sensors.

2.3 Current Challenges

Besides electrocardiography, the fetus’ heart status has been also monitored using other modal-

ities [11], including echocardiography [56], phonocardiography [57,58], pulse oximetry [59], car-

diotocography [60], and magnetocardiography [61, 62]. Among these modalities, echocardiog-

raphy which is based on standard ultrasound techniques and is also known as sonography of

the heart, is commercially the most available means for fetal cardiac monitoring [10]. Neverthe-

less, the electrocardiography and magnetocardiography modalities can provide more information

about fetus’ heart status, since most cardiac abnormalities have some manifestation in the ECG
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or MCG morphology or R-R interval timing [11]. Due to the morphological similarity of the ECG

and its magnetic counterpart, MCG, the ECG-based methods are also applicable to MCG sig-

nals. In fact, although using the current superconducting quantum interference device (SQUID)

technology for magnetic recordings, the SNR of the fetal MCG is usually higher than that of

ECG, ECG recording devices are simpler and currently more affordable as compared with MCG

systems [10]. Thereby, the current study is focused on the ECG and partially the MCG to

retrieve the fetal ECG (or MCG) morphology with the highest possible fidelity, as required for

morphological studies.

In such a context, the proposed methods encounter a number of limiting factors and chal-

lenging signal-processing issues. In addition to the weakness of fetal cardiac potentials and high

interference of maternal ECG, possible movements of the fetus and the variation of fetal heart

rate should be also considered. Indeed, the ratio of fetal and maternal heart rates, the ratio

of fetal and maternal ECG powers, noise and fetus’ position can change the configuration of

mixtures. The methods should be robust enough to the variation of these factors. Moreover,

the methods should be as automatic as possible to be applied to long datasets with minimal

interaction with an expert operator.

Another important factor in this context is the number of channels utilized for fECG ex-

traction. Current single-channel methods either fail to recover valuable inter-beat variations

of fECG (e.g. averaging and nonlinear methods) or fail to discriminate between the maternal

and fetal components when the mECG and fECG waves fully overlap in time (e.g. Kalman

filtering method). Figure 2.1 shows an example of this kind of failure on an actual recording by

the Bayesian filtering framework used in [13]. Current multichannel fECG extraction methods

(e.g. blind source separation [29], semi-blind source separation [63], adaptive filtering [51, 53],

and periodic component analysis (πCA) [30]) exploit the redundancy of the multichannel ECG

recordings to reduce mECG and other interference sources. Nevertheless, even if this reduction

has been successful, the exogenous noise cannot be totally canceled in this way [49]. Moreover,

they demand several channels to recover weak traces of fetal signal. Figure 2.2 shows an example

of performance of two classical methods in extraction of maternal and fetal ECGs where only

two electrodes have been utilized. As it is seen, both FastICA [64] and πCA methods completely

failed to extract fetal ECG. This can be explained by revising the inherent limitations of these

methods. As mentioned above, since maternal and fetal ECGs are not linearly mixed, linear

methods are not able to separate them. Moreover, the cardiac signals are multidimensional [13],

so these methods which are not applicable to underdetermined mixtures fail to capture fetal

components that are dominated by the maternal signal and noise.

Thereby, the current challenge is the development of single-channel methods which do not

fail to discriminate between the maternal and fetal ECG waves and also preserve inter-beat

dynamics of fECG. The performance of such methods should be evaluated over different possible

scenarios and configurations of mixtures. The next step is to develop multichannel methods

that outperform single-channel ones in extracting and denoising of fECG signal. In this case,

the methods that utilize a minimal number of electrodes are of great interest since this leads to

a less expensive and more convenient and portable device for a long-term fetal cardiac activity
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Figure 2.1: A typical example of failure of method in [13] in discriminating maternal and fetal
components when the mECG and fECG waves fully overlap in time. It is particularly noticed
between t = 6s and t = 7s.
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Figure 2.2: A typical example of performance of current multichannel fECG extraction methods
in maternal and fetal ECG extraction using only two electrodes. Both FastICA and πCA methods
completely fail to extract fetal ECG.
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monitoring system.

In Table 2.1, a general comparison between the currently existing methods is provided. Com-

parison of the benefits and drawbacks of these methods could point the directions of this thesis

in this field. Therefore, this thesis aims at filling the blank cells of this table.

2.4 Summary and Conclusions

In this chapter, we briefly reviewed the current approaches and methods for fetal ECG extraction

in the literature and their limiting factors and challenging issues. It was noted that in the present

study we are interested in improving these methods to retrieve the fECG morphology with the

highest possible fidelity using a minimal number of electrodes. In the following chapters, several

methods are proposed for achieving these objectives, together with additional byproducts of this

work that are not limited to fetal ECG extraction.
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Table 2.1: Comparison of existing methods for fetal ECG extraction.

Method Benefit Drawback

S
in

g
le

-c
h
an

n
el

Wavelet Suitable for mixtures Limited performance in
filtering having different scales nonlinear mixtures
SVD-based Robust to low SNR Limited performance in
filtering mixtures nonlinear mixtures
Nonlinear Applicable to nonlinear Lose inter-beat dynamics,
filtering or degenerate mixtures computationally massive
Bayesian Preserve inter-beat Failure when ECG waves
filtering dynamics overlap, require good

state estimate
? Preserve inter-beat

dynamics, not fail
when ECG waves overlap

? Preserve inter-beat
dynamics, not fail when
ECG waves overlap, not
require good state estimate

M
u

lt
ic

h
a
n

n
el

SVD/PCA Applicable to noisy Limited performance in
high dimensional data nonlinear mixtures

ICA Generality Limited separation
performance, require
several channels

πCA Adapted to ECG Limited noise cancellation,
require several channels

Deflation Adapted to ECG, Limited noise cancellation,
procedure applicable to a few channels iterative, lose fECG features

during mECG cancellation
? Adapted to ECG,

good noise cancellation,
applicable to a few channels

? Adapted to ECG,
good noise cancellation,
applicable to a few channels,
preserve fECG features
and dynamics during filtering





Chapter 3

Extended State Kalman Filtering

Based on Single-Channel Recordings

3.1 Introduction

So far, many methods have been developed for fECG extraction from the mixtures of maternal

and fetal ECGs. Among the methods which are applicable to single-channel recordings one can

name nonlinear methods based on construction of phase space of noisy signal and its delayed

versions. However, besides computational complexity of these methods, they are unable to

recover valuable inter-beat dynamics of ECG signal. The well-known Kalman filter (KF) is

one of the methods that can be employed to preserve the important inter-beat dynamics of

ECG signal. This filter which is used in estimating hidden states that are observable through

a set of measurements of a system with an underlying dynamic model, has been also proven to

be the optimal filter in the minimum mean square error (MMSE) sense under certain general

constraints [65].

An important advantage of KF over some conventional filters such as Wiener filter is its

applicability to non-stationary signals. Although for stationary signals Wiener filter is the

optimal linear filtering method in the MMSE sense, applied either in a causal sense in the

time domain or as the noncausal filter applied in the frequency domain, it does not give good

results for a noisy ECG signal, due to the non-stationary nature of the cardiac signal [13].

In [14], it has been shown that KF outperforms conventional ECG denoising schemes including

wavelet denoising, adaptive filtering, and conventional finite impulse response filtering. The KF

framework in [14] is designed based on a realistic model to describe the quasi-periodic behavior

of the ECG to extend the idea of model-based filtering to a general Bayesian filtering framework

for ECG denoising.

This Bayesian filter framework that can be considered as a parametric model for ECG pro-

cessing was then used in [13, p. 50] to extract fECG from single-channel mixture of mECG and

fECG according to a deflation procedure. However, as it has been mentioned in [13], the filter

fails to discriminate between maternal and fetal components when mECG and fECG waves fully

overlap in time. The reason is that when mECG is being estimated, fECG and other compo-

39
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nents are supposed to be Gaussian noise. However, this assumption is not true, especially when

mECG and fECG waves fully overlap in time it is difficult for the filter to follow the desired

ECG.

In this chapter, we wonder what performance can be obtained with only one electrode, by

using a refined model of the signal recorded on the unique electrode: the model will explicitly

take into account that the signal is the superposition of a few ECG signals. The rest of this

chapter is organized as follows. In Section 3.2, the Bayesian filtering theory is briefly reviewed.

The existing EKF framework for denoising an ECG signal is recalled in Section 3.3. Section

3.4 is devoted to present the proposed method, in which the EKF framework for one ECG is

extended to multiple ECGs for simultaneously extracting several ECGs from a mixture. The

results of the proposed method on both synthetic and actual data are presented in Section 3.5.

In this section, first, considering different possible scenarios in the problem of fECG extraction,

the performance of the proposed method in these scenarios is assessed using synthetic data.

Then, the performance of the proposed method on actual cardiac recordings is presented and

the results are compared with the results of two other methods. Finally, a summary of the

chapter and our conclusions are stated in Section 3.6.

3.2 Review of the Bayesian Filtering Theory

The goal of the Kalman filter consists in estimating the state of a discrete-time controlled

process that is governed by a linear stochastic difference equation. Therefore, if the process to

be estimated and (or) the measurement relationship to the process is nonlinear, it should be

modified. The extended Kalman filter (EKF) is an extension of the standard KF to nonlinear

systems, which linearizes about the current mean and covariance. Consider a state vector xk+1

governed by a nonlinear stochastic difference equation with measurement vector yk+1 at time

instant k + 1: xk+1 = f(xk,wk, k + 1)

yk+1 = h(xk+1,vk+1, k + 1)
(3.1)

where the random variables wk and vk represent the process and measurement noises, with

associated covariance matrices Qk = E
{
wkw

T
k

}
and Rk = E

{
vkv

T
k

}
. The initial estimate of

the state vector, x0 = E {x0}, is also assumed to be known, with P0 = E
{

(x0 − x0)(x0 − x0)T
}

.

The process and observation models are linearized at the current estimate x̂k using the first order

Taylor series expansion:xk+1 ≈ f(x̂k, ŵk, k) + Ak(xk − x̂k) + Fk(wk − ŵk)

yk ≈ h(x̂k, v̂k, k) + Ck(xk − x̂k) + Gk(vk − v̂k)
(3.2)

where Ak is the Jacobian matrix of partial derivatives of f with respect to x, Fk is the Jaco-

bian matrix of partial derivatives of f with respect to w, Ck is the Jacobian matrix of partial

derivatives of h with respect to x and Gk is the Jacobian matrix of partial derivatives of h with
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respect to v. To simplify the matrix notations, the Fk and Gk matrices are usually absorbed

into the noise covariance matrices as:

FkQkF
T
k → Qk, GkRkG

T
k → Rk.

Finally, the EKF algorithm may be summarized as [14]:

x̂−k+1 = f(x̂+
k ,w, k)|w=wk

rk = yk − h(x̂−k ,v, k)|v=vk

Kk = P−k CT
k [CkP

−
k CT

k + Rk]
−1

x̂+
k = x̂−k + Kkrk

P−k+1 = AkP
+
k AT

k + Qk

P+
k = P−k −KkCkP

−
k

(3.3)

where wk = E {wk}, vk = E {vk}, x̂−k = Ê {xk|yk−1, ...,y1} and x̂+
k = Ê {xk|yk, ...,y1}. P−k

and P+
k are the a priori and a posteriori estimates of the state vector covariance matrices before

and after using the k − th observation, respectively.

In the EKF algorithm, the state estimate is updated immediately after a new observation

is available. However, immediate updating is not always necessary. Instead, if a small lag in

the processing is allowed or if the measured data is processed offline, the future observations

can also be used in the state estimation. In this case, it is reasonable to expect to have a

better estimation compared with the EKF. The extended Kalman smoother (EKS), which uses

the information of future observations, consists of a forward EKF stage followed by a backward

recursive smoothing stage. In this study, since the filtering procedure is carried out offline on the

entirety of each ECG signal, the fixed interval EKS is used. However, for real-time application

of the EKS methods, the fixed lag smoother is usually more appropriate [14].

3.3 EKF Framework for ECG Extraction

In [14], Bayesian filters such as the EKF and EKS have been proposed for single-channel ECG

denoising. The state-space model used for these filters is inspired from [66], which suggests the

use of Gaussian mixtures to model realistic synthetic ECGs. The basic idea is to approximate the

PQRST waves by the sum of 5 weighted Gaussian-shape functions. In [14], the synthetic ECG

generator proposed in [66], was transferred into polar coordinates from Cartesian coordinates.

This modification and some other modifications make it simpler and more straightforward in

interpretation [14]. This modified state-space model was then further developed in [67]. The

developed state-space model of one ECG signal, in its discrete form with a small sampling period
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Figure 3.1: Illustration of the ψi, which corresponds to the center of the ith Gaussian function.

δ, is: 

θk+1 = (θk + ωδ)mod(2π)

zk+1 = − ∑
i∈W

δ
αi,kω

b2i,k
∆θi,kexp(−

∆θ2
i,k

2b2i,k
) + zk + ηzk

αi,k+1 = αi,k + ηαi
k

bi,k+1 = bi,k + ηbik

ψi,k+1 = ψi,k + ηψi

k

(3.4)

where θ, z, αi, bi, and ψi are the state variables in polar coordinates and k denotes the discrete

time index. W = {P,Q,R, S, T} is the set of the PQRST waves. αi and bi correspond to the

peak amplitude and width parameters of the Gaussian functions used for modeling each of the

ECG waves. We define ∆θi,k = (θk − ψi)mod(2π), in which ψi corresponds to the phase of the

maximum of the ith Gaussian function (see Figure 3.1). ω is the phase increment and ηzk, η
αi
k ,

ηbik , and ηψi

k are random additive noises.

The system state and process noise vectors are defined as: xk = [θk, zk, αP,k, ..., αT,k, bP,k, ..., bT,k, ψP,k, ..., ψT,k]
T

wk = [ωk, η
z
k, η

αP
k , ..., ηαT

k , ηbPk , ..., ηbTk , ηψP

k , ..., ηψT

k ]T
(3.5)

with Qk = E
{
wkw

T
k

}
as process noise covariance matrix.

The state vector associated with this ECG signal is thus defined by its phase θk, amplitude

zk and Gaussian function parameters αi, bi, and ψi. In addition to the noisy ECG recording,

sk, an observed phase, φk, is obtained by a linear time warping of the R-R intervals into [0, 2π)

(Figure 3.2), leading to the following system:[
φk

sk

]
=

[
1 0

0 1

]
.

[
θk

zk

]
+

[
uk

vk

]
, (3.6)

where uk and vk are the corresponding observation noises, with zero-mean random variable

entries and the observation noise covariance matrix is given as Rk = E
{

[uk, vk]
T [uk, vk]

}
.

The ECGs composing the observed mixture can be estimated by recursively applying the

described EKF: at each step, one ECG is extracted according to a deflation procedure. In the
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Figure 3.2: Illustration of the phase assignment approach on an ECG.

case of a mixture of mECG and one fECG, the first step extracts, from the raw recording, the

dominant ECG (often the mECG) considering the concurrent ECG (here fECG) and other noises

as a unique Gaussian noise. After subtracting the dominant ECG from the original signal, the

second step is the extraction of fECG from the residual signal. This procedure is referred to

as sequential EKF or EKS (seq-EKF or seq-EKS). In this recursive extraction, during the first

step, the concurrent ECG (i.e. fECG) and additional noise are modeled by Gaussian noises vk

and wk, which is not a very relevant assumption. In fact, although this assumption may be

acceptable when there are no strong artifacts interfering with the ECG, it is no longer accurate

when other ECG artifacts are considerable (i.e. at the first step) since the noise is no longer

normally distributed. In addition, concurrent ECGs can be confused with dominant ECG when

their waves (especially QRS complexes) fully overlap in time. Meanwhile, resultant inaccuracies,

which are generated by the previous steps of the ECG extraction, will be propagated to the next

steps while the residuals are computed.

3.4 Methods

In this section, the proposed method is presented. The existing EKF framework for one ECG

extraction is extended to multiple ECGs. Therefore, each ECG mixed in the measured signal

would have a corresponding term in the state equations. The new state equations are related to

the extended observation equations so that each ECG has an independent phase observation and

the noisy ECG mixture observation is assumed to be the summation of all ECGs. The model

parameter estimation procedure is then extended for the case of multiple ECGs.
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3.4.1 Extension to Multiple ECGs: Extended State EKF

The dynamic equations (3.4) are extended for simultaneously modeling N ECGs mixed in a

single observation. In this case, the dynamic equations may be written as:

θ
(1)
k+1 = (θ

(1)
k + ω(1)δ)mod(2π)

z
(1)
k+1 = − ∑

i∈W (1)

δ
α

(1)
i,kω

(1)

b
(1)2

i,k

∆θ
(1)
i,k exp

(
−

∆θ
(1)2

i,k

2b
(1)2

i,k

)
+ z

(1)
k + ηz

(1)

k

α
(1)
i,k+1 = α

(1)
i,k + η

α
(1)
i

k

b
(1)
i,k+1 = b

(1)
i,k + η

b
(1)
i
k

ψ
(1)
i,k+1 = ψ

(1)
i,k + η

ψ
(1)
i

k
...

θ
(N)
k+1 = (θ

(N)
k + ω(N)δ)mod(2π)

z
(N)
k+1 = − ∑

i∈W (N)

δ
α

(N)
i,k ω

(N)

b
(N)2

i,k

∆θ
(N)
i,k exp

(
−

∆θ
(N)2

i,k

2b
(N)2

i,k

)
+ z

(N)
k + ηz

(N)

k

α
(N)
i,k+1 = α

(N)
i,k + η

α
(N)
i

k

b
(N)
i,k+1 = b

(N)
i,k + η

b
(N)
i
k

ψ
(N)
i,k+1 = ψ

(N)
i,k + η

ψ
(N)
i

k

(3.7)

Therefore, the system state and process vectors are:

xk = [θ
(1)
k , z

(1)
k , α

(1)
P,k, ..., α

(1)
T,k, b

(1)
P,k, ..., b

(1)
T,k, ψ

(1)
P,k, ..., ψ

(1)
T,k, . . . ,

θ
(N)
k , z

(N)
k , α

(N)
P,k , ..., α

(N)
T,k , b

(N)
P,k , ..., b

(N)
T,k , ψ

(N)
P,k , ..., ψ

(N)
T,k ]T

wk = [ω
(1)
k , ηz

(1)

k , η
α
(1)
P

k , ..., η
α
(1)
T

k , η
b
(1)
P
k , ..., η

b
(1)
T
k , η

ψ
(1)
P

k , ..., η
ψ
(1)
T

k , . . . ,

ω
(N)
k , ηz

(N)

k , η
α
(N)
P

k , ..., η
α
(N)
T

k , η
b
(N)
P
k , ..., η

b
(N)
T
k , η

ψ
(N)
P

k , ..., η
ψ
(N)
T

k ]T

(3.8)

with Qk = E
{
wkw

T
k

}
as process noise covariance matrix.

In this model, each [θ
(n)
k , z

(n)
k , α

(n)
P,k, ..., α

(n)
T,k, b

(n)
P,k, ..., b

(n)
T,k, ψ

(n)
P,k, ..., ψ

(n)
T,k]

T , ∀n ∈ {1, . . . , N} is

related to one of the ECGs. Here also, by detecting the R-peaks of the N ECGs, N additional

observations are achieved. In order to do so, a phase value between 0 and 2π is assigned to

the intermediate samples of R-R intervals for each of the N ECGs, separately. These additional

phase observations are employed to synchronize the dynamical KF trajectories with the reference

noisy signals, without the need for manual synchronization. This way the quasi-periodic nature

of each ECG signal is exploited. Hence, the phase observations of N ECGs, φ(1),...,φ(N), and

the noisy mixture of the N ECG measurements, s, are related to the state vector at time k as

follows:
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

φ
(1)
k

φ
(2)
k
...

φ
(N)
k

sk


=


1 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0
...

...
. . . 0 . . . 0

0 0 . . . 1 . . . 1

 .



θ
(1)
k

θ
(2)
k
...

θ
(N)
k

z
(1)
k

z
(2)
k
...

z
(N)
k


+



u
(1)
k

u
(2)
k
...

u
(N)
k

vk


(3.9)

where u
(1)
k ,...,u

(N)
k and vk are the corresponding observation noises with zero-mean random

variable entries, and Rk = E
{

[u
(1)
k , ..., u

(N)
k , vk]

T [u
(1)
k , ..., u

(N)
k , vk]

}
is the observation noise co-

variance matrix.

This extended state Kalman filtering procedure is referred to as parallel EKF or EKS (par-

EKF, or par-EKS, respectively). As shown in the results section (Section 3.5), the par-EKF or

par-EKS are more accurate to extract fECG from abdominal sensors than the seq-EKF or seq-

EKF. Indeed, in the proposed method all ECGs are jointly modeled by dynamic states so that

only the state and measurement noise vectors are assumed to be normally distributed. Moreover,

the extended state par-EKF fully models overlapping waves of several ECGs. Finally, the state

and observation noises allow the filter to fit some variabilities of the ECG shapes. Although

the model do not fit too large variations (for example due to arrythmia), an inspection of the

residue will reveal the abnormal beats.

3.4.2 Model Parameters Estimation

The proposed par-EKF and par-EKS lie on several state parameters {α(n)
i , b

(n)
i , ψ

(n)
i , ω(n)}i∈Wn .

The procedure described below is an extension of the single ECG parameter estimation [14].

The parameters estimation procedure first needs the R-peaks detection for all ECGs to per-

form the time warping of the R-R intervals into [0, 2π) to define φ
(n)
k . The R-peaks are found

from a peak search in windows of length T (n), where T (n) corresponds to the R-peak period

calculated from approximate n− th ECG beat-rate. R-peaks with periods smaller than T (n)

2 or

larger than T (n) are not detected to make sure that only one R-peak is detected in each beat.

Although maternal R-peaks are easily detectable from the mixture, fetal R-peaks detection is

more complex due to its lower amplitude than mECG. Therefore, a rough estimation of fECG

is obtained by using the seq-EKF algorithm, which now allows us to easily detect the fetal R-

peaks.1 Then, for each ECG, each beat (defined by the signals between two consecutive R-peaks)

is time-warped into [0, 2π). The average of the ECG waveform is obtained by the mean of all

time-warped beats, for all phases between 0 and 2π. Finally, by using a nonlinear least-squares

approach [68], the best estimate of the parameters in the MMSE sense is found. Also, ω(n) can

be set as 2π
T (n) .

1In practice, one could also use a sound sensor to have a reliable R-peak detector. In this case, even if there
exists a delay, it does not impact the method, because the delay is constant and it can be synchronized.
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The process covariance Qk is estimated by assuming that the noise sources are uncorrelated,

i.e. Qk is a diagonal matrix. The measurement noise covariance matrix, Rk, is similarly consid-

ered to be diagonal.

In order to find estimates for η
α
(n)
i

k , η
b
(b)
i
k and η

ψ
(n)
i

k , for n − th ECG the standard deviation

of different ECG cycles around the average ECG cycle can be used. Again, this nonlinear

least-squares problem is solved by finding the optimal solutions that generate the best fit of

the average ECG within the range of the average ECG plus and minus the standard deviation

of ECG. A simple estimate for ηz
(n)

k would be a zero mean Gaussian random variable with an

appropriate variance. As mentioned in [14], an intuitive value for this variance may be found

from the deviations of the inactive segment of the ECG between the end of the T-wave and the

beginning of the next P-wave or the isoelectric segment between the end of the P-wave and the

Q point, since no late potentials or baseline wander should manifest during this period.

Assuming a rather reliable R-peak detector, a possible noise source for phase observation is

the sampling error that occurs when the actual R-peak is located between two sample times.

This can be easily modeled by assuming that the R-peak is uniformly distributed between two

consecutive samples. Considering that each ECG cycle is equivalent to 2π in the phase domain,

u
(n)
k would be uniformly distributed in the range of ±ω(n)δ/2 and E

{
(u

(n)
k )2

}
= (ω(n)δ)2/12.

There are also several possible ways to estimate the variance of the amplitude measurement

noise, vk. One method is to estimate the noise power from the deviations of all time-warped

beats of the strongest ECG, or from the portions of the strongest ECG between two successive

T and P waves.

3.5 Results and Discussions

Both synthetic and actual data have been used to study the performance of the proposed method.

In the first subsection, quantitative results coming from simulations and influence of the main

parameters of mixed ECGs on the performance of the method have been studied. They will

present the conditions in which the proposed method is efficient. In the second subsection, the

effectiveness of the method on actual data has been examined.

3.5.1 Numerical Performance Analysis on Synthetic Data

Since there is neither ground truth nor golden standard on single-channel recordings, it is im-

portant to provide quantitative performance with simulations to validate the behavior of the

proposed method. In order to do so, realistic synthetic mixtures of mECG and fECG with white

Gaussian noise have been generated for different situations and the proposed method has been

applied on them to extract mECG and fECG. Synthetic mECG and fECG used in this study are

based on a three-dimensional canonical model of the single dipole vector of the heart, proposed

in [69] and inspired by the single-channel ECG dynamic model presented in [66]. Sampling fre-

quency is set to 500 Hz and signals include 20,000 samples. The main parameters that can affect

the mixtures are input noise power, ratio between amplitudes of fECG and mECG, and ratio
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between fetal and maternal heart rates. In order to investigate the performance of the proposed

method one hundred trials were carried out under each value of these parameters. In the output,

estimated mECG and fECG signals, ŝm and ŝf , are assumed to be the sum of mECG, fECG

and noise, such that:

ŝm = α1sm + α2sf + α3n,

ŝf = β1sm + β2sf + β3n,
(3.10)

where coefficients α1, α2, α3, β1, β2, and β3, have to be estimated and sm, sf , and n denote

mECG, fECG and noise, respectively. In order to estimate the coefficients, sm, sf , and n are

assumed to be orthogonal, i.e., decorrelated. The orthogonality principle states that an estimator

ŝ achieves MMSE if and only if E
{

(ŝ− s)T ŝ
}

= 0. Satisfaction of this criteria leads to:

α̂1 =
E(ŝTmsm)

E(sTmsm)
, α̂2 =

E(ŝTmsf )

E(sTmsf )
, α̂3 =

E(ŝTmn)

E(sTmn)
,

β̂1 =
E(ŝTf sm)

E(sTf sm)
, β̂2 =

E(ŝTf sf )

E(sTf sf )
, β̂3 =

E(ŝTf n)

E(sTf n)
.

