

Université Pierre et Marie Curie

Ecole Doctorale Physiologie Physiopathologie ED 394

Service de Biologie de la Reproduction du Groupe Hospitalier Pitié Salpêtrière

Etude du profil protéomique de follicules ovariens de souris à 3 différents stades de développement *in vitro*

Par Amandine Anastácio

Thèse de doctorat de Biologie de la Reproduction

Dirigée par Catherine Poirot

Présentée et soutenue publiquement le 11 Mars 2014

Devant un jury composé de : Mme CHRISTIN- MAITRE Sophie Mme LEFEVRE Brigitte Mr BEAUDEUX Jean-Louis Mme REYNAUD Karine Mr BRUNET Stéphane Mme ALMEIDA SANTOS Teresa

Mme POIROT Catherine

PU-PH, Université Paris VI	Présidente
Directeur de Recherche, INRA	Rapporteur
PU-PH, Paris Descartes	Rapporteur
Chargé de Recherche, INRA	Examinateur
Chargé de Recherche INSERM	Examinateur
Professeur, MD, PhD,	Co-directrice
Université de Coimbra, Portugal	
PU-PH, Université Paris VI	Co-directrice

Ce travail de thèse a été financé avec la bourse de doctorat SFRH / BD / 65299 / 2009 attribuée par la Fundação para a Ciência e Tecnologia.

Remerciements

Pendant cette expérience personnelle et scientifique qu'a été pour moi la réalisation de ce travail de thèse j'ai eu le plaisir de croiser, de partager et vivre avec des personnes qui appartiendront à tout jamais à l'histoire de ma vie. Pour vous, j'écris ces quelques mots qui sont insuffisants pour vous dire combien vous êtes et avaient été importants pendant mon parcours et mon évolution.

Un grand merci au Professeur Catherine Poirot, qui a accepté d'accueillir cette étrangère dans son équipe il y a plus de sept ans. Pour avoir cru en moi à chaque projet réalisé ensemble, pour m'avoir fait découvrir et m'avoir fait tomber amoureuse de ce domaine qui est le sien et pour m'avoir toujours encouragée à continuer et à croire quand moi je croyais le moins. Non ce ne sera pas encore le prix Nobel mais qui sait un jour....

Au professeur Teresa Almeida dos Santos qui sans me connaitre a accepté de rejoindre ce projet et a toujours eu des mots encourageants dans nos échanges.

A Cédric et Solenne qui m'ont présenté un nouveau et immense monde qui est celui le la protéine et m'ont accueilli si bien dans la plateforme. Pour avoir permis que pendant presque un an je monopolise leur nano HPLC, pour leur patience pour me former, m'épauler, m'encourager et pour avoir toujours eu le temps de partager avec moi leurs connaissances et avoir montrer autant d'enthousiasme pour ce projet.

A Mr Federici qui m'a sauvée à un moment oú je me noyais dans mes tableaux de protéines.

A vous tous qui pendant toutes ces années ont appartenue à la famille du laboratoire de Biologie de la Reproduction de la Pitié Salpêtrière.

A Marie pour ton amitié, ta présence, ton soutien, tes mots. Grace a toi la distance de chez moi a été un peu moins dure à vivre.

A mes amis qui me font toujours sentir que je ne suis jamais partie d'auprès d'eux même si parfois des mois, ou mêmes des années se passent sans que l'on ne ce voit. A Renato qui loin a fait partie de cette aventure quotidiennement, qui a du supporter mes doutes, plaintes et qui m'a tant aidée sans qui je comprendrais encore moins de tout ça.

A mes parents, frère, sœurs et à Jacinto sans qui je ne serais jamais arrivée là, à leur regard de fierté à chaque étape que j'accomplissais et à tout l'amour et le soutien qu'ils me donnent. La distance a été parfois difficilement surmontée mais maintenant J'ARRIVE...

A ma sœur et mère de cœur qui m'ont accueillie dans leur famille pendant toutes ces années d'aventure en France. Merci pour votre patience, votre amour et de ne jamais m'avoir fait sentir que j'étais une pièce ajoutée a la famille qui est la votre.

A vous tous qui m'avez accompagnée dans cette étape de ma vie, j'espère vous avoir toujours près de moi, pour vous un

GRAND MERCI

Sommaire

Remerciements	3
Sommaire	5
Liste des abréviations	9
I. Introduction	10
A. Ovogenèse et Folliculogenèse	11
1. L'ovaire : rappel anatomique et histologique	13
2. Réserve ovarienne	15
3. Ovogenèse	17
3. 1. Phase de multiplication	
3. 2. Croissance ovocytaire	
3. 2. 1. Aspects morphologiques	19
3. 2. 2. Aspects moléculaires	20
3. 3. Maturation ovocytaire	
3. 3. 1. La reprise de la méiose	21
3. 3. 2. Maturation cytoplasmique	22
4. Folliculogenèse	24
4. 1. Stades folliculaires: aspects morphologiques	24
4. 2. Stades folliculaires : aspects moléculaires	
4. 2. 1. Formation des follicules primordiaux	26
4. 2. 2. Activation des follicules primordiaux	27
4. 2. 3. Follicule primaire	29
4. 2. 4. Follicule secondaire et préantral	29
4. 2. 5. Follicule antral	
4. 3. Cycle menstruel	31
4. 3. 1. Le contrôle hormonal du cycle menstruel	
4. 4. Dynamique de la croissance folliculaire	33
B. Croissance Folliculaire <i>in vitro</i>	35
1. Types de cultures	36

1. 1. Culture <i>in situ</i>	
1. 2. Culture de follicules isolés	
1. 2. 1. Isolement des follicules	
2. La souris comme modèle	
2. 1. Culture de follicules isolés	40
2. 1. 1. Culture en phase liquide ou 2D	40
2. 1. 2. Culture organotypique ou 3D	41
3. Chez l'humain	44
3. 1. Différentes approches de culture	
C. La protéomique	48
1. Les grandes étapes d'une analyse protéomique	49
1. 1. Extraction	50
1. 2. Préfractionnement	51
1. 2. 1. Electrophorèse 1D	52
1. 2. 2. Électrofocalisation	53
1. 3. Séparation	54
1. 3. 1. Electrophorèse bidimensionnelle (électrophorèse 2D)	54
1. 3. 2. Chromatographie liquide	55
1. 4. Identification des protéines par spectrométrie de masse	55
1. 5. Analyse bioinformatique	58
2. La protéomique appliquée à la biologie de la reproduction	
2. 1. L'étude protéomique dans la reproduction féminine	59
2. 2. L'étude de l'ovocyte – approche protéomique	61
II. Objectifs de la Thèse	65
III. Matériels et méthodes	67
A. Culture de follicules ovariens de souris	68
1. Animaux	
2. Prélèvement des ovaires et isolement des follicules	
3. Culture folliculaire	
4. Maturation ovocytaire	
5. Stades folliculaires étudiés	70
5 1 Stade initial (IS)	, , 0 70
5. 2. Rupture complète de la membrane de Slavianski (RMS)	
5. 3. Follicules avec une cavité antrum like (FA)	

6. Choix d'étudier le follicule entier	72
6. 1. Séparation des différents types cellulaires	72
7. Comparaison des milieux de culture	72
7. 1. Courbes de croissance	74
7. 2. Critères morphologiques et taux de maturation	74
8. Sélection des follicules pour l'analyse protéomique	76
B. Analyse protéomique	77
1. Extraction des protéines	77
2. Préfractionnement des extraits protéiques	77
2. 1. Fractionnement IEF OffGel	78
2. 2. Fractionnement IEF in gel	81
3. Digestion trypsique	83
4. Identification des protéines par spectrométrie de masse	84
4. 1. Dessalage des mélanges de peptides issus de la digestion	84
4. 2. Analyse LC-MS/MS	84
4. 2. 1. Séparation des peptides par 1DLC	84
4. 2. 2 Séparation des peptides par 2DLC	84
4. 2. 3. Analyse des peptides en MS/MS avec une trappe ionique	85
5. Identification des protéines	85
6. Analyse des profils protéiques	86
6. 1. AnalyseGene Ontology (GO) via PANTHER	86
6. 2. Quantification label-free	86
6. 3. Ingenuity Pathway Analysis (IPA)	88
6. 3. Pathway Studio	88
IV. Résultats	89
A. Acquisition des profils protéiques	90
1. Composition des groupes étudiés	90
2. Préfractionnement IEF in gel	91
3. Identification des protéines présentes dans les différents stades de	
développement	91
B. Analyses des profils protéiques	94
1. Analyse Gene Ontology avec Panther	94
1. 1. Classes de protéines	94
1. 2. Processus biologiques	95
2. Réseaux d'interactions	96

3. Analyse quantitative des protéines dans les trois stades de	
développement	100
V. Discussion, Conclusion et Perspectives	103
Discussion	104
Construction des profils protéiques	105
Analyse des profils protéiques	106
Implications des protéines du cycle cellulaire	108
L'apoptose, ROS et réparation de l'ADN	
Protéines différemment abondantes entre les stades	110
Surexpression de protéines associées au calcium	111
Protéines associées à la glycolyse et au métabolisme des glucides	111
Régulation de la PKA	112
Conclusions et perspectives	113
VI. Bibliographie	115
VII. Annexes	136
VIII. Communications	192
IX. Liste des figures	223
X. Liste des Tableaux	229
Résumé	232
Abstract	233

