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Résumé 

 

La phosphorylation/déphosphorylation des protéines est un mécanisme de signalisation 

intracellulaire commun. Parmi les kinases végétales, les Mitogen-Activated Protein Kinases 

(MAPKs) sont impliquées dans de nombreux processus biologiques importants, comme la 

réponse aux stress biotiques et abiotiques, le développement et la dynamique du cytosquelette. 

Chez Arabidopsis thaliana et ce malgré de nombreux efforts, les fonctions des kinases 

impliquées dans les cascades MAPK restent peu inconnues. L'activation des kinases en utilisant 

des mutations mimant la phosphorylation des sites normalement phosphorylés est une approche 

qui a fait ses preuves dans le cas de MAP2Ks et a largement contribué à élucider leurs fonctions. 

Cette stratégie s’est révélée impossible dans le cas des MAPKs, puisque les résidus à muter 

restent encore à identifier. 

Pour contourner ce problème, nous avons adapté un crible basé sur la complémentation 

fonctionnelle d’un mutant MAPK de levure avec des formes aléatoirement mutées de MPK6 

d’Arabidopsis dans le but d'identifier des mutants présentant une activité constitutive. Nous en 

avons identifiés plusieurs et avons montré que ces formes constitutivement actives (CA) de 

MPK6 sont actives sans phosphorylation par les MAP2Ks. Par ailleurs, les mutations des résidus 

équivalents dans d'autres MAPKs les rendent également hyperactives, ce qui indique que cette 

stratégie peut être utilisée comme approche générale pour activer les MAPKs afin d’en 

comprendre les fonctions. L’étude des interactions protéine-protéine et l’analyse des profils de 

phosphorylation indiquent que les MAPKs CA conservent leur spécificité envers leurs substrats 

et interacteurs. 

Comme preuve de concept, nous avons généré des formes actives du MPK4. La MPK4 CA 

exprimée sous son propre promoteur a parfaitement complémenté le mutant mpk4. La 

caractérisation des lignées exprimant MPK4 CA confirme le rôle négatif de cette kinase dans les 

réponses de défense aux pathogènes des plantes que ce soit dans la PTI (PAMP Triggered 

Immunity) ou dans la ETI (Effector Triggered Immunity). 

Globalement, ce travail permettra de fournir des informations directes sur les cibles des 

MAPKs et devrait contribuer à la compréhension globale de la transduction du signal chez les 

plantes. 



Summary 

 

 

Protein phosphorylations and dephosphorylations are common events occurring during 

intracellular signaling processes. Among plant kinases, Mitogen-Activated Protein Kinases 

(MAPKs) are involved in signaling of many important biological processes, including biotic and 

abiotic stresses, development and cytoskeleton organization. Despite an abundant literature on 

MAPKs, the exact roles and direct targets of many Arabidopsis thaliana MAPKs are not clear 

yet. The activation of kinases using phospho-mimicking mutations of the phosphorylated 

residues was a successful approach in the case of MAP2Ks, helping to elucidate their functions. 

This strategy failed in the case of MAPKs since the necessary residues to mutate remain unclear. 

To bypass this problem, we adapted a screen based on the functional complementation of a 

MAPK yeast mutant with randomly mutated Arabidopsis MPK6 in order to identify the ones 

mutants showing constitutive activity. We identified several clones and showed that these 

constitutively active (CA) of MPK6 candidates are indeed active without phosphorylation by 

MAP2Ks. Interestingly, mutations of the equivalent residues in other MAPKs triggered 

constitutive activity as well, indicating that this strategy may be used as a general approach to 

activate MAPKs and identify their functions. Interaction and phosphorylation assays indicated 

that CA MAPKs retain their substrate and interactor specificity.  

As proof-of-concept, we generated active versions of MPK4. CA MPK4 expressed under its 

own promoter successfully complements mpk4 mutant plants. Characterization of CA MPK4 

lines further confirmed the negative role of MPK4 in plant pathogen defense responses and its 

implication in both PTI (PAMP Triggered Immunity) and ETI (Effector Triggered Immunity). 

Overall, the work will help to provide direct information on all MAPK targets and should be 

an important contribution to the overall understanding of signal transduction in plants. 
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Chapter I -  Introduction 

Plants are able to sense environmental conditions in order to adapt and maintain their 

metabolism, growth and development. They possess for that a complex system of long distance 

perception and cell signaling networks leading to appropriate adaptive responses. The signal 

transduction from receptors to the cellular responses usually brings into play 

phosphorylation/dephosphorylation events catalyzed by protein kinases and phosphatases. 

Around 30% of the plant proteins have potential phosphorylation sites and Arabidopsis thaliana 

genome encodes for more than 1000 kinases and 100 phosphatases. Interestingly, the number of 

genes encoding for kinases represent 4% of total Arabidopsis genes (Wang et al., 2003) 

compared with 1,7% in human and 2% in yeast (Hunter & Plowman 1997; Manning et al., 

2002). Different types of kinases have been identified in plants and classified into distinct 

groups. One of the largest and most important categories is the Mitogen Activated Protein 

Kinases (MAPKs also called MPKs). MAPKs are present in both cytoplasm and nucleus 

compartments and are involved in different signal transduction pathways. Genetic studies 

coupled with biochemical approaches have shown that MAPKs are not only involved in biotic 

and abiotic stress signaling, but also in other processes such as hormonal signaling and 

development. 

MAPKs were first discovered by Sturgill and Ray in 1986 in animal cells as kinases 

associated to cyto squeleton. They were for this reason firstly named Microtubule Associated 

Protein-2 Kinase (MAP-2 Kinase). These kinases were later found to be related to a set of 

proteins that are phosphorylated at tyrosine residue in response to mitogens (agents which induce 

mitoses) and were then renamed as Mitogen-Activated Protein Kinases (MAPKs) (Rossomando 

et al., 1989). In 1992, MEK (MAPK/ERK1 Kinase) proteins were discovered as activator of 

ERK1 in mouse (Crews & Erikson 1992). Seven years later, the first plant MAPK, MsERK1 in 

alfalfa (Duerr et al., 1993) and D5 kinase in pea (Stafstrom et al., 1993), were discovered. In the 

same year, MAPKs were cloned from Arabidopsis thaliana (Mizoguchi et al., 1994) and tobacco 

(Wilson et al., 1993). Additionally, a first clue on their functions in planta was provided by an 

important genetic work which assigned a function to the Raf-like MAP3K CTR1 in ethylene 

signaling (Kieber et al., 1993). 



 

 

 

Figure I.1: Signaling through MAPK cascades: An appropriate signal, external stress signal or internal 

developmental signal, is perceived by a receptor and transmitted by phosphorylation events, optionally 

via additional interactors, to a MAP3K. The activated MAP3K phosphorylates and thereby activates an 

MAP2K, the active MAP2K phosphorylates its cognate MAPK. The MAPK phosphorylates downstream 

targets like transcription factors or other kinases, leading to the required cellular response. 
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A.  MAPK cascades are conserved signaling modules in eukaryotes 

A typical MAPK module is constituted of 3 kinases able to activate each other by 

sequential phosphorylation (Figure I.1): a MAP2K Kinase (MAP3K) activates a MAPK Kinase 

(MAP2K) which in turn activates a MAPK. This module is turned on after perception of 

different environmental cues (abiotic stresses and pathogen) via a plasma membrane receptor. 

The MAP3Ks are serine/threonine kinases which phosphorylates MAP2Ks at a conserved S/T-

X3-5-S/T motif. An activated MAP2K which is a dual specificity kinase phosphorylates the 

threonine and the tyrosine residues of the MAPK conserved T-X-Y motif (Chang and Karin 

2001). MAPKs phosphorylate proteins, mostly transcription factors, metabolic enzymes or 

transporters in order to modulate directly gene expression and cell homeostasis in response to 

extracellular stimuli. The deactivation of MAPK cascades is mediated by tyrosine and 

serine/threonine-specific phosphatases (Luan 2003). In animal and yeast systems, the formation 

and integrity of a specific MAPK cascades can be mediated by scaffold proteins or shared 

docking domains and adaptor or anchoring proteins (developed in chapter C.II.) (Whitmarsh & 

Davis 1998; Bardwell 2006). 

1. MAPK and related kinase properties 

Kinases putatively belonging to MAPK modules are found in all eukaryote cells. They 

were very well characterized in mammal systems in which at least 7 sub-groups of distinct 

MAPKs exist (Cargnello & Roux 2011). Saccharomyces cerevisiae genome encodes for only 6 

MAPK modules. Mammals and yeast kinases are models for plant studies and the signaling 

mechanistic seems to be roughly conserved between kingdoms. In this chapter, I will describe 

MAPK cascade important components in plant signaling, some examples being picked from 

mammal or yeast studies due to their better characterization in these systems compared to plant.  

The sequences of putative MAPK components from several plant species are available 

from genome sequencing projects. Arabidopsis thaliana genome annotation allowed the 

identification of approximately 110 genes coding for putative MAPK pathway components: 20 

MAPKs, 10 MAP2Ks and more than 80 MAP3Ks (Mapk_Groups 2002). Homologues of these 
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Arabisopsis thaliana kinases have been identified in other species, in which the family sizes are 

more or less identical (Mapk_Groups 2002).  

a. MAP kinase 

Plants MAPKs, also called MPKs, are rather globular proteins. They are activated by 

phosphorylation by MAP2K on their threonine and tyrosine residues of their characterized TDY 

or TEY motif located in the activation loops. Their activation motif is similar to the animal ERK 

kinases. However, no MAPK with a TGY motif similar to the animal p38 and yeast Hog1, or a 

TPY similar to JNK MAPKs was found in plants (Mapk_Groups 2002). Thus, all plant MAPK 

genes described so far belong to a single group, the so-called Extracellular signal-Regulated 

Kinase (ERK) subfamily. In mammals, members of this subfamily are mainly responsible for the 

transduction of mitogenic signals but, in plants, ERK like kinases seem to have evolved in such a 

way as to be able to transmit a broader range of stimuli (Ligterink & Hirt 2001). Based on 

sequence alignment analysis, A. thaliana MAPKs have been organized into four groups (A–D; 

(Mapk_Groups 2002)). TEY MAPKs constitute the groups A, B, and C, whereas group D 

contains TDY MAPKs. The most studied A. thaliana MAPKs, MPK3 and MPK6 belong to the 

Group A. Orthologs of these kinases in tobacco, alfalfa, rice, and poplar are involved in the same 

signaling processes including developmental and environmental stress perception (Kiegerl et al., 

2000; Zhang & Klessig 2001; Seo et al., 2007). The third most studied MAPK in A. thaliana, 

MPK4, belongs to group B and has been reported to be implicated in mostly pathogen defense as 

well as in abiotic stress responses (Petersen et al., 2000; Droillard et al., 2004; Teige et al., 2004; 

Andreasson et al., 2005; Brodersen et al., 2006; Qiu, Fiil et al., 2008). It was also recently 

reported to function in cytokinesis and in the microtubule organization (Beck et al., 2010; 

Kosetsu et al., 2010; Beck et al., 2011; Zeng et al., 2011). The 8 MAPKs of the Group D have 

also a long typical C-terminal which is suspected to act as an auto-inhibitory domain. Little is 

known about this family. Approximately the same number of gene was predicted in poplar, 21, 

close to the twenty known from A. thaliana, while rice appears to have only fifteen MAPKs with 

more splicing variants. Microarray data showed remarkable disparity in their expression at the 

tissue and organ levels suggesting that such variants are the products of recent genomic 
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duplications (Suarez-Rodriguez et al., 2010), and that plant MAPKs undergo rapid evolution and 

a significant level of sub-functionalization (Hamel et al., 2006). 

b. MAPK kinase 

MAP2Ks also known as MEKs and MKKs constitute homogenous family of well defined 

kinases. Arabidopsis genome encodes for ten putative MKKs that fall into four groups (A-D), 

which are described in A. thaliana and rice (Mapk_Groups 2002; Hamel et al., 2006). The N-

terminal extension of plant MKKs shows a putative MAPK docking sites (detailed in chapter 

C.II.2) [K/R][K/R][K/R]×(1-5)[L/I]×[L/I] similar to that found in animal MAP2Ks (Bardwell 

2006).  

Group A includes MKK1 and MKK2 that act upstream of MPK4 (Ichimura et al., 1998). 

MKK2 is also involved in abiotic stress like cold and salinity, and both MKK1 and MKK2 are 

important players in defense responses (Teige et al., 2004; Meszaros et al., 2006; Qiu, Zhou et 

al., 2008). MKK6 that belongs to the same group was proposed to be the activator of MPK13 

(Melikant et al., 2004). Group B formed by MKK3, is distinguished by an unusual structural 

feature consisting of a nuclear transfer factor (NTF) domain (Hamel et al., 2006). An NTF 

domain was also found in its tobacco orthologue NPK2. NTF domains prototypically function to 

enhance the nuclear import of cargo proteins (Quimby et al., 2000), indicating that plant 

MAP2Ks with NTF domains are involved in cytoplasmic-nuclear trafficking. In addition, MKK3 

participates in cascades that are elicited by pathogens and are dependent on jasmonic acid (JA) 

signaling (Doczi et al., 2007; Takahashi et al., 2007). MKK4 and MKK5 which form the group 

C are involved in abiotic (Kovtun et al., 2000; Ren et al., 2002) and biotic (Asai et al., 2002) 

stress responses (PAMPs and oxidative stress) but also in stomatal and ovule development using 

the same downstream components MPK3 and MPK6 (Wang et al., 2007; Wang et al., 2008). 

MAP2K of group D, with MKKs 7–10 are not really characterized. MKK9 was reported to work 

upstream of MPK3 and MPK6 in ethylene signaling (Yoo et al., 2008).  

In general, phylogenetic studies showed that all plant phyla appear to use a more limited 

number of MKKs compared to MAP3K and MAPK, suggesting that cross talk between various 

signal-transduction pathways might be concentrated at this level in plant MAPK cascades 

(Suarez-Rodriguez et al., 2010). 
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c. MAPKK kinase 

Also called MAP3K or MEKKs, count for about 60 members (Mapk_Groups 2002). 

Relationship analysis based on the amino acid sequences of the protein kinase catalytic domain 

shows that Arabidopsis MAP3Ks fall into two main classes: MEKKs like subfamily such as the 

MEKK1 from mammals and STE11/BCK1 from yeast and RAF-like similar to the mammalian 

RAF1 (Mapk_Groups 2002). 

MEKK-like kinases have a conserved catalytic domain. A. thaliana has 21 members in this 

group. Most A. thaliana, Brassica, and tobacco MEKK-like proteins seem to participate in 

canonical MAP kinase cascades that activate downstream MAP2Ks. MEKK1 was the first 

identified functional MAP3K in plants (Ichimura et al., 1998), and it was found to regulate 

MKK2 after salt and cold stress and positioned upstream of MKK1/MKK2 in pathogen defence 

signalling (Gao et al., 2008; Qiu, Zhou et al., 2008). The MAP3K YODA was published to be 

involved in embryo development and later to regulate stomatal patterning (Lukowitz et al., 2004) 

upstream of the MKK4/5-MPK3/6 cascade (Wang et al., 2007). Also ANP1, ANP2 and ANP3, 

regulators of cell division (Krysan, Young et al., 2002) belongs to the MEKK-like group of 

MAP3Ks. ANP1 can phosphorylate MPK3 and MPK6 in transient expression assays in 

protoplasts after H2O2 treatment, and the ANP1 ortholog NPK1 influences abiotic stress 

tolerance in Nicotiana tabacum (Kovtun et al., 2000). In contrast, within this group, MEKK-like 

members called MAP3Kε1 and ε2 have not been proved to act in MAPK cascades and are 

similar to CDC (cell division control) proteins of fission yeast (Champion et al., 2004).  

The function of the 48 Arabidopsis members of Raf-like kinases is predominantly 

unknown. Two of the best-studied Raf kinases in A. thaliana were identified in genetic screens 

and are known as CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ENHANCED 

DISEASE RESISTANCE1 (EDR1). They participate in ethylene-mediated signaling and defense 

responses respectively (Kieber et al., 1993; Frye & Innes 1998; Frye et al., 2001; Huang et al., 

2003) and have not been clearly involved in any canonical MAPK cascades. Recent studies 

suggested that CTR1 is rather a negative regulator of MAPK pathway (Yoo et al., 2008). 

Previous phylogenetic analyses of plant kinase families have discussed their duplication and 

divergence from animal and yeast ancestral genes (Champion et al., 2004). 
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d. Other players: MAP4K Kinases and phosphatases 

Additionally, Arabidopsis thaliana genome encodes for 10 kinases of the MAP3K Kinase 

(MAP4K) family whose functions are unknown.  

MAPK cascades are also negatively regulated by phosphatase activities (Bartels et al., 

2010). The only ones being identified so far, act at the MAPK level, although it could be 

expected to find, among the 110 phosphatases of Arabidopsis, some able to target MAP2Ks and 

MAP3Ks. Dephosphorylation of the threonine and/or tyrosine residue within the activation motif 

inactivates the MAPKs. The most well known are MAPK Phosphatase 1 (MKP1) and MKP2 

which belong to the dual specificity (Ser/Thr and Tyr) phosphatases (DSP) family and target 

MPK3 and MPK6 during abiotic and biotic stresses (Lee & Ellis 2007; Lumbreras et al., 2010; 

Anderson et al., 2011; Besteiro et al., 2011). Some PP2Cs, another group of serine/threonine 

phosphatases, also contain interaction domain for MAPKs and were shown to inactivate them. 

For example, AP2C1 target and inactivated MPK4 and MPK6 after stress perception and affect 

plant hormonal balance (Schweighofer et al., 2007). 

2. Signal specificity and docking interactions in MAPK signaling 

The very different size of kinase families involved in MAPK cascades suggests functional 

overlapping. The points which will be developed in this sub-chapter are how protein kinases 

distinguish their correct substrate from putative targets containing similar target residues, and 

how different signals transmitted by the same components elicit distinct responses. Specificity in 

MAPK cascade transductions is achieved by multiple mechanisms: 

a. Consensus phosphorylation motif 

The fist level of substrate specificity arises from the consensus sequence of the 

phosphorylation site. The consensus phophorylation motifs for the MAPK cascade components 

allowing a MAP3K to recognize and phosphorylate correctly its downstream MAP2K, and the 

activated MAP2K to phosphorylate its cognate MAPK have been reported in the first part of this 

chapter. For MAP3K and MAP2K, the general specificity preferences are not really studied, 



 

 

 

 

 

Figure I.2: Docking mechanism in MAPK signaling. The docking sequence of MAP2K is represented 

by a cluster of positively charged amino acids at the N terminal extension of the catalytic core (indicated 

by blue oval). This domain of the MAP2K binds to a docking pocket usually located at the back of the 

MAPK catalytic domain. Upon phosphorylation of the activation loop of MAPK and dissociation of the 

complex MAPKK-MAPK, the active MAPK can interact with and phosphorylate available substrates. 

MAPK uses the same docking pocket (hatched oval) to interact with docking sequences (blue oval) of 

substrates and phosphatases (which inactivate the MAPK) (Biondi & Nebreda, 2003).  
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probably because it is assumed that they only targets cognate kinases of the pathways and not 

other extra-pathway substrates. The preferences of MAPK were investigated in more detail as 

they contribute to the output specificity of the whole cascade.  

MAPKs are proline-directed serine/threonine kinases. They minimally phosphorylate the 

serine or threonine in the dipeptide motif S/T-P. Although there is some preference for leucine at 

–1 and proline at –2 or –3 relative to the phospho-acceptor (Alvarez et al., 1991; Songyang et al., 

1996). The minimal MAPK target site is simply S/T-P so-called P-site. However, the sequence 

S/T-P being found in approximately 80% of all proteins, other mechanisms are involved to 

dictate whether or not a particular protein is the substrate a particular MAPK (Bardwell 2006). It 

is also admitted that some potential phosphorylation sites might not be accessible due to 

structural conformational constraints (Ubersax & Ferrell 2007). 

b. Docking sites in MAP kinases 

The next level of substrate specificity often involves interaction between docking motifs on 

the substrate/interactor with specific interaction domains on the kinase. These additional binding 

motifs increase the affinity of the kinase for specific substrates and are often spatially separated 

from the kinase active site and the substrate phosphorylated residue (Ubersax & Ferrell 2007). 

This is a very well described mechanism for animal and yeast MAPKs (Figure I.2). 

The best characterized MAPK-docking motifs found in MAPK interactors are the so-called 

D-motifs. In animal and yeast, the D-site consensus motif consists of a cluster of two or three 

basic residues, a short spacer, and a hydrophobic -X- hydrophobic sub-motif (R/K)2-3-(X)1–6-Φ-

x-Φ; where Φ denotes a hydrophobic residue such as Leucine, Isoleucine or Valine and X is any 

amino acid (Tanoue et al., 2001; Remenyi et al., 2005; Bardwell 2006). This motif is found in 

activators (MAP2Ks), negative regulators (phosphatases) and various substrates. They are 

usually located 50-100 residues away from the P-site on substrates (Ubersax & Ferrell 2007). 

Comparison of the MAPK docking interactions from yeast to human reveals a conserved 

mechanism of interaction. In MAPKs, a large surface, distinct of the kinase active site, is 

involved in the recognition of the interactor D-motifs. This site was then named common 

docking domain (CD domain). Crystal structure of ERK2 and p38alpha with peptides 

corresponding to D-motifs (Chang et al., 2002; Liu et al., 2006), showed that several part of the 
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kinase are involved in the interaction area to build this CD-domain. Mechanistically, the basic 

residues of the D-domain bind to a negatively charged area CD-site that is located just C-

terminally of the kinase domain, and the hydrophobic residues bind to a hydrophobic Φ-x-Φ 

groove of the MAPK. Differences in the composition and spacing of residues in the docking site 

and the local preferences of the catalytic core for different amino acids around the P-site, work 

together to increase the overall selectivity of kinase–substrate interactions (Reményi et al., 

2005). MAPK docking occurs in all mammalian MAPK families (ERK, p38 and JNK) and 

crystal structures now exist for most of these MAPK docking complexes (Remenyi et al., 2005; 

Bardwell 2006). 

A second class of MAPK docking were found to be special for the ERK signaling,  called 

DEF motif and is found in the MAPK interactors (including transcription factor, MAPK 

phosphatase and other regulators). The DEF domains have as consensus sequence FxFP which 

can bind to a separate MAPK surface and is located ten amino acids downstream of the 

phosphorylation site (Lee et al., 2004; Vinciguerra et al., 2004; Dimitri et al., 2005). Hydrogen-

exchange mass spectrometry (HXMS) data have located the DEF docking groove near the kinase 

active site. FxFP motif binding to ERK2 is coupled to the positioning of its activation loop. It has 

been demonstrated that the phosphorylated MAPK binds this docking motif better than the 

inactive kinase (Lee et al., 2004). 

c. Scaffolds tether together the functional signaling compounds  

In addition to the direct interactions between protein kinases and their substrates, 

sometimes the two proteins interact through the intermediacy of adaptors or scaffolds, which act 

as organizing platforms that recruit both the kinase and the substrate to the same complex 

(Pawson & Scott 1997). Signaling scaffolds can be defined as proteins that join two or more 

signaling components of a pathway to each other. They are ubiquitous in eukaryotic signaling, 

and mammalian MAPK scaffolds have been recently reviewed (Morrison & Davis 2003). 

Scaffolds have been proposed to accelerate signaling reactions by binding multiple components 

of the same pathway. Tethering the correct components in close proximity with each other could 

allow the scaffolds to raise the local concentration of the bound signaling components, thereby 
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promoting signaling reactions. Many MAPK cascades are dependent on scaffolding proteins to 

maintain kinase specificity. 

One of the most well characterized examples of scaffold in yeast is Ste11. The yeast 

MAP3K Ste11 (Sterile-11) is a component of three distinct MAPK cascades that are involved in 

three different biological processes: mating, invasive growth and high-osmolarity responses 

(Schwartz & Madhani 2004). The protein scaffold, Ste5 tether Ste11, Ste7 (MAP2K) and Fus3 

(MAPK) together in pheromone signaling. The activation of the HOG MAPK module (Ste11-

Pbs2-Hog1) however is dependent on the presence of the Sho1, Pbs2 co-scaffold (Saito 2010). 

The choice of scaffolds determines, at least in part, the process that Ste11 regulates and ensures 

that active Ste11 activates only one of the three pathways to prevent cross-talk with other MAPK 

cascades. 

Scaffold proteins are not identified yet in plants but some MAP3Ks appears to bind 

directly MAPKs, suggesting that they have a scaffold function. The alfalfa oxidative stress 

activated MAP3K OMTK1 was shown to be able to interact in protoplast system with the MAPK 

MMK3 in response to H2O2 (Nakagami et al., 2004). In A. thaliana it was published (Ichimura et 

al., 1998) and confirmed in our laboratory (not published) that the MAP3K MEKK1 has scaffold 

role since it interacts not only with its cognate MAP2K MKK2 through its kinase domain but 

also with the downstream MAPK, MPK4, through its long N-terminal tail. Moreover at the 

opposite of MPK4, the kinase inactive version of MEKK1 rescued the mekk1 phenotype 

indicating that MEKK1 has also a kinase-independent function (Suarez-Rodriguez et al., 2007). 

As it will be developed further MEKK1 is also involved in another cascade with MPK3 and 

MPK6. Similar evidence was observed in the mammalian MAP3K MEKK1 which is able to 

interact with both JNK/SAPK and the ERK1/2 modules suggesting its role as scaffold for two 

separate MAPK cascades (Karandikar et al., 2000). 
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B.  Plant responses regulated by MAP Kinases   

Kinases involved in MAPK modules count for more than 10% of  the serine-threonine 

kinases found in higher plants. They transduce extracellular signals and modulate the activity of 

cellular enzymes. In animal, an active MAPK can regulate transcription factors, cytoskeleton 

dynamics and other kinases. MAPK pathway components can execute a wide variety of roles in 

plant cell signal transduction pathways such as osmoregulation, hormone signaling including 

auxin-induced cell proliferation or ethylene-responsive processes, cell wall biosynthesis, and cell 

growth and differentiation. However, there are only few complete tri-kinase cascades identified 

so far. 

The role of these kinases in some of the important biological processes is described in the 

following sections. I choose to focus my introduction on functions of the MAPKs which are 

involved in stress perceptions. As the stress related kinases are also involved in other process, I 

will also present their stress unrelated functions. 

1. The historical function of MAPKs: biotic stress signaling 

Plants, unlike mammals, lack mobile defender cells and somatic adaptive immune system. 

Instead, they rely on the innate immunity of each cell and on systemic signals emanating from 

infection sites (Dangl & Jones 2001; Jones & Dangl 2006). MAPKs constitute a common way to 

sense biotic stresses, their activation being often observed upon pathogen treatment.  

Two main progresses explain, in my view, the incredible increase of our knowledge on 

plant pathogen perceptions in the last years. The first one is the identification of small molecules 

from pathogens able to trigger alone numerous early plant responses to pathogens, allowing 

simplification of the experiments. The second one is the adoption of Arabidopsis as a plant 

model and the development of rich mutant libraries providing easy genetic tools for plant phyto-

pathologists and biologists. This allowed the unambiguous identifications of the early signaling 

actors like MAPK cascades. 

Plants respond to infection using a two-layered innate immune system. The first layer 

recognizes and responds to molecules common to many classes of microbes, including non-

pathogens, commonly called Pathogen-Associated Molecular Patterns (PAMPs) or Microbe-



ChapterI - Introduction 
   

11 
 

Associated Molecular Patterns (MAMPs). These molecules are perceived by transmembrane 

receptors, belonging to the Receptor Like Kinase (RLK) family and named Pattern Recognition 

Receptors (PRRs). This recognition activates non specific defense responses that include the 

reprogramming of host gene expression in a way to prevent pathogen progression and the 

production of antimicrobial compounds. This defense layer is referred to PAMP-Triggered 

Immunity (PTI). Examples of PAMPs are the Pseudomonas flagellin, the Echerichia coli 

Elongation factor Tu, lipopolysaccharides, and the fungal molecules chitin and ergosterol.  

To circumvent PTI, pathogens deliver effector proteins into host cells by means of their 

type III secretion system (T3SS) in order to suppress the activities of PTI signaling components. 

This process is named Effector Trigerred Suseptibility (ETS) (Boller & Felix 2009). Plants have 

encountered this by evolving a second type of responses to pathogen virulence factors, either 

directly or through their effects on host targets: they develop mechanisms to detect microbial 

effectors via intracellular immune receptors, called resistance (R) proteins belonging NBS-LRR 

receptor family. This defense layer is referred to Effector Triggered Immunity (ETI) and triggers 

localized host cell death called the hypersensitive response (HR). 

a. MAPK cascades are core signaling modules for PAMP Triggered Immunity 

PAMPs are highly active compounds produced by an invading pathogen and recognized by 

the plant through plasma-membrane receptors. They are defined as highly conserved pathogen 

surface-derived molecules (that usually have an essential function in microbial fitness or 

survival) which induce plant defense responses in both host and non-host plants (Nurnberger & 

Brunner 2002). One of the best studied PAMPs is flg22, a 22- amino acid active peptide from the 

Pseudomonas structural protein flagellin. Flg22 binds to the LRR-RLK receptor FLS2 (Flagellin-

Sensing 2) (Zipfel et al., 2004; Chinchilla et al., 2006), which forms a complex with BAK1 

(Bri1-associated receptor kinase1) to trigger MAPK signaling cascade (Chinchilla et al., 2006; 

Heese et al., 2007). Among the typical other known PAMPs, EF-Tu and Chitin are derived from 

the bacterial elongation factor Tu and from the fungal cell wall respectively and perceived by the 

Arabidopsis receptors EFR and CERK1 (Zipfel et al., 2006; Miya et al., 2007). As the first 

identified, flg22 is the PAMP for which we have the broader view of the signaling cascades. 

Even though PAMPs are perceived by specific receptors, they activate a common, and therefore 



 

 

 
 

 

Figure I.3: MAPK cascades in PAMP-triggered immunity. These two models are supported by genetic 

and biochemical studies (Adapted from Colcombet et al. 2008).  
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not specific, set of signaling cascades leading to the activation of non specific stress responses. 

Among the signaling actors, a set of 2 or 3 (depending of the organism and the studies) MAPKs 

were shown to be activated and later on identified in the Arabidopsis as MPK3, MPK4 and 

MPK6. MAPK activation is considered as one of the earliest response in plants, within 1-5 min, 

after pathogen recognition (Frye et al., 2001; Zhang & Klessig 2001; Cardinale et al., 2002; Del 

Pozo et al., 2004; Boller & Felix 2009). MAPKs cascades were largely proposed to be involved 

in PTI (Pitzschke, Schikora et al., 2009).   

MKK4/MKK5-MPK3/MPK6 cascade positively regulates PAMP responses 

PAMPs activate two A. thaliana closely related MAPKs, MPK3 and MPK6 (Asai et al., 

2002; Wan et al., 2004; Ranf et al., 2011). As the constitutively active forms of MKK4 and 

MKK5 activate MPK3 and MPK6 in protoplasts, these four kinases were proposed to constitute 

a signaling module MKK4/5-MPK3/6 regulating positively defense responses (Asai et al., 2002) 

(Figure I.3). This activation was initially shown to be triggered by MEKK1 but this result is now 

matter of debate now (Asai et al., 2002; Ichimura et al., 2006; Suarez-Rodriguez et al., 2007). 

This MAPK cascade leads to the transcriptional activation of reponse genes such as flg22-

INDUCED RECEPTOR-LIKE KINASE 1 (FRK1) and transcription factors WRKY22 and 

WRKY29 (Asai et al., 2002). Genetic studies of this cascade were made difficult by the fact that 

the MKK4/5-MPK3/6 seems to regulate important developmental processes. 

 The understanding of defense regulation via MAPKs is limited by the current knowledge 

of plant MAPK substrates; nevertheless information on the substrates of plant MAPKs is slowly 

emerging. Several in vivo substrates for MPK6 were identified even though not always directly 

linked to defense responses. The first identified is ACS6 (1-Aminocyclopropane-1-Carboxylate 

Synthase 6), important enzyme in the biosynthesis of stress hormone ethylene (Liu & Zhang 

2004). Flg22-triggered ACS6 phosphorylation is necessary to stabilize the proteins. Two 

transcription factors are also phosphorylated by the MAPKs. ERF104 is a member of the 

ethylene responsive transcription factor, ERF104, which forms a complex with MPK6, this 

complex being disrupted by flg22 through ethylene signaling (Bethke, Unthan et al., 2009). 

WRKY33 was also recently shown to be one of the MPK3/MPK6 targets and involved in the 

transcriptional regulation of camalexin biosynthesis genes (Mao et al., 2011). A target proposed 

for MPK6 is NIA2, which nitrate reductase activity increases through its H2O2 induced 
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phosphorylation (Wang et al., 2010). In the case of MPK3, VIP1 transcription factor is a direct 

substrate. Its phosphorylation induces its sub-cellular relocalization from cytoplasm to nucleus to 

activate stress gene (PR1) expression (Pitzschke, Djamei, Teige et al., 2009). MPK3 and MPK6 

were also proposed to target the poorly characterized protein PHOS32 which have been 

identified by high-throughput approaches using Arabidopsis protein microarray strategy 

(Merkouropoulos et al., 2008). A network of MAPK targets is also proposed using the similar 

approach (functional protein microarray) (Popescu et al., 2009). Functional characterization of 

these putative candidates remains to be done. 