(3.11)

In a successful estimation, contribution of desired ECG in output should be much more than

contribution of undesired ECG and noise. In other words, in extraction of fECG the power of

β2sf should be much larger than power of β1sm + β3n, which means the contribution of mECG

and noise is very low in the fECG estimate. In the same manner, the power of α1sm should be

much larger than power of α2sf + α3n in mECG extraction. In order to quantify contribution

of the desired ECG in the output, output SNR for maternal and fetal ECGs are defined as:

SNRmout =
α̂2

1Psm

α̂2
2Psf + α̂2

3Pn
,

SNRfout =
β̂2

2Psf

β̂2
1Psm + β̂2

3Pn

.

(3.12)

where Psm , Psf , and Pn denote power of mECG, fECG, and noise, respectively. Output SNR

is now compared with input SNR to investigate performance of desired ECG extraction. Input

SNRs are defined as:

SNRmin =
Psm

Psf + Pn
and SNRfin =

Psf

Psm + Pn

(3.13)

Input signal to interference ratio (SIR) and output SIR are also defined as:

SIRmin =
Psm

Psf

, SIRfin =
Psf

Psm

,

SIRmout =
α̂2

1Psm

α̂2
2Psf

, SIRfout =
β̂2

2Psf

β̂2
1Psm

.

(3.14)

The performance of the proposed method for different values of input noise power, ratio
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Figure 3.3: Mean SNR improvement results of the EKF and EKS against input noise power
(bold lines) . Upper and lower borders (thin lines) present maximum and minimum, respectively.

between amplitudes of fECG and mECG, and ratio between fetal and maternal heart rates is

presented in this subsection.

SNR Analysis

Figure 3.3 shows SNR improvement results of par-EKF and par-EKS over a wide range of input

noise power. The SNR improvement in dB is defined as the output SNR of the filter minus

the input SNR. In all trials, power of mECG signals is normalized to 1 (0 dB) and the ratio

of amplitudes of fECG and mECG is 0.3. Maternal and fetal heart rates are set to 1.1 Hz

and 2 Hz, respectively. Moreover, in order to have more realistic signals, mECG and fECG are

allowed to have slight Gaussian random fluctuations (5%) in amplitude and duration at each

beat. Moreover, initial phases of ECGs are random. As it can be seen in Figure 3.3, both EKF

and EKS successfully improved the SNR for all ranges of the input SNRs. When the mixture

is rather noise free (noise power -30 dB) the minimum SNR improvement of fECG is 40 dB,

which means efficient cancellation of mECG. Nevertheless, even for very noisy mixtures (noise

power 20 dB), the SNR improvement of fECG remains over 20 dB. According to this figure,

EKF is more effective when a rather clean signal is available. On the contrary, as power of noise

increases, EKS significantly outperforms EKF. The reason of this difference can be explained

by revising the EKS algorithm. As it has been explained in Section 3.2, the EKS algorithm

consists of a forward EKF stage followed by a backward recursive-smoothing stage. Therefore,

if a rather clean signal is available, the recursive smoothing stage will deteriorate EKF output,

because the output is already smooth enough and recursive smoothing leads to over-filtering.

Conversely, if the signal is very noisy, the EKF output is not denoised enough yet. Therefore,

the recursive smoothing stage can be successfully used to cancel more noise from the signal.
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Figure 3.4: Mean SIR improvement results of the EKF and EKS against amplitude ratio (bold
lines). Upper and lower borders (thin lines) present maximum and minimum, respectively.

Amplitude Ratio Analysis

The basic problem of fECG monitoring is to extract the fECG signal from the mixture of mECG

and fECG signals, where the interfering mECG is a stronger signal. Therefore, it is necessary

to evaluate the performance of the method for different ratios of fECG and mECG amplitudes.

For this purpose, SIR improvement of output signals have been calculated in the range of 0.1

to 1 of amplitude ratio of fECG and mECG 2. Figure 3.4 shows SIR improvement results of the

EKF and EKS for different values of amplitude ratios. Power of mECG signals is normalized

to 1 (0 dB) with 5% Gaussian random fluctuation, input SNR with respect to mECG is 10 dB,

and average maternal and fetal heart rates are 1.1 Hz and 2 Hz, respectively. As it is seen in

Figure 3.4, although the fetal SIR improvements of both EKF and EKS remain over 30 dB for

all ranges of the amplitude ratios, results of EKS are slightly better.

Heart Rate Ratio Analysis

Another important parameter that may affect performance of the method, is the ratio of heart

rates. At about five weeks gestation, fetus’ heart begins to beat. At this point, a normal fetal

heart rate is about the same heart rate as the mother’s, about 80-85 beats per minute (BPM).

From this point, it will increase its rate about 3 beats per minute per day during that first month.

By the beginning of the ninth week of pregnancy, the normal fetal heart rate is an average of 175

BPM. At this point it begins a rapid deceleration to the normal fetal heart rate for the middle

of the pregnancy of about 120-180 BPM. There is also a slowing of the normal fetal heart rate

in the last ten weeks of pregnancy, though the normal fetal heart rate is still about twice the

normal adult’s resting heart rate [70]. Therefore, since fetal heart rate may vary in a wide range,

2The large range of tested ratio values does not only include usual ratios encountered between fetal and
maternal signals, but also ratio values encountered between two fetal signals.
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Figure 3.5: Mean SIR improvement results of the EKF and EKS against heart rate ratio (bold
lines). Upper and lower borders (thin lines) present maximum and minimum, respectively.

the performance of the method was studied on a wide range of 0.3 Hz to 3.6 Hz of fetal heart

rate. Figure 3.5 shows SIR improvement results of EKF and EKS. Power of mECG signals is

normalized to 1 (0 dB) with 5% Gaussian random fluctuation and the ratio of amplitudes of

fECG and mECG is 0.3. Input SNR with respect to mECG is 10 dB, and maternal heart rate is

set to 1.1 Hz. In this section, heart rate fluctuations are slighter (1%) to study harmonic issues

more accurately. As expected, SIR improvement diagram has three deep local minima at ratios

1, 2 and 3. The reason is that when main frequencies of mECG and fECG are proportional,

the signals overlap more closely in the frequency domain. Therefore, discrimination of mECG

and fECG is more difficult for these ratios. Nevertheless, these situations are unlikely to happen

because the heart rates ratio is usually more than 1 and less than 2. Even in these cases, fetal

SIR improvement remains over 20 dB. As it is seen in Figure 3.5, both EKF and EKS improved

input SIR for all values of heart rate ratios. Here again, EKS slightly outperforms EKF.

3.5.2 Fetal ECG Extraction on Actual Data

In the previous subsection, efficiency of the proposed method in fECG extraction for a wide

range of possible configurations has been examined using synthetic data. In this subsection,

the results of application of the proposed method on actual data are presented. As mentioned

before, there is no golden standard on actual single-channel recordings. Nevertheless, in order

to better compare the performance of single-channel methods, we adopted the πCA method [30]

as the golden standard. Please note that the πCA method is a multichannel method and we

used all channels available on each dataset to provide the πCA output. Results of πCA method

are then post-processed via EKS on the best ECG estimate [14] to improve the πCA output.
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Figure 3.6: Comparison of fECG extraction by par-EKS, seq-EKS and πCA on the first channel
of DaISy data. Unlike seq-EKS, par-EKS does not fail when mECG and fECG fully overlap in
time. This is particularly noticed between t = 6s and t = 7s.

DaISy Database

The first ECG data used in this subsection is the DaISy fetal ECG database [71], as described

in Appendix A, Section A.1.

Figure 3.6 presents the results of par-EKS and seq-EKS using the first channel of the dataset.

The πCA method [30], using the eight channels is also included as the golden standard. As

already mentioned, unlike seq-EKS, par-EKS does not fail when mECG and fECG fully overlap

in time. This is particularly noticed between t = 6s and t = 7s in Figure 3.6 in which, some

parts of fECG signal have been corrupted during mECG extraction by the seq-EKS method. On

the contrary, the proposed par-EKS jointly models the fECG and mECG, resulting in a better

estimate of fECG than seq-EKS. Since par-EKS estimates a single component while πCA can

estimate several components, the cosine between the subspace of the par-EKS estimate and the

subspace of the πCA estimate (in this experiment it has two components) is used. The achieved

cosine value is equal to 0.92 in this experiment, which is close to 1. This means that the two

estimates are quite similar.

Finally, Figure 3.7 shows the results of fECG extraction using par-EKS applied on the other

abdominal channels of the DaISy dataset. It experimentally proves that par-EKS is able to

extract fECG even in ill-conditioned mixtures, such as the recordings observed on channels 4 or

5.
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Figure 3.7: Results of fECG extraction using par-EKS applied on channels 2 to 5 of the DaISy
dataset (top to bottom). Note differences of scales, according to the channels and the fetal esti-
mates.
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Figure 3.8: Comparison of fECG extraction by par-EKS, seq-EKS and πCA on ecgca771 of the
PhysioNet database.

Noninvasive Fetal Electrocardiogram Database

The PhysioNet noninvasive fetal electrocardiogram database [72] described in Appendix A, Sec-

tion A.2 was also used to show the effectiveness of the proposed method in fECG extraction at

different periods of pregnancy, and different channel locations. Figure 3.8 shows the results of

seq-EKS and par-EKS using channel 3, and πCA using all channels of the first 20s of namely

the ecgca771 dataset.

To show the effectiveness of the proposed method in extraction of the fECG at different

periods of pregnancy, and from different channel locations, the first 20s of the mixtures and fetal

par-EKS outputs of the datasets ecgca274 channel 5, ecgca748 channel 4, and ecgca997 channel

3 are plotted in Figure 3.9.
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Figure 3.9: ECG mixtures of the datasets ecgca274 channel 5, ecgca748 channel 4, and ecgca997
channel 3 and their fetal par-EKS outputs.

Twin MCGs Extraction

The proposed method has been principally designed for ECG signals. Nevertheless, due to

the morphological similarity of the ECG and the MCG, it is also directly applicable to MCG

recordings. In this section, the twin fetal cardiac magnetic signal dataset described in Appendix

A, Section A.3 was employed to assess the performance of the proposed method in extraction of

cardiac signals of twins.

Figure 3.10 presents the results of the proposed par-EKS to extract the two fetal MCG signals

from a single sensor. A typical channel (indexed 92) of namely the q00002252 dataset has been

selected. Even though the multichannel πCA method provides better results in this case than

single channel methods (par-EKS or seq-EKS), the proposed par-EKS succeeds to extract the

two fetal MCG while seq-EKS fails to correctly discriminate the two fetal MCGs when they

overlap (see highlighted signal parts, Figure 3.10).

In order to show the good behavior of par-EKS in several configurations, par-EKS has been

applied on other sensors (Figure 3.11). One can note that the proposed par-EKS succeeds to

extract the two fetal MCGs.

Finally, it is worth noting that an important part of the proposed par-EKS is the R-peaks

detection. Although this detection is quite direct when a single fetus is present (Section 3.4.2),

some words should be added on twin data. Indeed, on such data the detection of the mother’s R-

peaks is still direct since it is the dominant signal. On the contrary, the discrimination between
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Figure 3.10: Results of the par-EKS, seq-EKS, and πCA on twin MCG data. Unlike seq-
EKS, par-EKS does not fail when maternal MCG and fetal MCG fully overlap in time. This is
particularly noticed between t = 2s and t = 3s and between t = 6s and t = 7s for the first fetus
and between t = 1s and t = 2s and between t = 7s and t = 8s for the second fetus.
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Figure 3.11: MCG mixtures of the channels 126, 152, and 160 and their fetal par-EKS outputs.
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the two fetal R-peaks is much more difficult. Even though in this study, the oracle is obtained

using several sensors and applying an ICA algorithm (here, we used Fast-ICA), it can be replaced

in practice by a sound sensor located on mother’s abdomen.

3.6 Summary and Conclusions

In this chapter, a synthetic dynamic ECG model within a KF framework has been extended to

jointly model several ECGs to extract desired ECGs from a unique mixture (i.e. one channel

recording) of maternal and fetal ECGs and noise. Although the proposed method only uses

a single channel to separate different ECGs, since each ECG has a corresponding term in the

model, the proposed model can efficiently discriminate ECGs even if desired and undesired ECG

waves overlap in time. As proved on synthetic data and illustrated on actual data (single and

multiple fetal pregnancy), the main merit of the proposed algorithm relies on its performance

in a large class of situations. The performance of the proposed method on extraction of fECG

from one mixture of mECG and fECG was examined according to noise level, amplitude ratio

and heart rate ratio parameters: results show that the proposed method can be successfully

employed in many scenarios. According to the obtained results, as long as R-peaks are correctly

detected, the proposed model achieves good results. Although a reliable R-peaks detection

is a straightforward procedure in a single fetal pregnancy (which is most likely to happen)

even with a single sensor, it is much more difficult in multiple fetal pregnancy (twin or more).

Nonetheless, in these situations, the R-peaks detection could be provided by other modalities

such as echocardiography.

Finally, the proposed method compares favorably with efficient multi-sensor methods such

as πCA (which also requires reliable R-peaks detection), while it requires only one sensor. The

latter criterion is of high interest, since applicability a single channel does not only mean less

electronic components (such as analog to digital converters or amplifiers) and thus a cheaper

device, but also a more convenient and portable device for a long term monitoring system or at

home since only a single electrode has to be placed on mother’s abdomen.





Chapter 4

Extraction of Event-Related Sources

via Robust Tensor Decomposition

4.1 Introduction

In this chapter,1 a general blind source separation approach based on robust tensor decom-

position is presented for extraction of event-related sources in underdetermined mixtures. An

event-related source is characterized by typical patterns which are elicited after some events:

such patterns may vary in amplitudes and/or in inter-event intervals (IEI). In this context, an

event-related source is referred to as: (i) quasi-periodic source (e.g., ECG) in which IEI and

amplitudes can only slightly change from a period to another; (ii) source with synchronized

stimuli (e.g., event-related potentials (ERP)) in which a pattern is repeated with no assumption

on IEI but with quasi-constant amplitudes; (iii) amplitude-variant source whose amplitude (even

sign) can largely change from a period to another but with quasi-constant IEI (e.g., telecommu-

nication); (iv) general source without any assumptions on amplitudes and IEI, which can thus

largely vary from an event to another one (e.g., digital communications).

The proposed method, which is based on robust deterministic tensor decomposition, is appli-

cable to all of the above-mentioned types of event-related sources. Nonetheless, a special case for

the hereby proposed method is the problem of separating fetal cardiac signals from interferences

and noise. It will be shown that the robust tensor decompositions proposed in this chapter

can be efficiently applied to underdetermined mixtures of maternal and fetal cardiac signals to

recover weak fetal cardiac components.

The rest of this chapter is organized as follows. In Section 4.2 the background of the blind

separation of sources from underdetermined mixtures is first reviewed briefly and then applica-

tion of tensor decomposition methods for extraction of event-related sources is recalled. Section

4.3 is dedicated to present the proposed method. In this section, a tensor construction and

decomposition method is adapted for extraction of event-related sources. Considering the lim-

itations of this method, two robust tensor decompositions are then proposed to better track

1The contributions of this chapter have been partly obtained based on the collaboration of the author and his
supervisors with Hanna Becker and her supervisor, Pierre Comon.

59



60 Extraction of Event-Related Sources via Robust Tensor Decomposition

weak sources mixed with strong ones. The performance of the proposed method is assessed in

Section 4.4 by means of simulated and actual data. First, robustness of the proposed method

to the percentage of outliers, initialization, amplitude variability and synchronization errors are

investigated using synthetic data. Then, actual fetal ECG and MCG mixtures are used to show

the performance of the proposed method in extraction of fetal cardiac signal. The application

of the proposed method in fully automatic fetal R-peak detection is presented in Section 4.5.

Finally, the summary and the conclusions of the chapter are stated in Section 4.6.

4.2 Background

4.2.1 Blind Separation of Sources from Underdetermined Mixtures

In the recent years, a lot of attention has been paid to blind source separation (BSS) due

to its wide-ranging applications in many areas [73] such as audio and speech processing [74],

telecommunications [75], biomedical engineering [76], hyperspectral imaging [77], etc. Assuming

an M -dimensional observation vector, y(k), this problem is mathematically expressed as:

y(k) = Ax(k) + b(k), (4.1)

where x(k) denotes the N -dimensional source vector, b(k) denotes the M -dimensional additive

noise vector, and A is the M ×N mixing matrix. The BSS framework aims at identifying the

mixing matrix A, or estimating the sources x(k), or both, from the observation y(k). Unlike

the determined or overdetermined cases, when the number of sources exceeds the number of

mixtures (N > M), i.e. in the underdetermined case, the estimation of the mixing matrix A

does not permit to directly recover the original sources. In fact, the mixing matrix does not

admit a left inverse in that case, which makes it more difficult to recover the sources even if

the mixing matrix is known and full rank [73,78]. It is then necessary to rely on a prior on the

sources.

Sparsity of the sources in a transformed domain is a possible prior to address underdetermined

BSS [79]. Indeed, most of the proposed methods in the literature of underdetermined BSS are

based on the sparsity of sources in a domain, (e.g., the frequency domain [80] or the time-

frequency domain [81]). In this case, even if several sources are active at the same time so that

the mixture is locally overdetermined, the mixing matrix can usually be estimated by clustering

methods. However, this kind of search usually requires massive computations that limit the

applicability of these methods to a smaller number of observation channels and sources [82].

Separation of underdetermined sources consists of two steps: estimation of the mixing matrix

and extraction of the sources. Many algebraic and geometric (clustering) methods have been

developed for the first step. They employ various decompositions of different data structures

such as cumulant, correlation and cross-correlation matrices or tensors [73, 82]. Then, a second

step is required for recovering the original sources.
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4.2.2 Tensor Decomposition for Event-Related Source Extraction

Higher-order tensors have gained increasing importance as they can be used to represent higher

order cumulants that are exploited in independent component analysis [83] and have been used

successfully in BSS [83]. In addition, they are natural representations of multidimensional (higher

than 2) data than matrices in many practical applications (e.g., in chemistry, biomedical engi-

neering, and wireless communications). A fundamental challenge in these applications is to find

informative and sparse representations of tensors, i.e., tensor decompositions. Tensor decompo-

sitions take into account information about different variables of the data, such as, for example,

spatial, temporal and spectral information, and may provide links among the various extracted

factors or latent variables with physical or physiological meaning and interpretation [84].

There are many applications, in which the sources are known to be event-related. These

properties are observed in digital communication, speech and some physiological signals such

as electrocardiograms. The behavior of second- and fourth-order BSS algorithms in a cyclosta-

tionary context has been studied in [85]. In a recent study [82], an underdetermined separation

method has been developed, which is suitable for separation of signals that are piecewise station-

ary, having time-varying variances. These algorithms that exploit the cyclostationarity property,

resort to statistical tools.

In [16], a parallel deflation procedure based on a deterministic tensor decomposition has

been proposed to address the problem of underdetermined BSS in the cyclostationary context.

The basic approach consists in constructing a tensor by synchronizing on the symbol rate of a

certain source, and decomposing the tensor using the canonical polyadic (CP) decomposition [86]

to extract the characteristics of the source.

In this chapter, the method described in [16] has been adapted for the estimation of the mixing

matrix, temporal patterns, and amplitudes of event-related sources. The method described

in [16] fails to extract a source which has very little power compared with the other sources

because the latter act as interferers with high amplitudes that can be considered as outliers

and impede on the accurate tensor decomposition. To overcome this problem, we propose to

apply robust tensor decomposition. In the literature, one can find several methods that have

been developed to this end [87, 88]. In general, these techniques are based on a modification

of the classical quadratic cost function that is optimized during the tensor decomposition. For

example, the authors of [88] suggested to minimize the mean absolute error, which reduces the

impact of outliers in the data, but does not prevent them from influencing the results since high

outliers still lead to high errors. It is also possible to introduce weights that account for different

uncertainties of the tensor elements (see, e.g., [87]). In this chapter, we present two robust CP

decomposition methods. The first one, which we subsequently refer to as Gaussian CP (GCP)

decomposition, goes a step further compared with the approach taken in [88] and optimizes a

cost function that limits the maximal error to 1. The second method exploits the particular

structure of the data to compute weights that discriminate outliers and employs a weighted CP

(WCP) decomposition.
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Figure 4.1: Illustration of a tensor with event-synchronized windows.

4.3 Methodology

4.3.1 Tensor Construction and CP Model

In the style of [16], we exploit the event-related nature of the signals of interest to construct a data

tensor with dimensions space, event-synchronized window, and time from the M -dimensional

measurements for each of Q event-related sources. To this end, for the q-th source, we identify

Lq event-synchronized windows of length Tq of the corresponding time signal. This can, for

instance, be achieved based on a characteristic pattern within each event-synchronized window

that can be recognized in the measurements. This pattern also serves as a reference point to

synchronize the signals of different patterns of the event-related source, such as the maximum

amplitude in the case of impulsive signals. As an example, for ECG signals, one can use the

R-peak to identify and synchronize the signals of different heartbeats (each beat corresponds

to the recognized pattern of the event-related source). For each of the Lq event-synchronized

windows, one can thus extract a M × Tq data matrix from the measurements. These matrices

are then stacked along the second dimension of the tensor Y (q) ∈ RM×Lq×Tq (see Figure 4.1).

Assuming that the q-th source can be described by Rq ∈ N components that are identical for

all event-synchronized windows except for changes of amplitude, the elements of the tensor can

be written as

Y
(q)
ijk =

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr + bijk. (4.2)

The first term in the right-hand side of (4.2) corresponds to the CP decomposition of a tensor

where a
(q)
ir , s

(q)
jr , and h

(q)
kr are the elements of three loading matrices A(q) ∈ RM×Rq , S(q) ∈

RLq×Rq , and H(q) ∈ RTq×Rq , respectively [86]. The loading matrices correspond to the mixing

matrix (A(q)), the matrix of pattern amplitudes (S(q)), and the matrix containing the temporal

patterns of the event’s components (H(q)) that characterize the mixture of the q-th source. The
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second term contains noise and interference from the desynchronized signals of other sources.

Since we assume that each event-related source may consist of more than one component,

the number of sources N in the model (4.1) corresponds to the total number of components,

i.e., N =
∑Q

q=1Rq > Q, while the full mixing matrix A in the model (4.1) can be obtained as

A = [A(1), . . . ,A(Q)].

In practice, one can obtain estimates for the mixing matrix, the pattern amplitudes, and

the signal patterns by decomposing the tensor using the following criterion that optimizes the

classical CP cost function:

{
Â(q), Ŝ(q), Ĥ(q)

}
= arg min
{A(q),S(q),H(q)}

∑
i,j,k

∥∥∥∥∥∥y(q)
ijk −

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr

∥∥∥∥∥∥
2

F

. (4.3)

An important advantage of the CP decomposition in comparison to matrix decompositions,

such as PCA, is that it is essentially unique [89, 90] up to scale and permutation indetermi-

nacies under mild conditions on the tensor rank, without imposing additional constraints such

as orthogonality or independence. In [89, 90], the following sufficient condition for essential

uniqueness has been derived:

kA(q) + kH(q) + kS(q) > Rq + 2, (4.4)

where, kA(q) , kH(q) , and kS(q) denote the Kruskal ranks of the matrices A(q), H(q), and S(q),

respectively. The Kruskal rank of a matrix A corresponds to the largest number of columns

that can be chosen from A such that the columns are linearly independent for any chosen

combination of columns. In particular, as has been shown in [16], if A(q), S(q), and H(q) have

full rank and Tq > Rq, Lq > Rq (i.e., if the number of events and the number of time samples

per event are larger than the number of components Rq to be extracted), then M = 2 sensors

are enough to blindly separate Rq components.

However, errors in the decomposition are to be expected due to noise and interfering sources

bijk, in particular if the source to be extracted is weak in comparison to the interfering sources.

In this case, the other source signals can be considered as outliers and strongly influence the

optimization of the criterion (4.3) because they prevent the decomposition algorithm to con-

centrate on the signal of interest. To overcome this practical problem, we propose to apply a

tensor decomposition that is robust to outliers. In the following, we present two different robust

decomposition schemes, which are based on modifications of the CP cost function. The different

cost functions are displayed in Figure 4.2.

4.3.2 Robust Tensor Decomposition

Gaussian CP (GCP) Decomposition

The idea of the first method consists in resorting to a cost function that does not attribute

tremendous errors to outliers as does the classical quadratic cost function used in (4.3). In [88],
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Figure 4.2: Cost functions applied to the error ei,j,k of each tensor element for the classical CP
decomposition and the robust WCP and GCP methods.

the use of an L1-norm cost function was proposed. We go a step further and employ a cost

function JG which is based on Gaussian-like functions and limits the maximal error to 1 (see

Figure 4.2). This leads to the following optimization criterion:

min
{A(q),S(q),H(q)}

∑
i,j,k

ψ

y(q)
ijk −

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr

 , (4.5)

with ψ(u) = 1− exp{− u2

2σ2 }. In this case, an error value of about 3σ between a tensor element

and the reconstructed tensor element is treated as an outlier since its effective error value ψ(u)

is very close to the maximum value. The parameter σ that adjusts the width of the Gaussian

function thus permits to define a threshold between “normal” errors and large outliers and has a

high influence on the results of the decomposition. For small σ, most of the errors will be treated

as outliers, which makes the identification of the model difficult, while for large σ, outliers might

not be recognized and can lead to biased estimates of the loading matrices. The optimal value

for σ lies in between and should be chosen according to the data. If available, estimates of the

variances of the q-th source to extract, of the noise, and of the other sources can be used to

determine an appropriate value for the width of the Gaussian function.