Liste des abréviations

ADN	acide désoxyribonucléique
ACN	acétonitrile
AF	acide formique
ARNm	acide ribonucléique messager
ссо	complexe cumulus-ovocytaire
CG	cellules de la granulosa
CGP	cellules germinales primordiales
CHAPS	3-(3-Cholamidopropyl)dimethylammonio-1-propanesulfonate
DTT	dithiothréitol
EGF	epidermal growth factor
ET	extrait total
FA	follicules antraux
FSH	hormone folliculo stimulante
FIV	Fécondation <i>in vitro</i>
GP	globule polaire
GVBD	rupture de la vésicule germinative
hCG	hormone chorionique gonadotrope
HPLC	high performance liquid chromatography
IEF	Isoelectric focalisation
IPG	immobilized pH gradient
IS	stade initial
LH	hormone lutéinisante
MH	ovocyte au stade de métaphase II
MPF	M-phase promoting factor
MS	spectrométrie de masse
LC-MS/MS	chromatographie liquide avec spectrométrie de masse en tandem
OMI	oocyte meiotic inhibitor
RMS	rupture de la membrane de Slavjanski
SDS	sodium dodecyl sulfate
SDS PAGE	sodium sodecyl sulfate-polyacrylamide gel electrophoresis
SVF	sérum de veau fœtale
TFA	acide trifluoroacétique
VG	vésicule germinative
ZP	zone pellucide

I. Introduction

A. Ovogenèse et Folliculogenèse

L'ovocyte mature est la cellule la plus rare de l'organisme et aussi une des plus remarquables car l'ovocyte est à la fois totipotent et très spécialisé. Entre autres, il porte la moitié du capital génétique maternel, il doit mettre en place le mécanisme de blocage à une fécondation polyspermique, assumer d'importantes transformations au niveau du noyau et commander les premières étapes du développement embryonnaire.

Le gamète féminin possède également la particularité d'avoir une méiose qui se déroule par étapes espacées par des pauses qui peuvent durer des années. Son développement est de cette façon axé sur la capacité à reprendre et à aboutir sa méiose et à assurer le développement initial de l'embryon.

Cependant l'ovocyte n'évolue pas isolément, il forme avec les cellules somatiques qui l'entourent un complexe fonctionnel dénommé **follicule**.

Le développement de l'ovocyte est ainsi complètement dépendant d' interactions dans ce complexe fonctionnel car si l'ovocyte contrôle la prolifération des cellules de la granulosa (CG) et leur différenciation (Vanderhyden et al. 1992), les CG sont à leur tour indispensables à la croissance, différenciation, méiose, maturation cytoplasmique et contrôle de l'activité transcriptomique dans l'ovocyte (van den Hurk et al. 2005).

Ainsi quand on parle de développement de l'ovocyte - l'ovogenèse, il est indiscutablement lié au développement du follicule – folliculogenèse, même si dans chacun il y a des étapes caractéristiques qui leurs sont propres.

Du fait que l'ovocyte soit une cellule si particulière, les études pour essayer de connaître et comprendre les différentes étapes de son développement sont nombreuses depuis longtemps. Néanmoins beaucoup reste à apprendre et comprendre sur le développement ovocytaire, folliculaire et leurs interactions.

Mieux connaitre la folliculogenèse et en particulier la folliculogenèse *in vitro* pourrais permettre d'améliorer les techniques de procréation médicalement assisté (PMA) avec par exemple l'utilisation du cortex ovarien congelé pour la préservation de la fertilité et pour lesquels la greffe d'ovaire n'est pas envisageable par risque de réintroduction de la maladie. La cryopreservation du cortex ovarien ce fait à ce jour essentiellement dans le

cadre d'un traitement anti cancéreux potentiellement très stérilisant et est la seule technique qui peut être proposé aux filles prépubères (Aubard et al. 2001, Poirot et al. 2005, Poirot et al. 2007).

Même si le but ultime est de comprendre la folliculegnèse chez la femme ce sont couramment les recherches sur le modèle animal qui permettent d'obtenir de nouvelles données qui doivent être confirmées ultérieurement chez la femme.

Malgré les différences physiologiques, les chercheurs utilisent souvent la souris comme modèle expérimental. Les avantages de ce modèle reposent essentiellement dans le court cycle de vie, un temps de gestation de 19 à 20 jours avec une importante natalité ce qui permet des expériences avec des résultats satisfaisants dans un délai assez court, un élevage facile et peu coûteux. Ceci est d'autant plus vrai pour le développement folliculaire *in vitro*, puisque c'est la seule espèce pour laquelle des souriceaux sont nés après croissance folliculaire *in vitro*.

1. L'ovaire : rappel anatomique et histologique

L'ovaire est la gonade féminine et chez les vertébrés il est normalement présent au nombre de deux. Les ovaires se situent dans la cavité pelvienne, un de chaque côté de l'utérus auquel ils sont reliés par un ligament fibreux – **ligament propre de l'ovaire** et sont situés en regard du pavillon des trompes de Fallope.

Chez la femme adulte ils sont ovoïdes et mesurent environ 4 cm de long, 2 cm de large et 1 cm d'épaisseur.

Histologiquement on observe 4 zones distinctes dans l'ovaire (Fig. 1) :

- Epithélium germinatif qui est un épithélium cubique simple, qui recouvre l'ovaire.
- Albuginée ovarienne, une capsule de tissu conjonctive dense et pauvre en cellules, située immédiatement sous l'épithélium germinatif et en périphérie du cortex ovarien.
- Cortex ovarien, qui occupe la périphérie de l'ovaire et qui est la zone fonctionnelle de l'ovaire. Il est composé par les follicules aux différents stades du développement, un stroma conjonctif de soutien et quelques vaisseaux sanguins.
- Médullaire, zone parenchymateuse constituée essentiellement par du tissu conjonctif lâche et un grand réseau de vaisseaux sanguins et lymphatiques situé dans la partie la plus interne de l'ovaire.

Figure 1 : Représentation schématique de l'organisation interne de l'ovaire ainsi que des follicules aux différents stades de leur développement (adaptée de http://apbrwww5.apsu.edu).

Cet organe possède comme unité fonctionnelle le **follicule ovarien** qui renferme l'ovocyte et assure son développement en gamète féminin : l'ovocyte mature. De la puberté à la ménopause l'ovaire assume une double fonction :

- Exocrine ou fonction gametogène, qui permet la croissance et maturation du follicule ovarien avec l'expulsion d'un ovocyte mature
- Endocrine avec la production d'hormones stéroïdes comme l'œstradiol et la progestérone, qui sont nécessaires à la survenue des caractères sexuels secondaires et qui régulent le cycle menstruel.

2. Réserve ovarienne

Chez l'humain la réserve ovarienne est composée par des follicules primordiaux, qui contiennent un ovocyte I, bloqué en fin de prophase de la première division de la méiose, et commence à se former vers le quatrième mois de vie intra-utérine.

Au septième mois de la vie utérine environ 7 millions de cellules germinales primordiales (**CGP**) sont formées. Cependant lors de la formation des follicules primordiaux certaines CGP ne sont pas entourés par les cellules somatiques et dégénèrent par apoptose et ce nombre n'est plus que de 1 ou 2 millions à la naissance (Pepling et al. 2001).

Les ovocytes restent apparemment quiescents jusqu'à la puberté, mais on observe néanmoins une déplétion du stock ovarien, qui est estimé à 400 000 follicules par ovaire au moment de la survenue de la puberté.

A partir de ce moment la réserve ovarienne diminue graduellement jusqu'à 37/38 ans, l'âge auquel s'installe une perte plus rapide des follicules menant à l'épuisement de la réserve ovarienne et à la survenue de la ménopause quelques années plus tard (Baker 1963).

Ainsi pendant sa période d'activité génitale la femme ne mature et n'ovule que 400 ovocytes environ.

Figure 2 : Diagramme de la réserve ovarienne et devenir des follicules au long de la vie de la femme (adapté de Kaipia et al. 1997).

Figure 3 : Courbe descriptive de l'évolution du nombre de follicules constituant la réserve ovarienne avec l'âge (adapté de te Velde et al. 1998).

3. Ovogenèse

L'ovogenèse est l'ensemble des processus qui commencent pendant le développement embryonnaire avec la formation des ovogonies et leur différenciation en **ovocyte I** (ovocyte primaire ou immature) et ceux qui permettent le développement de l'ovocyte I jusqu'au stade métaphase II (MII) : **ovocyte mature**. L'ovocyte mature se caractérise par sa capacité à être fécondé et à assumer les premières étapes du développement embryonnaire.

Elle se déroule en trois phases et est caractérisée par deux blocages de la division méiotique, un premier blocage en fin de prophase I et un deuxième blocage en métaphase de la deuxième division (Fig. 4). Les trois phases sont :

- Multiplication concerne les ovogonies, cellules diploïdes qui se multiplient par mitoses et qui en débutant la méiose, aboutissent à la production des ovocytes I.
- Croissance ovocytaire correspond aux changements morphologiques et moléculaires accompagnant la croissance de l'ovocyte l jusqu'au moment de la maturation terminale.
- Maturation ovocytaire correspond aux changements nucléaires et cytoplasmiques qui permettent à l'ovocyte de reprendre sa méiose jusqu'au stade métaphase II.

3. 1. Phase de multiplication

Les ovocytes sont issues d'une lignée de cellules germinales primordiales (CGP) formées pendant la gastrulation qui sont à ce stade communes à la gamétogenèse male et femelle.

