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Foreword 

The present dissertation comprises five chapters. In Chapter 1, an introduction of the 

general context of this research along with its motivations is presented. Chapters 2, 3 

and 4 are formalized as three consecutive scientific papers which have been submitted 

to international journals. These papers are described below: 

• Chapter 2: Canbaz B., Yannou B., Yvars P.-A. (2013) “Improving design 

process performance of distributed design systems with controlling wellbeing 

indicators of design actors”, submitted to Journal of Mechanical Design. 

• Chapter 3: Canbaz B., Yannou B., Yvars P.-A. (2013) “Preventing design 

conflicts in distributed design systems composed of heterogeneous design 

agents”, submitted to Engineering Applications of Artificial Intelligence. 

• Chapter 4: Canbaz B., Yannou B., Yvars P.-A. (2013) “Resolving design 

conflicts and promoting solidarity in distributed design”, submitted to IEEE 

Transactions on Systems, Man, and Cybernetics: Systems. 

Finally, Chapter 5 demonstrates the experimentation which was conducted to verify 

and validate the model presented in the earlier sections. 

Given the form with which the dissertation is formalized, two points are to be noted. 

The first is that Chapters 2, 3 and 4 have their individual references, while the 

references of Chapters 1 and 5 are listed at the end of the dissertation. Secondly, some 

repetitions between Chapters 2, 3 and 4 can be witnessed, which is inherent to the 

dissertation by papers. 
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Résumé Etendu (extended summary in French)  

Les processus de conception des produits et des services complexes nécessitent la 

collaboration de plusieurs experts de différentes disciplines. Les activités collaboratives 

et concourantes fournissent l’expertise nécessaire et réduisent les délais de 

commercialisation. La faisabilité des projets de développement de nouveaux produits 

est donc assurée, et également leurs probabilités de succès sont augmentées. Puisqu’il 

peut y avoir une séparation physique entre les experts de la conception et/ou des limites 

disciplinaires au sein du problème de conception, une approche de conception 

distribuée peut être adoptée (Sobieszczanski-Sobieski et al., 1984). Dans la conception 

distribuée, tandis que le problème global de conception est décomposé en sous-

problèmes, la responsabilité est décentralisée et distribuée aux sous-systèmes composés 

d'un ou plusieurs experts (Papalambros et al., 1997). Les sous-systèmes ont un contrôle 

limité sur les variables de conception et de performance en raison de leurs expertises et 

responsabilités limitées. Les variables de conception sont pour dimensionner un produit 

(par exemple la longueur) et les variables de performance sont pour évaluer les 

performances d’un produit (par exemple la masse). L'objectif ultime de la conception 

collaborative distribuée est de résoudre les sous-problèmes simultanément de sorte que 

le problème global converge vers un optimum global (Zheng et al., 2011). Cependant, 

comme le soulignent Lewis et Mistree (1998), en réalité, il est très peu probable 

d'obtenir « la concourance véritable », parce que les sous-systèmes ne sont pas 

indépendants, mais sont liés les uns aux autres par les couplages entre leurs sous-

problèmes.  

Les incohérences dans le système de conception peuvent provoquer des conflits de 

conception par les couplages. Les conflits de conception émergent au cours du 

processus de conception lorsque les acteurs de conception ne sont pas en mesure de 

satisfaire leurs propres objectifs. Les incohérences peuvent se poser au niveau du 

problème et du processus. Les incohérences au niveau du problème sont constituées par 

les objectifs contradictoires des sous-systèmes. Satisfaire l'objectif d’un acteur peut se 

faire au détriment des autres. Les incohérences au niveau du processus sont constituées 

par le manque de coordination entre les procédures de travail des sous-systèmes (Zhao 

and Jin, 2003). Par exemple, un acteur qui modifie le modèle de conception plus 

fréquemment et de façon restrictive peut bloquer les autres acteurs en essayant de 
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satisfaire leurs propres objectifs de conception. Les conflits de conception s’aggravent 

lorsque les niveaux de satisfaction des acteurs obtenus à partir de la solution globale 

divergent. Un acteur peut alors être très satisfait alors que les autres ne le sont pas 

autant ou sont même insatisfaits.  

La divergence des satisfactions représente l'intensité des conflits de conception. 

L’hypothèse sous-jacente est que les conflits de conception doivent être éliminés 

systématiquement afin d'améliorer à la fois la performance des processus de conception 

et la qualité de la conception finale. Détecter et éliminer les conflits à tout moment 

revient à gérer un compromis collaboratif. L'idéal est d'éviter les conflits le plus en 

amont possible lors du processus de conception. Si certains conflits de conception n'ont 

pas pu être évités, ils doivent être détectés et résolus avant qu'ils ne s’amplifient trop. 

La résolution des conflits intenses peut être très coûteuse en temps car elle met en jeu 

des boucles de reconception. Mais il est également difficile de détecter et de justifier 

l’existence de conflits avant qu'ils ne deviennent intenses. L’évitement, la justification 

et la résolution des conflits de conception sont des concepts indispensables pour obtenir 

des solutions globalement satisfaisantes pour lesquelles les niveaux de satisfaction des 

sous-systèmes sont équilibrés. 

La technique choisie pour la modélisation du processus de conception affecte la 

solution collaborative émergeante de différents sous-problèmes. Il y a deux approches 

principales qui sont adoptées pour définir le processus : descendante et ascendante 

(Fathianathan and Panchal, 2009). Dans l’approche descendante, les décisions sont 

prises pour paramétrer les variables de conception afin de trouver des solutions 

détaillées qui répondent aux objectifs des acteurs de conception. Cette approche est 

considérée comme une transition d’un niveau abstrait à un niveau détaillé. En revanche, 

l'approche de conception ascendante consiste à définir des solutions détaillées pour 

identifier les valeurs des variables de conception. Avec cette approche, les acteurs 

peuvent prendre des décisions sur leurs variables de performances. L’approche 

descendante nécessite une décomposition détaillée du problème où toutes les relations 

entre les variables sont explicites. Toutefois, cela peut ne pas être possible lorsque la 

complexité du problème de conception est très élevée et le problème contient trop de 

couplages. Par conséquent, l'effet des décisions concernant les variables de conception 
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sur les variables de performance est très incertain, surtout dans la conception 

préliminaire.  

Un problème général de conception, indépendamment de l'approche adoptée pour le 

processus, est la présence de l'incertitude épistémique. Cette incertitude est 

l'imprécision dans le modèle de conception, causée par le manque de connaissance sur 

la décision finale (Parry, 1996). Particulièrement dans la phase préliminaire de la 

conception, des valeurs précises ne peuvent pas être attribuées aux variables 

(Antonsson and Otto, 1995; Yannou, 2004). Les approches déterministes nécessitent 

d’attribuer des valeurs précises, dites aussi ponctuelles, aux variables afin d’optimiser 

le modèle. Dans la pratique, cela nécessite de faire des choix de conception inutilement 

précis sans connaitre les conséquences sur les performances. Par conséquent, les 

aspects d'incertitude sont mal gérés au détriment de la performance globale. Selon 

Malak et al. (2009), l'incertitude nécessite la représentation des variables par des 

intervalles ou des ensembles imprécis. 

Un problème de conception à grande échelle contient généralement plusieurs objectifs 

de conception. L’optimisation multiobjectif est l'approche la plus simple pour évaluer 

les multiples objectifs. Dans cette approche, on estime qu'il existe toujours une 

coopération entière entre les acteurs de conception (Jagannatha Rao et al., 1997). Les 

acteurs sont considérés comme des membres d'une équipe, et ils interagissent de 

manière explicite afin d’améliorer la solution globale. Une coopération entière est 

difficile à obtenir dans les systèmes complexes de conception en raison de potentiels 

obstacles d’information, d'organisation et de processus (Lewis and Mistree, 1998). 

L’optimisation multidisciplinaire est proposée afin d’intégrer diverses disciplines par 

des cadres qui comprennent des définitions formelles de communication et de 

coordination entre les sous-systèmes (Simpson et Martins, 2011). Selon Devendorf et 

Lewis (2011), cela peut entraîner des coûts élevés de communication, de coordination, 

de gestion et d’organisation dans les systèmes complexes de conception. Les approches 

basées sur la théorie des jeux sont proposées pour traiter les problèmes de conception 

distribuée non-coopérative où la circulation de l'information est imparfaite (Vincent, 

1983). Dans ces approches, chaque joueur construit un ensemble de réactions 

rationnelles (ERR) à l'égard de toute stratégie inconnue faite par un autre joueur. 

L'intersection des ensembles de réactions rationnelles représente la solution de Nash. 
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Bien que Lewis et Mistree (1998) mettent en évidence l'extrême difficulté de construire 

les ERRs exactes pour les problèmes complexes, ils développent des techniques 

efficaces pour déterminer les ERRs approximatifs dans leur recherche suivante (Lewis 

et Mistree, 2001). Les systèmes multi-agent (SMA) sont utilisés afin de prendre en 

compte les interactions dynamiques des agents de conception (Klein 1991, Koulinitch 

and Sheremetov 1998). Les attitudes de conception ne sont pas considérées dans les 

SMA proposés, alors que les conflits de conception peuvent être explorés en modélisant 

ces attitudes. Les méthodes interactives floues sont proposées afin de modéliser les 

interactions imprécises dans les systèmes de conception. Cependant, selon Yannou et 

Harmel (2004), la représentation floue des variables n’est pas efficace dans la 

propagation de l’incertitude autant que la représentation par des intervalles/ensembles 

imprécis. 

« La conception basée sur les ensembles » (en anglais : set-based design, SBD) 

considère le processus de conception comme une évolution continue des décisions 

concourantes (Sobek et al., 1999; Ward et al., 1994). Les variables sont représentées 

par des valeurs imprécises, autrement dit domaines de valeur (ensembles pour les 

variables discrètes, intervalles pour les variables réelles). L'incertitude épistémique peut 

donc être propagée et évaluée. Les acteurs restreignent progressivement leur espace de 

solution chacun de leur coté en partant des bornes des domaines admissibles de leurs 

variables. Comme le montre la Figure 1, l'espace de solutions restantes est défini par la 

superposition des choix locaux des concepteurs. 

 

 

 

 

 

 

Figure 1: Restriction concourante de l'espace de solution en SBD 
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Le SBD permet de recueillir l’information avant de prendre des décisions sur le modèle 

de conception. Les acteurs prennent des décisions au fur et à mesure, en comparant 

l'espace de solution restant à leurs objectifs. Les décisions sont retardées lorsque 

l'information n'est pas disponible. Ces décisions qui ont été retardées sont réexaminées 

à des étapes ultérieures du processus où de plus amples informations ont été recueillies 

grâce à la réduction de l'incertitude épistémique par des décisions antérieures. L'espace 

de solution converge donc vers une solution finale progressivement au cours des étapes 

du processus de conception. Ceci est illustré dans la Figure 2 où les courbes extérieures 

représentent l'espace de solution, les courbes intérieures représentent les décisions 

prises à l’étape du processus en considérant l’information émergente de l'étape 

précédente, et les courbes en pointillés représentent la convergence. Comme démontré 

par Wang et Terpenny (2003), le SBD offre une souplesse des modifications et une 

adaptabilité aux changements. La robustesse aux erreurs de conception est aussi assurée 

comme l’indiquent Parsons et al. (1999). Le temps de traitement est par conséquent 

réduit en raison d'une diminution des activités répétitives et des bouclages de 

conception. 

 

 

 

 

 

 

 

 

Figure 2: La convergence progressive de l’espace de solution en SBD 

Le SBD est adopté avec les techniques de « problème de satisfaction de contraintes » 

(en anglais : constraint satisfaction problem, CSP) afin de résoudre les problèmes de 

conception (Meyer and Yvars, 2012; Panchal et al., 2007; Yannou and Harmel, 2006; 
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Yannou et al., 2013). Un CSP est défini avec trois ensembles : ensemble des variables, 

ensemble des domaines qui contiennent les valeurs admissibles des variables, et 

ensemble des contraintes qui limitent le problème (Montanari, 1974). Le produit 

cartésien des variables définit un espace multidimensionnel qui contient toutes les 

solutions cohérentes. Ces solutions cohérentes sont les vecteurs des valeurs de variables 

qui respectent les contraintes. La technique CSP est utilisée comme un outil d'aide à la 

conception où les décisions de conception sont formalisées par des contraintes qui 

limitent l'espace de solution au fur à et mesure (Vareilles et al., 2012). 

Quand l'incertitude épistémique est réduite, l'espace de solution restant est détecté 

précisément avec les algorithmes de filtrage de domaine disponibles en programmation 

par contraintes (en anglais : constraint programming, CP). L'incohérence des 

contraintes, autrement dit la faisabilité de l’espace de solution, est ainsi vérifiée (Meyer 

and Yvars, 2012; Yannou and Harmel, 2004). Selon Yannou et Harmel (2004), le CP 

surpasse les méthodes probabilistes et floues sur la gestion de l'imprécision dans la 

conception. Le CP permet de définir des contraintes directement sur les variables qui 

sont des fonctions d’autres variables. Ceci représente un processus ascendant. Par 

exemple, X et Y sont des variables entières avec des domaines D (X) = [15, 25] et       

D (Y) = [10, 20] et Z = X x Y est un produit. Si une contrainte est définie sur Z, les 

valeurs incohérentes de X et Y sont rejetées de leurs domaines. Si Z ≤ 200, les 

domaines des variables sont réduits à D (X) = [15, 20] et D (Y) = [10, 13]. 

En SBD, la convergence peut être assurée par une boucle séquentielle de 

fractionnement des intervalles de variables définissant l'espace de solution - 

l'application de la stratégie round-robin (Granvilliers, 2012) comme le processus de 

conception -, et par le rejet des contraintes incohérentes (Yvars, 2010, 2009). 

Cependant, les niveaux de satisfaction de différents acteurs de la conception peuvent 

encore diverger si la convergence de chaque concepteur n’est pas régulée au sein du 

groupe. Ce contrôle de convergence collaborative signifie que chaque acteur de 

conception peut exprimer ses décisions avec la même liberté de conception. Comme le 

montre la Figure 3, la divergence peut augmenter tout au long du processus de 

conception. Chaque contrainte rejetée représente un conflit potentiel, et la divergence 

des niveaux de satisfaction représente l'intensité des conflits. 
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Figure 3: La divergence des niveaux de satisfaction 

Les conflits se font au détriment des performances du processus, comme la durée du 

processus et la satisfaction totale, et aussi de la qualité finale du produit. Ils doivent 

donc être éliminés systématiquement. Les dynamiques sociales des acteurs de la 

conception peuvent influencer les conflits (Lu et al., 2000; Pelled et al., 1999). Dans 

une équipe de conception, les acteurs peuvent refléter des attitudes hétérogènes. La 

modélisation des attitudes de conception aide à explorer les conflits. Les Systèmes 

Multi-Agents (SMA) sont une approche connue pour simuler le comportement 

émergent du système de la conception distribuée (par exemple: Koulinitch and 

Sheremetov, 1998; Kwon and Lee, 2002). Le système de résolution des conflits peut 

être adopté avec différentes stratégies qui prennent en compte l'architecture de 

solidarité des agents. Les stratégies doivent donc être simulées afin de sélectionner la 

meilleure architecture. 

L'objectif de cette thèse est de proposer un ensemble des modèles afin d’empêcher les 

conflits par rapport aux approches classiques (descendante et ascendante) et de 

résoudre les conflits qui ne sont pas été évités, tout en surmontant le problème de 

l'incertitude grâce à l’approche SBD. Les questions de recherche sont les suivantes : 
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Question 1 : Comment empêcher les conflits de conception dans le SBD distribué tout 

en améliorant les performances de processus? 

Question 2 : Comment modéliser les attitudes de conception et empêcher les conflits 

dans une conception distribuée composée d’agents hétérogènes? 

Question 3 : Comment justifier et résoudre les conflits de conception en SBD 

distribué? 

Question 4 : En quoi la promotion de la solidarité est utile en conception distribuée ? 

Afin de répondre à ces questions, nous proposons un ensemble des modèles que nous 

évoquons brièvement dans ce qui suit. 

Les objectifs de conception sont définis en fonction des préférences de produits du 

marché. Une variable de performance est donc évaluée par les déclarations des 

préférences afin de déterminer comment son objectif de conception est satisfait. Dans 

notre modèle, nous combinons les préférences « hard » et « soft » de la programmation 

physique définie par Messac (1996). Les satisfactions des objectifs de conception 

reflètent également les satisfactions des acteurs par le modèle de produit. Avec les 

déclarations des préférences des acteurs, leurs fonctions de satisfaction, , sont 

donc définies.  où  est la satisfaction de l’acteur k par la variable de 

performance i, et  est la valeur de la variable de performance i. Les préférences 

« hard » sont :  si l'objectif est entièrement satisfait, et  si l'objectif est 

entièrement insatisfait. Les préférences « soft » sont les transitions entre les états 

entièrement satisfaits et entièrement insatisfaits: . 

Les satisfactions sont représentées par des intervalles. L'intervalle de satisfaction de 

l’acteur k,  est dynamique tout au long du processus où  

est la borne minimale et  est la borne maximale dans l’étape du processus t. Cet 

intervalle est dynamique, parce qu’il converge avec la progression du modèle pendant 

les étapes du processus de conception où des contraintes de décision sont ajoutées au 

fur et à mesure dans le modèle. Dans le processus de conception d’un produit 

complexe, les activités de conception sont couplées. Les degrés de liberté des acteurs 

sont donc limités. La borne minimale de l'intervalle de satisfaction est augmentée par 

les activités de conception de son acteur. Cependant, la borne maximale de l'intervalle 

- 8 - 

 



 Baris Canbaz 

est réduite par les activités d’autres acteurs avec des objectifs contradictoires. La 

convergence est ainsi bilatérale. Au stade final du processus, l'intervalle de satisfaction 

converge vers une solution où les bornes sont approximativement égales. La Figure 4 

explique la convergence bilatérale avec un exemple.  et  sont les ensembles de 

contraintes ajoutés au problème par l'acteur k pour augmenter .  et  sont les 

ensembles de contraintes ajoutées au problème par les autres acteurs de la conception 

avec des objectifs contradictoires. Ceux-ci réduisent . 

 

Etape 0 

 

Etape m 

 

Etape n 

 

 

Figure 4: La convergence bilatérale de l’intervalle de satisfaction 

Comme la convergence est bilatérale, les acteurs sont obligés de faire des compromis à 

un certain niveau de satisfaction dans le processus de conception. Un acteur de 

conception peut définir une préférence pour une valeur de satisfaction pour laquelle il 

est prêt à accepter un certain compromis. Cette préférence est définie en tenant compte 

de l'espace de solution, l'incertitude de conception et aussi le degré de liberté des autres 

acteurs. Elle correspond à la valeur de seuil de compromis .  représente la valeur 

de satisfaction que l’acteur k veut garantir dans l'intervalle . Si , l'acteur 

de conception définit des contraintes de décision afin d'améliorer . Sinon l'acteur 

passe à l'état de compromis. Dans ce cas, les acteurs arrêtent alors d'ajouter des 

contraintes dans le modèle. Cela laisse de la liberté aux autres acteurs, parce que les 

bornes maximales de leurs intervalles de satisfaction ne sont plus limitées par des 

acteurs en état de compromis. 
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 est une préférence de processus, différente de préférences de produit. Bien que les 

préférences de produit définissent les fonctions de satisfaction qui évaluent la faisabilité 

du produit, les valeurs  sont les préférences des acteurs qui évaluent les satisfactions 

par le processus. Afin de faire une distinction de la satisfaction des objectifs de 

conception , nous appelons la satisfaction de processus « bien-être » de l'acteur de 

conception.  est normalisée par , et cela donne l'indicateur de bien-être de l'acteur k 

. Cet indicateur est évidemment représenté par un intervalle. Notre 

modèle consiste à utiliser les intervalles de bien-être afin de contrôler l’espace de 

solution. Cela représente un processus ascendant étendu. 

Nous avons défini une simulation de CSP de notre modèle SBD. L'objectif est de 

simuler les performances du processus qui est contrôlé par les indicateurs de bien-être, 

par rapport à certains scénarios qui représentent les pratiques générales de conception 

descendantes et ascendantes. Quatre cas de simulation représentent ces scénarios. Les 

Cas 1 et 2 représentent les processus de conception descendants classiques. Le Cas 3 

est un processus ascendant conventionnel. Le Cas 4 est notre processus de conception 

ascendant étendu où l’espace de solution est contrôlé par les indicateurs de bien-être. 

• Cas 1: Les joueurs définissent des contraintes de décision sur leurs variables de 

conception normalisées. Chaque joueur peut définir au maximum une contrainte 

par itération. 

• Cas 2: Les joueurs définissent des contraintes de décision sur toutes leurs 

variables de conception normalisées. C’est une approche « tout d’un coup » où 

les joueurs peuvent modifier toutes leurs variables ensembles à chaque itération. 

• Cas 3: Les joueurs définissent des contraintes de décision sur leurs variables de 

performance normalisées. 

• Cas 4: Les joueurs définissent des contraintes sur leurs indicateurs de bien-être. 

Le processus de simulation est évalué par quatre critères de performance de processus : 

le nombre d'itérations, le nombre d’échecs, la satisfaction totale des objectifs et la 

divergence des satisfactions individuelles. Le nombre d'itérations représente la durée du 

processus. Le nombre d’échecs est le nombre de contraintes rejetées. Cela représente 

donc le nombre de conflits potentiels. La divergence des satisfactions individuelles 
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représente l’intensité des conflits. Les différences absolues entre les valeurs de chaque 

paire de satisfactions définissent un vecteur. Dans l’idéal, tous les acteurs devraient 

satisfaire pleinement leurs objectifs. Leurs niveaux de satisfaction sont donc identiques. 

Dans l’idéal, pour chaque paire d’acteur, cela représente une différence qui est égale à 

zéro. La distance euclidienne entre cette solution idéale et le vecteur des différences des 

satisfactions d’un processus représente l’intensité du conflit émergeant. Les quatre cas 

de simulation sont comparés par rapport à ces critères. 

Nous avons effectué une simulation de Monte Carlo avec le problème de la conception 

d'un système d'embrayage multidisque dérivé de l'exemple étudié dans (Yannou et al., 

2010). Les activités des joueurs et leur séquence sont stochastiques. Les résultats 

montrent que les performances du processus de conception sont améliorées en 

contrôlant les indicateurs de bien-être. Le nombre de conflits potentiels et l'intensité des 

conflits sont réduits, car la domination entre les acteurs est largement évitée. Cela veut 

dire que les conflits de conception sont empêchés. La satisfaction totale est également 

améliorée tout en gardant la durée du processus minimale. En conclusion, les acteurs de 

conception peuvent améliorer leur état de bien-être en équilibre tout en réduisant 

l'incertitude épistémique par des contraintes de décision cohérentes. Ce modèle 

représente donc un contrôle plus collaboratif par rapport aux autre cas. 

Nous avons étendu notre modèle avec une approche SMA, afin de modéliser les 

attitudes de conception. Comme le montre la Figure 5, un modèle « Croyances-Désirs-

Intentions » (en anglais : Belief-Desire-Intention, BDI (Bratman et al., 1988)) est défini 

pour explorer les attitudes de conception. Un CSP de conception peut être défini avec 

trois espaces : l'espace de conception défini par les variables de conception, l'espace de 

performance défini par les variables de performance de conception, et l'espace de 

solution qui contient ces deux espaces. L’espace de conception détermine le modèle de 

conception. Ce modèle est dynamique, car il évolue avec des contraintes de décision 

ajoutées lors du processus. L’analyse de l’espace de conception stimule les agents. Les 

bornes maximales des intervalles des variables de performance de conception 

représentent les meilleurs cas possibles, alors que les bornes minimales représentent les 

pires cas possibles. Ces cas reflètent les croyances de l'agent de conception sur la façon 

dont ses variables de performance de conception convergent vers ses objectifs de 

conception.  
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Figure 5: Le modèle BDI des agents de conception 

La convergence de la variable de performance d'un agent est bilatérale dans un 

problème de conception où il y a des objectifs contradictoires. Cette convergence 

dépend donc des réactions imprévisibles des autres agents, car les agents sont 

typiquement hétérogènes. L'agent identifie donc certaines préférences pour ses 

variables de performance et sa satisfaction en tenant compte de ses croyances initiales. 

Ces préférences reflètent les désirs de l'agent pour la convergence incertaine. Au cours 

du processus de conception, l'agent peut affirmer ses intentions pour améliorer sa 

satisfaction en évaluant comment ses croyances instantanées satisfont ses désirs. 

L'agent réagit aux incertitudes en définissant des contraintes de décision qui limitent 

l'espace de solution, avec le but d'améliorer les pires cas de ses intervalles. Les 

intentions sont reflétées par la fréquence et la restriction des définitions des contraintes 

de décision. La synthèse des réactions crée le modèle modifié.  

Un agent k, , est donc défini comme une entité avec quatre attitudes différentes : 

.  est l'ensemble des préférences de l'agent sur les valeurs de 

performance.  est le seuil de compromis de l'agent. Il représentant la préférence de 

l'agent sur sa satisfaction.  est la fréquence moyenne de l'agent pour définir des 

contraintes dans le modèle.  est le coefficient de restriction des contraintes définies 
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par l'agent, ce qui reflète le caractère restrictif des contraintes. En fonction de leurs 

attitudes, les agents peuvent avoir des caractères différents. Ils peuvent être plus 

égoïstes ou plus altruistes par rapport aux autres. Les agents plus égoïstes essaient de 

satisfaire leurs besoins au maximum sans considérer d'autres agents. Au contraire, les 

agents plus altruistes considèrent d’autres agents lors qu’ils prennent des décisions. 

La Figure 6 représente les caractéristiques égoïstes et altruistes des agents. Lorsque 

deux agents sont comparés, si les attitudes  et  sont identiques, l'agent avec le plus 

grand   est plus égoïste que l'autre, car il fait le compromis à une valeur de 

satisfaction plus grande. Ainsi, il restreint l'espace de solution plus que l'autre, jusqu'à 

ce que son objectif soit satisfait. Si  et  sont identiques, l'agent avec le plus grand 

 est plus égoïste que l'autre, parce que quand un agent définit ses contraintes de 

décision plus fréquemment, il va restreindre l'espace de solution plus rapidement au 

cours du processus. Par conséquent, il laisse moins d'espace pour les autres agents. Si 

 et  sont identiques, l'agent avec le plus grand  est plus égoïste que l'autre, parce 

que les contraintes de décision seront plus restrictives que les contraintes de décision de 

l'autre agent. Cela permettra de réduire l'espace des solutions au profit de l'agent 

égoïste. 

 

 

 

 

 

 

 

 

 

Figure 6: L'égoïsme et l'altruisme des agents de conception 
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Le caractère d'un agent de conception peut donc être évalué par le modèle BDI. Les 

interactions des agents avec des caractères hétérogènes peuvent ainsi être simulées. 