The optimization of the cost function JG can be accomplished using a gradient descent al-

gorithm. Starting with initial estimates of the loading matrices A(0), S(0), and H(0) (here the

superscript denotes the iteration; for a better readability the superscripts referring to the sources
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are left out in the following), the loading matrices at iteration l are updated according to
A(l+1) = A(l) − µA gA

S(l+1) = S(l) − µS gS

H(l+1) = H(l) − µH gH

(4.6)

until convergence. Here, µA = µS = µH = µ is a stepsize parameter and gA = ∂JG
∂A , gH = ∂JG

∂H ,

and gS = ∂JG
∂S denote the gradients of the cost function JG with respect to the three loading

matrices, respectively. The r-th column of the matrix gA = ∂JG
∂A can be computed as

gar = −[(hr ⊗ sr)⊗ IM ]T
[
e1

σ
� exp

{
e1 � e1

2σ2

}]
, (4.7)

with e1 = vec
{

[Y ](1)

}
− [(H� S)⊗ IM ]vec{A}. Here,

A⊗B =


a11B · · · a1RB

...
. . .

...

aM1B · · · aMRB


denotes the Kronecker product of matrices A ∈ RM×R and B, � denotes the Khatri-Rao column-

wise Kronecker product, � is the Hadamard element-wise product, vec{A} is the vector obtained

by concatenating the columns of the matrix A, and IM is the identity matrix of size M ×M .

Furthermore, [Y ](1) ∈ RM×(LqTq) denotes the first unfolding matrix of the tensor Y , which is

composed of all mode-1 vectors of the tensor (a mode-1 vector is obtained by fixing the second

and third index of the tensor elements and varying the first index from 1 to M) with an ordering

such that the second index is varied faster than the third one (for more details and illustrations

of operations on tensors see e.g., [91]). The other two gradient matrices are determined in an

analogous way.

Since it does not require any information about the data except for an estimate for the

threshold between noise and outliers, this robust decomposition method is rather general. It

is therefore applicable to a large range of applications. However, to obtain accurate results, a

good initialization is required (see Section 4.4.1). This is especially mandatory if the difference

between the values of outliers and the values of the signal of interest is in the same range as the

amplitude of the signal of interest.

Weighted CP (WCP) Decomposition

The second proposed robust tensor decomposition method is based on the weighted cost function

(see the red dashed curve in Figure 4.2):

min
{A(q),S(q),H(q)}

∑
i,j,k

∥∥∥∥∥∥w(q)
ijk

y(q)
ijk −

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr

∥∥∥∥∥∥
2

F

, (4.8)
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and exploits the particular structure of the data at hand to determine suitable weights w
(q)
ijk.

In fact, for applications with a small variability of the amplitudes, one can exploit the desyn-

chronization of noise and interference which manifests itself by a high variance σ2
ij over different

event-synchronized windows compared to the signal of interest to identify the outliers. The influ-

ence of the outliers can then be attenuated by the attribution of low weights while weights close

to 1 are assigned to the tensor elements that exhibit a small variance over event-synchronized

windows. The weights are thus computed depending on the variance σ2
ij as

w
(q)
ijk = exp

−(y
(q)
ijk − µij)2

σ2
ij

 , q = 1, . . . , Q, (4.9)

where µij is the mean of the tensor elements over all event-synchronized windows, and can be

stored into a nonnegative weight tensor, which is of the same dimensions as Y (q). In order

to obtain robust estimates for the variances σ2
ij , we use the median absolute deviation (MAD)

estimator [92] for their determination.

The optimization of (4.8) can, for example, be performed using a weighted Alternating Least

Squares algorithm (see [87]). As for ECG, MCG and EEG signals, the amplitudes for different

event-synchronized windows are approximately the same, the WCP decomposition is especially

adapted to these applications even if the desired source is much weaker compared with the

interfering sources. The reason is that the WCP decomposition exploits the structure of the

data to compute weights that discriminate values of the undesired signals in the tensor related

to the desired signal. Moreover, contrary to the GCP decomposition, which requires the manual

selection of the parameter σ, all the parameters are determined automatically from the data

and the technique is robust to initialization. Please note, though, that in the general case, the

pattern amplitudes may change considerably from one event-synchronized window to another,

which prevents the accurate estimation of the weights using the method described above.

The robust tensor decomposition methods subsequently described can be used to estimate

the mixing matrix and to extract the temporal patterns and the amplitudes of the event-related

sources. This is already an advantage over a matrix decomposition using the SVD, where one

only obtains an estimate of the subspace spanned by the mixing matrix and no information about

individual pattern amplitudes, because the temporal structure of the event-related sources is not

exploited.

4.4 Results

Both synthetic and actual data have been used to study the performance of the proposed method.

In the first subsection, quantitative results coming from simulations have been studied. In

this subsection, the robustness of the proposed tensor decomposition methods to amplitude

variations, quantity of outliers, initialization, and synchronization errors is examined based

on simulations for both arbitrary tensors and tensors constructed from data of event-related

sources. In the second subsection, the performance of the proposed method in fetal cardiac
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signal extraction on two sets of actual data including ECG and MCG has been assessed.

4.4.1 Simulated Data

Robust Decomposition of Arbitrary Trilinear Tensors in the Presence of Outliers

First of all, we analyzed the performance of the proposed robust tensor decomposition methods

for arbitrary tensors containing outliers. To this end, we generated a set of arbitrary loading

matrices A ∈ R5×2, S ∈ R10×2, and H ∈ R10×2. The elements of A and H were random variables

chosen from a uniform distribution between −1 and 1. The elements of S were chosen from a

Gaussian distribution with mean 1 and variance σ2
S = 0.04. The tensor was then constructed

from the matrices A, S and H according to (4.2). To simulate outliers, we falsified a certain

percentage p of randomly selected tensor values by adding or subtracting 2. The value 2 has

been chosen arbitrarily such that it is large enough to be considered as an outlier, but close

enough to the values of other tensor elements to remain realistic. Furthermore, we added white

Gaussian noise according to an SNR of 20dB. The resulting tensor was then decomposed using

the CP, WCP and GCP decompositions. For initialization, we took the original loading matrices

and added zero-mean Gaussian noise with variance σ2
i . We computed each decomposition three

times for different initializations and retained the estimated loading matrices that were obtained

for the minimal value of the cost function. The accuracy of the estimated loading matrices Â,

Ŝ, and Ĥ was evaluated using the following measure:

ELM =
1

3R
min
P
{||A′ − Â′DAP||F + ||S′ − Ŝ′DSP||F + ||H′ − Ĥ′DHP||F}, (4.10)

where R denotes the number of components, P is a permutation matrix and the matrices A′,

S′, H′, Â′, Ŝ′, and Ĥ′ correspond to the original and estimated loading matrices normalized

to unit column norm. Furthermore, DA, DS, and DH are diagonal matrices whose elements

correspond the signs of the elements on the diagonal of the correlation matrices (A′)TÂ′, (S′)TŜ′,

and (H′)TĤ′ and which are introduced to compensate for the sign ambiguity. Subsequently, we

analyzed the influence of different parameters on this error for 100 Monte Carlo trials.

Influence of Percentage of Outliers Figure 4.3 shows the error of the loading matrices,

ELM , as a function of the percentage of outliers p for σi = 0.5. It can be seen that the error of the

GCP decomposition is very small (< 0.1) over a large range of values of p ranging from 1 to 50%

before the high percentage of outliers leads to an increasing error. This means that this method

is very robust to even a large amount of randomly distributed outliers in the tensor. With

an error that is slightly smaller than that of the GCP decomposition and which has a smaller

variance, the WCP decomposition achieves a slightly better performance for small percentages

of outliers (p < 10%). Yet for p > 10%, the error increases significantly with p, showing that the

WCP is only robust to a limited number of outliers. This sensitivity of the WCP decomposition

method is due to the estimation of the weights, which is not robust to a large number of outliers.

However, for all examined percentages of outliers, both WCP and GCP methods show a much
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Figure 4.3: Error of the loading matrices as a function of the percentage of outliers. The bold
curves show the results averaged over 100 trials while the 10% and 90% quantiles are represented
by the thin curves.

better performance than the classical CP decomposition, which is not robust to outliers and

already exhibits a large error of 0.2 for only 1% of outliers.

Influence of Initialization To analyze the influence of the initialization on the decomposition

results, we varied the variance σ2
i of the Gaussian noise that is added to the original loading

matrices to obtain a set of initial loading matrices. The percentage of outliers was fixed to 10%.

Figure 4.4 shows that the results of the WCP decomposition and the classical CP decomposition

hardly change for different initializations, with an average error increasing only slightly from 0.04

to 0.1 for the WCP decomposition and from 0.37 to 0.4 for the CP decomposition. With 80% of

the errors lying between 0.23 and 0.6, the variance of the error is high for the CP decomposition

and is independent of the initialization. On the other hand, the variance of the error of the WCP

decomposition increases with σi, attaining very small values for σi < 0.5 and moderate values

for bad initializations. On the whole, the WCP and CP decompositions can be said to be robust

to initialization. On the contrary, the GCP decomposition features a strong increase of the error

for rising σi, in particular between σi = 1 and σi = 3. In this interval, the mean error increases

from 0.1 to 0.7. For small σi < 1, i.e., if the initial loading matrices are close to the exact loading

matrices, the GCP decomposition yields good results with a very small variance, outperforming

the WCP decomposition when σi becomes very small, while for σi > 2, its results are even worse

than those of the classical CP decomposition. As the Gaussian cost function assumes values close

to 1 for all errors exceeding a certain threshold (see Section 4.3.2), the optimization criterion of

the GCP decomposition can be expected to exhibit an increased number of local minima. If the

initialization is not close to the true solution, the GCP decomposition algorithm is prone to find

a local minimum. This explains the strong dependence of the results of the GCP decomposition

on the initialization.
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Figure 4.4: Error of the loading matrices as a function of the variance of the Gaussian noise
added to the true loading matrices to obtain the initial loading matrices. The bold curves show
the results averaged over 100 trials while the 10% and 90% quantiles are represented by the thin
curves.

Robust Decomposition of Tensors of Event-Related Data

In the present chapter, we focus on event-related sources. Therefore, we consider in the following

tensors constructed from data containing a mixture of two event-related sources with one com-

ponent per source. The elements of the mixing matrices A(q) ∈ R5×1, q = 1, 2, were chosen from

a uniform distribution between −1 and 1 and the amplitudes S(q) were chosen from a Gaussian

distribution with mean 1 and variance σ2
S . The temporal patterns of the first and second sources,

stored in matrices H(q), were given by exp{− (x1−0.5T1)2

2α2
1
} with α1 = 0.1 and exp{− (x2−0.5T2)2

2α2
2
}

with α2 = 0.15 where x1 and x2 are the indices of the time samples and T1 = 101 and T2 = 59

correspond to the lengths of the patterns of the first and second source, respectively. On the

whole, we considered 2020 time samples of data, containing 20 periods of the first source and

34 periods of the second source, in the presence of white Gaussian noise for an SNR of 20dB.

The tensors were then constructed as described in Section 4.3.1 for 100 different trials. For the

decomposition, the loading matrices were initialized as described in the previous section with

σi = 0.2.

Influence of Amplitude Variability The objective of the first simulation consisted in eval-

uating the influence of the variance of the amplitudes S(q). To this end, σS was varied between

0.1 and 4 for both sources such that the variances of their amplitudes were equal. Figure 4.5

shows the error of the loading matrices of the two tensors as a function of the standard deviation

σS of the amplitudes. For the classical CP and GCP decompositions, the errors of the loading

matrices decrease with increasing σS . This can be explained by the fact that for small σS , the

tensors are close to the degenerate case, while a higher amplitude variability facilitates the tensor
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Figure 4.5: Error of the loading matrices as a function of the amplitude standard deviation σS
for the tensor of the first source (tensor 1) and the tensor of the second source (tensor 2).

decomposition and the separation of different components. For the WCP decomposition, the

best performance is achieved for small σS . In this case, the amplitude variation is small enough

so that the peaks of the second source in the tensor of the first source and vice versa are outlying

values and do not influence the computation of the weights. However, for increasing σS , the

amplitudes become high enough for the peaks of the interfering sources to lie within the range of

amplitudes that are attained by the source to be extracted. In this case, the interfering sources

do not enter as outliers in the computation of the weights, which will corrupt the estimation of

the weights. This leads to an increase of the errors of the loading matrices with rising σS .

Influence of Synchronization Errors To analyze the influence of synchronization errors

(after the tensor construction, which was accomplished with perfect synchronization), we intro-

duced artificial delays for each event period to model synchronization errors. The delays were

uniformly distributed between −τmax and τmax, with τmax chosen between 0 and Tqαq samples,

where αq determines the width of the Gaussian function that characterizes the temporal pattern

of the q-th source, q = 1, 2. The standard deviation of the amplitudes was fixed to σS = 0.2.

Figure 4.6 shows that the error of the loading matrices increases rapidly with rising maximal

delay. This means that the good synchronization of the signals in each tensor is crucial for the

accuracy of the proposed method.

4.4.2 Actual Data

Fetal ECG Extraction

The ECG data used in this subsection is the DaISy fetal ECG database [71], which has been

described in Appendix A, Section A.1.
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Figure 4.6: Error of the loading matrices as a function of the maximal relative synchronization
error (right) for the tensor of the first source (tensor 1) and the tensor of the second source (tensor
2).

The first and second channels of this dataset used in this section and their stacked mECG

beats arranged in the tensor are shown in the first and second rows of Figure 4.7. In order to

construct the tensor, one can first detect mECG R-peaks to identify different beats, then the

data of the mECG beats comprising a fixed number of time samples around each R-peak are

stacked into the tensor. The constructed mECG tensor is of size 2 × 12 × 184. As it is seen,

fECG interference does not have a strong contribution in the maternal tensor. Therefore, this

tensor can be decomposed via classical CP in equation (4.3). However, as seen in the third

row of this Figure, although the two extracted components satisfy the optimization problem in

equation (4.3), they are highly correlated and do not correspond to two different projections of

mECG. In order to obtain two uncorrelated components, PCA has been applied to the extracted

components. As it is seen in the fourth row of Figure 4.7, this results in two less-correlated

components, which correspond to two different projections of mECG.

The first row of Figure 4.8 shows the stacked fECG beats from the channels 1 and 2 arranged

in the tensor. The constructed fECG tensor is of size 2× 22× 113. In contrast to the maternal

tensor that was not highly affected by the fECG interference, the fetal tensor is significantly

impacted by the interfering mECG.

Since the fetal ECG has a weak contribution in the mixture of mECG, fECG and noise, only

one component is considered for this signal. The second row of Figure 4.8 shows the extracted

fetal ECG component via classical CP. Since classical CP searches for the concentration of power

in the constructed tensor, the extracted component has a peak between 60 to 80 samples, which

corresponds to the dense interference of maternal ECG. Classical CP is therefore unable to

recover the weak traces of the fetal signal and the extracted component does not correspond to

the fECG. The third row of Figure 4.8 shows the extracted fetal ECG component via WCP. The
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Figure 4.7: Maternal components extraction via classical CP on DaISy dataset. Top to bottom:
recorded mixed ECG signals on the channels 1 and 2; stacked maternal ECG beats arranged in
the maternal tensor; normalized extracted maternal ECG components before PCA; normalized
extracted maternal ECG components after PCA.
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WCP decomposition exploits the structure of the data to compute weights for discriminating

values of the fetal signal in the constructed tensor related to the fECG. Therefore, it attributes

low weight values for high-amplitude mECG interference for efficiently recovering the weak traces

of fetal ECG. As it is seen in the fourth row of Figure 4.8, GCP is also able to cancel out strong

interfering mECG for fetal component extraction.

Figure 4.9 shows maternal and fetal ECG estimates via tensor decomposition method from

the channels 1 and 2 of DaISy dataset. As it is seen, interfering ECG has been efficiently canceled

out in the estimate of desired ECG. This is seen for both maternal and fetal ECG estimates. As

the drawback of the proposed method, it should be noted that the inter-beat dynamics of mECG

and fECG are lost in tensor decomposition method, because all beats of the reconstructed ECGs

have exactly the same temporal pattern up to their amplitudes. Moreover, starting and ending

incomplete ECG beats cannot be recovered in this case. It is also observed that when mECG

and fECG waves fully overlap in time, the reconstructed fECG has relatively low amplitude in

the corresponding beat, especially in the GCP estimate. Therefore, WCP outperforms GCP in

this experiment.

Twin MCG Extraction

In this subsection, twin fetal cardiac magnetic signals are extracted. The dataset used in this

subsection has been described in Appendix A, Section A.3. Two sensors are used in this test.

The presented results have been achieved for a typical couple of channels (indexed 92 and 116)

of one of the available datasets, namely the q00002252 dataset.

To extract sources by the proposed tensor decomposition, they must have different pattern

rates. As long as two sources are not exactly synchronous, they can be separated even if their

pattern rates are approximately the same. This enables the method to separate twin cardiac

signals even if heart rates are approximately equal. However, in this case, the interference of the

second source in the tensor of the first source might be concentrated within a certain interval

of the temporal pattern. This happens especially if the tensor is built from a small number

of events. In this case, the correct decomposition of the tensor is particularly difficult and

cannot be achieved by the classical CP decomposition. The introduction of the weights in the

WCP method permits us to overcome this problem and to focus on the signal of interest. This

discrimination is also provided by the Gaussian function in the first approach (GCP).

There are three sources to be extracted, one maternal MCG and two fetal MCGs, while two

channels are to be utilized. Nevertheless, since the proposed method is applicable to underdeter-

mined mixtures, two sensors can be sufficient for extracting these three sources. The maternal

and fetal MCG ranks considered in the proposed method are 2 and 1, respectively. Figure 4.10

shows mixed MCG recordings on channels 92 and 116 and the corresponding stacked fetal MCG

beats from these channels. The maternal and twin tensors are constructed with parameters

L1 = 15, T1 = 619, L2 = 22, T2 = 440, L3 = 23, and T3 = 408, respectively. As seen, in the

fourth and fifth rows of Figure 4.10, WCP and GCP could track the desired MCG in presence

of the strong interfering maternal MCG and the other fetal MCG which has a close pattern
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Figure 4.8: Fetal component extraction via classical CP, WCP and GCP on DaISy dataset.
Top to bottom: stacked fetal ECG beats arranged in the fetal tensor from the channels 1 and
2, normalized extracted fetal ECG component via classical CP, normalized extracted fetal ECG
component via WCP, normalized extracted fetal ECG component via GCP.
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Figure 4.9: Maternal and fetal ECG extraction via tensor decomposition. Top to bottom:
Mixed ECG recording, reconstructed mECG via classical CP, reconstructed fECG via WCP, and
reconstructed fECG via GCP on the channels 1 and 2 of DaISy dataset.
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rate. To suppress the large amount of noise that is present in the data, we also used the WCP

decomposition for the maternal MCG tensor.

Figure 4.11 presents the extracted maternal and two fetal MCG signals from channel 92 using

channels 92 and 116. In this experiment, WCP method significantly outperforms GCP, especially

when maternal and fetal MCG waves overlap in time. In contrast to WCP method, in which

interfering MCGs are efficiently canceled out in the estimate of desired MCG, the interfering

maternal MCG and noise significantly prevented GCP method in providing true amplitude values

for certain fetal MCG beats.

Here again, the starting and ending incomplete MCG beats cannot be recovered and the inter-

beat dynamics of maternal and fetal MCGs are lost in tensor decomposition method. Therefore,

another method is of interest as the next step for recovering the valuable inter-beat dynamics

of ECG and MCG signals (see the next chapter).

4.5 Application to Fully Automatic Fetal R-peak Detection

Detection of fetal R-peaks is a key step in many fetal ECG extraction methods in which quasi-

periodic nature of ECG signal is exploited (e.g. πCA [30], EKF framework in [13] and Chapter

3). In these methods, it is assumed that the fetal R-peaks are either already provided using

another modality (e.g. using a sound sensor) or directly estimated from ECG mixture. As it

has been explained in Section 3.4.2, the latter can be done by using the seq-EKF algorithm. In

this case, maternal R-peaks are easily detectable from the mixture by an automatic peak search

algorithm, while detection of fetal R-peaks is not fully automatic. In this method, because of

low amplitude of fetal ECG, maternal ECG is first eliminated from the mixture by the EKF

framework and then the residual signal is used for fetal R-peaks detection. However, efficient

elimination of maternal ECG requires careful selection of the center of Gaussian functions, which

is done manually by visual inspection of maternal ECG mean. The simplest way to automatize

mECG elimination is to reconstruct mECG by concatenating maternal ECG mean at maternal

R-peaks. However, in this case all mECG beats are assumed to have exactly the same amplitude.

This assumption can significantly impact the performance of maternal ECG elimination.

The method proposed in this chapter, which is fully automatic, can be used to recover am-

plitudes of different beats of mECG to efficiently eliminate mECG. First, maternal R-peaks are

directly detected from the mixture to identify maternal beats as the ECG pattern. Then the

maternal ECG beats are stacked into a three-dimensional array. Decomposition of this tensor

yields three loading matrices including the mixing matrix, the matrix of mECG beat amplitudes,

and the matrix containing the temporal pattern of mECG beat. Using these matrices mECG is

reconstructed and projected back to the sensor domain to be subtracted from the mixture. The

residue of the subtraction, i.e. rough fECG estimate, is then used to detect fetal R-peaks using

an automatic peak search algorithm.

Figure 4.12 illustrates the performance of the proposed method on ten seconds of the first

channel of the recording a22 of the PhysioNet Challenge 2013 dataset [93], which has been

described in Appendix A Section A.4 As it is seen, the proposed method is favorably able to
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Figure 4.10: Fetal component extraction via WCP and GCP on twin MCG dataset. Top to
bottom: recorded mixed MCG signals on the channels 92 and 116, stacked first fetal MCG beats
arranged in the fetal tensor from the channels 92 and 116, stacked second fetal MCG beats arranged
in the fetal tensor from the channels 92 and 116, normalized extracted first fetal MCG component
via WCP and GCP, normalized extracted second fetal MCG component via WCP and GCP.
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Figure 4.11: Maternal and fetal MCG extraction via tensor decomposition. Top to bottom:
Mixed MCG recording, maternal MCG reconstructed via WCP, first fetal MCG reconstructed via
WCP, first fetal MCG reconstructed via GCP, second fetal MCG reconstructed via WCP, and
second fetal MCG reconstructed via GCP.
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Figure 4.12: Fetal R-peaks detection via tensor decomposition on the recording a22 of the
PhysioNet Challenge 2013. Top to bottom: mixed ECGs on channel 1, reconstructed maternal
ECG via classical CP, residue of subtraction of reconstructed mECG from the mixture, i.e. rough
fECG estimate. Given fetal R-peaks are shown in green squares and estimated fetal R-peaks are
shown in red circles.

detect fetal R-peaks even in coinciding epochs, in which maternal and fetal ECG waves fully

overlap in time. This is particularly noticed between t = 5s and t = 6s, where some parts of

fECG signal have been corrupted after mECG subtraction.

The obtained average scores of event 4 and 5 on the set B of PhysioNet Challenge 2013

data, reported by the challenge organizers, are 1514.59 and 57.01, respectively. As a reference,

the scores from the sample submission physionet2013.m (available at PhysioNet) on set B for

event 4 and 5 are 3258.56 and 102.75, respectively, where the lower the scores the better. The

method used in the sample submission physionet2013.m for mECG removal is based on the

reconstruction of the mECG signal by concatenating maternal ECG mean at maternal R-peaks,

as explained above.
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4.6 Summary and Conclusions

In this chapter, we presented two robust tensor decompositions for separation of event-related

sources with focus on fetal cardiac signal extraction. The robust criteria used in this chapter

aim at capturing the desired event-related sources even if their powers are much lower compared

with other sources.

This method is also applicable to underdetermined mixtures and this is its main interest. It

allows us to utilize a minimal number of electrodes (down to two), if needed. This is a crucial

feature for a monitoring system since it can highly affect the system’s price, convenience and

portability. Although good synchronization of events of the desired source in its tensor format

is crucial for the functioning of the proposed method, application on actual fetal cardiac data

shows its capability in capturing weak traces of fetal components mixed with strong maternal

components and noise. Nonetheless, the main drawback of the proposed method is that it is not

able to recover valuable inter-event dynamics of the desired sources. Thereby, the next chapter

is devoted to develop such a method that recovers these important inter-event dynamics.



Chapter 5

Multichannel Kalman Filtering

Framework for Extraction of

Event-Related Sources

5.1 Introduction

Linear multichannel fECG extraction methods aim at exploiting the redundancy of the multi-

channel ECG recordings to reduce mECG and other interference sources. Nonetheless, the main

drawback of these methods is that they are not able to totally remove exogenous noise [49].

Moreover, they demand several channels to track weak traces of fetal signal. In the previous

chapter, a robust tensor decomposition method was proposed to address the above-mentioned

obstacles. However, as the tensor decomposition model assumes identical temporal patterns for

all events of each source, the dynamics of the sources, i.e., slight variations from one event to

another, are lost. In order to recover these dynamics, a nonlinear state-space model is devel-

oped to extract N event-related sources (or components) from M observations. This model is

used within a Kalman filtering framework, whose mixing matrix and state parameters are ob-

tained from the loading matrices of the tensor decomposition. The proposed method, which is a

combination of linear (tensor decomposition) and nonlinear (extended Kalman filter) methods,

simultaneously extracts and denoises fECG signal and is applicable to as few as two channels.