A la fin de la troisième semaine du développement embryonnaire les CGP migrent depuis l'ectoderme primaire jusqu'au sac vitellin (Baker 1963). Entre la cinquième et la sixième semaine du développement sous l'influence de cytokines telles que **Kit-ligand** (KL) et des **TGFβ** (facteurs de croissance et transformations beta), les CGP migrent depuis le sac vitellin, via l'allantoïde, jusqu'à la crête génitale(Fig. 5) où elles se multiplient par mitoses et colonisent les gonades en développement (Motta et al. 1986). Au même moment la détermination sexuelle commence et en absence du gène SRY dans les gonades XX, les gonades se développent en ovaires et les cellules germinales se différencient en **ovogonies** (Fauser et al. 1999). Après la colonisation des gonades, les ovogonies qui sont des cellules diploïdes, continuent de se multiplier par des divisions mitotiques formant des nids de cellules germinales (Faddy et al. 1992).

Figure 5: Migration des cellules germinales chez les Mammifères. Les cellules germinales primitives migrent depuis le sac vitellin jusqu'aux crêtes germinales, via l'allantoïde (adapté de http://www.snv.jussieu.fr).

Vers la onzième semaine de développement les ovogonies entrent en méiose et se différencient en ovocytes primaires (**ovocyte I**) (Baker 1963). Ces ovocytes immatures se bloquent au stade diplotène de la prophase de la première division de méiose, avec des chromosomes qui se condensent au sein du noyau appelé **vésicule germinative** (VG). Cet ovocyte reste bloqué en fin de prophase de première division de méiose, au moins jusqu'à la puberté.

3. 2. Croissance ovocytaire

À partir de la puberté des follicules primordiaux sont recrutés et débutent leur développement en parallèle avec les ovocytes. Pendant cette croissance l'ovocyte accumule dans son cytoplasme les organelles, les protéines et les ARNs qui lui seront nécessaires, plus tard, pour la maturation de l'ovocyte, la reprise de la méiose, le blocage de la polyspermie et l'acquisition de la capacité au développement. La majorité de la croissance de l'ovocyte s'effectue entre les stades de follicule primaire et antral. Il est même décrit qu'au moment de la formation de l'antrum l'ovocyte a atteint 80 % de sa taille finale. Après l'ovocyte continue de croitre mais de façon beaucoup plus lente jusqu'à l'expulsion de l'ovocyte hors du follicule au moment du pic ovulatoire de l'hormone lutéinisante (LH).

La compétence méiotique, c'est-à-dire, la capacité à reprendre la méiose est associée à la taille de l'ovocyte mais est probablement le reflet de la présence de protéines et/ou activation de protéines. Ainsi tous les changements cytoplasmiques et les interactions entre l'ovocyte et les cellules de la granulosa et de la thèque qui se font pendant la croissance de l'ovocyte ont un rôle dans l'acquisition de l'aptitude à reprendre la méiose (Thibault et al. 2001)

3. 2. 1. Aspects morphologiques

Dans toutes les espèces la croissance ovocytaire est visible par l'augmentation du volume cytoplasmique et en conséquence la taille de l'ovocyte. Chez l'humain l'ovocyte passe d'un diamètre de 35 µm à un diamètre d'environ 120 µm et son volume augmente de 300 fois (Griffin et al. 2006).

Dans le cytoplasme, un grand nombre d'organelles, d'appareils de Golgi, réticulum endoplasmique et mitochondries se mettent en place et apparaissent des granules corticaux, des granules de glycogène et des gouttelettes lipidiques. Il se forme également, autour de l'ovocyte, une enveloppe glycoprotéique appelée zone pellucide (**ZP**) et des jonctions perméables qui permettent l'interaction entre l'ovocyte et les cellules de la granulosa (**CG**).

Pendant toute sa croissance le noyau de l'ovocyte reste bloqué au stade diplotène de la prophase I, cependant il double de taille.

3. 2. 2. Aspects moléculaires

Une grande quantité d'ARN est accumulée pendant la croissance ovocytaire, augmentant d'environ 300 fois son contenu en ARN total. Environ 2/3 de ces ARN sont ribosomaux, reflet de l'intense activité nucléolaire observée dans la croissance de l'ovocyte et ce jusqu'à l'apparition de l'antrum. Les ARN messagers représentent environ 10% des ARN totaux. La majorité des transcriptions se font pendant la croissance ovocytaire puisque dans l'ovocyte mature (MII) il y a 40% moins d'ARNs que dans l'ovocyte immature (VG) et que toute activité de transcription est indétectable dès la rupture de la vésicule germinative (GVBD) (Dobson et al. 2004, Neilson et al. 2000). En culture il a été décrit une diminution de l'activité transcriptionelle dès J9 et une quiescence à J12 (Pesty et al. 2007). Les ARNs restant sont stockés dans l'ovocyte et seront traduits plus tard après la fécondation et seront essentiels pour le développement embryonnaire précoce.

La synthèse protéique est importante pendant la croissance de l'ovocyte avec l'accumulation de protéines nécessaires au développement folliculaire/ovocytaire, à la reprise de la méiose et au développement initial de l'embryon. Dès que l'ovocyte initie sa croissance il commence à secréter un ensemble de 3 glycoprotéines qui formeront la ZP. Il produit aussi des facteurs de croissance tels que le GDF-9 (Growth differenciation factor-9) et le BMP15 (bone morphogenetic protein-15) qui sont indispensables au développement folliculaire (Carabatsos et al. 1998, Dong et al. 1996, Laissue et al. 2006, Matzuk et al. 2002).

Pendant toute sa croissance l'ovocyte reste bloqué en prophase de la première division de la méiose grâce à des inhibiteurs d'origine somatique. Tout facteur de croissance, hormones ou autre protéine avec ce rôle est désigné OMI (Ovocyte Meiotic Inhibitor). Entre plusieurs candidats l'adénosine monophosphate cyclique (AMPc) est l'OMI le plus important important car il a été démontré que des taux élevés d'AMPc dans l'ovocyte inhibent la production du M-phase promoting factor (MPF) (Downs et al. 1989, Eppig 1989, Mehlmann 2005).

3. 3. Maturation ovocytaire

La maturation ovocytaire est un ensemble de changements cytoplasmiques et nucléaires conduisant à la dissolution de la membrane nucléaire – rupture de la vésicule germinative (GVBD) - et à l'expulsion du premier globule polaire (GP):

- Reprise de la méiose avec l'ovocyte qui passe du stade prophase l (VG) au stade métaphase II (MII)
- Maturation cytoplasmique qui correspond à la capacité de bloquer la fécondation polyspermique et à l'acquisition de l'aptitude à initier le développement embryonnaire.

3. 3. 1. La reprise de la méiose

Le blocage en prophase I s'achève avec la rupture de la VG quelques heures après le pic de LH et correspond à un passage entre le stade G2 et le stade M du cycle cellulaire. Cette transition G2/M est régulée par l'activation du MPF, qui est un hétérodimère composé par une cycline régulatrice – la cycline B et une kinase cycline-dépendante – la CDK1 qui a un rôle catalytique. L'activation/inhibition de ce complexe est directement liée au taux intraovocytaire de molécules telles que l'AMPc. Ainsi il est décrit que des taux élevés d'AMPc dans l'ovocyte inhibe la formation du complexe MPF et inversement leur baisse induit, de façon passive, son activation. Quoique cette variation des taux d'AMPc soit bien connue comme régulateur de la reprise/maintenance de la méiose, les mécanismes qui provoquent cette variation restent à élucider.

Une hypothèse est qu'au moment du pic ovulatoire de LH, une augmentation des taux d'AMPc induit la production de facteurs EGF (epidermal-like growth factors) par les voies de signalisation PKA et PKC. Les facteurs EGF, à leur tour, stimulent l'activité de MAPK (mitogen activated protein kinase) dans les cellules du cumulus, provocant le blocage des voies de signalisation. Avec la réduction de communication entre l'ovocyte et les cellules du cumulus, la concentration intraovocytaire d'AMPc baisse. Cela induit la formation du complexe cycline B et CDK1 et la méiose reprend (Fig. 6) (Duckworth et al. 2002, Han et al. 2006). Consécutivement, l'enveloppe nucléaire commence à se plisser, les chromosomes à se condenser et les pores nucléaires disparaissent provoquant la fragmentation de l'enveloppe nucléaire. Les étapes suivantes de la première division méiotique se produisent très rapidement et avec l'expulsion du premier GP, l'ovocyte devient une cellule haploïde.

Figure 6 : Représentation schématique de l'hypothèse des taux de cAMP dans le blocage et reprise de la méiose dans l'ovocyte (adapté de https://www.bioscience.org).

L'ovocyte, maintenant **haploïde**, initie la deuxième division de la méiose qui se bloque en métaphase II sous l'effet d'un facteur cytoplasmique ovocytaire le **CSF** qui stabilise le complexe MPF et reste ainsi jusqu'à la fécondation.

3. 3. 2. Maturation cytoplasmique

En fin de maturation et après la décharge ovulante de LH les granules corticaux se placent et se disposent au long de la périphérie de l'ovocyte, sous la membrane plasmique. Au moment de la pénétration d'un spermatozoïde les granules libèrent des enzymes dans l'espace périvitelin qui modifieront la structure de la ZP et empêcheront la pénétration de plusieurs spermatozoïdes (Picton et al. 1998), c'est le **blocage de la polyspermie**.

Parallèlement d'autres organelles (mitochondries, Golgi) se rassemblent dans la région périnucléaire sous la dépendance des microtubules. On observe également une accumulation de granules de glycogène et de gouttelettes lipidiques qui servent de source d'énergie pour la maturation méiotique, fécondation et développement embryonnaire (Grondahl et al. 1995, Kikuchi et al. 2002) ainsi que l'augmentation des niveaux de glutathion qui a un rôle dans la décondensation de la chromatine du pronoyau mâle, diminuant les ponts disulfures et remplaçant des protamines par des histones (Luberda 2005). C'est à ce moment que se produit la traduction des ARNs stockés et non traduits pendant la croissance de l'ovocyte.