Nous avons étendu le processus ascendant par le modèle BDI. Dans cette approche, les 

agents affirment des intentions de compromis sur leurs indicateurs de bien-être qui sont 

dérivés de leurs croyances et désirs. Les simulations CSP sont effectuées avec la 

méthode Monte Carlo où les caractères des agents sont définis aléatoirement. Le 

problème de simulation consiste à concevoir un réservoir sous pression (Karandikar 

and Mistree, 1992; Lewis and Mistree, 1998). Les quatre cas (définis auparavant), 

représentant les conceptions ascendante et descendante, sont comparés entre eux par 

rapport aux critères de performance de processus. Les résultats des simulations 

montrent encore une fois que la performance du processus de conception est 

significativement améliorée avec cette approche. Dans cette approche, les dominations 

des agents causées par le processus lui-même sont éliminées. Le nombre de conflits 

potentiels et l'intensité des conflits sont ainsi réduits. Les résultats des simulations 

montrent également que l'altruisme réciproque modéré diminue l'intensité des conflits, 

alors que trop d'altruisme peut diminuer la satisfaction totale obtenue à partir de la 

solution finale. 

Ce modèle a été étendu avec un modèle de gestion des conflits. Il a été développé afin 

de justifier et puis de résoudre les conflits de conception qui ne peuvent être évités. Si 

une contrainte est rejetée, il représente un conflit potentiel, puisque les désirs de l'agent 

qui définit la contrainte ne sont pas satisfaits. S'il y a au moins un autre agent dans un 

meilleur état de bien-être, le conflit est justifié. C'est parce qu'il est considéré que 

l'espace de solution n’a pas été restreint en équilibre, en collaboration. C'est-à-dire, au 

moins un agent a restreint l'espace de solution plus que l'agent en conflit.  

Cooperative CSP (CoCSP) est une technique définie par Yvars (2010, 2009) pour 

obtenir des solutions coopératives dans le SMA. Pour cette technique, si un agent de 

conception ne peut exercer ses activités de conception, les autres agents peuvent l’aider. 

Cette aide est effectuée en relaxant certaines décisions qui ont été prises. Un CoCSP est 

apte à résoudre les problèmes de conception qui sont constitués d’objectifs 

contradictoires, car il permet aux agents de négocier. 
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Dans notre modèle, une nouvelle forme de CoCSP a été mise au point afin de résoudre 

les conflits justifiés. Si la contrainte d’un agent est rejetée, un autre agent peut l’aider 

en relaxant certaines de ses contraintes qui ont été acceptées. Une nouvelle attitude de 

conception est donc introduite. Cette attitude, , représente la probabilité d’un agent 

d’aider les autres. La nouvelle forme d’un agent est la suivante : 

. Notre modèle de la résolution des conflits détecte l’agent qui 

peut aider et comment il peut aider de manière optimale. Il est composé de trois phases: 

• Phase de négociation : nous proposons qu’un agent puisse aider l'autre en 

supprimant ses propres contraintes, uniquement si son état de bien-être ne 

descend pas sous l'état de bien-être de l'agent qui demande de l'aide. En suivant 

cette procédure, toutes les possibilités d'aide sont détectées. 

• Phase de test : les faisabilités des différentes possibilités d'aide sont testées par 

les techniques de CSP. Parmi toutes les aides possibles, l'aide optimale, qui 

donne la valeur maximale de la somme de bien-être des agents, est détectée  

• Phase d'approbation : l'approbation de l'aide optimale est demandée à l’agent. 

 détermine la probabilité de l'approbation de l’agent k. 

Les simulations de Monte Carlo de ce modèle sont réalisées avec des caractères 

d'agents hétérogènes, définis aléatoirement. En outre, certaines expérimentations sont 

menées avec des agents humains qui s’interagissent dans un jeu sérieux (serious game). 

Les jeux sérieux sont utilisés pour simuler des problèmes complexes avec des joueurs 

qui n'ont pas l'expertise adéquate au problème (Djaouti et al., 2011). Cela nécessite la 

transformation du problème complexe en un problème plus divertissant, tout en 

maintenant son objectif principal (Marfisi-Schottman et al., 2010). Dans notre 

expérimentation, le problème d'embrayage multidisque (Yannou et al., 2010) est 

transformé en un problème où les ressources limitées d’une université sont partagées 

entre quatre boursiers. Alors que les joueurs négocient pour augmenter leurs bourses, 

cela revient à la conception collaborative du système d'embrayage multidisque. Les 

résultats de nos simulations de Monte Carlo et expérimentations du jeu sérieux 

confirment que l'intensité des conflits est réduite lorsque les conflits sont résolus par 

notre modèle de gestion des conflits. 
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Le système de résolution des conflits peut être adopté avec différentes stratégies qui 

prennent en compte l'architecture de solidarité des agents. Quatre stratégies différentes 

ont été définies en fonction du degré de promotion de la solidarité. Ces stratégies sont 

les suivantes, introduites par ordre croissant de solidarité: 

• Stratégie 1 : conception non-coopérative. Les agents ne partagent pas 

d'informations sur leurs états de bien-être et leurs contraintes de sorte que le 

système de conception n'inclut pas le système de gestion des conflits. Si un 

conflit de conception se pose, il ne peut être résolu. 

• Stratégie 2 : système décentralisé pour la résolution des conflits. Les agents 

partagent toutes les informations. Si un conflit de conception se pose, les agents 

sont libres de coopérer en approuvant l'aide, ou de ne pas coopérer en rejetant 

l'aide. Par conséquent,  un agent peut se venger en refusant d’aider l’agent qui 

ne lui a pas accordé de l’aide lors des étapes précédentes. 

• Stratégie 3: système contrôlé pour la résolution des conflits. Les agents 

partagent toutes les informations. Si un conflit de conception se pose, les agents 

sont libres de coopérer en approuvant l'aide, ou de ne pas coopérer en rejetant 

l'aide. Toutefois, si un agent n'approuve pas l'aide, il est pénalisé par un agent 

de contrôle. Un agent pénalisé ne peut plus définir une contrainte de décision à 

l'étape suivante du processus où il est disponible pour définir une contrainte. 

Après la pénalisation, il peut continuer à définir des contraintes de décision. Les 

agents ne se vengent pas. 

• Stratégie 4: système centralisé pour la résolution des conflits. Si un conflit de 

conception se pose, les agents sont obligés de coopérer en approuvant l'aide. 

Les simulations de Monte Carlo qui ont été réalisées avec des agents informatiques 

montrent que la promotion de la solidarité aide à réduire l'intensité des conflits. Ceci a 

été confirmé par les expérimentations menées avec des agents humains. Toutefois, ce 

gain est obtenu au détriment de l'augmentation de la durée du processus. Ceci 

s’explique par le fait que la résolution des conflits provoque des bouclages lors du 

processus. En outre, la promotion de la solidarité augmente la satisfaction totale si la 
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frontière de Pareto de l'espace de satisfaction reste convexe tandis que l’on s’approche 

de la ligne de divergence nulle. 

Le modèle résultant de ce travail est nouveau et présente un cadre complet pour 

améliorer le processus de conception distribuée dans la pratique. Différente de la CAO 

classique où le dimensionnement n’est pas concourant, notre modèle fournit un 

mécanisme de dimensionnement concourant par réduction d’incertitude. Cela 

permettrait également d'éviter les bouclages itératifs, car le modèle de produit ne serait 

pas représenté par un concept déterministe, mais avec une palette de nombreux 

concepts : c’est le principe du SBD. Les concepteurs peuvent également évaluer leurs 

états absolus et relatifs par des indicateurs de bien-être au cours du processus de 

conception. En les mettant à disposition des autres concepteurs, cela permet de mieux 

se comprendre et possiblement de s’aider. Dans ce type de CAO distribuée, les conflits 

de conception pourraient donc être rapidement avérés et résolus.  
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Chapter 1: Introduction and Motivation 

This chapter introduces the general context of the dissertation and its motivations.  

1.1 Introduction 

1.1.1 Collaborative Distributed Design 

The competition in the global market is becoming increasingly intense. Organizations 

are forced to enhance their competitiveness by responding faster to market changes, 

providing the market with more innovative technologies and higher quality products, 

and reducing their product development and production costs. In parallel, products and 

systems are becoming increasingly complex in order to satisfy demanding market 

requirements and customer needs. Engineering design is a product development process 

where a set of functional specifications are transformed through a series of design 

activities and decisions into a complete description of a physical product or a system 

that satisfies market requirements (Nahm and Ishikawa, 2004). According to Pahl et al. 

(2007), this process comprises planning and task clarification, conceptual design, 

embodiment design, and detail design phases. Embodiment design is the phase where a 

technical product is dimensioned. Embodiment design problems of complex products 

and systems are large scale and multidisciplinary. Design decisions for solving these 

complex design problems require multidisciplinary expertise and multidimensional 

evaluation of merit and performance. Thus, a single designer cannot provide necessary 

expertise and rapidity to develop new products in a limited time. Therefore, 

collaborative design is required in New Product Development (NPD) processes (Favela 

et al., 1993). 

Collaborative design is the involvement of multiple designers from many different 

disciplines providing necessary expertise and skills together to achieve a common 

design goal. Each designer plays a different role that engages his/her expertise to the 

entire process. Designers generate information from their visions and perspectives and 

influence the design model with their decisions during the design process. Extensive 

perspectives and different visions are thus also provided to the NPD project, so joint 

activities of many design actors can obtain better results than that from a single actor. 

Gray (1990) describes the collaboration as “a process through which parties who see 
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different aspects of a problem can constructively explore their differences and search 

for solutions that go beyond their own limited vision of what is possible". 

There are two system strategies employed for synthesizing collaborations of interacting 

designers: centralized and decentralized decision-making (Panchal et al., 2007). 

Centralization in design refers to the collective responsibility, while decentralization 

refers to the distributed responsibility for making decisions. In the ideal case, 

centralization would be the simplest system approach for the collaborative solution of 

engineering problems. However, the centralization of the design system does not 

represent a realistic application for large scale NPD processes. Firstly, the design 

problem is significantly complex, so it has multidisciplinary boundaries. A single 

responsibility does not represent adequate expertise for multidisciplinary decision 

making. Secondly, current design organizations are becoming increasingly complex 

and international, so that they have organizational barriers caused by geographical 

dispersion and temporal differences (Détienne et al., 2004). System decentralization is 

therefore unavoidable in a large organization dealing with large scale problems (Lee 

and Whang, 1999).  
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Distributed design is a specific form of collaborative design for decentralized systems. 

In distributed design, the global design problem is decomposed into sub-problems and 

distributed to subsystems (Papalambros et al., 1997). According to Sobieszczanski-

Sobieski et al. (1984), decomposition generally happens in disciplinary boundaries of 

the multidisciplinary design problem and/or physical divisions between subsystems 

responsible for the decomposed design problem. Subsystems are stakeholders in the 

decentralized system, such as design actors and design teams, with limited 

responsibility. As shown in Figure 1.1, design responsibility is distributed to 

subsystems. Each subsystem has specific design objectives and limited control over 

design variables. Local variables  and design objectives  subject to related problem 

constraints  define their sub-problem . 

A distributed design system with each of its subsystems consisting of a single design 

actor can be viewed as a distributed decision making process of multiple design actors. 

As shown in Figure 1.2, conventional decision making methods usually consist of the 

serial execution of design activities of actors (Ceroni and Velásquez, 2003). Design 

actors make decisions considering their design objectives and define specifications on 

the design model.  is the version of the design model, and  is the specifications 

defined by decisions of design actor i.  with  produce together the next version of 

the design model: . The modified model  is transferred to the 

subsequent design actor i+1. If the subsequent design actor is not able to define his/her 

specifications on the modified model, then this actor sends a feedback to the previous 

actor for a revision of the design model. This cycle continues until both actors 

compromise. Next, the model is transferred to another design actor. This is an iterative 

process where design information is shared sequentially. It often results in long 

development times, high development costs and low quality implementation. Design 

actors at the front of the series are more advantageous. They have more freedom to 

define their specifications, so they influence the model more. However, design actors 

coming behind have less freedom to define their specifications, because the design 

model is already heavily modified. Thus, the leaders have to predict what the followers 

do. 
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Figure 1.2: Serial decision making in design 
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specifications. With concurrent execution a collaborative compromise is searched, 

while with the serial execution the solution is the sum of serial individual compromises. 

Other motivations are reducing the overall design cycle (avoiding expensive design 

loopbacks for instance), and increasing the design quality. 

 

 

 

 

 

 

 

 

Figure 1.3: Concurrent decision making in design 
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representing and resolving multi-objective design problems. MOO methods are 

developed as a centralized decision-making process where different knowledge from 

various experts is transferred to a single decision-maker. MOO methods can be 

categorized in two groups; some methods keep the objective functions in a vector form 

(e.g. є-constraint method), and the others scale objective functions in a single objective 

function (e.g. utility function method, goal programming method) (Rao and Freiheit, 

1991). 

Conventional design modeling approaches that adopt MOO assume that there is always 

a full cooperation in the design process (Jagannatha Rao et al., 1997). Full cooperation 

refers to mathematical and personal cooperation. In full cooperation, design actors are 

considered as members of a team, and they interact explicitly in order to improve the 

entire system solution. The ideal objective is to obtain a collaborative compromise. 

This is typically a Pareto optimal solution expected from simultaneous considerations 

of tradeoffs. Full cooperation is the ideal case, it has however some major limitations 

for complex systems (Ganguly et al., 2008). Full cooperation requires true concurrency 

where the entire design space is explicit and the information flow among design actors 

is perfect. According to Lewis and Mistree (1998), it is very difficult to obtain a full 

cooperation in practice because of the potential information, organization and process 

obstacles experienced in the design system. It is thus highly unlikely to obtain true 

concurrency in coupled and complex systems. 

MDO explores multidisciplinary interactions of designers, and incorporates various 

disciplines with frameworks that include some formal definitions for communication 

and coordination between subsystems of a complex engineered system (Simpson and 

Martins, 2011). There are various frameworks that include problem resolution 

approaches in order to guarantee a converging system and an optimal solution. 

Devendorf and Lewis (2011) list these widely used approaches as follows: target 

cascading (Kim et al., 2003), concurrent sub-space optimization (Wujek et al., 1996), 

bilevel integrated system synthesis, and collaborative optimization. MDO has however 

some major challenges for complex design systems. Devendorf and Lewis (2011) 

outline the challenges associated with MDO frameworks; such as high communication, 

coordination, management and organization costs, and difficulty to obtain a global 

agreement on the proposed framework. 
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When a decentralized MDO problem does not include any formal framework, it is 

typically a non-cooperative distributed design problem where design actors act 

individually. Each design actor has limited knowledge about the design problem. They 

control local variables unilaterally in order to satisfy their local objectives. Next, they 

share the information about their local variables. They whether compete and try to 

improve the model only for their design objectives without considering others’ 

objectives, or there is a leader-follower relationship between the actors where the leader 

actor dominates the follower actor. Game theoretical approaches can be employed for 

non-cooperative distributed design problems where the information flow is imperfect 

(Vincent, 1983). In GT each player constructs a rational reaction set (RRS) which 

represents player’s reactions towards any unknown strategy made by another player. 

RRSs of constrained problems can be approximately constructed with response surface 

methodology (Wang, 2003). Although Lewis and Mistree (1998) highlight the extreme 

difficulty of constructing exact RRSs for complex problems; in their following research 

(Lewis and Mistree, 2001), they develop some efficient techniques for determining 

approximate RSSs of complex problems. The intersection of RRSs of the players 

represents equilibrium solutions called the Nash solution. When players can converge 

to a Nash solution, they have no incentive to change their solution. A Nash solution is 

individually stable where neither player has any motivation/reason to unilaterally alter 

any of the design variables that he/she has control over. However, it is not necessarily a 

Pareto optimal solution (collectively stable) (Jagannatha Rao et al., 1997). Players can 

also diverge in an unstable manner (Chanron and Lewis, 2005). System stability criteria 

are demonstrated by Devendorf and Lewis (2011). 

Deterministic methods are considered as point-based approaches where iterative trade-

offs are made on point solutions (Liu et al., 2008; Panchal et al., 2007; Sobek et al., 

1999). A starting point is determined with multi-attribute targets and adjusted/cascaded 

iteratively until a stable solution is obtained. The point-based iteration is the classical 

application of most of the optimization methods (Cooper et al., 2005; Kim et al., 2003) 

and game theoretical methods (Chanron and Lewis, 2005; Lewis and Mistree, 1998). A 

point-based iteration may get stuck in a non-Pareto optimal solution or in a local 

optimum. Alternatively, in set-based design (SBD), trade-offs are made on a solution 

space derived from problem variables defined as either finite sets if they are discrete, or 

intervals if they are continuous (Sobek et al., 1999; Ward et al., 1994). The feasible 
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solutions mapped from variable sets/intervals create the solution space. The solution 

space is thus an n-dimensional Euclidean Space where n is the number of variables. 

Ranges of a variable represent the minimum and the maximum values that can be 

assigned to the variable without violating constraints. 

SBD is a concurrent engineering design theory where design actors make decisions 

concurrently by restricting the solution space in parallel considering the ranges of its 

variables. As shown in Figure 1.4, the remaining solution space is defined by the 

overlapping decisions. Design actors make further decisions by comparing the 

remaining solution space to their objective targets. The solution space thus converges to 

a final solution progressively during design process stages. SBD can be adopted for the 

technical resolution of design problems with constraint satisfaction problem (CSP) 

techniques (Meyer and Yvars, 2012; Panchal et al., 2007; Yannou and Harmel, 2006; 

Yannou et al., 2013). CSP techniques are used as a tool for aiding design where design 

decisions are formalized through constraints restricting the solution space (Vareilles et 

al., 2012). With constraint programming (CP), the constraint inconsistency (solution 

space feasibility) is verified, and the remaining solution space after a design decision is 

precisely detected (Meyer and Yvars, 2012; Yannou and Harmel, 2004). 

 

 

 

 

 

 

 

 

 

Figure 1.4: Concurrent restriction of the solution space in SBD 
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Table 1.1: Comparison of Point-based Design and SBD 

 Point-based Design Set-based Design 

Convergence: • Iterative on points 

• Difficult to guarantee 

• Progressive shrinking 

• Guaranteed 

Design Freedom: • Restricted • Maintained 

Design Uncertainty: • Ignored • Propagated 

• Reduced systematically 

Table 1.1 compares point-based design and set-based design in terms of convergence, 

design freedom and design uncertainty. As mentioned above, point-based design 

consists of the iterative convergence of a variable point to a final stable solution. 

Throughout the iterations, local objective satisfaction levels of different disciplines can 

alternate while remaining diametrically opposed. This increases the process time or 

results in divergence. The iterative convergence/divergence in GT is shown in Figure 

1.5. With point based design, it is highly difficult to guarantee the convergence stability 

in complex design problems with strong multidisciplinary interdependencies (Chanron 

and Lewis, 2005; Klein et al., 2003). The number of iterations that define the process 

time is thus unpredictable. 

 

 

 

 

 

 

 

Figure 1.5: Iterative convergence/divergence in GT 
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SBD consists of the progressive convergence of the solution space. The solution space 

shrinks while further decisions are introduced with constraints during process stages, 

and converges to an approximate point solution. This is shown in Figure 1.6 where the 

outer curves represent the solution space, the inner curves represent the specifications 

defined at the process stage considering the design information emerging from the 

previous stage, and dashed curves represent the convergence. In SBD, the convergence 

can be guaranteed by a sequential splitting loop on the intervals of the variables that 

create the solution space - application of the round-robin strategy (Granvilliers, 2012) 

as the design process - and rejecting inconsistent constraints with CSP techniques 

(Yvars, 2010, 2009). While an interval is being split by constraints, its upper and lower 

bounds approach to each other. This procedure is performed sequentially over all of the 

intervals while rejecting inconsistent constraints that yield unfeasible solutions. The 

solution space converges thus to an approximate point solution. 

 

 

 

 

 

 

 

Figure 1.6: Progressive convergence in SBD 
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design information is synthesized. The knowledge about the design thus increases, and 

some premature decisions become mature. Analysis of the new information allows 

making further decisions (Yang et al., 2005). This decision-information cycle is shown 

in Figure 1.7. 

 

 

 

 

 

 

 

Figure 1.7: Decision-Information cycle 
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step. In SBD, the design uncertainty is propagated/represented with ranges of variables 

showing the worst and best values that can be assigned at an ongoing process (Malak et 

al., 2009; Schlosser and Paredis, 2007; Yannou, 2004). Design targets are represented 

by intervals, hence they provide flexibility (Liu et al., 2008; Zhang et al., 2011). The 

objective is to eliminate the weakest alternatives progressively, instead of trying to find 

the best alternative directly. Decisions to eliminate the weakest alternatives are made 

through defining constraints while considering the analyzed design information from 

the converging solution space. While hard constraints define requirements, soft 

constraints define preferences about the design model, so that how the design 

objectives are satisfied can be evaluated (Kelly et al., 2011; Petiot and Dagher, 2011). 

The execution of a mature design decision increases the design knowledge. Since the 

emerging design model becomes clearer with more detailed design knowledge, the 

design uncertainty is reduced. Premature decisions are delayed to subsequent process 

stages where more design information will be collected. Thus, the design uncertainty is 

reduced systematically while the design freedom is maintained as much as possible. 

According to Simpson et al. (1998), better decisions are thus allowed to be made before 

the freedom to make these decisions is reduced. 

1.1.3 Design Conflicts 

According to Braha and Maimon (1998), design complexity consists of artifact 

complexity and design process complexity. They consider two evaluations of 

complexity for both types: structural design complexity and functional design 

complexity. Structural design complexity is measured by the multitude of information 

content in artifacts and design processes. Functional design complexity is the 

improbability of successfully achieving the required specifications. Similar to this 

description, Suh (1999) defines the complexity as a measure of uncertainty in achieving 

a set of specific functions or functional requirements. 

In order to manage the structural design complexity in multi-disciplinary design, 

typically the engineering capability of design systems is increased (Novak and 

Eppinger, 2001). This means decomposing the design problem into sub-problems and 

integrating more design actors to deal with these sub-problems. Thus, the structural 

design complexity is divided into smaller, more manageable sub-problems. However, 

the requirement of concurrency among subsystems increases. While true concurrency is 
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the ideal case where subsystems generate solutions independently, it is highly difficult 

to obtain in strongly coupled systems. A coupling is the information that is shared 

between sub-systems (Wall and Callister, 1995), and it defines interrelations between 

subsystems. In coupled design, a functional requirement cannot be altered without 

affecting another functional requirement (Braha and Maimon, 1998). Therefore, the 

strength of couplings represents functional design complexity (Allison et al., 2006). A 

coupling pattern is shown in Figure 1.8. Actors have limited control over variables 

while design performances are influenced by the control variable of the other actor. 

 

 

 

 

 

 

 

Figure 1.8: Coupling pattern 
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Problem level conflicts: Multidisciplinary problems inherently contain multiple 

inconsistent objectives. It is impossible to obtain a single solution that fully satisfies all 

disciplines. While favoring a performance objective of an actor we have to release 

performance objectives of the other actors. Thus, satisfaction preferences of an actor 

will cause dissatisfaction on the other actors with conflicting objectives. Figure 1.9 

shows an example of problem level inconsistency.  and  are satisfaction levels of 

two design objectives. The inconsistency -contradiction- of two objectives is 

represented with the convex curve of the Pareto frontier.  and  are ultimate 

satisfactions that can be obtained separately. While the ultimate satisfaction of an 

objective is obtained, the other objective is dramatically released.  is the 

utopia solution that represents the set of ultimate satisfaction levels of both objectives. 

Utopia solution is unfeasible since it is out of the Pareto space. 

 

 

 

 

 

 

 

 

Figure 1.9: Problem level inconsistency 
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individual solutions to sub-problems should be integrated. However, usually individual 

solutions are inconsistent because design actors tend to prioritize their satisfaction, 

concentrate only on their particular local problems, dismiss the global problem and 

overlook collaboration and relationship with the others. Inconsistency of their solutions 

increases with obstacles arising when they work over distance and in different time 

zones. Thus, conflicts arise while trying to integrate inconsistent results of individual 

activities. Figure 1.10 shows an example of process level inconsistency.  and 

 are specifications defined by two subsystems separately. These specifications 

constrain the Pareto space. Separately, each one yields a subspace:  and . However, 

together the result is an unfeasible conflicting solution: . 

 

 

 

 

 

 

 

 

Figure 1.10: Process level inconsistency 
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1.2 Research Questions 

In SBD, the distributed design process can be performed as a series of process stages 

where design actors can make decisions sequentially. These decisions are represented 

as constraints each one yielding a subspace separately. At a process stage, the 

intersection of subspaces generates the subsequent solution space. This is shown in 

Figure 1.11 at stages 1 and 3. However, if subspaces do not intersect, together they 

yield an unfeasible solution space. Since the latter constraint defined at the process 

stage is inconsistent with former constraints, it is rejected. This is shown in Figure 1.11 

at stage 2. The divergence of the solution space is thus avoided, and its convergence is 

guaranteed. However, satisfaction levels of different design actors can still diverge if 

the convergence is not collaboratively controlled. The collaborative control means that 

each design actor can express his/her decisions with the same design freedom. 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Avoiding the divergence of solution space 
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decisions are defined. If design actors define their decisions at an earlier stage of the 

process, they have an advantage. They have more freedom to express their preferences, 

because they are not forced to follow a bunch of modifications performed previously. 

Decisions made at earlier process stages thus influence the model more. In contrast, the 

actors which participate at a later stage have less freedom for satisfying their 

preferences, they are forced to follow the previous modifications and deal with a 

restricted design model. If the convergence of the solution space is not controlled 

collaboratively, the objective function satisfaction levels of different actors diverge. As 

shown in Figure 1.12, the divergence can increase along the design process. We assume 

that each rejected constraint represents a potential conflict, because the design decision 

made by an actor in order to improve the satisfaction level of his/her design objectives is 

refused. The other assumption is that the conflict intensity would increase while the 

objective function satisfaction levels of different actors diverge (a design actor is 

“happy” because his/her objectives are satisfied while another actor is “unhappy” 

because his/her objectives are not satisfied). 

 

 

 

 

 

 

 

 

 

Figure 1.12: Divergence of satisfaction levels 
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Design process performances; such as the process time, and the global satisfaction 

(here considered as the total satisfaction); are influenced by how the process is 

performed. Two main process approaches are top-down and bottom-up design 

approaches (Fathianathan and Panchal, 2009). In CSP, these approaches correspond to 

the choice of the space that is controlled. In the top-down design process, design actors 

control the design space defined by design variables. In the conventional bottom-up 

design process, design actors control the performance space defined by performance 

variables. The control space can be heterogeneous in terms of design requirements (Liu 

et al., 2008). A heterogeneous control space is shown in Figure 1.13.  and  are 

design variables that can be controlled by two design actors whose satisfaction levels 

are  and . There is a mapping between the control space and the satisfaction space. 