Although we will mainly focus on the application of the proposed method on fetal cardiac

signal extraction, the method is fairly general and may be applied to many applications. As an

example for other applications, the proposed method is also applied to extract ERPs.

The rest of this chapter is organized as follows. In Section 5.2, a general EKF framework for

extraction of event-related sources from multichannel recordings is presented. The mixing matrix

and the filter parameters are estimated using the loading matrices provided by the robust tensor

decomposition method, presented in the previous chapter. This framework is then customized

to ECG signals for extracting N ECG components from M observations. The performance of

the proposed method is investigated in Section 5.3. Qualitative results of the proposed method

is compared with those of three multichannel BSS methods on fetal ECG and MCG datasets.

81
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Then, the method is applied to extract ERPs to show its applicability to other kinds of event-

related data. The multichannel method proposed in this chapter is also compared with the

single-channel method in Chapter 3 to check if adding an extra channel recording could improve

the performance of fECG extraction. This comparison is quantitative and is performed by means

of synthetic data. Section 5.4 is devoted to propose a new approach for estimating the phase

state of ECG signal. This approach aims at simultaneously filtering normal and abnormal ECG

segments. Finally, a summary of this chapter and the conclusions are stated in Section 5.5.

5.2 Methods

5.2.1 EKF Framework for Extraction of Event-Related Sources

Assuming a single event-related source recorded on a unique channel, the associated state vector

can be defined by the phase θk and amplitude zk of the source. The phase θk is, in fact, a means

of modeling the event-related behavior of the source. Then, each period of the source is modeled

using θk to obtain zk. By inspiration of the ECG model in Chapter 3, the state model of the

event-related source, in its discrete form with a small sampling period δ, can be expressed as:θk+1 = (θk + ωδ)mod(2π)

zk+1 = g(θk, k) + zk + ηk
(5.1)

where θ and z are the state variables in polar coordinates and k denotes the discrete time index.

ω is the phase increment, ηk is a random additive noise, and g(.) models the temporal pattern

and amplitude of the source. In addition to the noisy recording of the source, sk, an observed

phase φk is obtained by a linear time warping of each event interval into [0, 2π), leading to the

following system: [
φk

sk

]
=

(
1 0

0 1

)[
θk

zk

]
+

[
uk

vk

]
, (5.2)

in which, uk and vk are the corresponding observation noises with zero-mean random variable

entries.

With several event-related sources in multichannel recordings, redundancy of each event-

related source can be exploited to estimate the information of the desired source mixed with

the other sources and background noise. In order to do so, a linear transform is assumed to

decompose M mixed event-related signals into N components. In other words, we assume that

all event-related sources have N components in total, which are observed in M signals. For N
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mixed components, the dynamic equations may be written as:

θ
(1)
k+1 = (θ

(1)
k + ω(1)δ)mod(2π)

z
(1)
k+1 = g(1)(θ

(1)
k , k) + z

(1)
k + η

(1)
k

...

θ
(N)
k+1 = (θ

(N)
k + ω(N)δ)mod(2π)

z
(N)
k+1 = g(N)(θ

(N)
k , k) + z

(N)
k + η

(N)
k

(5.3)

The phase observations of the N components, Φ = [φ(1),...,φ(N)]T , and the M noisy mixtures of

the N components, s = [s(1),...,s(M)]T , are related to the state vectors Θ = [θ(1),...,θ(N)]T and

z = [z(1),...,z(N)]T at time k as follows:[
Φk

sk

]
=

(
I 0

0 A

)[
Θk

zk

]
+

[
uk

vk

]
, (5.4)

where uk and vk are the corresponding observation noises.

The key step prior to the implementation of the filter is the estimation of g(n)(.) for the n-th

component as well as the mixing matrix A:

A =


a11 . . . a1N

...
. . .

...

aM1 . . . aMN

 . (5.5)

In order to do so, the loading matrices provided by GCP or WCP in the previous chapter,

Section 4.2.2 are used:

• The mixing matrix is directly defined as the concatenation of the loading matrices A(n)

related to all the event-related source components.

• The temporal pattern of g(n)(.) for the n-th component is provided by the loading matrix

H(n). For example if the n−th components is modeled by a few Gaussian functions, similar

to Chapter 3, the parameters of i− th Gaussian function (α
(n)
i , b

(n)
i , ψ

(n)
i ) can be estimated

by using a nonlinear least-squares approach [68] to fit to the extracted component.

• The amplitude of g(n)(.) for the n-th component at each period is obtained by the loading

matrix S(n). By assuming that η
(1)
k ,..,η

(N)
k are uncorrelated, a ratio (e.g. 0.1) of standard

deviation of S(n) can be used as the estimate of η
(n)
k for initializing the state covariance

matrix Qk.

For multichannel recordings of maternal and fetal ECG signals, the extended EKF model

presented in Chapter 3 for modeling several ECGs in a single-channel recording, can be further

extended to M channels. In this case, the same system state as in Section 3.4.1 can be used:



84 Multichannel Kalman Filtering Framework for Extraction of Event-Related Sources
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but the observation vector would be different. In Chapter 3 only one observation was available,

while in this chapter we assume that M observations are available. Therefore, the amplitude

part of the state vector is related to the M ECG observations using the mixing matrix A:
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, (5.7)

where maternal and fetal ECGs have N components in total. It should be noted that it does

not necessarily mean that there are N different ECGs in the mixtures. For example in the case

of one mECG and one fECG (Q = 2), depending on data, N can be for example equal to 3 to

consider 2 components for mECG and 1 component for fECG.

5.3 Results

In this section, we first qualitatively evaluate the performance of the proposed method on three

sets of actual data including ECG, MCG, and ERP. The results on ECG and MCG data have

been compared with the results of FastICA [64], πCA [30] and a deflation procedure for subspace

decomposition [31]. The block diagram of the latter is depicted in Figure 5.1. In the case of
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Figure 5.1: The overall iterative procedure for maternal ECG cancellation [31].

fECG extraction, the πCA method is first applied to the multichannel recording to extract L

components related to the mECG. These components are then filtered via the EKF framework

in [14] to obtain a clean mECG estimate from each of the L components. At the next step,

the clean mECG estimates are subtracted from the L extracted components to reduce mECG.

Finally, the inverse πCA is applied to project back to the sensor domain. This procedure is

iterative and is repeated until no mECG component is observed in the output.

The GCP and WCP labels denote results of the first and second proposed approaches for

tensor decomposition, presented in the previous chapter, without the Kalman filtering stage.

GCP+EKS and WCP+EKS show the results based on GCP and WCP decompositions with the

Kalman filtering stage, presented in this chapter. Then, in the second subsection, quantitative

results coming from simulations are evaluated. In this subsection the results of WCP+EKS in

fetal ECG extraction are quantitatively compared with the results of the single-channel EKS,

proposed in Chapter 3.

5.3.1 Actual Data

Fetal ECG Extraction

The first ECG data used in this subsection is the DaISy fetal ECG database [71], as described

in Appendix A, Section A.1.

The extracted maternal ECG and fetal ECG using the first and second channels of this

database is shown in Figure 5.2. The mECG data was considered to be composed of 2 compo-

nents, while we used only one component for the fECG data. The mixture of the first channel

and extracted mECG and fECG signals using FastICA, πCA, and the proposed GCP+EKS and

WCP+EKS are plotted, respectively. The fECG extracted via the deflation procedure is plotted

too. These results can be also compared with the results of GCP and WCP in Figure 4.9 of

Chapter 4.

As it is seen, FastICA and πCA methods fail to extract fECG when only two electrodes

are available, since the mixtures are underdetermined and they demand several channels to

recover the weak features of fECG. The deflation procedure provides significantly better results

compared with FastICA and πCA methods. However, some parts of fECG have been distorted

in the iterative algorithm of this method. This is particularly noticed between t = 0s and t = 1s,

and between t = 8s and t = 9s. This phenomenon is not observed in the estimates of the proposed
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Table 5.1: Maternal and fetal R-peak values on fECG estimate of DaISY dataset (mean ±
standard deviation (SD)).

Maternal Fetal
R-peak value R-peak value

Original mixture 43.66±2.38 17.68±2.37

FastICA 31.30±2.29 13.09±1.91
πCA 41.39±2.68 19.21±2.17
Deflation procedure -1.13±0.48 15.96±2.97
GCP -0.90±0.91 16.04±2.72
WCP -0.88±0.83 16.65±1.26
GCP+EKS 0.17±1.46 16.19±1.11
WCP+EKS 0.29±1.40 17.54±0.99

method. There is neither ground truth nor golden standard on actual fetal ECG recordings to

be used as a reference for comparing the performance of the different methods. Nevertheless,

in order to quantify the performance of each method on actual data, the mean values of the

contaminating and desired ECGs have been measured at their R-peak positions in the estimated

ECG. This can provide an estimate for the residual of the contaminating mECG in the estimated

fECG. If the contaminating mECG has been successfully removed, the values of this measure

should be low; meanwhile, the values of the estimated fECG at its R-peak positions should be

close to values of the corresponding points in the original mixture. Table 5.1 reports values

of this measure on the fECG estimated by the different methods. The results show that the

deflation procedure and the proposed GCP, WCP, GCP+EKS, and WCP+EKS significantly

outperform FastICA and πCA. Although GCP and WCP provided close quantitative results

compared with GCP+EKS and WCP+EKS, it should be noted that the valuable inter-beat

dynamics of mECG and fECG are lost in the GCP and WCP estimates, because as it was

explained in the Chapter 4 all beats of the reconstructed ECGs have exactly the same temporal

pattern up to their amplitudes. Nonetheless, these valuable inter-beat dynamics of ECG signals

are recovered using GCP+EKS and WCP+EKS. Moreover, in contrast to GCP and WCP,

starting and ending incomplete ECG beats are also recovered via GCP+EKS and WCP+EKS.

The PhysioNet noninvasive fetal electrocardiogram database [72] described in Appendix A,

Section A.2 has also been used to show the capability of the method in extracting the fECG at

different periods of pregnancy, and from different channel locations. This database consists of

a series of 55 multichannel abdominal fECG recordings, taken from a single subject between 21

to 40 weeks of pregnancy. Figure 5.3 shows the WCP+EKS outputs of the datasets ecgca192

using channels 3 and 5, ecgca444 using channels 3 and 6, and ecgca811 using channels 3 and

4, respectively. For each dataset, one channel of the first 20s of the mixtures and the fECG

estimate are plotted. As it is seen, although visual inspection of the data shows that the fetal

ECG is very weak in the mixtures, the proposed method could favorably recover the fECG signal

from different channel locations.



Multichannel Kalman Filtering Framework for Extraction of Event-Related Sources 87

−50

0

50
Recorded signal (channel 1)

−50

0

50
Maternal ECG estimate via FastICA

−50

0

50
Maternal ECG estimate via πCA

−50

0

50
Maternal ECG estimate via GCP+EKS

−50

0

50
Maternal ECG estimate via WCP+EKS

R
el

at
iv

e 
A

m
pl

itu
de

−40
−20

0
20
40

Fetal ECG estimate via FastICA

−40
−20

0
20
40

Fetal ECG estimate via πCA

−40
−20

0
20
40

Fetal ECG estimate via deflation procedure

−40
−20

0
20
40

Fetal ECG estimate via GCP+EKS

0 1 2 3 4 5 6 7 8 9 10
−40
−20

0
20
40

Fetal ECG estimate via WCP+EKS

Time [s]

Figure 5.2: Extracted ECGs by FastICA, πCA, the deflation procedure, GCP+EKS and
WCP+EKS, on the first channel of DaISy data using the first and second channels.
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Figure 5.3: ECG mixtures of the datasets ecgca192 channel 5, ecgca444 channel 3, and ecgca811
channel 4 and their fetal WCP+EKS outputs.
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Twin MCG Extraction

In this subsection, twin fetal MCG signals are extracted. The dataset used in this subsection

has been described in Section 3.5.2. Two sensors are used in this experiment. In order to better

compare the performance of the methods, the results have been based on the same data as in

Section 4.4.2, i.e., channels 92 and 116 of the q00002252 dataset.

Since there are three sources (one maternal MCG and two fetal MCGs) to be extracted

and two sensors are to be utilized, the adopted method must be applicable to underdetermined

mixtures. FastICA and πCA methods are only applicable to (over)determined mixtures. Never-

theless, since in the πCA algorithms, the desired source is already selected, it is possible to apply

πCA algorithm three times so that each time the covariance matrix is calculated according to

the source of interest. This way, all three sources can be estimated. For the deflation procedure,

since there are two fetal signals to be extracted in this experiment, first the maternal signal is

removed then for each fetus the signal of the other fetus is also canceled using the same proce-

dure as the maternal signal. The number of maternal and fetal MCG components considered in

the proposed method are 2 and 1, respectively.

Figure 5.4 presents the results of πCA, the deflation procedure and the proposed GCP+EKS

and WCP+EKS methods in extraction of the maternal and two fetal MCG signals from two

channels. The πCA method fails to track periodic patterns related to the fetal components due to

their low power and insufficient number of the utilized sensors. The deflation procedure provides

better results. Yet, the sources of interferences and noises are not completely suppressed using

this method. Nevertheless, the proposed GCP+EKS and WCP+EKS methods could suppress

these sources and recover weak traces of fetal MCG features. These results can be also compared

with the obtained results by GCP and WCP in Figure 4.10 of Chapter 4 without the Kalman

filtering stage. As mentioned in Section 4.4.2, WCP significantly outperforms GCP on this

data. However, as expected in comparison between WCP and WCP+EKS (or GCP+EKS),

WCP method does not completely cancel out the exogenous noise, while WCP+EKS does,

thanks to Kalman filter. Moreover, inter-beat dynamics of MCG signals are lost and starting

and ending incomplete beats are not recovered by WCP.

The maternal and fetal R-peak values on the first fetal MCG estimate, are presented in Table

5.2. In this experiment, a perfect estimate should give very low value at maternal R-peak and

the second fetal R-peak positions and a close value to those of the original mixture at the first

fetal R-peak positions.

Event-Related Potentials Extraction

The proposed method is not limited to cardiac signals and may be applied to various applications.

In this subsection, as a case study, the proposed WCP and WCP+EKS are employed to extract

ERPs.

ERPs are the responses to brain stimulation measured by the scalp EEG. The measured

responses are induced by multiple brain generators active in association with the eliciting event.

However, they are mixed with background activity of the brain that is not related to the stimulus
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Figure 5.4: MCG extraction by πCA, the deflation procedure, GCP+EKS and WCP+EKS on
the 92th channel of of twin MCG data using the 92th and 116th channels.
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Table 5.2: Maternal and fetal R-peak values on the first fetal MCG estimate of twin MCG
dataset (mean + SD).

Maternal First fetal Second fetal
R-peak value R-peak value R-peak value

Original
mixture 210.08±31.42 66.04±40.74 74.97±29.27

πCA 159.72±25.79 63.15±36.77 21.28±24.39
Deflation procedure -6.85±19.33 94.14±50.98 -3.15±9.51
GCP -3.74±7.00 46.79±29.92 -3.08±9.55
WCP -3.44±10.86 55.85±13.98 -2.57±8.37
GCP+EKS 1.94±8.10 65.48±33.29 1.06±8.85
WCP+EKS 1.39±6.77 71.22±28.12 0.20±6.75

and also other interferences from non-neural sources, such as eye blinks [94] and muscle artifacts.

Due to the much lower power of ERPs compared with background EEG, it is difficult to estimate

them even though they are dominant in lower frequencies. The most common way to extract

ERPs involves averaging time-locked sections of the EEG signal over many trials. This method

assumes a simple model for ERPs that consists of the sum of an invariant signal and a random

process that will be attenuated by averaging over trials [95]. However, there is evidence that

ERP waves may vary considerably over time [96]. Furthermore, in [97], it has been shown in

the context of neonatal seizure activity that tensor-based methods that exploit the repetitive

nature of EEG signals exhibit an improved performance compared to time-locked averaging. In

the past, tensor-based techniques have already been applied to space-time-realization EEG data

(see [98, 99]). However, the proposed method makes the decomposition more robust to noise.

Furthermore, contrary to the previous tensor-based approaches, it permits to extract the original

time courses of the signals, which are not identical for all realizations, using Kalman filtering.

The ERP database used in this subsection consists of EEG signals recorded during a P300

speller brain-computer interface (BCI) experiment [100]. In such a BCI, the paradigm, which

consists of visual stimuli divided between target and non-target stimuli, suggests that a positive

deviation about 300ms is elicited after a target stimulus, while non-target stimuli do not elicit

specific brain response. The EEG signals have been sampled at 1200Hz using 16 scalps electrodes.

First, a three-way tensor is built by stacking the data of sixteen channels windowed from 1

second before the stimuli and 2 seconds after the stimuli. In this experiment, The ERP data

was considered to be composed of 2 components. Decomposition of this tensor yields estimates

of the temporal patterns of ERPs along with their amplitudes and the mixing matrix (i.e., the

spatial projection on scalp). Then, the ERP estimates are improved by the proposed KF to

preserve dynamics of ERPs over time. The extracted temporal patterns of ERPs via WCP, and

single-trial estimates of WCP and WCP+EKS from namely the S6 dataset are shown in Figure

5.5. As it is seen, WCP+EKS outperforms WCP because it better preserves the dynamics of

ERPs which can vary from a trial to another. GCP and GCP+EKS also provide rather equivalent
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results to those of WCP and WCP+EKS. The extraction procedure has been performed offline

in this experiment, so that the whole data of the windowed stimuli were used in constructing the

tensor. Then, the Kalman filtering stage was performed window by window using the loading

matrices of the tensor decomposition stage. Nevertheless, if the procedure should be performed

with less delay, one can utilize a smaller number of windows for constructing the tensor and run

the Kalman filtering stage afterward.

5.3.2 Synthetic Data

Experimental Performance Analysis on Multichannel Synthetic Data

In the previous subsection, we showed on various actual data the good behavior of the proposed

method in efficiently extracting event-related sources from a multichannel recording, and com-

pared the obtained results with the results of the classical multichannel BSS methods. In this

subsection, a quantitative comparison between the multichannel method proposed in this chap-

ter and the single-channel method proposed in Chapter 3 is provided. The method in Chapter 3

aims at parallel extraction of several ECGs by simultaneously modeling them in a single-channel

recording. The objective of this subsection is therefore to check if possible improvements of

single-channel EKS performance can be achieved by adding another extra channel.

In order to perform a quantitative comparison, synthetic dual-channel mixtures of mECG

and fECG are generated based on the three-dimensional canonical model of the single dipole

vector of the heart, proposed in [69] and inspired by the single-channel ECG dynamic model

presented in [66]. Then, in order to have more realistic mixtures, noise has been added to the

mixtures. The noise consists of white Gaussian noise and colored noises which are band limited

to 30 Hz and 60 Hz. The power of the mixed noise is adjusted to provide a 20 dB SNR. The

sampling frequency is set to 500 Hz and signals include 3,000 samples. Since the basic problem

of fECG extraction is to estimate the fECG signal where the interfering mECG is a stronger

signal, the performance of the methods has been compared for ratios of the power of fECG to

the power of mECG ranging from 0.01 to 1. 1

In this chapter, we introduce a more general procedure for computing the output SNR, which

differs from the defined output SNR in Chapter 3. The difference is that in Section 3.5.1 the

estimated fECG signal, ŝf , is assumed to be the sum of true generated mECG, true generated

fECG and true generated noise, whereas in this chapter it is assumed to be the sum of true

generated fECG and a noise, such that:

ŝf = s̃f + ñ, (5.8)

where s̃f and ñ are defined as:

s̃f = αsf ,

ñ = ŝf − s̃f = ŝf − αsf ,
(5.9)

1The large range of tested ratio values does not only include usual ratios encountered between fetal and
maternal signals, but also ratio values encountered between two fetal signals.
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Figure 5.5: ERP extraction by WCP and WCP+EKS from namely the S6 dataset. (a): all
the 500 measurements on channel 1 and the average in one plot; (b): the first temporal pattern
extracted via WCP; (c): the second temporal pattern extracted via WCP; (d), (e), and (f): three
examples of single-trial ERP extraction. Dotted lines represent the measurements, solid thin lines
the estimates via WCP, and thick lines the estimates via WCP+EKS.
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In order to estimate the coefficient α, it is assumed that sf , and ñ are orthogonal, i.e.,

decorrelated, which leads to:

α̂ =
E(ŝTf ñ)

E(sTf ñ)
. (5.10)

In a successful estimation, the contribution of fECG to the output should be much more than

the contribution of noise. In other words, the power of s̃f should be much larger than the power

of ñ, which means the contribution of mECG, sm, and input noise, n, is very low in the fECG

estimate. In order to quantify the contribution of the fECG in the output, the output SNR is

defined as:

SNRout =
α̂2Psf

Pñ

(5.11)

where Px denotes power of x. The output SNR is now compared with the input SNR to

investigate the performance of the fECG extraction. The input SNR is defined as:

SNRin =
Psf

Psm + Pn
. (5.12)

Figure 5.6 shows SNR improvement results of the single-channel EKS and the proposed mul-

tichannel EKS using WCP (i.e. WCP+EKS) for different values of power ratios. For each value

of power ratios, one hundred trials have been carried out. In order to have more realistic signals,

mECG and fECG are allowed to have slight random variations (1%) in position of PQRST waves

and also duration of each ECG beat. The power of the mECG signals is normalized to 1 (0 dB),

and the average maternal and fetal heart rates are 1.1 Hz and 2 Hz, respectively. To compare

the methods, single-channel EKS is first applied on both channels. Then its best result has been

compared with the results of multichannel EKS on the corresponding channel. As it is seen in

Figure 5.6, although the fetal SIR improvements of both single and multichannel EKS remain

over 20 dB for all ranges of the power ratios, multichannel EKS led to superior results. This

superiority has been obtained for all ranges of the power ratios, especially for the low values of

powers ratio the difference is higher.

5.4 Phase Enhancement Using Dynamic Time Warping

So far, we have only focused on improving the estimation of amplitude of ECG signal, zk, in the

following model of ECG:

θk+1 = (θk + ωδ)mod(2π)

zk+1 = − ∑
i∈W

δ
αi,kω

b2i,k
∆θi,kexp(−

∆θ2
i,k

2b2i,k
) + zk + ηzk

αi,k+1 = αi,k + ηαi
k

bi,k+1 = bi,k + ηbik

ψi,k+1 = ψi,k + ηψi

k

(5.13)
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Figure 5.6: Mean SNR improvement results of the single-channel and multichannel EKS against
powers ratio (bold lines). Upper and lower borders (thin lines) present maximum and minimum,
respectively.

in which, a ’strictly’ linear phase has been assumed in the state equation of the model. This

means that all ECG beats are similar and no beat differs much from the others. The model uses

information of only one channel and is therefore applicable to single-channel recordings. More-

over, it is practical and straightforward when the desired ECG is mixed with strong interferences

and noises. The reason is that it simply assigns a linearly-increasing value between 0 and 2π

to the intermediate samples of R-R intervals, so it is robust and other sources cannot impact

it. However, there are applications in which multichannel recording is available and the desired

ECG is not highly contaminated by other sources. In addition, the ECG is pathological and

linear phase is not a valid assumption because a few ECG beats are significantly different. This

is especially seen in some heart defects such as the premature ventricular contraction (PVC),

where the abnormal wave only appears in certain cycles of the ECG. Therefore, some modifi-

cations in the state equations are necessary to simultaneously filter the normal and abnormal

segments.

5.4.1 Proposed Modifications

The first modification of the phase state can be to add a random additive noise, ηθ, to the phase

state equation (we refer to it as ’flexible’ linear). Therefore, the phase model would no longer be

’strictly’ linear and slight fluctuations around linear phase are allowed. Hence, state equations
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are: 

θk+1 = (θk + ωδ)mod(2π) + ηθ

zk+1 = − ∑
i∈W

δ
αi,kω

b2i,k
∆θi,kexp(−

∆θ2
i,k

2b2i,k
) + zk + ηzk

αi,k+1 = αi,k + ηαi
k

bi,k+1 = bi,k + ηbik

ψi,k+1 = ψi,k + ηψi

k

(5.14)

Although this modification may improve the performance of the filter, it still assumes that all

beats are almost similar and no beat differs much from others. Moreover, it also uses information

of only one channel to make the ECG phase.

The second modification, which benefits from information of all channels, is to use dynamic

time warping (DTW) [101] for the phase state calculation. DTW is a method for measuring

similarity between two sequences or matrices, which may vary in time or speed. This method

is widely used in speech recognition to recognize a unique word when it is pronounced fast or

slowly. In this method an optimal match between two given sequences or matrices with certain

restrictions is found [101]. For our problem of interest, a multichannel ECG beat reference

E(l) ∈ RM is firstly selected and a linear phase is assigned to it, then the current multichannel

ECG beat s(k) ∈ RM and the reference ECG beat are nonlinearly warped to optimize the

similarity of their nonlinear variations. Finally, as it is illustrated in Figure 5.7, the phase

observation of the current ECG beat is achieved by aligning the linear phase of the reference

ECG beat, according to the optimal match of the reference and the current ECG beat. The

computational cost of the method is low and the DTW algorithm can be implemented easily.

This model of phase state can also be further modified by adding a random additive noise to

make it more flexible (we refer to it as ’flexible’ DTW).

Estimation of phase state based on DTW methods is especially valuable when in some beats

one or more ECG waves (P, Q, R, S and T) appear sooner or later than normal ones. In

those cases, since DTW methods search for optimal match between reference and current beats,

premature or delayed occurrence of the ECG waves are compensated in the phase state. Thereby,

the EKF can better follow premature or delayed ECG waves. Another parameter that may also

affect filtering performance is expansion or contraction of each ECG wave in some dissimilar

beats. Here again, it is possible to compensate the deviation from linear phase using DTW

methods.