MEKK1-MKK1/MKK2-MPK4 define a cascade with ambiguous functions 

Alternatively, PAMPs activate the MEKK1-MKK1/2-MPK4 cascade (Figure I.3). 

Evidence for this cascade comes initially from the interactions between these proteins in yeast 

and in vitro (Ichimura et al., 1998; Gao et al., 2008). In mekk1 or mkk1mkk2 mutant background, 

MPK4 is not activated anymore, indicating that they are important upstream activators. The loss-

of-function mekk1 and mpk4 mutants and the mkk1mkk2 double mutant have related phenotypes 

(Ichimura et al., 2006; Nakagami et al., 2006; Suarez-Rodriguez et al., 2007; Qiu, Zhou et al., 

2008): They over-accumulate salicylic acid (SA) and Reactive Oxygen Species (ROS) and 

constitutively express pathogenesis-related (PR) genes. Therefore, loss of function mutants of 

this MAPK module produce paranoid dwarfed plants (Petersen et al., 2000; Ichimura et al., 

2006; Suarez-Rodriguez et al., 2007). Despite the crucial role of the MEKK1 in SA-mediated 

immune responses and its involvement in the regulation of reactive oxygen species (ROS) 

homeostasis (Nakagami et al., 2006), MEKK1 may not interact with FLS2/BAK1 directly. 

Intermediates upstream of MAP3Ks that link membrane receptor to MAPK cascade need to be 

identified. 

A single downstream target, of MPK4, MAP KINASE SUBSTRATE 1, has been identified 

(Andreasson et al., 2005; Qiu, Fiil et al., 2008). These studies have led to a model in which 

MPK4 plays the role of a negative regulator of PAMP response. The proposed model places 

MPK4 in a complex with its nuclear substrate MKS1 and the transcription factor WRKY33. 

Changes in MPK4 activity and phosphorylation of MKS1 on multiple sites (Caspersen et al., 

2007), somehow triggers the release of WRKY33 from nuclear complexes to activate the 

expression of target genes involved in defense responses such as the synthesis of the antibacterial 
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phytoalexin camalexin. Chromatin immunoprecipitation (ChIP) showed that, upon pathogen 

inoculation or flg22 treatment, WRKY33 binds to and activates the transcription of the 

PHYTOALEXIN DEFICIENT3 (PAD3) promoter (Qiu, Fiil et al., 2008). This mechanism does 

not follow the canonical mode of action of other ERK-like kinases, but it concurs with genetic 

evidence which also point to the negative role of MPK4 in defense responses. 

b. MAPKs are targets for pathogen effectors 

During evolution, plant pathogens developed strategies to circumvent PTI by injecting so-

called effectors or virulence proteins into the plant cells. Effector proteins suppress signaling 

events (ETS) and thereby inhibit the plant defense mechanisms. Examples of effector targeting 

of MAPKs components exist in animals and in plants. Shigella type III effector OspF was shown 

to deactivate human MAPKs, and this by removing their phosphate groups from the 

phosphothreonine of the activation loop (Li et al., 2007).  This mechanism reminds the unique 

function of HopAI1 an effector conserved between plants and animals bacterial pathogens 

(Zhang et al., 2007). MPK3 and MPK6 were specifically shown to be inactivated by HopAI1, 

leading to the suppression of PAMP-induced genes and callose deposition that is normally 

triggered to reinforce host cell walls (Zhang et al., 2007). Another early response suppressed by 

HopAI1 is the accumulation of H2O2 as part of the oxidative burst. However it’s still not known 

whether the phosphothreonine lyase activity of HopAI1 can also inactivate MPK4. The two 

effectors AvrPto and Avr PtoB were shown to be specific suppressor of early defense signaling 

(He et al., 2006). They both block MPK3 and MPK6 activation in early PAMP signaling by 

suppressing an upstream component of MAP3K. Interestingly, MPK4, which belongs to a 

signaling cascade involved in negative regulation of defense responses, is phosphorylated by 

AvrB, a virulent factor having similarities to protein kinase (Cui et al., 2010). Moreover AvrB 

virulence function appears to be correlated with its ability to induce JA signaling (through 

PDF1.2) in Arabidopis. Plants expressing AvrB in an RPM1 deficient background are more 

susceptible to P. syringae (Shang et al., 2006). Many other P. syringae T3SS effectors including 

HopF2 (Wu et al., 2011), HopZ1 (Macho et al., 2010) were recently reported to target MAPK 

cascades to shut down PTI in plants (Shan et al., 2007). 
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A clever bacterium system abusing host biological system and involving MAPKs 

components is the hitch-hiking mechanism used by Agrobacterium tumefaciens, the causative 

agent of crown gall blight. Agrobacterium invasion triggers the activation of MPK3, MPK4, and 

MPK6. An important player in shuttling the transfer DNA into the host nucleus is the bZIP 

transcription factor VirE1-Interacting Protein 1 (VIP1). The translocation is controlled by the 

MPK3-dependent phosphorylation of VIP1 (Djamei et al., 2007). This mechanism also involves 

the up regulation of the PR1 gene, but it’s still unknown whether this is a direct or indirect effect 

of VIP1. Many question are still open for this particular system, as how Agrobacterium weakens 

the innate immune responses because we saw with the study by Djamai et al. (2007) that 

Agrobacterium invasion results in the activation of several defense related MAPKs without 

eliciting a resistance to Agrobacterium transformation or colonization. 

c. Are MAPKs involved in ETI? 

In return, plants developed the Effector Triggered Immunity (ETI), also called ‘gene-for-

gene-resistance’ reactions. Plant NBS-LRR (nucleotide binding site- leucine-rich-repeat) 

receptors act as resistance proteins (encoded by resistance- or R-genes). Upon specific 

recognition of pathogen effector proteins (or in this case also named avirulence (Avr) factors), a 

defence signaling cascade is triggered (Flor 1971). ETI was described as an accelerated and 

amplified PTI response which, exceeding a certain threshold, results in cell death known as the 

Hypersensitive Response (HR). But also ETI is not the last level in plant-pathogen interactions. 

Many pathogens already overcame ETI by a second level of ETS (Jones & Dangl 2006). 

Examples based on studies on tobacco and tomato have shown the involvement of MAPK 

cascades in ETI and R-genes signaling. The activation of Salicylic acid–Induced Protein Kinase 

(SIPK) and Wound-Induced Protein Kinase (WIPK) by tobacco mosaic virus (TMV) and 

Cladosporium fulvum avr9 (Cf-9) is gene-for-gene specific, suggesting their role(s) in disease 

resistance (Zhang et al., 1998; Romeis et al., 1999; Zhang et al., 2000). The inhibition of SIPK 

and WIPK activation by staurosporine and K-252a suppresses the HR-like cell death in tobacco 

suspension cells treated with elicitin (Zhang et al., 2000). These MAPKs were activated in 

tobacco cells that express the N- or Cf-9 resistance gene (Zhang et al., 1998; Romeis et al., 

1999). 



 

 

 

 

 

 

 

 
 

Figure I.4: MAPK cascades triggered by different abiotic stresses: A. Cold/salt stress induces the 

MEKK1–MKK2–MPK4 cascade; B. Drought and wounding induces MKK1–MPK4; C. Osmotic shock 

activates MPK3/4/6 via AOS production (Adapted from Colcombet et al. 2008).  
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Separate studies have also implicated the tomato MAP3K MAPKKKα in the Pto-mediated 

HR response. The silencing of MAP3Kα inhibits HR in resistant tomato plants, and the over-

expression of this MAP3K promotes the development of HR lesions (Del Pozo et al., 2004). In 

Tomato, Pedley and Martin identified two MAPKs LeMPK2 and LeMPK3 which are activated 

by agrobacterium-mediated expression of AvrPTO and AvrPToB in a Pto-specific way (Pedley 

& Martin 2004). Interestingly, over expression of MAP3Kα also activates LeMPK2 and 

LeMPK3. Additionally using VIGS (Virus Induced Gene Silencing), two MAPK modules, 

MEK1-NTF6 and MEK2-WIPK, were proposed to be involved downstream of the Pto resistance 

gene (Ekengren et al., 2003). Thus far no evidence for direct protein interactions between MAPK 

modules and R-gene resistance process does exist due to the lack of identification of MAPK 

targets in the AvrPto-Pto mediated responses. 

2. Abiotic stresses and MAPKs signaling 

Besides their role in pathogen signaling, MAPK cascades have an important role in the 

signaling of a wide range of abiotic stresses. Many studies on different plant species including 

Arabidopsis have shown their implication in signaling pathways activated by abiotic stresses 

such as cold, salt, wounding, heat, UV or osmotic shock. The best-studied MAPK cascade in 

abiotic stress signaling is the MEKK1-MKK2-MPK4/6 module, which is induced by salt and 

cold (Teige et al., 2004) (Figure I.4A). 

a. Water, Salt, Cold, and Osmotic Stress  

Involvement of Arabidopsis MAPK in abiotic stresses was suspected from studies showing 

that MEKK1 mRNA level increases in response to various stresses such as low-temperature, 

high salinity and mechanical stresses (Mizoguchi et al., 1996). At this time, the kinase activation 

was not measured. It’s only with the study published by Ichimura and co-workers that two 

Arabidopsis MAPKs, MPK4 and MPK6, were shown to be activated by treatment with low 

temperature, low humidity, hyper-osmolarity, touch and wounding (Ichimura et al., 2000). 
Droillard and co-workers confirmed the activation of MPK3, MPK4 and MPK6 in Arabidopsis 

suspension cells under hyperosmotic and hypoosmotic (mimicking the mechanical stress) shock 



ChapterI - Introduction 
   

17 
 

(Droillard et al., 2002; Droillard et al., 2004) (Figure I.4C). The identification of the other 

kinases of this stress pathways were realized using a combination of approaches. Directed yeast 

two hybrids indicated that MEKK1 interact with MKK2 and MPK4 (Ichimura et al., 1998). 

These interactions were confirmed (Teige et al., 2004): MKK2 interacts strongly with MPK4 and 

MPK6 and weakly with MPK5. This cascade was further established in a complementation assay 

of Hog1 pathway, which is involved in the osmotic stress signaling (Hohmann 2002). The double 

mutant pbs2Δhog1Δ, which lacks the MAP2K Pbs2 and its downstream MAPK Hog1 and 

therefore is hypersensitive to salt stress, was transformed with MKK2 and the A. thaliana 

MAPKs, MPK3, MPK4 and MPK6. In this assay only MKK2 together with MPK4 or MPK6 

were able to complement the phenotype, showing that MKK2-MPK4/6 is a functional MAPK 

cascade (Teige et al., 2004). Transient protoplast transformation of MPK4 or MPK6 alone or in 

combination with MKK2 resulted in a poor activation of the MAPKs, however co-expression 

with a constitutively active form of MEKK1 (MEKK1∆N) together with MKK2 and MPK4 or 

MPK6 resulted in a stronger activation of both MAPKs. At least, mkk2 mutant plants are 

hypersensitive to cold and salt stresses, likely due the loss of MPK4 and MPK6 activation under 

cold and salt stress conditions. Although MKK2 share 62% amino acid identity with MKK1, 

MKK2 respond more strongly to cold and salt stress whereas MKK1 activity was far more 

important after hydrogen peroxide (H2O2) and bacterial and fungal elicitation (flg22 and ß-

laminarin) (Teige et al., 2004). This data established a MAPK cascade formed by MEKK1-

MKK2-MPK4/6 in response to cold and salt stress. 

b. Ozone and Reactive Oxygen Species (ROS) 

Redox homesotasis in plants needs a tight control by the antioxidant system (Pitzschke & 

Hirt 2009) since it’s always subject to oxidative challenges both from internal, including 

potentially damaging “reactive oxygen species” (ROS) generated by high energy electron 

transfer systems in the chloroplasts, mitochondria, and peroxisomes in physiological processes 

such as control of stomatal aperture, and external sources by environmental stresses such as UV 

and ozone. It was very well established that ozone induces formation of ROS in plants, however 

ROS production can be also detected upon pathogen attack for instance (also described as 

oxidative burst) in this case ROS act as a signal transduction messenger (Pellinen et al., 1999; 



 

 

 
 

 

Figure I.5: MAPK cascades activated in response to ozone and ROS. Accumulation of ROS in the 

plant cell after abiotic stress perception like O3 or pathogen attack activate MAPK cascades. H2O2 

activates the three MAPK modules (ANP1–MKK4/5–MPK3/6, MEKK1–MPK4 and MKK3–MPK7) 

either directly or via the protein kinases NDPK2 (nucleoside diphosphate kinase 2) and OXI1 (Adapted 

from Colcombet et al. 2008). 
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Mittler 2002). To ensure a redox homeostasis, plants have evolved detection and intracellular 

signaling systems. Among them MAPK seems to play a central role in addition to alteration of 

the ET, SA, and JA balance leading to a PCD similar to HR. These similarities between 

responses to pathogens, H2O2 and O3 allowed researchers to use O3 to manipulate the H2O2 

content of plants (Colcombet & Hirt 2008). 

 The primary ROS activated MAPK in tobacco is SIPK and in a lesser extend WIPK 

(Kumar & Klessig 2000; Samuel et al., 2000). In A. thaliana, MPK3 and MPK6 (SIPK 

orthologs) are activated by ozone treatments, and translocate to the nucleus (Ahlfors et al., 2004) 

(Figure I.5A). mpk3 and mpk6 mutant plants appear to be hypersensitive to ozone as shown by 

O3-induced leaf damage. However, in each of these mutant backgrounds, the other MAPK 

remained activated longer (Miles et al., 2005). MPK3 and MPK6 activation in response to ozone 

appears to be regulated by the MAPK phosphatase, MKP2, as the mutant MKP2 RNAi plants 

were more sensitive to O3 (Lee & Ellis 2007). 

Catalase enzymes which have a role in H2O2 degradation are important to overcome 

oxidative stress. It was reported that ABA, drought, and salt stress-induced gene expression of 

CAT1 catalase is mediated by the MAP2K, AtMEKK1, and this by triggering H2O2 signal 

production (Figure I.5B). Using the MAPK kinase inhibitor, PD98059, Xing and co-workers 

showed that the kinase activity reduced considerably under ABA, drought, and salt which 

consequently reduced the stress-induced CAT1 expression (Xing et al., 2007). This result 

demonstrate that catalase activity is linked to MAPK activation in response to abiotic stresses. 

And because MPK6 activity is lost in mkk1 mutants after ABA treatment, MKK1-MPK6 could 

be the MAPK cascade which regulates H2O2 metabolism through CAT1, this is further 

confirmed by the altered response to ABA in mkk1 and mpk6 mutants. ROS signaling is also 

proposed to bring into play another MAPK pathway involving MEKK1-MKK1/2-MPK4. mekk1 

and mpk4 have similar phenotypic alterations, they are severely dwarfed, accumulate high 

amounts of ROS and develop local lesions reminiscent of Programmed Cell Death (PCD) 

(Ichimura et al., 2006; Nakagami et al., 2006) and die at early developmental stages. Hydrogen 

peroxide can activate MEKK1, MPK3, MPK4 and MPK6 in protoplasts, though in the mutant 

background this activation is lost indicating that MEKK1 is specifically required for the 

activation of MPK4 by H2O2 (Nakagami et al., 2006). Moreover transcriptome analysis of 

mutants in this pathway showed an important overlap between the genes regulated by MEKK1 
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and MPK4 (Pitzschke, Djamei, Bitton et al., 2009). Particularly the expression of CAT2 

encoding the major H2O2 scavenging enzyme is repressed in mekk1 and in mpk4 mutants. This 

down-regulation is consistent with the high level of H2O2 observed by DAB staining, a ROS-

specific dye (Nakagami et al., 2006). All together, these data point the important role of 

MEKK1-MPK4 in ROS metabolism. 

Another MAPK involved in ROS signaling is the MPK7 from group C which was recently 

shown to be preferentially phosphorylated by MKK3 in response to H2O2 and that the module 

MKK3-MPK7 positively regulate the expression of PR1. MKK3 and MPK7 mRNAs 

accumulated upon bacterial infection, and global analysis of gene expression in the mkk3 mutant 

supported the involvement of these kinases in pathogen responses functioning independently of 

PAMP induction (Figure I.5B). This module may be part of a secondary response promoted by 

the oxidative burst, which is not an exclusive phenomenon during pathogen attack. Moreover, 

other studies pointed the role of MKK3 in the control of JA-mediated developmental processes 

via the MAPK, MPK6 (Takahashi et al., 2007). 

 

3. MAPK regulates or are signaling pathways for plant hormones. 

Phytohormones have an essential role in plant physiology and particularly during plant 

pathogen interaction. They are involved in long distance pathogen signaling in one hand and in 

modulation of defense responses developed by the plant to escape infection. Moreover their role 

was highlighted since we discovered the ability of many pathogens to perturb hormonal 

homeostasis or signaling of the plant to their own benefit (Robert-Seilaniantz et al., 2011). 

a. Salicylic and Jasmonic acid 

Salicylic acid (SA) and jasmonic acid (JA) together with ethylene (ET) play a pivotal role 

in plant immune signaling even though they have antagonistic function. Cross-talk between SA 

and JA/ethylene is very well studied (Koornneef & Pieterse 2008; Robert-Seilaniantz et al., 

2011). SA production and signaling is associated with resistance against biotrophic and 

hemibiotrophic pathogens such as P. syringae and Hyaloperonospora, while JA and ET are 



 

 

 

 
 

 

 

Figure I.6: MAPK cascades activated in hormone signaling: A. ET inhibits the ETR1 receptor and 

thereby alleviate the negative regulation by CTR1 of the downstream events, this derepression concerns 

EIN2 and the cascade MKK9–MPK6 module, which phosphorylates EIN3; B. JA regulates the MKK3–

MPK1/2 module and, indirectly, MPK6. (Adapted from Colcombet et al. 2008). 
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mostly involved in signaling of defense responses against necrotrophic pathogens like Altenaria 

and Botrytis (Glazebrook 2005). JA has also a role in abiotic stresses such as ozone exposure, 

wounding and water deficit (Berger 2002; Devoto & Turner 2003). Using exogenous application 

of SA or expression of bacterial SA synthase trangenes (Verberne et al., 2000), it was shown that 

SA accumulation induce Systemic Acquired Resistance (SAR) (defined as a long-lasting and 

broad spectrum disease resistance state in the plants) and Pathogenesis Related (PR) genes 

expression,  

The role of MAPK in defense responses and therefore in hormone signaling specially SA 

and JA/ET is under investigation by several laboratories. A good example for the antagonistic 

regulation of immune response by SA and JA is the MEKK1-MKK1/2-MPK4 cascade . Mutants 

in these kinases accumulate SA and therefore constitutively express PR genes resulting in 

dwarfed plants that can be partially rescued by the expression of the bacterial salicylate 

hydroxylase NahG which converts SA into cathecol (Pearce & Humphrey 2001; Suarez-

Rodriguez et al., 2007). It was also proposed that MPK4 is the main modulator of JA- and 

ethylene responses through the regulation of downstream players of defense responses, PAD4 

and EDS1, which enhance SA signaling and suppresses some JA/ET mediated responses like 

PDF1.2 expression (Brodersen et al., 2006). The antagonistic effects of SA and JA signaling 

appear to be dose dependant. At low concentration, these hormones could have a synergic effect, 

however antagonistic effect was observed at higher concentrations (Koornneef & Pieterse 2008). 

In mekk1 or mpk4 mutants, the increased SA level results in a reduced expression of the JA-

inducible marker gene PDF1.2 (Brodersen et al., 2006; Ichimura et al., 2006). 

In Tobacco, the Wound-Induced Protein Kinase (WIPK) and the Salicylic-Induced Protein 

Kinase (SIPK) were shown to be important for the wound-dependent JA accumulation (Seo et 

al., 2006). Indeed, RNAi lines or lines expressing MAPK phosphatases were shown to under-

accumulate SA in response to wounding. Additionally, using protoplast system, SIPK, but not 

WIPK, was shown to be directly activated by SA and NO (Kumar & Klessig 2000). 

In Arabidopsis, MAPKs were also proposed to directly belong to the hormonal signaling 

pathways. MPK6 is activated by JA signaling and this through the MAP2K, MKK3 (Takahashi 

et al., 2007) (Figure I.6B). MKK3/MPK6 module is proposed to positively regulate JA 

responsive genes LOX2 and PDF1.2 and negatively regulate the expression of the bHLH 

transcription factor MYC2/JASMONATE INSENSITIVE1, an important player of JA pathway. 
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b. Ethylene 

Ethylene is a key regulator of plant cell stress status, its role in plant defense was well 

established (Broekaert et al., 2006; Van Loon et al., 2006). It also plays important roles in 

developmental processes, such as fruit ripening, organ senescence, flower sex determination and 

skotomorphogenese. Genetic work in Arabidopsis showed that ethylene is perceived by 5 

receptors of ETR1 family which possess an active kinase domain (Robert-Seilaniantz et al., 

2011). Ethylene receptors interact with the putative Raf-like MAP3K, CTR1 (Kieber et al., 

1993), which negatively regulate downstream components of ethylene response like EIN2 and 

EIN3. MAPK cascades are involved in both ethylene synthesis and ethylene response. 

Two of the first MAPK substrates identified are ACS2 and ACS6 encoding an ACC 

synthases (Liu & Zhang 2004). In response to stress (flg22 or wounding), ACS6 is 

phosphorylated mainly by MPK6 and the phosphorylation stabilize the proteins, allowing the 

ACC biosyntheses and consequently an ethylene production (Liu & Zhang 2004; Joo et al., 

2008). The use of inducible lines expressing constitutively active MAP2K confirms that this 

MKK5 is involved in the production of ethylene triggering in this very particular lines cell death 

(Liu et al., 2008).  

On the other hand, application of the ethylene precursor 1-aminocyclopropane-1-

carboxylic acid (ACC) activates 2 MAPKs, MPK3 and 6 (Ouaked et al., 2003; Yoo & Sheen 

2008). The recent model proposed for ethylene signaling implies the cascade MKK9- MPK3/6 to 

works downstream of CTR1 (Yoo & Sheen 2008). In the presence of ethylene, CTR1 activity is 

blocked, and MKK9-MPK3/6 cascade is activated and phosphorylate EIN3 on T174 to promote 

its stability (Figure I.6A). In contrast, a lack of ethylene prompts CTR1 to block MKK9 activity, 

and then other MAPKs are free to phosphorylate EIN3 on its second phophorylation site T592 

that promotes its degradation (Yoo & Sheen 2008). A work from Bethke and coworkers 

suggested a new mode of action of MPK6 via the release of the substrate Ethylene-Related 

Transcription Factors ERF104. In this work they emphasize a new function of MPK6 in ethylene 

signaling (Bethke, Unthan et al., 2009). 

In conclusion, ethylene signaling seems to be very complex as a single kinase MPK6, is 

needed for ethylene synthesis through ACS2/6 phosphorylation and playing also an important 

role in the downstream events after ethylene perception. Our limited knowledge on the role of 
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MAPKs in hormone signaling make it more difficult to understand plant defense responses since 

hormones are among the very important actors in the plant pathogen interaction. 

c. Abscisic acid (ABA) and Auxin  

These two hormones are grouped together because at some point they appear to share the 

same MAPK players in their signaling pathways. 

Abscisic acid (ABA) plant hormone regulates various cellular processes, among them the 

seed dormancy and water loss control. ABA is an important transducer of environmental signals 

to protect plants mainly from abiotic stresses (Hirayama & Shinozaki 2007). It has been 

established that protein kinases and phosphatases plays a central role in regulation of ABA 

signaling network (Hirayama & Shinozaki 2007). The ABA signaling core mechanism is 

constituted of the PYR/PIL ABA receptors, PP2C phosphatases (such as ABI1, ABI2) and 

kinases belonging to the SnRK2 family (like the well characterized Arabidopsis OST1 ). In the 

absence of ABA, SnRK2s are inactivated by PP2C-phosphatase-mediated dephosphorylation. 

Upon ABA treatment, PYR/PIL ABA receptors bind phosphatases preventing the inactivation of 

SnRK2s which become consequently able to phosphorylate their targets. Additionally Ca2+-

dependent protein kinases (CPK3, CPK6, CPK4, CPK11) (Mori et al., 2006; Zhu et al., 2007), a 

protein phosphatase 2A regulatory subunit A (RCN1) (Kwak et al., 2002), a receptor-like protein 

kinase (RPK1) (Osakabe et al., 2005) and MAPKs act as positive regulators of guard cell ABA 

signaling (Jammes et al., 2009). ABA activates 42–46 kDa kinases in Arabidopsis and Maize, 

which is consistent with average sizes of putative plant MAPKs (Lu et al., 2002; Zhang et al., 

2006). An important player in ABA signaling, the Abscisic Acid Insensitive 5 (ABI5) 

transcription factor that have been found to be phosphorylated (Lopez-Molina et al., 2001), 

MPK3 is suspected in this event (Lu et al., 2002). Moreover AtMPK3 gene, as well as the ANP1 

gene encoding the MAP3K of the stress-activated kinase cascade, are overexpressed in the hyl1 

mutant, an Arabidopsis ABA hypersensitive mutant. Increasing MPK3 expression by two times 

was enough to trigger hypersensitivity in post-germination and growth arrest by ABA (Lu et al., 

2002). However, it seems that the same MAPKs are also stimulated by many other signals. Both 

ABA and H2O2 tend to activate the same MAPKs and, thus, it is possible that ABA-induced 
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H2O2 production activates MAPK. The activation of MAPK also enhances the H2O2 production, 

forming a positive feedback loop (Zhang et al., 2006). 

Auxin is an important phytohormone for several aspects of plant development (Robert-

Seilaniantz et al., 2011). Connection between auxin effects and MAPK signaling was first 

observed in maize (Kovtun et al., 1998). Using maize protoplast it was shown that the expression 

of the MAP3K, NPK1 represses GH3 and ER7 auxin responsive promoter and activate MAPK 

cascade. NPK1 ortholog from Arabidopsis, ANP1 is activated by H2O2 in protoplast. Moreover 

the active form of ANP1, ∆ANP1 activated MPK3 and MPK6 which in turn suppressed 

promoter induction by auxin of auxin responsive promoters (Kovtun et al., 2000). This seems to 

be consistent with previous data on maize.  

Tobacco plants expressing constitutively active tobacco ANP1 ortholog NPK1 are more 

tolerant to multiple abiotic stress droughts, cold, and to abscisic acid hormone than wild type. 

H2O2 like ABA promotes expression of antioxidant genes CAT1, cAPX, and GR1 and the total 

activities of the antioxidant enzymes catalase, ascorbate peroxidase (Zhang et al., 2006). It seems 

that auxin role is not restricted to growth processes for plant it has also a stress-protective role by 

inducing an oxidative stress response through the MAP3K, ANP1. 

As I mentioned before auxin and ABA signaling are connected. In a recent study, the A. 

thaliana MPK12 was found to be a direct substrate of the MKP INDOLE-3-BUTYRIC 

RESPONSE 5 (IBR5) (Lee et al., 2009). In transgenic plants with reduced MPK12 expression, 

the root growth is more sensitive to auxin. However ibr5 mutants are less responsive to auxin 

and ABA, this phenotype was partially rescued by the silencing of MPK12 in ibr5 plants but did 

not affect its ABA-related phenotype. Even though MPK12 colocalizes with IBR5 in the nucleus 

(Lee et al., 2009), it seems that it has another function regarding ABA response. MPK12 and 

another MAPK from the group D were found in a cell type-specific functional genomic approach 

to be highly expressed in guard cells (Jammes et al., 2009). These two kinases play a redundant 

role in Reactive Oxygen Species (ROS) signaling and in guard cell ABA signaling. Only the 

double mutant mpk9/12 displays ABA-insensitive stomatal response, this phenotype being 

complemented by MPK12 (Jammes et al., 2009). Another MAP2K from Arabidopsis, is 

proposed to be a negative regulator of polar auxin transport (PAT), as the auxin action defective 

mutant (fewer lateral roots and modified gravitropic responses) bud1 over-accumulate MKK7 

(Dai et al., 2006). 
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All these examples showed that MAPK cascade appears to be an important hub for 

hormone signaling. It could be then worthwhile to put more effort on investigating their function 

in all circumstances regarding not only environmental but also developmental processes.  

4. MAPK functions in plant development  

As with other eukaryotes, plant MAPK cascades play a central role in plant cell division 

and some MAP kinases are transiently induced during mitosis. Recent data shows the importance 

of stress induced MAPKs in very important developmental processes. 

a. MAPK NtNTF6/AtMPK4 defines a pathway involved in cell mitosis 

The Tobacco MAPK NTF6 was found to be specifically activated during late anaphase of 

mitosis and transiently localized at the phragmoplast (Calderini et al., 1998). Using two-hybrid 

interaction analysis and pull-down experiments it was shown that tobacco MAP2K, NtMEK1 

acts upstream of NTF6. The MAP3K of tobacco NPK1 (Nucleus- and Phragmoplast-localized 

protein Kinase 1; renamed from Nicotiana Protein Kinase 1) is involved in the regulation of cell-

plate formation in plant cytokinesis (Nakashima et al., 1998). The activity and the expression of 

NPK1 increases in the late M phase of the tobacco cell cycle, where it interacts with tobacco 

motor proteins, NACK1 (NPK1-activating kinesin 1) and NACK2. Both NPK1 and NACK1 

localize at the center of the mitotic spindle and phragmoplast of dividing tobacco cells 

(Nishihama et al., 2000). Expression of a kinase negative version of NPK1 interfered with the 

formation of cell plate and led to failed cytokinesis (Nishihama et al., 2001). Recently substrates 

of NPK1 were identified and these include MAP2K, NQK1 (Nicotiana kinase next to NPK1), 

and the MAPK, NRK1 (Nicotiana kinase next to NQK1) (Takahashi et al., 2004).  

NPK1 is related to three Arabidopsis MAP3Ks, ANP1 (Arabidopsis NPK1 homolog), 

ANP2, and ANP3 (Nishihama et al., 1997). Genetic studies using the three MAPK KO anp1, 

anp2, and anp3 support a model in which the ANP family of MAP3Ks positively regulates cell 

division and growth (Krysan, Jester et al., 2002). In recent studies, the cascade was completed: 

ANPs act upstream of the MAP2K MKK6 and the MAPK MPK4 in regulating cytokinesis 

(Kosetsu et al., 2010; Takahashi et al., 2011). Cytokinesis in plant cells is achieved by the 



ChapterI - Introduction 
   

25 
 

formation of the cell plate, it was striking to see that MPK4 and MKK6 both localize at the 

equatorial plane of the phragmoplast. Both mpk4 and mkk6 plants show a similar cell division 

defect (Kosetsu et al., 2010). MKK6 also activates MPK4 in protoplasts. Moreover MPK4 

activity was detected to be higher in organs that contain dividing cells (shoot and root apex, 

cotyledons) in Arabidopsis plants (Kosetsu et al., 2010; Takahashi et al., 2011). 

Interestingly, independent studies propose ANP1/ANP2/ANP3-MKK6-MPK4 cascade in a 

larger context of cytoskeleton organization (Beck et al., 2010; Beck et al., 2011), explaining 

several aspects of mutant defects such as cell growth patterns, branching of root hairs and 

swelling of epidermal cells. Interestingly, these phenotypes are related to a decrease of the 

phosphorylation level of the Microtubule-Associated Protein 65 (MAP65) (Beck et al., 2010). 

What makes the story even more complex is the mpk4 plants phenotype that appear to be 

also impaired in male meiosis cytokinesis (Zeng et al., 2011). This phenotype was proposed to 

be due to the lack of callose deposition in pollen tetrads. and could be controlled by the same 

ANP3-MKK6-MPK4 cascade as the same defects were observed in the mutant plants (Zeng et 

al., 2011). This observation could explain the decreased fertility of mpk4. 

b. MKK4/5-MPK3/6 cascade is involved developmental processes  

Another example that MAPK cascades functions in cell division and differentiation comes 

from the identification of A. thaliana MAP3K mutant yoda (MAP3K04) and its downstream 

MAPK components MKK4, MKK5, MPK3 and MPK6. yoda was identified in a genetic screen 

for mutants which have distinctive changes in the pattern of cell division (Lukowitz et al., 2004). 

Then it appears that sterility, dwarfism with compact leaves of yoda mutant are associated to a 

compromised stomatal cell specification corresponding to a transgression of the ‘one-cell 

spacing’ rule: yda leaves present abnormal clustered stomata (Bergmann et al., 2004). Evidence 

was provided subsequently using a reverse-genetic approach, that MKK4/MKK5 and 

MPK3/MPK6 are redundant downstream components of this MAPK signaling cascade, as 

mkk4/mkk5 and mpk3/mpk6 fail also to develop further than the cotyledon stage and show a 

typical yoda-like stomatal patterning at the epidermis (Wang et al., 2007). bHLH transcription 

factor SPEECHLESS (SPCH) was proposed to be a target of MPK3 and MPK6 in the YODA 

cascade(s) (Lampard et al., 2008). spch mutants do not develop stomata and is epistatic on yoda 



ChapterI - Introduction 
   

26 
 

(Macalister et al., 2007). SPCH protein, at the opposite to two other bHLH involved in stomatal 

patterning, shows a MAPK phosphorylation domain containing 10 SP/TP sites. Phosphorylation 

on this transcription factor might be important to regulate its activity and stability, and to fine 

tune responses according to the phosphorylation site. This regulation could be ensured by MPK3 

or MPK6. Positive regulation of stomatal differentiation may function downstream of this 

MAPK cascade and include other bHLH transcription factors, MUTE and FAMA which are 

related to SPCH (Ohashi-Ito & Bergmann 2006; Kanaoka et al., 2008). 