The inequality constraints are defined on the control space to eliminate  and , 

because these solutions give a very low satisfaction ( ). However,  which is a 

Pareto optimal solution is lost. Multiple solutions on the control space can be mapped 

to the same solution on the satisfaction space. Elimination of a solution on the control 

space does not guarantee the elimination of its corresponding solution on the 

satisfaction space. Design actors eliminated , but could not eliminate . The result 

is a low global satisfaction. 

 

 

 

 

 

 

 

 

 

Figure 1.13: Heterogeneous control space 
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Question 1: 

How to prevent design conflicts in distributed SBD while improving 

process performances? 

Human social dynamics can influence design conflicts (Lu et al., 2000; Pelled et al., 

1999). Each designer has a unique character. For the same design problem and the 

same job, different people can react differently. These dynamics are reflected as design 

attitudes during the design process. In a design team, designers can reflect 

heterogeneous attitudes. Modeling design attitudes can explore design conflicts. Multi 

agent system (MAS) is an approach to simulate emerging behavior of the distributed 

design system. 

Question 2: 

How to model design attitudes, and prevent conflicts in distributed 

design systems composed of heterogeneous agents? 

If some design conflicts are not avoided, they must be justified and resolved. This 

requires a conflict management methodology, and an efficient algorithm that allows 

compromising constraints through relaxing them. 

Question 3: 

How to justify and resolve design conflicts in distributed SBD? 

The conflict resolution system can be adopted for different strategies which take into 

account the solidarity architecture of design agents of the system participants. A system 

strategy should be selected to maximize the design performance. 

Question 4: 

How promoting solidarity is useful in distributed design? 
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The dissertation is formalized as a series of scientific papers submitted to international 

journals. Figure 1.14 shows the dissertation organization. Research questions are dealt 

with in four consequent chapters. Chapters 2, 3 and 4 expose the methodology, the 

proposed models and their simulations that are conducted by using computer agents. 

The motivation for developing the models presented in these chapters is to propose a 

design automation of distributed SBD where design conflicts could be prevented, 

justified and resolved. In these models, we assume that a design agent is an entity 

characterized by a number of design attitudes that can influence the design process. 

These attitudes describe how demanding the design preferences of an agent can be, 

how restrictively the specifications/constraints are defined by the agent, how fast the 

agent reacts to reduce the uncertainty, and how the agent is motivated to help for 

resolving a conflict by compromising some of its own satisfaction. We propose to 

explore design conflicts by simulating heterogeneous characters through a Monte Carlo 

approach in order to represent the stochastic reactions in distributed design. Chapter 5 

presents the human agent experimentation of the final model emerging from Chapter 4. 

The motivation for this experimentation is to verify and validate the results of the 

design automation simulations through human interactions. Human agents are exposed 

to some strategies that are defined through considering the solidarity architecture in a 

distributed SBD process. 
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Chapter 2: Improving Process Performance of Distributed Design 

Systems with Controlling Wellbeing Indicators of Design Actors 

Baris Canbaz, Bernard Yannou, Pierre-Alain Yvars 

This paper has been submitted to Journal of Mechanical Design. 

Abstract 

In new complex product development processes, the design problem is usually 

distributed to multiple actors from different disciplines. Each design actor has a limited 

responsibility in the design system. Therefore, each design actor has limited control 

over design variables and performance variables. However, design actors are not 

isolated since their design activities are coupled. This can generate design conflicts 

through inconsistencies among design objectives and working procedures. When the 

design convergence is not controlled, inconsistencies can distort the satisfaction 

equilibrium between design actors. This means that if a design actor aims at satisfying 

only his/her local design objective, other actors having conflicting objectives will be 

dissatisfied. Thus, individual satisfactions diverge. The intensity of conflicts is 

measured with the satisfaction divergence. In this paper we define wellbeing indicators 

in order to control the convergence of distributed set-based design (SBD) processes. 

Wellbeing indicators reflect design actors’ satisfaction degree of their process desires. 

We performed a constraint programming Monte Carlo simulation of our SBD 

framework with a complex design problem. We compared the results of wellbeing 

indicators with the results of the processes where design actors do not use wellbeing 

indicators. It is shown that when design actors have some means to control their 

convergence, the solution space converges to a solution in satisfaction equilibrium 

while epistemic uncertainty of the design model is reduced. Some conflicts are 

therefore prevented and the satisfaction divergence is reduced, leading thus to an 

improved design process performance. 
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2.1 Introduction 

Collaborative design is the involvement of multiple design actors from different 

disciplines working together to provide necessary expertise for multi-disciplinary 

design problems. Distributed design can be performed for collaborative design 

problems, where design system is decentralized; the global problem is decomposed into 

sub-problems and distributed to subsystems (Papalambros et al., 1997). Subsystems are 

composed of design actors or design teams which may be distributed to different 

geographical locations and even different time zones. Each subsystem has control over 

some design variables that define the allocated sub-problem and performs concurrent 

design activities in order to satisfy local design objectives. According to 

Sobieszczanski-Sobieski et al. (1984) system decomposition generally happens in 

physical divisions between subsystems and/or disciplinary boundaries of the multi-

disciplinary problem. There are important motivating factors of decomposition of the 

design problem and decentralization of the design system, such as complexity 

management, decreased development time, efficient use of disciplinary expertise and 

design facilities, and concurrency of design activities (Balling and Sobieszczanski-

Sobieski, 1996; Cramer et al., 1994; Sobieszczanski-Sobieski and Haftka, 1997).  

In the ideal case, design actors should be able to work asynchronously and generate 

solutions to sub-problems independently. True concurrency is thus achieved, and 

satisfactions of subsystem objectives are maximized equally. However in reality, true 

concurrency is very difficult to achieve (Lewis and Mistree, 1998), because design 

actors are not isolated from the other actors’ activities. They are related to each other by 

couplings. Obtaining maximum efficiency out of the decomposition is a difficult task 

because of the presence of couplings among subsystems. Couplings are shared 

information and they can cause conflicts through inconsistencies. In a design system, 

inconsistencies arise at problem level and process level. At problem level, subsystems 

can have inconsistent perceptions to the same objects. Typically, design actors from 

different disciplines do not have consistent objectives, but they have conflicting 

objectives. At process level, design actors tend to have freedom in their working 

environments and to determine their design strategies for their favor. Thus, their 

working procedures are optimal in local for their particular sub-problems; however they 
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may be inconsistent with other actors’ working procedures and may have negative 

impacts on the global system solution (Zhao and Jin, 2003). 

The divergence of local objective satisfactions of subsystems is the measure of how one 

subsystem is satisfied more than another. When design objectives of subsystems are not 

satisfied in equilibrium, such as one subsystem is satisfied causing dissatisfaction to the 

other, design conflicts arise among subsystems. The divergence represents thus the 

intensity of design conflicts. In the ideal case where all subsystems are fully satisfied, 

divergence is equal to zero. Divergent objective satisfaction solutions show that certain 

participants suffered during the design process, because of not being able to perform 

their jobs effectively. This represents a low process performance of the design system, 

because it cannot be a globally satisfactory solution. According to Chanron and Lewis 

(2005), couplings also generate a challenge for allocating design variables to 

subsystems. If some design variables influence design performance variables of several 

subsystems, the allocation technique of design variables is critical, because it can 

influence the design quality as shown by Kim et al. (2003) and design process 

performance as shown by Park et al. (2001). In order to obtain a better performance 

from the design process, objective satisfaction states should converge in equilibrium. 

However, obtaining satisfaction equilibrium implies a challenge, because design actors 

do not have means to efficiently control their dissatisfaction from solutions. 

Figure 2.1 shows a coupling pattern where the design variables (a, b) are related by a 

constraint but the design actors have limited control. Design actors measure 

performance variables (X, Y and Z). Normalized satisfactions of the local subsystem 

objectives are ,  and . The objectives of Actor 1 and Actor 3 are conflicting. 

When Actor 1 minimizes a, Z decreases; Actor 3 is dissatisfied. When Actor 3 

maximizes b, X increases; Actor 1 is dissatisfied. The objective of Actor 2 generates 

uncertainty, because the design variables can be both maximized or minimized as far as 

the objective of Y is satisfied. Set-based design (SBD) can overcome the design 

uncertainty issue by representing uncertain variables with intervals and reducing 

intervals while collecting design information (Malak et al., 2009). As represented in 

Figure 2.1, the intervals shrink with specifications shown with dashed arrows, and 

converge to a point solution . As seen with this example, if design actors 

can only control design variables, they cannot control their satisfaction and 
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dissatisfaction. This can end with the satisfaction domination of a design actor on 

another: one objective is satisfied the other is dissatisfied when  or . 

Conflicts become therefore more intense represented with the increasing divergence of 

actors’ individual satisfaction solutions. If the convergence of SBD can be controlled 

efficiently, this issue can be resolved. With an efficiently controlled design process, a 

collaborative compromise can be obtained. Thus, satisfaction equilibrium is obtained 

where individual sub-problem objectives are satisfied as much as possible while their 

divergence is kept minimal. For the example in Figure 2.1, a collaborative compromise 

solution  can be achieved with  and . 

Individual satisfactions are equal, so this solution has a zero divergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Coupled design pattern 
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paper is to simulate the design process performance of wellbeing indicators over 

conventional top-down and bottom-up design approaches. In Section 2.2 the 

uncertainty management of SBD and Constraint Satisfaction Problem (CSP) techniques 

are discussed. Our distributed SBD framework is introduced in Section 2.3 and the CSP 

simulation process of this framework is presented in Section 2.4. Monte Carlo 

simulations of our approach are performed on a design problem. Problem definitions 

and simulation results are presented in Section 2.5. The results from Section 2.6 are 

discussed and further works are identified in Section 2.7. 

2.2 Collaborative Design Approaches and SBD 

Uncertainty representation and propagation are important issues for design quality in 

preliminary design (Antonsson and Otto, 1995). This is the epistemic uncertainty of 

what the problem variable values of the final solution emerging from the convergent 

design process might be. Deterministic design methods can be considered as point-

based optimization approaches, because solutions are usually represented with crisp 

values, and trade-offs are made on point solutions. In order to achieve an optimum 

design, these approaches must simplify and restrict the problem so that important 

uncertainty aspects are overlooked. According to Parsons et al. (1999), point-based 

optimization approaches usually do not reflect a practical use for the early stage design 

of complex products, because of the lack of uncertainty propagation ability. Set-Based 

Design (SBD) is an alternative approach where solutions are represented with feasible 

regions/intervals of variables (Sobek et al., 1999; Ward et al., 1994). Variable intervals 

of a sub-problem define its individual solution space. Design activities are executed 

concurrently and the global solution space is defined by overlapping individual solution 

spaces of each actor. At the beginning of the design process the solution space is rather 

large. It is reduced by specifications defined into the model. A convergent solution is 

therefore obtained at the end of the process where the solution space is reduced at 

maximum level. Design actors do not know this solution at the initial state but they can 

only determine it at the end of the process. While the epistemic uncertainty is very high 

at the preliminary design phase, the convergence of the solution space reduces the 

epistemic uncertainty and provides adequate information for further design decisions.  
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At early stages of the design process where the epistemic uncertainty is very high, 

making direct decisions and searching a single solution can be difficult and inefficient. 

The uncertainty reduction paradigm of SBD is more efficient in concurrent engineering 

than point-based approaches. In SBD, instead of negotiating over single solutions, 

design actors work on a set of alternative solutions. This provides variability of design 

alternatives and flexibility of modifications in the design process. SBD allows 

gathering design information before making decisions. If there is not reliable trade-off 

information concerning a design decision, the decision can be delayed to subsequent 

process stages where epistemic uncertainty is reduced and more reliable design 

information is obtained. McKenney et al. (2011) and Wang and Terpenny (2003) show 

that delaying certain decisions under high epistemic uncertainty can result in higher 

adaptability to changes at later stages of the design process. Parsons et al. (1999) show 

also that SBD process provides robustness to design errors. If there is a mistake or a 

faulty decision in the process, when it is corrected, the solution space can be still wide 

enough to converge to a solution. Thus, in SBD less time is consumed due to a decrease 

of repetitive design processes and backtrackings (Sobek et al., 1999). 

SBD originated as a management philosophy for concurrent engineering operations. 

However, Constraint Satisfaction Problem (CSP) techniques can be used to adopt SBD 

for technical solutions of concurrent engineering problems (Lottaz et al., 2000; Panchal 

et al., 2007; Yannou et al., 2013; Yvars, 2009). CSP is a concept that is often employed 

in artificial intelligence, operational research and logic programming (Brailsford et al., 

1999). It can be applied in every domain where we look for certain solutions while 

taking account of many constraints, such as Conceptual Design and Production 

Planning. CSP is defined by three sets (V, D, C) (Montanari, 1974): 

 is the set of variables. 

 is the set of variable domains. 

 is the set of constraints. 

Domains (D) contain the feasible values of corresponding variables (V) that do not 

violate constraints (C). Constraints are either equalities or inequalities that relate 

variables to some values or to each other. They are conditional if the restriction requires 
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some conditions to be fulfilled. A complete assignment of the values to the variables, 

which satisfies all the constraints in the CSP, is called consistent solution. The set of 

consistent solutions is called solution space. CP techniques perform constraint 

propagations, interval analysis and branch-and-prune algorithms in order to determine 

the solution space very quickly for any modification of the design model. CP can 

handle discrete variables as shown by Montanari (1974) and Mackworth (1977) or 

continuous variables as shown by Faltings (1994). Dynamic CSP allows adding or 

removing constraints to the problem model when the problem is not static (Dechter and 

Dechter, 1988). The problem is altered with the evolving set of constraints. The 

problem at time stage t is  where  is the problem defined at the 

previous stage and  is the function of added constraints that maps the 

previous problem to the problem at stage t. Overviews of the different CSP solving 

techniques and its application on design problems can be found in works (Lottaz C, 

2000; Lottaz et al., 2000; Sam-Haroud and Faltings, 1996; Yannou and Harmel, 2004). 

In SBD, domains are represented with intervals, either finite sets or real intervals. The 

solution space is a subset of the Cartesian product of the intervals since some elements 

of the Cartesian product can be infeasible considering constraints. In the preliminary 

design phase where uncertainty is significant, the domains are very large. Through the 

progress of the design process constraints representing decisions are defined into the 

model. At any stage of the process designers can benefit from precise and consistent 

representations of the remaining design space detected by domain reduction/filtering of 

the CP [23]. The initial domains of the example shown in Figure 2.1 are: 

, , ,  and 

. If a constraint is defined , then the inconsistent solutions are filtered, 

so the domains are reduced: . The domain reduction due to the 

constraint leads to the domain reduction of related parameters: , 

,  and . Domain reduction 

can function with a bottom-up architecture where constraints can be defined directly on 

value occurrences. For instance, if  is added to the problem, the domains are 

reduced to: , , ,  

and . This is a very effective way of representing product 

specifications in design systems, because it can enable design actors to define 
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constraints directly on their design performance variables and indicators derived from 

the design performance variables. With its domain reduction ability CP allows 

modeling and propagating uncertainty on variables and reducing the uncertainty during 

the design progress. Yannou and Harmel (2004) demonstrate that CP techniques can 

compete with and outperform fuzzy methods and probabilistic methods on managing 

uncertainty in design. When designing under uncertainty with CP techniques, the final 

size of the reduced solution space relative to its initial size shows the relative degrees of 

freedom of the design (Wood, 2001), a measure that we further use for defining our 

wellbeing indicators. In collaborative design, degrees of freedom of design actors are 

bounded because of the couplings in the design system. Current CP approaches 

contribute towards SBD and include collaborative engineering. They concentrate on the 

identification of the consistent solutions, but generally they lack control mechanisms 

which could identify, prevent and resolve design conflicts. 

2.3 Controlling Convergence of Distributed SBD 

We define a distributed SBD framework where design actors can control their 

convergence while observing their wellbeing indicators. This framework is derived 

from our earlier studies in works (Canbaz et al., 2012, 2011). First we define the 

dynamic sub-problem of a design actor and the dynamic design process in a distributed 

SBD system. Next satisfaction functions and wellbeing indicators are introduced. 

2.3.1 Dynamic Sub-Problem and SBD Process 

The design responsibility of a design actor is limited by its sub-problem. Figure 2.2 

shows the dynamic sub-problem of the design actor k in a distributed SBD system 

where the domains of problem variables at process stage t are represented with . 

 represents the set of local design variables over which the actor k has control.  is 

the set of design variables that are out of the actor’s responsibility. Thus, the actor k can 

modify  , while  can only be observed. Since sub-problems are coupled, some 

design variables can be shared and modifiable by several design actors. Design 

performance variables evaluate the designed product considering design objectives. 

The design objectives derived from the product preferences coming from the market 

specifications.  represents the set of local performance variables related directly to 

the responsibility of actor k , and corresponds to the local objectives. They are a 
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function of . Global performance variable  which is a function of  and  , 

evaluates the global system solution, and corresponds to the global objective shared by 

all design actors. Design performance variables can be derived from design variables 

(e.g. weight of an object) as well as a design variable can be directly a design 

performance variable (e.g. length of an object). The design actor makes decisions on 

the design model considering the design information about how the design objectives 

are satisfied by the design performance variables.  

A set of initial constraints  is defined at the initial state of the design model in order 

to ensure the feasibility of the product. A set of decision constraints  is introduced 

by actor k during the design process to make decisions in order to satisfy design 

objectives while reducing the epistemic uncertainty. If the information for making a 

decision is uncertain because of the dense couplings among sub-problems, the decision 

is delayed to a process stage where the epistemic uncertainty is reduced by preceding 

decisions of the same design actor or the other actors. This is a progressive process 

where a decision constraint generates adequate information that allows making further 

decisions. Thus,  evolves through subsequent process stages. Domains of the sub-

problem  are therefore restricted progressively at each process stage t. The sub-

problem of actor k is restricted progressively also by an evolving set of decision 

constraints  introduced by actors with couplings. With the increasing number of 

decision constraints introduced to the problem, the sub-problem is dynamic through the 

design process stages. The aggregated sub-problems propagate the dynamic design 

model that converges to a narrower solution space continuously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Dynamic sub-problem 
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The dynamic design process is shown in Figure 2.3. In a design process stage, there are 

three decisions made: D1, D2 and D3. D1 and D3 are Boolean decisions and D2 is a 

“how” decision. D1 determines whether the actor compromises or defines constraints. 

Design actors compromise when their design objectives are sufficiently satisfied. 

Otherwise, they define decision constraints to satisfy their objectives until they 

compromise. D2 determines how restrictive decision constraints are defined. After the 

definition of new constraints the feasibility of the design model is tested. D3 

determines whether the model accepts the modification or refuses it. The model 

modified with a decision constraint is accepted if there is at least one feasible solution. 

If there is not any feasible solution after the definition of a decision constraint, then the 

constraint is rejected. This can lead to a potential conflict between design actors, 

because the rejection of the constraint can yield to unsatisfied objectives. This 

conflicting situation is highlighted with the dashed line in Figure 2.3. Variable intervals 

shrink with the accepted modifications. Updated variable intervals and the acceptance 

or the rejection of the constraint of a design actor are emerging design information of 

the process stage. Design uncertainty is reduced with this information. At the 

subsequent design stage, actors make decisions considering the design information 

emerged from previous design stages. At a process stage, D1, D2 and D3 therefore 

depend on previous decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Dynamic SBD process 
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Decisions performed at the design stage also depend on the attitudes of design actors. 

D1 and D2 are individual decisions and depend on how restrictive the design attitude of 

the processing design actor is. Design actors with more restrictive attitudes compromise 

at a higher satisfaction level and define more restrictive decision constraints. D3 is a 

collaborative attitude that depends on how the design model is restricted by all design 

actors at previous stages and how D2 is performed by the processing actor. If the model 

is restricted too much at previous stages, constraints can be rejected even if D2 is not 

very restrictive. If D2 is very restrictive, constraints can be rejected even if the model is 

not restricted too much at previous stages. D1, D2 and D3 are explained in subsequent 

sections. 

2.3.2 Wellbeing Indicators 

Design objectives are defined as a function of product preferences of the market. A 

performance variable is evaluated by preference statements to determine how its design 

objective is satisfied. We combine soft and hard feasibility preference functions of 

physical programming defined by Messac (1996). Hard feasibility preference 

statements are as follows: 

S1: fully satisfied by a performance variable above a certain value. 

S2: fully satisfied by a performance variable below a certain value. 

S3: fully satisfied by a performance variable equal to a certain value. 

S4: fully satisfied by a performance variable between certain values. 

S5: fully dissatisfied by a performance variable above a certain value. 

S6: fully dissatisfied by a performance variable below a certain value. 

S7: fully dissatisfied by a performance variable equal to a certain value. 

S8: fully dissatisfied by a performance variable between certain values. 
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Figure 2.4: Satisfaction functions 

Satisfaction values of design objectives reflect product satisfactions of related design 

actors. With preference statements segmented satisfaction functions are defined. 

 where  is the satisfaction value of the design actor k by the performance 

variable i and  is the value of the design performance variable i. Hard feasibility 

preferences are:  if the objective is fully satisfied, and  if the objective is 

fully dissatisfied. Soft feasibility preferences are the transitions between fully satisfied 

and fully dissatisfied states:  . In this paper we assume that transitions are 

linear functions, however nonlinear transitions can be applied with the same 

definitions. Figure 2.4 represents all the different satisfaction functions derived from 

the preference statements listed above. We integrate piecewise constraints reflecting 

design performance variable preferences into the model in order to determine 

satisfaction states of the design actors. These piecewise constraints define additional 

information into the model without eliminating any part of the solution space. For 

example an objective of a design actor k is minimizing a performance variable i; the 
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design actor is fully satisfied by a performance variable value below or equal to 

 and fully dissatisfied by a performance variable value above or equal to 

. Then the piecewise constraints integrated into the model are: 

If  ,  (2.1) 

If  ,  (2.2) 

If  ,  (Linear) (2.3) 

In SBD framework we obtain an interval value for performance variables because 

design variables are defined with intervals. The intervals are reduced through the 

decision constraints defined during process stages. At process stage t, performance 

variable i has a minimum value  and a maximum value , the interval of the 

performance variable i at process stage t is: . Since the performance variable is 

defined with an interval we obtain an interval for the satisfaction of the design actor k 

by the performance variable i at stage t:  where  is the 

minimum satisfaction and  is the maximum satisfaction obtained within the 

interval . Figure 2.5 represents an example. Piecewise constraints are same as 

above. The minimum satisfaction is obtained at point A and the maximum satisfaction 

is obtained between point B and . During the progress while uncertainty is 

reduced design actors can observe the potential maximum and minimum satisfaction 

values from design performance variables.  

 

 

 

 

 

 

 

 

 

Figure 2.5: Intervals on the satisfaction function 
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problem should be decomposed and distributed to another design actor. In order to 

observe general satisfaction states of design actors, individual performance objective 

satisfaction values are aggregated. Design actors can still define constraints on their 

individual performance objective satisfaction intervals, although they are aggregated. 

General satisfaction of the design actor k from the whole design model at stage t is the 

sum of the design actor’s weighted satisfactions from all performance variables i at 

stage t. It is defined as an interval .  is the weight assigned to 

the performance variable i by the design actor k. I is the total number of the 

performance variables considered by design actor k. Thus satisfaction indicators 

(Minimum and Maximum Satisfaction) of a design actor are calculated as following 

equations: 

 (2.4) 

 (2.5) 

 (2.6) 
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stage m 

 

stage n 

 

Figure 2.6: Bilateral convergence of satisfaction interval 

The satisfaction interval of an actor converges with the progress of the model during 

the design process stages where more decision constraints are added into the model. 

Convergence is usually bilateral, because design activities are coupled and conflicting. 
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The minimum bound of the satisfaction interval is increased by the design activities of 

its design actor however the maximum bound of the interval is reduced by coupled and 

conflicting design activities of other design actors. Thus design actors’ degree of 

freedom is bounded. At the final stage of the design process satisfaction interval 

converges to a solution where Minimum and Maximum Satisfaction Indicators are 

approximately equal. Figure 2.6 explains the bilateral convergence.  and  are the 

sets of constraints added to the problem by actor k increasing .  and  are the 

sets of constraints added to the problem by the other design actors with conflicting 

objectives decreasing . 

In a coupled design system, it is typically impossible to fully satisfy all design 

objectives, because the convergence is bilateral. Design actors are forced to 

compromise at a certain satisfaction level in the design process. A design actor can 

define a preference about his/her satisfaction value in which he/she may compromise. 

This is defined by considering solution space, design uncertainty and also the other 

actors’ degree of freedom. This preference is the compromise threshold value .  

represents the satisfaction value that design actor k wants to guarantee in the  

interval. If  , then the design actor defines decision constraints in order to 

improve  considering . If the minimum satisfaction of a design actor by the model 

reaches  value or passes beyond, then the design actor passes to the compromise 

state. In the compromise state design actors stop adding decision constraints to the 

model. This leaves space to the other design actors, because maximum values of their 

satisfaction intervals are not restricted by actors in compromise state.  value defines 

the design attitude that determines D2 in Figure 2.3. 

 is a process preference of the design actor, different than product preferences. While 

product preferences define satisfaction functions that evaluate the feasibility 

satisfaction of the product,  values are actors’ compromise desires that evaluate 

process satisfactions of design actors. In order to make a distinction from the design 

objective satisfaction , we call the process satisfaction as “wellbeing” of design 

actor. As shown in Eq. (2.7),  is normalized by  , and this provides the wellbeing 

indicator of actor k . Figure 2.7 shows how  is derived by using the example 

explained with Eqs. (2.1-2.3) and considering that  is the only performance variable 

measured by actor k. Wellbeing is represented with an interval 
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 where the minimum value is the minimum wellbeing 

indicator and the maximum value is the maximum wellbeing Indicator. Wellbeing 

interval converges through the progress of the design process. If the convergent 

wellbeing value is larger than or equal to 1 then the design actor is in a perfect 

wellbeing state. The worst wellbeing state is when the value is equal to 0. The 

convergent  is shown in Eq. (2.8) where  is the underachievement deviation 

variable, and  is the overachievement deviation variable. The process objective of 

actor k is to minimize . Wellbeing states reveal if a design actor suffers because of 

not being able to approach to the compromise state, or if a design actor could have the 

freedom to perform modifications to the model and could have approached to the 

compromise state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Derivation of wellbeing indicator 
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2.4 CP Simulation Process 

We present a CSP simulation of our SBD framework. The objective is to simulate the 

process performance of a wellbeing controlled design scenario compared to some 

scenarios that represent general design practices of top-down and bottom-up design. In 

top-down design practice, design actors usually modify only their design variables 

while evaluating their performance variables. The process can be performed with 

modifying one design variable of an actor after one design variable of another actor or 

with an all-at-once approach where modifications are performed on all the design 

variables of an actor after all the design variables of another actor. Alternatively, with 

CSP techniques a bottom-up design approach can be adopted. Design actors can modify 

their performance variables or wellbeing indicators derived from the performance 

variables. We define four simulation cases which represent these scenarios. Case 1 and 

Case 2 represent conventional top-down design processes while Case 3 is a 

conventional bottom-up process and Case 4 is wellbeing controlled bottom-up design 

process. 