5.4.2 Evaluation on Actual and Synthetic Data

Actual Data

Figure 5.8 shows the results of the proposed methods on a part of the record 116 of the MIT-

BIH Arrhythmia Database [72, 102]. This database consists of dual-channel ambulatory ECG

recordings, in which some beats significantly differ from other beats. The mean ECG, which is

calculated by taking average over all ECG beats, has been adopted as the reference ECG beat
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Figure 5.7: A typical example of DTW method for finding optimal match between reference
ECG beat and current ECG beat.

of DTW methods. As it is seen in Figure 5.8, the best result is provided by ’flexible’ DTW.

Although ’flexible-linear’ phase is allowed to have some variations around the linear phase, it

is still unable to follow a beat, which is dissimilar to other beats. In order to have a better

comparison, the residual results which are the subtraction of the original signal from the filtered

signals are plotted on the right column of Figure 5.8. As it is seen, some ECG parts are distorted

by ’strict’ and ’flexible-linear’ phases, while, DTW methods are able to follow the signal in these

scenarios. We should point out that one might use the resulting errors by linear methods as

a practical means to detect this kind of abnormality. Nevertheless, if the objective is to filter

the abnormal ECG with highest possible fidelity, DTW methods significantly outperform linear

ones.

Synthetic Data

In order to study the performance of the methods in different situations, synthetic ECG data

have been generated to model these dissimilarities. In equation (5.13) ψi denotes location of

Gaussian functions, so premature and delayed occurrence of the ECG waves can be modeled

by varying ψi around their values. Expansion and contraction of the ECG waves can also be

modeled by varying bi. Figure 5.9 shows the results of different methods for different range

of ψi variations, where 100% corresponds to 2π. The synthetic data consist of eight channels

and input SNR is equal to 15 dB. For each value of ψi variations, fifty trials have been carried

out to have statistically reliable results. As it is seen, when ψi variations are very low and all

beats are very similar, linear methods provide better results, since noise cannot affect them.

However, DTW methods are affected by the noise; nevertheless, they did not deteriorate the

input signals, because their output SNRs are still more than 15 dB. As ψi variations become
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Figure 5.8: Results of proposed method on actual data. Left, Top to Bottom: Original record
116 of the MIT-BIH Arrhythmia Database, ’strict’ linear, ’flexible’ linear, DTW, ’flexible’ DTW
outputs. Right, Top to Bottom: Subtraction of the original ECG from ’strict’ linear, ’flexible’
linear, DTW, ’flexible’ DTW outputs.
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Figure 5.9: Mean value of EKF output SNR for different range of ψ variations.
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Figure 5.10: Mean value of EKF output SNR for different range of b variations.

larger, the difference between performance of the linear and DTW methods become lower. For

variation equal to 0.5%, same performance is achieved and from this point, the DTW methods

dramatically outperform linear ones.

Similar trials have been carried out for variations of bi, width of Gaussian functions. As it can

be seen in Figure 5.10, for low values of bi variations, the linear methods outperform the DTW

methods. However, as bi variations become larger, the DTW methods significantly outperform

the linear methods.

Figures 5.9 and 5.10 show that adding noise to the phase state equation can lead to improve

the results of DTW methods for large signal distortions. Practically, for very slight variations

of ψi or bi, linear methods provide better results, while, for larger values of ψi or bi variations,

’flexible’ DTW method outperforms the other methods.

In this section, we presented the results on ECG signals, but the method is more general and

can be applied to other quasi-periodic signals. It is also applicable to signals with synchronized

stimuli (as described in Section 4.1). However, the method is not expected to provide good

results in applications such as fetal ECG extraction where the interfering source is very strong

and can highly interfere the DTW algorithm. Nevertheless, results on actual and synthetic

data show that in absence of strong interfering sources, the DTW methods provide a more

reliable phase state when dissimilarity between current beat and other beats is large, because this

dissimilarity is compensated in the phase state. This method may therefore serve as an effective

tool for simultaneously filtering normal and abnormal ECG segments. Moreover, optimal match

between reference and current beats, provided by DTW method, may be used in future works
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as a feature to classify normal and abnormal beats.

5.5 Summary and Conclusions

The number of utilized channels is a key feature of a monitoring system that sets a tradeoff

between the system’s price, convenience, and portability and its performance. Classical multi-

channel methods for fECG extraction need several sensors to recover the weak fECG signal. In

order to utilize a minimal number of electrodes, a nonlinear Bayesian filtering framework has

been extended and used within a Kalman filter to improve the fECG and mECG estimates,

provided by previously proposed tensor decomposition method. The proposed method, which

needs only two sensors to successfully recover several components of ECG signals, performs sig-

nificantly better than the classical methods. Moreover, in contrast to the tensor decomposition

method, which ignores the inter-beat dynamics of ECG signal, the proposed method is able

to recover these dynamics that might be valuable for diagnosing heart diseases. The proposed

method is not limited to ECG signals. The presented result of the application of the proposed

method on ERPs is an example of its efficiency in recovering other kinds of event-related signals.

In this chapter, we also proposed a new approach for estimating the phase state of ECG

signal. The new approach that exploits information of all channels for phase state estimation

was shown to be efficient in simultaneously filtering normal and abnormal ECG segments.



Chapter 6

Nonparametric Modeling of ECG

Signal for Denosing and Fetal ECG

Extraction

6.1 Introduction

In this chapter, we present a novel nonparametric method based on Gaussian processes for

the separation of fECG from a noisy single-channel recording of maternal and fetal ECG. The

presented method in Chapter 3, which has been shown to be efficient in extraction of fECG signal

is based on Kalman filtering. However, Kalman filtering relies on a strong assumption: the state

equation, which models the dynamical evolution of the unobserved state. As a consequence,

Kalman filtering needs reliable prior about the state to be performed accurately. To overcome

the potential lack of prior information about the system, we propose to model the second order

statistics of the signal instead of the signal itself, thanks to Gaussian processes.

A Gaussian process (GP) is a stochastic process x(t), t ∈ T , for which any finite linear

combination of samples has a joint Gaussian distribution. Therefore, any linear functional

applied to the sample function x(t) will give a normally distributed result. Notation-wise, one

can write x ∼ G P(m,K), meaning the random function x(t) is distributed as a GP with

mean function m and covariance function K [103]. Gaussian processes are widely used in

statistical modeling because of properties inherited from the normal (Gaussian) distribution.

Among these properties, a key fact of a Gaussian process is that it can be fully defined by its

second-order statistics [104]. Thus, if a Gaussian process is assumed to be zero-mean, defining the

covariance function completely defines the behavior of the process. In this chapter, considering

the statistical behavior of ECG signal, we will present suitable covariance functions for maternal

and fetal ECGs for ECG denoising and fetal ECG extraction.

The rest of this chapter is organized as follows. In Section 6.2, after recalling parametric

modeling of ECG signal, considering ECG signal as a Gaussian process, a nonparametric model-

ing of this signal is proposed. The proposed covariance function used in this modeling, is defined

according to the characteristics of different waves of ECG signal. This covariance function is

101
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Figure 6.1: Typical waveform of one ECG beat.

then adopted in Section 6.3 for ECG denoising and fetal ECG extraction from a single-channel

recording. Since the covariance function introduced in Section 6.2 is very complicated and thus

leads to a complex optimization problem, in Section 6.4 a simplified version of this covariance

function is proposed, which results in a simpler and faster method. Section 6.5 is devoted to

presenting the results of the proposed method on both synthetic data and actual recordings.

First, using synthetic data, the performance of the proposed method is quantitatively compared

with the performance of the EKF framework on ECG denoising. Then, the proposed method

is applied on fetal ECG and MCG recordings and its results are qualitatively compared with

those of EKF framework. Finally, the summary and the conclusions of the chapter are stated in

Section 6.6.

6.2 Nonparametric Modeling of ECG

As it has been mentioned in Section 3.3, it is possible to consider a parametric model for ECG

signal so that each ECG beat is modeled as the summation of 5 Gaussian-shaped functions.

Each of these 5 Gaussian-shaped functions models one of the P, Q, R, S and T waves (see Figure

6.1):

z(θ) =
∑

i∈{P,Q,R,S,T}

αi exp

(
−

(θ − ψi)2

2b2i

)
. (6.1)

This model can then be used in an extended Kalman filtering to denoise a single ECG or

extract fECG from a mixture of mECG, fECG and noise. This method is thus a parametric

method since the unknown amplitude z(θ) is explicitly parameterized.

On the other hand, nonparametric methods perform estimation, prediction or denoising with-

out explicitly parameterizing the unknown amplitude z(θ). The well-known spline smoothing ap-

proach [105] is an example of such methods. In this case, if the amplitude of an ECG beat, z(θ), is

considered as a statistical process, it can be fully described at the second order by its mean func-

tion m(θ) = E[z(θ)] and covariance function k(θ1, θ2) = E[(z(θ1)−m(θ1))(z(θ2)−m(θ2))] [106].

Consequently, the ECG beat, z(θ), is considered as a Gaussian process G P(m(θ), k(θ1, θ2)). In

this case, the statistical latent process, z(θ), is not directly parameterized as in a parametric
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model, but its statistics are, thanks to hyper-parameters. This means that by assuming a zero-

mean process, a class of semidefinite positive functions k(θ1, θ2) is chosen to fully describe the

expected second order properties of the latent process.

As seen in Figure 6.1, an ECG beat can be decomposed into three parts: the P wave, the

QRS complex and the T wave, which have different characteristics (e.g., temporal correlation

and power). The P and T waves share similar kinds of second order statistics: a larger length

scale and a lower power than the QRS complex. Thereby, a possible non-stationary covariance

function that suits ECG signal can be proposed as:

k(θ1, θ2) = σ(θ1)σ(θ2)

√√√√ 2ld(θ1)ld(θ2)

ld(θ1)2 + ld(θ2)2
× exp

(
−

(
θ1 − θ2

)2
ld(θ1)2 + ld(θ2)2

)
, (6.2)

with

σ(θ) = am + (aM − am) exp

(
−(θ − θ0)2

2σ2
T

)
, (6.3)

ld(θ) = lM − (lM − lm) exp

(
−(θ − θ0)2

2σ2
l

)
, (6.4)

where σ(θ) and ld(θ) allow to have a time-varying amplitude (between am and aM ) and a time-

varying length scale (between lm and lM ), respectively.

Figure 6.2 shows two functions drawn at random from the zero-mean GP prior with covariance

function (6.2). This figure illustrates the flexibility of such a representation compared to model

(6.1), since with the same prior, G P(0, k(θ1, θ2)), it can generate a multitude of different shapes.

Finally, the full ECG is modeled as the succession of beats and is thus also a Gaussian process,

whose covariance function is given by:

ks
(
t, t′
)

=

N∑
n=1

N∑
n′=1

k
(
t− τn, t′ − τn′

)
, (6.5)

where {τn}16n6N is the set of R-peak instants that are detected from the mixture.

6.3 ECG Denoising and Fetal ECG Extraction from a Single-

Channel Recording

Suppose that the single channel observed signal x(t) is the superposition of the ECG signal s(t)

and an additive noise n(t):

x(t) = s(t) + n(t). (6.6)

Moreover, assume that the ECG signal and noise are uncorrelated. Based on the proposed

modeling of ECG signals (Section 6.2), the full ECG signal is modeled as a zero-mean GP
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Figure 6.2: Two functions drawn at random from a zero-mean GP with covariance function (6.2).
The shaded area represents plus and minus two times the standard deviation of the prior. On the
right, the corresponding σ(θ) and ld(θ) functions.

denoted as G P(0, ks(t, t
′)) where the covariance function is defined as (6.5). The additive noise

is also modeled as a zero-mean GP, whose covariance function kn(t, t′) is given by:

kn(t, t′) = σ2
n exp

(
−(t− t′)2

2l2n

)
+ σ2

wδ(t− t′), (6.7)

where δ(·) is the delta Dirac function. In the first term of this expression, σ2
n and ln are used to

model the baseline variation of the noisy ECG as a stationary process for which the correlation

is almost unit between close samples and decreases as their distance increases compared to the

length scale ln. The second term models a white Gaussian noise of power σ2
w.

The set of hyper-parameters φ = {am, aM , σT , lm, lM , σl, σn, ln, σw} are estimated by maxi-

mizing the evidence (log marginal likelihood) given by [107]:

log p
(
x|{Tk}k,φ

)
= −1

2
xT
(
Ks + Kn

)−1
x− 1

2
log
∣∣∣Ks + Kn

∣∣∣− M

2
log(2π), (6.8)

where {Tk}k is the set of recording times, K· is the covariance matrix whose (p, q)-th entry is

k·(Tp, Tq), x = [x(T1), · · · , x(TM )]T and M is the number of recorded samples. The optimization

of the latter equation is obtained thanks to a gradient ascent method, assuming that the initial

parameter values are not too far from the actual values.

With GP modeling, s and x are jointly Gaussian distributed [107]:[
x

s

]
∼ N

(
0,

[
Ks + Kn Ks

Ks Ks

])
. (6.9)

The conditional distribution of s given x is itself Gaussian-distributed, so some matrix algebra



Nonparametric Modeling of ECG Signal for Denosing and Fetal ECG Extraction 105

leads us to [107]:

s | x ∼ N

(
Ks(Ks + Kn)−1x,Ks −Ks(Ks + Kn)−1Ks

)
. (6.10)

Therefore, the estimation of the ECG, which maximizes the posterior distribution of the given

recording, x, is given by:

ŝ(t) = ks
T
(
Ks + Kn

)−1
x, (6.11)

where ks = [ks(t, T1), · · · , ks(t, TM )]T .

Fetal ECG extraction from a single abdominal sensor is then a direct extension of the proposed

method by modeling the recorded signal x(t) as:

x(t) = sm(t) + sf (t) + n(t), (6.12)

where sm(t) is the maternal ECG signal, sf (t) is the fetal ECG signal, and n(t) is the additive

noise. All these signals are modeled as zero-mean GPs with covariance functions km(·, ·) and

kf (·, ·) defined by (6.5) and kn(·, ·) obtained from (6.7), respectively.

In this case, the estimates of sm(t) and sf (t) are given by:ŝm(t) = kTm

(
Km + Kf + Kn

)−1
x

ŝf (t) = kTf

(
Km + Kf + Kn

)−1
x

(6.13)

where km = [km(t, T1), · · · , km(t, TM )]T and kf = [kf (t, T1), · · · , kf (t, TM )]T .

This procedure can also be further extended for the case in which maternal ECG and noise

are mixed with more than one fetal ECG (e.g. twins).

6.4 Simplified Covariance Function

Although the proposed method based on the covariance function in (6.2) has been shown to be

efficient for ECG denoising and fetal ECG extraction (see Section (6.5)), it suffers from several

drawbacks. Indeed, it requires many parameters to fit well the characteristics of an ECG beat.

For each ECG, am, aM and σT form a time-varying amplitude, σ(θ), and lm, lM and σl form

a time-varying length scale, ld(θ), in (6.3) and (6.4), respectively. This thus leads to a quite

complicated model and therefore it is tricky to optimize all the hyperparameters. Moreover,

from a computational point of view, the double summation in (6.5) is quite CPU intensive.

The model is modified in two ways. Firstly, the ECG recordings are decomposed into a few

sub-bands thanks to a filter bank to avoid a time-varying correlation length scale in (6.4): in each

sub-band, the correlation length scale is considered as a constant. Secondly, to avoid too large

computational cost, similar to Chapter 3, the R-peak detection is used to warp the time into a

linear phase from 0 to 2π for each heartbeat: θ(t) is defined such that each interval [τk, τk+1) is

mapped into interval [2(k − 1)π, 2kπ) (Figure 6.3).
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Figure 6.3: Illustration of the time warping: each heartbeat is linearly warped into a 2π interval.

The ECG signal s(t) is decomposed via a filter bank into a few signals si(t), each of them

can then be warped to 2π quasi-periodic signals zi(θ) thanks to θ(t). In each sub-band, i, this

warping allows us to use the periodic covariance function defined by the following expression:

k(i)
s (t, t′) = σ2(i) exp

(
−

sin2
((
θ(t)− θ(t′)

)
/2
)

l2d(i)

)
, (6.14)

where i refers to the i-th sub-band, σ2(i) and ld(i) are the power, and the correlation length scale

of the sub-signal si(t), respectively. This covariance function has been proposed by inspiration

of the periodic covariance function in [108]:

k(t, t′) = exp

(
−

2 sin2
((
t− t′

)
/2
)

l2

)
. (6.15)

It is worth noting that the proposed covariance function allows to fit well quasi-periodic

signals such as ECG thanks to the linear warping θ(t), which maps each period into interval

[0, 2π). Moreover, using such a nonparametric model, no assumption is made about the shape

of the ECG signals but its (quasi-) periodicity and its smoothness which are defined by θ(t) and

ld(i), respectively.

Thereby, maternal and fetal ECGs are modeled as GPs denoted as G P(0, k
(i)
m (t, t′)) and

G P(0, k
(i)
m (t, t′)) in each subband, i, respectively, where covariance functions are defined by

(6.14). The additive noise is also modeled as a zero-mean GP, whose covariance function k
(i)
n (t, t′)

is given by (6.7) in each sub-band. Consequently, the estimation of mECG in the i-th sub-band,

which maximizes the posterior distribution of the i-th sub-band of the given recording, xi, is

then given by:

ŝm,i(t) = k(i)
m

T
(
K(i)
m + K

(i)
f + K(i)

n

)−1
xi. (6.16)
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In the same way, fECG in the i-th sub-band is estimated by:

ŝf,i(t) = k
(i)
f

T(
K(i)
m + K

(i)
f + K(i)

n

)−1
xi. (6.17)

Finally, the full estimation of signals is given by the summation over I sub-bands:ŝm(t) =
∑I

i=1 ŝm,i(t)

ŝf (t) =
∑I

i=1 ŝf,i(t)
(6.18)

A few notes should be added here to have a better view on how the simplified covari-

ance function reduces the complexity of the optimization problem. The covariance function in

(6.2) includes 6 parameters (am, aM , σT , lm, lM , σl) to model each ECG signal and 3 parameters

(σn, ln, σw) to model noise. The simplified covariance function in (6.14) includes 2 parameters

(σ, ld) to model each ECG signal and 3 parameters (σn, ln, σw) to model noise, in each sub-band.

Therefore, by assuming two ECGs mixed in a recording, the first covariance function leads to an

optimization problem with 15 parameters, whereas if we decompose the mixture to 3 sub-bands,

we will have 3 independent parallel optimization problems each having 7 parameters. Although

in the simplified version there are 3 optimization problems to be solved, this significant reduc-

tion of number of parameters and avoiding the double summation in (6.5) (thanks to linear time

warping) dramatically reduce the computational cost and the memory required for processing.

6.5 Results

In this section we first investigate the performance of the proposed method on synthetic data to

denoise ECG (Subsection 6.5.1). Then, the results of the proposed method on actual data are

presented (Subsection 6.5.2).

6.5.1 Synthetic Data: ECG Denoising

The performance of the proposed algorithm based on the covariance function in (6.2) to denoise

ECG signal is assessed in this subsection. In the first experiment, each beat of the ECG signal

is generated by model (6.1). In order to mimic the variability presented in an actual ECG, the

waves amplitudes and P-R and R-T intervals are randomly changed (3%) around their mean

values. The ECG signal is then obtained as the concatenation of several beats with random

global amplitudes and random R-R intervals. To ensure the consistency of the results, the

whole procedure has been repeated one thousand times by regenerating all random parameters

of the signal and noise samples. In this experiment, 1500 samples are used with 15 heartbeats

simulated at 100 Hz sampled frequency. It is worth noting that the proposed method does not

assume that the maxima of the R peaks are located at observed samples but can also appear

in between samples. The proposed method is compared to the EKF and EKS [14]. The state
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Figure 6.4: ECG denoising: output SNRs vs. the input SNR without (a) and with (b) 3%
parameters variability. In both figures, the black line corresponds to the same input and output
SNRs. In each case, the median value of each method is plotted, as well as the first and last
quartiles as error bars.

model is chosen equal to (3.4):

θk+1 = (θk + ωδ)mod(2π)

zk+1 = − ∑
i∈W

δ
αi,kω

b2i,k
∆θi,kexp(−

∆θ2
i,k

2b2i,k
) + zk + ηzk

αi,k+1 = αi,k + ηαi
k

bi,k+1 = bi,k + ηbik

ψi,k+1 = ψi,k + ηψi

k

(6.19)

(i.e. the same model as the one used to generate data) whose parameters are equal to average

values.

Quantitative results are shown in Figure 6.4 which compares the output SNR achieved after

denoising against different input SNRs. As it is seen in Figure 6.4(b), the proposed method

increases the SNR with a gain between 3 dB to 18 dB. Contrary to extended Kalman filtering,

the proposed method always improves the SNR. Indeed, in the case of high input SNR, EKS

and EKF deteriorate the SNR: this can be explained by the variability of the simulated ECG as

confirmed by Figure 6.4(a), since this phenomenon is only observed with variability. Moreover,

one can see that increasing variability decreases the overall performance, but the proposed

method keeps the best performance compared with EKS or EKF.

6.5.2 Actual Data: Fetal ECG and MCG Extraction

Figure 6.5 shows efficiency of the proposed method based on the covariance function in (6.2) in

extraction of maternal and fetal ECGs from the first sensor on the well-known DaISy fetal ECG

database [71], as described in Appendix A, Section A.1.
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Figure 6.5: Fetal ECG extraction via the proposed method based on the covariance function
in (6.2) on DaISy fetal ECG database. Top to bottom: recorded signal x(t), estimated maternal
ECG ŝm(t), estimated fetal ECG ŝf (t) and residual noise r(t) (light gray curve) with estimated
baseline (thick dark curve), respectively.

As it is seen, the proposed method provides suitable estimations for both maternal and fetal

ECGs even when maternal and fetal R-peaks are concomitant (e.g., the fourth, seventh and tenth

maternal beats). Moreover, a visual inspection of the residual noise r(t) = x(t)− ŝm(t)− ŝf (t)

confirms the validity of the assumed modeling (6.12). Indeed, this residual noise is effectively

composed of a smooth-varying baseline (thick dark curve) related to the first term of covariance

function (6.7) and a quasi white noise (validated by its covariance function empirical estimation).

Moreover, both contributions are decorrelated with the maternal and fetal ECG signals.

The proposed method based on the simplified covariance function in (6.14) was also applied

on the DaISy dataset. The first channel of this dataset with the sampling rate of 250 Hz is used

and decomposed into 0-30 Hz, 30-60 Hz and 60-125 Hz sub-bands to apply proposed method.

Figure 6.6 shows results of the sequential Kalman filtering method [13, Ch. 5, p. 50] and the

proposed method for mECG and fECG extraction on this dataset. In the sequential Kalman

filtering method, a synthetic dynamic ECG model within an EKF framework is used. This

framework is applied in two steps on the mixture of mECG and fECG to extract fECG. The

first step is extraction of mECG, considering fECG and other noises as a unique Gaussian noise

and the second step is subtraction of mECG from original signal and extraction of fECG from

the residual signal.

As it is seen in Figure 6.6, unlike sequential Kalman filtering method, proposed method does

not fail when mECG and fECG waves fully overlap in time. It can be seen in Figure 6.6(a) that

between t = 6s and t = 7s, sequential Kalman filtering method is unable to discriminate between

maternal and fetal ECG signals. Therefore, some fECG features have been corrupted during

mECG extraction. This temporal overlapping between maternal and fetal ECG waves did not

lead to corrupting desired signals in the proposed method, because unlike the Kalman filtering
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method which directly parameterizes the ECG signals, in the proposed method statistics of ECG

signals are parameterized.

The results of the proposed methods based on the covariance function in (6.2) and the sim-

plified one could be also compared. One may notice that visual inspection of these results does

not show a significant difference between the performances of the two.

In order to show the capability of the proposed method in extraction of the fECG at different

periods of pregnancy, and from different channel locations, the PhysioNet noninvasive fetal

electrocardiogram database [72] described in Appendix A Section A.2 was used. The signals

are first resampled from 1 kHz to 250 Hz using resample MATLAB function, then decomposed

into 0-30 Hz, 30-60 Hz and 60-125 Hz sub-bands. Figure 6.7 shows the first 20s of the mixtures

and fetal ECG estimates using the simplified covariance function in (6.14) from the datasets

ecgca771 channel 3 ecgca274 channel 5, ecgca748 channel 4, and ecgca997 channel 3.

The twin fetal cardiac magnetic signal dataset described in Appendix A, Section A.3 was

also employed to investigate the performance of the proposed method based on the simplified

covariance function in (6.14). The signal is first resampled from 1025 Hz to 256 Hz, then

decomposed into 0-30 Hz, 30-60 Hz and 60-128 Hz sub-bands. Figure 6.8 shows results of the

parallel Kalman filtering method in Chapter 3 and the proposed nonparametric method in this

chapter. Comparison between Figure 6.8(a) and Figure 6.8(b) shows that the nonparametric

method is more successful in recovering the temporal pattern of MCG signals, while the parallel

Kalman filtering can better cancel the severe noise of this data. Nevertheless, there might be

some applications, in which parameterization of the signal of interest can be very difficult. In

those situations, the nonparametric model can be more efficient, since it is more flexible and

does not need to model the latent process itself, but its statistical characteristics.

6.6 Summary and Conclusions

In this chapter, a nonparametric modeling for ECG signals was derived. By considering them

as second order processes, which are fully defined by their mean and covariance functions, one

can model a large class of signals with a few hyper-parameters. From this modeling, denoising

or extraction methods are directly obtained as the maximization of the posterior distribution.