Interestingly the same signaling cascade (MKK4/MKK5-MPK3/6) functions in floral 

abscission (Cho et al., 2008). Abscission is the natural process allowing plants to discard non 

functional or infected organs and promote dispersion of progeny. Plants silencing MKK4/MKK5 

or expressing a dominant negative form of MPK6 in mpk3 background have abscission defects. 

Based on genetic interactions between the important player in abscission process, it was 

proposed that IDA (Inflorescence Deficient in Abscission), the receptor like protein kinase 

HAESA (HAE) and the HAESA-like 2 (HSL2) together with MPK3/6 cascade regulate in a 

sequential model floral organ abscission (Cho et al., 2008). 

5.  Complexity of MAPK signaling 

Several signaling pathways including abiotic and biotic stress response pathways, 

hormonal and developmental stimuli converge to the same MAPK cascades but triggers distinct 

responses. It looks like MAPKs are a hub of all modulating cellular functions. However, MAPK 

are not efficiently defined in separate parallel cascades, instead multiple interconnected MAPK 

pathways are required to transduce a signal, which involve a lot of overlaps and cross talks. 

Often the complexity is increased when the regulator of a MAPK is itself regulating several 

responses. MEKK1 for instance activates MPK3 and MPK6 in PTI processes through the two 

MAP2K MKK4 and MKK5 (Asai et al., 2002) and at the same time MEKK1 functions in 

another cascade involving MKK1/2 and MPK4. This is also due to the disparity in size of the 

different families involved in the cascades. MAP3K family as 60–80 members and their putative 

MAP2K substrate, only 10… and the same thing for MAP2K and MAPK (20). This suggests a 

redundancy at the level of MAP2K for example, and the ability to be involved in different 

cascades. These expectations were observed experimentally. 
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 In Arabidopsis thaliana two signaling pathways are very well characterized. The MEKK1-

MKK1/2-MPK4 cascade is triggered by abiotic and biotic stresses. But in some recent reports it 

appears that MPK4 has also a role in developmental processes such as cytokinesis and 

microtubule organization but this time in association with the MAP3K ANP1/ANP2/ANP3 and 

the MAP2K MKK6. The combination of both function partially explain the fact that mpk4 share 

phenotype traits with mutants of the two pathways. The second cascade involves MKK4/5-

MPK3/6 and is proposed to work also in PTI and in responses to diverse abiotic stresses 

downstream of MEKK1. It also has a role in the stomatal patterning process but this time down-

stream of the MAP3K YODA (Wang et al., 2007). Yet it appears that flg22 is still able to 

activate MPK3 and MPK6 in the mekk1 background, suggesting redundancy at the level of the 

MAP3K step in the MEKK1–MKK4/MKK5–MPK3/MPK6 signaling pathway. 

A more comprehensive and exhaustive view of the MAPK cascades has being generated 

thanks to studies reported by Lee and co-workers and Popescu and co-workers. In the first study 

(Lee et al., 2008), the authors used pair-wise yeast two-hybrid assays to test interactions between 

the 10 MAP2Ks and all 20 MAPKs. Popescu and co-workers made rather a phosphorylation 

assay with the same combinations and then used the working MAP2K-MAPK combination to 

screen for protein targets (Popescu et al., 2009). Both studies confirmed the known interactions 

identified by genetic and in vivo studies, on the other hand it appears that no specific MAP2K is 

devoted for one MAPK. Numerous new interactions were proposed, but sometimes were not 

confirmed by both studies, showing techniques artifacts. Overall these studies provide new 

cascades that could be worth to check in vivo when the localization and expression data are in 

accordance with the probable interaction. 
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C.  Statement of approach 

To find out the exact role of a protein in a specific biological process, scientists adopted 

different strategies. Genetic approaches were among the most successful. The use of knock 

out/down mutants or overexpressor lines allowed study the molecular and physiological 

alterations induced by the miss regulations or complete abolishment of the expression of a 

protein. After completing Arabidopsis genome sequencing, the creation of public libraries of KO 

plants using insertion mutagenesis accelerated research advances. 

However quite often, the expression of a gene is tightly regulated. In this case, using over-

expression lines could be subjected to down regulation. This approach is easy to apply to 

proteins which are not subjected to post-transcriptional or post-translational regulations. 

Moreover, gene for which the loss of function influence many phenotypic traits can often not be 

knocked out or give, when mutated, pleiotropic phenotypes which are usually difficult to 

interpret. A very promising approach allowing to better understand a protein function is to use 

gain of function (GOF) mutations. This allows monitoring the consequence of the activity on the 

phenotypic and molecular level. The kinases involved in signaling pathways are interesting 

candidates for such approaches. 

1. Several tools to activate plant MAPKs 

In the case of MAPKs, increasing the protein level, if possible, does not necessarily result 

in elevated kinase activity (Hirt, personal communication). The activation of kinases that belongs 

to the MAPK families subsequent to a stimulus perception, depend on dual phosphorylation 

processes happening on conserved phosphorylation sites localize in the activation loop. Dual 

phosphorylation is the basis for the increase in MAPK activity (it can rich 1000 fold). This 

phosphorylation leads to structural changes and dynamic increases in specific activity 

(Canagarajah et al., 1997; Prowse et al., 2001). Studies on activation process of MAPK 

interested particularly the biochemists. Crystallization of the model mammalian MAPK ERK2 in 

active or inactive states has been reported (Canagarajah et al., 1997). This work highlighted the 

role of the double phosphorylation occurring on the TEY motif and its relevance for the catalytic 

activity of the kinase and its specificity. This knowledge is likely transposable to plant MAPKs 
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since they all belong to the ERK like subclass of MAPKs (Mapk_Groups 2002) and all the 

amino acids important for the stabilization of phosphorylated kinase in a structurally active state 

are conserved in plant (Colcombet, personal communication). The main changes noticed concern 

the activation loop itself and another domain at the C- terminal extension (extending from Pro309 

to Arg358) known as L16. Upon phosphorylation, the phospho-threonine (residue 183) of the 

TEY motif forms ionic contacts with the N-terminal domain which correspond to the L16 

inducing the domain closure (Canagarajah et al., 1997). The phosphorylation of the tyrosine 

serves to configure the ATP binding site, while phosphorylation of both residues is required to 

stabilize binding of the protein to the substrate (Prowse et al., 2001). The kinetic of the 

phosphorylation is important as conformational changes happen accordingly in order to organize 

the catalytic residues in the active site. These modifications including new interaction between 

the phophorylation lip and the neighboring structures are important in promoting the substrate 

recognition specifically at the P+1 site (Canagarajah et al., 1997). Knowing how complex is the 

regulation of MAPK phosphorylation, different strategies were employed in order to obtain 

active MAPKs. In the following chapter, I will present the different strategies developed to 

activate MAPKs and their limits. 

a. Stress activation of MAPKs pathways 

A classic way to activate MAPK is to apply extracellular stimuli known to activate the 

cascade. For plants, the activation of the three stress related kinases MPK3, MPK4 and MPK6 

works perfectly by using the 22-amino acid fragment derived from the bacterial flagellin flg22. 

Once activated, the MAPK can be immuno-precipitated and used to phosphorylate specific 

substrates. The phosphorylation of VIP1 was demonstrated this way (Djamei et al., 2007) and 

our laboratory used this strategy to test many putative new substrates identified in phospho-

proteomic approaches (Hirt, personal communication). This strategy also allows studying 

downstream events controlled by MAPKs. Nevertheless, treatments often activate more than one 

MAPK and evoke many cellular responses difficult to sort out. Finally, his strategy is not 

suitable if the treatment or the conditions activating the kinase are unknown. As very few MAPK 

activities are detected in plants, activators of other MAPKs are still unknown. 
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b. Activation of upstream steps of MAPK  

Many proteins which are activated by phosphorylation have been reported to be artificially 

modified into constitutively active forms when the phospho-acceptor amino acids at the active 

site are mutated to phospho-mimicking amino acids. Residues that mimic the phosphorylated 

state of the protein are usually acidic amino acids. In the case of MAP2Ks, the phosphorylation 

of the two adjacent Ser/Thr residues in the activation loop of MAP2K (S/T-X3-5-S/T) is essential 

for its activation and in fact, mutation of these residues to acidic amino acids makes MAP2K 

constitutively active (CA) (Cowley et al., 1994; Mansour et al., 1994). This strategy was 

extensively and successfully used in protoplast expression system and allowed reconstitutions of 

the two last steps of some MAPK cascades (MKK1/MKK2-MPK4 (Teige et al., 2004; Meszaros 

et al., 2006), MKK4/5-MPK3/6 (Asai et al., 2002), MKK3-MPK7 (Doczi et al., 2007)). The CA 

MAP2Ks were also used to generate plant lines and identify downstream events (Ren et al., 

2002). Astonishingly to ensure a full activation of a MAP2K the double mutation of both 

phosphorylation sites is needed. The phospho-mimicking mutation strategy often works but our 

experience (and other’s) suggests that each particular construct needs to be carefully 

characterized. Additionally, if serine and threonine have structural similarities with acidic amino 

acids (aspartate and glutamate respectively), this is not the case of the aromatic phosphorylable 

tyrosine (1.5 to 3 % of the identified cellular sites (Mithoe et al., 2011). This may explain why a 

direct activation of MAPKs through the mutation of the TEY motif was never successful. 

Kinases often have additional domain involved in inhibitory mechanisms. Several studies 

used active forms of plant MAP3K to activate the downstream kinases (MAP2K), among the 

first ones are the studies by Kovtun and co-workers who deciphered MAPK cascade involving 

NPK1 in response to auxin hormone (Kovtun et al., 1998). Another successful example is the 

expression of the kinase domain of Arabidopsis MEKK1 to reveal the MAPK cascade working 

downstream of PAMP perception and abiotic stress (Asai et al., 2002; Teige et al., 2004). The 

activation of these MAP3K does not require mutation of the phosphorylation sites but rather 

truncation of the C terminal part of the protein. The expression of the kinase domain of the 

protein result an increased kinase activity compared to that observed after stimuli activation.  
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c. Genetically triggered activation of MAPKs 

Fusing constitutively active (CA) MAP2K 

A strategy to enforce activation of a given MAPK by a MAP2K is to constantly express 

them to an infinite proximity. This strategy consists in the case of MAPKs, to express a MAPK 

fused to its upstream activator MAP2K. The MAP2K-MAPK chimera results in the activation of 

the MAPK (Robinson et al., 1998; Miyata et al., 1999). For example Robinson and coworkers 

expressed the MEK1-ERK2 chimera, and showed that it was catalytically and biologically active 

because it was able to induce the activation of ERK2 substrates, the transcription factors Elk2 

and AP-1. In another study (Zheng et al., 1999), authors adopted this strategy to activate JNK1 

MAPK through its fusion to JNKK2. Ateinza et al. (1999) validated the strategy for MEK-ERK1 

chimera expressed in S. cereviseae. All these studies showed that the chimeras are biologically 

active. Nonetheless, a major drawback of this technique is that the MAP2Ks and MAPKs can 

lose their appropriate regulation and localization to have no specific activities and functions in 

the cell. MEK1 for instance has a nuclear export signal which has to be mutated when fused with 

ERK2 in order to ensure their expression directly in the nucleus in the vicinity of ERK2 

substrates (Robinson et al., 1998). Moreover ERK2 binds to its substrates and inhibitors 

(phosphatases) through the same domains (Tanoue et al., 2000) and this could increase the 

competition for binding and reduces the binding with the substrate. 

Mutations triggering CA MAPKs 

Although the mechanisms of MAPK activation have been revealed, this knowledge could 

not be applied for the production of active forms of MAPKs because of the impossibility to 

mimic the pT-X-pY structure by mutagenesis (Robbins et al., 1993). Many attempts to isolate 

active forms of MAPK, FUS3 in S. cerevisiae (Brill et al., 1994) or Rolled MAPK of Drosophila 

Melanogaster (Bott et al., 1994) were performed in the previous decade, however they were not 

completely successful, as some mutations did not lead to a significant elevated basal kinase 

activity and therefore still require activation by MAP2Ks. A genetic screen in yeast to isolate 

active forms of the S. cerevisiae MAPK, Hog1 has been developed by Engelberg group (Bell et 

al., 2001; Engelberg & Livnah 2006). This screen allowed the isolation of nine point mutations, 

most of them (6 mutations) are located in the conserved L16 domain, and activate the kinase 

independently of Pbs2 (the upstream MAP2K of Hog1) and without any induction (Bell et al., 
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2001). The equivalent mutations introduced in other MAPK, like the human p38α (Bell et al., 

2001; Diskin et al., 2004) or p38γ, β and δ, (Avitzour et al., 2007) induce considerable increase 

in the kinase activity. In all these studies showed also that the constitutively active mutants 

preserve an authentic substrate specificity profile and sensitivity to inhibitors (Avitzour et al., 

2006; Diskin et al., 2004). 

Another smart approach developed by Emrick and coworkers (Emrick et al., 2001) 

consisted to combine all the mutations described in previous studies (Brill et al., 1994; Brunner 

et al., 1994; Ikeda et al., 1997) to create ten point-mutated ERK2 (Table I.1).  It was reported 

that insertion of the single equivalent mutation in ERK2 resulted in just basal catalytic activity, 

similar to that of ERK2 WT. However, ERK2 proteins carrying combinations of some mutations 

manifested very high specific activity, reaching up to 90-fold over that of wild-type non-

activated ERK2. A combination of the three mutations L73P/S151D/D319N resulted in the 

highest activity recoded for ERK2. Surprisingly ERK2L73P/S151D/D319N showed less activity when 

tested in vivo compared to other mutation combination, its activity was lower than 1% of that of 

phosphorylated ERK2 (Emrick et al., 2001). 

  

Table I.1: Mutations selected by Emrick and cowarkers (2001) to produce hyperactive ERK2. 

Mutation found  Reference MAPK 
D48N, I161L, D227N, Y7H, 
I9K and C28Y 

Brill et al. (1994) FUS3 

L63P Hall et al. (1996) FUS3 
D334N  Brunner et al., 1994 FUS3 
K136Q Ikeda et al. (1997) ERK2 
S194D Cowley et al., (1994) MKK1 
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2. Objectives of my PhD: identifying constitutively active form of MAPKs and use them to 
understand their functions in Arabidopsis 

Many aspect of MAPK function and mechanism had been revealed, however still the exact 

role of each MAPK in a given biological system is not fully understood as they are difficult to 

study independently of their signaling context. This is mainly due to complexity of signaling 

through MAPK cascade despite the fact that they are probably involved in almost all the 

biological responses of the cell (Suarez-Rodriguez et al., 2010). A way to bypass this complexity 

is to activate one single MAPK at a time and follow the biochemical and physiological 

consequences of its activity, ideally in a time dependent manner. This approach was successful in 

the case of MAP2Ks, for which a combination of CA mutated forms with inducible promoters 

allowed the characterization of major downstream events of the cascades (Liu et al., 2008). 

However, this approach is not possible yet concerning plant MAPKs as no simple way to activate 

them exists. When I started my work in Heribert Hirt’s group, this development still needed to be 

initiated for plants MAPKs. 

Constitutively activating mutations were identified for yeast and mammals MAPK but their 

transfer into plant MAPK was not successful. For example, in the laboratory, we introduced the 

mutations identified by Engelberg’s group in Arabidopsis MPK4. When expressed in yeast, these 

putative CA forms failed to complement yeast mutants (pbs2∆hog1∆) and did not show any 

increased kinase activity (Colcombet, personnel communication). Constructions of MAP2K-

MAPK chimera, initiated in Heribert Hirt’s group, were not functional neither (Kumar and Hirt, 

personal communication). 

In this context, the aim of my study was to (1) find a strategy  to isolate constitutively 

active (CA) forms of a model MAPK and (2) to demonstrate that MAPK CA forms are useful 

to understand kinase function in planta. 

As the strategy used by Engelberg was successful and knowing that MPK6 was functional 

in yeast (Teige et al., 2004), we decided to adopt a similar approach. The chapter III describes 

the use of a genetic screen in yeast to isolate CA mutants of MPK6. In the chapter IV, I prove 

that mutations identified in the screen can activate other plant MAPKs from different group and 

in the chapter V that the specificity of interaction between the active MAPKs and known 

interactors, as well their substrate phosphorylation preferences are not altered. The last part 

(Chapter VI and VII) is devoted to the proof-of-concept that the mutations identified in our 
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screen can activate a plant MAPK in vivo. We choose to work on MPK4 whose cascade is very 

well described now, Heribert Hirt’s laboratory being among the most involved in this 

characterization. We choose to generate stable transgenic lines in which mpk4 mutant plants 

were complemented with active version of MPK4. To our knowledge the complementation failed 

with inactive kinase version (Petersen et al., 2000). All the data concerning MPK4 demonstrated 

its essential and complex role in plant defense responses, yet recent studies demonstrated its role 

in developmental process. In this part of the project, we investigated first whether constitutively 

active version of MPK4 could complement mpk4 mutant plants and whether the mutations could 

activate the kinase in vivo (chapter VI). Then, in the chapter VII, we studied the resistance of 

these lines towards pathogens in order to try to learn more about the exact role of MPK4 during 

plant pathogen interaction and more specifically its implication in PAMP triggered immunity 

(PTI) or effectors triggered immunity (ETI). Investigation of MPK4 function in development and 

particularly the microtubule organization using complemented CA-MPK4 lines is under studies. 
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Chapter II -  Material and methods 

A.  Materiel 

1. Plant Material 

Arabidopsis thaliana ecotypes used in this study were Columbia-0 (Col-0) and 

Wassilewskija-0 (Ws-0). Mutant lines are listed in following table 

Table II.1: Mutants of Arabidopsis used in this study 

Allele name Ecotype Mutagen Reference/Source 
mpk4-2 (Salk_056245) Col-0 T-DNA (Kosetsu et al., 2010) 
mekk1-1 (Salk _052557) Col-0 T-DNA  (Nakagami et al., 2006) 
eds1-2 Col-0 (Ler-0)a Fast neutron (Bartsch et al., 2006) 

aLer eds1-2 allele introgressed into Col-0 genetic background, 8 backcrosses generation. 

2. Pathogens 

Arabidopsis plants were challenged with different strains of the bacterial pathogen 

Pseudomonas syringae: 

- P syringae pv. tomato (Pst) strain DC3000 harboring the empty broad host range 

vector Pvsp61 (Innes et al., 1993) 

- avrRps4 strain: P syringae pv. tomato (Pst) strain DC3000 expressing the effector P 

syringae pv. pisi effector AvrRps4 (Hinsch & Staskawicz 1996).  

- HrcC strain: mutant deficient in the type-III secretion system (Deng et al., 1998). 

 Arabidopsis plants were also subjected to infection with the oomycete pathogen Emwa1 

strain of Hyaloperonospora parasitica (Hpa). Emwa1 is an avirulent strain expressing the 

AvrRpp4 effector. 

Alternaria brassicicola: White-shire, strain DSM 62008. 
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3. Escherichia coli strains 

Depending on the application different bacterial strains were used. Non recombined 

GateWay vectors were propagated in Escherichia coli DB3.1 strain (invitrogen). For Gateway 

recombined Donor and Destination vectors and for regular cloning protocol, we used the strain 

DH5α (invitrogen). For protein purification, we used the bacterial strains BL21 or the BL21 

RosettaTM2 (Novagen, http://www.emdbiosciences.com/html/NVG/home.html). For plant cell 

transformation we used Agrobacterium tumefasciens strain C58C1 carrying the helper plasmid 

pSOUP (Hellens et al., 2000). 

4. Yeast  

Two Saccharomyces cerevisiae strains were used. For the genetic screen, osmosentive 

double mutant strain pbs2∆hog1∆ was created in the W303 ecotype (MATa/MATalpha, leu2-

3,112 trp1-1, ura3-1 ade2-1 his3-11,15 PBS2::HIS3 HOG1::TRP) and is already described 

(Teige et al., 2004). The yeast two hybrid strain was MaV103 (MATa; leu2-3,112; trp1-901; 

his3Δ200; ade2-101; cyh2R; can1R; gal4Δ; gal80Δ; GAL1::lacZ; 

HIS3UASGAL1::HIS3@LYS2; SPAL10::URA3). 

5. Media 

All the used media were sterilized by 20 min autoclave at 120°C. All supplements 

(antibiotics, amino acids, plant hormones, chemicals) were sterile filtrated and added after 

autoclaving.   

Plant media: 

For Arabidopsis germination ½ MS medium was used: 0.22% MS powder (Murashige-

Skoog salt mixture with B5 vitamins, Duchefa, Netherlands), 0.05% MES, 1% sucrose (if not 

stated differently); pH 5.8 adjusted with 1M KOH; for agar plates 0,8% plant agar was added 

(Duchefa, Netherlands) before autoclaving. For selection Antibiotics were added after 

autoclaving. 
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Bacterial media: 

• Luria Bertani (LB) medium (for E. coli and Agrobacterium): 1% Bacto-tryptone, 0.5% 

NaCl, 0.5% Bacto-yeast extract, 1% NaCL; for solid medium 1% Bacto-agar was added 

before autoclaving 

• NYG agar medium (for Pseudomonas strains): .5% Bacto-peptone, 0.3% yeast extract, 

2% glycerol and 1.5% Bacto-agar. 

Fungus media: 

PDA medium: 20 % Potato infusion, 2 % Dextrose, 2 % Bacto-agar. 

Saccharomyces cerevisiae medium 

• YPD medium (complex medium): 1% yeast extract, 2% peptone, 2% dextrose, 

supplemented or not with 2% agar 

• YNB medium (minimal medium): 0.17% yeast nitrogen base without amino acids, 2% 

dextrose, 0.5% of NH4SO4, 0.2% of Drop out mix (US Biological), pH 5.6 adjusted with 

5M NaOH, . For solid medium, 2% of bacto agar was added before autoclaving. 

6. Buffers and Solutions 

Yeast transformation: 

• EDTA stock solution: 0.5 M EDTA in H2O; pH 8.0 adjusted with NaOH. 

• 10xTE: 100 mM Tris, 10 mM EDTA pH 8.0 

• TE/LiAc mix: 1xTE, 100mM LiAc  

• PEG TE/LiAc mix: 1x TE, 100mM LiAc, 40% PEG [MW3,350] (from autoclaved 50% 

PEG stock solution in H2O) 

Yeast plasmid extraction: 

• Buffer A: 100 mM NaCl, 10 mM Tris-HCl pH 8, 1 mM EDTA, 0.1% SDS 

• TE buffer: 10 mM Tris-Cl, pH 7.5, 1 mM EDTA 

Isolation of plant genomic DNA 

EDM-buffer: 200mM Tris-HCl (pH 7,5), 250mM NaCl, 25mM EDTA, 0,5% SDS  
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SDS-PAGE gel 

10 x SDS running buffer: 30.3g/l Tris base, 72,1g/l glycine, 144g/l, 10g SDS  

Laemmli buffer (SDS loading buffer)  

For 6x solution: 30% glycerol, 10% SDS, 0.6M DTT,  0.012%  Bromophenol blue,  0.35M 

Tris Cl pH 6.8 or  0.28% SDS 

Western blotting 

• 10x Transfer Buffer (TB): 30.3g/l Tris base, 144g/l glycine 

• TB for use: 10% 10xTB, 20% EtOH 96° 

• 10x TBS: 87.66g/l NaCl2, 121.1g/l Tris base, Ph 7.5 

• TBS-T: 1xTBS + 0,1% Tween 

Coomassie staining 

• Staining solution: 0,1% Coomassie, Blue R-250, 40% ethanol, 10% acetic acid 

• Distaining solution: 50ml ethanol, 75ml acetic acid, 850ml H2O 

Purification of HIS-fusion proteins  

• Lysis buffer: 30 mM Tris pH 7.5, 300mM NaCl, 0.1% Triton X-100, 5mM imidazole, 

2mg/ml lysosyme 

• Washing buffer: 30 mM Tris pH 7.5, 300mM NaCl, 10mM imidazole 

• Elution buffer: 30 mM Tris,pH 7.5, 300mM NaCl, 200mM imidazole, 20% glycerol 

• Dialysais buffer : 30 mM Tris pH 7.5, 20% glycerol 

Crude protein extracts of A.thaliana plant material 

Laccus buffer: 25mM Tris-HCl pH 7,8, 10mM MgCl2, 15mM EGTA, 75mM NaCl, 1mM 

DTT, 1mM NaF, 0,5mM NaVO3, 15mM ß-glycerophosphate, 15mM 4-

nitrophenylphosphate, 0,1% Tween-20, 0,5mM PMSF, 5μg/ml leupeptin, 5μg/ml 

aprotinine 

Phosphorylation assays 

• 1M DTT: in 0.01 M sodium actetate; pH 5.2  
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• SucI-buffer: 50mM Tris-HCl pH 7.5, 250mM NaCl, 5mM EGTA, 5mM EDTA, 0,1% 

Tween-20, 5mM NaF, 0.1% Nonidet P-40, ‘complete, EDTA-free protease inhibitor 

cocktail’ (Roche Diagnostics) 

• Kinase buffer: 20mM HEPES pH 7,5 , 15mM MgCl2, 5mm EGTA, 1mM DTT 

Trypan blue staining 

• Trypan blue stock solution: 10ml lactic acid, 10ml glycerol, 10ml phenol, 10mg trypan 

blue dissolved in 10ml H2O. Before use 1volume this solution is diluted with 1volume of 

EtOH 100% 

• Trypan clearing solution: 25g/10ml chloralhydrate in H2O 

Flower deeping solution for Arabidosis thaliana transformation 

Sucrose solution 5% in H2O, silvett L77 0,05% 

7. Antibodies  

Primary antibodies  

• Anti-AtMPK4: rabbit, polyclonal, antigen ELIYRETVKFNPQDSV (C-terminus) 

(Davids Biotechnologie, Regensburg, Germany); crude serum was used for pull down, 

affinity purified antibody for western blot: dilution 1:5000 

• Anti-AtMPK6: rabbit, polyclonal, antigen FNPEYQQ (C-terminus) (Davids 

Biotechnologie, Regensburg, Germany); crude serum was used for pull down, affinity 

purified antibody for western blot: dilution 1:5000 

• Anti-c-Myc (C3956, SIGMA): Polyclonal antibody from rabbit, antigen in carboxy 

terminal domain of human c-Myc; dilution for western blot: 1:5000  

Secondary antibodies 

Anti-rabbit IgG: Peroxydase conjugate from goat, polyclonal (SIGMA-ALDRICH, USA); 

dilution for western blot: 1:20000 
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8. Antibiotics 

Antibiotics were used at the following concentrations for 1000x stocks, ampicillin (amp): 

50mg/ml in H2O, chloramphenicol (CA): 34mg/ml in ethanol, gentamycin (gent): 10mg/ml in 

H2O, hygromycin (hyg): 10mg/ml in H2O, kanamycin (kan): 50mg/ml in H2O, rifampicin (rif) : 

34mg/ml in DMSO, spectinomycin (spec): 10mg/ml in H2O (100x stock). 

9.   Vectors:  

In our study we used these following vectors: 

• pDONRTM207: Donor Gateway® vector from Invitrogen, used to clone genes and 
generate entry clones 

• pDR195gtw: Home-made destination Gateway® vector for protein expression in yeast 
under the control of PMA1 promoter (Oomen et al., 2009) 

• pDR195: Cloning vector for expression of a protein in yeast under the control of PMA1 
promoter  

• pDEST17: Destination Gateway® vector from Invitrogen for IPTG-inducible expression 
of N-terminal hexahistidine (6xHis) protein (Invitrogen). 

• pDEST22: Destination Gateway® vector from Invitrogen for constitutive expression in 
yeast of a protein fused to GAL4 Activation Domain (AD) under the control of ADH1 
promoter (Invitrogen) 

• pDEST32 modified : Destination Gateway® vector for constitutive expression in yeast 
of a protein fused to GAL4 Binding Domain (BD) under the control of ADH1 promoter. 
This vector was modified from Invitrogen to be kanamycin resistant. 

• Peri-HIS-MBP: Destination Gateway® vector for IPTG-inducible expression of N-
terminal Peri-His-MBP tagged protein in Coli (Nallamsetty et al., 2005). 

• pGREEN0229: binary vector for expression of fusion protein. 
• pGEM®-T Easy: vector to clone PCR products. Promega. 

10.  Oligo-nucleotides: 

For gateway cloning: Table II.2 

Clone name Sequence of primer couple 
pDNR207-MPK3-
END/STOP 

GGA GAT AGA ACC ATG AAC ACC GGC GGT GGC 
TCC ACC TCC GGA TCM ACC GTA TGT TGG ATT GAG TGC T 

pDNR207-MPK4-
END/STOP 

GGA GAT AGA ACC ATG TCG GCG GAG AGT TGT TTC 
TCC ACC TCC GGA TCM CAC TGA GTC TTG AGG ATT GAA C 

pDNR207-MPK6- GGA GAT AGA ACC ATG GAC GGT GGT TCA GGT CA 
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END/STOP TCC ACC TCC GGA TCM TTG CTG ATA TTC TGG ATT GAA AGC 
pDNR207-MPK7-
END/STOP 

GGA GAT AGA ACC ATG GCG ATG TTA GTT GAG CCA C 
TCC ACC TCC GGA TCM GGC ATT TGA GAT TTC AGC TTC AG 

pDNR207-MKK1-
END/STOP 

GGA GAT AGA ACC ATG AAC AGA GGA AGC TTA TGC C 
TCC ACC TCC GGA TCM CCA TTG CGA GAT GAA GGA GC 

pDNR207-MKK4-
END/STOP 

GGA GAT AGA ACC ATG AGA CCG ATT CAA TCG CCT C 
TCC ACC TCC GGA TCM TGT GGT TGG AGA AGA AGA CGA G 

pDNR207-
ERF104-END/STP 

GGA GAT AGA ACC ATG GCA ACT AAA CAA GAA GCT 
TCC ACC TCC GGA TCM AGT GAC GGA GAT AAC GGA AAA 

pDNR207-VIP1-
END/STOP 

GGA GAT AGA ACC ATG GAA GGA GGA GGA AGA GGA 
TCC ACC TCC GGA TCM GCC TCT CTT GGT GAA ATC CAT 

pDNR207-MKS1-
END/STOP 

GGA GAT AGA ACC ATG GAT CCG TCG GAG TAT TTT 
TCC ACC TCC GGA TCM ATC TTG ATC CCA AAT ATG ACT A 

∆MPK16 

 
GGA GAT AGA ACC ATG CAG CCT GAT CAC CGC AA  
TCC ACC TCC GGA TCM AGT TGG CTC TGA TCC ATC CAA G 

 

 

For point mutations: Table II.3 

Mutation Sequence 
MPK3T119Y F: ATC CAT CAA CTC ACA AAC AAT ATA TAC 

R: GTA TAT ATT GTT TGT GAG TTG ATG GAT 
MPK3D193G/E197A F: GAG AAT GGT TTT ATG ACT GCG TAT GT 

R: ACA TAC GCA GTC ATA AAA CCA TTC TC 
MPK3 T119C F: GTTTATATCTCTTGTGAATTAATGGAT 

R: ATCCATTAATTCACAAGAGATATAAAC 
MPK4Y124C F: GTC CAT AAG CTC ACA AAC AAT GTA AAC 

R: GTT TAC ATT GTT TGT GAG CTT ATG GAC 
MPK4D198G/E202A F: CGA GAC TGG CTT TAT GAC TGC ATA TGT TG 

R: CAA CAT ATG CAG TCA TAA AGC CAG TCT CG 
MPK6Y144C F: GAT GTT TAC ATC GCG TAT GAG TTA ATG GAC AC 

R: GTG TCC ATT AAC TCA TAC GCG ATG TAA ACA TC 
MPK6D218G F: TTC TGA GAG TGG TTT CAT GAC TGA A 

R: TTC AGT CAT GAA ACC ACT CTC AGA A 
MPK6E222A F: TTC ATG ACT GCA TAT GTT GTC ACG AGA 

R: TCT CGT GAC AAC ATA TGC AGT CAT GAA 
MPK6D218G/E222A F: GAG AGT GGT TTC ATG ACT GCA TAT GTT 

R: AAC ATA TGC AGT CAT GAA ACC ACT CTC 
MPK7Y114C F: ATC CAT TAG CTC ACA AAC CAA ATA AAC 

R: GTT TAT TTG GTT TGT GAG CTA ATG GAT 
MPK7Q188G/E192A F: GGT AAT GGA CAG TTC ATG ACT GCG TAT GTG GTT 

R: AAC CAC ATA CGC AGT CAT GAA CTG TCC ATT ACC 
∆MPK16F106Y 

 
F: CAT TTA CGT GGT TTA CGA GCT TAT GGA AT   
R: ATT CCA TAA GCT CGT AAA CCA CGT AAA TG 
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For cloning MPK4-PC2 constructs: Table II.4 

Name Sequence 
K4_5p_F GGT ACC GAC TTG TTT GTG AAT ATA GAG GAA ACA TG 

(Underline = Kpn1 site) 
K4_5p_R  
 

GGA TCC CAC TGA GTC TTG AGG ATT GAA CTT GAC 
(Underline = BamH1 site) 

K4_3p_F  
 

GGA TCC GAG AAA GAG AGA GAG ATA TAT ATC C  
(Underline = BamH1 site) 

K4_3p_R  
 

GCG GCC GCG ATA ATT AGT GGA TGT AAT TAG AGT TAA GAC  
(Underline = Not1 site) 

PC2_F AGA TCT CCA GCT TTC TTG TAC AAA GTG GTG ATC 
(Underline = Bgl2 site) 

PC2_R AGA TCT TCA CTT CTC GAA CTG AGG ATG AGA C 
(Underline = Bgl2 site) 

 
For genotyping of T-DNA insertion lines and transformed lines: Table II.5 
Primer’s location Sequence 
mpk4-LB TCA AAC AGG ATT TTC GCC TGC T 
mpk4-RB CTT GAA ATA TCT ACA GAG TTG GTG TG 
MPK4-WT allele GTG ACA ATG CAA GAA GAT ACG TTA GAC AGC 
MPK4 terminator: 
transformed lines GCGGCCGCGATAATTAGTGGATGTAATTAGAGTTAAGAC 

mekk1-LB GCT CTA TTT AGG TTT ATC GAA GTA ATC 
mekk1-RB AGA CCG ATA AAT CCG ATC CAT CTC TC 
LB6316 (Salk tDNA) TCA AAC AGG ATT TTC GCC TGC T 

11. Enzymes 

Restriction enzymes were purchased from New England Biolabs, and were supplied with the 

10x reaction buffer which was used for restriction digestion following manufacturer’s 

recommendations. Standard PCR reactions were performed using homemade Taq DNA 

polymerase or Taq DNA polymerase from New England Biolabs. High accuracy I-proof high 

fidelity DNA polymerase (BioRAD) was used for cloning and site directed mutagenesis. For 

random mutagenesis we used Mutazyme® II DNA polymerase from Stratagene. BP and LR 

cloning reaction were performed with BP and LR enzymes respectively from Invitrogen. 