4. Folliculogenèse

La folliculogenèse est définie par le développement et la maturation du follicule. Elle débute pendant la vie intra utérine avec la formation du pool de follicules primordiaux, constituant la réserve ovarienne, dans lequel les follicules vont être recrutés et menés à maturation de façon continue depuis la puberté jusqu'à l'épuisement (Gougeon 1986).

La folliculogenèse est caractérisée par 3 grandes étapes :

- Quiescence étape de « dormance » des follicules primordiaux qui constituent la réserve ovarienne jusqu'au moment où à partir de la puberté ils sont recrutés en vague pour débuter leur croissance.
- Croissance basale évolution des follicules du stade primordial jusqu'au stade antral régulée par des facteurs autocrines et paracrines. C'est une étape indépendante des gonadotrophines.
- Croissance terminale étape cyclique dépendante des gonadotrophines qui mène à l'ovulation. Dans cette étape il y a le recrutement des follicules antraux susceptibles d'ovuler, la sélection du follicule qui poursuivra sa croissance et sa dominance qui le mènera à l'ovulation.

4. 1. Stades folliculaires: aspects morphologiques

Le follicule primordial, qui mesure environ 30 µm de diamètre, est le plus petit des follicules. Il est constitué d'un ovocyte de petite taille, dont le noyau est bloqué en fin de prophase de la première division de la méiose, entouré d'une seule couche de cellules somatiques, précurseur des CG, aplaties. Cette structure est séparée du stroma par une membrane basale : la membrane de Slavjanski (Fig. 7a).

Le follicule primaire a un diamètre compris entre 45 µm et 50 µm. Il est caractérisé par la transformation des cellules periovocytaires qui deviennent cubiques et le début de la formation de la ZP. La transformation de la monocouche de cellules aplaties en cellules cubiques est le premier signe d'activation de la croissance du follicule et en conséquence de leur sortie du pool de réserve (Fig. 7b).

Les cellules peri-ovocytaires commencent à se multiplier et lorsque le follicule est entouré par au moins deux couches de cellules il est classé en **follicule secondaire** (Fig. 7c). Le diamètre augmente progressivement jusqu'à 200 µm dû à la prolifération, par mitoses successives, des cellules periovocytaires qui prennent alors le nom de **cellules de la granulosa** (CG). Simultanément les cellules du stroma qui lui sont adjointes se différencient formant la thèque. Ces cellules fibroblastiques se stratifient avec la croissance du follicule et se différencient en thèque interne et thèque externe qui sont séparés par des vaisseaux sanguins formant ainsi le **follicule préantral** ou secondaire tardif.

Les CG continuent de proliférer et on voit apparaitre des espaces intercellulaires, qui confluent formant une plus grande cavité appelée **antrum** et le follicule est qualifié de **follicule antral** (Fig. 7d).

Pendant la croissance du follicule antral les CG continuent de proliférer, l'antrum s'élargit et on observe la différenciation des CG en deux types cellulaires morphologiquement et fonctionnellement très distincts. Les CG plus proches de la thèque constituent la **granulosa murale** et les CG qui entourent directement l'ovocyte forment le **cumulus oophorus**.

En fin de croissance, le follicule atteint une taille d'environ 20 mm et il est dénommé follicule pré – ovulatoire, follicule mûr ou **follicule de De Graaf** (Fig. 7e). Il est caractérisé par une cavité antrale très volumineuse bordée par la granulosa. L'ovocyte, toujours bloqué en fin de prophase I, fait saillie dans l'antrum et est rattaché à la granulosa par le cumulus oophorus. La granulosa, à son tour, avec la croissance de l'antrum devient de plus en plus fine. La couche de CG qui est directement en contact avec l'ovocyte s'appelle corona radiata.

Après la décharge ovulante de LH, les CG se dissocient et une expansion des cellules du cumulus est observée. Le liquide folliculaire, jusquelà enfermé dans le follicule s'écoule et entraine avec lui l'ovocyte entouré des cellules du cumulus qui composent le complexe cumulus-ovocytaire (CCO).

Figure 7 : Coupes histologiques des différentes types morphologiques folliculaires : a) follicule primaire; b) follicule primaire; c) follicule secondaire; d) follicule antral (début antrum) et e) follicule pré ovulatoire ou follicule de De Graaf (adapté de http://www.studyblue.com).

4. 2. Stades folliculaires : aspects moléculaires

4. 2. 1. Formation des follicules primordiaux

La formation des follicules s'initie avec la rupture des nids de cellules germinales. Au moment du blocage de la méiose, les ovocytes, jusque-là en nids, commencent à être entourés par des cellules somatiques aplaties (prégranulosa) formant ainsi le follicule primordial. Les mécanismes qui permettent la maintenance et/ou rupture des nids de cellules germinales sont méconnus. Cependant quelques études, chez les rongeurs, montrent un possible rôle des estrogènes et des protéines GDF9, BMP15, FOXL2 et NOBOX, puisque l'absence ou réduction de l'expression de ces gènes induisent des changements dans le temps de rupture des nids et augmentent la présence de follicules multi ovocytaires (Bristol-Gould et al. 2005, McMullen et al. 2001, Rajkovic et al. 2004, Tingen et al. 2009, Uda et al. 2004). Un facteur de transcription a été décrit comme essentiel à la formation des follicules primordiaux - le **FIGLA** (Factor in the germline, alpha). Ce facteur de transcription a été d'abord décrit comme régulateur des gènes Zp1, Zp2 et Zp3 (Liang et al. 1997). Cependant des études avec des souris KO pour le gène Fig**a** montrent que aucun follicule primordial n'est formé en son absence et que les cellules germinales dégénèrent en quelques jours (Soyal et al. 2000) montrant ainsi que ce facteur de transcription est un des facteurs avec un rôle prépondérant non seulement dans les cellules de la lignée germinale mais aussi dans la formation de follicules primordiaux (Joshi et al. 2007).

4. 2. 2. Activation des follicules primordiaux

La sortie du pool de réserve avec l'activation des follicules primordiaux est indépendante du cycle ovarien, donc des gonadotrophines, mais se fait par le biais d'un dialogue moléculaire entre l'ovocyte et les cellules folliculeuses qui l'entourent.

Ce dialogue se fait principalement, grâce à une action coordonnée entre deux voies de signalisation : **TSC/mTORC1** et **PTEN/PI3K** ayant la **AKT** (protéine Kinase B) comme point de liaison (Adhikari et al. 2010, Liu et al. 2006, Reddy et al. 2009).

Dans le follicule primordial l'interaction entre **Kit Ligand** (KL) – produit par les cellules folliculaires, et son récepteur **cKiT** (récepteur tyrosine kinase) localisé sur la surface de l'ovocyte, régule la voie de signalisation PI3K dans l'ovocyte activant l'AKT. Cette dernière inhibe à son tour la transcription de **FOXO3a** (forkheadprotein box O3) et de **CDKN1B** (Cyclin-dependent kinase inhibitor 1B), impliquées dans l'arrêt du cycle cellulaire et l'apoptose. En conséquence, on observe une augmentation de la survie cellulaire, la croissance et l'activation folliculaire (Blume-Jensen et al. 2000, Reddy et al. 2005). L'AKT a aussi comme cible le complexe **TSC2/TSC1** (tuberin/tuberous sclerosis) qui inhibe la transcription de **mTORC1** (mammalian target of rapamycin complex) qui est décrit comme régulateur de la croissance et prolifération cellulaire (Kim 2012, Zheng et al. 2012) (Fig. 8).

De ce fait la régulation de la voie de signalisation PI3K par celle de mTORC1 permet d'éviter l'épuisement prématuré de la réserve ovarienne (IOF).

Figure 8 : Voie de signalisation proposée pour l'activation des follicules primordiaux et le maintien de la réserve ovarienne (adapté de Kim 2012).

D'autres facteurs sécrétés par l'ovocyte ou les cellules folliculeuses ont été décrits comme ayant un rôle dans l'activation, le maintien et la transition des follicules primordiaux et primaires :

- FOXL2 (forkheadprotein box L2) présent dans les cellules folliculeuses aplaties est décrit comme un inhibiteur de l'activation des follicules de la réserve puisque son absence conduit à une insuffisance ovarienne prématurée (Schmidt et al. 2004, Uda et al. 2004).
- L'hormone anti-müllérienne (AMH), sécrétée par les CG en croissance jouerait aussi un rôle déterminant dans le maintien de la quiescence folliculaire, mais les voies de signalisation et cellules cibles de cette hormone restent inconnues (Durlinger et al. 1999, Nilsson et al. 2007).
- PDGF (platelet-derived growth factor), bFGF (basic fibroblast growth factor) et LIF (leukemia inhibiting factor) semblent avoir un rôle indirect dans la régulation de l'activation et l'entrée en croissance des follicules primordiaux en stimulant la sécrétion de KL (Nilsson et al. 2001, Nilsson et al. 2006, Skinner 2005)

D'autres facteurs de transcription tels que **SOHLH1** (spermatogenesis and Oogenesis Specific Basic Helix-Loop-Helix) et **NOBOX** (newborn ovary homeobox) ont aussi été décrits comme ayant un rôle dans l'activation et la maintenance des follicules primordiaux mais leur rôle spécifique reste à élucider (Pangas et al. 2006, Rajkovic et al. 2004).

4. 2. 3. Follicule primaire

Dès que le follicule commence sa croissance les CG présentent des prolongements cytoplasmiques qui pénètrent la ZP et forment des Gap junctions, composées de connexines (CX), avec la membrane de l'ovocyte permettant la communication et les échanges métaboliques entre l'ovocyte et les CG (Eppig 1991, Matzuk et al. 2002). Le stade de follicule primaire est aussi caractérisé par le début de la traduction d'ARN et plus précisément par la synthèse des glycoprotéines ZP1, ZP2 et ZP3 qui constituent la **zone pellucide** (ZP) (Gougeon 1986).