Numerical experiments showed that the proposed method outperforms an extended Kalman

filtering especially in presence of slightly random state parameters. Indeed, Gaussian processes

realize a tradeoff between the suitable description of the signal by its second order statistics and

its intrinsic variabilities.

As the second step, the proposed method was simplified by adopting a quasi-periodic co-

variance function whose parameters are optimized for each sub-band of ECG signal. This leads

to a less complex optimization problem with less number of hyperparameters. Therefore, it is

computationally faster and easier to implement.

Finally, this nonparametric method models the second order statistics of the signal instead of

the signal itself. In other words, since the statistical latent process is not directly parameterized,

there is no assumption about shape of desired signals. Therefore, it is more flexible and it can
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Figure 6.6: Fetal ECG extraction from a single sensor of DaISy fetal ECG database. Top to
bottom: recorded signal x(t), estimated maternal ECG ŝm(t), estimated fetal ECG ŝf (t), and
residual noise r(t) (light gray curve) with estimated baseline (thick dark curve), respectively. (a):
Sequential Kalman filtering, (b): the proposed method based on the simplified covariance function
in (6.14)
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3 and their fetal ECG estimates.
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ŝ f2
(t)

0 1 2 3 4 5 6 7 8 9
−50

0

50

r(t
)

Time [s]

(b) Nonparametric modeling

Figure 6.8: Fetal MCG extraction from a single sensor of the twin MCG database. Top to bottom:
recorded signal x(t), estimated maternal MCG ŝm(t), estimated fetal MCGs ŝf1(t) and ŝf2(t), and
residual noise r(t) (light gray curve) with estimated baseline (thick dark curve), respectively. (a):
Parallel Kalman filtering, (b): the proposed method based on the simplified covariance function
in (6.14).
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be efficiently used when parameterization is difficult or when waves of signals overlap in time.



Chapter 7

Conclusions and Future Works

7.1 Conclusions

The problem of extracting and denoising of fetal cardiac signals from an array of electrodes placed

on maternal abdomen was studied in this research. The various methods proposed in this study

to address this problem were evaluated on actual cardiac recordings and synthetic mixtures

generated according to a realistic ECG model to cover many possible scenarios. Regarding the

very low SNR of fetal cardiac signals, the main contribution of this work was to develop signal-

processing methods that utilize a minimal number of electrodes (down to two) to capture the

weak traces of fetal cardiac signals mixed with strong maternal cardiac signals and background

noise.

The method developed in Chapter 3 is in fact a refinement of a currently existing Bayesian

filtering framework for fetal ECG extraction for single-channel recordings. In single-channel

recordings, where less information is available for tracking fetal ECG, we showed that the refine-

ment of the framework is essential to recover full pattern of fetal ECG. The fetal ECG is already

the much weaker signal, so if each signal composing the mixture is not accurately modeled, some

fetal features will be confused with those of other sources during filtering.

The main idea of Chapter 4 is based on a generally known fact: semi-blind source separation

methods that utilize a priori information can be more effective than completely blind source

separation methods. Quasi-periodicity is among such a priori information for an ECG signal.

In this chapter, considering maternal and fetal ECGs as quasi-periodic signals that are not

exactly synchronous with the same period, a tensor decomposition-based method was proposed

to separate maternal and fetal ECGs. It was also shown that due to the small amplitude

of fetal ECG and less information available using only two channels, robust decompositions

significantly outperform the classical decomposition. However, the developed method in this

chapter extracts the average signals and is not able to recover the dynamics of ECG signals.

Moreover, since this method is categorized as a linear decomposition technique, it is not expected

to give good results when noise is mixed in nonlinear manner. The multichannel Kalman filtering

framework developed in Chapter 5, is a nonlinear method that can be considered as the second

step of the proposed method in Chapter 4. This combination allows us to benefit from the
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simplicity of a linear method and the power of a nonlinear method at the same time. This

combined multichannel method, which is a general signal-processing tool for extracting event-

related sources, including fECG, is able to simultaneously extract and denoise a desired source

using a minimal number of electrodes, without losing the valuable inter-event dynamics of the

source.

Finally, Chapter 6 was dedicated to develop a nonparametric method based on modeling

second-order statistics of ECG signals considered as Gaussian processes. This single-channel

method was shown to be more efficient in ECG denoising and fECG extraction, compared with

the currently existing KF methods that are parametric. This method also provides roughly the

same performance as the KF method in Chapter 3. The main merit of this method is its generic

nature, while high computational cost is its main drawback.

In order to have a better view on the contributions of this thesis, Table 2.1 of Chapter 2

is recalled here in Table 7.1. The difference between the two tables is that the blank cells in

Chapter 2 are filled by the proposed methods in this thesis. Of course, the proposed methods

in this thesis also have their own limitations and drawbacks. According to Table 7.1, the first

contribution of this thesis on single-channel methods was to extend the existing Bayesian filter

to avoid failing when mECG and fECG waves overlap. However, the proposed method still

needs a good state estimate. To overcome this problem, a nonparametric modeling method

based on Gaussian processes was developed that does not need a state estimate. Nonetheless,

this method is computationally intensive due to its complex optimization problem. For the

multichannel methods, the first attempt in this thesis was made on developing a non-iterative

method that is applicable to a few channels, and also has a good noise cancellation performance.

The robust tensor decomposition method proposed in this thesis addresses this issue. However,

as mentioned before, it is not able to recover inter-beat dynamics of the ECG signal. Therefore,

the next step in this thesis was to develop a method that recovers these dynamics. Nevertheless,

since the proposed multichannel Bayesian filter relies on state equations, a good state estimate

is required.

The chapters of this thesis could have been arranged in another way. As depicted in Figure

7.1, the fundamental assumption behind all the proposed methods is the quasi-periodic nature of

ECG signal. In the alternative arrangement, we could first begin with the tensor decomposition

method, which is deterministic and a multichannel method. Then, to recover inter-beat dynam-

ics of ECG signal, the multichannel Kalman filtering method, which relies on state modeling,

would be presented. At the next chapter, the multichannel Kalman filtering method would be

reformulated to be applied on single-channel recordings. In this case, although the performance

of fECG extraction decreases, the single-channel Kalman filter is still able to preserve inter-beat

dynamics of fECG signal and recover the fECG waves even if they fully overlap with the mECG

ones. Finally, in order to avoid state estimation, the nonparametric modeling of ECG signal,

which is based on Gaussian processes and is categorized as a statistical approach, would be

presented.

We should here point out that no one-for-all universal filtering can be currently expected.

This is partly due to the various fetal conditions, gestational ages, SNR, etc., and in part due to
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Table 7.1: Comparison of the existing and proposed methods for fetal ECG extraction.

Method Benefit Drawback

S
in

gl
e-

ch
an

n
el

Wavelet Suitable for mixtures Limited performance in
filtering having different scales nonlinear mixtures
SVD-based Robust to low SNR Limited performance in
filtering mixtures nonlinear mixtures
Nonlinear Applicable to nonlinear Lose inter-beat dynamics,
filtering or degenerate mixtures computationally massive
Bayesian Preserve inter-beat Failure when ECG waves
filtering dynamics overlap, require good

state estimate
Extended Preserve inter-beat Require good state
Bayesian dynamics, not fail estimate
filtering when ECG waves overlap
Gaussian Preserve inter-beat Computationally
process dynamics, not fail when intensive
modeling ECG waves overlap, not

require good state estimate

M
u

lt
ic

h
an

n
el

SVD/PCA Applicable to noisy Limited performance in
high dimensional data nonlinear mixtures

ICA Generality Limited separation
performance, require
several channels

πCA Adapted to ECG Limited noise cancellation,
require several channels

Deflation Adapted to ECG, Limited noise cancellation,
procedure applicable to a few channels iterative, lose fECG features

during mECG cancellation
Robust Adapted to ECG, Lose inter-beat dynamics
tensor good noise cancellation,
decomposition applicable to a few channels
Multichannel Adapted to ECG, Require good state
extended good noise cancellation, estimate
Bayesian applicable to a few channels,
filtering preserve fECG features

and dynamics during filtering
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Figure 7.1: Approaches of the proposed methods.
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the different objectives and measurement setups. For example, if we are only interested in fetal

heart rate variability analysis and at least two channels are available, the fetal R-peak detection

method in Chapter 4 could be satisfying, because it is simple, fast and more importantly fully

automatic. Nonetheless, for a precise morphological analysis, a more sophisticated algorithm

might be required. Accordingly, each method has its own merits and limitations and is applicable

for specific scenarios.

7.2 Future Works

Among infinite number of possible questions to answer and researches on fetal cardiac signal

extraction and analysis, the results of this dissertation may point to the following directions for

future works:

• In this thesis a widely used Bayesian filtering framework based on a realistic model of ECG

was adopted and extended in Chapter 3 and Chapter 5. This framework, which is used

within Kalman filter, has not been fully automatized yet. The parameter selection proce-

dure of this framework requires manual selection of the center of the Gaussian functions.

It is therefore interesting to work on automatization of this procedure. This is especially

challenging for fetal ECG parameters, due to the strong interfering maternal ECG. The

extracted fetal ECG temporal pattern provided by tensor decomposition in Chapter 4

might be helpful in automatic segmentation of fetal ECG beat. Moreover, this framework

can be extended to more advanced filter types such as the particle filter in future research.

• Tensor decomposition methods serve as a powerful and automatic tool for tracking fetal

ECG signals. Although two robust criteria proposed in this study were shown to be efficient

in capturing desired signal, they need good synchronization of events. In the field of fetal

ECG extraction, this means that they require accurate fetal R-peak detection, which is

not always easy especially for twins. Therefore, the development of more robust tensor

decomposition methods that can handle synchronization errors can be of high interest.

• In Chapter 6 an attempt was made to model ECG signal in nonparametric manner, i.e. sta-

tistical characteristics of ECG signal were modeled instead of ECG signal itself. We believe

that this approach is very promising due to its generic nature. Although we tried to sim-

plify the primary model to avoid high computational cost and complexity, this method still

needs further improvements. The hyperparameter estimation procedure of the proposed

method is iterative, so the first step forward might be developing a noniterative procedure

for hyperparameter estimation. This can lead to a more robust method. Moreover, other

kinds of covariance functions can be also introduced for modeling ECG signal.

• All proposed methods in this thesis and most of the other promising existing methods

need fetal R-peak positions as a key prior information for extraction of fetal ECG. Using

R-peak positions, the quasi-periodic nature of ECG signal can be exploited. Therefore, a

reliable procedure for fetal R-peaks detection is of great interest in fetal ECG extraction
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studies. In such a context, the proposed methods should be robust to the variability of

the projections of mixed maternal and fetal ECGs. In addition, they should not fail when

fECG has very low amplitude or the background noise is very powerful. Fetal R-peak

detection in twins (or more) is much more difficult and there are also mixtures in which

even visual inspection of the mixture cannot help to reliably detect R-peaks. Therefore,

a practical solution in these cases can be obtaining fetal R-peak positions from another

modality such as echocardiography.

• The current fECG extraction methods assume that the ECG is normal. Although the

resulting errors of these methods in processing of abnormal fECG might be used for ab-

normality detection, extraction of abnormal fetal ECG signal with highest possible fidelity

could be an issue of interest. In this research, a method was developed to simultane-

ously filter normal and abnormal ECG beats. Cardiac abnormalities usually appear as

occasional different beats between a set of normal ones. Although the proposed method

addresses this smooth transition between normal and abnormal beats when there is only

one ECG in the measurement, it is not currently applicable to abnormal fetal ECG mixed

with maternal ECG.

• An essential step that should be taken before using any of the proposed methods in com-

mercial clinical monitoring systems is the clinical validation of the methods over recordings

of hundreds of normal and abnormal fetuses for several stages of pregnancy and different

conditions. The proposed methods in this thesis were presented as general fetal ECG ex-

traction tools and were validated on realistic simulated data and different actual datasets,

each having a different recording protocol. Nevertheless, public gold standard fetal ECG

databases are required, such as those for adult ECGs. These datasets should include clini-

cal annotations such as fetal position, QRS complex locations, position of P and T waves,

and clinical events.

Finally, although the fetal ECG extraction field is old enough, there are still many consid-

erations that require attention before we can claim that a specific algorithm can be used in

commercial devices. Nonetheless, recent advances and developments in this field are promising

and they have the potential to positively impact the area of fetal cardiac activity monitoring in

a not too distant future.
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Appendix A

Actual Datasets Description

In this appendix, the datasets used in this thesis to evaluate the proposed methods on actual

cardiac recordings are described. These datasets include three noninvasive fetal ECG recordings

and one fetal MCG recording data.

A.1 DaISy Fetal ECG

The DaISy dataset includes several kinds of data including biomedical recordings for system

identification [71]. The DaISy fetal ECG database [29] consists of a single dataset of cutaneous

potential recording of a pregnant woman. A total of 8 channels (5 abdominal and 3 thoracic) are

available, sampled at 250 Hz and lasting 10 seconds. The fetal ECG dataset has been provided

by Lieven De Lathauwer. Figure A.1 shows this dataset.

A.2 PhysioNet Noninvasive Fetal Electrocardiogram

This database contains a series of 55 multichannel abdominal noninvasive fetal electrocardiogram

recordings, taken from a single subject between 21 to 40 weeks of pregnancy [72]. The records

have variable durations, and were taken weekly (two or more records were acquired during

some weeks). The fECG recordings in this collection were amplified using a g.BSamp Biosignal

Amplifier. The data have been stored in EDF/EDF+ format.

Recording information:

• 2 thoracic signals

• 3 or 4 abdominal signals (most records include 4).

• Electrode positioning was varied in order to improve SNR.

• The analog amplifier also includes a 50Hz notch filter switched ON.

• Ag-AgCl transducer.

• Bandwidth: 0.01Hz-100Hz (synchronous sampling of all signals)
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Figure A.1: DaISy Fetal ECG dataset. The first five rows are abdominal channels and the next
three rows are thoracic channels.

• Sampling rate: 1kHz.

• Resolution: 16 bits.

• Gains and input ranges are included in the records in EDF format.

• Patient Identification contains the gestational age. The format is week+day.

The database has been prepared for PhysioNet by Marcelino Martinez Sober and Jorge

Granado Marco, Digital Signal Processing Group (GPDS), Electronics Engineering Department,

ETSE Escuela Técnica Superior de Ingenieŕıa, Universitat de València, Spain. Figure A.2 shows

the first ten seconds of one of the available datasets, namely the ecgca711 dataset.

A.3 Twin Fetal MCG

The dataset has been recorded by Dr. Dirk Hoyer in the Biomagnetic Center of the Department

of Neurology, in Friedrich Schiller University, Jena, Germany. It consists of several sets of

MCG and other signals from mother and twin fetuses, in arrays of 208 channels recorded over

30 minutes, with a sampling rate of 1025Hz. The description of the recorded channels are

summarized in Table A.1 [13]. This data has been recorded using a SQUID Biomagnetometer

system. The pregnant women were positioned supine, i.e., with a slight twist to either side, to

prevent compression of the inferior vena cava by the pregnant uterus. The dewar was positioned
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Figure A.2: The first ten seconds of namely the ecgca711 dataset of PhysioNet noninvasive fetal
electrocardiogram dataset. The first two rows are thoracic channels and the next four rows are
abdominal channels.

Table A.1: Description of the recorded channels [13].

Channels Description

1-168 magnetic channels
169-195 magnetic reference channels
196-199 electric channels (mother’s ECG)
200-208 others

with its curvature above the fetuses after sonographic localization as close to the maternal

abdominal wall without contact as possible [109]. Figure A.3 shows the first ten seconds of

channels 90 to 95 of one of the available datasets, namely the q00002252 dataset. Please note

that visual inspection of the original data shows that the data are highly contaminated with

baseline wander. Therefore, the baseline has been removed [13] before plotting.

A.4 PhysioNet/Computing in Cardiology Challenge 2013

The aim of PhysioNet/Computing in Cardiology Challenge 2013 was to encourage development

of accurate algorithms for locating QRS complexes and estimating the QT interval in noninva-

sive fECG signals using carefully reviewed reference QRS annotations and QT intervals as a gold

standard, based on simultaneous direct fECG when possible [93]. Data for the challenge consist
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Figure A.3: Twin fetal MCG dataset. The first ten seconds of the channels 90 to 95 of namely
the q00002252 dataset after baseline wander removal.

of a collection of one-minute fetal ECG recordings. Each recording includes four noninvasive

abdominal signals. The data were obtained from multiple sources using a variety of instrumen-

tation with differing frequency response, resolution, and configuration; although in all cases they

are presented as 1000 samples per signal per second. In each case, reference annotations marking

the locations of each fetal QRS complex were produced, usually with reference to a direct fECG

signal, acquired from a fetal scalp electrode. The direct signals are not included in the challenge

datasets, however. Figure A.4 shows the first ten seconds of one of the available datasets, namely

the a22 dataset. This dataset is also highly contaminated with baseline wander. Therefore, the

baseline has been removed before plotting.
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Figure A.4: PhysioNet/Computing in Cardiology Challenge 2013 fetal ECG dataset. The first
ten seconds of namely the a22 dataset after baseline wander removal.





Appendix B

Résumé Etendu en Français

(Extended Abstract in French)

B.1 Contexte et Objectifs

Les maladies et malformations cardiaques congénitales sont les pathologies natales les plus com-

munes [1] et les principales causes de décès à la naissance [2]. Chaque année, environ un bébé

sur 125, présente une forme de malformations cardiaques congénitales [3]. Certains de ces dé-

fauts sont tellement légers que le bébé semble en bonne santé pendant de nombreuses années

après la naissance et d’autres peuvent conduire à des décès très rapides après la naissance [4].

Les malformations cardiaques apparaissent dans les premières semaines de grossesse lorsque le

cœur se forme [3], le suivi régulier de la fréquence cardiaque fœtale et la détection précoce des

anomalies cardiaques peut aider l’obstétricien et le cardio-pédiatre à prescrire les médicaments

appropriés pendant la grossesse ou à prendre des précautions adaptées lors de l’accouchement.

L’électrocardiogramme (ECG) peut fournir des informations utiles sur le fonctionnement du

cœur du fœtus et détecter le fœtus à risque. Bien que l’échocardiographie fœtale puisse être

utilisée pour détecter les pics R et de surveiller l’état cardiaque, l’ECG du fœtus (ECGf) peut

fournir plus d’informations au médecin, parce que la plupart des anomalies cardiaques est visible

sur le signal ECG [11].

L’ECGf peut être mesuré en plaçant des électrodes sur l’abdomen de la mère (Figure B.1).

Cependant, ce signal a une très faible puissance et il est mélangé avec plusieurs sources de bruit et

d’interférence. Il s’agit notamment de l’activité fœtale cérébrale, des électromyogrammes (EMG)

de la mère et du fœtus, de l’activité respiratoire, et des perturbations (50 et 100 Hz) dues au

secteur. En outre, sa variabilité dépend de l’âge gestationnel, de la position des électrodes,

de l’impédance de la peau, etc. Néanmoins, la contamination principale est l’ECG de la mère

(ECGm) [12], dont l’amplitude est très supérieure à celle du fœtus [12]. En conséquence, le

problème de base consiste à extraire l’ECGf à partir du mélange des signaux ECG de la mère

et du fœtus, dans lequel l’ECGm est un signal de puissance beaucoup plus forte.

En dépit de l’abondante littérature consacrée au filtrage de signaux cardiaques du fœtus,

ce problème est complexe et il existe encore de nombreuses questions ouvertes qui justifient
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Figure B.1: Exemple typique du signal bruité composite (mélange) enregistré sur une électrode
abdominale et des ECGs de la mère et du fœtus.

des recherches en traitement du signal. Un des difficultés, du point de vue de traitement de

signal, est qu’il n’y a pas de domaine spécifique (par exemple, temps, espace, ou fréquence),

dans laquelle l’ECGf peut être totalement séparé des signaux parasites [13]. Par conséquent, des

techniques sophistiquées de traitement du signal sont nécessaires pour résoudre ce problème.

B.1.1 Méthodologies d’Extraction de l’ECG du Fœtus

Depuis la première démonstration de l’ECGf réalisée en 1906 par Cremer [22], diverses méthodes

de surveillance de l’ECGf ont été proposées pour obtenir des informations sur l’état du cœur.

Selon la synthèse [10], les approches d’extraction de l’ECGf dans la littérature peuvent être

classées selon leurs méthodes, qui comprennent la décomposition linéaire ou non linéaire et le

filtrage adaptatif.

Les méthodes de décomposition linéaire ou non linéaire sont des approches communes dans

lesquelles, des enregistrements uniques ou multicanaux sont décomposés en différents com-

posantes à l’aide des fonctions de base appropriées. Les fonctions de base peuvent être choisies

en fonction de la cohérence avec les caractéristiques des composantes de l’ECG du fœtus.

Les méthodes de décomposition linéaire utilisent soit des fonctions fixes de base (par exem-

ple, les ondelettes [23]), soit des fonctions de base pilotées par les données (par exemple, des

vecteurs singuliers [25]) ont des performances limitées si les mélanges sont non linéaires ou

dégénérés [10]. Les méthodes de séparation aveugle ou semi-aveugle de sources, qui peuvent être

classées dans les méthodes de décomposition linéaire, ont également été utilisées pour l’extraction

de l’ECGf [63, 110]. Ces méthodes sont fondées sur l’hypothèse d’indépendance statistique des

signaux ECG maternels et fœtaux, ou de l’existence d’un modèle temporel des signaux [26–28].

Néanmoins, la plupart des méthodes existantes est plutôt générique et n’est pas entièrement

adaptée aux caractéristiques du signal ECG. Dans [30], la nature quasi-périodique de l’ECG

a été exploitée pour extraire un sous-espace indépendant, basé sur la périodicité des signaux
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ECGf. Cette méthode a ensuite été combinée avec un outil de traitement du signal basé sur un

modèle afin de mieux éliminer l’ECGm selon une procédure de déflation [31]. Une autre ten-

tative pour adapter les méthodes génériques existantes au signal ECG était d’utiliser l’analyse

multidimensionnelle en composantes indépendantes (MICA1) pour séparer l’ECGf de l’ECGm

et des interférences [32,33]. MICA est une extension de l’analyse en composantes indépendantes

(ICA2), basé sur un modèle linéaire tel que celui utilisé dans l’ICA. Cependant, à la différence de

l’ICA, les composantes ne sont pas supposées être toutes mutuellement indépendantes. Au lieu

de cela, il est supposé que les composants peuvent être divisées en groupes, qui sont statistique-

ment indépendants entre eux, mais les composantes appartenant à un même groupe peuvent

être dépendantes. Cette méthode a ensuite été affinée dans [34] pour fonctionner efficacement

dans un grand nombre de scénarios. Dans [35,36], décomposition en ondelettes a également été

associée à la séparation aveugle de sources pour l’extraction et le débruitage des signaux ECGf.

Dans un travail récent, une nouvelle technique a été proposée pour accélérer la méthode ICA

traditionnelle utilisée dans l’extraction de l’ECGf [46]. Dans les méthodes de séparation aveugle

de sources, il est généralement supposé que les signaux et les bruits sont mélangés d’une manière

stationnaire et linéaire. Cependant, ces hypothèses ne sont pas toujours vérifiées [13].

Les transformations non linéaires ont été également utilisées pour l’élimination de l’ECGm et

l’extraction de l’ECGf. Dans ces méthodes, on construit l’espace de phase d’un signal bruité et de

ses versions retardées, lissé à l’aide de l’analyse en composantes principales (PCA3) ou d’autres

lisseurs classiques [48–50]. Les échantillons sont ensuite transférés à la représentation dans le

domaine temporel. Bien que ces méthodes soient intéressantes car applicables à une mesure

réduite à un seul canal maternel abdominal, la sélection des décalages temporels requis pour

la construction de la représentation de l’espace des phases est empirique et les variations inter-

battements importantes des signaux cardiaques peuvent être perdues par le lissage. En outre,

ces méthodes présentent une complexité de calcul plus élevée que les méthodes linéaires [10].

Le filtrage adaptatif est une autre approche classique pour la suppression de l’ECGm et

l’extraction de l’ECGf [51]. Le filtrage adaptatif classique est basé sur la conception d’un filtre

adaptatif pour enlever l’ECGm en utilisant un ou plusieurs canaux de référence maternelle [51,

52], ou pour extraire directement les ondes QRS du fœtus [53,54]. Cependant, les méthodes de

filtrage adaptatif pour la suppression de l’artefact ECGm, nécessitent soit un canal de référence

ECGm qui est morphologiquement similaire à la forme d’onde contaminante, soit plusieurs

canaux linéairement indépendants pour grossièrement reconstruire toute forme morphologique

des références [51]. Ces deux approches sont peu pratiques et ont des performances limitées, car

la morphologie des contaminants ECGm dépend fortement de l’emplacement des électrodes, et il

n’est pas toujours possible de bien reconstruire l’ECGm à partir d’une combinaison linéaire des

électrodes de référence [10]. Par conséquent, un filtre adaptatif qui ne nécessite pas d’électrodes

de référence ou tout au plus une seule référence, sans contrainte de similarité morphologique,

est d’un grand intérêt. Le cadre du filtrage de Kalman, qui peut être considéré comme un

1Acronyme anglais de multidimensional independent component analysis
2Acronyme anglais de independent component analysis
3Acronyme anglais de principal component analysis
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exemple de filtres adaptatifs, est une approche prometteuse qui utilise uniquement des références

ECGm et ECGf arbitraires pour supprimer l’ECGm et extraire l’ECGf. Dans [14], un ensemble

d’équations d’état a été utilisé pour modéliser la dynamique temporelle des signaux ECG, et

pour concevoir un filtre bayésien pour le débruitage de l’ECG. Ce cadre de filtrage bayésien a

ensuite été utilisé dans [13] pour extraire l’ECGf dans le mélange d’ECGm et d’ECGf mesuré

sur un canal unique. Cependant, comme il est mentionné dans [13], le filtre ne parvient pas à

distinguer les composantes maternelles et fœtales quand les battements de l’ECGm et de l’ECGf

se superposent entièrement. En pratique, il a été démontré que pour l’extraction de l’ECGf, les

méthodes de séparation aveugle de sources surpassent les filtres adaptatifs [45]. Un avantage

important du filtrage spatial sur les filtres adaptatifs classiques est leur capacité à séparer des

battements ECGm et ECGf qui se superposent, mais au prix d’une acquisition sur plus de deux

capteurs.