  



Chapter II – Material and Methods 
   

43 
 

B.  Methods 

1. DNA methods 

a. DNA isolation 

Isolation of genomic DNA from Arabidopsis 

Young leaf from 2-3 weeks old Arabidopsis plants was frozen in liquid nitrogen, grinded 

and the powder resuspended in 300μl EDM-buffer. After homogenization the samples were 

centrifuged at RT for 5min at max speed. The supernatant was transferred to a fresh tube and the 

DNA precipitated by addition of 1 Volume of  isopropanol for 10min at room temperature, 

followed by a 10 min centrifugation at top speed and RT. The supernatant was removed and the 

pellet dried at 37°C for and then resolved in 40-100 μl H2O (overnight at 4°C). The genomic 

DNA was stored at -20°C. 

Quick Mini preparation of plasmid DNA from E. coli 

5-10ml overnight grown culture in LB with appropriate antibiotics were pelleted, the pellet 

either stored at -20°C until further use or extracted using the Wizard® Plus SV Minipreps DNA 

Purification System (Promega) according to the manufacturer’s instructions.  

Plasmid rescue from yeast  

2ml overnight cultures in YNB medium with appropriate selection were pelleted at 

5.000rpm for 1 min at room temperature. The pellet was resuspended in 200μl Buffer A and kept 

at on ice to then add 0.3g of glass beads and 200μl phenol, followed by vortexing for 15s and 

1min centrifugation at 14.000rpm at room temperature (RT). A second phenol extraction was 

performed with the supernatant. To the last supernatant was added the same volume of H2O and 

200µl of chlorophorme and vortexed for 15s before centrifugation at top speed for 1min at RT. 

Precipitation was done with 30µl of 3M NaAcetate and 800µl of 96% ethanol for 10min at -

20°C, followed by 20min centrifugation at top speed and 4°C. The pelleted DNA was washed 

with 70% ethanol and air dried for 1h before resuspension in 50μl of TE pH8 buffer. 
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b. Polymerase chain reaction (PCR) 

Cloning, genotyping and colony PCR 

PCR reactions were carried out with Taq DNA polymerase (Biolabs) or homemade taq-

polymerase for colony-PCR and genotyping, I-Proof (BioRAD) was used for cloning steps 

because of its higher accuracy in the synthesis. 

Cloning PCR 

Component Vol for 50 µl Final Conc. 
5X iProof HF buffer 10 µl 1X 
100 mM dNTP mix 0.1 µl 100 µM each 
Primer 1 (10µM) 1 µl 0.2 µM 
Primer 2 (10µM) 1 µl 0.2 µM 
DNA template 1 µl  
Sterile H2O 36.4 µl  
DNA polymerase 0.5 µl 0.25 U/µl 

PCR program: 
1 cycle  94°C  30s 
94°C  10s  
25-35 cycles 53-55°C 30s  
72°C  depends on fragment length (1 min /kb) 
1 cycle  72°C  8 mins 
 

Genotyping and colony PCR 

Component Vol for 20 µl Final Conc. 
10X Taq buffer 2 µl 1X 
100 mM dNTP mix 0.2 µl 1 µM 
Primer 1 (100µM) 0.04 µl 0.2 µM 
Primer 2 (100µM) 0.04 µl 0.2 µM 
Sterile H2O 17.57 µl  
DNA polymerase 0.15 µl 0.25 U/µl 

PCR program: 
1 cycle  94°C  30s 
94°C  10s  
35 cycles 55°C  30s  
72°C  2min depends on fragment length (15-30s/kb) 
1 cycle  72°C  7 mins 
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Site directed mutagenesis 

Site directed mutagenesis was performed to exchange a specific amino acid residue (found 

in our screen, see primer sequence) in different MAPKs to turn the protein kinase active. This 

was achieved by two PCR reactions with I-proof DNA using 2 couples of primers: (5’primer-

mutation primer and mutation primer-3’) containing the desired mutation and the target gene as a 

plasmid template (pDONR-ORF). The PCR program was run as specified above. After agarose 

gel electrophoresis two DNA fragments were purified from gel slices using the Gel extraction kit 

(250) of Quiagen. A second run of PCR is done to reconstitute the ORF using universal primers 

containing the gateway flanking regions U5 for 5’ and U3-GGA/TGA. Then the PCR product is 

purified by a size selective DNA precipitation method using 230µl of PEGMgCl2, 1µl of 

glycogene azur and centrifugation at maximum speed for 15mins and RT. The pellet is then 

resuspended in 20µl of TE buffer. 

Another method that was adopted to introduce mutations is to perform the site directed 

mutagenesis PCR reaction using only one PCR run using the couple of primer containing the 

desired mutation on the pDONR plasmids. After the PCR reaction, the DNA was digested with 

DpnI (Promega), which selectively degrades the methylated (non mutated) parental DNA. 17μl 

of the purified DNA were mixed with 2μl of buffer and 1 μl of DpnI (10U/μl) and incubated at 

37°C for 1-1,5h. The entire digest was then transformed by heat shock into E.Coli without any 

additional purification steps before. 

Random mutagenesis 

Random mutations were introduced using GeneMorph® II Random Mutagenesis Kit 

(Stratagene) to introduce mutations in the MAPK gene according to the manufacturer’s 

instructions.  

Restriction digest 

DNA digestion was ensured with restriction enzymes from Biolabs. 1-5μg of DNA was 

digested with 5U of restriction enzyme under appropriate buffer conditions at 37°C for at least 

1,5h. Loading dye was added to the digest and the samples were run on an agarose gel. 
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c. Agarose gel electrophoresis for DNA 

Agarose gels at 0,8-1% were prepared by heating the appropriate amount of agarose in 

TBE-buffer  (10X solution: 108g Tris base, 55G Boric acid, 40ml EDTA pH8) until dissolved.  

After cooling to 50-60°C ethidium bromide was added to visualise DNA under UV-light. The 

Gene Ruler 1kb DNA ladder (Fermentas) was used as a size standard. The Gels were runned at 

approximately 5V/cm. 

d. Gateway cloning 

For creation of pENTR vectors, we used BP reaction and a two-step protocol kindly 

provided by Claire Lurin (http://www-urgv.versailles.inra.fr/atome/index.htm). For the 

destination vector (pDEST) for expression assays, we used the LR recombination reaction. Both 

reactions were made at 25°C over night. 

BP Reaction mix: Volume LR Reaction mix: Volume 
BP reaction buffer 5X 1µl 
PEG purified PCR product 2µl 
pDONR207 (200 ng/µl) 0.25µl 
TE pH7.5 1.35µl 
BP clonase enzyme mix 0.4µl 
Total volume 5µl 

LR reaction buffer 5X 1µl 
pENTR (10 ng/µl) 1µl 
pDEST (100ng/µl) 1µl 
TE pH7.5 1.6µl 
LR clonase enzyme mix 0.4µl 
Total volume 5µl 

e. E. coli transformation by heat shock 

Competent cells were prepared as described previously (Inoue et al., 1990) and kept as -

80C. 2-5µl of DNA were mixed with 100µl of heat shock competent cells already thawed on ice. 

The DNA-bacteria mixture is incubated for 20min in ice. Cells were then heat shocked for 

1min30sec at 42°C and 10min on ice, then 900μl LB medium were added immediately and cells 

were incubated for 1h at 37°C. Cells were spread on LB-agar plates with respective antibiotics 

and transformants were grown overnight at 37°C. 
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f. Agrobacterium C58C1 transformation by heat shock 

To prepare competent cells, an overnight culture grown in 8ml LB medium was 

inoculated from a single colony and left shaking over night at 30°C. Pre-culture was diluted in 

200ml of fresh LB and grown for 4-5 hours. Cells were spun down 15min at 4000rpm and 4°C. 

The supernatant was then washed with a 10 mL solution of 10 mM Tris/HCl pH7.5 and spun 

down again. The cells were resuspended 5mL LB, alicotated and frozen in liquid nitrogen and 

conserved at -80C. To transform the cells, 200µl of competent Agrobacterium cells were mixed 

together with 5µl of plasmid DNA and kept on ice for 5-10 min, then frozen in liquid nitrogen 

for 5min. The mixture were incubated for 5min in a water bath at 37°C and then left for 2hours 

of gently shake incubation at 37°C after adding 800µl of LB medium. 

g. Cloning of MPK4 locus in pGREEN0229  

MPK4 locus (2693 bp) and downstream (258 bp) of the termination codon was amplified 

from Col0 genomic DNA using K4_3p_F/K4_3p_R and K4_5p_F/K4_5p_R couples of primers 

(Table II.4). PC2tag was amplified with PC2_F/PC2_R from pPC2 (kindly provided by H. 

Mireau). PCR fragments were cloned by T/A cloning in pGEMTeasy (Promega) and sequenced. 

Using appropriate restriction enzymes (Table II.4), MPK4 locus was reassembled in 

pGREEN0229. In a second step, the BglII DNA fragment containing the PC2 tag was cloned in 

the unique compatible BamH1 site to build pGREEN0229-MPK4L-PC2. The whole construct 

was then re-sequenced. Point mutations were realized as described above to generate 

pGREEN0229-MPK4Y124C-PC2 and pGREEN0229-MPK4D198G/E202A-PC2. 

2. RNA methods 

a. RNA isolation from plant material using  

RNA extraction was performed on approximately 100mg of grinded plant material using 

RNeasy® Plant Mini Prep kit (50) (Quiagen) according to the manufacturer’s instructions. 
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b. Deoxyribonuclease (DNAse) I treatment of RNA 

RNA was subjected to DNAse prior to synthetise cDNAs in order to differentiate between 

amplification from contaminating DNA in RNA isolation. 30µl extracted RNA was mixed with 

5μl of 10xDNAseI reaction buffer and 5μl DNAse (Ambion) in a total volume of 50 μl and 

incubated at 37°C for 30min. The enzyme was inactivated by addition of 5μl of 25mM EDTA 

and incubation at 70°C for 10min. 

c. Reverse transcription (RT) 

A mix of 1μg of RNA and 1μl Oligo-(dT) (500µg/ml) primers were incubated at 65°C for 

5min to denature the secondary RNA structure and chilled on ice for 2min to allow annealing of 

the primers to the RNA. A mix of 1 μl (20U/µl) of SUPERSCRIPT IIaa (Invitrogen), 4 μl of 5X 

First-Strand Buffer, 1 μl 10 mM dNTP mix, 1 μl RNaseOUT Recombinant Ribonuclease 

Inhibitor (40 U/μl) and 2 μl 0.1 M DTT were added. The samples were incubated for 50min at 

42°C for cDNA synthesis in a total volume of 20μl. The reaction was inactivated by heating at 

70°C for 15 min. cDNA was then subjected a template for amplification by PCR.  

3. Proteins methods 

a. Protein expression and purification 

WT and mutated proteins were expressed as 6xHIS tagged recombinant proteins in 

Escherichia coli cells (Rosetta strain). Cell cultures were grown in volumes of 0.1 to 0.3 liters at 

37°C until they reached an A600 of 0.5 to 0.6. Protein expression was induced over-night at 

25°C using 0.1mM Isopropyl β-D-1-thiogalactopyranoside. The cells were spin down by 

centrifugation and stored at -20°C. An aliquot of 200µl was pelleted in the same way and 

resuspended in Laemmli buffer to be run on an SDS-PAGE gel to verify the induction. For the 

purification, the frozen pellet was gently thawed on ice and resuspended in the 3 mL lysis buffer. 

Then the cells were lysed by sonication (6 times 10s with 10s of ice incubation in between), the 

lysate was centrifuged 10,000×g for 20 min at 4°C. The supernatant containing the soluble 
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protein was incubated for 30 min with 2 ml of cobalt resin (Thermo Scientific), equilibrated with 

lysis buffer, for binding. The matrix were washed 2 times with 1 mL washing buffer and eluted 

with from the columns with elution buffer. The different elution fractions were runned on an 

SDS-gel to check whether the protein was purified and the most concentrated protein fraction 

was then dialyzed overnight using dialysis cassette (Slide-A-Lyser®, Thermo Scientific) against 

dialysis buffer. Dialysis step was repeated the second day in a fresh buffer for 2 hours. After 

dialysis protein concentration was determined with Bradford assay. Most of the proteins were 

90-95% pure as determined by SDS-PAGE. 

b. Total protein extracts of Arabidopsis thaliana plant material 

Lacus extraction 

Grinded frozen plant materials (100-200mg) were resuspended in 200μl lacus buffer and 

left on ice before homogenizing by inverting the tubes for few seconds. The samples were 

afterwards centrifuged at 14000 rpm for 5min at 4°C. The supernatant was transferred to a new 

vial and the operation was repeated to have a clear lysate. Then protein concentration was 

measured by Bradford in order to adjust the protein concentration of all samples to 100µg for 

pull down experiments and 50µg for western blot analysis.  

Lacus protein extraction was also carried for on yeast cells. For that purpose a 500 µl overnight 

yeast culture (started from a single colony) was diluted in 5ml appropriate YNB selective media 

and grown for 5-6 hours. Yeast cells were then spun down for 5mins at 6000 rpm and 4°C. The 

pellet was resuspended with 300µl of lacus buffer and then 0.3ml of glass beads were added to 

help grinding the cells by vortexing (10 x 20s maw speed votexing keeping the cells on ice in-

between). 200µl of the supernatant cleared off beads and cell debrits was transferred in a new 

tube.  Protein concentration was determined like cited before.  

Laemmli extraction  

Crude total protein extraction for SDS-PAGE gel analysis or western blot was realized 

using laemmli buffer extraction. 100mg of the frozen grinded samples were resuspended in 

adequate volume of laemmli (dependant on the material quantity and the laemmli concentration) 

and homogenized before centrifuging and retrieving the supernatant for further use. The samples 

were stored at -20°C for a monthes. 
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c. Western blotting  

After running a protein extract on an SDA-PAGE gel, proteins were transferred on a 

PVDF membrane (Amersham HybondTM-P, GE Healthcare) according to Amersham and 

BioRAD recommendations. After transfer, the membrane was incubated in blocking solution 

(TBS-T with 5% milk powder or 3% of BSA) at room temperature for at least one hour. The first 

antibody was applied in a new blocking solution and incubated overnight at RT and very gentle 

shaking. Non-specifically bound antibody was removed by washing the 4 times the membrane 

with a TBS-T solution (4x10min). Then the secondary antibody was added for 1h at room 

temperature. After, the membrane was washed 4x10min with TBS-T solution. For detection the 

chemiluminescence of peroxidise product with the ECL Plus western blotting detection system 

reagent (GE Healthcare) was detected after 10min up to 1hour in a GeneGnome 

chemiluminsescence imaging system. 

d. In vitro phosphorylation assays  

Phosphorylation assays after immunoprecipitation (IP)  

Protein Immunoprecipitation (IP) was performed from fresh protein extract in laccus as 

described above. 100μg of total protein extract were incubated with 30μl of a 50% slurry of 

Suc1-washed Protein A beads (Amersham) and 1μl antibody for 2h at 4°C. The beads were 

washed 3 times with SucI buffer, once with kinase buffer, and sucked dry with a syringe. The 

kinase assay reactions were performed by adding 16μl of reaction mix consisting of:  15 µl 

kinase buffer with 0,1μl 100mM DTT, 0,1μl 10mM ATP, 0,2μl γ-32P-ATP (1μCi) and 1μl 

myelin basic protein (MBP, 10mg/ml) on the IPed proteins. The reactions were incubated for 

30min at room temperature and stopped with 4x laemmli buffer and a 5min boiling. 10μl of the 

kinase reactions were used for SDS-PAGE on a 15% SDS-PAGE gel. Once run, the gel was 

stained with coomassie, destained and dried using a gel dryer (Biorad, model 583). After 

exposing the gel to a phosphoimager cassette (Amersham), the kinase activity was detected by 

autoradiography using a Storm detection system (Amersham, model 820).  
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Phosphorylation assays with purified fusion proteins  

Phosphorylation assays with purified fusion proteins were performed in a total volume of 

20μl with 14.6μl kinase buffer, 0,1μl 100mM DTT, 0,1μl 10mM ATP, 0,2μl γ-32P-ATP (1μCi) 

and 1μl myelin basic protein (MBP, 10mg/ml). The reaction was incubated for 30min at room 

temperature and the samples treated like described above. 

Phosphorylation assays in peptide chips were performed according to the protocols cited in 

(Turk et al., 2007; Vlad et al., 2008). 

e. Protein structure 

MPK6 structure was predicted from the crystallized structure of ERK2 (PDB-ID: 2erkA) 

using SWISS-MODEL (http://swissmodel.expasy.org) and visualized using SWISS-pdb viewer. 

4. Yeast methods 

a. Yeast transformation 

Competent yeast cells were prepared fresh for each transformation. An overnight culture 

was diluted to OD600=0.4 in fresh YPD media and grown up for 4 hours. Cells were spin down at 

2500rpm for 5min at room temperature, resuspended in 40ml of TE buffer and spin down again. 

Cells was resuspended in 2ml LiAc/0.5xTE mix. The cells were then incubated at RT for 10min 

before use. For each transformation 1μg of plasmid DNA was mixed with 100µg of denaturated 

(after incubation at 95° for 5min) sheared salmon sperm DNA and 100µl of yeast suspension. 

700μl of 40% PEG-3350/TE mix were added and mixed very well by vortexing. Cells were 

incubated for 30min at 30°C, followed by 7min heat shock at 42°C after adding 88µl of DMSO. 

To remove the PEG, the cells were spun down at 2500rpm for 10s and washed with 1ml of TE 

buffer then resuspended in 50-100μl of TE before plated on selective plates. 
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b. Yeast screen for gain of function MAPK 

MPK6 ORFs were recombined in pDR195gtw to generate pDR195gtw-MPK6. The library 

of MPK6 mutants was produced using a PCR mutagenesis kit (Mutazyme® II DNA polymerase, 

Stratagene). A BamH1 linearised pDR195 plasmid carrying “autotrophy gene” together with 

purified PCR fragments of MPK6 were transformed into hog1∆pbs2∆ yeast competent cells.  By 

homologous recombination, the plasmid is reconstructed in the yeast. The transformed cells 

using the protocol detail before, were plated on non selective medium for the first steps and then 

on appropriate selective media, SC-Uracil to only select yeast colonies that carry the 

reconstructed plasmid and grown at 30°C for 48h. To screen for putative auto-active MPK6 yeast 

colonies were replicated in liquid YPD media and then dropped on NaCl (400-500mM) 

supplemented solid medium and left to grow for at least 2 days at 30°C.  

c. Yeast two hybrid (Y2H) analysis for protein-protein interaction 

Genes of interest were recombined from Entry vectors to pDEST22 for GAL4-AD fusion 

or pDEST32 for GAL4-BD fusion. MAV203 yeast cells were co-transformed with 5µl of each 

plasmid DNA and transformed colonies selected on agar medium lacking tryptophan and 

leucine. Single colonies were cultured in 500 µL of the same selection liquid medium over night 

at 30°C. Cells were diluted 200 times in water and 5 uL droplets were spotted on agar plates 

containing selective medium lacking leucine, tryptophane and histidine and supplemented with 

30, 65 or 100mM 3-AT (3-Amino-1,2,4-triazole). Growth was assayed during one week (30°C). 

5. Plant methods 

a. Generation of stable transgenic lines by floral dip 

Agrobacterium tumefaciens transformed with pGREEN0229-MPK4L-PC2-like vectors 

was grown in 5mL LB and used to inoculate 250ml LB with antibiotic and grown for 5h. The 

bacteria were afterwards spun down (5000rpm, 15min, room temperature) and resuspended in 

250ml freshly prepared 5% sucrose solution. 0.5% of Silwet L-77 (Lehle Seeds, USA) was 
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added, the solution filled into a beaker and a plant in early flowering stage was soaked in the 

bacterial solution for about 2min (Clough & Bent 1998). The plants were covered overnight in 

darkness to maintain high humidity. Dry seeds were harvested, and transformants were selected 

on soil after Basta spraying. These T1 –transformants were proliferated, and the seeds of the T2-

generation were screened for homozygous transformant lines by Mendelian segregation analysis. 

b. Arabidopsis seed sterilisation 

For all in vitro growth assays Arabidopsis seeds were sterilized. Seeds were placed in 1.5 

eppendorf tube, supplemented by 1ml of 70%EtOH 0,05% Triton X-100 and left 15min in 

agitation . Seeds were washed in 1ml of 95% EtOH 2 times. EtOH was removed by pipetting and 

dried further for about 2h under the hood.  

c. Stress treatment for kinase assays 

Depending on the assay 2 weeks old seedlings were grown on ½ MS agar plates under 

sterile conditions and were transferred to liquid ½ MS medium and left at room temperature for 

at least 6-8 hour to equilibrate. This method was adopted to grow plantlets for growth inhibition 

assay experiments and to generate plant material for RNA extraction. For the other assays, 

seedlings were grown directly on liquid MS medium under the same conditions. flg22 treatment 

was done by removing the media carefully with a pipette and adding 4ml of fresh MS with 

500nM of flg22 peptide. 

d. Lactophenol Trypan blue stainings  

Lactophenol trypan blue staining was used to visualize plant cell death after P. syringae 

infection as well as H. parasitica mycelium and necrotic plant tissue. For these assays 2-3 adult 

leaves or 3 weeks old plantlets, depending on the assay were collected in a 15ml tube, covered 

with lactophenol trypan blue solution and placed in boiling water bath for 2min. Trypan solution 

was then removed and replaced by chloral hydrate solution and incubated over night for 
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destaining. Cleared leaves were then left in 70% glycerol for at least 3hrs before mounting onto 

glass microscope slides with 70% glycerol and examined using light microscope. 

e. Pathogen assays 

Pseudomonas syringae growth assay 

P. syringae pv. tomato virulent and avirulent DC3000 strains used (described in 2.1.2) 

were maintained by streaking onto selective media NYG agar plates and incubation at 28°C for 

48hrs. P. syringae innoculations were performed on 4-5 weeks-old plant, raised under short day 

conditions, by spray inoculation with a bacterial suspension of 0,2 (circa 1x 107 colony forming 

units(cfu)/ml) in 10mM MgCl2 supplemented with 0.04% Siwet L-77. The plants were then 

covered with a cloche to ensure high humidity for 1 day and replaced in the growth chamber.  

In planta bacterial titers were determined at two time points, two hours and day 3 after 

infection. For that purpose leaf discs from infected plants were inoculated in 1ml of 10mM 

MgCl2/0.01% Silwet L-77 and left for 1h of shaking at 28°C to extract the bacteria (Tornero & 

Dangle, 2001). The resulting bacterial suspensions were serially diluted (Day0: 0- 10-1, 10-2/ 

Day3: 10-1, 10-2, 10-3, 10-4, 10-5) and spots of 20µl per dilution were grown on appropriate 

selective NYG agar media at 28°C. After two days the colony forming units (cfu) were counted. 

Alternaria brassicicola infection  

The infection was performed according to the instruction of Elke Stein (IPAZ, Giessen). 

Arbidopsis seeds were germinated and grown for 5 weeks at 22°C with 150μmol/m2/s light in 

8/16h day/night photoperiod. About 30 leaves/replicate were detached and were placed in agar 

plates (with petioles in the agar to prevent leaves of moving). 5μl of Alternaria spore suspension 

ca. 5x105 spores/ml, spores washed of from a fully grown PDA-plate, kept at 4°C to increase 

sporulation. The infected leaves were kept in closed square petri dishes under high humidity 

(circa 100%). Visual evaluation of the Alternaria sensitivity was carried out at 7dpi.  

Hyaloperonospora parasitica infection  

The infection was performed according to the instruction of Marie Garmier (IBP, Orsay). 

H. parasitica isolates were maintained as mass conidiosporangia cultures on leaves of 

susceptible Arabidopsis ecotype over a 7 days cycle. H. parasitica inoculations were done on 2 
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weeks-old plants by spray innoculation with a conidiospore solution at 4x104 spores/ml. Plant 

cell necrosis and development of H. parasitica hyphae in leaf tissue was monitored by 

lactophenol trypan blue staining 6 days after infection.  

f. Salicylic Acid hormone monitoring 

SA measurement was realized on spray inoculated plants as described previously 

(Pseudomonas syringae growth assay). About 300mg of plant material (leaves) were collected 

from 4 plants at least for each biological replicate. The extraction and mesurment of SA were 

performed in collaboration with Rozhon W. according to his protocol (Rozhon et al., 2005). The 

only exception from the protocol described in the publication in the addition of 10µM of EDTA 

at the HPLC eluent. 
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Chapter III -  Identification and characterization of 
Constitutively Active (CA) Arabidopsis MPK6 mutants  

In this chapter, I describe the identification of candidate mutations in Arabidopsis MPK6 

which could trigger kinase constitutive activity. This identification was based on an adaptation of 

a functional genetic screen in the yeast Saccharomyces cerevisiae developed from Engelberg and 

co-workers (Bell et al., 2001) (Figure III.1). In a second step, I bring direct evidences that the 

mutated MPK6 are constitutively active. 

A.  Functional complementation screen of the yeast pbs2∆hog1∆ allows the 
identification of Constitutively Active (CA) forms of Arabidopsis MPK6 

1. HOG1, a well characterized dispensable yeast MAPK pathway that provides a nice system 
to build a screen 

Yeast possesses three MAPKs in (Fus3, Kss1 and Mpk1/Slt2) which belong to the ERK 

subfamily and one MAPK (Hog1) which belongs to the SAPKs (Stress Activated Protein 

Kinase) (De Nadal et al., 2002). One of the most well characterized yeast MAPK cascade is the 

Hog1 pathway which is activated after perception of extracellular hyper-osmolarity. This 

pathway consists of the MAPK module Ste11-Pbs2-Hog1 which is recruited on high external 

osmolarity or high salt concentration. The MAP2K Pbs2 activation by the MAP3K Ste11 

depends on other protein kinase partners like Ste50, Ste20 and the Cdc42 GTPase (De Nadal et 

al., 2002). However the most important player in the osmoadaptation response in yeast remains 

Pbs2 and Hog1 because Pbs2 is also directly activated by the transmembrane protein Sho1. 

Mutants of the HOG1 pathway could grow under normal conditions but are unable to develop 

under high osmotic conditions. Interestingly, the phenotype of hog1∆ cells (sensitivity to osmotic 

stress) could be rescued by MAPKs from various plants, animal, fungi and other yeasts (Popping 

et al., 1996; Teige et al., 2004). Our laboratory has previously shown that Arabidopsis MPK4 

and MPK6 together with MKK2 rescue the salt sensitivity of the yeast pbs2∆hog1∆ strain (Teige 

et al., 2004). The fact that MPK6 or MPK4 without MKK2 does not restore the growth of 



 

Figure III.1: General scheme of the yeast pbs2∆hog1∆ complementation and rationale of the genetic 

screen: Arabidopsis MAP Kinases (MPK4, MPK6 and MKK2) can complement the yeast pbs2-hog1 

double-mutant. 
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Figure III.2: Identification of MPK6 

candidates able to complement 

pbs2∆hog1∆ on salt.  A. Screening protocol 

for MPK6 candidates which complement 

pbs2∆hog1∆ on salt: MPK6 mutated PCR 

fragment were cloned by in vivo 

recombination in the pDR195 BamH1 

linearised vector. B. Some of  pbs2∆hog1∆ 

yeast expressing MPK6 CA candidate clone 

at the confirmation step are able to rescue the 

mutant growth phenotype on Salt (YPD 

media supplemented with 400mM NaCl). 
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pbs2∆hog1∆ on salt conditions, suggests that MPK6 or MPK4 could not be activated by salt 

stress without an upstream activator. In this study we took advantage of the yeast MAPK cascade 

that is highly similar to its mammalian or plant counterparts (Caffrey et al., 1999). 

2. The complementation screen allowed the identification of 3 Sets of CA candidate 
mutations  

We used a PCR strategy followed by in vivo recombination to generate a population of 

pbs2∆hog1∆ yeasts expressing a randomly mutated MPK6 ORF (Figure III.2A and Materiel & 

Methods). As expected, when replicated on 400 mM NaCl, only very few colonies were able to 

grow: they putatively express an MPK6 protein mutated in residues controlling its activity 

(Figure III.2B). To confirm the link between the growth phenotype and the mutated MPK6 ORF, 

we re-extracted the plasmids and re-transformed them in pbs2∆hog1∆ double-mutant to double 

check the growth on salt medium. We finally selected 27 clones carrying constitutively active 

MPK6 candidates. Sequence analysis revealed between 2 and 10 mutations in the MPK6 ORF 

corresponding to 1 to 6 amino acid residue changes (Table III.1). Except for one case, each clone 

was found to contain more than one single mutation in the coding sequence of MPK6. 

The mutations Y144C, Y144F and R274H were identified, associated with other 

mutations, in 12, 9 and 4 clones respectively, indicating that they are important for the yeast 

complementation and suggesting that our screen is saturated for single mutants. Only two clones 

did not exhibit any of these three mutations meaning that their ability to complement the yeast 

growth defect on salt is linked to several combined important mutations. 

3. The complementation of pbs2∆hog1∆ is linked to an increase of MPK6 activity 

To check whether the ability of the mutant candidates to rescue pbs2∆hog1∆ is a result of 

an increased kinase activity, we measured the kinase activity of MPK6 mutants expressed in 

pbs2∆hog1∆ yeast cells. We choose among the candidate clones able to complement 

pbs2∆hog1∆ under salt stress conditions, the ones that contain the main mutations Y144C, 

Y144F and R274H found in the screen. We also included a clone without any of these three 

mutations (clone #8). The MPK6 mutant proteins were immuno-precipitated from the yeast cells 



Table III.1: List of MPK6 mutations triggering amino acid exchanges able to complement 

pbs2∆hog1∆ under salt stress conditions. 

Clone 
number Protein mutations 

1 G43R;K112M;Y144F;S217G  

2 Y144C;L387H;Q394L  

3 Y144C  

4 C78S;Y144C  

5 D118N;Y144F;F219I  

6 P68L;Y144C  

7 P37L;Y144F;C360Y;H371Y  

8 A9V;D218G;E222A  

9 R109C;L133I;Y144F;F364L  

10 F98L;R274H;P319H;F364I  

11 S5P;A136P;Y144C  

12 D103Y;Y144C  

13 K112R;Y144C  

14 H42Q;D240N;R274H;L276H;C360R  

15 H116N;N237I;R274H  

16 E34V;N138S;Y144F;V250L;F364L  

17 K112T;Y144F  

18 D268E;R274H;N294K;T361I  

19 A97T;H116L;Y144C  

20 E34V;D99A;Y144C;N349D;H371Q;I382S  

21 Y144C;I299M;S309P  

22 I69L;R267Q;D268N;E287K;H318N;F366L  

23 N54I;Y144F;C360Y  

24 A25T;I47V;I51M;I111V;Y144F;H165Y  

25 F21Y;Y144F;K327R;P363S;F366I  

26 N96T;Y144C;F366S  

27 C78S;Y144C  
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using anti-MPK6 specific antibody. They were then subjected to a kinase activity assay to test 

their ability to phosphorylate the Myelin Basic Protein (MBP), a common heterologous substrate 

for MAPKs. In these conditions, the activity of wild type (WT) MPK6 was barely detectable 

whereas all MPK6 mutants phosphorylated efficiently the MBP (Figure III.3). This experiment 

suggests that the pbs2∆hog1∆ growth rescue is linked to an increased MPK6 activity, as all the 

mutants forms tested have an important kinase activity compared to WT. It also shows that the 

mutations Y144C, Y144F, and R274H might trigger such increase.  

B.  CA MPK6 candidates have an MAP2K-independent increased kinase activity 

As I mentioned above, yeast cells have several MAPK cascades. The increased MPK6 

activity of the clones found to be able to rescue pbs2∆hog1∆ growth on salt, might also be the 

consequence of MPK6 activation by yeast other endogenous MAP2Ks. If candidate mutations 

would improve the recognition of the MAPK by unrelated MAP2Ks, MPK6 mutants will not be 

really intrinsically active. To bring more evidences of this constitutive activity, we choose to 

express MPK6 candidates in Escherichia coli cells, a system lacking MAPK cascades and 

particularly MAP2Ks. 