Des facteurs de croissance tels que **GDF-9** (Growth differenciation factor-9) et **BMP15** (bone morphogenetic protein-15) commencent à être exprimés dans l'ovocyte et stimulent la **prolifération des CG et leur survie** (Carabatsos et al. 1998, Dong et al. 1996, Matzuk et al. 2002).

Même si dès le stade de follicule primaire des récepteurs à l'Hormone folliculo stimulante (FSH) et à l'Hormone lutéinisante (LH) sont déjà détectables (Kol et al. 1995, O'Shaughnessy et al. 1996, Oktay et al. 1997a) les gonadotrophines ne sont pas nécessaires à la croissance folliculaire, à ce stade, puisque les follicules atteignent les stades suivants en leur absence (Dierich et al. 1998).

4. 2. 4. Follicule secondaire et préantral

À ce stade les CG subissent une grande activité mitotique et prolifèrent sous l'influence de facteurs internes. Parallèlement les cellules de la thèque aussi se multiplient, se stratifient et se différencient en thèque externe et interne (Dong et al. 1996, Ito et al. 2001). Les cellules de la thèque externe sont similaires aux cellules du stroma qui l'entourent, tandis que les cellules de la thèque interne se différencient et deviennent morphologiquement semblables à des cellules sécrétoires (Gougeon 2010). Les deux thèques sont séparées par des vaisseaux sanguins et à partir de ce moment le follicule est exposé à la circulation sanguine (Gougeon 2010, Reynolds et al. 1992).

Plusieurs facteurs ont été proposés soit comme régulateurs de la prolifération et/ou de la survie des CG et de la thèque soit comme inhibiteurs d'activité des récepteurs FSH tels que les facteurs de croissance **GDF9**, **BMP15** (Hreinsson et al. 2002, Otsuka et al. 2000), l'activine A (Li et al. 1995, Yokota et al. 1997, Zhao et al. 2001), **l'inhibine B** (Smitz et al. 1998), l'**EGF** (epidermal growth factor) (Roy 1993), l'**HGF** (hepatocyt growth factor) et le **FGF2** (fibroblast growth factor 2) (Parrott et al. 1994).

4. 2. 5. Follicule antral

Ce follicule est caractérisé par la présence d'une cavité - l'antrum, rempli d'un liquide folliculaire qui est composé par des sécrétions des CG et par un transsudat sérique qui devient source d'oxygène et stocke plusieurs molécules comme des carbohydrates, acides aminés, facteurs de croissance et hormones entre autres.

Quand le follicule atteint une taille de 2 mm les récepteurs FSH et LH deviennent sensibles à l'action des gonadotrophines passant à un développement complètement dépendant des hormones **FSH** et **LH** et de leurs fluctuations pendant le **cycle menstruel** (Gougeon 1986).

Sous l'influence des gonadotrophines, les follicules produisent maintenant des androgènes et des œstrogènes qui contribuent au développement folliculaire ainsi qu'à la différenciation des CG en deux types cellulaires morphologiques et fonctionnellement différents (Sanchez et al. 2012).

Les CG plus proches de la thèque – **granulosa murale**, ont un rôle plutôt endocrine et les cellules qui entourent directement l'ovocyte correspondant au cumulus oophorus, ont un rôle prépondérant dans la maturation ovocytaire et son métabolisme (Matzuk et al. 2002).

Peu avant l'ovulation, le pic de LH provoque indirectement l'expansion du CCO qui est accompagnée d'une production d'acide hyaluronique qui aide à l'expansion des cellules du CCO. Cette expansion du CCO est essentielle à la maturation de l'ovocyte car sans elle le taux d'ovocyte mature est moindre (Eppig 1982, Gougeon 2010, Park et al. 2004).

Figure 9 : Schéma de l'influence de quelques facteurs dans les différents stades du développement folliculaire. En rose les facteurs produits/présents dans les cellules germinales et en violet ceux produits/présents dans les cellules somatiques (adapté de Sanchez et al. 2012)

4. 3. Cycle menstruel

Le cycle menstruel est une variation cyclique et régulière de la zone fonctionnelle de l'endomètre (cycle utérin) induite par la cyclicité de la folliculogenèse terminale au niveau de l'ovaire (cycle ovarien) qui débute à la puberté. Ces deux cycles sont sous contrôle neuro endocrinien et se déroulent de façon synchrone. Il est communément défini comme l'intervalle de temps entre deux menstruations successives. Conventionnellement il débute au premier jour des règles et dure environ 28 jours. Cependant cette durée est très variable d'une femme à l'autre, et peut également varier d'un cycle à l'autre chez la même femme. Il est divisé en une **phase folliculaire** ou pré ovulatoire qui conduit à l'ovulation, l'**ovulation** elle-même puis à une phase post ovulatoire appelée **phase lutéale** qui correspond à la préparation de l'utérus à la nidation.

4. 3. 1. Le contrôle hormonal du cycle menstruel

Tout le cycle menstruel et les modifications associées sont sous contrôle des oestrogènes et de la progestérone qui sont produits par l'ovaire, et des gonadotrophines FSH et LH qui sont produites par l'hypophyse et régulés par l'hypothalamus. L'hypothalamus secrète de manière pulsatile la GnRH (gonadotropin releasing hormone). Cette dernière stimule la sécrétion, également de façon cyclique et pulsatile, des gonadotrophines FSH et LH par l'hypophyse. L'amplitude et la fréquence des pulses de GnRH déterminent les variations de sécrétion des gonadotrophines au long du cycle menstruel. La FSH et la LH agissent sur le follicule ovarien en croissance et le corps jaune. Ainsi au cours de la première partie du cycle (phase folliculaire), la croissance et la maturation du follicule sous influence de la FSH doivent attendre un certain seuil de développement en dessous duquel la croissance folliculaire s'arrête. Les follicules en croissance secrètent, à leur tour, des oestrogènes qui eux vont induire la prolifération de l'endomètre, qui est la mugueuse qui recouvre la cavité utérine. Quand le follicule atteint la maturité, le taux croissant d'æstrogènes dans le sang est à son maximum signalant à l'hypophyse que le follicule est prêt à expulser son ovocyte. Ce signal provoque une réduction des taux de FSH en dessous du seuil de développement et une forte augmentation de la libération de LH par rétrocontrôle positif. Cette poussée de LH est appelé le pic ovulatoire et déclenche l'ovulation qui survient environ 36 heures après. Pendant la phase lutéale les taux de FSH et LH diminuent rapidement et le follicule ovulatoire, qui s'est rompu, se transforme en corps jaune (corpus luteum). Le corps jaune secrète de la progestérone qui prépare l'endomètre à la nidation. En absence d'implantation le corps jaune régresse et devient un corpus albicans. Cette dégénérescence comporte une chute dans les taux de progestérone ce qui enduit la desguamation de l'endomètre et les saignements caractéristiques des cycles menstruels. Si la fécondation a lieu le corps jaune persiste pendant trois mois environ et prend le nom de corps jaune gestatif. Celui-ci assure le maintien des taux de progestérone nécessaires à la nidation et à la croissance de l'embryon implanté.

Figure 10: Représentation schématique des différents évènements qui ont lieu en parallèle au cours du cycle menstruel : A) courbes des taux de gonadotrophines ; B) évènements dans l'ovaire ; C) courbes des taux d'hormones ovariennes et D) l'influence dans l'endomètre (adapté de http://9e.devbio.com).

4. 4. Dynamique de la croissance folliculaire

Comme indiqué auparavant la croissance folliculaire au sein de l'ovaire se fait en plusieurs étapes. Dans un premier temps plusieurs follicules primordiaux sortent continuellement de la réserve ovarienne et débutent une longue croissance appelée **croissance basale**. Cette croissance débute par groupes de plusieurs dizaines de follicules tous les jours. Chez l'humain il est estimé qu'un follicule qui débute sa croissance met 2 à 3 mois pour atteindre le stade de follicule préantral et puis environ 70 jours pour l'apparition de l'antrum et atteindre la taille minimale de 2 mm. Les follicules continuent de croître et en fin de phase lutéale du cycle précédant, il y a le **recrutement**, du à l'élévation transitoire du taux de FSH, d'une cohorte de follicules cavitaires devenus sensibles aux gonadotrophines. Ces follicules initient leur **croissance terminale** complètement dépendante des gonadotrophines et qui se déroule entièrement pendant un cycle menstruel.

La croissance des follicules recrutés se poursuit de façon inégale due à leurs différentes tailles et sensibilité aux gonadotrophines. En conséquence, parmi ceux-là un se développe plus rapidement que les autres, et devient plus sensible à la FSH qui diminue. Celle-ci atteint un seuil auquel un seule follicule continue capable de répondre et de continuer sa croissance. C'est la **sélection** du follicule ovulatoire. Ce follicule exerce alors une **dominance** sur les autres et il est le seule qui continue de croitre. La croissance terminale s'achève avec l'expulsion de l'ovocyte mature - **l'ovulation**.

A noter que pendant toute la folliculogenèse il existe une forte atrésie des follicules puisque d'un large groupe de plusieurs follicules primordiaux ayant débuté leur croissance un seul expulsera son ovocyte.

Figure 11 : Schéma représentatif des différentes étapes de la croissance folliculaire (adapté de Gougeon 2010).

B. Croissance Folliculaire in vitro

La culture de follicules ovariens est une technique qui permettrait la croissance et le développement de follicules ovariens depuis le stade primordial jusqu'au stade de follicule ovulatoire aboutissant à l'obtention d'un ovocyte mature compétent.