B.1.2 Défis Actuels

Au-delà de l’électrocardiographie, le cœur du fœtus peut être surveillé à l’aide d’autres modal-

ités [11], y compris l’échocardiographie [56], la phonocardiographie [57, 58], l’oxymétrie de

pouls [59], la cardiotocographie [60], et la magnétocardiographie [61, 62]. Parmi ces modalités,

l’échocardiographie, qui est fondée sur des techniques classiques d’échographie, est le moyen le

plus simple pour la surveillance cardiaque du fœtus [10]. Néanmoins, l’électrocardiographie et la

magnétocardiographie peuvent fournir plus d’informations sur l’état de cœur de fœtus, puisque

la plupart des anomalies cardiaques se manifestent sur la morphologie de l’ECG ou le magnéto-

cardiogramme (MCG) ou simplement dans les variations de l’intervalle R-R [11]. En raison de

la similarité morphologique de l’ECG et de son homologue magnétique, le MCG, les méthodes

fondées sur l’ECG sont également applicables à des signaux MCG. En fait, bien qu’utilisant la

technologie SQUID, le rapport signal sur bruit (RSB) du MCG du fœtus est habituellement plus

élevé que celui de l’ECG, mais les dispositifs d’enregistrement d’ECG sont plus simples et a plus

abordables par rapport aux systèmes MCG [10]. Ainsi, la présente étude se concentre sur des

mesures électriques (ou magnétiques) de l’activité cardiaque pour récupérer la forme de l’ECG

(ou du MCG) du fœtus avec la meilleure fidélité.

Dans un tel contexte, les méthodes proposées rencontrent un certain nombre de facteurs

limitants et posent des questions difficiles de traitement du signal. En plus du faible RSB de

signal cardiaque fœtal notamment par rapport au ECGm, les mouvements possibles du fœtus

et la variation de la fréquence cardiaque fœtale doivent être également considérés. En effet, le

rapport entre les rythmes cardiaques fœtaux et maternels, le rapport des puissances des ECG

fœtaux et maternels, le bruit et la position du fœtus peut changer la configuration des mélanges.

Les méthodes doivent donc être suffisamment robustes à la variation de ces facteurs. En outre,

les méthodes doivent être aussi automatiques que possibles pour être appliquées à de longues

séries de données avec une interaction minimale avec un opérateur, expert ou non.

Un autre facteur important dans ce contexte est le nombre de capteurs utilisés pour la mesure

des signaux. Les méthodes actuelles utilisant un unique capteur ne parviennent pas à récupérer
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les variations inter-battements de l’ECGf (par exemple, la méthode moyenne et les méthodes non

linéaires) ou sont incapables de distinguer les composantes maternelles et fœtales quand l’ECGf

et l’ECGm (en particulier les complexes QRS) se superposent dans le temps. La Figure B.2

montre un exemple de ce type de défaillance sur un enregistrement réel traité par filtrage bayésien

[13]. Les méthodes actuelles d’extraction de l’ECGf utilisant plusieurs capteurs (par exemple, la

séparation aveugle de sources [29], la séparation semi-aveugle de sources [63], le filtrage adaptatif

[51, 53], et l’analyse en composantes périodiques (πCA4) [30]) exploitent la redondance des

enregistrements multicanaux de l’ECG pour éliminer l’ECGm et les autres sources d’interférence.

Néanmoins, même si cette réduction a été couronnée de succès, le bruit exogène peut ne pas

être totalement éliminé de cette manière [49]. En outre, ces méthodes nécessitent plusieurs

canaux pour récupérer les faibles traces des signaux fœtaux. La Figure B.3 montre un exemple

de performance de deux méthodes classiques dans l’extraction des ECG maternels et fœtaux,

avec seulement deux électrodes. Comme on peut le voir, à la fois les algorithmes FastICA

[64] et πCA échouent complètement à extraire l’ECGf. Ceci peut être expliqué par les limites

inhérentes à ces méthodes. Si les ECG maternels et fœtaux sont pas linéairement mélangés,

les méthodes linéaires ne sont pas en mesure de les séparer. En outre, les signaux cardiaques

sont multidimensionnels [13], de sorte que ces méthodes ne sont pas applicables aux mélanges

sous-déterminés (c’est-à-dire avec un trop petit nombre de capteurs) ou lorsque les composantes

du fœtus sont dominées par le signal de la mère et le bruit.

Ainsi, un premier défi est le développement de méthodes monocanal, capables de discrim-

iner sans erreur les battements cardiaques maternels et fœtaux (même s’ils se superposent)

et de préserver les dynamiques inter-battements de l’ECGf. La performance de ces méthodes

doit être évaluée sur différents scénarios et configurations possibles des mélanges. Une seconde

étape consiste à développer des méthodes multicanales, qui surpassent les monocanales pour

l’extraction et le débruitage de signaux ECGf. Dans ce cas, le second défi est de concevoir des

méthodes qui utilisent un nombre minimal d’électrodes. En effet, ceci conduirait à des dispositifs

plus économiques, plus pratiques et portables, faciles à utiliser pour la surveillance de l’activité

cardiaque du fœtus sur de longues durées, en routine à l’hôpital ou même à domicile.

B.2 Méthodes Proposées

Visuellement, la première caractéristique d’un signal ECG est son caractère quasi-périodique

(voir Figure B.4). Dans ce travail, cette propriété de signaux ECG sera l’hypothèse fonda-

mentale de toutes nos méthodes proposées. Nous proposerons trois approches exploitant cette

propriété : modélisation de l’état dans un filtre de Kalman, une approche déterministe et une

approche statistique. Dans un tel contexte, dans la présente étude, nous nous concentrerons

d’abord sur un modèle amélioré du signal enregistré sur une électrode unique afin d’évaluer les

performances qui peuvent être obtenues avec une seule électrode par filtrage de Kalman. Ensuite,

nous étudierons l’amélioration de performance que l’on peut obtenir avec cette approche en util-

4Acronyme anglais de periodic component analysis
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Figure B.2: Exemple typique d’échec de la méthode [13] pour la discrimination des com-
posantes cardiaques de la mère et du fœtus lorsque les complexes QRS de l’ECGm et de l’ECGf
se chevauchent entièrement, par exemple entre t = 6s et t = 7s.
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Figure B.3: Exemple typique d’échec des méthodes multicanales actuelles pour l’extraction de
l’ECGf à partir d’un mélange d’ECGs maternels et fœtaux utilisant uniquement deux électrodes.
Les deux méthodes FastICA et πCA ne parviennent pas à extraire correctement l’ECGf.
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Figure B.4: Signal ECG typique.

isant des enregistrements multicanaux, mais en nous limitant à un nombre minimal d’électrodes

(généralement seulement deux). Enfin, nous développerons une méthode non paramétrique

(fondée sur les propriétés des statistiques d’ordre 2 d’un signal quasi-périodique), applicable à

des enregistrements à canal unique.

B.2.1 Filtrage de Kalman (Approche de Modélisation d’Etat)

Dans cette approche, nous supposons que l’enregistrement est réalisé sur un seul canal. Notre

objectif est d’extraire l’ECG du fœtus, considéré comme une variable d’état, et associé à une

équation d’état dans un filtre de Kalman. Dans [14], les filtres bayésiens comme le filtre de

Kalman étendu (EKF5) et le lisseur de Kalman étendu (EKS6) ont été proposés pour débruiter les

signaux mesurés sur un seul canal. L’équation d’état utilisée pour ces filtres est inspirée de [66], et

utilise un mélange de gaussiennes pour modéliser des ECG synthétiques réalistes. L’idée de base

est d’approximer le complexe PQRST par la somme pondérée de 5 fonctions gaussiennes dont

les paramètres doivent être ajustés. Dans [14], le générateur d’ECG synthétique, initialement

proposé dans [66] en coordonnées cartésiennes, a été réécrit en coordonnées polaires. Cette

modification permet une interprétation plus simple et claire des signaux [14]. Ce modèle modifié

a aussi été développé dans [67]. L’équation d’état associée à d’un signal d’ECG, dans sa forme

discrète avec une petite période d’échantillonnage δ, est la suivante :

θk+1 = (θk + ωδ)mod(2π)

zk+1 = − ∑
i∈W

δ
αi,kω

b2i,k
∆θi,kexp(−

∆θ2
i,k

2b2i,k
) + zk + ηzk

αi,k+1 = αi,k + ηαi
k

bi,k+1 = bi,k + ηbik

ψi,k+1 = ψi,k + ηψi

k

(B.1)

où θ, z, αi, bi, et ψi sont les variables d’état en coordonnées polaires et k désigne l’indice

de temps discret. W = {P,Q,R, S, T} est l’ensemble des ondes du complexe PQRST. αi et

5Acronyme anglais de extended Kalman filter
6Acronyme anglais de extended Kalman smoother
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Figure B.5: Illustration de la ψi, ce qui correspond au centre de la ième fonction gaussienne.

Figure B.6: Illustration de l’interpolation linéaire de phase entre deux intervalles R-R successifs.

bi correspondent aux paramètres d’amplitude et de largeur des fonctions gaussiennes utilisées

pour la modélisation de chacunes des ondes du battement cardiaque. Nous définissons ∆θi,k =

(θk−ψi)mod(2π), où ψi correspond à la phase du maximum de la ième fonction gaussienne (voir

Figure B.5). Enfin, ω est l’incrément de phase et ηzk, η
αi
k , ηbik , et ηψi

k sont des bruits additifs

aléatoires.

Le vecteur d’état du système et le vecteur de bruit du processus sont définis comme suit : xk = [θk, zk, αP,k, ..., αT,k, bP,k, ..., bT,k, ψP,k, ..., ψT,k]
T

wk = [ωk, η
z
k, η

αP
k , ..., ηαT

k , ηbPk , ..., ηbTk , ηψP

k , ..., ηψT

k ]T
(B.2)

et on note Qk = E
{
wkw

T
k

}
la matrice de variance-covariance de bruit du processus.

Le vecteur d’état associé à ce signal ECG est donc défini par sa phase θk, son amplitude zk

et les paramètres des fonctions gaussiennes, αi, bi, et ψi. En plus de la mesure de l’ECG bruité,

noté sk, une phase observée, φk, est obtenue par une interpolation linéaire dans [0, 2π[ entre

deux intervalles R-R successifs (Figure B.6), conduisant au système suivant :[
φk

sk

]
=

[
1 0

0 1

]
.

[
θk

zk

]
+

[
uk

vk

]
, (B.3)

où uk et vk sont les bruits d’observation supposés de moyenne nulle et de matrice de variance-

covariance notée Rk = E
{

[uk, vk]
T [uk, vk]

}
.
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Les ECGs composants le mélange observé peuvent être estimés en appliquant l’EKF de

manière récursive : à chaque étape, un ECG est extrait selon une procédure de déflation

[13]. Dans le cas d’un mélange d’ECGm et d’ECGf, la première étape extrait, à partir de

l’enregistrement brut, l’ECG dominant (souvent l’ECGm) en considérant la somme de l’ECGf

et des autres bruits comme un bruit gaussien unique. Après la soustraction de l’ECG dominant

à partir du signal original, la deuxième étape est l’extraction de l’ECGf à partir de ce signal

résiduel. Cette procédure est appelée EKF séquentiel ou EKS séquentiel (EKF-seq ou EKS-seq).

Dans la première étape de cette procédure de déflation, l’ECGf et les autres bruits sont modélisés

par des bruits gaussiens vk et wk, qui n’est pas une hypothèse pertinente. De plus, les ECGf

peuvent être confondus avec l’ECG dominant - et éliminés lors de la soustraction - lorsque leurs

ondes (en particulier le complexe QRS) se chevauchent. Enfin, les erreurs de chaque étape de

déflation, s’accumulent au cours de la procédure, limitant les performances.

Méthodes

Pour résoudre ce problème, nous proposons d’étendre le cadre EKF pour l’extraction d’un ECG

à l’extraction de plusieurs ECGs. Pour cela, chaque ECG présent dans le signal observé sera

modélisé par une équation d’état. Les nouvelles équations d’état sont associées à des équations

d’observation étendues de sorte que chaque ECG possède une observation indépendante de la

phase. Enfin, l’observation sur le capteur unique est le mélange de tous les ECGs et du bruit.

Les équations d’état (B.1) sont ainsi généralisées pour modéliser simultanément N ECGs

mélangés dans une seule observation. Dans ce cas, les équations d’état peuvent être écrites :

θ
(1)
k+1 = (θ

(1)
k + ω(1)δ)mod(2π)

z
(1)
k+1 = − ∑

i∈W (1)

δ
α

(1)
i,kω

(1)

b
(1)2

i,k

∆θ
(1)
i,k exp

(
−

∆θ
(1)2

i,k

2b
(1)2

i,k

)
+ z

(1)
k + ηz

(1)

k

α
(1)
i,k+1 = α

(1)
i,k + η

α
(1)
i

k

b
(1)
i,k+1 = b

(1)
i,k + η

b
(1)
i
k

ψ
(1)
i,k+1 = ψ

(1)
i,k + η

ψ
(1)
i

k
...

θ
(N)
k+1 = (θ

(N)
k + ω(N)δ)mod(2π)

z
(N)
k+1 = − ∑

i∈W (N)

δ
α

(N)
i,k ω

(N)

b
(N)2

i,k

∆θ
(N)
i,k exp

(
−

∆θ
(N)2

i,k

2b
(N)2

i,k

)
+ z

(N)
k + ηz

(N)

k

α
(N)
i,k+1 = α

(N)
i,k + η

α
(N)
i

k

b
(N)
i,k+1 = b

(N)
i,k + η

b
(N)
i
k

ψ
(N)
i,k+1 = ψ

(N)
i,k + η

ψ
(N)
i

k

(B.4)
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Par conséquent, les vecteurs d’état et de bruit du nouveau modèle sont :

xk = [θ
(1)
k , z

(1)
k , α

(1)
P,k, ..., α

(1)
T,k, b

(1)
P,k, ..., b

(1)
T,k, ψ

(1)
P,k, ..., ψ

(1)
T,k, . . . ,

θ
(N)
k , z

(N)
k , α

(N)
P,k , ..., α

(N)
T,k , b

(N)
P,k , ..., b

(N)
T,k , ψ

(N)
P,k , ..., ψ

(N)
T,k ]T

wk = [ω
(1)
k , ηz

(1)

k , η
α
(1)
P

k , ..., η
α
(1)
T

k , η
b
(1)
P
k , ..., η

b
(1)
T
k , η

ψ
(1)
P

k , ..., η
ψ
(1)
T

k , . . . ,

ω
(N)
k , ηz

(N)

k , η
α
(N)
P

k , ..., η
α
(N)
T

k , η
b
(N)
P
k , ..., η

b
(N)
T
k , η

ψ
(N)
P

k , ..., η
ψ
(N)
T

k ]T

(B.5)

et on note Qk = E
{
wkw

T
k

}
la matrice de variance-covariance du bruit de modèle.

Dans ce modèle, chaque jeu de paramètres [θ
(n)
k , z

(n)
k , α

(n)
P,k, ..., α

(n)
T,k, b

(n)
P,k, ..., b

(n)
T,k, ψ

(n)
P,k, ..., ψ

(n)
T,k]

T

∀n ∈ {1, . . . , N} est liée à l’un des ECGs. Ici aussi, en détectant les pics R des N ECGs,

N observations de phase supplémentaires sont obtenues. Pour ce faire, une valeur de phase

comprise entre 0 et 2π est attribuée aux échantillons intermédiaires des intervalles R-R, pour

chacun des N ECGs, séparément. Ces observations de phase supplémentaires sont utilisées

pour synchroniser les trajectoires dynamiques du filtre de Kalman avec les signaux bruités de

référence, sans nécessiter de synchronisation manuelle. De cette façon, la nature quasi-périodique

de chaque signal ECG est exploitée. Ainsi, les observations de phase des N ECGs, φ(1),...,φ(N),

et le mélange bruité (mesuré sur un seul canal) des N ECGs, s, sont liés au vecteur d’état à

l’instant k comme suit :



φ
(1)
k

φ
(2)
k
...

φ
(N)
k

sk


=


1 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0
...

...
. . . 0 . . . 0

0 0 . . . 1 . . . 1

 .



θ
(1)
k

θ
(2)
k
...

θ
(N)
k

z
(1)
k

z
(2)
k
...

z
(N)
k


+



u
(1)
k

u
(2)
k
...

u
(N)
k

vk


(B.6)

où u
(1)
k ,...,u

(N)
k et vk sont les bruits d’observation supposés de moyenne nulle, et la matrice de

variance-covariance du bruit d’observation est Rk = E
{

[u
(1)
k , ..., u

(N)
k , vk]

T [u
(1)
k , ..., u

(N)
k , vk]

}
.

Ce modèle d’état étendu de filtre de Kalman est appelé EKF parallèle ou EKS parallèle (EKF-

par, ou EKS-par), respectivement. L’EKF-par, ou l’EKS-par sont plus précis pour extraire

l’ECGf à partir de capteurs abdominaux que l’EKF-seq ou l’EKS-seq. En effet, dans la méthode

proposée tous les ECGs sont modélisés conjointement par les équations d’états de sorte que seuls

les vecteurs de bruit de l’état et de la mesure sont supposés être distribués normalement, ce qui

est réaliste. De plus, les équations d’état de l’EKF-par modélisent correctement la superposition

possible des ondes de plusieurs ECGs. Enfin, les bruits d’état et d’observation permettent

l’adaptation à des variabilités des formes de l’ECG. Bien sûr, ce modèle ne peut pas modéliser

de trop grandes variations (par exemple des arythmies), mais l’existence d’un résidu important

permettrait de détecter des battements anormaux.
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L’EKF-par et l’EKS-par nécessitent plusieurs paramètres d’état, notamment {α(n)
i , b

(n)
i , ψ

(n)
i ,

ω(n)}i∈Wn . La procédure d’estimation des paramètres décrits dans [14] pour un seul ECG peut

être facilement étendue pour estimer les paramètres d’état de N ECGs.

Résultats

La Figure B.7 présente les résultats de l’EKS-par et de l’EKS-seq en utilisant un seul (le premier)

canal des données DaISy [71]. La méthode πCA [30], utilisant tous les huit canaux, est utilisée

comme référence (golden standard). Contrairement à l’EKS-seq, l’EKS-par extrait correctement

les ECGf, même lorsque les complexes QRS des ECGf et l’ECGm se superposent.

Cette méthode est capable d’extraire l’ECGf à différentes périodes de la grossesse et sur

tous les capteurs, quelle que soit la position du capteur sur l’abdomen de la mère. Pour le

montrer, nous avons utilisé des enregistrements issus de la base de données non invasive d’ECGf

PhysioNet [72]. Les premières 20 secondes des mélanges et les ECGf estimés par l’EKS-par sur

les données ecgca274 canal 5, ecgca748 canal 4, et ecgca997 canal 3 sont montrées à la Figure

B.8.

La méthode proposée a été principalement conçue pour les signaux d’ECG. Néanmoins, en

raison de la similarité morphologique entre l’ECG et le MCG, elle est applicable directement à

des enregistrements MCG. Un ensemble d’enregistrements MCG de fœtus jumeaux a été utilisé

pour évaluer les performances de la méthode proposée dans l’extraction de signaux cardiaques

de jumeaux. La Figure B.9 présente les résultats de l’EKS-par pour extraire les deux signaux

MCG fœtaux à partir d’un unique capteur. Même si la méthode multicanal πCA (utilisant

168 capteurs !) donne de meilleurs résultats que les méthodes de canal unique (EKF-par ou

EKS-seq), l’algorithme EKS-par réussit à extraire les deux MCG fœtal alors que l’EKS-seq n’est

pas capable de discriminer correctement les deux MCG fœtaux quand ils se chevauchent (voir

parties de signaux encadrées, dans la Figure B.9).

En considérant différents scénarios possibles dans le problème de l’extraction de l’ECGf, nous

avons évalué les performances de la méthode proposée sur des données synthétiques, en faisant

notamment varier la puissance de bruit d’entrée, le rapport entre les amplitudes de l’ECGf et

de l’ECGm, et le rapport entre les rythmes cardiaques du fœtus et de la mère. Les résultats

montrent la robustesse de l’algorithme dans une large gamme de variation de tous ces paramètres,

ce qui atteste de son intérêt sur un large éventail des configurations réelles.

B.2.2 Décomposition Tensorielle (Approche Déterministe)

Dans cette approche, nous supposons que les données ont été enregistrées par plusieurs capteurs,

l’objectif restant de n’en utiliser qu’un nombre réduit (généralement deux). Chaque signal ECG

pouvant être considéré comme multidimensionnel [13], les signaux enregistrés sont donc des

mélanges sous-déterminés (i.e. plus de sources que de capteurs) car issus du mélange de l’ECG

de la mère et de celui ou ceux du ou des fœtus. Les méthodes classiques de séparation aveugle

de sources telles que l’ICA ou la πCA ne peuvent être utilisées. Dans ce travail, nous utilisons

la décomposition tensorielle qui peut être appliquée aux mélanges sous-déterminés.
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Figure B.7: Comparaison de l’extraction de l’ECGf par les méthodes EKS-par, EKS-seq et πCA
sur un seul canal des données DaISy. Contrairement à l’EKS-seq, l’EKS-par extrait correctement
l’ECGf même quand l’ECGm et l’ECGf se superposent. Ceci est particulièrement visible entre t
= 6s et t = 7s.
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Figure B.9: Résultats des EKS-par, EKS-seq, et πCA sur les données MCG de jumeaux. Con-
trairement à l’EKS-seq, l’EKS-par extrait correctement le MCG du fœtus même quand le MCG
maternel et le MCG fœtal se chevauchent entièrement dans le temps. Ceci est particulièrement
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La première étape consiste à construire un tenseur en réarrangeant les données bi-dimensionn-

elles (temps × capteurs) originelles dans un tenseur tri-dimensionnel. Pour cela, la quasi-

périodicité des signaux ECG est exploitée comme hypothèse de base comme dans le cas des sig-

naux de télécommunication [16]. Cette méthode peut s’appliquer aux mélanges sous-déterminés

tant que les Q sources d’intérêt sont composées de symboles périodiques dès lors que ces péri-

odes sont différentes d’une source à l’autre. A cette fin, pour chacune des sources à extraire, un

tenseur tri-dimensionnel (capteurs × période du symbole × motif temporel) est construit. Ainsi

pour la qème source, les Lq périodes composées chacune de Tq échantillons temporels enregistrées

sur M capteurs permettent de construire le tenseur Y(q) ∈ RM×Lq×Tq .

Dans le contexte de l’extraction de l’ECG, en raison de la nature quasi-périodique du signal

ECG, on peut dans un premier temps détecter les pics R de l’ECG pour identifier les différents

battements (symboles). Ensuite, le tenseur Y(1) est construit en se synchronisant sur les bat-

tements de la mère puis un autre tenseur Y(2) est construit de la même façon à partir des pics

R relatifs au fœtus. Ces tenseurs Y(q) peuvent donc être décomposés en matrices de facteurs

A(q) ∈ RM×Rq , S(q) ∈ RLq×Rq et H(q) ∈ RTq×Rq qui fournissent des estimations de la matrice

de mélange, de l’amplitude des battements de l’ECG et la structure temporelle de ceux-ci. Ces

matrices sont obtenues par la décomposition canonique polyadique (CP) selon le critère :

min
{A(q),S(q),H(q)}

∑
i,j,k

∥∥∥∥∥∥y(q)
ijk −

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr

∥∥∥∥∥∥
2

F

, (B.7)

où y
(q)
ijk sont les éléments de Y(q) et Rq est le rang supposé pour la qème source correspondant

au nombre de composantes de cet ECG. Si Tq > Rq et Lq > Rq alors M = 2 capteurs suffisent

à séparer Rq composantes [16]. Ceci démontre que l’on peut extraire les ECG de la mère et

du fœtus à partir de seulement 2 capteurs. Dans ce cas, un algorithme classique, basé sur la

décomposition en valeurs propres [111], peut être utilisé pour calculer la décomposition (CP7).

Cependant, le critère classique (B.7) ne permet pas de retrouver le signal ECG du fœtus.

Ceci est du au fait que le signal ECG du fœtus ECGf est bien moins puissant que celui de la

mère ECGm. Pour surmonter ce problème, une décomposition tensorielle robuste est proposée

en modifiant la fonction de coût de la CP.

Méthodes

Le premier critère robuste est fondé sur une pondération du critère originel CP (WCP8) qui

applique un poids sur chacun des éléments du tenseur pour mieux se concentrer sur le signal

d’intérêt. En conséquence, le nouveau critère est :

min
{A(q),S(q),H(q)}

∑
i,j,k

∥∥∥∥∥∥w(q)
ijk

y(q)
ijk −

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr

∥∥∥∥∥∥
2

F

, (B.8)

7Acronyme anglais de canonical polyadic
8Acronyme anglais de weighted CP
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Figure B.10: Fonctions de coûts appliquées à l’erreur de reconstruction du tenseur pour les
critères CP, WCP et GCP.

où

w
(q)
ijk = exp

−(y
(q)
ijk − µij)2

σ2
ij

 , q = 1, . . . , Q, (B.9)

sont les éléments d’un tenseur de poids non négatif qui a la même dimension que Y(q). Ici, µik

est la moyenne de Y(q) par rapport à la jème dimension et σik est l’écart type de Y(q) selon la

même dimension. En pratique, des poids de petites valeurs sont attribués aux valeurs fortement

différentes de la valeur moyenne.