Sequence analysis of the clones able to complement the yeast mutant growth defect on salt 

allowed us to identify Y144 and R274 as important residues for the kinase activity: mutations of 

these residues were found in a majority of candidate clones (21/27 and 4/27 respectively) (Table 

III.1). One of the two remaining clones, clone #08, appeared to be also very promising: MPK6 

showed three mutations, one at the ninth amino acid residue (A9V) in the N-terminal part which 

is a not conserved MAPK domain, and two mutations in the activation loop, D218G and E222A. 

Based on knowledge on MAPK activating mutations in yeast and mammals, no activating 

mutation occurred in the first amino acid residues of MAPK, I speculated then that the A9V 

mutation could not have an effect on the autoactivity of MPK6. For the further characterization 

steps, I used the double mutant MPK6 form carrying the D218G and E222A mutations. 

Sequence alignment of Arabidopsis MAPKs showed that residues near the phosphorylation 

site of the kinase, D218 and E222, together with the tyrosine residue at the position 144 in 



 

 

 

Figure III.3: Kinase activity of some MPK6 CA candidate mutants expressed in yeast cells:  Kinase 

activity after immuno-precipitation from complemented pbs2∆hog1∆ mutant yeast cells of MPK6 WT 

and of some putative gain of function clones. Clone’s numbers refer to table 1. The main mutation in each 

clone in written with a red letter (Y: Y144C/F, DE: D218G/E22A, R: R274H. 

  



     144  

MPK3            DVYISTELMDTDLHQIIRSNQSLSEEHCQYFLYQLLRGLKYIHSANIIHRDLKPSNLLLN 173 

MPK6            DVYIAYELMDTDLHQIIRSNQALSEEHCQYFLYQILRGLKYIHSANVLHRDLKPSNLLLN 198 

MPK10           DVYIVNELMEFDLYRTLKSDQELTKDHGMYFMYQILRGLKYIHSANVLHRDLKPSNLLLS 195 

 

MPK4            DVYIVYELMDTDLHQIIRSNQPLTDDHCRFFLYQLLRGLKYVHSANVLHRDLKPSNLLLN 178 

MPK11           DVHIVYELMDTDLHHIIRSNQPLTDDHSRFFLYQLLRGLKYVHSANVLHRDLKPSNLLLN 175 

MPK12           DVYIVYELMDTDLQRILRSNQTLTSDQCRFLVYQLLRGLKYVHSANILHRDLRPSNVLLN 176 

MPK5            DVYIVFELMDTDLHQIIRSNQSLNDDHCQYFLYQILRGLKYIHSANVLHRDLKPSNLLLN 178 

MPK13           DVYIVYELMDTDLHQIIRSTQTLTDDHCQYFLYQILRGLKYIHSANVLHRDLKPSNLVLN 168 

 

MPK1            DVYLVYELMDTDLHQIIKSSQVLSNDHCQYFLFQLLRGLKYIHSANILHRDLKPGNLLVN 167 

MPK2            DVYLVYELMDTDLHQIIKSSQVLSNDHCQYFLFQLLRGLKYIHSANILHRDLKPGNLLVN 167 

MPK7            DVYLVYELMDTDLHQIIKSSQSLSDDHCKYFLFQLLRGLKYLHSANILHRDLKPGNLLVN 167 

MPK14           DVYLVYELMDSDLNQIIKSSQSLSDDHCKYFLFQLLRGLKYLHSANILHRDLKPGNLLVN 167 

 

MPK8            DIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQLLRGLKYVHAANVFHRDLKPKNILAN 239 

MPK15           DVYVVFELMESDLHQVIKANDDLTPEHHQFFLYQLLRGLKYVHAANVFHRDLKPKNILAN 225 

MPK9            DIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQLLRGLKFIHTANVFHRDLKPKNILAN 158 

MPK17           DIYVVFELMESDLHHVLKVNDDLTPQHHQFFLYQLLRGLKFMHSAHVFHRDLKPKNILAN 151 

MPK16           DIYVVFELMESDLHQVIKANDDLTPEHYQFFLYQLLRGLKYIHTANVFHRDLKPKNILAN 160 

MPK18           DIYVVFELMESDLHQVIKANDDLTREHHQFFLYQMLRALKFMHTANVYHRDLKPKNILAN 160 

MPK19           DIYVVFELMESDLHQVIKANDDLTREHHQFFLYQMLRALKYMHTANVYHRDLKPKNILAN 148 

MPK20           DIYVVFELMESDLHQVIKANDDLTREHYQFFLYQLLRALKYIHTANVYHRDLKPKNILAN 160 

                *:::  ***: ** : ::  : *. ::  ::::*:**.**::*:*:: ****:* *:: . 

      

        218 222 

MPK3            ANCDLKICDFGLARPTS----ENDFMTEYVVTRWYRAPELLLNS-SDYTAAIDVWSVGCI 228 

MPK6            ANCDLKICDFGLARVTS----ESDFMTEYVVTRWYRAPELLLNS-SDYTAAIDVWSVGCI 253 

MPK10           TQCDLKICDFGLARATP----ESNLMTEYVVTRWYRAPELLLGS-SDYTAAIDVWSVGCI 250 

 

MPK4            ANCDLKLGDFGLARTKS----ETDFMTEYVVTRWYRAPELLLNC-SEYTAAIDIWSVGCI 233 

MPK11           ANCDLKIGDFGLARTKS----ETDFMTEYVVTRWYRAPELLLNC-SEYTAAIDIWSVGCI 230 

MPK12           SKNELKIGDFGLARTTS----DTDFMTEYVVTRWYRAPELLLNC-SEYTAAIDIWSVGCI 231 

MPK5            SNCDLKITDFGLARTTS----ETEYMTEYVVTRWYRAPELLLNS-SEYTSAIDVWSVGCI 233 

MPK13           TNCDLKICDFGLARTSN----ETEIMTEYVVTRWYRAPELLLNS-SEYTGAIDIWSVGCI 223 

 

MPK1            ANCDLKICDFGLARASNT---KGQFMTEYVVTRWYRAPELLLCC-DNYGTSIDVWSVGCI 223 

MPK2            ANCDLKICDFGLARTSNT---KGQFMTEYVVTRWYRAPELLLCC-DNYGTSIDVWSVGCI 223 

MPK7            ANCDLKICDFGLARTSQG---NEQFMTEYVVTRWYRAPELLLCC-DNYGTSIDVWSVGCI 223 

MPK14           ANCDLKICDFGLART------YEQFMTEYVVTRWYRAPELLLCC-DNYGTSIDVWSVGCI 220 

 

MPK8            ADCKLKICDFGLARVSFNDAPTAIFWTDYVATRWYRAPELCGSFFSKYTPAIDIWSVGCI 299 

MPK15           ADCKLKICDFGLARVSFNDAPTAIFWTDYVATRWYRAPELCGSFFSKYTPAIDIWSVGCI 285 

MPK9            SDCKLKICDFGLARVSFNDAPSAIFWTDYVATRWYRAPELCGSFFSKYTPAIDIWSIGCI 218 

MPK17           ADCKIKICDLGLARVSFTDSPSAVFWTDYVATRWYRAPELCGSFYSNYTPAIDMWSVGCI 211 

MPK16           ADCKLKICDFGLARVAFNDTPTAIFWTDYVATRWYRAPELCGSFFSKYTPAIDIWSIGCI 220 

MPK18           ANCKLKVCDFGLARVAFNDTPTTVFWTDYVATRWYRAPELCGSFFSKYTPAIDVWSIGCI 220 

MPK19           ANCKLKVCDFGLARVSFNDTPTTVFWTDYVATRWYRAPELCGSFCSKYTPAIDIWSIGCI 208 

MPK20           ANCKLKICDFGLARVAFNDTPTTIFWTDYVATRWYRAPELCGSFYSKYTPAIDIWSIGCI 220 

                :. .:*: *:****            *:**.*********     ..*  :**:**:*** 

 

  



                               274 
MAPK3           FMELMNRKPLFPGKDHVHQMRLLTELLGTPTESDLGFTHNEDAKRYIRQLPNFPRQPLAK 288 

MAPK6           FMELMDRKPLFPGRDHVHQLRLLMELIGTPSEEELEFLN-ENAKRYIRQLPPYPRQSITD 312 

MAPK10          FMEIMNREPLFPGKDQVNQLRLLLELIGTPSEEELG-SLSEYAKRYIRQLPTLPRQSFTE 309 

 

MAPK4           LGETMTREPLFPGKDYVHQLRLITELIGSPDDSSLGFLRSDNARRYVRQLPQYPRQNFAA 293 

MAPK11          LGEIMTREPLFPGRDYVQQLRLITEVN--------------------------------- 257 

MAPK12          LGEIMTGQPLFPGKDYVHQLRLITELVGSPDNSSLGFLRSDNARRYVRQLPRYPKQQFAA 291 

MAPK5           FAEIMTREPLFPGKDYVHQLKLITELIGSPDGASLEFLRSANARKYVKELPKFPRQNFSA 293 

MAPK13          FMEILRRETLFPGKDYVQQLKLITEVS--------------------------------- 250 

 

MAPK1           FAELLGRKPIFQGTECLNQLKLIVNILGSQREEDLEFIDNPKAKRYIRSLPYSPGMSLSR 283 

MAPK2           FAELLGRKPVFPGTECLNQIKLIINILGSQREEDLEFIDNPKAKRYIESLPYSPGISFSR 283 

MAPK7           FAEILGRKPIFPGTECLNQLKLIINVVGSQQESDIRFIDNPKARRFIKSLPYSRGTHLSN 283 

MAPK14          FAEILGRKPIFPGTECLNQLKLIINVVGSQQDWDLQFIDNQKARRFIKSLPFSKGTHFSH 280 

 

 

MAPK8           FAEMLLGKPLFPGKNVVHQLDLMTDFLGTPPPESISRIRNEKARRYLSSMRKKQPVPFSH 359 

MAPK15          FAEMLLGKPLFPGKNVVHQLDIMTDFLGTPPPEAISKIRNDKARRYLGNMRKKQPVPFSK 345 

MAPK9           FAEMLTGKPLFPGKNVVHQLDIMTDLLGTPPPEAIARIRNEKARRYLGNMRRKPPVPFTH 278 

MAPK17          FAEMLTGKPLFPGKNVVHQLELVTDLLGTPSPITLSRIRNEKARKYLGNMRRKDPVPFTH 271 

MAPK16          FAELLTGKPLFPGKNVVHQLDLMTDMLGTPSAEAIGRVRNEKARRYLSSMRKKKPIPFSH 280 

MAPK18          FAEVLTGKPLFPGKSVVHQLELITDLLGTPKSETISGVRNDKARKYLTEMRKKNPVTFSQ 280 

MAPK19          FAEVLTGKPLFPGKSVVHQLDLITDLLGTPKSETIAGVRNEKARKYLNEMRKKNLVPFSQ 268 

MAPK20          FAEVLMGKPLFPGKNVVHQLDLMTDLLGTPSLDTISRVRNEKARRYLTSMRKKPPIPFAQ 280 

                : * :  :.:* * . ::*: :: :.                                   

 

Figure III.4: Local alignments of the 20 Arabidopsis thaliana MAPKs: The residue at equivalent 

position 144, 274, 218 and 222 in MPK6 is highlighted in yellow, green and blue respectively. MAPKs 

are presented according to their group, Group A, B, C and D respectively, with a line spacer in between in 

the alignment.     
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MPK6 are quite conserved (Figure III.4). Moreover they show an important catalytic activity 

after immuno-precipitation from yeast, we choose then to focus on Y144C, D218G/E222A 

mutations for further characterization. We generated by site-directed PCR the double mutant 

version of MPK6, MPK6D218G/E222A without the additional A9V mutation. The mutated gene of 

MPK6, MPK6Y144C and MPK6D218G/E222A as well as the WT gene were cloned in a protein 

expression vector. The single mutated genes, MPK6D218G and MPK6E222A, were also created and 

produced in the same system in order to understand the contribution of each mutation to in the 

MPK6 activity. These kinases were then expressed as a hexahistidine-tagged protein in 

Escherichia coli cells, and purified using cobalt resin. 

MPK6WT did not show a significant kinase activity on MBP (Figure III.5A). In contrast 

MPK6Y144C and MPK6D218G/E222A were able to phosphorylate MBP. Interestingly, the single 

mutants MPK6D218G and MPK6E222A did not exhibit any increased kinase activity, suggesting that 

the activity of MPK6D218G/E222A is not a result of an additive effect of each mutation, but rather of 

the synergic action of the two mutations together. Using E. coli as expression system, we 

demonstrated that the residues found in our screen and more specifically Y144C and 

D218G/E222A mutations are very important for activation of MPK6, and this activation is 

independent of MAP2Ks. Combining the three activating mutations (Y144C, D218G and 

E222A) in MPK6 kinase enhanced furthermore its activity by 2 fold compared to the activity 

reached by the Y144C single mutation and about 6 folds more than the double mutation 

D218G/E222A (Figure III.5B). 

To have a precise idea on the position of the residues found to be important for MPK6 

intrinsic activity, we used the secondary structure of the closest mammalian MAPK (87% protein 

sequence homology), ERK2 as a model for MPK6 (Figure III.6). It appears that Y144 is located 

in the ATP binding pocket, D218/E222 is located in the activation loop: E222 is the glutamic 

acid residue of the TEY phosphorylation motif, D218 is four amino acid upstream.  

  



                     

 

  

Figure III.5:  MPK6 mutants are active independently of MAP2K activation: A. Kinase activity with 

purified (0.6µg) MPK6 WT and mutants identified in the yeast complementation screen. B. Kinase 

activity of MPK6 WT and combined CA mutations. 

 

Figure III.6: Positions of the mutations making MPK6 active based on the predicted 3D-structure 

of MPK6 on ERK2 model (Canagarajah et al., 1997). 
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C.  Discussion  

1. The rationale of choosing a yeast screen to fish up plant auto-activating mutations  

This part of my work describes a genetic screen in yeast adapted from the screen developed 

by Engelberg‟s group (Engelberg & Livnah 2006) to isolate active form of yeast MAPK. The 

basis of this screen is that only active forms of MAPK would induce the appropriate respective 

phenotype in a MAP2K null strain. The approach taken in this study is very stringent, because it 

screens for MAPKs which are active in the complete absence of their relevant MAP2K.  

The main technical innovation in our screen compared to the one designed by Engelberg 

and co-workers comes from the use of a PCR technology to introduce mutations in the MAPK 

gene instead of using the bacterial strain of E. coli LE30. This strain contains the mutant allele 

mutD5 triggering a proofreading defect of the DNA polymerase III and is only capable of 

introducing single mutation during the plasmid replication due to the low mutation frequency.  

The main advantage of our approach is that the level of mutations is far higher and better 

controlled. Frequency ranges between 1 to 10 mutations per Kb and all types of DNA mutations 

are supposed to be equi-probable. All positive clones are independent clones. These advantages 

clearly allowed us to identify double mutants. The limit of this kind of screen could be that the 

very active mutant might be lethal for the yeast, and subsequently lost in the screen (Yaakov et 

al., 2003). 

No active plant MAPK mutants were published so far. Teige and co-workers had shown 

that the MAP2K MKK2 and the MAPKs MPK4 and MPK6 could replace Pbs2 and Hog1 in the 

double mutant pbs2∆hog1∆ (Teige et al., 2004). A trial to complement the yeast double mutant 

pbs2∆hog1∆, under salt stress conditions, by MPK4 with the CA mutation identified in the 

literature was not successful: mutant forms of MPK4 did not acquire an increased kinase activity 

when expressed in the yeast and do not complement the salt-dependent growth phenotype (data 

not shown). It was for that reasons that we decided to perform a de novo screen using 

Arabidopsis MPK6 because MPK6 complements more efficiently pbs2∆hog1∆ than MPK4. 

  



 

 

 

 

 

 

 

 

 

MAPK6           ENIVAIRDIIPPP-LRNAFNDVYIAYELMDTDLHQIIRSNQ----ALSEEHCQYFLYQIL 174 

FUS3            ENIITIFNIQRPD-SFENFNEVYIIQELMQTDLHRVISTQ-----MLSDDHIQYFIYQTL 122 

Kss1p           ENIISILDKVRPV-SIDKLNAVYLVEELMETDLQKVINNQNSGFSTLSDDHVQYFTYQIL 128 

ERK2            ENIIGINDIIRAP-TIEQMKDVYIVQDLMETDLYKLLKTQ-----HLSNDHICYFLYQIL 132 

p38alpha        ENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQK-----LTDDHVQFLIYQIL 135 

HOG1            ENLICLQDIFLSP-----LEDIYFVTELQGTDLHRLLQTRP-----LEKQFVQYFLYQIL 129 

                **:: : :   .      :. :*:  .*  :** .::  .      * .:.  :: ** * 

 

Figure III.7: Local alignments of Arabidopsis MPK6 with animal (ERK2 and P38alpha) and yeasts 

MAPKs (FUS3, KSS1p and HOG1):  The homologous residues at position 144 in MPK6 are 

highlighted in pink. 
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2. We found important residues for MAP2K-independent MPK6 activity  

Using MPK6 to complement the yeast double mutant pbs2∆hog1∆ resulted in 27 mutant 

candidates with around 60 mutations in total. We consider our screen as saturated for single 

mutations since some mutations were obtained several times, like the mutations of the Y144 

residue which were identified in 21 independent clones. Moreover, this mutation alone on MPK6 

was able to complement the yeast double mutant showing that this residue is very important for 

kinase auto-activity. Others residues that appears to be important for MPK6 activity are D218 

and E222. The activity of the MPK6Y144C and MPK6D218G/E222A mutant proteins assayed in vitro 

showed enhanced MPK6 kinase activity. When expressed in a heterologous system that lacks 

MAPK signaling pathway component, we confirmed that the rescue of pbs2∆hog1∆ is really due 

to the autophosphorylation of MPK6. 

Because of the protein sequence homology between ERK2 and MPK6 (87% protein 

sequence homology), the secondary structure of ERK2 was used as a model to have a better view 

of the location of the residues found to be important for MPK6 activity. It appears then that Y144 

residue is located in the ATP binding pocket, D218/E222 are located in the activation loop: E222 

is the glutamic acid residue of the TEY phophorylation motif, D218 is 4 amino acid upstream.  

Alignment of MPK6 with other MAPKs from yeast and animals (Figure III.7) revealed that 

Y144 is the homologous of ERK2 Q103 residue known as the gatekeeper residue (Emrick et al., 

2006). Structure-functions study of ERK2 already showed that mutations in the gatekeeper 

residue trigger kinase hyperactivity linked to an enhanced intramolecular autophosphorylation of 

the activation lip of ERK2 on the TEY motif. The gatekeeper residue is located in the nucleotide 

binding pocket and is involved in the binding selectivity for small-molecule inhibitors (Shah et 

al., 1997). Evidences on the role of this particular residue on plant MAPK activity come also 

from the use of mutant version of Arabidopsis MPK4 Y124A/G to induce ATP binding pocket 

enlargement and to render the kinase more sensitive to specific inhibitor molecule (Brodersen et 

al., 2006). Like in ERK2 the increased auto-activation in MPK6Y144C could be explained by the 

fact that this mutation changes a voluminous tyrosine residue to a small cysteine residue which 

could induce conformational changes in MPK6 protein structure making it more flexible and 

promoting then interactions with and auto-phosphorylation of the activation lip like in 
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ERK2Q103A. We did not observe any stronger auto-phosphorylation of MPK6 CA mutants but 

this may be linked to technical limitations.  

In my view, the most important MAPK activating mutation that came out in the screen we 

performed is the double mutation in the activation loop. Despite the fact that some mutations 

triggering hyperactivity were identified in the activation loop of human or yeast MAPK (Bell et 

al., 2001; Diskin et al., 2004), the combination of the mutations found to activate MPK6, D218G 

and E222A, was not shown so far. Surprisingly, these mutations convert acidic amino acid 

residues to neutral ones. This has an opposite effect to the modification of the activation loop 

which happens after the phophorylation of the kinase. A plausible scenario explaining why the 

MPK6 mutated in the activation loop is CA, could be that the small alanine and glycine residue 

that replace the D218 and E222 respectively introduces a break in the catalytic loop and 

enhances its flexibility, allowing autophosphorylation. 
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Chapter IV -  Homologous mutations in other Arabidopsis 
MAPKs often render the kinase catalytically active 

In this chapter, I present the attempt to transfer the MPK6 CA mutations identified in the 

screen to other MAPKs. I will also try to point the particular different regulation of some 

MAPKs. 

A.  Identification of residues to mutate in other MAPKs 

Our goal was to test whether mutations at the homologous residues in other MAPKs would 

render them hyperactive. Sequence alignment of the 20 Arabidopsis MAPK was performed to 

verify whether residues identified in our MPK6 screen were conserved (Figure III.4). At the 

homologous position of the MPK6 Y144, most of the MAP kinases of the groups A, B and C, 

have a conserved tyrosine. The notable exceptions are MPK3, MPK5 and MPK10 which have a 

threonine, phenylalanine and asparagine residues respectively. Interestingly, all MAPKs 

belonging to the atypical D group, have a phenylalanine residue at Y144 homologous position, a 

residue found in our screen to triggers hyperactivity in MPK6. 

Although the amino acid sequence of the activation loop is not perfectly conserved, the 

homologous positions of the residues D218 and E222 were also identified for Arabidopsis 

MAPKs of the groups A, B and C. In many cases, the residue D218 (in MPK6) was not 

conserved, we rather found glutamine (Q), glutamic acid (E) or asparagine (N). The D-group 

MAPKs showed longer activation loop, making the identification of D218G and E222A MPK6 

homologous residues uneasy. 

As mention in the previous part, MPK6 R274 residue is not very well conserved therefore 

we did not work further on it. 
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B.  CA mutations often trigger MAP2K-independent kinase activity for MAPKs 
belonging to the groups A B and C 

To test if the CA mutations were able to trigger CA activity for other MAPKs, we choose 

some members from each group, MPK3 and 6 from group A, MPK4 from group B and MPK7 

from group C. We created the homologous mutated forms of MPK6Y144C and MPK6D218G/E222A in 

MPK3, MPK4 and MPK7. They correspond to MPK3T119C, MPK4Y124C carrying the first 

mutation and to MPK4D198G/E202A, MPK3D193G/E197A and MPK7D188G/E192A corresponding to the 

double mutant. The wild type and mutated forms of each kinase were expressed as a 6xHIS 

tagged proteins in the same expression vector used for MPK6. Since I had difficulties to purify 

the MPK3D193G/E197A, we expressed it in the pDEST-periHIS-MBP vector known to help the good 

folding of recombinant proteins and to address them to the periplasm, which is an advantage in 

case of toxic protein for the bacteria (Nallamsetty et al., 2005). All the MAPKs were then 

assayed for their kinase activity toward MBP. The mutant forms of these MAPKs acquired often 

increased intrinsic activity compared to their corresponding WT proteins (Figure IV.1) however 

they exhibit different level of phosphorylation, which is in some cases due to different protein 

amount: MPK4Y124C and MPK4D198G/E202A behave like MPK6 mutants (Figure IV.1A). 

MPK7D188G/E192A shows also increased kinase activity (Figure IV.1D). Surprisingly MPK3wt 

could remarkably phosphorylate MBP compared to the other WT MAPKs, however MPK3T119C 

did not show any increased intrinsic activity compared to its WT form (Figure IV.1A). This 

result might be explained by the threonine residue at the homologous position 144 instead of 

tyrosine in most of the other MAPKs (Figure III.4). The Peri-His-MBP-MPK3D193G/E197A was 

also tested for its activity, and was then compared to Peri-His-MBP-MPK3wt protein (Figure 

IV.1B). The MPK3D193G/E197A mutant acquired a considerable higher catalytic activity when 

compared to its corresponding WT protein.  

  



 

Figure IV.1 : In vitro characterization of the CA mutations in other MAPKs:  MPK3 (A and B) MPK4 

(C), MPK7 (D) and MPK12 (E) were produced as HIS tagged protein (B, C, E and D) or periHIS-MBP (C) 

and assayed as their ability to phosphorylate MBP. 
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C.  Some MAPKs have residues allowing activity at homologous position Y144 of 
MPK6  

MPK3 but also MPK5, MPK10 and all MAPKs of the group D do not have a tyrosine 

residue at the homologous position Y144 of MPK6. As this residue position could be important 

to control the auto-activity, we wanted to test if this amino acid found in these kinases could 

trigger a MAP2K-independent activity. This is supported by the fact that MPK3, which as a 

threonine at gatekeeper postition, shows a high activity when expressed in a MAP2K free system 

Echerichia coli. To test the hypothesis that the gatekeeper T119 residue allows the MAP2K-

independent activity of MPK3, the “revertent” form T119Y of MPK3, comparable to MPK6wt, 

was generated and tested for its phosphorylation capacity. As it’s shown in Figure IV.IA, the 

activity of MPK3T119Y is decreased by about 50% compared to the activity of the WT or the 

MPK3T119C. This suggests that the MPK3 T119 explains partially the activity of the WT protein. 

Sequence alignment showed that other MAPK members, including MPK5 and all the 

kinases of the group D, have a phenylalanine residue at the gatekeeper position (Figure III.4), 

phenylalanine being a residues identified in our screen as allowing hyperactivity of MPK6. As 

for MPK3, this “natural mutation” could increase their catalytic activity. Two MAPKs of the 

group D, MPK16 and MPK19, were chosen for in vitro activity studies. They were cloned in 

pDEST17 as hexahistidine-tagged recombinant protein for purification. Unfortunately all my 

attempts to purify the full length proteins failed, although it was possible to induce their 

expression in Rosetta cells. In a pull down assay using cobalt resin (Figure IV.2A), the MPK19 

protein was degraded when ran on SDS-gel, it was then difficult to conclude whether the 

elevated activity observed after kinase assay with this sample is due to activity of the full length 

protein or to the degraded one. I decided then to express only their kinase domain and check their 

activity. MPK16 truncated kinase, referred as MPK16Δ, was expressed in E. coli cells and easily 

purified. At the same time the “revertant version” MPK16ΔF106Y was created and purified in the 

same way. In an in vitro kinase assay, MPK16Δ showed an important kinase activity on MBP. 

Interestingly, the mutant MPK16ΔF106Y form lost completely its activity compared to MPK16Δ 

(Figure IV.2B). This result is similar to what I observed with MPK3T119C, and could indicate that 

like for MPK6 the equivalent position 144 is important for regulating auto-activity in other 

MAPKs. However the regulation of the kinase activity through the gatekeeper residue seems to 



 

Figure IV.2 : In vitro characterization of MAPK of the group D:  A. Proteins pull down using anti-His 

antibody followed by a kinase assay on MBP. B. Activity assay using purified proteins.   
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not to be the same for all MAPKs, as some residues are naturally mutated into activating 

residues.  

D.  Double mutation in the activation loop renders the mammalian MAPK ERK2 
constitutively active 

Given the successful utilization of MPK6 mutations to produce CA mutants of Arabidopsis 

MAPKs, we assumed that it could be possible to use the mutations we found to activate MAPKs 

from different kingdoms. 

The mutation in the ATP binding pocket, Y144C/F, that we identified in our screen have 

been already described in the mammalian MAPK ERK2 as a gatekeeper residue (Emrick et al., 

2006). And when mutated to Alanine or Glycine residue, ERK2 displays enhanced autoactivity 

due to intramolecular auto-phosphorylation (Emrick et al., 2006). Because the mutation in the 

ATP binding pocket can activate MAPKs from different kingdom, we wanted to know if the 

double mutations of the activation loop (D218A/E222G) found to activate Arabidopsis MAPKs 

in our screen could render ERK2 active. For this purpose, we created in ERK2 ORF the 

mutations G180A and E184G, identified as homologous to MPK6 D218A and E222G (Figure 

IV.3). The gatekeeper mutant ERK2Q103A was used as a control. The wild type proteins as well as 

the mutant forms were produced in E. coli cells (BL21 strain) as His tagged recombinant protein. 

ERK2 WT protein and the mutant versions were subjected to in vitro kinase activity assay 

(Figure IV.3). Both ERK2Q103A and ERK2G180A/E184G acquired increased catalytic activity toward 

MBP when compared to WT protein. This result suggests that the residues we identified in the 

activation loop can be used to create CA MAPKs from other kingdoms. 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

AtMAPK6 
gggctagctcgaGTC   ACTTCTGAGAGTGATTTCATG         ACTGAATATGTTGTCacgagatggtaccgtgc 

G  L  A  R  V     T  S  E  S  D  F  M           T  E  Y  V  V  T  R  W  Y  R  A 

G  L  A  R  V  A  D  P  D  H  D  H  T  G  F  L  T  E  Y  V  A  T  R  W  Y  R  A 

ggccttgcccgtGTTGCAGATCCAGACCATGATCATACAGGGTTCTTGACAGAGTATGTAGCCacgcgttggtacagagc 

RnERK2 

 

 

 

 

 

Figure IV.3: CA mutations are able to activate ERK2:  (A) Creation of D177G/E184 in ERK2, 

homologous to MPK6 D218G/E222A mutations, (B) MBP kinase assay with ERK2 mutant forms and MPK6 

wt and MPK6
Y144C

 and MPK6
D218G/E222A 

as control. 
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E.  Discussion 

I identified the homologous residues of the mutated residue identified to activate MPK6 

among the 19 other Arabidopsis MAPKs. I then showed that creation of these mutations into 

some MAPKs from different groups often resulted in increasing their catalytic activity. This was 

true for MPK4 that belongs to the group B, MPK7 from group C and partially for MPK3 from 

group A suggesting that the mutations we identified define a useful tool to biochemically study 

the MAPKs. 

1. Some MAPKs have residues at the gatekeeper position allowing MAPK-independent 
activity 

We confirmed previous work showing that the nature of the residue at the gatekeeper 

position control MAP2K-independent activity (Emrick et al., 2006): tyrosine triggers a weak 

basal activity (MPK4, MPK6 and MPK7) whereas we showed that threonine (for MPK3) and 

Phenylalanine (for MPK16) allow a higher basal activity. Since these proteins were produced as 

recombinant protein in E. coli, we may question if the residue-based activity has a function in 

planta. At our knowledge, no one reported any MPK3 activity without PAMP activation and 

MAPK from the group D are poorly known proteins.  

MPK3, MPK5 and MPK10 do not have a tyrosine at the homologous position Y144. We 

did not go for the biochemical characterization of MPK5 and 10 although they were both cloned 

with the two different mutations. For MPK3, we first realized that the wild type protein is active 

when produced in E. coli while we know that it’s not in vivo without stress (data not shown). We 

then suspected that this observation could be linked to the threonine residue at the position 119. 

From in vitro kinase assay experiment realized on the MPK3T119Y, called MPK3 revertant form, 

the kinase activity was decreased compared to both MPK3wt and MPK3T119C forms. This 

observation leads us to conclude that threonine residue like cysteine or phenylalanine at the 

equivalent position 144 in MPK6 could control MAPK activity. However we also observed that 

Peri-His-MBP-MPK3wt protein have no detectable activity compared to His-MBP 

MPK3D193G/E197A when tested in an in vitro kinase assay. This could be linked either to the 

important activity of MPK3D193G/E197A which in the experiment conditions leads to the non 
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detection of the wt protein activity or to the phosphorylation of the 6His-MPK3wt in the bacteria, 

which a very improbable hypothesis. Protein expressed using the Peri-HIS-MBP are addressed to 

the bacterial periplasm (Nallamsetty et al., 2005) and could then escape to the phosphorylation 

by intracellular kinase. Moreover MPK3wt activity might not be detectable in vivo because of 

the presence of phosphatases in the cell that could permanently regulate its elevated basal 

activity. A simple experiment that could help understanding MPK3 behavior is to perform a 

phosphatase (CIP for example) treatment on MPK3wt expressed with the two different tags and 

see whether it looses its activity. 

2. How does Group D MAPK function? 

The exception for Y144 residue conservation concerns also all the MAPKs from the group 

D, which have a phenylalanine residue instead. Phenylalanine at the gatekeeper position is one of 

the mutations that activate MPK6 in a MAP2K-independent way. By mutating this residue to 

tyrosine, I showed that it was responsible for the high catalytic activity of the WT protein. This 

finding enhanced our interest to understand the regulation of MAPKs from this group as not 

much data is available on their role in the plant cell and the way they are regulated. Implication 

of MAPK from the group D in signaling was reported only recently. MPK9 was proposed to 

have a role in the ROS mediated ABA signaling (Jammes et al., 2009), and MPK18 could have a 

role in cortical microtubule related functions (Walia et al., 2009). Evidence for activation of 

MAPK from this group came last year with a study in which the authors reported that MPK8 

could be activated by different stresses like wounding, H2O2 and JA (Takahashi et al., 2010). 

Interestingly MAPKs from D group are longer kinases because of a long carboxyl terminal 

domain which is not really conserved between the different members of the group (Figure III.4). 

We compared the secondary structure of MPK9, a MAPK from group D with MPK4. Both 

MAPKs have a classic globular kinase structure with similar concatenation of β sheets and α 

helixes, MPK9 however shows a longer less structured C-terminal tail (Figure IV.4). This 

configuration is reminiscent of the plant MAP3K proteins which present a long amino-terminal 

unstructured domain, thought to be an auto-inhibitory domain (Suarez-Rodriguez et al., 2010). 