• Case 1: Players define decision constraints on their normalized local design 

variables. Each player can define maximum one constraint per iteration. 

• Case 2: Players define decision constraints on their normalized local design 

variables with an all-at-once approach. 

• Case 3: Players define decision constraints on their normalized performance 

variables. 

• Case 4: Players define constraints on their wellbeing indicators. 

The simulation algorithm is shown in Figure 2.8. For the simulation we call design 

actors as players and process stages as iterations. In the simulation process we used a 

split mechanism similar to the round-robin strategy that loops on all the variables at 

process iteration (Granvilliers, 2012). The objective is to ensure a global system 

convergence where the upper value and the lower value are as close as possible for 
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each variable interval. Intervals are reduced until a good degree of precision is 

obtained. We make some assumptions for players defining decision constraints: 

• If  , each player k can define (a) decision constraint(s) only once at 

any iteration and constraints are defined sequentially. If all the players are 

processed in iteration then the process passes to the next iteration: t++. 

• Decision constraints are defined for improving the worst case scenarios with a 

coefficient of restriction  or  or   . This 

coefficient is the design attitude of player k that determines how the decision 

constraint is defined. This is the D3 shown in Figure 2.3. Initial worst cases are 

larger than 0:  ,  ,  . If 

 then the compromising player is extracted from the splitting loop (Cases 1 

and 2:  , Case 3:  , Case 4: ). 

o Cases 1 and 2:  where  is the normalized 

design variable j,  is its minimum value at iteration t and  is the 

coefficient of restriction for  defined by player k. 

o Case 3:  where  is the normalized 

performance variable i,  is its minimum value at iteration t and  

is the coefficient of restriction for  defined by player k. 

o Case 4: . 

• If a constraint is unfeasible, it is rejected. Then, its related coefficient of restriction 

value is reduced by half. If the coefficient of restriction value of a variable reaches a 

precision value (P), then the splitting is stopped for this variable, because the upper 

and lower bounds of its interval are as close as possible considering P. If all the 

coefficient of restriction values reach P, then the simulation process stops. 

•  and  are the attitudes of players and defined before the process starts.  and 

 values are equal to  at the initial state. Product preferences and  values do 

not change during the design process, because they represent static desires. 
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Figure 2.8: Simulation algorithm 

2.4.1 Process Performance Criteria 

The simulation process is evaluated by four process performance criteria: number of 

iterations, number of failures, global objective satisfaction and satisfaction divergence 

of individual solutions. Four simulation cases are compared regarding these criteria. 

Number of iterations and number of failures 

A smaller number of iterations represents a faster convergence and a rapid design 

process. The process rapidity should be evaluated with the number of failures. When a 

decision constraint is rejected, it is a process failure. Each failure is a potential conflict 

among players, because the rejection of a decision may be caused by earlier decisions 

of a player with a conflicting objective. Therefore, less failures means a less conflicting 
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design convergence. The total number of failures represents the number of conflicts 

occurring in a design process. When there are fewer failures, the coefficient of 

restriction is split at later iteration, which leads to the number of iterations increasing. 

Global Satisfaction and Satisfaction Divergence 

Players’ local objective is to minimize  in Eq. (2.8). In the ideal case, players 

should obtain the same  value and each  value should be larger than 1. The 

satisfaction divergence is derived from the absolute differences of players’  values. 

All  values calculated by Eq. (2.9) represent a vector . In the ideal case, 

all the elements of this vector is 0. The Euclidian distance of a vector solution to the 

ideal case solution gives the satisfaction divergence calculated by Eq. (2.10). The 

satisfaction divergence is a measure of conflict intensity. More divergent solutions 

represent more intense conflicts, because the divergence is caused by conflicting 

decisions. However, the satisfaction divergence cannot be evaluated alone. It is 

evaluated with the global objective satisfaction. The system objective is to maximize 

the global objective satisfaction while minimizing players’ satisfaction divergence. A 

solution with 0 divergence is not desirable if the global objective satisfaction is 0. 

 , ,  (2.9) 

 (2.10) 

2.5 Monte Carlo Simulations 

We performed a Monte Carlo simulation with the design problem of a multi-disc clutch 

system derived from the example studied in (Yannou et al., 2010). Three different 

player characters are defined with combinations of  and  design attitudes as shown 

in Table 2.1. A player with a higher  value compromises at a larger  level. A player 

that starts the design process with a higher  value intends to define more restrictive 

decision constraints. Thus, the restrictiveness of a player is higher if  and  values 

are larger. Each of the four cases is repeated 1000 times with randomly generated 

player characters sampled from Table 2.1. The same series of random seed numbers is 
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utilized for each case, so the simulation results of four strategies are comparable. Also 

design agents are randomly processed in iterations, so the process sequence is 

completely independent from player characters. The precision value (P) is defined as 

0.001. Thus, if the interval of any variable  does not contain 

, it is extracted from the loop at iteration t. Dynamic CSP is defined in 

C++ computer language and a CP solver library (IBM ILOG CP (2012)) is used to find 

solutions through its domain reduction and constraint propagation algorithms. The 

solve function of IBM ILOG CP is used to examine the feasibility of the model, so the 

D3 in Figure 2.3 is determined. If the solution of a propagated constraint returns 1, it 

means that the restricted model has at least one consistent solution and it is feasible. If 

it returns 0, it means that the model is unfeasible or the solution space is empty. 

Table 2.1: Definitions of random characters 

Restrictiveness High Moderate Low 

: (0.6, 0.65, 
0.7, 0.75, 0.8, 
0.85, 0.9, 
0.95, 1) 

(0.45, 0.5, 
0.55) 

(0.1, 0.15, 0.2, 
0.25, 0.3, 0.35, 
0.4) 

: (5, 6, 7, 8, 9) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5) 

2.5.1 Simulation Problem 

The simulation problem is a design problem of a multi-disc clutch system that connects 

a weight lifter with an engine, followed by a gearbox (Figure 2.9). This is a complex 

design problem which contains 81 variables and 64 initial constraints. More details of 

this problem can be seen in Appendix A. Problem nomenclature and constant values 

are given in Table 2.2. There are four designers associated to the problem. Their sub-

problems are given in Table 2.3. The piecewise constraints representing product 

preferences are shown in Table 2.4. Transitions are considered linear as in Figure 2.4. 

These define local objectives of the subsystems Player4 evaluates four design 

performance variable, the same weight is attributed to these performance variables: 

. The global objective is defined as: . 
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Figure 2.9: Multi-disc clutch system  

Table 2.2: Clutch problem nomenclature & constants 

 Space between chassis and shaft, 10 mm 

 Thickness of chassis plate, 30 mm 

 Thickness 

 Width of shaft shoulder 

 Length of shaft, 300 mm 

 Diameter of bearing in shaft 

 Inner diameter of driven disc 

 Inner diameter of driving disc 

 Outer diameter of driven disc 

 Outer diameter of driving disc 

 Outer Diameter of chassis 

 Medium diameter of friction surface 

 Density of chassis and shaft material 

 Density of disc material 

 Weight of mass to be lifted, kg 

 Weight of whole system (clutch + engine), kg 

 Weight of engine, kg 

 Friction value between driving and driven discs 

 Number of revolutions  of engine 

 Thermal conductivity of chassis and shaft material 

 Amount of friction pairs 

 Final temperature of the clutch, °C 

 Stiffness of chassis and shaft material 
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 Maximum allowed pressure on clutch discs 

 Safety against stress at position 1 

 Safety against stress at position 2 

 Safety against stress at position 3 

 Safety of discs material against pressure 

 Satisfaction of player k 

 Satisfaction of Player4 from performance variable i 

 Wellbeing of player k  

Table 2.3: Clutch sub-problems 

 Player1 Player2 
Performance Variable Objectives   
Design Variable Objectives   

 

 

 Player3 Player4 
Performance Variable Objectives   
Design Variable Objectives  

 
 

Table 2.4: Clutch preferences 
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2.5.2 Simulation Results 

The average results of 1000 Monte Carlo simulations of each multi-disc clutch problem 

case are shown in Figure 2.10. In order to analyze the statistical significance of the 

results, we performed two tailed t-tests for each pair of cases. If the significance level is 

considered as 0.01, all the results are statistically significant  except 

the iteration results of Case 2 and Case 4 . The number of 

iterations and the number of failures are significantly larger when players define 

constraints on normalized design variables one by one (Case 1). This scenario results in 

the longest process time and the largest number of design conflicts. 

 

  

  

Figure 2.10: Average results of multi-disc clutch simulations  
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When normalized design variables are processed with the all-at-once approach (Case2), 

the process time and the number of conflicts decrease. However, Case 2 generates 

significantly more conflicts than Case 3 and Case 4. There are obvious satisfaction 

dominations on some players in Case1, Case2 and Case3. Here, the satisfaction 

domination is not character domination. It means that the design process has allowed a 

player to satisfy his/her local design objective significantly more, causing 

dissatisfaction to another player with a conflicting local objective. In Case 4, there is 

not an obvious domination, because players obtained closer average satisfaction values. 

Thus, Case 4 generates the least satisfaction divergence and the largest global 

satisfaction. Case 4 outperforms Case 1, Case 2 and Case 3 on all process performance 

criteria except Case 2 and Case 3 on the number of iterations. 

2.6 Conclusions 

In this paper, we proposed wellbeing indicators in a CSP processing that clearly bring 

significant advantages to concurrent designers when they take them into account for 

improving their local objective satisfactions. We performed CSP simulations of the 

wellbeing indicators in order to evaluate their contribution to the design process 

performance. The simulations are generated with Monte Carlo method where player 

attitudes and decision sequences are random. We compared the simulation results of a 

wellbeing controlled design (Case4) with three other cases: with Case1 where design 

actors modify only their local design variables one by one, with Case2 where design 

actors modify only their local design variables all-at-once and with Case3 where they 

modify only their performance variables. 

In conventional design approaches, design actors perform a “blind design process” 

where they usually modify their local design variables with fuzzy intentions. They 

cannot evaluate precisely the contribution of their modifications to their performance 

variables, because the epistemic uncertainty is very high. Our simulation results show 

that this approach generates longer process time, more conflicts and satisfaction 

domination of one player on another player. With the CSP approach, a bottom-up 

design can be adopted where design actors can modify their performance variables 

directly. This is a simpler approach, because it avoids allocating design variables that 

are shared in coupled objectives of different design actors. However this approach 

results in an uncontrolled convergence of the solution space where individual 
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satisfaction solutions are divergent and satisfaction domination of a player on another 

one is unavoidable. 

When wellbeing indicators provide design information at any stage of the design 

process, and they are used to define design decisions, what is considered to be better or 

improved under epistemic uncertainty is precisely represented. Hence, design actors 

can improve their states in wellbeing equilibrium while reducing epistemic uncertainty 

with consistent decision constraints on the solution space. Consequently, design 

process performances are improved compared to other approaches: some design 

conflicts are prevented, the satisfaction domination is largely avoided and the intensity 

of conflicts is reduced. However, this approach can be applied on only measurable 

design systems where all the design aspects can be quantified. With this approach there 

is still some satisfaction divergence even if there is not any obvious satisfaction 

domination. This is because the design actor that obtains the best satisfaction and the 

design actor that obtains the worst satisfaction alternate with different combinations of 

attitudes of the design actors. Thus average satisfaction values are similar but the 

results of an individual case can be divergent. This means that the results are only 

influenced by designer attitudes and not by the design process. However, with 

modifying only design variables or performance variables the results are influenced by 

the design process itself, because even if the designer attitudes alternate there is 

obvious satisfaction domination. 

In further works, more definitions will be provided on modeling design attitudes and 

simulating different characters of design actors; such as egoistic, altruistic. Our 

framework is capable of determining and preventing some design conflicts but it is not 

capable of resolving conflicts. Further, the process strategy will be improved to enable 

negotiating over constraints that are already accepted and compromising accepted 

constraints for resolving conflicts. This requires the detection of the source of conflicts 

that result in divergence. 
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Chapter 3: Preventing Design Conflicts in Distributed Design 

Systems Composed of Heterogeneous Agents 

Baris Canbaz, Bernard Yannou, Pierre-Alain Yvars 

This paper has been submitted to Engineering Applications of Artificial Intelligence. 

Abstract 

In distributed design systems, while designers are connected to each other through 

dimensioning couplings, they have limited control over design and performance 

variables. Any inconsistency among design objectives and working procedures of 

heterogeneous designers interacting in the design system can result in design conflicts 

due to these couplings. Modeling design attitudes can help to understand 

inconsistencies and manage conflicts in design processes. We extend the conventional 

bottom-up or design supervision approach through agent-based attitude modeling 

techniques to a more powerful level. In our model, design agents can set requirements 

directly on their wellbeing values that represent how their design targets are likely to 

be met at a given moment of the design process. Some design conflicts can in this 

manner be prevented at an earlier phase of the design process. Set-based design and 

constraint programming techniques are used to explore the overall performance of 

stochastic design collaborations on a product modeled with uncertainties at a given 

moment of the design process. Monte Carlo simulations are performed to evaluate the 

performance of our set-based thinking approach, providing a variety of agent attitudes. 

The results show that the number of design conflicts occurring during the design 

process and the intensity of design conflicts are both reduced through our collaborative 

design platform. 

3.1 Introduction 

Design processes of complex products currently involve considerable effort and 

expertise from different disciplines. Multiple designers from different disciplines are 

thus involved in performing collaborative design. The design model converges to a 

solution through a series of collaborative activities performed during the design 
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process. Since the design problem has multidisciplinary boundaries, a distributed 

design approach can be adopted. In distributed design systems, the system is 

decentralized; the global problem is decomposed into sub-problems and distributed to 

subsystems consisting of one or several designers (Papalambros et al., 1997). 

Subsystems have limited control over the design variables because of their limited 

expertise and responsibility. In a sub-problem there are three main problem elements: 

design variables that can be controlled, design performances that are evaluated and 

constraints that must be respected. The rest of the global problem excluding a specific 

sub-problem does not concern the specific sub-system, but it can be only observed if it 

is shared and necessary. Distributed design tasks allocated to sub-problems are 

executed concurrently by subsystems, the global problem converging to a global 

solution (Zheng et al., 2011). 

In the ideal case, true concurrency is expected from distributed design systems where 

designers can perform their design activities independently. In reality, designers are 

related to each other through couplings between their sub-problems. Couplings can 

result in conflicts among designers if some inconsistencies are presented in the design 

system. Inconsistencies arise from design attitudes reflected by subsystems during the 

design process. The most significant inconsistency occurs between design objectives of 

subsystems. Typically, a design problem contains multiple conflicting objectives, so 

subsystems are forced to make trade-offs. Working procedures of designers influence 

the performances of others, and inconsistencies present in these working procedures 

can negatively impact the global solution (Zhao and Jin, 2003). For instance, a designer 

restricting the design model more rapidly or earlier than others could influence the 

model more. Subsequent designers are forced to deal with a restricted model which 

cannot satisfy their own design objectives. If the number of conflicts and intensity of 

the conflicts increase; the performance of the design process decreases, because 

individual design objectives are not satisfied in equilibrium. Some significant attempts 

have been made to coordinate and resolve existing conflicts in distributed systems. 

Zheng et al. (2011) propose to resolve conflicts by integrating resultant models of 

conflicting Boolean decisions in individual sub-problems of distributed computer-aided 

design. Kwon and Lee (2002) define a multi-agent based model that integrates a 

coordination mechanism. This can manage conflicting agents in a decentralized 

enterprise in order to resolve interdepartmental conflicts. Koulinitch and Sheremetov 
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(1998) define a constraint-based dynamic design system model that includes facilitator 

agents which are responsible for coordination and conflict resolution during the design 

process. When a conflict occurs amongst design agents, facilitator agents send 

messages to relax some constraints until a consistent solution is obtained. Huang et al. 

(2006) develop a fuzzy interactive multi-objective optimization model for engineering 

design. The collaborative relationships among the objectives are improved with 

adjusting the threshold of satisfaction degree and weighting coefficients of objectives. 

The least conflicting solution is therefore selected among the generated set of Pareto 

optimal results. The selected solution gives the maximum satisfaction degree and the 

minimum divergence of the individual satisfactions of local objectives. Yvars (2009) 

proposes a collaborative design system where decisions of distributed designer agents 

are represented with constraints added to the model dynamically. Constraints restricting 

the design model restrict also the degree of freedom of agents, so that they cannot add 

anymore constraints to the design model. This results in conflicts that are represented 

as unfeasible models. Design conflicts are resolved by detecting a compromise solution 

that maximizes the number of accepted constraints by removing some constraints from 

the model. While these approaches focus on resolving conflicts that have already 

occurred, they overlook the idea of preventing and avoiding potential conflicts that 

have not yet occurred in the process. They interrogate the issue at a late phase of the 

problem, because the avoidance of a conflicting problem is usually more efficient and 

less time-consuming than the resolution of a conflicting problem. The approaches 

outlined above also fail to take into account attitude models of heterogeneous agents. 

Modeling design attitudes can help understand the design inconsistencies resulting in 

design conflicts, and as a result certain collaboration strategies can be defined with 

attitude models. 

The technique chosen for modeling the design process significantly affects the 

collaborative solution emerging from different sub-problems. Devendorf and Lewis 

(2011) show that the stability of a distributed design system depends on how the 

process architecture is formed. Two main approaches can be adopted for global design 

process modeling. These are the top-down design approach and the bottom-up design 

approach (Fathianathan and Panchal, 2009). In the top-down design approach, 

decisions are made for parameterization of design variables in order to find detailed 

solutions that satisfy designer objectives. This approach is considered as a transition 
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from an abstract level to a detailed level: in complex design problems, the effect of any 

parameter on the solution is usually abstract until the parameter is tested and a detailed 

solution is obtained. In contrast, the bottom-up design approach consists in defining 

detailed solutions to identify values of the design variables. With this bottom-up design 

approach, designers can make decisions on their design performances. The top-down 

design approach requires detailed decomposition of the problem where all the relations 

between variables are explicit. However, this may not be possible when the complexity 

of the design problem is very high and the problem contains too many couplings. 

Therefore, the effect of the decisions about design variables on design performances is 

highly uncertain, especially in early design phases. Engineering project failures can 

increase when it is not possible to predict the effect of the modifications because of the 

presence of intense couplings in complex design problems. Chanron and Lewis (2005) 

highlight the difficulty of allocating design variables to subsystems in a coupled 

problem where the same design variables influence the design performances of several 

subsystems. The allocation technique is critical, because it can influence the design 

quality (Kim et al., 2003) or the design process performance (Park et al., 2001). 

Fathianathan and Panchal (2009) propose the adoption of a bottom-up design approach 

when these limitations arise from a top-down design approach. 

 

 

 

 

 

 

 

Figure 3.1: Comparison of process approaches 
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objectives of various designers are satisfied. Figure 3.1 shows the comparison of our 

extended bottom-up design approach with the traditional bottom-up approach and the 

top-down approach. In the top-down design approach, alternatives are generated first 

by making decisions on the design variables, and emerging solutions are subsequently 

evaluated considering design performances. In the bottom-up approach, solutions are 

generated by making decisions on design performance values and the parameters 

emerging from these values are evaluated to see if they are feasible or if they violate the 

problem constraints. Thus, trade-offs are made on design performance values. 

Traditionally, the bottom-up design approach is modeled at the design problem level: it 

starts at the lowest level of the physical problem. However it does not include modeling 

the preferences of designers emerging from their design attitudes. We think that 

modeling design attitudes and including them at the bottom of the design approach will 

enable better control of collaborative convergence, because trade-offs can be made 

directly on satisfaction values of designer preferences. Therefore, the design conflicts 

can be reduced. 

A common design issue, regardless of the design process approach used, is the presence 

of epistemic uncertainty due to the imprecision caused by the lack of knowledge about 

the final decision (Parry, 1996). According to Malak et al. (2009) this issue requires 

representing the uncertainty with imprecise intervals/sets and delaying uncertain 

decisions to later process stages when the information about the related decision 

becomes available. In this paper, we use the set-based design (SBD) concept to 

simulate the process performance of the extended bottom-up design approach modeled 

with agent attitudes. In Section 3.2 we discuss the ability of SBD and constraint 

satisfaction problem (CSP) techniques to manage imprecision in design. In Section 3.3 

the attitudes of design agents in multi-agent systems and egoistic and altruistic agent 

characters emerging from dynamic attitudes are considered. Our agent-based SBD 

model is introduced in Section 3.4 and the CSP simulation process of this model is 

presented in Section 3.5. Monte Carlo simulations of our approach are performed on a 

design problem which involves variable agent characters composed of variable design 

attitudes that define how design agents react during the design process. The sequence 

of the agent reactions is stochastic. Problem definitions and simulation results are 

presented in Section 3.6. 
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3.2 SBD and CSP Techniques 

In coupled and conflicting design problems, especially in preliminary design processes, 

variables cannot be crisply defined due to the lack of information about the decision 

consequences (Antonsson and Otto, 1995; Yannou, 2004). Even so, in deterministic 

design methods, crisp values are attributed to variables, so trade-offs are made on 

design point solutions. Hence, deterministic methods simplify and restrict the design 

problem in order to optimize it. However, this requires making radical decisions before 

the information about the decision becomes certain. Therefore, important uncertainty 

aspects are overlooked. Alternatively, SBD concept considers the design process as an 

ongoing evolution of non-crisp concurrent decisions (Sobek et al., 1999; Ward et al., 

1994). Variables are represented with imprecise values in domains (intervals for real 

variables), so epistemic uncertainty can be propagated and evaluated. This concept 

allows information to be gathered before making decisions on the design model, and 

decisions to be delayed when the information is not certain. The delayed decisions are 

reconsidered at later process stages where more information has been gathered due the 

reduction of epistemic uncertainty through earlier decisions. This approach provides 

flexibility of modifications and higher adaptability to changes as shown by Wang and 

Terpenny (2003), as well as robustness to design errors as shown by Parsons et al. 

(1999). Process time is consequently reduced due to a decrease of repetitive design 

activities and loopbacks. 

If SBD has been principally adopted at a managerial level, it is only recently that this 

concept has been adapted using CSP definitions at a technical solution level e.g. 

(Meyer and Yvars, 2012; Panchal et al., 2007; Yannou and Harmel, 2006). A CSP is 

defined with sets of variables, sets of domains that contain the allowable values of 

variables and sets of constraints that restrict the problem (Montanari, 1974). The 

Cartesian product of the variable intervals defines a multidimensional space that 

contains the consistent values which respect the constraints. A decomposed design 

problem can be defined with three spaces: the design space defined by design variables, 

the performance space defined by design performance variables, and the solution space 

that contains both design and performance spaces. Design decisions are represented 

with constraints restricting the solutions space, so the epistemic uncertainty is reduced 

and the remaining solution space is precisely determined with domain 

reduction/filtering algorithms of constraint programming (CP) techniques. Yannou and 
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Harmel (2004) show how CP techniques can compete with and outperform 

probabilistic and fuzzy methods on managing imprecision in design. CP techniques 

allow the bottom-up design approach with enabling constraint definitions on value 

occurrences. For instance X and Y are integer variables with domains 

 and  and  is a value occurrence. If a constraint is 

defined on Z, its consistency is evaluated and the inconsistent values of X and Y are 

extracted from their domains. If  the domains of the variables are reduced to 

 and . Current CSP definitions are able to support 

a bottom-up SBD, but we are not aware of any CSP platform that includes 

collaboration indicators derived from design attitudes. 

3.3 Attitudes of Design Agents in MAS 

Through agent-based modeling, many complex phenomena can be considered as 

systems of autonomous agents that follow simple rules of repetitive, cooperative and 

competitive interactions. Thus multi-agent system (MAS) simulation is considered as 

an appropriate approach to investigate complex emergent systems. For instance, MASs 

have been used for social simulation (Caballero et al., 2011), for modeling bounded 

rational agents (Lin et al., 2008), and for organization of societies (Rodriguez et al., 

2011). Agents are sub-systems that are situated in an environment, and in order to 

satisfy their design objectives they perform autonomous actions (Wooldridge and 

Jennings, 1995). In the environment they are social, so they can communicate and 

interact; they are reactive, so they can perceive the environment and respond to the 

change in the environment; and they are pro-active, so they can take initiatives by their 

goal-directed attitudes. In MAS, agents can reflect different attitudes that represent the 

reactions of agents to uncertainties of complex dynamic domains (Goyal, 2005). The 

widely deployed architecture of an agent, the belief-desire-intention (BDI) paradigm, is 

developed by Bratman et al. (1988). BDI views the system as it is emerging from 

agents with different mental attitudes. The emergent mental attitudes construct the 

system behavior and are important for the optimal performance of the system. Beliefs 

correspond to the information emerging from the analysis of the model. Desires 

correspond to the objectives of the agent and the tasks allocated to it. In a complex 

emergent system, agents are not able to satisfy all their desires at the same time, so they 

are forced to make trade-offs and compromise. Intentions correspond to the choices of 
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the agent for some desires when compromise is necessary. Actions of choosing desires 

are intentions: an agent makes intentions until the desire is satisfied or until the agent 

believes that the intention is no longer feasible (Cohen and Levesque, 1990). Agents 

perceive their environment through sensors and act upon that environment through 

effectors. The system between perception and action consists of their attitudes. An 

agent is stimulated by the analysis of the model and through its belief, desire and 

intention architecture its attitudes are defined, so the agent performs actions (Figure 

3.2). Finally the new form of the model is synthesized following the actions. 

 

 

 

 

 

 

 

Figure 3.2: BDI paradigm 

A distributed design system is an emergent system and it can be simulated as an MAS. 

In a distributed design system, the stimuli are sent to agents by the dynamic design 
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Attitudes of design agents determine when and how their decision constraints are 

defined during the progress of the design process. This shapes the decision making 

process and collaborative convergence. The most widely employed decision making 

model in MAS is the multiple attribute utility theory (MAUT) which evaluates multiple 

performances. The decision maker agent attempts to maximize the utility function 
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over another. Preferences reflect agents’ objectives and can be prioritized with 

constraints. Thus, constraints are used to make decisions either statically or 

dynamically. Therefore, a joint solution is generated by modifying the design model 

iteratively. 