Le développement des techniques de croissance folliculaire et maturation ovocytaire *in vitro* est d'un grand intérêt pour la recherche et la médecine de la reproduction autant chez l'humain que dans d'autres espèces. La croissance *in vitro* de follicules ovariens est un important instrument de recherche car il permet l'étude biologique de la folliculogenèse permettant d'approfondir les connaissances sur ce processus complexe. En assistance médicale à la procréation ceci est d'autant plus important car cela pourrait permettre l'utilisation de fragments ovariens cryoconservés dans le but de préserver la fertilité de patientes nécessitant un traitement hautement stérilisant et qui ne se situent pas dans la possibilité d'une autogreffe de tissu ovarien du fait du risque de réintroduction de la maladie (Meirow et al. 2008, Picton et al. 2000).

Malgré quelques travaux plus anciens, la recherche concernant la croissance folliculaire *in vitro* s'est intensifié au milieu des années 1990. Ainsi, plusieurs techniques de culture folliculaire ont été depuis développées à partir soit du tissu ovarien, soit de follicules isolés. La croissance d'une structure si complexe, le follicule, *ex vivo* présente d'innombrables défis liés d'une part à la perte de la vascularisation, et d'autre part à la perte de paramètres cellulaires et structuraux une fois retirés de leur environnement, quand les follicules sont isolés. Ainsi, le choix des techniques, milieux et supports de culture folliculaire doivent non seulement tenir compte de l'origine des follicules (congelé ou frais, dans des fragments d'ovaire ou isolés) et du stade de développement initial, mais aussi répondre simultanément à plusieurs paramètres physiologiques et moléculaires de façon à offrir à l'ovocyte, aux cellules de la granulosa, de la thèque et aux cellules du stroma, les conditions nécessaires à leur développement en culture (Fig. 12).

Figure 12 : Résumé des paramètres à prendre en compte pour la croissance et maturation in vitro d'ovocytes chez les mammifères selon Picton (Picton et al. 2003). Les paramètres sont à adapter selon les différentes étapes de culture

1. Types de cultures

Pour l'étude de la croissance folliculaire *in vitro* plusieurs types de culture et systèmes de culture ont été développés. Ceux-ci sont adaptés au stade de développement folliculaire auquel débute la culture, l'espèce utilisée et le but de la culture. Cependant, tous les systèmes de cultures décrits jusqu'à présent peuvent se situer dans deux types :

- Culture de fragments de cortex ovarien ou *in situ* qui correspond à la croissance folliculaire au sein de l'ovaire.
- Culture de follicules isolés qui correspond à la croissance folliculaire après un isolement de la structure folliculaire du tissu ovarien.
1. 1. Culture in situ

Dans ce type de culture des fragments de cortex ovarien sont directement mis en culture. De cette façon, les follicules sont d'une part maintenus dans un environnement semblable à celui qu'ils ont *in vivo*, conservant leur structure et un contact direct avec le stroma, et d'autre part les dommages que peuvent causer les techniques d'isolement du follicule sont évités. Ce type de culture est le plus fréquemment utilisé, pour induire l'activation des follicules primordiaux et leur croissance jusqu'au stade préantral.

La densité et l'épaisseur du stroma semblent être déterminants pour ce type de culture et plus précisément pour l'activation des follicules primordiaux. Des études chez l'humain (Telfer et al. 2008) et chez d'autres mammifères (McLaughlin et al. 2010, Wandji et al. 1996) montrent que dans des fragments d'ovaire où le stroma a été diminué au maximum, l'activation des follicules primordiaux se fait plus rapidement et en plus grand nombre comparés avec d'autres études qui mettent en culture des fragments d'environ 1mm d'épaisseur (Hovatta et al. 1997), puisque les follicules dans les fragments de cortex ovarien avec plus de stroma sont exposés à des facteurs inhibiteurs à l'activation de la croissance folliculaire (McLaughlin et al. 2009, Telfer et al. 2013).

1. 2. Culture de follicules isolés

Une autre méthode pour faire croître des follicules ovariens *in vitro* est de mettre en culture les follicules en culture après les avoir libérés du tissu conjonctif de l'ovaire.

Ainsi, la première étape pour ce type de culture est l'isolement des follicules.

La culture de follicules isolés a été décrite pour tous les stades de développement, cependant elle est essentiellement associée à la croissance folliculaire à partir du stade de follicule secondaire (Picton et al. 2008). Pour la culture de follicules secondaires isolés, essentiellement deux systèmes peuvent être proposés pour cette espèce :

- Culture en phase liquide ou 2D : culture en monocouche avec adhésion au support de culture et dans lequel le follicule perd sa structure tridimensionnelle.
- Culture organotypique ou 3D : technique dans laquelle le follicule pendant toute la culture conserve sa structure tridimensionnelle.

1. 2. 1. Isolement des follicules

L'isolement des follicules ovariens pour culture se fait essentiellement par deux méthodes. La première est l'**isolement mécanique** à l'aide de fines aiguilles ou de petits scalpels. Avec cette technique, l'intégrité de la membrane de Slavjanski est maintenue et les follicules possèdent aussi des cellules de la thèque, permettant ainsi de mettre en culture toute la structure folliculaire. Cependant, même si cette technique a été décrite dans plusieurs espèces elle rencontre des difficultés quand appliquée à des espèces dont les ovaires sont très fibreux comme c'est le cas des grands mammifères et l'humain, nécessitant des temps de manipulation très longs et présentant un nombre de follicules obtenus très faible (Telfer et al. 2000, Telfer et al. 2013).

L'autre est **l'isolement enzymatique** qui consiste à l'exposition du tissu ovarien à des enzymes telles que la collagénase et/ou DNAse suivie d'un isolement mécanique. Cependant, avec cette technique la membrane de Slavjanski est altérée et les cellules de la thèque dissociées de la structure folliculaire. La réduction du temps d'exposition à l'enzyme, peut minimiser ces effets. Quand cette technique d'isolement est utilisée on parle quand même de culture de follicules isolés mais, en fait, elle traite des complexes ovocyte-cellules de la granulosa.

2. La souris comme modèle

Le matériel biologique humain étant très peu disponible, les modèles animaux, dans la recherche, sont indispensables comme étape préliminaire pour obtenir des éléments de travail et de réflexion nécessaires pour travailler chez l'humain. Même si la souris présente des différences majeures avec la physiologie ovarienne de la femme elle reste néanmoins le modèle le plus largement étudié, étant de plus, le seul modèle pour lequel les différents systèmes de culture ont abouti à la naissance de souriceaux (Carroll et al. 1990, Eppig et al. 1989, Eppig et al. 1996, O'Brien et al. 2003, Xu et al. 2006a).

Chez la souris, les ovaires sont beaucoup plus petits que dans d'autres espèces, beaucoup moins fibreux et ont la particularité de débuter leur folliculogenèse au moment de leur naissance. Ainsi, dans les premiers jours après la naissance, la population folliculaire chez la souris est très homogène. Ces caractéristiques ont permis le développement des techniques de culture concernant :

- ovaire entier qui se compare à la culture au sein de fragments ovariens chez les plus grands mammifères. Elle est surtout utilisée pour l'activation des follicules primordiaux et leur développement jusqu'au stade secondaire (Eppig et al. 1996).
- follicules isolés. L'ovaire peu fibreux et contenant une population folliculaire très homogène chez la jeune souris permet l'isolement mécanique, à l'aide de fines aiguilles, de follicules à différents stades de leur développement selon l'âge de la souris (Hartshorne 1997). Même si la culture de follicules isolés à plusieurs stades de développement est décrite le stade le plus fréquemment étudié, pour cette espèce, est la culture des follicules secondaires.

2. 1. Culture de follicules isolés

2. 1. 1. Culture en phase liquide ou 2D

Dans ce type de culture les follicules isolés sont généralement placés dans un milieu sur un support plastique et recouverts d'huile minérale (Cortvrindt et al. 1998, Eppig et al. 1989, Eppig et al. 1996). Ceci entraine un attachement des follicules au support de culture qui allié à l'intense prolifération des cellules de la granulosa provoque la rupture de la membrane de Slavjanski et l'étalement du follicule sur une surface bidimensionnelle. Même s'il a été décrit que la perte de la structure tridimensionnelle et l'étalement des cellules de la granulosa compromettent la communication étroite avec l'ovocyte (Fig. 13A) (West et al. 2007a), ce système de culture est depuis des années utilisé pour des études comparatives sur la croissance folliculaire *in vitro* chez la souris.

De nombreux paramètres comme le diamètre folliculaire et ovocytaire lors de la croissance, la capacité de l'ovocyte à reprendre la méiose, la configuration de la chromatine, l'activité transcriptionnelle, la survenue d'oscillations calciques intracytoplasmiques, entre autres, ont été analysées pendant la croissance en système 2D et les résultats obtenus ont été considérés comme comparables à ceux obtenus *in vivo* (Cortvrindt et al. 2002, Pesty et al. 2007, Sun et al. 2004). De plus, la croissance folliculaire et les différences morphologiques associées sont facilement observables au microscope, avec la culture 2D (Fig. 13B). La production d'hormones stéroïdiennes et de protéines est également mesurable par dosage dans le milieu de culture (Dorphin et al. 2012, Smitz et al. 1998). De surcroit, ce type de culture a été un des premiers à avoir été validé par l'obtention de souriceaux viables après croissance folliculaire *in vitro* (Cortvrindt et al. 1996, dela Pena et al. 2002, Eppig et al. 1989, Eppig et al. 1996, Liu et al. 2001, O'Brien et al. 2003).