Unfortunately, I was not able to answer the question of whether the phenylalanine residue at the 

gatekeeper residue could really activate MAPK from this group, since it was not possible to test 



 

Figure IV.4: Secondary structure prediction of MPK9 from group D compared to a canonical MPK4 

(group B) of Arabidopsis.  The software (Expasy, Jufo) we used calculates the probability of each residue of 

the protein sequence to belong either to a α helix or to a β sheet structure. We could observe using this 

program that MPK4 as well as MPK9 have a classic MAPK structure with two lobes, an N terminal lobe 

constituted of β sheet with some α helix, and a C terminal lobe essentially constituted of α helix. MPK9 have 

an addition a C terminal unstructured domain. 
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the activity of the full length protein. We can build a working model though: the kinase domain 

is active independently of MAP2K phosphorylation, activity allowed by phenylalanine residue at 

the gatekeeper position. Negative kinase regulation could occur through its C-terminal inhibitory 

domain. We need to bring more evidence to support this model. It could be very informative to 

express and obtain the full length protein to test its kinase activity. Expressing it in a plant 

transient system might be a solution to test this promising working model.Double CA mutations 

in the activation loop could activate MAPKs from different kingdoms 

The combination of the double mutations in the activation loop triggers hyperactivity in the 

human MAPK ERK2. This finding suggests that the mechanism by which they activate MAPKs 

is conserved. This lead us to the conclusion that depending on the region where the mutation 

occurs, once they could emulate the same conformational changes as the MAPK phosphorylation 

their transfer to, other MAPK even from different Philae could be successful in increasing 

intrinsic kinase activity. The lack of plant MAPK structure is also limiting for as to predict the 

conformational changes induced by the amino acid substitutions. Regarding the importance of 

MAPK signaling in plant (Suarez-Rodriguez et al., 2010) the scientific community should put 

more interest and invest in this aspect. 
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Chapter V -  CA-MAPK mutants retain WT kinase specificity  

In this chapter I describe the characterization of the CA mutants with respect to 

phosphorylation motif preferences, specificity of docking interaction with substrates and 

upstream activators and protein subcellular localization. 

In the case of animal MAPKs, it has been demonstrated that the phosphorylation of a target 

is controlled by both the residues surrounding the phosphorylation site and to specific protein-

protein interactions occurring through other domains in the kinase and in the interactor (Ubersax 

& Ferrell 2007). For plant MAPKs, it’s still unclear whether targeting of distinct protein 

substrates by different MAPKs is due to specific characteristics in their respective 

phosphorylation site motif or of other interacting domains on the kinase surface. Animal MAPKs 

usually phosphorylate their targets on serine (S) or threonine (T) residue followed by proline (P), 

the so called SP/TP sites. They could also have a preference for Pro at position -2 (Clark-Lewis 

et al., 1991; Songyang et al., 1996). In addition of the residues surrounding the phosphorylation 

site, MAPK specificity depends on direct physical encounter between the enzyme and its target 

protein occurring through distinct kinase domains. Many studies on animal and yeast MAPK 

signaling pathways showed that the modular protein-protein interactions are mediated by regions 

designed “docking sites” (Figure I.2). These sites enhance specificity by recruiting a low-affinity 

catalytic domain to their proper substrates and by promoting the formation of pathway-dedicated 

signaling complexes (Bardwell 2006). Direct protein-protein interactions have been reported 

between a MAPK and specific activators MAP2Ks or substrates, and this in various signal 

transduction pathways in animals and in yeast. 

  



Chapter V- CA MAPK mutants retain WT specificity 
   

71 
 

A.  WT and CA MAPKs phosphorylation preferences are not affected 

1. WT and CA forms of MPK3, MPK4 and MPK6 phosphorylate peptides on a canonical 
SP/TP site 

To investigate whether the kinase preference toward the sequence surrounding the 

phosphorylation site is not affected by the CA mutations, particularly the mutations in residues 

of the activation loop, we used a peptide array technique. The peptide array consists of 198 

peptide mixtures. Each peptide has as a phosphorylation site an equimolar mixture of serine and 

threonine at its central position. It also contains a fixed residue corresponding to one of the 20 

amino acids at one of the nine positions (between -5 to +4) around the phosphorylation site 

(Hutti et al., 2004; Vlad et al., 2008). The phosphorylation of this peptide array gives a picture of 

the preferred amino acid between position -5 and +4 around the phosphorylation site. In Figure 

V.1 the spot intensities indicate the impact of the corresponding fixed amino acid on the 

phosphorylation of the peptide by the kinase.  

The active versions of MPK6, MPK6Y144C and MPK6D218G/E222A were tested on the peptide 

array (Figure V.1A and B). This experiment was preceded by a kinase assay using a mixture of 

peptides with a serine or threonine at their central position as substrate. This allowed to know 

whether the CA MPK6 are able to phosphorylate this size of peptide and recognize the potential 

phosphorylation site and whether it has a preference for a serine or threonine. It also allows 

identifying the most relevant time point for the peptide phosphorylation, since this preliminary 

assay is performed over a time point scale. MPK6Y144C and MPK6D218G/E222A phosphorylation 

pattern show a high phosphorylation signal on peptides with a proline at +1 and in a less extend 

on peptide with proline at -2 and charged amino acids at position +2 (Arginine or Lysine). This is 

a classical MAPK preference pattern and very close of the one already published for MPK6 

(Stulemeijer et al., 2007). 

We also compared using this technique the phosphorylation profile of MPK3wt to its 

corresponding mutated version MPK3T119C (Figure V.1C and D). This comparison was possible 

because the wild type 6His-MPK3 produced in bacteria could phosphorlate MBP. As it’s shown 

in the Figure, the phosphorylation profile of MPK3wt is very similar to the mutated version 



 

Figure V.1: Phosphorylation of the semi-degenerate peptide arrays by MAPKs active forms. (A 

and B) MPK6
Y144C

 and MPK6
D218G/E222A

 1 µg/µl of reaction, (C) 0.7µg/µl of MPK3 WT, (D) 0.86 

µg/µl of MPK3
T119Y

 and (D) 1.5µg/µl of reaction of MPK4
Y124C

. Phosphorylated peptides were spotted 

onto SAM2 streptavidin-coated membranes and radioactivity detected after washing of unincorporated 

radiolabeled ATP using phosphor imaging. 

  



Table V.1: Quantification of phosphorylation of the semi-degenerate peptide array by the MPK3 

MPK3 WT 

 

P G A C S T V I L M F Y W H K R Q N D E pST  pY  

-5 0,50 0,84 0,60 1,44 1,45 1,39 0,79 0,62 0,65 0,72 0,96 1,11 1,44 0,70 0,72 0,94 0,96 1,31 1,48 1,38 1,65 3,04 

-4 0,67 0,81 1,09 1,35 1,94 1,76 0,94 0,82 1,16 0,93 0,44 1,19 0,86 0,53 0,31 0,47 0,92 0,79 1,33 1,70 1,34 3,64 

-3 0,88 0,86 0,44 1,02 2,23 2,48 0,79 0,73 0,77 1,45 0,64 0,61 0,54 1,03 0,43 0,44 0,97 0,84 1,44 1,41 1,67 1,49 

-2 1,74 0,33 1,23 3,52 1,86 1,52 1,29 0,94 1,70 0,46 1,01 0,51 0,27 0,39 0,11 0,18 0,72 0,70 0,72 0,80 0,86 0,83 

-1 1,35 1,46 0,57 1,48 1,30 1,52 0,74 0,65 0,99 0,60 0,74 0,74 0,58 0,87 0,44 0,54 2,37 0,75 1,05 1,26 0,72 1,16 

0 0,00 0,00 0,00 0,00 20  20  0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

1 13.36  0,29 0,33 0,34 1,28 1,24 0,24 0,18 0,02 0,13 0,17 0,30 0,06 0,29 0,28 0,18 0,28 0,34 0,35 0,35 0,45 0,39 

2 0,11 1,25 0,44 0,27 2,81 2,90 0,64 0,43 0,35 0,65 0,29 0,40 0,32 0,69 1,29 4,09 0,82 0,78 0,91 0,56 0,93 0,66 

3 1,22 1,62 1,82 0,87 2,03 1,35 0,85 0,59 0,72 0,68 1,01 1,04 0,70 0,70 0,47 0,85 1,12 1,10 0,61 0,65 0,70 1,55 

4 0,63 0,64 1,29 0,86 1,23 1,09 0,69 0,47 0,99 0,86 1,33 0,66 1,57 0,50 0,78 0,82 2,40 0,85 1,24 1,11 1,29 0,44 

 

MPK3
T119C

 

       P G A C S T V I L M F Y W H K R Q N D E pST pY 

-5 1,52 1,78 0,71 0,94 1,39 1,39 1,05 1,04 0,56 0,80 0,62 1,14 1,00 0,48 0,12 0,68 0,86 0,55 1,73 1,64 1,13 1,27 

-4 1,40 1,44 0,74 0,86 1,87 1,70 0,71 1,31 0,83 0,67 0,74 0,76 0,83 0,60 0,32 0,32 0,91 0,79 1,57 1,63 1,70 2,17 

-3 1,10 1,36 1,19 1,45 2,11 1,93 0,72 0,58 0,64 0,88 0,54 0,68 0,79 0,51 0,16 0,60 0,76 1,55 1,00 1,44 1,42 2,49 

-2 4,04 0,89 1,68 2,75 1,75 1,37 1,22 1,04 1,29 0,27 0,29 0,20 0,27 0,30 0,12 0,25 0,46 0,35 0,74 0,73 0,37 0,79 

-1 1,71 1,79 0,71 1,21 1,73 1,60 0,70 0,41 0,81 0,57 0,93 0,72 0,63 0,71 0,28 0,58 1,37 0,86 0,91 1,76 0,26 0,99 

0 0,00 0,00 0,00 0,00 20  20  0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

1 12,43 1,07 0,79 0,44 1,64 1,07 0,47 0,50 0,08 0,08 0,08 0,10 0,10 0,08 0,04 0,11 0,36 0,20 0,22 0,15 0,17 0,50 

2 0,29 0,85 0,54 0,91 2,77 2,19 1,05 0,36 0,51 1,58 0,20 0,30 0,29 0,41 1,32 4,61 0,47 0,42 0,63 0,28 0,43 0,92 

3 2,13 1,85 1,86 0,41 1,60 1,27 0,61 1,13 0,52 0,83 0,64 0,70 0,79 0,49 1,15 1,20 0,69 0,54 0,84 0,75 0,42 1,18 

4 0,93 1,52 1,94 1,12 0,77 1,82 0,64 0,86 0,68 1,28 0,71 0,75 1,11 0,44 0,65 1,07 0,88 0,83 0,88 1,10 0,95 1,15 
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MPK3T119C, quantification of the spot intensities gives a correlated data between the two version 

of MPK3 (see Table V.1). 

These features seems to be common for MAPKs (Figure V.1) because we did not found 

any  significant differences between the profile of CA MPK4 and the mutant versions of MPK3 

or MPK6, we rather observe the same MAPK peptide phosphorylation signature. These results 

lead to the conclusion that the CA mutations do not change the kinase preferences around the 

phosphorylation site. It also suggests that plant MAPKs specificity is mainly under the control of 

target interaction with surface of the kinase, distinct from the active site, as they are in animal 

and yeast. 

2. MAPK from group D have a different phosphorylation motif  

All the CA MAPK that we tested appears to have a similar phosphorylation motif. We 

wanted then to investigate whether this motif is conserved in the atypical MAPKs from group D. 

We examine in a preliminary assay whether the wt kinase domain of MPK16 and the “revertant” 

one MPK16ΔF106Y could phosphorylate peptide mix. Like in MBP phosphorylation assay, the 

truncated MPK16 could phosphorylate degenerate peptide mix but not the MPK16ΔF106Y form 

(Figure V.2A). MPK16Δ was then assayed on peptide chips and revealed a particularly 

unexpected pattern (Figure V.2B): the active protein phosphorylates all the peptide with a 

cysteine residue at any 9 position in the peptides. 

B.  CA MAPK mutants interact with their natural substrates and upstream 
regulators in yeast two-hybrid assay 

To examine whether the known MAPK interactions are still conserved between the CA 

MAPKs versions and some of their known upstream activators and substrates, we used the yeast 

two hybrid (Y2H) system. We know from the literature that MKK4 interacts in Y2H with MPK3 

and MPK6 and that MKK2 interacts specifically with MPK4 and MPK6 (Ichimura et al., 1998; 

Teige et al., 2004; Lee et al., 2008). Based on in planta assays or Y2H data, other studies 



 

 

 

     

 

 

Figure V.2: Phosphorylation of the semi-degenerate peptide array by MPK16∆. A. MPK16∆ and 

MPK16∆
Y144C

 phosphorylation of peptide mix (mixed peptides with serine (S) or threonine (T) as 

phosphoacceptor). Peptide chips profile after phosphorylation with 1.2 µg/µl MPK16∆. 
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demonstrated the interaction between MAPKs and their specific substrates: MPK3 with VIP1 

(Djamei et al., 2007), MPK4 with MKS1 (Andreasson et al., 2005) and MPK6 with ERF104 

(Bethke, Scheel et al., 2009). 

I first tested the interactions between MAPKs and some of their known upstream 

regulators, the MAP2Ks. For that purpose, the reporter yeast strain (MaV203 strain) was co-

transformed with MAP2K expression vectors -encoding the MKK2 and MKK4 ORFs fused to the 

GAL4 activation domain- (AD) and MAPK expression vector -encoding MAPK WT and CA 

forms of MPK3, MPK4 and MPK6 ORF fused to the GAL4 binding domain- (BD). Interactions 

between MKK2 and MPK4 WT and both mutants forms (MPK4Y124C and MPK4 D198G/E202A) 

were detected based on growth on histidine medium supplemented with increased concentration 

of 3-AT (3-Amino-1,2,4-triazole). I noticed that this interaction was slightly weaker in the case 

of the double mutant MPK4D198G/E202A when tested on high stringent media (starting at 65mM of 

3-AT). MKK2 interacts also with MPK6 WT and CA, the interaction being stronger in case of 

MPK6Y144C form (Figure V.3A). We confirmed that MKK4 can interact specifically with MPK3 

and MPK6 WT and CA. As published, we did not detect any interactions between MKK2 and 

MPK3 WT and CA, and none between MKK4 and MPK4 WT and CA. Proteins did not interact 

with AD and BD alone which were used as controls. These results suggest that the mutations 

rendering the kinases active do not change the specificity toward their activating kinases. 

 In a second experiment, I tested the interaction of our CA mutants of MAPKs against their 

known substrates (Figure V.3B). In this case, yeast cells were transformed with WT and CA 

forms of MPK3, MPK4 and MPK6 fused to GAL4 binding domain, and the corresponding 

substrates, VIP1, MKS1 and ERF104, respectively, fused to GAL4 activation domain. VIP1 was 

specifically interacting with the three MPK3 forms (WT, MPK3T119Y and MPK3D193G/E197A). A 

specific interaction between the three MPK4 forms and MKS1 was also observed. MPK6 WT 

protein and MPK6D218G/E222A interact specifically with ERF104, this interaction being relatively 

weak (30 mM 3AT histidine supplemented medium). Interaction between MPK6Y144C and 

ERF104 was barely detectable. Technical problem left aside (protein expression level, protein 

folding…), this observation could be explained by the fact that MPK6 doesn’t need a very 

important physical interaction with its substrate, as the interaction between MPK6 wt protein and 

ERF104 remains slight compared to the other MPK-Substrate interactions. 



 

Figure V.3: Y2H interaction between wild type and active forms of MPK3/4/6 with (A) activator 

MKK2, MKK4 and (B) substrate, VIP1, MKS1 and ERF104: Combinatory interaction in yeast 2 

hybrid of MPK3, 4 and 6 WT and CA forms with MKK2 and MKK4 (A) and with VIP1, MKS1 and 

ERF104 (C). Co-transformed single yeast colonies were spotted on control medium (c.) and selective 

medium supplemented with 65mM for (A) or 30mM for (B) of 3AT (i.). 
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All these data together indicate that the CA mutations do not change the specificity of the 

kinase toward its cognate MKK and to its specific substrate. 

C.  Transient expression of CA MAPKs in Nicotiana benthamiana 

MAPK localization is important for their proper functioning. In order to investigate a 

possible change in the sub-cellular localization of the CA MAPKs, we cloned MPK3, MPK4, 

MPK6 and MPK7 fused in frame with the DsRED fluorescent protein in C-term in a binary 

vector. We realized transient expression of the chimerical proteins in Nicotiana benthamiana 

leaves by agro-infiltration and monitor their sub-cellular localizations using confocal microscopy 

(data not shown). MPK7 was barely detectable and therefore it is impossible to conclude yet. 

MPK4 WT and CA showed a similar localization mainly in the nucleus but also weakly in the 

cytoplasm. MPK3wt and MPK3T129C were largely localized in the nucleus but no signal was 

observed for MPK3D193G/E197A, which could be linked to the apparent death of the Nicotiana cells. 

For these preliminary results, we did not succeed to clone WT MPK6, but the two CA mutant 

forms, MPK6Y144C and MPK6 D218G/E222A also triggered cell death. Repetitions are necessary to 

validate this data.  
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D.  Discussion 

By acquiring intrinsic activity, the kinase mutants may have lost their specificity toward 

downstream substrate and recognition by upstream elements. In this part, the results based on 

two complementary strategies were exposed to test this. I first used the degenerate peptide array 

to identify the preference of the MAPKs toward amino acid residues around the phosphorylation 

site. And second, by using yeast two hybrid system, I ensured that docking interactions are 

conserved between the kinase and substrate or activating kinase. Additionally, preliminary 

experiments to test whether the sub-cellular localization of the MAPKs was affected by the CA 

mutations, were not very conclusive, but gave interesting functional information as some CA 

forms triggered plant cell death. 

1. Plant MAPK of the groups A, B and C recognize a classical MAPK sites  

The phosphorylation of a protein by a kinase depends in part on the presence of a motif 

efficiently recognized and phosphorylated by this kinase (Vlad et al., 2008). Semi degenerated 

peptide array allowed us to measure activate kinase MPK3, MPK4 and MPK6 preferences for 

substrate. Measuring the phosphorylation rate of a peptide mixture with one fixed amino acid at 

one position, enable determining the contribution of a particular residue at a particular position in 

the phosphorylation of serine or threonine situated in the middle of the peptide.  

It was advantageous to have a wild type active form of MPK3 that made the comparison 

with the mutant version MPK3T119C possible, even if this T119C mutation does not further 

increase MPK3 activity. Comparing the phosphorylation profile showed no significant 

differences, as all the phosphorylation score are correlated (Table V.1). This means that mutation 

at the equivalent residue 144 in MPK6 does not change the phosphorylation preference of the 

kinases and therefore could similarly recognize their substrates. The kinase preferences were the 

same for the other MAPKs we tested and bearing the same mutation (MPK4Y124C and 

MPK6Y144C) or the double mutations in the activation loop (MPK6D218A/E222G). The peptide array 

profile matches the reported MAPK substrate phosphorylation sites with an absolute requirement 

for proline residue in position +1 of the serine or threonine phospho-acceptor. This result is in 

agreement with the studies on MAPK substrates (Liu & Zhang 2004; Caspersen et al., 2007; 
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Djamei et al., 2007). A weaker preference for proline or cysteine residues at position -2 was also 

observed and reported for other animal MAPKs (Sheridan et al., 2008). 

In conclusion, our results confirm what was determined for animal MAPKs (ERK2, p38α, 

p38δ, JNK2) using the same approach. Active site specificity appears to be general conserved 

feature for all MAPK and is then insufficient to direct a particular kinase to a specific protein 

substrate. Protein substrate affinity and specificity is controlled by interactions that occur outside 

of the active site (Biondi & Nebreda 2003; Goldsmith et al., 2007; Raman et al., 2007). Apart 

from studying the conservation of the MAPK phosphorylation preferences and whether they 

change with the CA mutations, we wished also to use this technique to bio-informaticaly identify 

new targets, querying plant protein databases with the calculated matrix of phosphorylation motif 

preferences (Vlad et al., 2008). However, with our results and the published data on animal 

MAPKs showing that all MAPKs share the same preferences for the phosphorylation sites, this 

technique is not appropriate to identify new MAPK substrates. 

2. The unexpected result of MAPKs from group D… 

A result difficult to explain is the phosphorylation motif of the MPK16 kinase domain. 

This protein appears to exclusively show a stronger phosphorylation signal on peptides 

containing a cysteine residue. Astonishingly peptides with proline residue at position +1 which is 

a minimum requirement for a MAPK to phosphorylate its target were not more phosphorylated 

in the matrix. This may be a technical problem: what is measured is not the kinase preference but 

rather the fact that the activity is modified depending on the redox environment affected by 

cystein residue. A report on the effect of various sulfur amino acid on tyrosyl and 

serine/threonine phosphorylation was published by Kodama group (2009), in which they claim 

that depending on the cystein compound the phosphorylation could be enhanced. This could 

alternatively indicate that MAPK from group D have a completely different phosphorylation 

motif than the canonical other MAPKs. 

3. Docking interaction is conserved between CA MAPK and their substrate and MAPKK 
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We investigated also whether the CA mutations could change protein-protein interaction 

specificities using the Y2H assay. We globally found that interaction between the CA MAPK 

and their cognate MAP2K and substrate where conserved and that the structural changes induced 

by CA mutation does not interfere with docking regions. Although in some cases, the strength of 

the interactions could be affected by the CA mutations. A quantification of this data might be 

useful to understand whether the modifications of the interactions are really due to the mutations. 

Alternatively, they could reflect a mechanistic effect: we may expect that the affinity of a given 

interactor for its cognate kinase is different depending on the activation state of the kinase. 

This result suggests also that CA MAPK could be used in planta to study MAPK function. 

Even though using these forms to complement a mutant for instance could be the best proof that 

the CA mutation doesn’t alter the signaling pathways. This is what I will describe in the 

following chapter. 
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Chapter VI -  Generation and activity of Arabidopsis lines 
expressing constitutively active forms of MPK4 

Whereas mpk3/mpk3 and mpk6/mpk6 do not have an obvious morphological alteration, 

mpk4/mpk4 plants are dwarfed and sterile, likely because they overproduce salicylic acid and 

reactive oxygen species (Petersen et al., 2000). We took advantage of this morphological 

phenotype to test whether the CA MPK4 isoforms, mutated in the residues identified in the yeast 

complementation screen, were able to complement mpk4-2 knock-out plants. This would bring a 

clear proof that CA MPK4 retains the specificity features of the WT protein and at the same 

time, create a new tool to better understand the ambiguous function of MPK4 in plant stress 

response and development. 

A.  Expressing CA-MPK4 under the control of MPK4 endogenous promoter in 
mpk4  transgenic lines leads to morphological complementation 

To avoid any silencing phenomenon linked to the use of a strong expression promoter  but 

also to evaluate the effect of the CA mutation in a background as WT as possible, we choose to 

work with the native MPK4 locus, including promoter, introns, exons, UTRs and terminator. We 

cloned the locus fused to a PC2 tag in pGREEN0229 to generate pGREEN0229-MPK4-PC2 

(Figure IV.1) (cloning details in Materiel and Methods). The PC2 tag is constituted of three 

different epitope-tags: 9xMyc, 8xHIS and 1xStrepII allowing biochemical studies. 

pGREEN0229-MPK4-PC2 was mutated to create pGREEN0229-MPK4Y124C-PC2  and 

pGREEN0229-MPK4D198G/E220A-PC2. Vectors were transformed by floral dipping in mpk4-2 

background. We transformed the progeny of a mpk4-2/MPK4 plants because the homozygous 

mpk4-2/mpk4-2 plants are sterile. Transgenic homozygous mpk4-2 plants with a segregating 

transgene were isolated expressing:  

promMPK4:MPK4wt-PC2-    6 independent lines 

promMPK4:MPK4Y124C-PC2-     10 independent lines  

promMPK4:MPK4D198G/E220A-PC2-     7 independent lines             



 

Figure VI.1: Cloning strategy of MPK4 locus in pGREEN0229. The MPK4 -open reading frame 

upstream (2693 bp) and downstream (258 bp) of the termination codon was amplified from Col-0 

genomic DNA with specific primers and cloned in pGEMTeasy. We reassembled the MPK4 locus in 

pGREEN0229 and introduced the PC2 tag to generate pGREEN0229-MPK4-PC2. 
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MPK4Y124C and MPK4D198G/E202A loci were both able to complement the developmental 

defects of mpk4-2 mutant as did MPK4wt locus (Figure VI.2A). All the lines recovered a normal 

growth suggesting the functional complementation. This indicates that CA MPK4 are 

functioning in the mpk4 background. Two lines expressing MPK4D198G/E202A isoform produced 

less seeds. Given the fact that we have only few lines, it was difficult to conclude between a true 

CA double mutation effect, or a normal morphological variability that we can observe in a 

transformation process. 

In further analysis, the progeny of T1 plants were used: they are homozygous for mpk4-2 

and hemizygous for the MPK4 transgene. A western blot analysis was performed, and showed 

that all the transgenic lines have a detectable protein amount which means that the transgene is 

expressed and the protein is stable (Figure VI.2B). All the lines selected for further 

characterization have similar expression level. We realized that the anti-MPK4 antibody 

available in the lab raised against the last 16 Carboxyl terminal amino acids of MPK4 protein 

was not able to recognize MPK4-PC2 proteins in our complemented lines (not shown). I rather 

used anti-c-myc antibody that recognize the c-myc tag in the PC2 cassette at the C-terminal part 

of the protein. 

B.  Not all the CA mutations allow enhanced MPK4 activity in planta  

Since the CA-MPK4 lines (mpk4/pMPK4::MPK4Y124C and 

mpk4/pMPK4::MPK4D198G/E202A) did not showing any obvious morphological phenotype 

compared to WT-complemented lines, we were wondering whether the mutated kinase were 

indeed CA in planta. To test if the kinase activity of CA-MPK4 fusion proteins in the 

mpk4/pMPK4::CA-MPK4 lines is enhanced compared to transgenic plants expressing the WT 

MPK4, I performed MBP kinase assay on c-myc immuno-precipitated proteins and compared the 

activity of CA MPK4 tagged proteins to that of WT MPK4 tagged protein (Figure VI.2). We 

surprisingly notice that only the lines expressing MPK4 form with mutations in the activation 

loop D198G/E202A exhibit a higher MPK4 activity. MPK4 activity in the MPK4Y144C lines was 

barely detectable, which is comparable to the basal activity of WT MPK4 transformed plants. 



 

Figure VI.2 : MPK4 expression and activity in MPK4
Y124C

 and MPK4
D198G/E202A

 lines.  MPK4 was 

immunoprecipitated with an anti c-myc antibody from independent lines expressing WT-MPK4 (WT-

K4 1, 2 and 3), MPK4
Y124C

 (Y-K4 1, 2, 3 and 4) and MPK4
D198G/E202A

 (DE-K4 1,2 and 3). 
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This suggests that only double mutation in the activation loop can activate MPK4 in vivo. For the 

next part of this work we concentrated our efforts on studying mpk4/pMPK4::MPK4D198G/E202A 

lines because of their enhanced kinase activity. 

C.  MPK4 activation in CA-MPK4 expressing lines 

PAMPs can activate MPK4 through the two MAP2K MKK2 and MKK1, and the MAP3K 

MEKK1 (Ichimura et al., 2006; Nakagami et al., 2006; Suarez-Rodriguez et al., 2007; Gao et al., 

2008; Qiu, Zhou et al., 2008). Flg22 activation of MPK4 is well characterized in Arabidopsis 

(Suarez-Rodriguez et al., 2010). To evaluate the level of activation of MPK4 in the 

MPK4D198G/E202A lines and whether MPK4 is still activable after stress perception, we compared 

the activity of 10-12 days old plantlets of the   MPK4D198G/E202A and WT-MPK4 lines after 15 

and 30min flg22 stress (1µM) (Figure VI.3). MPK4 protein was immuno-precipitated with anti-

c-Myc antibody and assayed against MBP. MPK4D198G/E202A activity in resting conditions was 

about 10% (Figure VI.3B) of the flg22 induced MPK4 activity in a MPK4 WT line.  

Additionally, MPK4 D198G/E202A activity was increased by flg22 treatment, and its activation was 

twice more important than WT-MPK4. This result shows that the CA mutations do not hinder the 

phosphorylation by the upstream MAP2K(s) in flg22 response. After 30 min of flg22 stress, 

MPK4 de-activation was the same in the MPK4D198G/E202A and the WT-MPK4 lines, meaning that 

both forms of the kinase have the same sensitivity to phosphatases.  

D.  MPK4D198G/E202A transgene complements the mutation in MEKK1 

MEKK1 is proposed to be the main MAP3K acting upstream of MPK4 in the stress 

cascade (Ichimura et al., 2006; Nakagami et al., 2006; Suarez-Rodriguez et al., 2007; Gao et al., 

2008; Qiu, Zhou et al., 2008). In fact mpk4, mkk1mkk2 and mekk1 plants have very similar 

phenotypes, including a very strong dwarfism. Additionally in mekk1 and mkk1mkk2 

background, MPK4 is not activated anymore by PAMP treatment. If this model is valid and 



 

Figure VI.3 : MPK4 kinase activities immuno-precipitated from MPK4
D198G/E202A

 lines after 15 

and 30min of 1µM flg22 treatment.  A. MPK4 was immuno-precipitated with an anti c-myc 

antibody from independent lines expressing MPK4wt (WT-K4 line 1 and 3) and MPK4
D198G/E202A

 (DE-

K4 line1) as control together with Col-0. No MPK4 is immunoprecipitated with anti c-myc antibody 

from Col0 plants. B. Quantification of the MBP phosphorylation by MPK4 with the same line.   

  



Chapter VI - Characterization of CA MPK4 lines 
   

81 
 

MPK4D198G/E202A is functionally over active in the CA-MPK4 lines, MPK4D198G/E202A transgene 

should complement the morphological growth defect of mutants of the upstream kinases. mekk1-

1 heterozygous plants were crossed with the MPK4D198G/E202A plants. The F2 plants were 

genotyped to select for mekk1-1 homozygous plants containing MPK4D198G/E202A transgene. The 

mekk1 morphological phenotype appears to be largely reverted in the mekk1-1/mekk1-1 

MPK4/MPK4 MPK4D198G/E202A and mekk1-1/mekk1-1 mpk4-2/mpk4-2 MPK4D198G/E202A plants. 

Plants of both genotypes had curly leaves and mekk1-1/mekk1-1 mpk4-2/mpk4-2 

MPK4D198G/E202A appears to be less reverted (Figure VI.4). Both lines were able to produce seeds. 

These plants showed an almost normal growth phenotype when compared to mekk1-1 plants 

which are few millimeter tall at maximum and dying after 2-3 weeks in our growth conditions. 

This confirms that MPK4D198G/E202A is (1) functionally replacing MPK4wt and (2) constitutively 

active in planta. This result brings also more genetic evidence that MEKK1 is an important 

upstream step in the pathogen related MPK4 cascade and provide a very promising tool to better 

understand MEKK1-MKK1/MKK2-MPK4 pathway functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure VI.4 : Morphological phenotype of mekk1-1/mekk1-1 MPK4
D198G/E202A

 (middle) and 

mekk1-1/mekk1-1 mpk4-2/mpk4-2 MPK4
D198G/E202A

 (right) lines compared to wild type Col-0 

plants (left). Plants are 5 weeks old. In our conditions, mekk1-1 homozygous plants do not succeed to 

develop further 1 cm tall and dies after 3 weeks. 

 

 



Chapter VI - Characterization of CA MPK4 lines 
   

82 
 

E.  Discussion 

1. Not all CA MPK4 could trigger hyperactivity in planta  

Both forms of CA MPK4 locus (Y119C and D198G/E202A) complemented mpk4-2 

dwarfed phenotype but only MPK4D198G/E202A plants showed an increased MPK4 activity. This 

morphological phenotype rescue was not necessary the consequence of an increased MPK4 

activity, since the MPK4Y119C form which did not increase the level of MPK4 further than the 

WT kinase complemented the morphological alterations of mpk4 mutant plants. It was 

previously shown that mpk4 mutant phenotype is not only due to the loss of MPK4 protein but 

also to the lack of basal level of the MPK4 activity in the cell. mpk4 mutant cannot be 

complemented by the catalytically inactive and non phosphorylable mutant MPK4T201A/Y203F, 

neither by the catalytically inactive and phosphorylable mutant MPK4K72R (Petersen et al., 2000; 

Brodersen et al., 2006). And this non complementation concerns not only the dwarfism, but also 

the SA accumulation and the PR gene expression which remains high. All this data suggest that 

MPK4 basal activity is important for non stress dependant phenotype. 

The fact that MPK4Y124C does not have a higher activity than MPK4wt, whereas 

MPK4D198G/E202A does in vivo, could be linked to the mutation location. Phosphatase activities are 

thought to be involved in negative feedback mechanisms down regulating MAPK activity in 

plants. Expressing a CA MAPK in plants could turn on this negative regulatory process which 

may explain that some CA MAPK mutants do not show apparently an increase activity level. 

The fact that MPK4D198G/E202A is not affected by this negative regulation could come from the 

position of the D198G/E202A mutations in the vicinity of the TEY motif, direct target of the 

phosphatases. 