The design system is composed of different people each with different characters. The 

character of an agent is the combination of its attitudes, and it can be used to establish 

strategies in order to achieve optimal interactions between various agents 

(Castelfranchi et al., 1998). However, the attitudes of different agents can result in 

conflicting activities. This problem usually requires coordination and cooperation of 

agents’ attitudes. MAS can simulate the coordination of different agents composed of 

different attitudes. The emergent behavior of the system consists of different 

compositions of altruistic and egoistic behaviors of every agent in the system (Pita and 

Lima Neto, 2007). Egoistic behaviors are actions that are motivated by self-interested 

gains, while altruistic behaviors are motivated by the gain of others, such as the 

pleasure obtained from others’ pleasure. Altruism can also be viewed as sacrificing 

one’s own good for the benefit of the group that one belongs to. While egoistic actions 

can cause harm to the other agents, altruistic actions help the others. A mutual 

defection may be the rational solution of the agents, but it is neither the most beneficial 

one for the global benefit nor even for individual benefits. Bazzan et al. (2002) simulate 

the effects of altruism among agents playing the Iterated Prisoner’s Dilemma. They 

conclude that egoistic agents maximize their benefits only in the short term, but they 

compromise their performances in the long term. Xianjia and Weibing (2009) propose a 

method to investigate the evolutionary outcome of the behaviors of players with 

egoistic or altruistic preference in an iterated prisoner’s dilemma. Their results show 

that egoism can cause defection, and altruism can increase the performance of 

cooperation. Jennings and Campos (Jennings and Campos, 1997) conclude that the 

overall performance of the system can be increased if agents are sometimes allowed to 

work for the benefit of others. Since agents are autonomous and have different 

knowledge and resources, cooperation attitudes are conditional to the environment and 

are dynamic through the allocation of time and resources. Agents are therefore 

heterogeneous, and it is almost impossible to define optimal agent attitudes. To 

maintain cooperation among heterogeneous agents, social norms and collaborative 

strategies should be adopted upstream in the system. 
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3.4 Agent-based SBD Model 

We define the extended bottom-up design approach as an agent-based SBD model that 

considers the design attitudes of interacting agents. We first define the design process 

before presenting the design attitudes and the control indicators that derive from these 

attitudes.  

3.4.1 Design Process of Agents 

In the preliminary design phase, the solution space is very large. While the solution that 

designers find at the end of the design process is presented in the initial solution space, 

this solution is not known at the initial state. This implies a very high epistemic 

uncertainty. CSP definitions can be used to model designer actions. Designer actions 

are considered as decision constraints defined on the solution space iteratively. The 

design model is therefore dynamic, evolving with the actions representing decisions. 

Hence, a collaborative point solution emerges from the converging solution space while 

the epistemic uncertainty is reduced iteratively during the design process stages. We 

model an agent-based design process in order to understand both how the epistemic 

uncertainty is reduced, and how the solution space converges collaboratively. The 

design process model is shown in Figure 3.3.  

 

 

 

 

 

 

 

 

Figure 3.3: Design process of agents 
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Design agents make three decisions during the process: these are shown as D1, D2, and 

D3. D1 and D3 are Boolean decisions and D2 is a “how” decision. 

D1: Define a decision constraint or not. 

D2: How the decision constraint is defined. 

D3: Accept the decision constraint or not. 

During a process stage, agents evaluate the solution space to decide whether they will 

define a decision constraint, or wait. If they decide to define a decision constraint, next 

they decide how the constraint is defined. When the constraint is defined in the 

dynamic design model, the model’s feasibility is tested. After the definition of the 

constraint, if there is at least one solution remaining in the solution space, the constraint 

is consistent for the model and it is accepted collaboratively. If the solution space is 

empty, then it is refused and rejected. The consistency of the constraint depends on the 

previously accepted constraints that have been defined by the process stage agent and 

other agents. In addition, the consistency of the constraint depends on how it is 

restrictively defined, and the nature of the initial problem. If the constraint is very 

restrictive, it is probably refused whether there is a previously accepted constraint or 

not. Therefore, D3 is a collaborative decision which has emerged from the 

collaborative behavior of the design system. In contrast, D1 and D2 are individual 

decisions defined by the individual design attitudes of the agents. When a constraint is 

refused, it is considered as a potential conflict because the agent’s desires may not be 

sufficiently satisfied. The degree of the conflict can be evaluated by the divergence of 

the agents’ individual objective satisfaction values. The solution space is shared and 

design objectives are typically conflicting. If an agent can satisfy its desires, it results in 

dissatisfaction of another agent with conflicting objectives. When their satisfaction 

solutions diverge - for instance the solution of an agent with a very low satisfaction and 

the solution of another agent with a very high satisfaction - the conflicts increase in 

intensity. The conflict is reasonable if only the agent’s desires are not sufficiently 

satisfied. Our proposition is to evaluate design attitudes with a BDI model and evaluate 

agents’ states with control indicators called wellbeing indicators. Wellbeing indicators 

are derived from the desires of the agents reflected on the beliefs of the agents. They 

enable a bottom-up design process where convergence is controlled, with defining 
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decision constraints impacting directly on the wellbeing intervals instead of on design 

variable intervals. 

3.4.2 Attitudes of Agents and Control Indicators 

Design space emerges from the intervals of design variables modified dynamically 

during the design process. This represents the dynamic design model. Analysis of the 

dynamic design model stimulates design agents and triggers their BDI mechanism. 

Figure 3.4 shows design agents’ BDI mechanism.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: BDI mechanism of design agents 
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preferences on two factors: design performance alternatives and the satisfaction 

obtained by design performances. While preferences on design performances reflect 

agents’ attitudes for satisfaction obtained from the alternatives, preferences on 

satisfaction represent agents’ attitudes for compromise. Beliefs and preferences of 

design agents lead design agents to define their intentions in order to reduce the 

solution space by improving their worst cases. Intentions are reflected with how 

frequently and how restrictively their decision constraints are defined. Design agents 

react to the emerging performance space through defining decision constraints into 

solution space. These modifications synthesize the next design space in the dynamic 

process. 

We define an agent k, , as an entity with four different attitudes: . 

 is the set of preferences of the agent on performance values.  is the compromise 

threshold value of the agent, representing the preference of the agent on the satisfaction 

values for compromise.  is the average frequency of the agent for defining constraints 

in the model and  is the coefficient of restriction of the constraints defined by the 

agent, reflecting the restrictiveness of the decision constraints defined by the agent. 

3.4.2.1 Preferences and Satisfaction 

Preferences of an agent about design performances can be modeled as a satisfaction 

function. The list of preferences of an agent  on its performances creates the  

attitude. Complete dissatisfaction is represented by 0 on the scale, while complete 

satisfaction is represented by 1. Design agents are moderately satisfied in the transition 

between fully satisfied and fully dissatisfied states. In this paper, we assume that the 

transition is linear; however nonlinear satisfaction functions can be adopted for 

different studies. We integrate piecewise constraints into the model in order to define 

information about performance preferences without restricting the solution space. For 

example, one objective of an agent k could be minimizing a performance i; the agent is 

fully satisfied by a performance value below or equal to  and fully dissatisfied by a 

performance value above or equal to . It is assumed that there is a linear transition 

between these two preference values.  is the satisfaction value of the agent k 

obtained by the performance i and  is the performance value of the performance i. 

The corresponding integrated piecewise constraints are: 
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If  ,  (3.1) 

If  ,  (3.2) 

If  ,  (3.3) 

In the SBD framework, all the variables are defined with intervals instead of points. 

The design process progresses with time and the intervals are reduced through the 

decision constraints defined on the solution space during the progress. Thus the design 

process is composed of design stages where agents take actions. At process stage t, 

performance i has a minimum value  and a maximum value , the interval of the 

performance i at process stage t being . Since the performance is defined with 

an interval, we obtain an interval for the satisfaction of agent k from the performance i 

at stage t:  where  is the minimum satisfaction and 

 is the maximum satisfaction obtained within the interval . This 

phenomenon is illustrated in Figure 3.5. Piecewise constraints are the same as above. 

Minimum satisfaction is obtained at point A and maximum satisfaction is obtained at 

point B. During the process while uncertainty is reduced, agents can observe the 

potential maximum and minimum satisfaction values from performances. When design 

agents have several design performances to evaluate, they can assign weights to their 

satisfaction values considering the importance of the performances for their job. As 

individual performance satisfaction values are aggregated, general satisfaction states of 

agents can be observed.  

 

 

 

 

 

Figure 3.5: Intervals of satisfaction function 
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3.4.2.2 Compromise Threshold and Wellbeing 

In a coupled design system, it is highly unlikely that all the design agents will be fully 

satisfied. Since design objectives are conflicting, a decision constraint defined to 

increase the minimum satisfaction value of an agent will decrease the maximum 

satisfaction value of another agent. Thus, the convergence of satisfaction intervals is 

bilateral, and design agents are forced to compromise at a certain level on their 

satisfaction values where maximum and minimum satisfactions are as close as possible. 

Figure 3.6 shows a clear example of this phenomenon where Agent 1 and Agent 2 have 

conflicting objectives, such as decreasing the mass and increasing the volume of a 

product. Agent 1 defines  and  and Agent 2 defines  and  at different process 

stages, in order to improve their satisfaction states. However, these constraints decrease 

the other agent’s maximum satisfaction value.  

Since agents cannot be aware of the other agents’ actions, the convergence propagates 

some uncertainty. Thus, design agents can reflect an attitude of desiring a value in 

which they may compromise. While preferences on design performances reflect the 

desires of agents on product specifications, preferences on satisfaction values obtained 

by these performances reflect the desires about process convergence. The preference 

about the satisfaction value is called compromise threshold , and it defines the 

compromise attitude of an agent. This compromise threshold value represents the 

satisfaction value that an agent wants to guarantee. The agent wants the solution to 

converge at least to this value.  

The agent defines decision constraints considering the preferences  in order to 

increase the satisfaction obtained from the model until the minimum satisfaction value 

reaches the agent’s satisfaction preference. This introduces a condition for making 

decisions during the design process. If the minimum satisfaction of an agent by the 

model reaches or exceeds value , then the agent passes to the compromise state. In 

the compromise state, agents stop adding decision constraints to the model, so this 

leaves space to the other agents. 
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Figure 3.6: Bilateral convergence 

Satisfaction values are normalized through dividing them by the compromise threshold 

value; this provides wellbeing states Eq. (3.4, 3.5). Wellbeing states represent global 

states of design agents; they show if an agent suffers from not being able to approach 

the compromise state or if an agent could have performed modifications to the model 

and thus approached the compromise state. Wellbeing is defined with an interval 

 where the minimum value is the minimum wellbeing 

indicator and the maximum value is the maximum wellbeing indicator. The wellbeing 

interval converges through the progress of the design process. If the minimum 

wellbeing value is larger than or equal to 1, then the agent is in a perfect wellbeing 

state. The worst wellbeing state is when the value is equal to 0. 

 (3.4) 

 (3.5) 

3.4.2.3 Frequency 

Design agents define decision constraints at an average frequency  per process stage. 

This attitude, dependant on agent character, reflects if agents intend to restrict the 

solution space more frequently or less.  is the phase of the decision frequency of 

. Phases of frequencies can differ from one agent to the other agent depending on 

their availability and their time zone.  defines decision constraints at each process 

stage t where  value is an integer multiple of . In order to define a 

consistent function, we assume that  is integer. 
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3.4.2.4 Coefficient of Restriction 

Any variable of the design problem can be improved with constraints. This 

improvement increases the minimum satisfaction and wellbeing of the agent.  is the 

coefficient of restriction for the constraints defined by . This attitude defines the 

restriction effect of the constraints defined on the solution space.  is used as an 

improvement coefficient for the minimum values of the intervals. The constraint 

defined by  at process stage t is  where  can be any 

variable of the design problem and  is its minimum value at process stage t. 

However,  value and  value should be larger than 0. 

If the constraint is consistent for the design model, which means that there is at least 

one feasible solution after propagating the constraint, then the constraint is accepted. If 

the constraint is inconsistent, which means that it returns an unfeasible solution space, 

then it is refused and rejected from the model. The consistency of the constraint 

depends on the nature of the initial problem and the earlier constraints defined during 

progress. Thus it depends on the emerging attitudes of the design agents and propagates 

an uncertainty. 

3.4.3 Characterization of Agents 

Depending on their attitudes, agents can have different characters. We consider 

 attitudes for characterization of .  is not considered for 

characterization, because performance values of different agents may not be the same, 

and they may not have the same unit of measurement. Besides,  attitude is defined 

based on , thus it reflects the desires of an agent . Design agents may be more 

egoistic or more altruistic compared to the others. More egoistic agents try to satisfy 

their needs at the highest levels without considering other agents. More altruistic agents 

have an opposite character, taking other agents into consideration. The solution space is 

shared between design agents, so any restriction performed by an agent on the solution 

space will decrease the degree of freedom of the other agents and leave less space to 

them. As Figure 3.6 shows, the reduction of the degree of freedom is on the favorable 

side of the satisfaction intervals due to the conflicting objectives. Hence, agents with 

relatively restrictive design attitudes are considered as more egoistic and agents with 

less restrictive design attitudes are considered as more altruistic. 
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Figure 3.7 represents egoistic and altruistic characteristics of agents. When two agents 

are compared, if  and  attitudes are identical, the agent with the larger  is more 

egoistic than the other, because it will compromise at a higher satisfaction value. Thus, 

it will restrict the solution space more than the other, until its objective is satisfied. If  

and  are identical, the agent with larger  is more egoistic than the other, because 

when an agent defines decision constraints more frequently, it will restrict the bounded 

solution space more rapidly during the process. Consequently, it leaves less space to the 

other agents. If  and  are identical the agent with larger  is more egoistic than 

the other, because its decision constraints will be more restrictive than the other agent’s 

decision constraints. This will reduce the solution space for the egoistic agent’s benefit. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Egoism and altruism in design agents 
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they can compromise more easily. However the structure of the rationality between the 
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desires and the intentions can be different from agent to agent, since they model human 

beings. For example, an agent can have a larger  value but a smaller  value than 

another agent with the same  value. As seen in Figure 3.7, in the extreme case, the 

most egoistic agent in the design system has the largest  attitude values while 

the most altruistic agent has the smallest  attitude values. The process 

performance and the design solutions can be influenced by the characters of designers. 

When the design system consists of heterogeneous agents with different design 

attitudes, the results may diverge where one agent has a very low satisfaction and 

another has a very high satisfaction. Process time and the number of conflicts that occur 

during the design process can also increase due to the non-converging design 

characters. 

3.5 CSP Simulation Process 

We present an automatic constraint propagating simulation of our model where the 

solution space is reduced iteratively considering design agents’ BDI mechanism. The 

objective is to simulate some top-down and bottom-up design processes with different 

combinations of design agent characters, and compare the results that emerge from 

these processes. Two practical top-down simulation cases are defined. Case 1 

represents the design process where a designer can modify only one design variable 

after the modification of another designer. Case 2 consists of an all-at-once approach 

where designers can modify all the design variables after the modification of another 

designer. Next, two bottom-up simulation cases are defined. In Case 3, designers can 

modify their design performances. Case 4 is our extended bottom-up design process 

where designers can modify their wellbeing indicators derived from the performances. 

In the simulation process we used a split mechanism similar to the round-robin strategy 

that loops on all the variables at process iteration (Granvilliers, 2012). The objective is 

to obtain an upper value and a lower value that are as close as possible for each 

interval. Intervals are reduced until a good degree of precision is obtained. The 

simulation algorithm is shown in Figure 3.8. We make some assumptions when 

defining the simulation process: 
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• If  and  each agent can define (a) decision 

constraint(s) only once at any iteration and constraints are defined sequentially. 

If all the agents are processed in iteration then the process passes to the next 

iteration: t++. 

• Decision constraints are defined for improving the worst case scenarios with a 

coefficient of restriction  or  or   . Initial worst 

cases are larger than 0:  ,  ,  . If 

 then the compromising agent is extracted from the splitting loop 

(Cases 1 and 2:  , Case 3:  , Case 4: ). 

o Cases 1 and 2:  where  is the normalized 

design variable j,  is its minimum value at iteration t and  is the 

coefficient of restriction on the design variable j controlled by agent k. 

o Case 3:  where  is the normalized 

performance i,  is its minimum value at iteration t and  is the 

coefficient of restriction on the performance i defined by agent k. 

o Case 4: . 

• If a constraint is rejected, its related coefficient of restriction value is reduced 

by half. If the coefficient of restriction value of a variable reaches a precision 

value (P), then the splitting is stopped for this variable, because the upper and 

lower bounds are as close as possible considering the precision value. If all the 

coefficient of restriction values reach the precision, then the simulation process 

stops. 

• Agents’ attitudes are defined at the initial state of the process.  and  

values are equal to  at the initial state.  and  attitudes do not change 

during the simulation process because they represent desires. 
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Figure 3.8: CSP simulation algorithm 

The simulation process is evaluated by four performance criteria: number of iterations, 

number of failures, total satisfaction and satisfaction divergence. Four simulation cases 

are compared regarding these process performances. A smaller number of iterations 

means a faster convergence of intervals and a rapid design process. This should not 

however be evaluated alone, because when there are less failures, the coefficient of 

restriction is split later, which leads to the number of iterations increasing. When a 

decision constraint is rejected, it is a process failure. Each failure is a potential conflict 

among designers. Therefore less failures means a design convergence with less conflict. 

The total number of failures represents the number of potential conflicts occurring in a 

design process. The process objective is to maximize agents’ satisfaction values while 

minimizing their satisfaction divergence. The satisfaction divergence is defined as the 
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difference between agents’ individual satisfactions. In the ideal case, agents should 

obtain the same satisfaction values, and each value should be equal to 1. Absolute 

differences of the satisfaction values of either two element combination represent a 

vector . The Euclidian distance of this vector solution to the ideal case 

solution gives the divergence of the individual satisfaction solutions: 

. More divergent solutions lead to more intense conflicts, because 

the divergence is caused by agents with a relatively low satisfaction. However, the 

divergence cannot be evaluated alone. A zero divergence is not desirable if the total 

satisfaction is zero (all the agents are completely dissatisfied, ). 

3.6 Monte Carlo Simulation 

We ran a Monte Carlo simulation with the design problem of the pressure vessel in 

(Karandikar and Mistree, 1992; Lewis and Mistree, 1998). We define three agent 

characters as shown in Table 3.1: Egoistic, Moderate, and Altruistic. We consider that 

there are no frequency phase differences. All four simulation cases are repeated 1000 

times for permutations of these characters generated randomly from their attitude sets. 

Design agents and their design variables and performances are also chosen randomly in 

process iterations, so the process sequence is completely independent from agent 

characters. 

Table 3.1: Definitions of random characters 

 Egoistic Moderate Altruistic 

: (0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 

0.9, 0.95, 1) 

(0.45, 0.5, 

0.55) 

(0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, 0.4) 

: (0.5, 1) (1/3, 0.5, 1) (1/3, 0.5) 

: (5, 6, 7, 8, 9) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5) 

In the simulation process, the worst cases are improved by increasing the lower bounds 

of the intervals. Therefore, for minimization objectives the larger bounds are 

normalized to 0 and the smaller bounds are normalized to 1, and for maximization 

objectives the smaller bounds are normalized to 0 and the larger bounds are normalized 
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to 1.The precision value is defined as 0.001. This means that if the interval of a variable 

 does not contain , it is extracted from the loop. 

Dynamic CSP is defined in C++ computer language and a CP solver library called IBM 

ILOG CP V1.6 (IBM, 2012) is used to find solutions through its domain reduction and 

constraint propagation algorithms. The solve function of IBM ILOG CP is used to 

examine the feasibility of the model. 

 

 

Figure 3.9: Thin-walled pressure vessel 

The design problem consists of a cylindrical thin walled pressure vessel with 

hemispherical ends as shown in Figure 3.9. Problem nomenclature and constant values 

are given in Table 3.2. There are three design variables (R, T, L) and two design 

performance variables (W, V). Design performance formulas are given in Table 3.3 and 

initial constraints are given in Table 3.4. With given constraints, the weight and volume 

bounds are determined using CP techniques (Table 3.4). The design problem is divided 

into two sub-problems assigned to two designers (Agent 1 and Agent 2). The objective 

of Agent 1 is to minimize W by controlling R, T and L while satisfying the related 

constraints; the objective of Agent 2 is to maximize V by controlling R and L while 

satisfying the related constraints. Their design activities are coupled because of the 

shared information in constraints and performance formulas. While Agent 1 minimizes 

the weight, the volume is minimized; while Agent 2 maximizes the volume, the weight 
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is maximized. Since their objectives are inconsistent, their design activities are 

conflicting. 

Table 3.2: Problem nomenclature and constants 

W Weight of the pressure vessel, lbs. 

V Volume of the pressure vessel, in.
3
 

R Radius, in. 

T Thickness of the vessel wall, in. 

L Length of the cylinder, in. 

P Pressure inside the cylinder, 3.89 klb. 

 Ultimate tensile strength of the vessel material, 35 klb. 

 Density of the vessel material, 0.283 lbs./in.
3
 

 Circumferential stress, lbs./in.
2
 

 Satisfaction of agent k 

 Wellbeing of agent k  

 Normalized volume 

 Normalized weight 

 Radius normalized for agent k 

 Length normalized for agent k 

 Normalized thickness 

 k=1 for Agent 1 and k=2 for Agent 2 

 

Table 3.3: Design performance formulas 

 

 

Table 3.4: Initial constraints 

Stress Constraint: 
 

Geometric Constraints:  

  

  

Bounds:  
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Table 3.5: Preferences 

If   then  

If   then  

If   then  

If   then  

If   then  

If   then  

 

Table 3.6: Normalizations 

 :  

 :  

 :  

 : 

 

 

 

 : 

 

 

 

 

Agents define their performance satisfaction functions with piecewise constraints as 

shown in Table 3.5. All the transitions between the preferences are considered linear as 

shown in Figure 3.5. Design performances and design variables are normalized using 

their bound values. Piecewise constraints are defined for normalizations and are shown 

in Table 3.6. Agent 1 minimizes W through minimizing R, T and L and Agent 2 

maximizes V through maximizing R and T. Supplementary initial constraints are 

defined in order to avoid non-zero worst case scenarios for enabling fruitful constraint 

propagations ( ). These very small constraint values 

do not affect the performance of the simulation process. 
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All the permutations of egoistic (E), moderate (M) and altruistic (A) characters of 

Agent 1 and Agent 2 are simulated for each case 1000 times through a Monte Carlo 

simulation approach and the average results are shown in Figure 3.10. Case 1, the 

process which enables modifications on design variables only one agent at a time, 

requires the longest process time because the number of iterations is the largest for 

every character combination. One of the bottom-up approaches outperforms the second 

top-down design approach, Case 2, for every character permutation except EM. When 

there is at least one altruistic agent, Case 4 outperforms Case 3 except AE.  

The process time should be evaluated with the number of failures, because when the 

number of failures decreases,  is split less, and the convergence continues during 

subsequent process stages. The number of failures can be considered as the number of 

conflicts. Case 1 and Case 2 result in the highest number of failures. Case 3 and Case 4 

generate significantly less conflicts. Case 4 outperforms Case 3 except when one of the 

agents is moderate and the other is egoistic or both of them are egoistic.  

The intensity of the conflicts also needs to be evaluated. A conflict is more reasonable 

when its intensity is relatively high, because one agent covers more space, resulting in 

the blocking of the other agent in order to satisfy preferences. When the final wellbeing 

values are compared (Figure 3.11), it is significant that in Case 1 and Case 2, Agent 1 

dominates Agent 2 regardless of their characters. In Case 3, Agent 2 generally 

dominates Agent 1 except when Agent 1 is more egoistic than Agent 2 (MA and EA). 

In Case 4, when agents reflect the same characters, no domination occurs, except when 

one is more egoistic than the other. These findings are reflected in the divergence 

results. Case 4 generates significantly the least divergence regardless of agent 

characters. Its conflicts are relatively less intense. Case 4 generates larger total 

satisfaction than Cases 1 and 2. However compared to Case 3, the reduction of 

divergence is obtained by slightly compromising some of the total satisfaction value for 

some character combinations. 
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Figure 3.10: Simulation results 
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Figure 3.11: Final wellbeing values 
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Figure 3.12 shows the average total satisfaction values and the average satisfaction 

divergence values obtained by our approach for Case 4. Optimal results are obtained 

when both agents are moderate, because the satisfaction divergence is minimal while 

the total satisfaction value is maximal. Egoistic agents overestimate their desires 

represented as compromise threshold values when they work with an egoistic agent or a 

moderate agent, because the total satisfaction values of these situations are not greater 

than the total satisfaction of the situation where both agents are moderate. Also, the 

satisfaction divergence values of EE, EM and ME situations are larger than the MM 

situation. This shows that the individual satisfaction values diverge more because of the 

egoistic attitudes reflected during the design process. Altruistic agents underestimate 

their desires when the other agent is altruistic or moderate. Even if altruistic agents can 

be over-satisfied, the total satisfaction values of AA, AM and MA situations are smaller 

than the total satisfaction values of the other character situations. 

 

Figure 3.12: Case 4 satisfaction results 

3.7 Conclusions 

In this paper, we define an extended bottom-up design approach, exploring agent-based 

attitude modeling techniques within the set-based design concept. The conventional 

bottom-up design approach is usually defined at problem level; however design 

attitudes that define beliefs, desires and intentions are overlooked at the initial state of 

the problem, so trade-offs on design preferences remain abstract. In contrast, our 

extended bottom-up design approach includes design preferences at an earlier state and 

explores the solution space with design preferences emerging from the desires of 

various designers. 
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We perform a CSP simulation for different designer characters. The simulation results 

show that when design attitudes of heterogeneous designers in distributed design are 

not evaluated beforehand, the performance of the design process is significantly lower. 

Regardless of the designer characters, significant dominations usually occur on the 

same designer. This means that the results are mostly influenced by the process itself. 

Consequently, individual solutions do not converge in equilibrium, so conflicts are 

unavoidable. However, when design attitudes are evaluated beforehand, designers can 

make trade-off intentions on their wellbeing values derived from their beliefs and 

desires. With this approach, designer domination is relatively less significant and is 

coherent with designer characters. This shows that the results are only influenced by 

the design attitudes. Designers can therefore converge in equilibrium. Consequently, 

the number of conflicts and the divergence of the solutions that result in the intensity of 

the conflicts are prevented. 

Other conclusions deduced from our approach are about how the satisfaction results 

emerge from different reciprocal design attitudes. It is shown that reciprocal egoistic 

attitudes can cause diverging satisfaction results. In contrast, more altruistic reciprocal 

attitudes can decrease the divergence of individual satisfactions. However, too much 

altruism can decrease the total satisfaction obtained from the final solution, except 

when the reciprocating design agent reflects very significant egoistic attitudes.  

Our approach is capable of determining and preventing design conflicts, but it does not 

provide any strategies for resolving existing conflicts. Some cooperative conflict 

resolution strategies can be defined and integrated into the same platform, but this 

requires design agents to negotiate, and compromising constraints through relaxing 

them. 
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Chapter 4: Resolving Design Conflicts and Promoting Solidarity in 

Distributed Design 

Baris Canbaz, Bernard Yannou, Pierre-Alain Yvars 

This paper has been submitted to Engineering Applications of Artificial Intelligence. 