Figure 13 : Croissance *in vitro* de follicules secondaires dans un système en phase liquide (2D). A) illustration de la perte de la structure tridimensionnelle du follicule et réorganisation des cellules (adapté de West et al. 2007b). B) images de la croissance folliculaire le jour de la mise en culture J0 (i) ; après 4 jours de croissance *in vitro* avec les cellules de la thèque étalées sur le support (ii) ; et follicule en fin de culture J12 avec la présence d'une cavité antrum-like * (iii) Barre d'échelle =100 μm.

2. 1. 2. Culture organotypique ou 3D

Dans ce type de culture le follicule garde sa structure tridimensionnelle tout au long de la croissance *in vitro* par l'absence d'adhésion des follicules au support de culture. Le follicule présente alors une croissance radiaire à partir de l'ovocyte et les interactions ovocyte-cellules folliculaires sont maintenues (Fig 14A).

Les systèmes de culture en 3D peuvent être réalisés par :

- Utilisation de membranes hydrophobes (Nayudu et al. 1992)
- Utilisation de matériels de support coniques qui empêchent l'adhésion, associés à un changement journalier du milieu des puits de culture (Fehrenbach et al. 1998, Vitt et al. 1998)
- Inclusion dans des capsules de matrice d'hydrogel (Carroll et al. 1991b, Gomes et al. 1999, Torrance et al. 1989, West et al. 2007b, Xu et al. 2006b).

Le système le plus souvent utilisé pour la culture 3D est l'inclusion dans des capsules de matrice, composées le plus fréquemment par des hydrogels naturels tels que le collagène ou l'alginate. Les hydrogels miment la matrice extracellulaire ovarienne et sont perméables, permettant aussi la diffusion de nutriments, les échanges gazeux et l'efflux des déchets cellulaires produits par le follicule, en maintenant les interactions entre ovocyte-cellules folliculaires (Fig. 14A). Les premières inclusions de follicules préantraux isolés dans des matrices datent de la fin des années 1980 utilisant du collagène (Torrance et al. 1989) et ont permis l'amélioration des conditions de culture chez la souris et d'autres espèces (Carroll et al. 1991a, Gomes et al. 1999, Vanhoutte et al. 2009). À ce jour l'hydrogel le plus fréquemment utilisé est l'alginate. Les différentes études ont montré que les follicules préantraux, inclus dans des capsules d'alginate, atteignaient un diamètre similaire à celui observé in vivo (Pangas et al. 2003) et permettait la différenciation des cellules folliculaires, la formation de l'antrum, la maturation ovocytaire et la production d'hormones, ceci en ajustant la rigidité de la capsule en faisant varier la concentration en alginate (West et al. 2007b, Xu et al. 2006b). Cette technique (Fig. 14B) a également permis la naissance de souriceaux (Xu et al. 2006a).

Cependant une étude récente montre que les ovocytes maturés avec cette technique présentent des anomalies dans la formation du fuseau méiotique et l'alignement des chromosomes, dans la formation des granules corticaux ainsi que dans l'expulsion du premier globule polaire (Mainigi et al. 2011).

Une nouvelle approche utilisant un mélange d'alginate et de fibrine a également été décrite. L'ajout de la fibrine permet la diminution de la rigidité et de la concentration des capsules en alginate, qui peut nuire à la croissance du follicule. De plus la fibrine est dégradable. Ainsi elle peut être dissoute au long de la culture par le follicule lui-même en produisant des protéases, tout en gardant sa structure 3D, maintenue par l'alginate. Cette nouvelle approche semble aussi mimer le comportement du follicule au sein de l'ovaire puisque pendant son développement le follicule passe d'un cortex rigide à la médullaire plus lâche (Shikanov et al. 2009, 2011).

Figure 14 : Croissance *in vitro* de follicules secondaires dans un système de capsules de matrice d'hydrogel (3D). A) illustration du maintien de la structure tridimensionnelle du follicule et interaction avec les cellules somatiques (adaptée de West et al. 2007b) B) images de la croissance folliculaire au jour de la mise en culture J0 (i) ; après 4 jours de croissance *in vitro* avec une augmentation de taille (ii) ; et follicule en fin de culture J12 (iii) (adapté de Xu et al. 2006a). Barre d'échelle =100 μm.

3. Chez l'humain

Chez l'humain les résultats de la croissance folliculaire *in vitro* sont beaucoup plus limités que dans les autres espèces. Ceci est dû d'une part à une faible disponibilité du matériel biologique pour l'étude et d'autre part, au temps extrêmement long que nécessite la folliculogenèse, environ 7 mois chez la femme (Gougeon 1986). La densité du stroma ovarien, chez l'humain, ainsi que le manque de connaissance des mécanismes du développement folliculaire et ses régulateurs, nécessaires à la mise au point de milieux et systèmes de culture adaptés rendent la croissance de follicules ovariens humains encore plus difficiles (Hovatta et al. 1997, Lass et al. 1997).

Malgré cela, les progrès obtenus sont très prometteurs et sembleraient indiquer cette technique comme une vraie alternative à la greffe de fragments ovariens.

3. 1. Différentes approches de culture

Plusieurs techniques de croissance *in vitro* de follicules ovariens, chez l'humain, utilisant soit du tissu frais soit du tissu ovarien congelé ont été étudiées. À ce jour, 3 approches différentes ont été décrites permettant un développement folliculaire :

- Culture in situ: culture de petits fragments de cortex ovarien, préservant ainsi les conditions naturelles du follicule. Cette technique a permis l'activation des follicules primordiaux et leur développement jusqu'au stade secondaire (Hovatta et al. 1997, Hreinsson et al. 2002, Sadeu et al. 2006, Wright et al. 1999).
- Culture de follicules isolés : culture de follicules primaires ou secondaires après dissection mécanique et/ou enzymatique. Avec cette technique la littérature décrit une croissance jusqu'au stade qui suit immédiatement le stade folliculaire choisi (Abir et al. 1997, Abir et al. 1999, Hovatta et al. 1999, Oktay et al. 1997b, Roy et al. 1993, Xu et al. 2009).
- Culture par étapes : le type de culture est adapté au stade de développement, avec une première étape *in situ* suivie d'une culture de follicules isolés (Telfer et al. 2008).

	Primordial	Primaire	Secondaire	Antral
Roy et al. (F)				
(Roy et al. 1993)				
Abir et al. (F)				
(Abir et al. 1997)				
Hovatta et al. (C)				
(Hovatta et al. 1997)				
Wright et al (F)				
(Wright et al. 1999)				
Abir et al. (F)				
(Abir et al. 1999)				
Hreinsson et al. (F)				
(Hreinsson et al. 2002)				
Sadeu et al. (C)				
(Sadeu et al. 2006)				
Telfer et al. (F)				
(Telfer et al. 2008)				
Xu et al. (F)				
(Xu et al. 2009)				

Ainsi, le passage d'un certain stade folliculaire au stade immédiatement suivant a déjà été décrit chez l'humain, mais le développement folliculaire complet, à partir du même follicule, reste un challenge très important à relever. Cependant une étude utilisant une culture séquentielle avec une première étape de culture in situ suivi de l'isolement et culture de follicules à un stade déterminé a permis le développement de follicules primordiaux jusqu'au stade de follicule antral en seulement 10 jours (Telfer et al. 2008) (Fig. 15).

Figure 15 : Développement *in vitro* de follicules humains, en 3 phases.(a) Schéma des différentes étapes de la culture des follicules primordiaux jusqu'au stade de follicule à antrum (i-ii) extraction des complexes ovocyte-cellules du cumulus pour croissance et développement en membrane d'alginate (iii) et maturation in vitro (MIV) des complexes cumulus ovocytaires (CCO). Le schéma proposé a permis d'observer la croissance de follicules primordiaux (b) en follicules secondaires (c) et en follicules à antrum (d) dans un milieu de culture sans sérum (adapté de Telfer et al. 2008).

Une autre étude, en utilisant une technique d'inclusion en capsule d'alginate (Fig. 16), a pu maintenir et faire croître *in vitro* des follicules secondaires isolés et au bout de 30 jours obtenir des follicules présentant des caractéristiques physiologiques et structurelles qui peuvent permettre la sélection d'ovocytes pour une maturation *in vitro* (Xu et al. 2009).

Les différentes études semblent indiquer ainsi que le développement folliculaire complet *in vitro* devrait se faire en trois phases : une première phase de culture in situ dans le cortex ovarien, de façon à mimer le recrutement et la croissance initiale de follicule primordial jusqu'au stade de follicule secondaire ; une deuxième phase de culture de follicules secondaires isolés jusqu'au stade de

follicules à antrum; et une troisième et dernière phase avec extraction du complexe cumulus-oophorus (CCO) en vue d'une maturation ovocytaire *in vitro*.

Figure 16 : Images du développement de follicules ovariens humains en capsule d'alginate (Xu et al. 2009). (A) un follicule humain sans culture en comparaison avec (B) un follicule de caractéristiques similaires après 14 jours de culture en capsule d'alginate. (C) follicule en culture depuis 15 jours avec formation d'un antrum et d'un CCO central et D) un follicule où le maintien de la structure 3D est bien visible. Barre d'échelle =100 μm

C. La protéomique

La protéomique est le terme générique qui englobe une large gamme de technologies visant à déterminer l'identité et la quantité des protéines exprimées dans une cellule, un organisme, un organe, un compartiment cellulaire ou un fluide biologique à un moment donné, dans un contexte biologique donné. Certaines méthodologies permettent également d'étudier leur structure tridimensionnelle et leurs interactions entre elles ou avec d'autres molécules. La protéomique est ainsi pour la protéine ce que la génomique est pour le gène et la transcriptomique pour l'ARNm (Fig. 17). L'ensemble des protéines qui résultent de la traduction des ARNm dans un échantillon à un moment donné est dénommé **protéome**.