Interestingly, the MPK4 Y124 residue was found in a chemical-genetic screen to induce 

ATP binding pocket enlargement when mutated to glycine residue and enhance their affinity to 

specific inhibitors. MPK4Y124G mutant form was used to conditionally complement mpk4 mutant 

(Brodersen et al., 2006)MPK4D198G/E202A activity increase in response to flg22 

D198G/E202A mutations resulted in only 10% of the flg22-elicitated MPK4wt activity. It 

was actually expected to not obtain mutations that fully activate the MAPK in our screen since 

very active mutant of MAPK are known to kill the yeast (Yaakov et al., 2003). 
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In the CA-MPK4 lines, MPK4D198G/E202A activity is increased by flg22 stress. This suggests 

that D198G and E202A mutations, that we suspected to modify phosphatase ability to 

dephosphorylate MPK4, do not hinder the phosphorylation by the MAP2Ks. We already showed 

that the physical interaction between MPK4D198G/E202A and MKK2, the upstream activator of 

MPK4 is maintained. The second scenario could be that D198G/E202A mutations might induce 

an intermolecular phosphorylation in stress conditions, increasing further its activity. It was 

shown in animal system that active MAP2K could further increase the activity of CA-MAPKs 

(Diskin et al., 2004). Interestingly, preliminary results suggest that MPK4D198G/E202A had also a 

stronger activity in response to 15 min flg22 than WT-MPK4 (Figure VI.3). 

The increase of MPK4D198G/E202A activity with flg22 treatment is an important difference 

with CA MAP2K lines published so far in which phospho-mimicking mutations were used to 

render the MAP2Ks CA (Brader et al., 2007). Since the MAP2K are not phosphorylable 

anymore, they cannot be further activated when the cascade is switched on. In our case, MPK4 is 

active in resting conditions but can be further activated by flg22. The MEKK1-MKK1/MKK2-

MPK4 cascade is primed but not constitutively activated. The interpretation of phenotypic results 

should consider this particular point. Alternatively, in mekk1-1/mekk1-1 MPK4D198G/E202A plants, 

the output activity of MEKK1-MKK1/MKK2-MPK4 module is only dependant on 

MPK4D198G/E202A activity but should not be increased anymore by flg22. 

2. CA MPK4 lines have a WT phenotype 

 As far as we know, MPK4D198G/E202A plants are morphologically similar to WT Col-0 

plants. This was not really expected if we consider all the data published on MPK4 function 

(Brodersen et al., 2006; Gao et al., 2008; Petersen et al., 2000; Su et al., 2007). mpk4 mutant 

plants are constitutively stressed and therefore resistant plants (at least to biotrophic pathogen) 

and MPK4 basal activity appears to be important to restore this phenotype (Brodersen et al., 

2006; Petersen et al., 2000). MPK4 is considered as a negative regulator of basal immunity. 

Complementing mpk4 with a CA-MPK4 would result in down-regulation of the defense 

responses controlled by MPK4 and constitutively sick plants. This phenotype would have been 

obtained if MPK4 was fully constitutively activated in our plants. However because we choose 

to mimic a natural MPK4 expression we opt for a native promoter expression. In this case 
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expressing CA-MPK4 under the 35S strong promoter might be useful to try to rich a maximum 

MPK4 activation. It could be also interesting to generate lines that strongly express CA-MPK4 

but under inducible promoter, to be able to directly induce the expression of an active MPK4 

without being in particular stress conditions. 

3.  MPK4D198G/E202A rescues the phenotype of its cognate MAP3K mutant  

Complementing mpk4 mutant with MPK4D198G/E202A proved that we can use the CA 

mutations identified in the screen we performed to activate MAPKs in vivo and to restore 

alterations due the loss of a kinase activity. Using the CA-MPK4 we were able to phenotypically 

restore a close to normal growth the mekk1 dwarfed phenotype (Suarez-Rodriguez et al., 2007). 

This gives more genetic evidence that MEKK1 and MPK4 are in the same signaling cascade, 

since the MPK4 activity is the responsible of mekk1 complementation. This strategy was 

previously used to decipher the MAPK cascade downstrem of YODA in stomatal patterning 

(Wang 2007). Though this is only a preliminary data, we need to verify that CA-MPK4 is indeed 

active in the mekk1-1/mekk1-1 CA-MPK4 even if it is strongly expected. As it is a very 

interesting tool, I will give details on what we are planning to investigate with these lines in a 

specific section of my perspectives. 
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Chapter VII -  Utilization of MPK4D198G/E202A lines to address 

MPK4 function in pathogen responses  

The lines we created, are interesting tool to investigate MPK4 function in planta. As 

mentioned in the introduction, MPK4 has a negative role in regulating Systemic Acquired 

Resistance (SAR). mpk4 mutant plants over-accumulate ROS and Salicylic Acid (SA), 

constitutively express SA responsive marker genes like PR1 and PR2 and therefore exhibit 

higher resistance to biotrophic pathogens (Petersen et al., 2000). In mpk4 mutants, the Methyl 

Jasmonate induced expression of PDF1.2 is abolished (Petersen et al., 2000). This finding was 

supported by the enhanced sensitivity of mpk4 towards infection with Alternaria brassicicola 

showing that MPK4 is also required for ET/JA mediated defense pathways. Regarding all the 

data published on mpk4, we hypothesized that MPK4
D198G/E202A

 lines would behave in an 

opposite way to mpk4 mutant plants when challenged by pathogen. 

A.  PAMP inhibition assay  in MPK4
D198G/E202A

 lines 

MPK4 have been extensively shown to be an important player in basal immunity (Peterson 

et al., 2000). MPK4 activity is important for these responses since the complementation of mpk4 

mutant plants with a dead version of MPK4 (MPK4
AEF

) was not successful to restore wild type 

phenotype (Brodersen et al., 2006). Growth inhibition was measured in response to flg22 in 

order to investigate long term PAMP responses. 7 days old seedlings grown in Agar MS media 

were transferred into liquid MS medium supplied with increasing flg22 concentrations (0, 10, 

100 and 1000 nM). Plant weight was measured 7 days after. We observed that flg22 in the media 

reduced the growth of roots, leaves and cotyledons (Figure VII.1A). This inhibition was dose 

dependant, about 50% growth decrease with 100nM flg22 for Col-0 plants and lines expressing 

either MPK4
D198G/E202A 

or WT-MPK4 (Figure VII.1A). This observation was confirmed by fresh 

weight measurements (Figure VII.1B). Prolonged incubation of the seedlings in the presence of 

flg22 resulted in dwarfed plants at higher concentrations. Similar weight values were established 

for Col-0, WT MPK4 and MPK4
D198G/E202A

 plants. However, whereas the seedlings remained 



 

Figure VII.1: Effect of flg22 on CA-MPK4 seedlings growth. A. 6 days old seedlings of CA-MPK4 

(MPK4
D198G/E202A

 independent lines referred as DE-K4.2, 3 and 4), WT-MPK4 and Col-0 were incubated 

for 7 days in liquid MS medium supplemented with increased flg22 concentration (0, 10, 100, 1000nM). 

The plate picture represents the growth inhibition observed with line DE-K4.3. B. Dose dependant of 

growth inhibition caused by flg22, after 7 days of treatment the fresh weight of individual seedlings was 

measured. Bars show average and standard deviation of n=6 seedlings/ treatment. The same results were 

obtained for at least 3 independent replicates.  
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green for Col-0 and WT-MPK4 lines, the plants complemented with MPK4D198G/E202A forms, 

were dwarfed as well, but displayed brown areas on the cotyledons and on the leaves (Figure 

VII.2A). Staining of these plantlets with lactophenol trypan blue showed that these areas were 

dead tissues. The coloration was more pronounced in the MPK4D198G/E202A lines compared to 

WT-MPK4 (Figure VII.2B) suggesting that cell death induced by flg22 is increased in the 

MPK4D198G/E202A lines.  

B.  Plants expressing MPK4D198G/E202A have an increased susceptibility to the 
biotrophic pathogen Pseudomonas syringae  

To investigate further MPK4 function in plant pathogen responses, homozygous mpk4 

plants  expressing MPK4D198G/E202A were used to assess their resistance to the hemi-biotrophic 

bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000 which causes leaf speck 

disease both on tomato and Arabidopsis (Hoon Sohn et al., 2009). 4 week old plants grown 

under short day conditions were spray-inoculated with virulent Pst DC3000 (1×107 cfu/ml in 10 

mM MgCl2). Bacterial titers were measured at 0 and 3 days post inoculation (dpi) in the 

MPK4D198G/E202A and WT-MPK4 lines(Figure VII.3). As positive control, we used the enhanced 

disease susceptibility 1 (eds1) mutant which is impaired in pathogen-induced SA accumulation 

and therefore in the SA-dependant immune responses (Falk et al., 1999; Clarke et al., 2001). 

After infection, no striking differences were observed in the development of disease symptoms 

between the different transgenic lines and Col-0, whereas eds1 mutant plants showed enhanced 

disease symptoms as expected (Figure VII.3). However, bacterial quantification at day 3 post 

inoculation showed that the two WT-MPK4 lines behaved like Col-0 plants whereas 

MPK4D198G/E202A lines showed significantly higher growth of Pst DC3000 (P ≤ 0.05, Student’s t 

test). The observed susceptibility of CA lines is not as pronounced as eds1 plants though. These 

data indicate that MPK4 is involved in defense response to the biotrophic pathogen 

Pseudomonas syringae, which could be related to the deregulation of SA pathway present in the 

mpk4 mutant (Brodersen et al., 2006). 



 

 

Figure VII.2: Growth defects occasioned by flg22 observed on CA-MPK4 seedlings. A. Six days old 

seedlings of lines expressing MPK4
D198G/E202A

 (DE-K4.1, 2 and 3) or WT MPK4 (WT-K4.1) and Col-0 

incubated for one week in MS medium supplemented or not with 1µM of flg22. B. Visualization of 

seedlings damage occasioned by flg22 with lactophenol trypan blue staining. 

 

 

Figure VII.3: CA-MPK4 response to infection 

with Pst DC3000. Four week-old plants 

expressing WT (WT-K4.1 and 2) or 

MPK4
D198G/E202A

 (DE-K4.1 and 3) together with 

Col-0 and eds1-2 mutant plants were spray 

inoculated with Pst DC3000 and bacterial titers 

from 4 technical replicates were determined 2h 

(dark grey bars) or 3 days (light grey bars) post 

infection (at least 2 biological replicates were 

performed for each line). 
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C.  MPK4D198G/E202A lines have an increased susceptibility to both pathogen 
mutated in the T3SS and avirulent pathogens 

Plants defend themselves against microbial invasion by two layers of defense responses. 

The first line of active defense is induced after PAMPs perception (PTI). The second is induced 

after effector recognition by the plant through resistance proteins (ETI) (Hein et al., 2009). 

Different pathogen strains impaired in the first or the second kind of pathogen elicitor are 

available to specially trigger one particular type of resistance response in plants. In order to 

dissect further MPK4 function in plant defense responses, I used Pst DC3000 hrcC mutant 

defective in the T3SS, and is then impaired in effector delivery. Pst DC3000 hrcC induces 

mainly PTI. I used also an avirulent strain of Pst DC3000 expressing the effector AvrRps4. 

AvrRps4 is a bacterial effector known to suppress PTI and recognized in Arabidopsis by the 

TIR-NB-LRR RPS4 receptor to mainly trigger ETI (Wirthmueller et al., 2007). Using these two 

strains, we aimed to investigate further in which layer(s) of the plant defense response MPK4 is 

involved. 

Similarly than with virulent Pst DC3000, 4 week old plants were spray-inoculated with a 

bacterial suspension of Pst DC3000 HrcC (1×108 cfu/ml in 10 mM MgCl2) and bacterial titers 

quantified at 0 and 3 days post inoculation. MPK4D198G/E202A plants were significantly more 

susceptible (P ≤ 0.05, Student’s t test) than WT plants (Figure VII.4). In a second set of infection 

assay, I used the Pst DC3000 AvrRps4 (1×108 cfu/ml in 10 mM MgCl2) bacterial strain. At 3 

days post inoculation, the MPK4D198G/E202A lines showed more disease symptoms such as leaf 

yellowing and necrosis than WT-MPK4 lines or Col-0 (Figure VII.5A). This phenotype was 

more pronounced in eds1 mutant plants. Bacterial quantification confirmed that MPK4D198G/E202A 

lines are, like eds1, significantly more susceptible to Pst DC3000 AvrRps4 (P ≤ 0.01, Student’s t 

test) which allowed between 1.5 and 2 log unit increase of bacterial growth compared with Col-0 

and the WT-MPK4 complemented lines (Figure VII.5B). The recognition of the AvrRps4 protein 

in MPK4D198G/E202A lines does not result in a resistance reaction like in WT plants. The 

development of cell death was further examined in the different lines using lactophenol trypan 

blue staining of leaves at 3 days post inoculation (Figure VII.5C). MPK4D198G/E202A plants 

displayed enhanced staining usually corresponding to cell death compared to Col-0 plants and 

WT-MPK4 lines. The necrosis observed might be due to the resistance triggered by RPS4-



 

 

 

 

 

 

Figure VII.4: PTI response in CA-MPK4: Four week-old plants expressing WT (WT-K4.2 and 3) or 

MPK4
D198G/E202A

 (DE-K4.1, 2 and 4) were spray inoculated with PstDC3000 HrcC and bacterial titers 

from 4 technical replicates were determined 2h (dark grey bars) or 3 days (light grey bars) post infection 

(at least 2 biological replicates were performed for each line). 

  



 

Figure VII.5: ETI response in CA-MPK4: A. Disease symptoms observed on 4 week-old plants at days 

3 post infection with PstDC3000 AvrRps4. B. Bacterial titers determined 2h (dark grey bars) and 3 days 

(light grey bars) on WT (WT-K4.2) or MPK4
D198G/E202A

 (DE-K4.1, 2 and 3) together with Col-0 and eds1-

2 mutant after spray inoculation with PstDC3000 AvrRps4. C. Visualization of dead cells with trypan 

blue staining in leaves of 4 week old plants after infection with PstDC3000 AvrRps4. 
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mediated recognition, and therefore reflect an enhanced HR, it could alternatively reflect the 

enhanced disease symptoms due to higher bacterial colonization. 

To answer this question, I examined the reaction of the different MPK4
D198G/E202A 

lines to a 

TIR-NB-LRR mediated resistance of a distinct biotrophic pathogen, the Oomycete 

Hyaloperonospora arabidopsidis (Hpa). MPK4
D198G/E202A 

lines were tested for RPP4-mediated 

resistance by inoculating with Emwa1 isolate of Hpa. The RPP4 gene is present in the 

Arabidopsis Col-0 ecotype and absent in Ws-0, and therefore Hpa Emwa1 is avirulent in Col-0 

and virulent in Ws-0 (Slusarenko & Schlaich 2003). 2 weeks-old seedlings were spray inoculated 

with an Hpa conidiospore suspension and 6 days after inoculation leaves were stained with 

lactophenol trypan blue to visualize pathogen growth and plant cell death. As shown in Figure 

VII.6, WT-MPK4 lines produced discrete HR lesions as well as some trailing necrosis at 

pathogen infection sites, similar to those observed in the Col-0 leaves. MPK4
D198G/E202A 

lines 

showed reduced resistance to Hpa, manifested by increased trailing necrosis surrounding 

pathogen hyphae. Cell death lesions in mpk4 mutant were very important, demonstrating, as 

previously reported (Petersen et al., 2000), the deregulation of cell death programs. As expected, 

eds1 mutant and Ws-0 plants showed enhanced susceptibility manifested by the free hyphae 

growth and spore production (Holub et al., 1994; Coates and Beynon, 2010). These results lead 

us to conclude that the enhanced cell death observed after Pst DC3000 AvrRps4 infection on 

MPK4
D198G/E202A 

lines is not due to a deregulation of the hypersensitive response but rather 

reflects the hyper susceptibility of the plant resulting in a cell necrosis. 

Taken together, these results indicate that MPK4 is not only involved in PTI like it was 

described before (Petersen et al., 2000), but could also play a role in ETI. 

 

 

 

 

 

 



 

Figure VII.6: Resistance phenotypes of MPK4
D198G/E202A

 lines and the corresponding controls (mpk4 

Col-0, Ws-0, eds1.2 and WT MPK4: lines WT-K4.1 and 2) to H. parasitica Emwa1 (RPP4): 

Visualization of pathogen growth and dead cells with lactophenol trypan blue staining in leaves of 2 

week-old plants, 6 dpi with avirulant H. parasitica Emwa1. HR: hypersensitive response associated cell 

death; her: enhanced HA; TN: trailing necrosis; fH: free pathogen hyphae. 

  



Chapter VII – MPK4 function in plant pathogen responses 

   

89 

 

D.  CA-MPK4
 
transgenic lines under-accumulate SA in response to pathogen 

challenging 

mpk4 plants are severely dwarfed and exhibit constitutive systemic acquired resistance 

(SAR) linked to an elevated amount of salicylic acid (SA). The fact that reducing the endogenous 

SA levels via the expression of a bacterial salicylate hydroxylase gene (nahG) rescues the 

majority of the mpk4 mutant phenotypes, indicates that the elevated SA levels largely account for 

these phenotypes (Petersen et al., 2000). 

We then tried to understand if the impaired defense responses in the MPK4
D198G/E202A

 

expressing lines were linked to SA hormone miss-accumulation. SA amount was monitored in 4 

week old plants without any treatments, 24 hours after Pst DC3000 AvrRps4 inoculation or after 

buffer spraying (mock MgCl2) (Figure VII.7A). In untreated plants, the SA levels were half less 

in MPK4
D198G/E202A

 lines compared to Col-0 and WT-MPK4 lines. This indicates that 

constitutive activation of MPK4 decreased furthermore the residual SA level below the normal 

average. 24 hours after Pst DC3000 AvrRps4 spray inoculation, we observed a 30% decrease of 

SA accumulation in MPK4
D198G/E202A

 lines compared to control plants. This result points to the 

negative effect of MPK4 over-activation on SA accumulation and could therefore explain the 

enhanced disease response to the biotrophic pathogen we observed. 

SA accumulation in mpk4 is known to induce PR1 gene expression (Petersen et al., 2000). 

The expression of some PR gene was then investigated using semi-quantitative PCR technology, 

before and after Pst DC3000 infection in MPK4
D198G/E202A 

and WT-MPK4 plants. PR1 transcript 

appears to accumulate half less in the MPK4
D198G/E202A 

lines compared to Col0 and to WT-MPK4 

plants (Figure VII.7B). More genes were tested in a quantitative RT-PCR like PDF1.2, SID2, 

PDF1.2 and EDS1, however the results were not really convincing and not reproducible. This 

might be due to high expression variability between the different lines hiding the effect triggered 

by CA mutations. Nevertheless a tendency to a reduced expression of PDF1.2, PAD4 and EDS1 

was noticed (data not shown). 

 



 

Figure VII.7: Quantification of salicylic acid (SA) content and PR1 gene expression in CA-MPK4 

lines: A. SA (ng/g fresh weight+/-SE) was measured in leaves of 4 week-old plant expressing WT MPK4 

(WT-K4.1 and 2) or MPK4
D198G/E202A

 (DE-K4.1, 2 and 3) with Col-0 as control before (T0) and after 

spray inoculation with Pst DC3000 AvrRps4 or the mock treatment (MgCl2). B. Accumulation of mRNA 

in Col-0 and lines expressing WT MPK4 and MPK4
D198G/E202A

 24h after PstDC3000 infection. 
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E.  CA-MPK4 lines have an increased susceptibility to the nectrotrophic 

pathogen Altenaria 

In contrast to SA pathway, the induction of jasmonate responsive genes is blocked in mpk4 

plants (Petersen et al., 2000), suggesting that while MPK4 negatively regulates SA-mediated 

defense, the SA/JA balance being affected in favor of SA in the mutant, results in negative 

regulation of JA-mediated defense responses. To answer the question whether the decreased SA 

hormone level in MPK4
D198G/E202A

 lines, due to the increased activity MPK4 could affect the JA 

mediated resistance pathway, I investigated the response of MPK4
D198G/E202A 

lines to the 

necrotrophic fungus Altenaria brassicicola (Figure VII.8).  

Infection was performed on 6 week old plants to have large rosette leaves by dropping 

spore suspension (ca. 5x10
5 
spores/ml) on the leaf blades. Leaves were then cut at the base of the 

petiole and kept in agar media to ensure high humidity. Col-0 plants, which are resistant to A. 

brassicicola, developed small necrotic spots at the infection sites. To quantify the level of 

damage, the size of the necrotic area around every infection site was estimated 7 days post 

infection (dpi). Four different categories of damage were distinguished based on a modified 

evaluation system published (Brader et al., 2007): 

Necrosis type I: the necrotic area is smaller than the droplet size 

Necrosis type II: the necrotic area covers the infection site 

Necrosis type III: the necrotic area expand the infection site 

Necrosis type IV: about 25% of the leaf area start show necrosis 

We observed that both MPK4
D198G/E202A

 lines tested tend to display an increased sensitivity 

towards A. brassicola compared to Col-0 and WT-MPK4 plants. They both have developed more 

necrosis of type III and IV compared to the WT plants indicating that the pathogen can easily 

grow on the leaves. 

 

 

 

 



 

Figure VII.8: CA MPK4 lines to Altenaria brassicola infection: quantification of damage by 

evaluation of the necrotic area size (see lesions categorie). Shown is a summary of the results of 3 

independent experiments. 
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F.  Discussion 

In this last chapter I describe my experiments using the MPK4D198G/E202A lines to 

understand MPK4 function in defense responses using mainly some well characterized strains of 

biotrophic and necrotrophic pathogens. My results concerning the negative role of MPK4 in 

response to PAMP confirm the previously published data on MPK4 function. These studies took 

mainly advantage of mpk4 and related mutants but as their phenotypes are very severe, 

suggesting a long cascade of events triggered by the KO mutations, the results are still matter of 

debate in the scientific community. My study correlates with these data, but is based on WT-

looking complemented lines in which the mutation-induced perturbation is less deleterious. This 

is a proof of concept that CA mutations in MPK4 are very useful tool to address their function in 

planta. 

1. CA-MPK4 lines respond to PAMP 

Growth inhibition by flg22 was not statistically affected in these lines, if we consider the 

weight of the plantlets after 7 days. Given the response variability between plants of the same 

genotype, a mild difference between lines might be difficult to observe. However, 

MPK4D198G/E202A lines exhibited reproducibly brown tissue compared to the WT lines when 

grown with 1µM flg22. Using a cell death specific dye, the brownish tissues were all stained but 

we don’t know whether this represent really a disease necrosis or plant programmed cell death in 

response to the PAMP. Characterization of molecular marker of specific cell death or the use of 

specific mutants could help to clarify this feature. 

It is not clear in the literature how is growth inhibition related to the induction of defense 

response. The stress inhibition of growth could be related a redirection of the available cellular 

resources to defense processes or to a programmed repression of processes important for growth 

(Gomez-Gomez et al., 1999). It was already proposed that some elicitors could increase the 

secondary metabolites (Chaudhuri et al., 2009), the brownish tissues suggest an increased 

accumulation of flavonoid and phenolic compounds. Flavonoids and polyphenols are important 

antioxidants compounds acting as signal molecules and have defensive or stimulant roles in the 

plant. MYC2 transcription factor, which is an important modulator of JA-mediated responses, 
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was shown to be a positive regulator of important components in JA-mediated flavonoid 

biosynthesis (Dombrecht et al., 2007). 

It could be interesting, to test, after having directly confirmed the metabolite over-

accumulation in MPK4D198G/E202A lines, if this response is dependent on JA and related to a 

balance change in the SA/JA content. These questions could be answered by measuring the JA 

content in the MPK4D198G/E202A plantlets after flg22 inhibition. 

2. MPK4 is a negative regulator of PTI 

Although MPK4 is activated by PAMPs, the phenotype of mpk4 suggests that MPK4 is a 

negative regulator of defense responses. mpk4 mutant has an elevated level of SA, accumulates 

PR transcripts and has increased resistance toward biotrophic pathogens like Pseudomonas 

syringe and Hyloperonospora parasitica, but increased susceptibility to the necrotrophic 

pathogen Altenaria brassicola (Petersen et al., 2000; Brodersen et al., 2006). Biochemical 

studies (Qiu, Fiil et al., 2008) also suggest that MPK4 in resting conditions sequesters its 

substrates MKS1 and the transcription factor WRKY33. After elicitation, MKS1 is 

phosphorylated and WRKY33 released. WRKY33 can then activate camalexin biosynthesis 

pathway via the regulation of PAD3 gene expression. However, this module is also functional as 

in the absence of MPK4, WRKY33 is permanently released from the complex. 

Using the hemibiotrophic pathogen Pst DC3000 WT strain and the T3SS mutant strain 

hrcC, we saw an opposite phenotype of mpk4 in the MPK4D198G/E202A lines. This finding brings 

more evidence that MPK4 is a negative regulator of basal defense because in CA lines MPK4 is 

already active. This result does not really fit Mundy’s model, because, in our transgenic lines, we 

would expect MPK4 to constitutively phosphorylate its substrate MKS1 and WRKY33 to be 

permanently released from this complex to activate PAD3 expression. In this situation 

MPK4D198G/E202A lines would have been more resistant to Pseudomonas like the mutant plants, 

because of the importance of camalexin secondary metabolites in the resistance to biotrophs 

(Glazebrook et al., 1996; Glazebrook et al., 1997). 
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3. Is MPK4 targeted by effectors to shut down defense responses? 

An avirulent strain of Pst DC3000 (AvrRpm1) activates MPK4 in the same way a virulent 

strain does (Qiu, Fiil et al., 2008). This result was never interpreted by the possible implication 

of MPK4 in ETI response.  

MPK4D198G/E202A transgenic lines were more susceptible toward all strains of Pst DC3000 

including the avirulent strain Pst DC3000 AvrRps4. Because MPK4 is constitutively active in 

these lines, we concluded that MPK4 could also function in RPS4-AvrRps4 mediated resistance. 

Moreover MPK4D198G/E202A lines sustain the development of the avirulent Hpa Emwa1 hyphea 

and exhibited trailing necrosis. These results suggest that CA-MPK4 lines are impaired in ETI 

response mediated by RPP4 receptor too. 

To circumvent PTI successful pathogens have evolved T3SS system to inject effector 

proteins. However virulent pathogens face the parallel evolution of plant receptors and 

continuously have to develop new mechanisms to shut down basal defense (Jones & Dangl 

2006). Recently several studies pointed to a suppression of PTI by many effectors and this very 

often via targeting component leading to the suppression of MAPKs activation (MAP3K or 

plasma membrane receptor kinase associated protein) in response to PAMPs (He et al., 2006; 

Crabill et al., 2010; Wu et al., 2011). Some effector proteins can even straightforwardly target 

MAPKs. MPK4 was recently shown to be directly targeted by the effector protein AvrB from P. 

syringae (Cui et al., 2010). AvrB interacts with and phosphorylates MPK4 leading to hormone 

signaling disturbance in favor of JA signaling. 

 Furthermore RPS4 is the only Arabidopsis TIR-NB-LRR protein which has been shown to 

act in the nucleus and signal entirely through EDS1 for activation of downstream events 

(Wirthmueller et al., 2007). In our case MPK4 is active and EDS1 gene is likely down regulated 

due to the lack of SA. The MPK4D198G/E202A sensitivity in response to Pst DC3000 AvrRps4 

could be then explained by the under-accumulation of SA. Whether AvrRps4 plays with 

hormone balance like in the case of AvrB is not known, because gene expression data are not 

really reliable to draw conclusion regarding this aspect. It could be more informative to monitor 

JA hormone content in our lines in order to understand whether MPK4 has a role in hormone 

balance making it a target of pathogen effectors. mpk4 phenotype could also be a pleiotropic 

consequence of the constitutive SA accumulation like in many mutants (Kirik et al., 2001; 
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Yoshida et al., 2002; Meng et al., 2009). Unfortunately gene expression data are not really 

conclusive so far, even if we saw a tendency of down regulation of PDF1.2, PAD4 and EDS1 

upon challenging with PstDC3000 AvrRps4. A full genome transcriptome analysis of 

MPK4D198G/E202A plants in resting conditions has also been performed in order to have a clue 

about downstream events controlled by MPK4 activation. In the MPK4D198G/E202A line, only 9 

genes were miss-regulated compared to MPK4wt lines (data not shown). This result was 

surprising considering that mpk4 mutant showed about 900 genes miss-regulated (unpublished 

data). A plausible explanation for this result could be that the level of activation of MPK4 in 

MPK4D198G/E202A lines did not reach the threshold necessary to induce gene expression changes. 

We were although able to see that these lines behave in an opposite way compared to the mutant 

regarding resistance to biotrophic pathogens. 

 

4. Since SA is lower in CA-MPK4 why these lines are more susceptible to necrotrophs? 

MPK4D198G/E202A lines appear to be more sensitive to Altenaria infection than WT-MPK4 

plants. This result is not in accordance with previous data published by Mundy’s group, showing 

that mpk4 mutant is more susceptible to Altenaria due the decreased JA level (Brodersen et al., 

2006). One obvious explanation is that Mundy and co-worker used mpk4-1 mutant in the 

Landsberg ecotype whereas our line are built in Col-0 ecotype, both ecotypes behaving 

differently. Another explanation is that mpk4 mutants being very sick, the development of 

necrotrophic pathogen, despite constitutively risen defenses, is favored by the spontaneous cell 

death phenotype. 

MPK4 is proposed to be involved in the regulation of ET/JA dependant defenses. And this 

based on the reduced PDF1.2 mRNA induction in response to JA and that MPK4 activity is 

required for this induction (Brodersen et al., 2006). Moreover it was shown that reducing the SA 

content in mpk4 mutant plants with NahG expression does not recover the sensitivity of mpk4 to 

Altenaria infection. Additional support indicating that MPK4 could be somehow a positive 

regulator of the JA pathway comes from investigation of AP2C1, an Arabidopsis Ser/Thr 

phosphatase of type 2C. This phosphatase is considered as novel stress signal regulator that 

inactivates MPK4 and MPK6. AP2C expression is pathogen and wound induced. Arabidopsis 
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ap2c1 mutant plants produce significantly higher amounts of JA upon wounding and are more 

resistant to phytophagous mites (Schweighofer et al., 2007). Resistance to A. brassicicola was 

shown to be JA dependent, as coi1 mutants defective in JA signaling (Feys et al., 1994) shows an 

increased sensitivity against the fungal pathogen (Thomma et al., 1998; Vijayan et al., 1998). 

MPK4D198G/E202A plants appear to be slightly more susceptible to Altenaria infection. This result 

is unexpected, since the reduced SA levels in MPK4D198G/E202A lines, inducing a normal or even 

elevated JA hormone levels, should triggers resistance to necrotroph pathogens. This result is in 

agreement with the sensitive phenotype of MKK2EE in response to Altenaria (Brader et al., 

2007), MKK2 being one of the activators of MPK4 in the MEKK1-MKK1/2-MPK4 cascade. 

The authors of this study showed that this phenotype is linked to compromised SA and JA 

production even if the genes involved in these hormones were found to be up-regulated in the 

MKK2EE plants (Brader et al., 2007). The picture of necrotrofic pathogen interaction with plant 

is complex. The fact that some pathogens can manipulate hormonal balance for their own 

purposes, by producing coronatine for instance, which is a JA mimicking molecule (Loake & 

Grant 2007) or through effector proteins (Cui et al., 2010) has to be taken into account. 

Several studies pointed to the importance of camalexin, an indolic secondary metabolite 

whose amount is controlled by MPK4 activity, in the resistance to biotrophic pathogen (Ren et 

al., 2008) and more precisely to Altenaria (Thomma et al., 1999; vanWees et al., 2003). As 

attenuation of resistance of A. thaliana against Alternaria was shown to be linked to a deficiency 

of the phytoalexin, camalexin, or insensitivity to jasmonate (Thomma et al., 1998; Thomma et 

al., 1999). Additionally comparative analysis using 24 Arabidopsis ecotypes indicated that there 

was a close relationship between the resistance against Alternaria and camalexin production 

(Kagan & Hammerschmidt 2002). All this raise the question to whether the presumed model of 

the constitutive regulation of PAD3 by MPK4 could explain the MPK4D198G/E202A susceptibility 

phenotype toward necrotrophic pathogens. 

This leads us to conclude like it was recently proposed by Robert-Seilaniantz and co-

workers that hormonal balance and cross talk are not a simple story of SA inhibiting JA 

production and vise versa (Robert-Seilaniantz et al., 2011). So far, studying SA and JA/ET-

mediated defense responses was often based on the translation of expression levels of marker 

genes to predict the trade-offs between necrotroph and biotroph resistances. This expression is 

not always correlated with increase in hormone level (Brader et al., 2007). 
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Chapter VIII -  General conclusions and perspectives 

A.  Main results of my work  

In this work, I developed a strategy to identify constitutively active variant of plant 

MAPKs with MAP2K-independent increased activity. In a genetic screen in yeast, we used 

Arabidopsis MPK6 as a model to identify mutations which trigger constitutive MAPK activity. 

We identified three sets of mutations. Among these interesting mutations, the mutations in 

MPK6 residue Y144 was known. The residue is located in the ATP-binding pocket and is 

homologous to the well described Gatekeeper residue of the mammalian MAPK ERK2 (Emrick 

et al., 2006). We found also a new combination of two mutations D218G and E222A which 

activates intrinsically the kinase and does not depend on upstream activation. Introduction of the 

corresponding mutations in MAPKs belonging to different other subgroups often resulted in 

constitutive activation. This suggests that the mutations that we identified provide a general 

strategy to render MAPK constitutively active. 