Abstract 

The resolution of complex design problems requires a distributed design system that 

considers the involvement of various designers. Inconsistencies of design objectives 

and working procedures of distributed subsystems can cause design conflicts due to 

couplings among their sub-problems. Another issue is the management of imprecision 

in design systems caused by the lack of knowledge about the final decision. In this 

paper we define a conflict management model using the concept of set-based design 

(SBD) in order to overcome these issues. We utilize constraint satisfaction problem 

(CSP) techniques and model agent attitudes to detect and justify design conflicts of 

heterogeneous design agents. A novel cooperative CSP (CoCSP) is defined for 

resolving design conflicts through compromising constraint restriction. The conflict 

resolution system can be adopted for different strategies which take into account the 

solidarity architecture of design agents. The gains and costs of centralized, 

decentralized and controlled conflict resolution system strategies are simulated with 

Monte Carlo simulations where design agent characters and their interactions reflect a 

stochastic nature. 

4.1 Introduction 

Engineering design processes of complex products and services require the 

collaboration of multiple design experts from different disciplines, and these can be 

located in different places. Concurrent collaborative design activities ensure the 

feasibility and increase the probability of success of new product development projects 

by providing necessary expertise and reducing the time to market. Since there are 

physical divisions between design experts and/or disciplinary boundaries within the 

multi-disciplinary design problem, a distributed design approach can be adopted 
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(Sobieszczanski-Sobieski et al., 1984). In distributed design, while the global design 

problem is decomposed into sub-problems, design responsibility is decentralized and 

distributed to subsystems composed of one or more design experts (Papalambros et al., 

1997). Subsystems have limited control over the design variables because of their 

limited expertise and responsibility. The ultimate objective of collaborative distributed 

design is to resolve sub-problems concurrently so that the global multi-objective design 

problem converges to a global optimum. However, as Lewis and Mistree (1998) point 

out, in reality it is highly unlikely to obtain true concurrency, because subsystems are 

not independent, but are related to each other through couplings between their sub-

problems. Inconsistencies in the design system can result in design conflicts through 

couplings. Design conflicts arise during the design process when designers are not able 

to satisfy their own design objectives. Inconsistencies can be found at both problem 

level and process level. Problem level inconsistencies consist of non-uniform, in other 

words conflicting, local design objectives of subsystems. Favoring the design objective 

of a designer can be detrimental to the design objectives of the other designers. Process 

level inconsistencies consist of conflicting working procedures of subsystems (Zhao 

and Jin, 2003). For instance, a designer that influences the design model more 

frequently and restrictively can block the other designers trying to satisfy their own 

design objectives. Design conflicts are justified when the satisfaction levels of 

designers obtained from the global solution diverge, resulting in a situation where a 

designer is very satisfied and the rest are not satisfied or dissatisfied. This divergence 

represents the intensity of the design conflicts. Preventing, justifying and resolving 

design conflicts are indispensable concepts for obtaining globally satisfactory design 

solutions where satisfaction levels of subsystems are in equilibrium. 

Many propositions have been made for design conflict resolution models. The most 

significant approaches are agent-based models. Klein (1991) proposes a heuristic-based 

computational model that produces advice for resolving conflicts between design 

agents by utilizing the knowledge about conflict resolution strategies obtained from 

empirical design expertise. Wong (1997) proposes a method of cooperative knowledge-

based systems that includes a library of multi-agent design conflict resolution strategies 

that can be combined in an appropriate order for the situation, so that if one strategy 

fails the system tries the next one. Koulinitch and Sheremetov (1998) define a 

constraint-based dynamic design system model that includes facilitator agents which 
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send messages to relax some constraints until a consistent solution is obtained. Li et al. 

(2002) propose an integration-based conflict resolution system that includes a 

hierarchical constraint network to detect design conflicts. A knowledge-based method, 

a constraint relaxation method, and a negotiation method are used to resolve various 

conflicts. Shin et al. (2006) propose a design conflict resolution model that employs 

agent-based negotiation techniques for facilitating a goal-formation process that 

generates fuzzy goals and modifies them by coordination between agents. The other 

significant conflict resolution approaches utilize mathematical optimization techniques 

and fuzzy logic models. Yin et al. (2008) propose a combinatorial heuristic algorithm 

for design conflict negotiation which is based on Fuzzy Matter Element Particle Swarm 

Optimization (FMEPSO). Jin et al. (2009) propose a design conflict resolution 

algorithm that optimizes the design problem by considering the fuzziness of design 

variables and the additional cost of conflict resolution. Li et al. (2004) propose a graph 

model for conflict resolution, not only for design problems, but for all types of 

conflicting decision making problems of multiple stakeholders. In this approach, the 

uncertainty of decision maker preferences is modeled, and four types of solution 

definitions are developed by modeling human behavior under conflict. The graph 

model is extended with fuzzy preferences by Bashar et al. (2012). Although these 

various efforts provide improvements to the design system, some important aspects for 

managing design conflicts are overlooked. Mathematical optimization models overlook 

the dynamic nature of the design problem that changes with the evolving intentions of 

designers, reflecting designer reactions to the uncertainty. Agent-based conflict 

resolution models consider the dynamic interactions of design agents; however they do 

not consider modeling design attitudes that define reactions and interactions of various 

design agents. This is an important omission, because modeling design attitudes can 

help to explore design conflicts. In addition, with the exception of some models that 

represent design variables and decisions with fuzzy parameters, the imprecision caused 

by the lack of information about design consequences is largely overlooked. 

Imprecision is inherent to design problems, as it represents the epistemic uncertainty of 

what the results from the emerging design interactions might be (Parry, 1996). 

According to Malak et al. (2009) this issue requires representing the uncertainty with 

imprecise intervals/sets and delaying uncertain decisions to later process stages where 

the information about the related decision is available. Besides, the proposed conflict 

resolution methodologies do not discuss the adoption strategy of the conflict resolution 
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system with regard to the solidarity architecture of the system participants. Centralized 

conflict resolution system strategies provoke or oblige solidarity between design agents 

to resolve design conflicts. In contrast, the decentralized conflict resolution system 

strategy considers an autonomous solidarity where agents are free to decide whether to 

help to resolve design conflicts. The question of which strategy should be adopted 

remains unanswered. 

In our earlier research (Canbaz et al., 2013), we defined a novel bottom-up design 

approach that employs the concept of Set-based Design (SBD) for managing 

imprecision in design and modeling design agent attitudes for exploring design 

conflicts. It was demonstrated through Monte Carlo simulations that our agent-based 

SBD approach prevents design conflicts that arise from heterogeneous designer 

attitudes. In this paper we extend this approach and integrate a conflict management 

model. In Section 4.2 we discuss the ability of SBD and constraint satisfaction problem 

(CSP) techniques to manage imprecision in design. Our conflict management model is 

introduced in Section 4.3 and the CSP simulation process of this model is presented in 

Section 4.4. Monte Carlo simulations of different conflict resolution systems and the 

uncooperative design system are performed on a design problem of a multi-disc clutch 

system that involves variable agent characters. The simulation problem definitions and 

simulation results that compare different strategies considering their gains and costs are 

presented in Section 4.5. 

4.2 SBD and CSP Techniques 

Variables of coupled and conflicting design problems cannot be crisply defined due to 

the lack of information about the consequences of design decisions (Antonsson and 

Otto, 1995; Yannou, 2004). The epistemic uncertainty due to this imprecision is very 

significant especially in preliminary design processes. Deterministic design methods 

cannot overcome this issue, because they require the restriction of the design problem 

by attributing crisp values to problem variables so that radical decisions are performed 

before the information about decisions is certain. Set-based design (SBD) is proposed 

as an alternative concept which considers the design process as an ongoing evolution of 

non-crisp concurrent design decisions (Sobek et al., 1999; Ward et al., 1994). Design 

problem variables are represented as imprecise values in their domains (intervals for 

real variables), so epistemic uncertainty can be propagated and evaluated. Design 
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decisions related to certain information are performed as constraints on variable 

domains, so the epistemic uncertainty is reduced. If design decisions are related to 

uncertain information, they can be delayed to later process stages where more details 

about the information is gathered due to the reduction of epistemic uncertainty through 

previous decisions. This design approach provides flexibility of modifications and 

higher adaptability to changes (McKenney et al., 2011), as well as robustness to design 

(Parsons et al., 1999). Repetitive design activities and loopbacks are consequently 

avoided by disclaiming a trial and error approach, so design process time is reduced. 

Although SBD originated as a management philosophy for concurrent engineering 

tasks, recent research has shown that SBD can be adopted at a technical solution level 

with constraint satisfaction problem (CSP) techniques e.g. (Yannou et al., 2013; Meyer 

and Yvars, 2012; Panchal et al., 2007; Yannou and Harmel, 2006). A CSP is defined 

with three groups of sets P = (V,D,C), where V is the set of variables, D is the set of 

domains that contain the allowable values of variables, and C is the set of constraints 

that restrict the problem (Montanari, 1974). A multidimensional space is defined by the 

Cartesian product of variable domains and contains the consistent solutions that respect 

the problem constraints. A design sub-problem is defined by three main problem 

elements: design variables that can be controlled by the specific subsystem, design 

performances that are evaluated by the subsystem, and constraints that must be 

respected for making design decisions. Some of these constraints form the relation 

between variables and performances; these, or other, constraints can also form 

couplings between variables and between performances of other sub-problems. A 

decomposed design problem can be defined with three spaces through CSP definitions: 

the design space defined by design variables, the performance space defined by design 

performance variables, and the solution space that contains both design and 

performance spaces. Design decisions are represented as constraints restricting the 

solutions space. When the epistemic uncertainty is reduced through design decisions, 

the remaining solution space of complex problems can be determined precisely with 

domain reduction/filtering algorithms of constraint programming (CP) techniques 

(Yannou and Harmel, 2004). For example, X and Y are integer variables and 

. Their domains are  ,  so the domain of Z is 

synthesized . If a constraint is defined  then the inconsistent 

solutions are filtered, so the domains are reduced. The reduced domains are 
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 and . Domain reduction due to a constraint leads to domain 

reduction of related parameters, so . Domain reduction can 

function with a bottom-up architecture where constraints can be defined directly on 

value occurrences. For instance if  the domains of the variables are reduced to 

 and . This is a very effective way of representing 

preferences in design systems, because it enables decision constraints to be defined 

directly on design performances and on indicators derived from design performances. 

Yannou and Harmel (2004) demonstrate that CP techniques can compete with and 

outperform probabilistic and fuzzy methods on managing imprecision in design. 

Some derivatives of CSP are made in order to deal with various artificial intelligence 

platforms that employ a multi-agent system (MAS). Dynamic CSP (DynCSP) allows 

constraints to be added to or removed from the problem model; the problem evolves 

over time with some agent actions which are related to the constraints performed 

through a process (Dechter and Dechter, 1988). The solution space is restricted with the 

addition of a constraint, or relaxed by the removal of a constraint. The problem at time 

stage t is  where  is the problem defined at the previous stage and 

 is a function that maps the previous problem to the problem at stage t. 

DynCSP is adequate for MASs that require dynamic negotiation and conflict resolution 

of interacting agents. Distributed CSP (DisCSP) is proposed to divide the CSP into n 

sub-CSPs shared to n automated agents :  (Yokoo et al., 1998). 

Agents resolve their own sub-CSPs concurrently, and then their solutions are unified. 

In DisCSP, an agent shares information only for loose couplings. This reduces the cost 

of knowledge transfer and avoids privacy/security problems among agents that may be 

caused by sharing all the information (Faltings and Yokoo, 2005). This can be an 

advantage for large but not very densely coupled problems. However, as Salido and 

Barber (2006) highlight, DisCSP is not suitable when the problem is densely coupled or 

the number of variables is very high. Dense couplings among design agents can cause 

conflicts in the problem solving stage which require a large number of message and 

information transfers. This issue renders DisCSP non-effective for conflicting 

distributed design problems. Cooperative CSP (CoCSP) is the problem technique 

defined by Yvars (2010, 2009) for obtaining cooperative solutions in MASs. In CoCSP, 

if a design agent cannot perform its design activities, the other agents can help this 

agent by compromising their constraints. The CoCSP definition is suitable for dealing 
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with conflicting distributed design problems, because it enables negotiations and 

conflict resolutions among design agents dynamically during the design process. 

CoCSP algorithms surveyed in the literature minimize the number of decision 

constraints rejected at any stage of the design process. This approach considers only the 

number of decision constraints, but it does not take into account the amount of the 

restriction and the satisfaction obtained by constraints. When design conflicts emerge 

from the interactions of heterogeneous designer characters, this approach is inadequate. 

When design agents are heterogeneous, they define heterogeneous constraints, so that 

one constraint of a particular agent can be more restricting than two constraints of 

another agent. Thus the conflict resolution objective of heterogeneous MAS should not 

compromise the quantity of constraints; it should instead compromise the restriction of 

constraints. In order to satisfy these requirements, we define our model as an agent-

based SBD model that explores designer attitudes for detecting and justifying design 

conflicts. A novel CoCSP model is developed for resolving design conflicts through 

compromising the restriction of constraints. 

4.3 Conflict Management Model 

In SBD, design variables are represented with imprecise domains/intervals. The 

analysis of the design space emerging from allowable design variable solutions 

stimulates design agents to react so as to satisfy their design objectives. Design agents 

react through defining decision constraints in the design model. The reaction of agents 

to uncertainties of complex dynamic domains is defined by agent attitudes (Goyal, 

2005). The most widely deployed architecture of an agent is the Belief-Desire-Intention 

(BDI) paradigm developed by Bratman et al. (1988). The character of an agent is the 

combination of its various autonomous attitudes, and different strategies can be 

developed through exploring agent characters in order to obtain optimal interactions 

between heterogeneous agents (Castelfranchi et al., 1998). We use CSP definitions and 

the BDI paradigm to manage design conflicts of autonomous agents. Figure 4.1 shows 

our adaptation of the BDI mechanism for a design agent. 
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Figure 4.1: BDI Mechanism of Design Agents 

We define an agent k, , as an entity with five different attitudes: 

. Analysis of the design space stimulates the design agent, and 

triggers its BDI mechanism. The design space is transformed through CSP definitions 

into the performance space where design agents define their design objectives. Upper 

and lower bounds of the design performance intervals represent the possible worst 

cases and the possible best cases. These cases reflect the beliefs of the design agent 

about the convergence of its design performance variables towards its design 

objectives. The converging intervals of possible worst and possible best cases 

propagate some uncertainty for the design agent. Reactions of design agents are bound 

through couplings, because the solution space is shared. If an agent modifies the design 

model for its own benefits, it can decrease the best case of another agent with a 

conflicting objective. Thus, the performance intervals of an agent depend on the 

unpredictable reactions of the other design agents. In order to adopt design performance 

values, the design agent defines preferences about its design performances and on the 

emerging satisfaction values from these performances. Preferences reflect the agent’s 

desires towards its uncertain design performances.  is the set of preferences of the 

agent on the performance values, and reflects the agent’s attitudes for satisfaction 

obtained from alternative solutions. In a coupled design system, it is highly unlikely to 

fully satisfy all the design agents. Therefore, design agents are forced to compromise at 

a certain level on their satisfaction interval.  is the compromise threshold value of the 
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agent representing the preference of the agent on the satisfaction values for 

compromise. Beliefs and desires lead the design agent to state intentions for increasing 

its satisfaction from the dynamic design model. The design agent reacts by defining 

decision constraints that restrict the solution space, with the aim of improving its worst 

cases. Intentions are reflected with how frequently and how restrictively the decision 

constraints are defined.  is the average frequency attitude of the agent for defining 

constraints in the model.  is the coefficient of restriction of constraints defined by 

the agent, and it reflects the restrictiveness attitude of decision constraints defined by 

the agent. When a decision constraint is defined, the design model’s feasibility is 

evaluated through testing the consistency of the decision constraint with CP techniques. 

After the definition of the constraint, the design model is feasible if there is at least one 

solution remaining in the solution space. Therefore, the decision constraint emerging 

from the agent’s BDI mechanism is accepted and a new design space is synthesized in 

the dynamic process. The decision constraint is rejected if it yields an empty solution 

space. When a decision constraint is rejected, it means the design agent could not 

perform its modifications, so a potential design conflict is detected. The conflict is 

justified only if the rejection of a decision constraint means an under-satisfied design 

agent caused potentially by over-satisfaction of another design agent or design agents. 

This justification process requires CoCSP definitions where all the information about 

the agents’ states and their decision constraints are shared among design agents. If a 

conflict is justified, the other design agents can help this agent to incorporate its 

constraint into the design model.  is the helping attitude of . If  needs help, the 

other design agents’ helping attitudes  determine the approval of the conflict 

resolution process. Conflict justification and resolution models are defined in the 

following sub-sections. 

4.3.1 Conflict Justification 

In order to justify conflicts, we evaluate design agents’ states during the design process 

with control indicators called wellbeing indicators. The wellbeing indicators are 

derived from the desires of the agents reflected on the beliefs of the agents. First we 

model design performances with satisfaction functions defined by piecewise 

constraints. Satisfaction functions are scaled between 0 and 1. For example, one 

objective of agent k is to maximize a performance i; the agent is fully satisfied by a 
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performance value above or equal to  and fully dissatisfied by a performance value 

below or equal to . It is assumed that there is a linear transition between these two 

preference values.  is the satisfaction value of the agent k obtained by the 

performance i and  is the performance value of the performance i. Then the piecewise 

constraints are as follows: 

If  ,  (4.1) 

If  ,  (4.2) 

If  ,  (4.3) 

 

 

 

 

 

 

 

 

Figure 4.2: Intervals of satisfaction function 

SBD process is an ongoing evaluation of intervals, so the design process is divided into 

stages where design agents make reactions. At process stage t, performance i is defined 

with an interval, , where  is the minimum value and  is the maximum 

value. An interval for the satisfaction of agent k is obtained from performance i at stage 

t:  where  is the minimum satisfaction and  is 

the maximum satisfaction obtained within the interval . Figure 4.2 

demonstrates an example with the piecewise constraints given above. Minimum 

satisfaction is obtained at point B and maximum satisfaction is obtained between P1 

and point A. If design agents evaluate several design performances, they can assign 

weights to their satisfaction values according to the importance of the design 

performances for their job. Therefore individual performance satisfaction values are 

aggregated, so general satisfaction states of agents can be observed.  is the weight 

assigned to the performance i by the design actor k. I is the total number of the 
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performances considered by design actor k. General satisfaction of an agent k is an 

interval . Its bounds are calculated with the following equations: 

 (4.4) 

 (4.5) 

 (4.6) 

 

 

 

 

 

 

 

 

 

Figure 4.3: Bilateral convergence 

Design agents define decision constraints in order to improve their minimum 

satisfaction values during process stages. However the convergence of their satisfaction 

intervals is bilateral because of conflicting couplings. Figure 4.3 shows an example 

where the constraints of Agent 1 are represented with dashed arrows and the constraints 

of Agent 2 are represented with solid arrows. When a constraint is defined by an agent, 

it increases the minimum satisfaction value of this agent, but it decreases the maximum 

satisfaction of the other agent. Therefore at the end of the design process, satisfaction 

intervals converge to a compromised point solution where minimum and maximum 

satisfaction values are approximately equal. This solution is uncertain during the design 

process until it is obtained. Design agents can reflect an attitude of desiring a 

satisfaction value in which they may compromise. The preference on the satisfaction 
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value is called compromise threshold , which defines the compromise attitude of an 

agent. The objective of a design agent is to guarantee that its satisfaction interval will 

converge to a value at least as good as its compromise threshold value. If the minimum 

satisfaction of an agent reaches its  value or passes beyond, then the agent passes to 

the compromise state. In the compromise state, the agent stops adding decision 

constraints to the model, so this leaves space to the other agents in the solution space. 

Satisfaction values are normalized by dividing them by the compromise threshold value 

and this provides wellbeing states Eq. (4.7, 4.8). Wellbeing is defined with an interval 

 where minimum value is the minimum wellbeing 

indicator and maximum value is the maximum wellbeing indicator. Global states of 

design agents are observed with their wellbeing indicators. If an agent suffers because 

of design conflicts, it will be detected immediately. If  value is larger than or 

equal to 1, then agent k is in a perfect wellbeing state. However if agent k is not in a 

perfect wellbeing state, it defines a decision constraint in order to improve its wellbeing 

state. If the constraint is rejected because it does not provide any consistent solution, 

and if there is at least one agent k’ in a better wellbeing state with a higher  

then the design conflict is justified. This is because it is considered that the shared 

solution space is not restricted in equilibrium. At least one agent restricted the solution 

space for its benefits more than the suffering agent that cannot get its decision 

constraint accepted. The suffering agent can therefore ask help to the other agents in 

better wellbeing states in order to resolve the justified design conflict. If the conflict is 

not justified, then the agent does not deserve the conflict resolution. This agent must 

reduce its  value in order to define a less restrictive constraint at the following 

design process stage. 

 (4.7) 

 (4.8) 
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4.3.2 Conflict Resolution 

Design agents intend to improve their minimum wellbeing states. Intentions are 

represented with how frequently and how restrictively their constraints are defined.  

is the average frequency of agent k to define its decision constraints in the model.  

is the phase of the decision frequency of . In internationally distributed design 

systems, agents are available in different time zones, so phases of frequencies can be 

different from one agent to another. Agent k defines decision constraints at each 

process stage t where  value is an integer multiple of . We consider that 

 is an integer number, because process stages are represented with integer values. 

 is the coefficient of restriction for the constraints defined by agent k in order to 

improve its wellbeing state. 

SBD is an on-going restriction of the solution space, so we assume that agents restrict 

their wellbeing intervals by defining increasingly restrictive constraints. The constraint 

defined by agent k at process stage t is  where  

value and  value are larger than 0. We assume that  is a fixed value during the 

process, because it represents the average. However  value can change during the 

process depending on how restrictively the agent intends to define its constraint at the 

process stage.  

Both  and  define the working procedures of agent k. Since design agents are 

autonomous, their design attitudes reflected during the design process can be 

heterogeneous. Inconsistencies can arise among heterogeneous working procedures 

through design couplings. We explore design agents’ working procedures to resolve 

design conflicts. When a decision constraint of an agent k is accepted, it is put on a list 

of accepted constraints . When a constraint defined by an agent is not consistent, 

then the constraint is refused because it causes an unfeasible solution space. Other 

agents can help to enable this constraint by removing some of their constraints from 

their list of accepted constraints. In our CoCSP, we assume that only one agent can 

offer to cooperate at any one time: multiple agents do not cooperate. 

Our conflict resolution model can detect which agent can help and how it can help 

optimally. The model is composed of three phases. The first phase is the negotiation 

phase where we detect all the help possibilities. The second phase is the testing phase 
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where the feasibilities of different help possibilities are tested with CP techniques and 

the optimal help among the feasible help solutions is detected. The third phase is the 

approval phase where we detect if the help is approved or not by the helping agent. 

4.3.2.1 Negotiation Phase 

When agents are asked to help, they negotiate the results of the help through comparing 

their states in order to decide whether they are able to help or not. We assume that 

agents that are asked to help would want to keep their wellbeing states at least as good 

as the other agent that needs help after the help is performed. If the wellbeing state of 

the agent which is asked to help were to go below the wellbeing state of the agent that 

needs help, then the help is refused. This refusal is reasonable because otherwise the 

wellbeing state of the helping agent would become inferior after the help, thus 

generating another conflict. 

Figure 4.4 shows an example representing this phenomenon. Here, agents’ constraints 

defined during process stages 0 to 2 and their wellbeing states emerging from these 

constraints are shown. While all the constraints defined by Agent 2, Agent 3, Agent 4 

and Agent 5 are accepted, the constraint  of Agent 1 defined at process stage 2 is 

inconsistent (it yields an unfeasible solution space), so it is refused. Agent 1 needs help 

in order to enable its constraint. The dashed line compares agents’ states. Agent 5 is not 

able to help, because even without removing any constraint, its wellbeing state would 

be inferior to the wellbeing state of Agent 1. Agent 2 is not able to help, because in the 

case of help, it would remove  and its wellbeing state would go below the wellbeing 

state of Agent 1. Agent 3 is able to help through removing  or both  and  

without making its wellbeing state inferior to the wellbeing state of Agent 1. Agent 4 is 

able to help through removing only . All the help possibilities are detected through 

the negotiation phase following this procedure. 

  

- 116 - 

 



 Baris Canbaz 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Negotiation phase of design agents 

4.3.2.2 Testing Phase 

If help is possible, its feasibility is tested. Help is feasible if it enables the constraint of 

the agent that asks for help. This test is performed with CP techniques; the help is 

feasible if the solution space contains at least one consistent solution after the definition 

of the conflicting constraint and the removal of the constraint or constraints of the agent 

that is able to help. Figure 4.5 shows a numerical example where there are three design 

agents with heterogeneous design attitudes: Agent 1: 

, Agent 2:  and Agent 3: 

. Agent 2 and Agent 3 start at stage 0 while 

. The constraints defined by agents at process stages, as well as agents’ 

minimum wellbeing values emerging from these constraints are shown. At stage 5, 

minimum wellbeing values of Agent 1 and Agent 2 are both equal to 1. These agents 

compromise, so they will not define a constraint during subsequent process stages. All 

the constraints defined by agents till stage 6 are accepted, so , 

 and . However, the constraint defined by 

Agent 3 at stage 6 is refused because it is inconsistent, so it returns an unfeasible 

solution space. The design conflict is justified, because at stage 5, the wellbeing states 

of Agent 1 and Agent 2 are better than the wellbeing state of Agent 3. In order to 
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resolve this justified conflict, we detect all the help possibilities that can be provided 

from Agent 1 and Agent 2. Agent 1 can remove only  and Agent 2 can remove only 

 or both  and . However, Agent 1 refuses to remove constraint combinations 

that include the  set and Agent 2 refuses to remove constraint combinations 

that include the  set, because the emerging wellbeing states would fall 

below the wellbeing state of Agent 3. Next, feasibilities of all the possible helps are 

tested. If the removal of a constraint combination enables the acceptance of , then its 

help is feasible. Conflict resolution process is unfruitful if there is no feasible help 

solution. Then Agent 3 reduces  in order to define a less restrictive constraint at the 

following process stage. If there is more than one feasible help, then we detect the 

optimal help. We choose the feasible help that gives the maximal  value 

after the removal of the constraint or constraints. 

 Agent 1 Agent 2 Agent 3  
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4.3.2.3 Approval Phase 

When the optimal help is detected, our model sends a message to the agent that needs 

help about who can help, and another message to the agent that can help about exactly 

how it can help. If the conflict resolution system is decentralized, then helping is under 

the responsibility of agents. Design agents are autonomous when deciding whether to 

cooperate by approving the help, or not cooperate by rejecting the help. This is defined 

by agents’ helping attitude .  is the probability of agent k to approve help. For the 

example defined in Figure 4.5, the probability of Agent 1 to approve help is 0.75 and 

the probability of Agent 2 to approve help is 0.7. If the help is approved and performed, 

then the compromised constraints of the helping agent are removed from the design 

model and from its list of accepted constraints . The helping agent returns to its 

wellbeing value and  value of the process stage where the remaining most restrictive 

constraint is defined after the constraint removal. If help is approved by an agent that is 

in the compromise state, then the agent leaves the compromise state after the help is 

performed, because its minimum wellbeing value goes below 1. If the help is not 

approved, the conflict resolution process is unfruitful. Then the agent k that asked for 

help reduces its  value in order to define a less restrictive constraint at the following 

process stage. 