Une deuxième solution plus générale, qui peut également présenter un intérêt pour d’autres

applications, consiste à remplacer la fonction de coût quadratique de la décomposition CP clas-

sique par une fonction de coût saturante. On obtient alors le critère suivant :

min
{A(q),S(q),H(q)}

∑
i,j,k

ψ

y(q)
ijk −

Rq∑
r=1

a
(q)
ir s

(q)
jr h

(q)
kr

 , (B.10)

avec ψ(u) = 1− exp{− u2

2σ2 }. La décomposition résultante est appelée décomposition CP gaussi-

enne (GCP9). Dans ce cas, une erreur de reconstruction supérieure à 3σ est limitée à une valeur

proche de 1 dans le critère. Le paramètre σ, qui ajuste la forme de la fonction de pondération,

permet ainsi de définir un seuil entre les erreurs considérées comme normales et celles aberrantes.

La valeur optimale de σ doit donc être choisie en fonction des données. Ce critère peut être

optimisé en utilisant un algorithme de descente du gradient.

Les différentes fonctions de coûts utilisées sont représentées à la Figure B.10.

Ces deux nouvelles méthodes peuvent être utilisées pour extraire directement l’ECG fœtal.

9Acronyme anglais de Gaussian CP
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Cependant, dans ce cas, le principal inconvénient est de perdre la dynamique des sources (i.e.

le fait que les battements ont des allures temporelles proches mais différentes d’un battement

à l’autre). En effet, une extraction directe de l’ECGf fournit des battements ayant exactement

le même motif temporel à l’amplitude près. Dans le but d’estimer les ECGf les plus réalistes

possibles, un filtrage de Kalman est appliqué aux données. Pour se faire, l’approche précédente

(filtrage de Kalman appliqué à un seul capteur) est étendue pour extraire plusieurs ECGs à partir

d’un enregistrement multi-capteurs. Dans ce cas, les équations d’état peuvent être conservées,

mais le vecteur d’observation est lié au vecteur d’état à l’instant k par :

φ
(1)
k

φ
(2)
k
...

φ
(N)
k

s
(1)
k

s
(2)
k
...

s
(M)
k


=



1 0 . . . 0 0 . . . 0
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...
. . . 0 0 . . . 0
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. . .
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...
. . .
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, (B.11)

où les ECGs maternel et fœtal ont N composantes, chacun des ECG pouvant être composés de

plusieurs composantes. Pour appliquer ce filtrage de Kalman, les matrices de facteurs obtenues

par la décomposition du tenseur sont utilisées pour obtenir les valeurs des paramètres du modèle

d’état : {α(n)
i , b

(n)
i , ψ

(n)
i }i∈W est obtenu à partir de H(n), la variabilité de la nème composante de

l’ECG obtenue par S(n) peut être utilisée comme bruit d’état. La matrice de mélange

A =


a11 . . . a1N

...
. . .

...

aM1 . . . aMN

 (B.12)

est obtenue à partir de la matrice de facteur A(n).

Résultats

La méthode de décomposition tensorielle a été appliquée à des mélanges d’ECG et de MCG. Les

résultats ont été comparés à la séparation de sources par l’algorithme Fast-ICA, ou la πCA. Les

méthodes de décomposition tensorielle suivie du filtrage de Kalman sont notées WCP+EKS et

GCP+EKS.

Les ECGm et ECGf extraits grâce aux deux premiers canaux de la base de données DaISy [71]

sont présentés à la Figure B.11. Pour cela, le signal maternel est considéré comme étant composé

de deux composantes tandis que celui du fœtus n’en ayant qu’une seule.

Comme on peut le voir, les méthodes Fast-ICA et πCA ne peuvent extraire l’ECGf avec

uniquement deux capteurs car, dans ce cas, les mélanges sont sous-déterminés. La procédure

de déflation fournit de meilleurs résultats par rapport à ces méthodes. Cependant, certaines
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portions de l’ECGf sont déformées par cette méthode, cela est particulièrement visible pour des

instants entre t = 0s et t = 1s et entre t = 8s et t = 9s. Cette distorsion n’est plus visible avec

la méthode proposée.

La base de données PhysioNet [72] a été utilisée pour montrer la capacité de la méthode

à extraire l’ECGf à différentes périodes de grossesse et à partir de capteurs placés à différents

endroits de l’abdomen. Cette base de données se compose d’une série de 55 enregistrements

multicanaux abdominaux enregistrés sur un seul sujet de 21 à 40 semaines de grossesse. La Fig-

ure B.12 montre les estimations obtenues par WCP+EKS pour trois enregistrements: signaux

ecga192 en utilisant les canaux 3 et 5, ecga444 en utilisant les canaux 3 et 6, et ecga811 en util-

isant les canaux 3 et 4. Pour chaque jeu de données, les 20 premières secondes sont représentées.

Comme on peut le voir, bien que l’inspection visuelle des données montre que l’ECG fœtal a une

amplitude très faible dans les mélanges, ceux-ci sont correctement extraits dans les différentes

situations.

Les performances de la méthode proposée pour extraire les signaux cardiaques de jumeaux

ont également été évaluées à l’aide de deux canaux MCG. La Figure B.13 présente les estima-

tions obtenues par πCA, la procédure de déflation et par GCP+EKS et WCP+EKS. Comme

précédemment, la méthode πCA ne parvient pas à extraire les signaux cardiaques car les

mélanges sont sous-déterminés et la procédure de déflation améliore un peu les estimations.

Cependant, les sources interférantes et le bruit ne sont pas complètement supprimés. Finale-

ment, GCP+EKS et WCP+EKS proposées dans cette thèse permettent d’améliorer grandement

l’extraction des signaux cardiaques des jumeaux.

La robustesse de la méthode de décomposition tensorielle proposée par rapport aux variations

d’amplitude, aux valeurs aberrantes, à l’initialisation et aux erreurs de synchronisation a été

quantifiée par des simulations. De plus, les comparaisons sur simulations entre la méthode

multicanal et celle monocanal montrent l’apport d’un canal supplémentaire.

B.2.3 Modélisation Non Paramétrique (Approche Statistique)

Comme mentionné pour la représentation d’état, il est possible de modéliser le signal ECG par

un modèle paramétrique de sorte que chaque battement est modélisé comme la somme de 5

fonctions gaussiennes. Chacune des fonctions permet de modéliser une des ondes P, Q, R, S ou

T (Figure B.14) :

z(θ) =
∑

i∈{P,Q,R,S,T}

αi exp

(
−

(θ − ψi)2

2b2i

)
. (B.13)

Ce modèle peut alors être utilisé par un filtre de Kalman étendu pour débruiter un ECG

ou pour extraire l’ECGf à partir d’un enregistrement abdominal. Cette méthode est donc

paramétrique en ce sens que l’amplitude (inconnue) z(θ) est explicitement paramétrée.

D’autre part, les méthodes non-paramétriques effectuent l’estimation, la prédiction ou le

débruitage sans paramétrage explicite de l’amplitude (inconnue) z(θ). L’approche par lissage

à base de splines est une de ces méthodes non-paramétriques classiques [105]. Dans ce cas,

l’amplitude z(θ) est considérée comme un processus statistique. En se limitant à l’ordre deux, il
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Figure B.11: ECGs extraits par Fast-ICA, πCA, la procédure de déflation, GCP+EKS, et
WCP+EKS en utilisant les deux premiers canaux de la base de données DaISy.
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est possible de la définir complètement par sa fonction moyenne m(θ) = E[z(θ)] et sa fonction de

covariance k(θ1, θ2) = E[(z(θ1)−m(θ1))(z(θ2)−m(θ2))] [106]. En conséquence, le battement de

l’ECG, z(θ) est considéré comme un processus gaussien (GP10) G P(m(θ), k(θ1, θ2)). Dans ce

cas, le signal latent z(θ) n’est pas paramétré directement comme avec un modèle paramétrique,

mais ce sont ses statistiques qui le sont grâce à des hyper-paramètres.

Comme illustré à la Figure B.14, un battement ECG peut être décomposé en trois parties:

l’onde P, le complexe QRS et l’onde T, qui ont des caractéristiques différentes comme la cor-

rélation temporelle et la puissance. Les ondes P et T partagent les mêmes caractéristiques

différentes du complexe QRS : ainsi les variations sont plus lentes pour les ondes P et T que

pour le complexe QRS et la puissance de ces ondes est plus faible que celle du complexe. De ce

fait, la fonction de covariance non-stationnaire suivante peut être utilisée :

k(θ1, θ2) = σ(θ1)σ(θ2)

√√√√ 2ld(θ1)ld(θ2)

ld(θ1)2 + ld(θ2)2
× exp

(
−

(
θ1 − θ2

)2
ld(θ1)2 + ld(θ2)2

)
, (B.14)

avec

σ(θ) = am + (aM − am) exp

(
−(θ − θ0)2

2σ2
T

)
, (B.15)

ld(θ) = lM − (lM − lm) exp

(
−(θ − θ0)2

2σ2
l

)
, (B.16)

où σ(θ) et ld(θ) permettent d’avoir une amplitude variant dans le temps (entre am et aM ) et

une longueur de cohérence également variable (entre lm et lM ).

La Figure B.15 montre deux tirages a priori d’un GP de fonction moyenne nulle et de fonction

de covariance (B.14). Cette figure illustre la flexibilité d’une telle représentation par rapport au

modèle (B.13) : un même a priori, permet de générer une infinité de signaux différents partageant

les mêmes caractéristiques.

Enfin, pour modéliser la succession de battements, le GP associé est à fonction moyenne nulle

10Acronyme anglais de Gaussian process
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Figure B.15: Deux fonctions a priori généré par un GP de moyenne nulle et de fonction de
covariance (B.14). La zone grisée représente plus et moins de deux fois l’écart type du prieur. Sur
la droite, les fonctions correspondant à σ(θ) et ld(θ).

et sa fonction de covariance est donnée par :

ks
(
t, t′
)

=

N∑
n=1

N∑
n′=1

k
(
t− τn, t′ − τn′

)
, (B.17)

où {τn}1>n>N est l’ensemble des instants des pics R détectés à partir du mélange.

Le signal enregistré (monocanal) x(t) est supposé être une superposition du signal ECG s(t)

et d’un bruit additif n(t) :

x(t) = s(t) + n(t). (B.18)

Le bruit est également modélisé par un GP à fonction moyenne nulle et de fonction de covariance

kn(t, t′) donnée par :

kn(t, t′) = σ2
n exp

(
−(t− t′)2

2l2n

)
+ σ2

wδ(t− t′), (B.19)

où δ(·) est le Dirac. Le premier terme de cette expression permet de modéliser les variations de

la ligne de base de l’ECG, le second terme correspond à un bruit blanc stationnaire de puissance

σ2
w.

L’ensemble des hyper-paramètres φ = {am, aM , σT , lm, lM , σl, σn, ln, σw} est estimé en max-

imisant la log-vraisemblance marginale définie par [107] :

log p
(
x|{Tk}k,φ

)
= −1

2
xT
(
Ks + Kn

)−1
x− 1

2
log
∣∣∣Ks + Kn

∣∣∣− M

2
log(2π), (B.20)

où {Tk}k est l’ensemble des échantillons enregistrés, K· est la matrice de covariance dont le

(p, q)ème terme est k·(Tp, Tq), x = [x(T1), · · · , x(TM )]T et M le nombre d’échantillons temporels.

Cette optimisation est obtenue par une montée de gradient avec une initialisation des paramètres

choisie manuellement en fonction des informations biomédicales connues.
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L’extraction de l’ECG fœtal à partir d’un seul capteur est alors une extension directe de la

méthode proposée pour la modélisation d’un seul ECG :

x(t) = sm(t) + sf (t) + n(t). (B.21)

où sm(t) est le signal ECG maternel, sf (t) le signal de l’ECG fœtal et n(t) le bruit additif. Cha-

cun de ces signaux est modélisé comme un GP de fonction moyenne nulle et dont les fonctions de

covariance km(·, ·) et kf (·, ·) sont définies par (B.14) et kn(·, ·) défini par (B.19), respectivement.

Grâce à cette modélisation, les estimations de sm(t) et sf (t) sont alors données par :ŝm(t) = kTm

(
Km + Kf + Kn

)−1
x

ŝf (t) = kTf

(
Km + Kf + Kn

)−1
x

(B.22)

où km = [km(t, T1), · · · , km(t, TM )]T et kf = [kf (t, T1), · · · , kf (t, TM )]T .

Cette procédure peut également être étendue dans le cas de grossesse multiple en ajustant le

nombre de GP au nombre de signaux présents.

Bien que cette méthode a montré son efficacité pour l’extraction de l’ECG fœtal, elle souffre

cependant de plusieurs inconvénients. En effet, elle nécessite de nombreux hyper-paramètres

pour s’ajuster correctement aux caractéristiques physiologiques d’un battement cardiaque. Ceci

se traduit par un modèle assez compliqué et il en résulte des difficultés à optimiser la log-

vraisemblance. En outre, la double sommation de l’équation (B.17) est assez coûteuse en temps

de calcul.

Pour essayer de simplifier ce modèle, deux pistes sont envisagées. Pour cela, les enreg-

istrements sont décomposés par un banc de filtres en sous-bandes : cette décomposition a pour

intérêt de ne plus recourir à des rayons de cohérence variable pour modéliser le changement de

dynamique des différentes ondes de l’ECG. En effet, pour chacune des sous-bandes, le rayon de

corrélation est alors considéré comme constant, chacune des ondes appartenant principalement

à une seule sous-bande. D’autre part, pour limiter le coût de calcul, la détection des pics R

permet de construire une relation entre le temps et un espace des phases. A chaque battement

est ainsi défini une phase linéaire de 0 à 2π : θ(t) est défini de telle sorte qu’à chaque intervalle

[τk, τk+1[ est associé un intervalle [2(k − 1)π, 2kπ[ (Figure B.16).

Le signal ECG original dans la ième sous-bande est alors modélisé à partir d’un GP 2π

périodique et de la fonction définissant la phase θ(t). La fonction de covariance associée à ce

GP est définie par :

k(i)
s (t, t′) = σ2(i) exp

(
−

sin2
((
θ(t)− θ(t′)

)
/2
)

l2d(i)

)
, (B.23)

σ2(i) et ld(i) définissant la puissance et la longueur de cohérence pour la ième sous-bande.

Il est important de noter que la fonction de covariance proposée permet de s’adapter à bien

des signaux quasi-périodiques tels que l’ECG grâce à la transformation θ(t) du temps en phase
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Figure B.16: Illustration de la définition de l’espace des phases : chaque battement cardiaque
est linéairement déformé dans un intervalle de longueur égale à 2π.

qui associe chaque battement à l’intervalle [0, 2π[. De plus, un tel modèle non-paramétrique ne

fait aucune hypothèse sur la forme des signaux mais exploite uniquement sa quasi-périodicité et

sa régularité.

Ainsi, dans le signal enregistré, chaque ECG est modélisé par un GP dont les fonctions

de covariances sont choisies comme (B.23). Ainsi, l’estimation de l’ECG maternel au sens du

maximum a posteriori donne pour la ième sous-bande :

ŝm,i(t) = k(i)
m

T
(
K(i)
m + K

(i)
f + K(i)

n

)−1
xi. (B.24)

De la même manière, l’ECG fœtal est estimé par :

ŝf,i(t) = k
(i)
f

T(
K(i)
m + K

(i)
f + K(i)

n

)−1
xi. (B.25)

Enfin, l’estimation complète des signaux est obtenue après sommation des I sous-bandes :ŝm(t) =
∑I

i=1 ŝm,i(t)

ŝf (t) =
∑I

i=1 ŝf,i(t)
(B.26)

Ce choix pour la fonction de covariance (B.23) ne contient que 2 paramètres (σ, ld) par sous-

bande au lieu des 6 paramètres (am, aM , σT , lm, lM , σl) pour la fonction de covariance (B.14). De

ce fait, l’optimisation de la log-vraisemblance est simplifiée. Le principal avantage de la nouvelle

fonction de covariance est d’éviter la double sommation présente dans (B.17) grâce à l’utilisation

d’une fonction de covariance périodique combinée à la fonction phase θ(t).

Résultats

La Figure B.17 illustre les possibilités offertes par la modélisation des signaux en tant que GP

avec une fonction de covariance (B.14) pour extraire les ECG maternel et fœtal en utilisant
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Figure B.17: Extraction de l’ECG fœtal via la modélisation par GP avec une fonction de covari-
ance définie par (B.14). Les données proviennent de la base de données DaISy. De haut en bas :
signal enregistré x(t), l’estimation de l’ECG maternel ŝm(t), l’estimation de l’ECG fœtal ŝf (t) et
du bruit résiduel r(t) (courbe gris clair) avec la ligne de base estimée (courbe noire).

seulement le premier capteur de la base de données DaISy [71].

Comme on peut le voir, la méthode proposée fournit de bonnes estimations pour les ECG

maternel et fœtal, même lorsque les pics R maternels et fœtaux apparaissent simultanément

(par exemple, au moment des quatrième, septième et dixième battements maternels). De plus,

une inspection visuelle du bruit résiduel r(t) = x(t) − ŝm(t) − ŝf (t) confirme la validité de la

modélisation choisie (B.21). En effet, ce bruit résiduel ne comporte qu’une ligne de base basse

fréquence (courbe noire) lié au premier terme de la fonction de covariance (B.19) et un bruit

quasi-blanc (validé par son estimation empirique de sa fonction de covariance). En outre, ces

deux contributions sont décorrélés des signaux ECG maternel et fœtal estimés.

Afin de montrer la capacité de la méthode proposée à extraire l’ECGf à différentes périodes

de la grossesse et à partir de différents capteurs, elle a aussi été appliquée sur la base de donnée

PhysioNet [72]. Les signaux ont tout d’abord été rééchantillonnés à 250Hz puis décomposés en

trois sous-bandes 0-30Hz, 30-60Hz et 60-125Hz. La Figure B.18 montre les 20 premières secondes

des mélanges ainsi que les estimations des ECGf correspondants obtenues par une modélisation

par GP avec comme fonction de covariance (B.23).

De même, cette méthode a été appliquée aux données MCG de jumeaux. Les signaux ont

été rééchantillonnés à 256Hz et décomposés en sous-bandes 0-30Hz, 30-60Hz et 60-128Hz. La

Figure B.19 montre les résultats obtenus par le filtrage de Kalman parallèle et la modélisation

non-paramétrique. L’inspection visuelle montre que la modélisation non-paramétrique est plus

efficace pour extraire les signaux MCG que la modélisation d’état.

Finalement, des mesures quantitatives pour comparer les approches non-paramétriques et

celle du filtrage de Kalman ont été obtenues sur des données simulées. Les résultats montrent

que la modélisation non-paramétrique surpasse le filtrage de Kalman notamment lorsque la



156 Résumé Etendu en Français (Extended Abstract in French)

−200

0

200

400
Recorded signal (dataset ecga771)

−50

0

50
Fetal ECG estimate

−20

0

20

40
Recorded signal (dataset ecga274)

−5

0

5
Fetal ECG estimate

R
el

at
iv

e 
A

m
pl

itu
de

−20

0

20

40
Recorded signal (dataset ecga748)

−5

0

5
Fetal ECG estimate

−20

0

20

40
Recorded signal (dataset ecga997)

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2
Fetal ECG estimate

Time [s]

Figure B.18: Signaux de la base de données PhysioNet. Quatre signaux enregistrés (ecga771
canal 3, ecga274 canal 5, ecga748 canal 4, et ecga 997 canal 3) ainsi que les estimations de l’ECGf.
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Figure B.19: Extraction de MCG de jumeaux à partir d’un seul capteur. De haut en bas : le
signal enregistré x(t), le MCG maternel estimé ŝm(t), les estimations des MCG des jumeaux ŝf1(t)
et ŝf2(t), et le bruit résiduel r(t) (courbe gris clair) avec la ligne de base estimée (courbe noire).
(a): le filtrage de Kalman parallèle, (b): la méthode non paramétrique repose sur la fonction de
covariance simplifiée (B.23).
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variabilité des signaux ECG augmentent.

B.3 Conclusion et Perspectives

Dans ce travail, nous avons abordé le problème de l’extraction non-invasive de l’ECG fœtal. Nous

avons proposé des méthodes qui utilisent un nombre minimal de capteurs entre un et deux et qui

permettent même l’extraction des signaux cardiaques de jumeaux. L’hypothèse fondamentale

a été la quasi-périodicité du signal ECG. Trois méthodes ont été proposées autour de celle-

ci : modélisation d’état, approche déterministe et méthode statistique. Pour l’ensemble des

méthodes proposées, dans un premier temps, des simulations ont été utilisées pour évaluer leurs

performances dans des différentes conditions, puis dans un second temps, sur des enregistrements

réels.

Les méthodes proposées dans ce travail ne se limitent pas aux signaux ECG car l’hypothèse

principale de ces méthodes est très générale. Ainsi par exemple la méthode tensorielle a égale-

ment été appliquée pour des potentiels évoqués issus de données de l’électroencéphalogramme

(EEG).

Plusieurs perspectives peuvent être envisagées. A court terme, l’automatisation du choix du

positionnement des fonctions gaussiennes dans le filtre de Kalman serait nécessaire. La méthode

tensorielle proposée nécessite la synchronisation exacte des battements pour la construction du

tenseur : ainsi, une méthode plus robuste aux erreurs de synchronisation serait un plus. De

même, la méthode non-paramétrique est coûteuse en temps de calcul, il pourrait être intéressant

d’essayer de la rendre plus rapide. A plus long terme, la détection des pics R dans l’ECG néces-

saire à la synchronisation permettant l’utilisation de la quasi-périodicité des signaux pourrait

être obtenue par une autre modalité telle que l’échocardiographie. Celle-ci permettrait d’obtenir

les instants des pics R fœtaux ou de détecter les battements anormaux. Enfin, certains aspects

cliniques devront être abordés grâce à l’utilisation des méthodes sur de nombreuses bases de

données comportant tant des signaux de fœtus normaux que présentant des pathologies car-

diaques et ce à plusieurs stades de la grossesse. Pour cela, des bases de données publiques sont

nécessaires pour s’assurer d’une comparaison juste entre les méthodes proposées et celles de la

littérature.
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Abstract: Congenital heart defects are the leading cause of birth defect-related deaths. The

fetal electrocardiogram (fECG), which is believed to contain much more information as com-

pared with conventional sonographic methods, can be measured by placing electrodes on the

mother’s abdomen. However, it has very low power and is mixed with several sources of noise

and interference, including the strong maternal ECG (mECG). In previous studies, several meth-

ods have been proposed for the extraction of fECG signals recorded from the maternal body

surface. However, these methods require a large number of sensors, and are ineffective with

only one or two sensors. In this study, state modeling, statistical and deterministic approaches

are proposed for capturing weak traces of fetal cardiac signals. These three methods implement

different models of the quasi-periodicity of the cardiac signal. In the first approach, the heart

rate and its variability are modeled by a Kalman filter. In the second approach, the signal is

divided into windows according to the beats. Stacking the windows constructs a tensor that is

then decomposed. In a third approach, the signal is not directly modeled, but it is considered

as a Gaussian process characterized by its second order statistics. In all the different proposed

methods, unlike previous studies, mECG and fECG(s) are explicitly modeled. The performance

of the proposed methods, which utilize a minimal number of electrodes, are assessed on synthetic

data and actual recordings including twin fetal cardiac signals.

Keywords: fetal ECG extraction, Kalman filter, tensor decomposition, Gaussian process.

Résumé : Les malformations cardiaques congénitales sont la première cause de décès liés à une

anomalie congénitale. L’électrocardiogramme du fœtus (ECGf), qui est censé contenir beau-

coup plus d’informations par rapport aux méthodes échographiques conventionnelles, peut être

mesuré par des électrodes sur l’abdomen de la mère. Cependant, il est très faible et mélangé

avec plusieurs sources de bruit et interférence, y compris l’ECG de la mère (ECGm) dont le

niveau est très fort. Dans les études précédentes, plusieurs méthodes ont été proposées pour

l’extraction de l’ECGf à partir des signaux enregistrés par des électrodes placées à la surface

du corps de la mère. Cependant, ces méthodes nécessitent un nombre de capteurs important,

et s’avèrent inefficaces avec un ou deux capteurs. Dans cette étude, trois approches innovantes

reposant sur une paramétrisation algébrique, statistique ou par variables d’état sont proposées.

Ces trois méthodes mettent en œuvre des modélisations différentes de la quasi-périodicité du

signal cardiaque. Dans la première approche, le signal cardiaque et sa variabilité sont modéli-

sés par un filtre de Kalman. Dans la seconde approche, le signal est découpé en fenêtres selon

les battements, et l’empilage constitue un tenseur dont on cherchera la décomposition. Dans la

troisième approche, le signal n’est pas modélisé directement, mais il est considéré comme un

processus Gaussien, caractérisé par ses statistiques à l’ordre deux. Dans les différents modèles,

contrairement aux études précédentes, l’ECGm et le (ou les) ECGf(s) sont modélisés explicite-

ment. Les performances des méthodes proposées, qui utilisent un nombre minimum de capteurs,

sont évaluées sur des données synthétiques et des enregistrements réels, y compris les signaux

cardiaques des fœtus jumeaux.

Mots clés : ECG fœtal extraction, filtre de Kalman, décomposition tensorielle, processus

Gaussien.
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