To show that this strategy is useful to understand MAPK function, I choose to work on 

MPK4 and generated lines in which the endogenous MPK4 gene is replaced by gene carrying 

CA mutations. Inexplicably, only the MPK4D198G/E202A lines showed a systematic increase of 

MPK4 activity in planta. This result could come from the cellular phosphatase activities able to 

dephosphorylate the activation loop of MPK4Y124C but not the diverging one of MPK4D198G/E202A. 

This suggests that all CA mutations in a MAPK gene will not always activate the kinase in planta 

and will need to be carefully characterized before doing any further functional investigation. The 

final proof that the MPK4 mutants are functionally constitutively active in plant cells, come from 

the fact that MPK4D198G/E202A construct is also able to complement the mekk1 phenotype, which is 

defective in the upstream activation of MPK4. 

This work on model plant MAPKs is now presented in a manuscript (Chapter IX). It also 

led me test the CA mutations in a MAPK belonging to other kingdoms: I showed that mutations 

of the activation loop of the mammalian ERK2 also confer CA. Collaborations were established 
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with Robert Hipskind (Institut de Génétique Moléculaire de Montpellier) to test whether this 

mutant is useful to understand downstream events controlled by ERK2. 

B.  Using CA MPK4 plants to better understand MPK4 function in stress and 
development… 

My proof-of-concept work on CA MPK4 lines provides also information on MPK4 

function in stress responses. MPK4 is a well studied kinase but its exact function remains 

unclear: on one hand, together with MPK3 and MPK6, MPK4 is activated by pathogens and 

abiotic stresses (Suarez-Rodriguez et al., 2010). On the other hand, genetic evidence suggests 

that MPK4 negatively regulates pathogen defenses (Petersen et al., 2000; Brodersen et al., 2006). 

The fact that mpk4 mutants but also mekk1 and mkk1mkk2, are dwarfed without being challenged 

by any stress suggests that the activity of MEKK1-MKK1/MKK2-MPK4 cascade is required for 

a stress-independent processes. The picture is even more complex since MPK4 belongs also to a 

second independent cascade involved in cytokinesis its cognate MAP3K and MAP2K being 

ANP1/ANP2/ANP3 and MKK6 (Kosetsu et al., 2010; Takahashi et al., 2011; Zeng et al., 2011). 

New reports points also to its physical association with microtubule to regulate their bundling 

(Beck et al., 2010). CA-MPK4 lines provide interesting data to better decipher the kinase 

function. We are actually starting collaboration with Jozef Samaj (Palacky´ University, Czech 

Republic) to examine the microtubule organization in the MPK4D198G/E202A lines. 

The WT aspect of CA-MPK4 plants confirms the new role of MPK4 in developmental 

processes, this new function might not require the same level of activity as for stress response. 

We showed that MPK4D198G/E202A lines show an opposite phenotype to some of the mpk4 traits 

published previously: plants expressing MPK4D198G/E202A instead of the WT form are more 

susceptible to Pst DC3000 and to two strains used to evaluate the relative contribution of PTI 

(Pst DC3000 HrcC) and ETI (Pst DC3000 AvrRPS4) in the plant responses to pathogens. This 

suggests that MPK4 has a role in both types of defense responses or/and that PTI and ETI are not 

independent as they are usually presented. Other hormone measurements will help to clarify 

MPK4 function in hormonal balance (Brodersen et al., 2006). Similar results were indirectly 

obtained with the constitutive expression of the P.syringae effector avrB in Arabidopsis, which 



Chapter VIII - Conclusions and perspectives 
   

98 
 

appears to activate MPK4 and therefore increase susceptibility to Pst DC3000 (Cui et al., 2010). 

With the necrotrophic pathogen Altenaria, both CA-MPK4 and mpk4 knock out behave in the 

same way. Suggesting that even though the SA level in CA-MPK4 decreased, it did not affect JA 

accumulation. 

The mekk1 MPK4D198G/E202A lines generated at the end of my PhD constitute one the most 

promising tools developed during my work. It allows the genetic dissection of MPK4 pathways. 

The fact that these plants have a WT phenotype suggests that MPK4D198G/E202A activity, despite 

reaching only 10% of the stress activated level, is enough to complement all the MPK4-

dependent developmental functions. Interestingly, in the mekk1 MPK4D198G/E202A background, the 

output activity of MEKK1-MKK1/MKK2-MPK4 cascade should not be increased anymore by 

stresses. Thereby, these plants constitute the first true mutant of this PAMP-activated MEKK1-

MKK1/MKK2-MPK4 cascade in a background for which all the other MPK4 pathways are 

functional: these lines are a useful tool to characterize further the MEKK1-MKK1/2-MPK4 

cascade in PAMP response. We will investigate whether the PAMP response, in terms of MPK4 

further activation (observed in the CA-MPK4 lines), maintain or not the regulation of the genes 

previously proposed to be downstream of MPK4, basal immunity responses (ROS production, 

callose deposition…) in the absence of MEKK1. 

One step further, the strategy to complement a mutant by a downstream CA MPK4 is a 

very promising strategy to provide genetic argument that two elements, one being MPK4, are 

working in the same signaling pathway. In the laboratory, this strategy will be used in two 

scientific projects: 

- We are working on BAKl and BKK1, two receptor-like-kinases of the SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE family. The bakl/bkk1 double mutant shows a 

phenotype of spontaneous cell death and seedling lethality (He et al., 2008) similar to the 

mutants in MEKK1-MKK1/2-MPK4 cascade (Bueso and Hirt, unpublished result). This suggests 

that these receptors could be involved in the same linear pathways, as BAK1-BKK1 receptors 

were indeed demonstrated to be part of the PAMP receptors activating MAPK pathways (Ranf et 

al., 2011; Roux et al., 2011). But given the multiple functions of BAK1-BKK1 (including 

hormonal perception (He et al., 2008) and the fact that once again the double mutant is very sick, 

the demonstration is not totally done yet. bak1 bkk1 MPK4D198G/E202A plant phenotype would 

provide very interesting information regarding their function in defense response. 
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- Another similar promising experiment would allow clarifying the relationships between 

MAPKs and AGC kinases. Our laboratory works on lines over-expressing OXI1 (Fozani et al., 

2011). These plants show a very sick mpk4-like phenotype and some contradictory experiments 

suggested that OXI1 and MAPK could regulate each other. The cross of OXI1 over-expressing 

lines and CA-MPK4 lines could also help to better understand the relationship between these 

signaling modules. 

C.  Will the CA MAPK strategy be helpful for the two other stress activated 
MPK3 and MPK6? 

In response to PAMPs it was extensively shown that together with MPK4 pathway a 

second MAPK cascade involving MAP2K4/5- MPK3/6 is activated. This cascade is often 

presented as independent but is likely not. CA-MPK4 lines may be also used to answer the 

question of how is this cascade working in absence or presence of PAMP. It was recently shown 

that WRKY33 transcription factor which was proposed to be an effector of MPK4, is directly 

phosphorylated and modulated by MPK3 and 6 to control PAD3 expression in response to 

biotrophic infection (Mao et al., 2011). 

Moreover, we are actually generating and characterizing CA-MPK3 and CA-MPK6 lines 

under native and inducible promoters in order to investigate the part of defense response 

controlled by each of these MAPKs in more details. We expect these plants to be more resistant 

to stresses including biotic ones. They will bring new information about the way plants deals 

with biotrophic versus necrotrophic pathogen challenging at the PTI level. These plants, if they 

are significantly more tolerant to stresses, are also promising material for application in 

agriculture. During my PhD, we tried to patent the CA mutations but the proof of concept on a 

MAPK which regulates positively defence responses remains to be done. 
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D.  17 other MAPKs without clear functions… 

One of the main goals of my PhD work was to find a strategy to activate all Arabidopsis 

MAPKs. CA mutations are a very nice tool that we have now in hands and that we will use to 

study the function of the 17 remaining MAPKs of Arabidopsis. One of the major advantage of 

studying MPK3, MPK4 and MPK6 was the possibility to activate them using PAMPs. The 

function of the remaining MAPKs is not really characterized, mainly because of the difficulty to 

monitor their activity in planta and because the signal activating their pathways is not identified 

yet. Studying mutants gives obviously important information but the results are based on the 

absence of events, consequence of the loss-of-function allele. As shown for MPK4, using the 

mutant it is still not easy to understand its real function in defense response, for instance. By 

using the CA mutations, it will be possible to directly distinguish what are the downstream 

events controlled by a single MAPK. I initiated at the end of my PhD the cloning of all the 

remaining MAPKs and created for each of them the corresponding CA mutants. Vectors for 

protoplast expression are ready and the strategy will consist to identify the downstream events 

controlled by their activity using genome wide transcriptome analysis. 
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Chapter IX -  Supplemental Material – Manuscript of the 
article “Constitutively active kinases as a new tool for 
analyzing MAPK pathways: proof-of-concept that Arabidopsis 
MPK4 is a negative regulator of defense” 

Souha Berriri, Ana Garcia, Wilfried Rozhon, Stephanie Pateyron, Jeffrey Leung, Heribert 
Hirt, Jean Colcombet 

 
ABSTRACT 
Plant Mitogen Activated Protein Kinases (MAPKs) are known to be involved in various 

important processes including stress signaling and development. However, for the majority of the 
20 MAPK genes found in Arabidopsis genome no function has been assigned yet. In the past, 
mutations triggering constitutively active protein kinase were a very successful approach to 
decipher their role. This approach failed for MAPKs since the necessary residues remained 
unclear. In order to identify mutations triggering constitutive MAPK kinase-independent activity 
in MAPKs, we developed a functional genetic yeast screen. We identified several mutations that 
render MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity 
towards both upstream activators and downstream substrates. As a proof-of-concept, MPK4 was 
investigated. In contrast to mpk4 knock out plants, which show increased levels of salicylic acid 
(SA) and pathogen resistance against Pseudomonas syringae, CA-MPK4 plants show decreased 
SA and resistance than wild type plants. These results prove that MPK4 is a negative regulator of 
plant defense and that the use of constitutively active MAPKs adds an important tool for signal 
transduction research.  

 
INTRODUCTION 
Plants are subjected to a large number of environmental challenges and have to adapt their 

metabolism, growth and development accordingly. For this purpose, plants contain many genes 
encoding for proteins involved in signal perception and transduction (1). Among which, kinases 
and phosphatases are particularly abundant: 4% of Arabidopsis thaliana genes code for kinases 
(2) compared with 1,7% in human and 2% in yeast. It is estimated that at least 30% of proteins 
are phosphorylated, but this value is probably underestimated by far. MAPKs (Mitogen 
Activated Protein Kinase) pathways define key functional signaling modules conserved between 
kingdoms, and are usually composed of 3 kinases able to sequentially activate each other by 
phosphorylation: a MAP3K (MAP2K Kinase) activates a MAP2K (MAPK Kinase) which in turn 
activates a MAPK. In plants, MAPK signaling cascades are involved in various processes like 
development, hormone signaling and stress responses (3, 4). Among the 20 putative MAPKs 
found in Arabidopsis, extensive studies showed that MPK3, MPK4 and MPK6 are major 
regulators of innate immune response. Several studies revealed that MAPK cascades are 
branched pathways (3-5) and that a given MAPK can be involved in multiple processes. MPK4 
for instance, originally described as a stress activated kinase (6-9), was recently shown to be 
involved in cytokinesis and cytoskeleton organization (10-12). 

Pathogen elicitors are able to activate MPK3, 4 and 6. Flg22, a 22 amino acid peptide derived 
from Pseudomonas flagellin, provided a very powerful model to decipher these signaling 
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pathways and exemplify the complexity of MAPKs cascades. Flg22 is able to initiate plant 
defense responses through its binding to the receptor FLS2-BAK1 and activate two MAPK 
pathways. One of these MAPK cascades is defined by the MAP2Ks MKK4 and MKK5, which 
act redundantly to activate the MAPKs MPK3 and MPK6 (13). Through phosphorylation of 
several identified targets (14-17), this pathway leads to the activation of plant defense such as 
Pathogen-Related (PR) gene expression, ethylene synthesis, callose deposition, ROS production, 
etc.  

Flg22 activates also a parallel cascade defined by MEKK1, which activates MKK1 and 
MKK2, that act redundantly on MPK4. These kinases were demonstrated to interact together 
both in yeast (9, 18) and in planta (19). Additionally, in mekk1 or mkk1mkk2 backgrounds, the 
flg22-induced activation of MPK4 is abolished (19-21). The double-mutants mkk1mkk2 and the 
two single mutants mekk1 and mpk4 exhibit similar phenotypes: they are dwarf plants over-
accumulating Salicylic Acid (SA) and Reactive Oxygen Species (ROS) and show spontaneous 
cell death on leaves and constitutive expression of PR genes (19). The dwarf phenotype is 
partially reversed by expression of the bacterial SA hydrolase nahG or by mutations in genes of 
SA biosynthesis (8, 21-23). Transcriptomic analysis confirmed the similarities of the mutants and 
their functions in SA and ROS signaling (24). This molecular phenotype largely accounts for the 
mutant phenotypes to pathogen infection. For example, mpk4 is resistant to the biotrophe 
Pseudomonas syringae but sensitive to the necrotrophe Altenaria brassicola (6, 8).  

Recently, the number of publications revealing a function of MAPK cascades in pathogen 
signaling increased greatly. A set of three MAPKs -MPK3, MPK4 and MPK6- was found to be 
activated upon pathogen interaction, and converge to the same defense mechanisms relaying on 
common regulating components (6, 17, 23). The functions of the 17 others MAPKs are often still 
unclear. A way to sort out the role of a particular kinase in physiological processes is the use of 
constitutively active (CA) kinase versions. So far the extensively used stress-independent way of 
activating MAPKs is hitherto the utilization of CA MAP2Ks. CA-MAP2Ks are obtained when 
the two phospho-sites in the activation loop are mutated into acidic amino acids (25). 
Unfortunately, this strategy is not successful for MAPKs. In this work, we adapted a genetic 
screen in yeast to isolate constitutively active MAPKS. We identified two amino acid residues 
which render MAPKs constitutively active in bacteria, yeast and in planta. As a proof of 
concept, this strategy was used to investigate the physiological function of MPK4. 

 
RESULTS 
 
Functional complementation of the yeast pbs2∆hog1∆ allows the identification of CA- 

MPK6 
To identify mutations triggering constitutive kinase activation, we adapted a yeast functional 

expression screen developed by Engelberg and co-workers (26). Our laboratory has previously 
shown that AtMPK6, together with the MAP2K AtMKK2, rescues the salt sensitivity of a yeast 
strain mutated in the MAP2K PBS2 and the MAPK HOG1 (9). In the absence of MKK2, MPK6 
does not restore the pbs2∆hog1∆ growth on salt, indicating that MPK6, without its upstream 
MAP2K, is not functional. In these conditions, mutations triggering MPK6 CA should restore the 
pbs2∆hog1∆ salt growth. We performed a screen on pbs2∆hog1∆ yeast expressing a randomly 
mutated MPK6 ORF population. When replicated on 400-600 mM NaCl, only very few colonies 
were able to grow. To exclude MPK6-independent recovery of salt tolerance, their plasmids 
were extracted, re-transformed in pbs2∆hog1∆ and the growth on salt confirmed. Finally, 27 
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Figure 1 

Characterization of CA MAPK activity 

A. Kinase activity toward MBP of MPK6 WT and some candidate mutants (containing Y144 

(y), R274 (r) or D218 E222 (ed) mutations) after immuno-precipitation from pbs2∆hog1∆ 

yeast cells using MPK6 antibody. Clone numbers refer to supplemental text. 

B. Kinase activity toward MBP of recombinant MPK6 WT and CA mutants. 

C. Ribbon diagram of ERK2-based MPK6 structure with space field residues identified as CA 

mutations in the yeast screen. Sticks represent T192 and Y194 of the TEY motif.  

D. Kinase activity toward MBP of recombinant MPK4 (C), MPK7 (D), and MPK3 (E and F) 

with CA mutations produced as HIS- (A,B and C) or PERI-HIS-MBP- (D) tagged proteins. 
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MPK6 candidate clones were identified and sequenced, revealing between 1 to 6 residue 
mutations in MPK6 (Supplemental Table 1). Y144C, Y144F and R274H mutations were found 
in 12, 9 and 4 clones respectively, indicating that they are important for pbs2∆hog1∆ 
complementation.  

To confirm that pbs2∆hog1∆ complementation is linked to an increased MPK6 activity, some 
MPK6 mutants were immuno-precipitated from yeast using specific anti-MPK6 antibody. The 
MPK6 activity was subsequently assayed for the ability to phosphorylate Myelin Basic Protein 
(MBP), a common heterologous substrate for MAPKs. Under these conditions, the activity of 
wild type (WT) MPK6 was barely detectable whereas all MPK6 mutants phosphorylated 
efficiently MBP (Fig. 1A). This shows that the MPK6 mutants that are able to complement 
pbs2∆hog1∆ have a higher catalytic activity. 

 
CA-MPK6 candidates have a MAP2K-independent activity 
Sequence analysis of the candidate clones pointed to Y144 and R274 as important residues for 

kinase auto-activity because their mutations were identified in 25 out of 27 clones (Fig. 1B). One 
of the two remaining clones exhibited three mutations including D218G and E222A in the kinase 
activation loop (Fig. 1B). Since the double mutant in theses residues showed high intrinsic 
activity after immuno-precipitation from yeast, we chose to work on Y144C and D218G/E222A 
mutations for further characterization (Fig. 1C). 

To confirm the importance of these residues, we generated the three MPK6 single mutants 
MPK6Y144C, MPK6D218G and MPK6E222A and the double mutant MPK6D218G/E222A without the 
additional mutations obtained in the yeast screen. The respective MPK6 kinases were purified as 
recombinant proteins from Escherichia coli cells, an expression system lacking MAPK 
activators. Whereas MPK6wt did not show significant kinase activity, MPK6Y144C and 
MPK6D218G/E222A strongly phosphorylated MBP (Fig. 1B). In contrast, the single mutations 
D218G and E222A did not increase MPK6 activity suggesting that MPK6D218G/E222A activity is 
not a result of an additive effect of each mutation, but rather of the synergistic combination of the 
two mutations. 

 
Corresponding CA mutations in other Arabidopsis MAPKs trigger hyperactivity 
We performed sequence alignment of the 20 Arabidopsis MAPKs (Supplemental fig. 1). At 

the equivalent position of MPK6 Y144, most MAPKs of the groups A, B and C have a tyrosine 
residue. Despite the fact that the activation loop sequences are not very conserved among 
MAPKs, we also identified the equivalent position of the MPK6 D218G and E222A for the 
groups A, B and C. In order to test if the corresponding mutations trigger autoactivity in the 
other MAPKs, we mutated the corresponding residues of MPK3, MPK4 and MPK7 which are 
MAPKs belonging to sub-groups A, B and C respectively (see Supplemental fig. 1 for positions). 
Hexa-histidine tagged MPK4 and MPK7 WT and mutants were purified from E. coli. We failed 
to purify the 6xHIS-MPK3D193G/E197A, and we expressed it as PERI-His-Maltose Binding Protein 
(Peri-HIS-MBP-) tagged protein. MPK4 and MPK7 CA forms acquired higher intrinsic activity 
than the WT (Fig. 1D and E). The Peri-His-MBP-MPK3D193G/E197A acquired a high catalytic 
activity compared to WT protein (Fig. 1F). But MPK3 activity was not increased by the T119C 
mutation (Fig. 1G). Since MPK3 does not have a tyrosine residue in the MPK6 Y144 
homologous position but a threonine residue instead, we hypothesized that this threonine, like 
the cysteine and phenylalanine substitutions of Y144 in MPK6, allows MAP2K-independent 
MPK3 activity. To test this hypothesis, we created the MPK3T119Y mutant, mimicking the MPK6 
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Substrate preferences and interaction specificities of WT and CA MAPKs 

A. Phosphorylation of the semi-degenerate peptide array by MPK6Y144C and 

MPK6D218G/E222A (1µg.uL of reaction). 

B and C. Combinatory interaction in yeast 2 hybrid of MPK3, 4 and 6 WT and CA forms 

with MKK2 and MKK4 (B) and with VIP1, MKS1 and ERF104 (C). Co-transformed 

single yeast colonies were spotted on control medium (c.) and selective medium 

supplemented with 65mM (B) or 36 mM (C) 3AT (i.). 

Figure 3 

Characterization of mpk4-2  plants complemented with CA MPK4 locus 

A. and B. Kinase activity toward MBP of MPK4-Myc immuno-precipitated from mpk4-

2/mpk4-2 lines complemented with MPK4WT (A and B), MPK4D198G/E202A (A) and 

MPK4Y124C (B). 

C. Morphological phenotype of 5 weeks old mekk1-1/mekk1-1 MPK4D198G/E202A plants 

grown in long days. Arrows point curly leaves. In the growth conditions, mekk1-1 mutants 

barely survive two weeks. 
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WT form, which was expected to have decreased kinase activity. Kinase assays showed a 
decrease in MPK3T119Y intrinsic activity compared to MPK3wt and MPK3T119C (Fig. 1G). 

Overall these results indicate that the residues identified in the yeast screen to activate MPK6 
provide a general strategy to render MAPKs constitutively active. 

 
CA-MAPKs phosphorylate conventional MAPK sites 
To test whether the kinase preference toward the residues surrounding the phosphorylation 

site was not affected by the CA mutations, we took advantage of a semi-degenerate peptide array 
tool (27). This array consists of 198 peptide pools and each pool has as a putative 
phosphorylation site (Ser/Thr) at its central position and is degenerated for all other positions 
except a fixed residue at one of the nine positions surrounding the phospho-site (between -5 to 
+4). The level of phosphorylation of each peptide by the kinase indicates the preferred residues 
for each position surrounding the phosphorylation site. The active MPK6Y144C and 
MPK6D218G/E222A were first tested (Fig. 3A). They both showed an increased phophorylation on 
peptides with proline at position +1 and to a lesser extent to peptides with proline at the -2 
position. Moreover, we saw a preference for charged amino acids at position +2. This result is in 
agreement with MPK6 WT preference determined previously (28). Assays for MPK3, 
MPK3T119C, MPK3D193G/E197A and MPK4Y124C gave similar results indicating that the CA 
mutations do not significantly change the preferences of MAPKs around the phosphorylation site 
(Supplemental fig. 2). 

 
CA-MAPK mutants retain binding specificity toward substrates and activators 
We next used the yeast two-hybrid technique to examine whether the specific interactions 

between MAPKs and known interactors are affected by CA mutations of the MAPKs. WT and 
CA forms of MPK3, 4 and 6 were fused to the GAL4 binding domain and co-expressed in the 
reporter strain together with putative interactors fused to the GAL4 activation domain. In 
accordance to previous reports (14, 15, 29), we observed that CA-MPK3 interacts with VIP1, 
CA-MPK4 with MKS1 and CA-MPK6 with ERF104. In some cases, CA mutations appeared to 
affect the strength of the interactions but not the specificity (Fig. 3B). Similar results were 
obtained with their corresponding activating MAP2Ks (Fig. 3C): CA-MPK3 interacted with 
MKK4, CA-MPK4 with MKK2, and CA-MPK6 with both MKK2 and MKK4. Taken together 
these data indicate that the CA mutations do not change the specificity of the kinases toward 
their cognate MAP2Ks nor to their specific substrates. 

 
MPK4 D198G/E202A complements mpk4 and is hyperactive in planta 
Whereas mpk3 and mpk6 plants do not have obvious morphological phenotype, mpk4 

homozygous plants are dwarfed (8). We took advantage of this phenotype to test whether CA-
MPK4 mutants were able to functionally replace endogenous MPK4. We generated mpk4-2 lines 
transformed with myc-tagged full genomic loci of MPK4wt, MPK4Y124C and MPK4D198G/E202A,   
(further referred to as K4WT, K4Y and K4DE lines, respectively). WT and CA mutant MPK4 
loci restored a WT morphological phenotype (n=6, 10 and 6 respectively, results not shown), 
suggesting that the cascade specificity is conserved in CA-MPK4 plants. To test if the CA-
MPK4 kinase is constitutively active in these lines, we immuno-precipitated MPK4-myc from 
the corresponding lines using anti-myc antibody. All K4DE lines showed increased MPK4 
activity when compared to K4WT lines (Fig. 3A) but surprisingly not the K4Y ones (Fig. 3B). 
We calculated that increased activity of MPK4 in K4DE lines was about 10% of the total flg22-
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activated MPK4wt activity, indicating that the activity of CA-MPK4 in untreated lines lies well 
below the full activation levels upon pathway stimulation. 

As MEKK1 is thought to be the main MAP3K acting upstream of MPK4 (21, 22, 30), we 
hypothesized that the MPK4D198G/E202A transgene might complement the mekk1 dwarf phenotype 
by reactivating downstream events controlled by the MEKK1-MKK1/2-MPK4 cascade. By 
crossing heterozygous mekk1-1 plants with MPK4D198G/E202A lines, we generated mekk1-1/mekk1-
1 MPK4D198G/E202A lines. These plants showed an almost normal growth phenotype when 
compared to mekk1 or WT plants (Fig. 3D), confirming that CA-MPK4D198G/E202A is functional in 
planta. 

 
MPK4D198G/E202A lines show increased susceptibility to Pseudomonas syringae 
For further investigation, we focused our work on mpk4-2 lines complemented with 

MPK4D198G/E202A (K4DE) because of their higher MPK4 autoactivity. mpk4 mutants are resistant 
to the hemi-biotrophic pathogen Pseudomonas syringae, suggesting that MPK4 is a negative 
regulator of the plant defense (8). According to this model, K4DE lines would be expected to be 
hypersensitive to Pseudomonas. Col-0, K4WT and K4DE plants were spray-inoculated with the 
virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). 3 days post-inoculation 
(Fig. 4A), similar Pst DC3000 levels were found  in Col-0 or K4WT leaves but increased levels 
were observed in K4DE leaves, suggesting that the higher MPK4 activity in K4DE lines 
triggered an increased susceptibility to Pseudomonas. To distinguish between PAMP-Triggered 
Immunity (PTI) and Effector-Triggered Immunity (ETI) phenotypes, we used the type III 
secretion system-defective Pst DC3000 mutant strain HrcC which is impaired in effector 
delivery and induces mainly PTI. After spray-inoculation, bacterial quantification showed that 
K4DE lines are significantly more susceptible to Pst DC3000 HrcC. (Fig. 4B). Similar results 
were obtained with the avirulent Pst DC3000 expressing the AvrRps4 effector and triggering ETI 
through RPS4-mediated recognition (Fig. 4C). Disease symptoms were also more pronounced on 
leaves of the K4DE lines 3 days post inoculation (Fig. 4D). 

As the mpk4 resistant phenotype is linked to constitutive accumulation of SA, we 
hypothesised that mpk4 lines complemented with MPK4D198G/E202A would behave in an opposite 
way and not accumulate SA as efficiently as WT lines in response to pathogen infection. 24 
hours after spray-inoculation, Col-0 and the K4WT lines accumulated similar amounts of SA, 
whereby the K4DE lines showed lower accumulation of SA (Fig. 4E). This result also shows that 
the CA-MPK4 mutation reduces the level of SA and could be responsible for the increased 
susceptibility of K4DE lines to Pseudomonas. Taken together, these data confirm that MPK4 
controls SA amounts in response to biotrophic pathogen interaction and plays a role in both PTI 
and ETI. 

 
DISCUSSION 
 
CA mutations are a useful tool to activate MAPKs 
In this article, we identified mutations which increase MAPK activity independently of 

MAP2K activation. Using a genetic screen in yeast and Arabidopsis MPK6 as a model, we 
identified 3 sets of mutations that trigger constitutive MAPK activity. Introduction of the 
corresponding mutations in MPK3, 4 and 7, belonging to different MAPK subgroups similarly 
resulted in constitutive activation. These results suggest that these mutations provide a general 
strategy to render MAPKs constitutively active.  
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Characterisation of pathogen responses of mpk4-2 plants complemented with 

MPK4D198G/E202A  locus. 

A to C. Example of patho-assay after 3 days of spray-inoculation with Pst DC3000 (A), 

Pst DC3000 HrcC (B) and Pst DC3000 AvrRPS4 (C). 

D. Disease symptoms observed on K4ED line 3 day post spray-inoculation with Pst 

DC3000 AvrRPS4. 

E. SA content after 3 days of spray-inoculation with Pst DC3000 AvrRPS4. 



Supplemental material 
   

106 
 

The MPK6 residue Y144 is located in the ATP-binding pocket and is homologous to the well 
described Gatekeeper residue of the mammalian MAPK ERK2 (31). Mutation of this residue is 
known to allow ERK2 intra-molecular auto-phosphorylation and therefore its activation in a 
MAP2K independent manner. MPK6 Y144C or Y144F mutations might have a similar effect. 
Despite the fact that some activating mutations were identified in the activation loop of human or 
yeast MAPKs (26, 32), the combination of the MPK6 mutation D218G and E222A is novel. 
Interestingly, these mutations change two acidic amino acid residues for neutral ones, i.e. they 
have an opposite effect to the effect of the phosphorylation of the TEY motif. Although one 
would expect that these changes in charge should decrease the residual activity of MAPKs, an 
alternative explanation could be that these mutations might change the activation loop flexibility, 
resulting in higher auto-phosphorylation and  kinase activation. 

Because we have no clear evidence on the way these mutations could enhance MAPK 
catalytic activity, we were concerned to bring evidence on their proper functioning: in this work, 
we showed that CA mutations do not change neither the MAPK binding specificities for known 
interactors nor their preferences toward the amino acids surrounding the phosphosites. 
Additionally, the use of a semi degenerate peptide array allowed to confirm that MPK3, 4 and 6 
share common substrate preferences with animal MAPKs (33). The final proof that the CA 
mutants fully retain the WT kinase specificity comes from the fact that both MPK4Y124C and 
MPK4D198G/E202A were able to complement a mpk4 knock out mutant line. Oddly, only the 
MPK4D198G/E202A lines showed a systematic increase of MPK4 activity in planta. This result 
could come from the cellular phosphatase activities able to de-phosphorylate the activation loop 
of MPK4Y124C but not the diverging one of MPK4D198G/E202A and suggests that all CA mutations 
will not always work in planta and need to be carefully characterized first. Strikingly, 
MPK4D198G/E202A construct was also able to complement the phenotype of mekk1 plants, which 
are defective in the upstream activation of MPK4. This result provides additional evidences that 
MPK4D198G/E202A retains activation-independent activity in planta. 

 
MPK4D198G/E202A in planta triggers pathogen susceptibility 
We choose to work on MPK4 to provide a proof-of-concept that the CA strategy can be used 

to understand the physiological role of MAPKs. MPK4 is a well studied kinase but its exact 
function remains unclear: on one hand, together with MPK3 and MPK6, MPK4 is activated by 
pathogens and abiotic stresses. On the other hand, genetic evidence suggests that MPK4 
negatively regulates pathogen defenses (8). The fact that mpk4 plants are dwarfed without being 
stressed suggests that MPK4 activity is required for a stress-independent process. CA-MPK4 
lines could provide interesting data to better decipher the kinase function. Interestingly, 
MPK4D198G/E202A lines show an opposite phenotype to some of the mpk4 traits published 
previously: plants expressing MPK4D198G/E202A instead of the WT form are more susceptible to 
Pst DC3000 and the two strains used to evaluate the relative contribution of PTI (Pst DC3000 
HrcC) and ETI (Pst DC3000 AvrRPS4) in the plant responses to pathogens. This suggests that 
MPK4 has a role in both types of defense responses. Consequently, and opposite to mpk4 
phenotype, SA accumulation is reduced in response to pathogen in the CA-MPK4 lines. Despite 
our efforts, we did not succeed to measure consistent gene expression modulations, likely 
because the inter-line variability is higher than the effect of CA mutations. Other hormone 
measurements will help to clarify MPK4 function in hormonal balance (6). Similar results were 
indirectly obtained with the constitutive expression of the P.syringae effector avrB in 
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Arabidopsis, which appears to activate MPK4 and therefore increase susceptibility to Pst 
DC3000 (34).  

 
In conclusion, we succeed to generate CA MAPKs and showed that these mutations can help 

to decipher MAPK function in planta. This strategy will be helpful to address the question of the 
relative contribution of each MAPK in complex stress signaling processes and to tackle the 
function of the poorly known other members of the family.  

 
MATERIEL AND METHODS 
 
Complements to the material and methods are presented in supplemental text file. 
MPK6 ORFs were LR-recombined in pDR195gtw to generate pDR195gtw-MPK6. The PCR 

fragment of randomly mutated MPK6 ORF was produced using mutazyme II kit (Stratagene), 
pDR195gtw-MPK6 as a matrix and the following primers (TTT CTC TTT CTT TCC TAT AAC 
ACC AAT AG TG / GTG TCA ACA ACG TAT CTA CCA ACG ATT TGA CC). pDR195 was 
linearized using BamH1 and co-transformed with MPK6 randomly mutated PCR fragments into 
the yeast hog1∆pbs2∆ using a classical Lithium/PEG/Heat chock method. The yeast cells having 
reconstructed the pDR195gtw-MPK6 plasmids were selected on Synthetic Complete (SC: 0.17% 
YNB w/o carbohydrate and amino acids, 0.5% NH4SO4, 2% D-glucose, 2% BactoAgar) 
medium lacking uracil (SC + 0.2% Drop out minus Uracil (US Biological)), pH 5.6 adjusted 
with NaOH,). Colonies were replicated on YPD supplemented with 400-600 mM NaCl. 
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