When the conflict resolution system is decentralized, agents can seek revenge. For 

instance, suppose agent k needs help and agent k’ does not approve the help. If at a 

following process stage agent k’ needs help and agent k can help, then agent k seeks 

revenge by not approving the help to agent k’ regardless of its . Different control 

strategies can be defined to encourage design agents to approve the help, or penalize 

design agents that do not approve the help. Alternatively, a completely centralized 

conflict resolution system can be adopted where design agents are obliged to approve 

the help regardless of their helping attitudes. 

4.4 CSP Simulation Process 

In this section, we present an automatic constraint propagating simulation where the 

solution space is reduced iteratively considering design agents’ BDI mechanism. The 

objective of our simulation is to evaluate gains and costs of our cooperative conflict 

resolution model whether the conflict resolution system is centralized or decentralized. 
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Four different system strategies are defined considering the extent of promotion of 

solidarity. 

• Strategy 1: Uncooperative design system. Agents do not share information 

about their wellbeing states and constraints, so the design system does not 

include the conflict management system. If a design conflict arises, it remains 

unresolved. 

• Strategy 2: Decentralized conflict resolution system. Agents share all the 

information. If a design conflict arises, agents are free to decide whether to 

cooperate by approving the help, or not cooperate by rejecting the help. 

Therefore, agents can seek revenge if the help is not approved. 

• Strategy 3: Controlled conflict resolution system. Agents share all the 

information. If a design conflict arises, agents are free to decide whether to 

cooperate by approving the help, or not cooperate by rejecting the help. 

However, if an agent does not approve the help, it is penalized by a control 

agent. A penalized agent cannot define a decision constraint at the next process 

stage where it is available to define a constraint. After the penalized process 

stage, it can continue to define decision constraints. Agents do not intend to 

seek revenge, because uncooperative agents have already been penalized. 

• Strategy 4: Centralized conflict resolution. If a design conflict arises, agents are 

obliged to cooperate by approving the help. 

For the simulation we consider process stages as iterations. In the CSP simulation 

process, we use a split mechanism similar to the round-robin strategy that loops on all 

the variables at process iteration (Granvilliers, 2012). The objective of this mechanism 

is to obtain upper and lower values which are as close as possible for each interval. 

Wellbeing intervals are restricted until a good degree of precision is obtained. The 

simulation algorithm is shown in Figure 4.6.  
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Figure 4.6: Simulation algorithm 

We make the following assumptions when defining the simulation process: 

• The attitudes of agents are defined at the initial state of the process. ,  and 

 attitudes do not change during the simulation process because  and  

represent fixed desires and  represents an average value. However,  

attitude value can change during the process depending on the restrictiveness 

intentions. 
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• Initial worst cases are larger than 0:  . Decision constraints are 

defined for improving the worst case scenarios with a coefficient of restriction 

 . The constraint defined at process stage t by agent k is 

. We assume that design agents do not restrict their 

wellbeing intervals, so that minimum wellbeing value surpasses 1. If 

, then . 

• If a constraint is rejected and the conflict is not resolved, its related coefficient 

of restriction value is reduced by half: . Thus, a less restrictive 

constraint can be defined at the next iteration. If the coefficient of restriction 

value of an agent reaches a precision value (P), then the splitting is stopped for 

this agent, because the upper and lower bounds of its wellbeing variable are as 

close as possible considering the precision value. If all the coefficient of 

restriction values reach P, then the simulation process stops. 

• If help is approved, the helping agent returns to the  value of the process 

iteration where the most restrictive constraint is defined after the constraint 

removal. 

The simulation process evaluates the strategies by three process performances: number 

of iterations, total satisfaction and satisfaction divergence. A smaller number of 

iterations means a faster convergence of intervals and a rapid design process. In 

addition, the global objective of the design system is to maximize the satisfaction 

values of agents while minimizing their divergence. This divergence is defined as the 

difference between agents’ individual satisfaction levels. It represents the degree of 

intensity of the unresolved design conflicts. In the ideal case, agents should obtain the 

same satisfaction values and each one should be equal to 1. Absolute differences of the 

satisfaction values of each two element combination represent a vector . 

The Euclidian distance of this vector solution to the ideal case solution gives the 

divergence of the individual solutions: . More 

divergent solutions lead to more intense conflicts. However, the divergence cannot be 

evaluated alone. It should be evaluated with the total satisfaction value, because a zero 

divergence is not desirable if total satisfaction is zero. 

- 122 - 

 



 Baris Canbaz 

4.5 Monte Carlo Simulation 

Design agents can reflect different characters emerging from their BDI mechanism, and 

this defines an uncertain design system composed of either heterogeneous or 

homogeneous design agents. Agents’ characters can be classed in two extreme groups, 

namely egoistic characters and altruistic characters (Pita and Lima Neto, 2007). 

Egoistic agents are motivated by self-interested gains, while altruistic agents are 

motivated by the benefit of the group that it belongs to. 

According to our BDI definition, a design agent  is relatively 

egoistic if its , , and  attitude values are relatively larger, because it desires to 

compromise at a higher wellbeing state and it intends to define more restrictive 

constraints more frequently. Its  attitude value is also smaller, because it does not 

intend to help easily. In contrast, an altruistic agent has relatively smaller  

attitude values and a larger  value. 

The stochastic nature of the system is considered with a Monte Carlo simulation 

approach. Three different agent characters are defined as shown in Table 4.1: Egoistic, 

Moderate, and Altruistic. We consider that there are no phase differences of 

frequencies. Each of the four system strategies is repeated 1000 times with randomly 

generated agent characters. The same series of random seed numbers is utilized for 

each strategy, so the simulation results of four strategies are comparable. Also design 

agents are randomly processed in iterations, so the process sequence is completely 

independent from agent characters. 

The precision value is defined as 0.01. This means that if the interval of  does not 

contain , it is extracted from the loop at iteration t. CSP is defined in 

C++ computer language and a CP solver library called IBM ILOG CP V1.6 (IBM, 

2012) is used to detect consistent solutions precisely through its domain reduction and 

constraint propagation algorithms. The solve function of IBM ILOG CP is performed to 

examine the feasibility of the model. 
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Table 4.1: Definitions of random characters 

 Egoistic Moderate Altruistic 

: (0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 

0.9, 0.95, 1) 

(0.45, 0.5, 

0.55) 

(0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, 0.4) 

: (0.5, 1) (1/3, 0.5, 1) (1/3, 0.5) 

: (5, 6, 7, 8, 9) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5) 

 0.2 0.5 0.8 

 

 

The simulation problem is derived from the example studied in work (Yannou et al., 

2010). It is a design problem of a multi-disc clutch system that connects a weight lifter 

with an engine, followed by a gearbox. This is a complex and a realistic design problem 

which contains 81 variables and 64 initial constraints. The problem is distributed to 

four design agents. The design objectives are shown in Table 4.2. This problem is 

presented in Section 2.5.1. More details of the problem can be seen in Appendix A. 

 

Table 4.2: Problem objectives 

 Agent 1 Agent 2 Agent 3 Agent 4 

Objectives  
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Figure 4.7: Simulation Results  

The average results of the Monte Carlo simulation are shown in Figure 4.7. Conflict 

resolution systems, regardless of their adoption strategy, result in a larger total 

satisfaction value and a smaller divergence than the uncooperative design system. This 

shows that conflict resolution systems approach the ideal objective more closely than 

the uncooperative design system. However, this is obtained at a cost of longer process 

time. The most rapid system strategy is the uncooperative design system strategy, 

because there is no conflict resolution that can cause loopbacks to the helping agents. In 

contrast, the centralized conflict resolution system resolves more design conflicts than 

the other strategies. This causes more loopbacks, which explains why this strategy 

generates the longest process time. 

The results prove that the divergence is reduced and the total satisfaction is increased 

with the number of design conflicts resolved or prevented. The least divergence and the 

greatest total satisfaction values are obtained with the centralized conflict resolution 

system. These results are the closest to the ideal solution (  ; zero divergence, 

greatest total satisfaction). The controlled conflict resolution system produces better 
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total satisfaction and divergence results than the decentralized conflict resolution 

system. Even if the number of resolved conflicts of the former is slightly less, the 

controlled conflict resolution system performance is better, because it prevents some 

design conflicts by stopping the egoistic actions of agents.  

4.6 Conclusions 

In this paper, we explored design conflicts with a BDI model and CSP definitions, so 

that design conflicts can be justified. We defined a CoCSP which is able to manage 

conflicts by allowing design agents to help others through compromising the 

restrictiveness of their decision constraints. Different strategies can be adopted for the 

conflict resolution system. We defined three different conflict resolution system 

strategies and compared them with each other and with the uncooperative design 

system that does not include any conflict resolution.  

Monte Carlo simulation results show that, regardless of the conflict resolution system 

strategy adopted, our conflict management model represents a significant improvement 

over the uncooperative design system. The divergence of individual satisfaction 

solutions is lowered and the total satisfaction is increased. Thus, through our conflict 

management model, the design solution tends towards the ideal solution where design 

agents are completely and equally satisfied in equilibrium. However, this gain is 

obtained at the cost of the increase of design process time, because conflict resolution 

causes loopbacks.  

Other conclusions are deduced by comparing different adoption strategies of the 

conflict resolution system. A centralized conflict resolution system strategy can be 

adopted if the process time is not an important issue and if the main objective is the 

highest possible degree of conflict resolution. With the lowest divergence and the 

highest total satisfaction, this system converges to the ideal solution closer than any 

other system. However, if process time is an important issue, a controlled system where 

uncooperative agents are penalized can be preferred. If the conflict resolution system is 

completely decentralized without any control, the solutions are less close to the ideal 

solution than the centralized and controlled systems.  
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We conclude that the centralization of the conflict resolution system, either with a 

control mechanism (penalty) or a complete centralized mechanism (obligation), is more 

fruitful and should be preferred to complete decentralization. Consequently, informing 

design agents of their respective situation in terms of their wellbeing – the information 

transparency value – and encouraging or forcing them to help each other – the 

solidarity value – are two values we believe efficient for the quality of the resulting 

design, albeit sometimes to the detriment of design process time.  
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Chapter 5: Experimenting the Conflict Management Model with 

Human Agents 

In this chapter, the conflict management model presented earlier in Chapter 4 is tested 

and the experimentation results are exposed. In this experimentation, computer agents 

simulating human behavior are replaced by real human agents. For this purpose, a 

Serious Game transformation is performed through and adapted user interface. 

5.1 Introduction 

The experimentation objective is to test the conflict management model through human 

interactions in order to demonstrate its final application and validate the results of 

Chapter 4. Four adoption strategies defined in Section 4.4 are experimented. The 

experimentation problem is the design problem of the multi-disc clutch system. It is 

derived from the example studied in work (Yannou et al., 2010). This problem is 

already presented in Section 2.5.1. More details of the problem are presented in 

Appendix A. It is a complex problem containing 81 variables and 64 initial constraints, 

and it requires deep knowledge about mechanics. In order to avoid training human 

agents in mechanics about the meaning of variables, constraints and objectives, an 

analogy of the design problem is built and the design actors are represented by roles in 

a Serious Game approach.  

Serious Games are developed for simulating complex problems with players that do not 

have proper expertise about the problem (Djaouti et al., 2011). It requires the 

transformation of the complex problem into a more entertaining one while maintaining 

its primary purpose (Marfisi-Schottman et al., 2010). The clutch problem is 

transformed into a problem where the limited resources of a university are shared 

between four students for scholarships. While players negotiate for increasing their 

scholarships for an internship in a foreign country, they indeed design the multi-disc 

clutch system. The Serious Game transformation is presented in Appendix B. In the 

designing problem of multi-disc clutch system, four designers are required. In its 

serious game, each sub-problem is a role associated with a human agent. In order to 

obtain comparable results from experiments of different adoption strategies, we make 

some considerations: 

- 133 - 

 



 Baris Canbaz 

• Each adoption strategy is experimented with the same group of human agents. 

• Human agents maintain their roles when the strategy is changed. 

• We make a hypothesis: a human agent is an entity that reflects always the same 

character (e.g. egoistic, altruistic). By accepting this hypothesis, we consider 

that characters of human agents are not biased by the adoption strategy and by 

the order of the adoption strategy. 

5.2 Text-based User Interface 

A Text-based User Interface (TUI) is developed for the Serious Game. Each agent has a 

dedicated screen where he/she can read the instructions, messages and wellbeing 

information and react by typing numbers. Different stages of the TUI are shown in 

Figures 5.1-5.10. The initial screen of the TUI is shown in Figure 5.1. Firstly, human 

agents chose together the adoption strategy among four strategies. Next each agent 

defines his/her compromise threshold value between 0 and 1. In Strategy 1, agents do 

not share their screens, while in Strategies 2, 3, and 4 they share their screens. Thus, in 

Strategies 2, 3, and 4 agents are informed about the other agents’ wellbeing values, 

actions (whether they define a constraint or not), constraint definitions and constraint 

inconsistencies (whether the constraint is accepted or rejected). 

 

Figure 5.1: Initial screen 
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The game consists of iterations where agents react sequentially. Agents are processed 

randomly at process iteration. If all the four agents are processed, then the process 

passes to the next iteration. Agents’ wellbeing variables are represented as intervals. As 

shown in Figure 5.2, the agent in process (agent k) is firstly informed about his/her 

minimum wellbeing at process stage t ( ), and asked whether to define a 

constraint or not. If the agent chooses to not to define a constraint, then the next agent 

is processed. If the agent k chooses to define a constraint in order to improve his/her 

wellbeing ( ), then a coefficient of restriction value ( ) is requested. The 

coefficient of restriction can be defined between 0 and 9. The constraint is defined by 

. In this game, we consider that  does not surpass 

1. If , then . The agent can confirm this 

constraint or retype another coefficient of restriction if he/she wants to modify the 

constraint. 

 

Figure 5.2: Constraint definition and acceptance 

The consistency of the constraint is tested by IBM ILOG CP (2012), and the agent is 

reported about whether his/her constraint is accepted (shown in Figure 5.2), or rejected 

(shown in Figures 5.3-5.8). If the constraint is accepted, the process passes to the next 

agent. If the constraint is rejected, the constraint management process is activated in 

Strategies 2, 3, and 4. In Strategy 1, there is no conflict management. As shown in 

Figure 5.3, if the constraint is rejected in Strategy 1, then the agent should revise the 

constraint at next iteration in order to make it less restrictive. 
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Figure 5.3: Constraint definition and rejection in Strategy 1 

In further iterations, agents are also informed about their last coefficient of restriction 

defined. Thus, they can track their previous reactions. This can be seen in Figure 5.3. In 

Strategies 2, 3 and 4, agents are informed about whether their conflict is justified or 

not. If the conflict is not justified as shown in Figures 5.4, then the agent should revise 

the constraint at next iteration in order to make it less restrictive. 

 

Figure 5.4: Report of unjustified conflict 
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If the conflict is justified, the agent is reported about whether there is a feasible help or 

not. If there is no feasible help as shown in Figure 5.5, the agent should revise the 

constraint at next iteration. 

 

Figure 5.5: Report of no feasible help 

If there is at least one feasible help, the most optimal one is detected. In Strategy 4, the 

conflict is resolved directly without any approval request from the helping agent. As 

shown in Figure 5.6, the helping agent is informed when the conflict is resolved. 

 

Figure 5.6: Report of conflict resolution in Strategy 4 
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In Strategies 2 and 3, the approval of the helping agent is requested. As shown in 

Figure 5.7, the agent that can help is informed about what his/her wellbeing value will 

become if help is approved, and how many times agents have helped each other in 

previous iterations. If help is approved, then the conflict is resolved. 

 

Figure 5.7: Report of feasible help in Strategies 2 and 3 

If help is not approved, the agent should revise the constraint at next iteration. In 

Strategy 3, the agent that refuses to help is penalized. He/she cannot define a constraint 

at next iteration. This is reported to the agent as shown in Figure 5.8.  

 

Figure 5.8: Report of penalization in Strategy 3 
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Agents can finish their part in the game by two ways: intentionally -when they enter 0 

as the coefficient of restriction (shown in Figure 5.9) - , or automatically - when their 

minimum wellbeing is equal to 1 (shown in Figure 5.10) -. If an agent is out he/she 

cannot define constraints anymore. However, he/she can still receive messages if 

another agent in process requires his/her help. Thus, agents need to follow their screen 

until the game is finished. If the agent is out and approves help; since his/her wellbeing 

is reduced, he/she can reenter to the game. The game is finished when all the four 

agents are out. 

 

Figure 5.9: Finishing the game intentionally 

 

Figure 5.10: Finishing the game automatically 
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5.3 Experiment Results 

Eight members of Ecole Centrale Paris Industrial Engineering Laboratory participated 

to the experiments. Experiments were thus conducted with two different groups of 

people (Group 1 and Group2). In the ideal situation, experiments should be conducted 

with various groups, so that results show a statistical significance. However, each 

experiment takes around two and a half hours. Considering the limited time, we opted 

for experimenting with only two groups. The results are however comparable when the 

hypothesis “a human agent is an entity that reflects always the same character” is 

accepted. 

Strategies are experimented sequentially. Each strategy is conducted as a separate 

game. Initial wellbeing values of agents are equal to 0.1 in each game. The minimum 

wellbeing of an agent can have three different values at process iteration: 

• Beginning value: the minimum wellbeing value that the agent has at the 

beginning of iteration 

• Intermediate value: the minimum wellbeing value that the agent has just after 

defining his/her constraint 

• Ending value: the minimum wellbeing value that the agent has at the end of 

iteration 

If the constraint of an agent is rejected, the intermediate value of his/her minimum 

wellbeing is equal to its beginning value. The ending value of an agent’s minimum 

wellbeing can be different than its intermediate value if the agent helps another agent. 

Otherwise they are equal. Since there is no conflict resolution in Strategy 1, 

intermediate and ending values are equal. If the intermediate value is less than the 

constraint value V where  at an iteration, it represents a potential conflict. It 

means that the constraint is rejected. The constraint value V is 0 either when the agent 

does not define a constraint (on purpose to leave space to the other agents, or when the 

agent is out of the game), or is punished in Strategy 4. The evolution of these values in 

different strategies for both Group 1 and Group 2 are shown in following subsections. 

Number of iterations, total satisfaction, and satisfaction divergence values of four 

strategies are also compared for both Group 1 and Group 2. 
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5.3.1 Results of Group 1 

Agents in Group 1 enter their compromise threshold values as shown in Table 5.1. 

Table 5.1: Compromise threshold values of agents in Group 1 

 Compromise Threshold 

Agent 1: 0.7 

Agent 2: 0.6 

Agent 3: 0.8 

Agent 4: 0.9 

5.3.1.1 Strategy 1 

The results of Strategy 1 with Group 1 are shown in Figures 5.11-5.14. 

 

 

Figure 5.11: Results of Agent 1 (Group 1) in Strategy 1 
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Figure 5.12: Results of Agent 2 (Group 1) in Strategy 1 

 

 

 

Figure 5.13: Results of Agent 3 (Group 1) in Strategy 1 
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Figure 5.14: Results of Agent 4 (Group 1) in Strategy 1 

5.3.1.2 Strategy 2 

The results of Strategy 2 with Group 1 are shown in Figures 5.15-5.18. 

 

 

Figure 5.15: Results of Agent 1 (Group 1) in Strategy 2 
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Figure 5.16: Results of Agent 2 (Group 1) in Strategy 2 

 

 

Figure 5.17: Results of Agent 3 (Group 1) in Strategy 2 
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Figure 5.18: Results of Agent 4 (Group 1) in Strategy 2 

5.3.1.3 Strategy 3 

The results of Strategy 3 with Group 1 are shown in Figures 5.19-5.22. 

 

 

Figure 5.19: Results of Agent 1 (Group 1) in Strategy 3 
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Figure 5.20: Results of Agent 2 (Group 1) in Strategy 3 

 

 

Figure 5.21: Results of Agent 3 (Group 1) in Strategy 3 
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Figure 5.22: Results of Agent 4 (Group 1) in Strategy 3 

5.3.1.4 Strategy 4 

The results of Strategy 4 with Group 1 are shown in Figures 5.23-5.26. 

 

 

Figure 5.23: Results of Agent 1 (Group 1) in Strategy 4 
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Figure 5.24: Results of Agent 2 (Group 1) in Strategy 4 

 

 

Figure 5.25: Results of Agent 3 (Group 1) in Strategy 4 
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Figure 5.26: Results of Agent 4 (Group 1) in Strategy 4 
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4 resulted in the largest final total satisfaction (1.908), followed by Strategy 3 (1.846), 

Strategy 2 (1.767), and Strategy 1 (1.574). Strategy 4 resulted in the smallest final 

satisfaction divergence (0.383), followed by Strategy 3 (0.49), Strategy 2 (0.63), and 

Strategy 1 (0.97). 

 

Figure 5.27: Comparison of the total satisfaction values (Group 1) 

 

Figure 5.28: Comparison of the satisfaction divergence values (Group 1) 
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5.3.2 Results of Group 2 

Agents in Group 2 enter their compromise threshold values as shown in Table 5.2. 

They all defined egoistic threshold values. 

Table 5.2: Compromise threshold values of agents in Group 2 

 Compromise Threshold 

Agent 1: 1 

Agent 2: 1 

Agent 3: 1 

Agent 4: 1 

5.3.2.1 Strategy 1 

The results of Strategy 1 with Group 2 are shown in Figures 5.29-5.32. 

 

 

Figure 5.29: Results of Agent 1 (Group 2) in Strategy 1 
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Figure 5.30: Results of Agent 2 (Group 2) in Strategy 1 

 

 

 

Figure 5.31: Results of Agent 3 (Group 2) in Strategy 1 
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Figure 5.32: Results of Agent 4 (Group 2) in Strategy 1 

5.3.2.2 Strategy 2 

The results of Strategy 2 with Group 2 are shown in Figures 5.33-5.36. 

 

 

Figure 5.33: Results of Agent 1 (Group 2) in Strategy 2 
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Figure 5.34: Results of Agent 2 (Group 2) in Strategy 2 

 

 

Figure 5.35: Results of Agent 3 (Group 2) in Strategy 2 
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Figure 5.36: Results of Agent 4 (Group 2) in Strategy 2 

5.3.2.3 Strategy 3 

The results of Strategy 3 with Group 2 are shown in Figures 5.37-5.40. 

 

 

Figure 5.37: Results of Agent 1 (Group 2) in Strategy 3 
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Figure 5.38: Results of Agent 2 (Group 2) in Strategy 3 

 

 

Figure 5.39: Results of Agent 3 (Group 2) in Strategy 3 
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Figure 5.40: Results of Agent 4 (Group 2) in Strategy 3 

5.3.2.4 Strategy 4 

The results of Strategy 4 with Group 2 are shown in Figures 5.41-5.44. 

 

 

Figure 5.41: Results of Agent 1 (Group 2) in Strategy 4 
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Figure 5.42: Results of Agent 2 (Group 2) in Strategy 4 

 

 

Figure 5.43: Results of Agent 3 (Group 2) in Strategy 4 
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Figure 5.44: Results of Agent 4 (Group 2) in Strategy 4 
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Figure 5.45: Comparison of the total satisfaction values (Group 2) 

 

 

Figure 5.46: Comparison of the satisfaction divergence values (Group 2) 
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5.4 Conclusions 

In this chapter, it is validated with human agents that promoting solidarity in the 

distributed design process decreases the intensity of design conflicts. While resolving 

design conflicts the satisfaction divergence of human agents are reduced. This result is 

consistent with the results of Chapter 4. As experienced with Group 1, the total 

satisfaction can be also increased by promoting solidarity in design. However, as 

experienced with Group 2, the further reduction of the satisfaction divergence can be 

achieved by some compromise of the total satisfaction. In Strategy 4 with Group 2, the 

satisfaction divergence is very small (0.09) while the total satisfaction is slightly less 

than Strategies 2 and 3. This is because of some concaveness on the Pareto frontier of 

the satisfaction space of the clutch problem. However, Strategy 4 results in larger total 

satisfaction on average than Strategies 3 and 2. This is shown with Monte Carlo 

simulation results in Figure 4.7. 

As shown in Figure 5.47, if the zero divergence line passes through a concave part of 

the Pareto frontier, approximating to the zero divergence line increases the total 

satisfaction until the concaveness arises. This phenomenon is due to the nature of the 

design problem. Its Pareto frontier can have concaveness on the zero divergence line or 

not. If it has such concaveness, the reduction of the total satisfaction can be avoided by 

defining an inequality constraint on the total satisfaction. However, this will surely 

block to obtain a very low satisfaction divergence.  

 

 

 

 

 

 

 

Figure 5.47: Concaveness of Pareto frontier on the zero divergence line 
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Some of the results of the experiments conducted with human agents (Figures 5.27, 

5.28, 5.45, and 5.46) are revealed to be better than the average results of Monte Carlo 

simulations conducted with computer agents (Figure 4.7). Their processes ended with 

lower number of iterations, larger total satisfaction and smaller satisfaction divergence. 

This shows that human agents have defined better performing compromise threshold 

values and constraints than an average computer agent during the process. This may be 

due to human intuitions and communications. This aspect is one of those which would 

merit to be further investigated. 
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General Conclusions 

The general conclusions of the dissertation are formalized as responses to the research 

questions. 

 

Response to Question 1 (How to prevent design conflicts in distributed SBD while 

improving process performances?) 

Design actors have preferences about the performance variables that they evaluate. The 

performance variables evaluated by their related preferences determine how the design 

objectives are satisfied. The satisfaction is a variable defined as an interval. The lower 

bound represents the minimum satisfaction while the upper bound represents the 

maximum satisfaction. Since design objectives of different design actors are 

conflicting, a decision constraint defined to increase the minimum satisfaction value of 

an objective will decrease the maximum satisfaction value of another objective. Thus, 

the convergence of satisfaction intervals is bilateral. Design actors are forced to 

compromise at a certain level on their satisfaction interval where maximum and 

minimum satisfactions are approximately equal. Design actors can define preferences 

on the satisfaction value in which they desire to compromise. Wellbeing indicators are 

developed to measure how design preferences are likely to be met at a given moment of 

the design process.  

Wellbeing indicators provide design information at any stage of the design process. A 

further bottom-up design approach can be adapted where design actors make decisions 

directly on their wellbeing indicators. What is considered to be better or improved 

under epistemic uncertainty is thus precisely represented. In order to evaluate the 

contribution of wellbeing indicators to the design process performance, CSP 

simulations are performed with Monte Carlo method where design attitudes and 

decision sequences are random. 

The results show that, with the proposed approach design actors can improve their 

states in wellbeing equilibrium while reducing epistemic uncertainty with consistent 

decision constraints on the solution space. The simulation results of a wellbeing 

controlled design are compared with three other process approaches that can be adapted 
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for SBD: the process where design actors modify only their local design variables one 

by one, the process where design actors modify only their local design variables all-at-

once, and the process where design actors modify only their performance variables. 

The results show that the design process performances are improved by controlling 

wellbeing indicators. The number of potential conflicts and the conflict intensity are 

reduced, because the satisfaction domination is largely avoided. This shows that design 

conflicts are prevented. The total satisfaction is also improved while keeping the 

process time minimal. 

 

Response to Question 2 (How to model design attitudes, and prevent conflicts in 

distributed design systems composed of heterogeneous agents?) 

A Belief-Desire-Intention (BDI) model is defined to explore the design attitudes. While 

upper bounds of the design performance intervals represent the possible best cases, 

their lower bounds represent possible worst cases. These cases reflect the beliefs of the 

design agent about how its design performance variables converge towards design 

objectives. The convergence of the performance variable of an agent is bilateral in a 

conflicting design problem. This convergence depends on the unpredictable reactions 

of the other design agents, since design agents are considered as heterogeneous. The 

design agent therefore identifies some preferences about its performance variables and 

satisfaction intervals considering its initial beliefs. These preferences reflect the agent’s 

desires towards the uncertain convergence. During the design process, the design agent 

can state intentions for increasing its satisfaction from the dynamic design model by 

evaluating how its instant beliefs fulfill its desires. The design agent reacts to 

uncertainties by defining decision constraints that restrict the solution space, with the 

aim of improving its worst cases. The intentions are reflected with how frequently and 

how restrictively the decision constraints are defined during the design process. 

The character of a design agent can be evaluated by the BDI model. The interactions of 

design agents with heterogeneous characters can thus be simulated. As an extended 

bottom-up design approach, the design attitudes of heterogeneous designers in 

distributed design are evaluated beforehand. In this approach, design agents can make 

trade-off intentions on their wellbeing values derived from their beliefs and desires. 
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CSP simulations are performed with Monte Carlo method where designer characters 

are defined randomly. The simulation results show again that the performance of the 

design process is significantly increased with this approach. In this approach, designer 

dominations caused by the process itself are eliminated. The increase of the potential 

conflicts and the conflict intensity is thus prevented. The simulation results show also 

that moderate reciprocal altruism decreases the conflict intensity, while too much 

altruism can decrease the total satisfaction obtained from the final solution. 

 

Response to Question 3 (How to justify and resolve design conflicts in distributed 

SBD?) 

A conflict management model is developed for design conflicts that cannot be avoided. 

It consists of conflict justification and conflict resolution. If a constraint is rejected it 

represents a potential conflict, since the desires of the agent that defines the constraint 

are not satisfied. If there is another agent in a better wellbeing state, the conflict is 

justified. This is because it is considered that the shared solution space is not restricted 

in equilibrium. At least one agent has restricted the space more than the agent in 

conflict. A CoCSP model is developed in order to resolve the justified conflicts. In this 

model, the other agents can help the agent in conflict to enable the rejected constraint. 

This is performed by relaxing some of their constraints from their list of accepted 

constraints. The model detects which agent can help and how it can help optimally. It is 

composed of three phases: 

• Negotiation phase: all the help possibilities are detected.  

• Testing phase: feasibilities of different help possibilities are tested with CP 

techniques and the optimal help among the feasible help solutions is detected.  

• Approval phase: the approval of the optimal help is requested. 

Monte Carlo simulations of this model are performed with heterogeneous agent 

characters defined randomly. Also some experiments are conducted with human agents. 

The results validate that the intensity of the conflicts are lowered when the conflicts are 

resolved by this model. 
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Response to Question 4 (How promoting solidarity is useful in distributed design?) 

The conflict resolution system can be adopted for different strategies which take into 

account the solidarity architecture of design agents. The Monte Carlo simulations of 

computer agents and the experiments conducted with human agents show that 

promoting solidarity reduces the conflict intensity. However, this gain is obtained at the 

cost of the increase of design process time, because conflict resolution causes 

loopbacks. Additionally, promoting solidarity can increase the total satisfaction if the 

Pareto frontier of the satisfaction space remains convex while approximating to the 

zero divergence line. 

 

Limitations and Future works 

The limitations of this work are as follows: 

• It is limited to measurable design problems where all the design aspects can be 

represented as numerical variables. 

• Variables are evaluated by the length of their intervals. However, the density of 

the consistent values that can be assigned to a variable may not be uniform 

along the interval. While reducing the length of an interval, we may not 

eliminate any solution. 

• There are no guidelines proposed to designers about how to define optimal 

threshold of compromise and coefficient of restriction values. This is because 

each design problem is unique, and the optimal values will be different. 

• Feasibility of the conflict resolution is not guaranteed. During a design process, 

it may happen that design agents want to help, but the model cannot detect a 

feasible help. This depends on the constraints that have been previously defined 

by the agent that would help. An agent can reduce the same length of its interval 

by only one constraint or several constraints. If the number of the constraints 

reducing the length of the interval is not sufficient enough, there may not be any 

constraint combination that can be removed to provide help. 
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In future works, the feasibility of the conflict resolution can be increased by suggesting 

agents (that would like to help) to increase their number of constraints on the 

eliminated part of their intervals. More constraint combinations would thus be provided 

so that the possibility to detect a feasible help could be increased. Some guidelines can 

also be provided to detect better desires and intentions. Further experiments can be 

conducted to test the models extensively through human interactions. Another future 

work should evaluate the density of intervals. 

Final words and personal assessment of model utility 

The final model emerging from this work is novel and presents a complete framework 

to improve the distributed design process with practical applications. Integrating the 

model into a computer-aided design (CAD) software package would enhance the 

CAD’s utility. Contrarily to the conventional CAD where the product dimensioning is 

not concurrent, our model provides a mechanism for concurrently dimensioning a 

product by uncertainty reduction. This would also avoid iterative loopbacks since the 

product model is not represented with a deterministic concept, but with a palette of 

many concepts: SBD principle. Designers might also evaluate their absolute and 

relative states through wellbeing indicators during the design process. By providing 

these personal indicators to other designers, this would allow the designers to better 

understand and help each other (negotiable CAD). Further works could consist in 

deploying and testing a distributed CAD with our model through group sociology 

approaches. In this type of distributed CAD, design conflicts could thus be explicitly 

revealed and resolved. 
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Appendices 

Appendix A: Multi-disc Clutch System 

The system consists of a weight to be lifted by a hoisting drum, an engine, a gear box, and a 

clutch between the hoisting drum and the gear box. This system is shown in Figure A.1. P1 is 

Position 1, P2 is Position 2, and P3 is position 3 for stress and safety calculations. 

 

 

Figure A.1: Multi-disc clutch system 

The constant values are listed in Table A.1. 

Table A.1: Initial Design choices already made by the designers  

Space between chassis and shaft  

Thickness of chassis plate  

Length of shaft between clutch and hoisting drum  

Gravity 
 

Temperature of environment  

Diameter of hoisting drum  

P2 

P1 

P3 

Engine Side Load Side 
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Three different materials can be chosen for the chassis and shaft of the clutch: 

aluminum, cast iron and steel. The specifications of these materials are listed in Table 

A.2.  

Table A.2: Choice of material for chassis and shaft 

 Aluminum Cast iron Steel 

Stiffness (N/mm²)    

Density (kg/m³)    

Thermal conductivity (W/mK)    

 

Two different friction materials can be chosen for clutch discs / lamellae (Table 3). The 

specifications of these materials are listed in Table A.3. 

Table A.3: Choice of material for clutch discs / lamellae 

 Material 1 Material 2 

   

 
  

   

   

 
  

 
  

 

Three different engines can be chosen. The type of engine defines the maximal weight 

to be lifted. The specifications of these engines are listed in Table A.4. 

Table A.4: Choice of engine 

 Engine 1 Engine 2 Engine 3 
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A friction multi-disc clutch consists of at least an outer and an inner lamella. The outer 

lamella is on the chassis side, and the inner lamella is on the shaft side. Figure A.2 

shows a pair of lamellae. The outer lamella is defined by d5 and d3, while the inner 

lamella is defined by d4 and d2. dm is the intermediate diameter of the friction surface. 

Three different discs, each one consisting of different sizes of lamella, can be chosen. 

Specifications of different classes of discs are shown in Table A.5. 

 

 

Figure A.2: Clutch lamellae pair 

 

Table A.5: Choice of discs / lamellae pairs 

 Disc Class =  {I, II, III} 

Thickness (mm) b1 =  {2, 4, 6} 

Chassis lamellae outer diameter (mm) d5 =  {264, 336, 400} 

Shaft lamellae outer diameter (mm) d4 =  {195, 275, 354} 

Chassis lamellae inner diameter (mm) d3 =  {175, 220, 310} 

Shaft lamellae inner diameter (mm) d2 =  {153, 216, 300} 

Medium diameter of friction surface 

(mm) 

dm =  {185, 248, 332} 

Moment of inertia of outer lamella 

(kgm² )     

Jouter_lamella =  {0.002, 0.01, 0.13} 

Moment of inertia of inner lamella 

(kgm²) 

Jinner_lamella =  {0.0004, 0.003, 0.06} 
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The variables of the problem and their initial domains are listed and explained in Table 

A.6. 

Table A.6: Variables of the multi-disc clutch design problem 

 Remark Initial Domain Explanation 

 continuous [1.3, 3] Practical value, which defines the relation 

between torques 

 continuous [1, 300] Length of chassis 

 continuous [1, 300] Length of chassis cylinder 

 continuous [1, 600] Length of total clutch 

 continuous [10, 300] Width of shaft shoulder 

 continuous [1, 300] Width of lamellae packet 

 continuous [0, 200] Diameter of shaft drilling 

 continuous [200, 700] Diameter of chassis  

 discrete [2, 18] Amount of lamellae / friction pairs 

 discrete [1, 32] Ratio of gearbox, situated between engine 

and clutch 

 continuous [100, 10000] weight of load 

  continuous [1, 40000] Force to pull the lamellae together 

 continuous [0, 100] Duration of whole clutching process and 

afterwards just until engine reaches initial 

speed again 

 discrete [1, 10000] Clutching events per hour 

 continuous [1, 2000] Weight of dimensioned clutch 

 continuous [0, 2000] Weight of whole system (clutch + engine) 

   continuous [0, 600] Length of entire clutch 

   continuous [0, 1000] Diameter of entire clutch 

 continuous [0, 10000] Torque on shaft caused by weight of load 

  continuous [0, 10000] Torque of the engine, reduced (after the 

gear box) on the clutch shaft 

 continuous [0.1, 20] Duration of sliding of lamellae just after start 

of clutching 

  continuous [0, 100] Moment of inertia of whole engine side 

 continuous [0, 100] Moment of inertia of engine, reduced on 

clutch shaft 

 continuous [0, 100] Moment of inertia of chassis + outer 

lamellae 

 continuous [0, 100] Moment of inertia of chassis  

 continuous [0, 1000] Moment of inertia of whole load side 

 continuous [0, 100] Moment of inertia of shaft + inner lamellae 

 continuous [0, 100] Moment of inertia of shaft 

 continuous [0, 1000] Moment of inertia of load, reduced on shaft 

Variables describing the clutching 

process 

   

 continuous [100, 100000] Heat energy, generated during the sliding 

 continuous [0, 10000] Friction torque between load side and 

engine side during clutching 

 continuous [0, 100] Angular velocity of the chassis before 

clutching 

 continuous [0, 100] Highest relative speed between inner and 

outer lamellae ( at diameter d4) 

Variables for heat calculations    
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 continuous [0, 100] Surface of clutch, exchanging heat with 

environment (chassis cylinder) 

 
continuous [0, 100] Coefficient: exchange of heat with 

environment 

 continuous [0, 1000] Turning speed of cooling surface / chassis 

Variables for stiffness and security 

calculations 

   

 
continuous [0, 1200] Shear stress caused by clutching force 

  continuous [0, 1200] Stress caused by torque due to clutching 

force  

 
continuous [0, 1200] Stress caused by torque on shaft caused by 

weight of load 

 continuous [0, 

1000000000] 

Resistance of shaft against torque 

 
continuous [0, 2000] Stress in shaft caused by centrifugal forces 

 
continuous [0, 2000] Stress in chassis caused by centrifugal forces 

 
continuous [0, 1200] Stress caused by torque on chassis caused by 

weight of load 

 continuous [0, 

1000000000] 

Resistance of chassis against torque 

Safety Variables    

 continuous [0, 300] Safety against stress at position 1 

 continuous [0, 300] Safety against stress at position 2 

 continuous [0, 300] Safety against stress at position 3 

 continuous [0, 300] Safety of discs material against pressure 

Temperature Variables    

 continuous [0, 400] Final temperature of the clutch 

 continuous [0, 400] Temperature during clutching, depending on 

amount of clutches per hour 

 

The relations between the problem variables are defined through constraints in 

Equations (A.1-A.44). 

The geometrical relations are shown by Equations (A.1-A.4): 

       (A.1) 

      (A.2) 

       (A.3) 

      (A.4) 
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The weight relations are shown by Equations (A.5-A.7). 

The weight of the clutch is the sum of the weights of the chassis, the clutch disc and the 

shaft: 

     (A.5) 

The weight of the whole system is the sum of the weights of the engine and the the 

clutch: 

   (A.6) 

The weight that has to be lifted implies the torque Tload: 

     (A.7) 

The clutching technology relations are shown by Equations (A.8-A.16). 

The torque of the engine is augmented by the gear box: 

    (A.8) 

The friction torque Tfriction is derived by the size of the clutch, the amount of discs and 

the force which pulls these discs together: 

  (A.9) 

There are some relations between the engine torque, the torque created by the mass and 

the torsion torque. These need to be fulfilled in order to enable a successful clutching 

process:  

    (A.10) 

   (A.11) 
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     (A.12) 

The maximal angular velocity of the chassis can be calculated by the gear ratio and the 

rated speed of the engine. This speed reflects the relative angular velocity between the 

chassis and the shaft (wshaft = 0) just before the clutching event: 

    (A.13) 

The maximal relative speed between both surfaces is calculated by the maximal relative 

angular velocity and the outer diameter of the clutch discs: 

    (A.14) 

  (A.15) 

     (A.16) 

The structural resistance relations are shown by Equations (A.17-A.28). 

The force Fclutch leads to the shear stress τshaft shear and additionally to the flexural stress 

σflex at Position 1: 

    (A.17) 

     (A.18) 

An equivalent stress is derived from these stresses. It is compared with the allowed 

material stress in order to determine Safety1: 

   (A.19) 

Fclutch, the friction surface and the maximum allowed material pressure are utilized in 

order to determine the safety of the clutch discs against pressure: 

    (A.20) 
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Due to the torque and centrifugal torque a stress is induced at Position 2. Thus, the 

thickness of the shaft has to be adapted. A high load weight creates a high torque: 

     (A.21) 

The thicker the shaft, the bigger is the resistive torque and the higher is the security: 

     (A.22) 

The turning speed of the shaft creates a centrifugal force and stress: 

  (A.23) 

An equivalent stress is derived from these stresses. It is compared with the allowed 

material stress in order to determine Safety2: 

  (A.24) 

Due to the torque and centrifugal torque a stress is induced at Position 3 in the chassis. 

Thus, the thickness of the shaft has to be adapted. A high load weight creates a high 

torque: 

    (A.25) 

The thicker the chassis, the bigger is the resistive torque and the higher is the security: 

     (A.26) 

The turning speed of the chassis creates a centrifugal force and stress: 

  (A.27) 
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An equivalent stress is derived from these stresses. It is compared with the allowed 

material stress in order to determine Safety3: 

 (A.28) 

The moment of inertia relations are shown by Equations (A.29-A.36). These are 

utilized to describe the dynamics of the clutching progress. 

On the left side, there are the moments of inertia of the engine and of the clutch. Both 

have to be reduced on the clutch itself: 

   (A.29) 

The engine has to be reduced on the clutch shaft, as the clutching event is determined in 

the clutch itself: 

    (A.30) 

The clutch itself has as well a moment of inertia which is composed of the chassis and 

the driving discs: 

  (A.31) 

The moment of inertia for the chassis is derived from the outer diameter and the size 

constraints given by the chosen disc class: 

  (A.32) 

On the left side, there are the moments of inertia created by the load of the weight and 

the load of the clutch shaft. Both have to be reduced on the clutch itself: 

   (A.33) 

The weight has to be reduced on the shaft of the clutch: 

   (A.34) 
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The clutch itself has as well a moment of inertia. It is composed of the moment of 

inertia for the shaft and for the driven discs: 

   (A.35) 

The moment of inertia for the shaft is derived from the inner bearing diameter and the 

size constraints given by the chosen disc class: 

      (A.36) 

The heat and temperature relations are shown by Equations (A.37-A.44). 

The heat energy depends on the friction torque between the discs, the velocity right at 

the beginning of the clutching event and its duration: 

   (A.37) 

The maximum final temperature is the sum of environmental temperature and the 

temperature increase due to the various clutching events: 

   (A.38) 

The additional temperature increase is caused by the generated heat energy after each 

clutching event. The amount of this temperature can be decreased by the surface of the 

chassis which is turning and therefore cooling the components: 

     (A.39) 

The cooling surface is determined by the outer diameter of the chassis and its length: 

      (A.40) 

Equations A.41 and A.42 describe the relations between the amount of clutching events 

per hour and the heat energy which is created by the clutching events (taking into 

account the material of the clutching discs (A.41) and the conductivity of the chassis 

material (A.42)).  
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    (A.41) 

    (A.42) 

The final temperature after the clutching will be higher than before the clutching event, 

but should be lower than the maximum allowed temperature: 

      (A.43) 

     (A.44) 
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Appendix B: Serious Game Transformation 

The Serious Game transformation of the multi-disc clutch problem is presented below. 

This analogy represents clearly what should be improved and how it should be 

improved in the multi-disc clutch problem, without any redundant information. 

Game Definitions and Rules 

You are four lucky students. Your university has decided to offer you a scholarship for 

an internship abroad. However, the resources of your university for the scholarships are 

limited. This limit is confidential, not shared with you. You are going to play a game to 

share the resources for your monthly scholarship payments. In the game you are called 

“Agent”. Before starting the game, define who are Agent 1, Agent 2, Agent 3 and 

Agent 4. 

The payment limit is € 1,000 per month for each student (this does not mean that the 

resources of your university are € 4,000 per month in total. They are less, and you do 

not know how much it is!). You are going to live abroad, so you will receive the 

monthly pay in the local currency. The money transfer limit is 1,000 units of that 

currency per month for each student. 

Each of you is going to define an imaginary country, and enter the exchange rate value 

of its local money currency against euro. However, you cannot go to a country where 

the local money currency is stronger than euro. Thus, this value can be between 0 and 1 

(this is the compromise threshold value). 

The monthly payment value is called WB, and it is equal to the amount of payment in 

local currency divided by 1000. 

For example: 

• You go to a country where the local money currency is X. 

• Exchange rate: 1 X = € 0.5 (the threshold of compromise value is thus 0.5) 

• If your WB = 1, it is equivalent of 0.5 x 1000 = 500 €. 
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In the game, you are going to negotiate with your school to increase your monthly 

purse. You start the game with 0.01 WB, and you increase it up to 1 WB (transfer 

limit). The game consists of iterations of negotiations, and each negotiation passes one 

after the other at iteration. The negotiator is chosen randomly. When it is your turn to 

negotiate; if you're not satisfied by the amount of your scholarship, you choose to 

negotiate by entering 1 on your computer screen. If you are currently satisfied by the 

amount of your scholarship you can pass your turn by entering 0. 

If you want to negotiate, you need to define a constraint with a coefficient (Coefficient 

of Restriction: CR) between 0 and 9 in order to increase the scholarship amount: 

• New WB value> = (1 + CR) x Old WB value 

• If ((1 + CR) x Old WB value) exceeds 1, the constraint is set automatically: 

o New WB value = 1. This is because the money transfer limit is 1 WB. 

• Since the CR is always between 0 and 9, and you start the game with 0.01 WB, 

a request of WB=1 is prevented at the first iterations of the game. 

If the resources of your school are not sufficient for the payment you ask, your 

constraint will be rejected. You are thus (potentially) in conflict with the other students: 

• Either your conflict is justified, because your WB amount is not the highest 

among the four students. Your payment increase is potentially blocked by 

another student (limited resource). 

• Either your conflict is not justified because your WB is the highest among the 

four students. 

The conflict justification is performed automatically by the program. 

When four students are processed at iteration, the process passes to the next iteration. 

You can exit the game if you are completely satisfied with your monthly payment. In 

order to exit the game you need to type a CR equal to 0. Also, you exit the game 

automatically if your WB is equal to 1. The game is over when all the students are out 

of the game. 
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There are four types of game. Each game is driven by a different strategy. You are 

going to play with one after the other one. Some strategies are able to resolve conflicts. 

The conflict is resolved by another student who can help you by decreasing his/her 

WB. Your school thus has enough resource for your request and your conflict is 

resolved. The student that is able to help is detected and the conflict is resolved 

automatically by the program. The game strategies are as follows: 

• Strategy 1: You cannot communicate with the other students and look at their 

screens during the game. You cannot ask for help or attempt to resolve a 

conflict. 

• Strategy 2: You share your screens with the other students. You can ask for help 

from other students that can also request your help. Once the program detects 

you as the person who can help, it is your desire to help or not to help. 

• Strategy 3: You share your screens with the other students. You can ask for help 

from other students that can also request your help. It is your desire to help or 

not to help. If you choose not to help, you will however be penalized: you will 

be blocked at next iteration of the process. 

• Strategy 4: You share your screens with the other students. You can ask for help 

from other students that can also request your help. Help that is requested 

cannot be refused. 

Remember that your act is selfish: 

• If you go to an expensive country in which the currency exchange value is 

higher 

• If you define constraints frequently 

• If your CR is larger 

• If you do not agree to help 

Do not forget that the other students are your close friends. If you are very selfish, your 

friends will suffer in a foreign country. Additionally, if a student’s WB is very low, the 
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university administration can decide to cancel the scholarship program next year, since 

they do not accept their students to suffer. 

You can be whatever you want in a game; selfish or selfless. However, reflect the same 

personality for each game strategy. For instance; if you are selfish in the game of 

Strategy 1, then be selfish in the others. Select the same agent and keep the same 

currency exchange value for each game. 
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Abstract 

In the product dimensioning phase of a distributed design, inconsistencies can emerge among design 
objectives as well as among working procedures of heterogeneous subsystems. In this phase, design 
actors which compose subsystems must collaborate concurrently, since their works are linked to each 
other through dimensioning couplings among their sub-problems. Inconsistencies through these 
couplings yield thus to design conflicts. The issue is how to obtain a collaborative convergence to satisfy 
the global and individual objectives of design actors when making design decisions under uncertainty. 
The objective of this dissertation is to propose a model for preventing and resolving design conflicts in 
order to obtain a collaborative convergence, while overcoming the design uncertainty through Set-based 
Design (SBD). Design attitudes are modeled with Belief-Desire-Intention paradigm to explore 
inconsistencies and manage conflicts in design processes. The conventional bottom-up approach is thus 
extended through agent-based attitude modeling techniques. In this approach, design agents can set 
requirements directly on their wellbeing values that represent how their design targets are likely to be 
met at a given moment of the design process. Monte Carlo simulations are performed to evaluate the 
performance of this approach, providing a variety of agent attitudes. Compared to conventional bottom-
up and top-down design approaches, the results reveal a fewer number of design conflicts and a reduced 
aggregated conflict intensity. Constraint satisfaction problem (CSP) techniques and design attitudes are 
both applied to detect and justify design conflicts of heterogeneous design agents. A novel cooperative 
CSP (CoCSP) is developed in order to resolve design conflicts through compromising constraint 
restriction. The conflict resolution system can be adopted for different proposed strategies which take 
into account the solidarity architecture of design agents. The simulation results show that while 
promoting solidarity in distributed design by helping agents that suffer, the conflict intensity is reduced, 
and better design results are obtained. 

Keywords: Distributed design, Collaborative design, Concurrent engineering, Conflict prevention, 
Conflict resolution, Set-based design, Constraint satisfaction problem, Multi-agent systems 

Résumé 

En conception distribuée, dans la phase du dimensionnement du produit, des incohérences peuvent 
émerger entre les objectifs de conception et entre les procédures de travail des sous-systèmes 
hétérogènes. Dans cette phase, les acteurs de conception doivent collaborer d’une manière concourante, 
car leurs tâches sont reliées les unes aux autres par les couplages de dimensionnement entre leurs sous-
problèmes. Les incohérences peuvent provoquer des conflits de conception en raison de ces couplages. 
La question est de savoir comment obtenir une convergence collaborative pour satisfaire les objectifs 
globaux et individuels des acteurs de conception lorsque ces acteurs prennent des décisions de 
conception sous incertitude. L'objectif de cette thèse est de proposer un modèle pour empêcher et 
résoudre les conflits de conception, tout en surmontant le problème de l'incertitude de la conception avec 
l'approche de « conception basée sur les ensembles » (SBD). Pour cela, les attitudes de conception sont 
modélisées avec le paradigme « Croyances-Désirs-Intentions » afin d'explorer les incohérences et gérer 
les conflits dans les processus de conception. L'approche ascendante conventionnelle est ainsi étendue 
grâce à des techniques de modélisation multi-agents. Dans cette approche, les agents de conception 
peuvent fixer des exigences directement sur leurs indicateurs de « bien-être ». Ces indicateurs 
représentent la manière dont leurs objectifs de conception sont susceptibles d'être satisfaits à un moment 
donné du processus. Des simulations de Monte Carlo sont effectuées pour évaluer la performance de 
cette approche, offrant une variété d'attitudes de l'agent. Par rapport aux approches classiques de 
conception ascendante et descendante, les résultats révèlent moins de conflits de conception et une 
intensité des conflits réduite. Les techniques de « problème de satisfaction de contraintes » (CSP) et les 
attitudes de conception sont appliquées pour détecter et justifier des conflits de conception entre les 
agents hétérogènes. Une nouvelle forme du modèle « Cooperative CSP » (CoCSP) est ainsi mise au point 
afin de résoudre les conflits de conception en détectant le compromis entre les contraintes. Le système de 
résolution des conflits peut être adopté grâce à différentes stratégies proposées qui prennent en compte 
l'architecture de solidarité des agents. Les résultats des simulations montrent que l'intensité des conflits 
en conception distribuée est réduite par la promotion de la solidarité qui déclenche une aide aux agents 
en souffrance. 

Mots-clés: Conception distribuée, Conception collaborative, Ingénierie concourante, Evitement des 
conflits, Résolution des conflits, Conception basée sur les ensembles, Problème de satisfaction de 
contraintes, Systèmes multi-agents 
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