Figure 17 : Contexte biochimique du protéome.

Celui-ci présente des spécificités par rapport aux deux autres car les niveaux d'expression des protéines ne sont pas directement corrélés à celui des ARNm puisque certains ne sont jamais traduits. De plus, les protéines sont fréquemment soumises à des modifications post-traductionnelles qui changent aussi leur fonction. Ainsi un même gène peut coder plusieurs protéines rendant le protéome variable selon le stade de développement, le cycle cellulaire, la différenciation, en réponse à des signaux biologiques ou physiques, où en réponse à l'environnement auquel sont soumis les échantillons. De cette façon il est possible de dire que la protéine est la seule molécule qui produise un effet biologique en comparaison avec l'ADN et ARNm (Liebler 2002).

L'étude du protéome est un vrai challenge car celui-ci suppose une analyse simultanée d'un très grand nombre de protéines en vue de connaître leur structure, fonction, interaction, l'abondance et les variations de ces caractéristiques en fonction du contexte cellulaire. Même si l'étude des protéines présente des avantages par rapport au séquençage des gènes et des ARN, techniquement elle est aussi beaucoup plus difficile pour les raisons suivantes :

- Les protéines ne peuvent pas être amplifiées contrairement aux gènes et aux ARN. Les protéines peu abondantes sont donc difficiles à étudier.
- Les protéines son des séquences de taille variable d'acides aminés. Il existe 20 acides aminés différents par leur composition moléculaire et leurs propriétés physico-chimiques, ce qui donne un nombre quasi-illimité de possibilités de séquences protéiques, et confère aux protéines une grande hétérogénéité.
- L'abondance d'une protéine dans un échantillon peut varier entre une et plusieurs millions de copies, ce qui exige une extrême sensibilité et une large gamme dynamique des techniques et appareils de détection.
- Le nombre total de protéines à analyser dans un même échantillon est très vaste et très variable.

1. Les grandes étapes d'une analyse protéomique

L'analyse protéomique ne serait alors pas possible sans le développement et les évolutions constantes des techniques séparatives comme l'électrophorèse bidimensionelle, ou la chromatographie liquide, de la spectrométrie de masse et enfin de la bioinformatique qui permet de gérer la quantité énorme d'informations produite. Pour une analyse protéomique, quel que soit l'échantillon, plusieurs étapes doivent être réalisés :

> • Extraction, cette étape consiste à extraire et à solubiliser les protéines d'un échantillon biologique ; elle est cruciale car une mauvaise extraction peut induire la dégradation voire la perte des protéines et même empêcher leur identification. Le tampon doit être adapté aux

conditions dans lesquelles on souhaite travailler (natives ou dénaturantes) et au type de protéines (solubles ou membranaires).

- Préfractionnement, étape optionnelle en fonction de l'abondance et de la complexité de l'extrait protéique. Elle consiste à fractionner un échantillon en plusieurs sous-ensembles afin d'accéder à un plus grand nombre de protéines et à réduire l'effet de saturation lié aux protéines les plus abondantes.
- Séparation, étape dans laquelle les protéines sont séparées en fonction de leurs caractéristiques physico-chimiques ou encore en fonction de leurs affinités pour un ligand. Il existe 2 grandes approches pour l'analyse d'extraits complexes : l'électrophorèse bidimensionnelle ou la chromatographie liquide (1D ou 2D) couplée à la spectrométrie de masse.
- Identification des protéines par spectrométrie de masse (MS) qui repose sur la mesure précise des biomolécules. Les protéines sont digérées dans un premier temps à l'aide d'une enzyme (classiquement la trypsine) puis les peptides issus de la digestion sont analysés en spectrométrie de masse et peuvent être fragmentés afin de déterminer leur séquence.
- Analyse bioinformatique est la dernière mais pas la moindre étape de l'analyse protéomique. Elle commence par l'interrogation des bases de données pour comparer les résultats obtenus avec la spectrométrie de masse et les données génomiques et protéomiques en ligne. C'est ainsi qu'une liste de protéines est obtenue. Une fois la liste établie, plusieurs les outils informatiques permettent l'étude de ces listes, classant les protéines par famille, fonction, ou selon leurs interactions.

1. 1. Extraction

L'extraction de protéines à partir d'un mélange complexe se fait à l'aide de tampons adaptés à la nature des protéines et à l'objectif de l'analyse. En général, un tampon d'extraction est constitué de :

• Un tampon salin qui permet de contrôler le pH de la solution et aide à la solubilisation des protéines (ex. Tris, Hepes).

- Détergents qui aident à la solubilisation des protéines membranaires en partciculier (ex. SDS, CHAPS).
- Agents réducteurs pour réduire les ponts disulfures et prévenir l'oxydation des protéines (ex. dithiothréitol (DTT), mercaptoethanol).
- Agents dénaturants des protéines qui altèrent la structure spatiale des protéines sans rupture des liaisons covalentes, en modifiant la concentration ionique de la solution et le pH (urée et acides).

Il n'existe pas de tampon universel pour l'extraction protéique, chaque tampon doit être adapté à l'échantillon et aux contraintes éventuelles de la méthodologie utilisée pour l'analyser. Dans le cadre d'une étude d'interactions protéiques, par exemple, les protéines doivent être maintenues dans des conditions natives, c'est-à-dire sans agent dénaturant ni agent réducteur, idéalement sans détergent, mais en présence de sels. En revanche, pour une approche par électrophorèse 2D, les protéines doivent être dénaturées mais conserver leur charge native. Cela implique d'utiliser des agents dénaturants mais aucun détergent ionique et une quantité minimale de sels. Le tampon peut également être complété par des inhibiteurs de protéases (pour éviter la dégradation des protéines) ou des ampholytes (qui aident à la séparation des protéines). Cependant il faut toujours tenir compte des étapes ultérieures, car l'utilisation de certains composants interfère soit avec la méthode de séparation des protéines, soit avec la digestion, soit avec la spectrométrie de masse.

Selon l'origine de l'échantillon, un broyage mécanique peut être réalisé après l'ajout du tampon d'extraction, pour faciliter l'éclatement des cellules. Une centrifugation sera nécessaire pour culotter les débris. Le surnageant, alors récupéré constitue l'**extrait protéique**.

1. 2. Préfractionnement

Le fait de fractionner l'extrait protéique est une étape essentielle lorsque l'échantillon est très complexe, comme c'est le cas avec un extrait cellulaire. Le préfractionnement a pour but la réduction de la complexité des échantillons. Ceci permet ainsi d'accéder à un plus grand nombre de protéines pour l'analyse protéomique car il y a une concentration des protéines moins abondante dans les fractions. Le fractionnement peut se faire par centrifugation différentielle, par élimination des protéines les plus abondantes, par électrophorèses et encore par électrolocalisation. Ici je décrirais uniquement les techniques utilisées pour la réalisation de ce travail de thèse.

1. 2. 1. Electrophorèse 1D

L'électrophorèse se base sur le principe de mobilité de molécules soumises à une charge électrique. Selon les caractéristiques des molécules telles que la charge et leur masse, la nature du support de migration et les conditions physicochimiques la vitesse de migration varie, permettant ainsi la séparation des différentes molécules. Dans ce travail l'électrophorèse 1D SDS PAGE a été réalisée.

Dans cette approche, l'extrait protéique est dans une solution en présence d'un agent dénaturant – le SDS qui se lie aux protéines et leur confère, en proportion avec le poids moléculaire, une charge négative. L'extrait protéique est chargé sur un gel composé de polyacrylamide. Sous l'influence d'un courant électrique, les complexes SDS-protéines migrent dans le gel en fonction de leur poids moléculaire et se séparent en formant des bandes le long de la piste de migration (Fig. 18). Une bande peut contenir une ou plusieurs protéines ayant des masses moléculaires proches.

Figure 18 : Représentation du principe d'un gel 1D SDS-PAGE (Liebler 2002)

1. 2. 2. Électrofocalisation

Il s'agit de la séparation basée sur la focalisation isoélectrique, soit le point isoélectrique de la protéine, qui se fait sur une bandelette composé d'un gel de polyacrylamide à gradient de pH fixe – strip IPG. Dans cette approche les protéines migrent au long de la strip, qui est sous courant, jusqu'à atteindre l'endroit correspondant à leur point isoélectrique où elles restent immobilisées.

Cette électrolocalisation peut être également réalisée en phase liquide (OffGeL). En phase liquide, des coupelles (en nombre voulu par rapport à la taille de la strip) sont superposé à la strip et la migration se fait par sortie et entrée dans les coupelles mais avec le même principe que in gel (Fig. 19). Cependant à la fin les protéines sont récupérées en phase liquide.

Figure 19 : Principe du fractionnement IEF OFFGEL. A) Dépôt d'un même volume d'extrait protéique dans les trois puits ; B) migration des protéines qui pénètrent dans la strip, migrent en fonction de leur charge native puis diffusent dans le puits correspondant à leur point isoélectrique ; C) Chaque fraction contient un pool de protéines dont le pl correspond à la zone de pH couverte par le puits sur la strip.

1. 3. Séparation

Cette étape précède normalement l'identification, et traditionnellement deux approches sont utilisés : l'électrophorèse bidimensionnelle et la chromatographie liquide

1. 3. 1. Electrophorèse bidimensionnelle (électrophorèse 2D)

L'électrophorèse 2D résulte de la combinaison de deux migrations électrophorétiques successives. Les protéines, dont la charge native doit être préservée au moment de l'extraction, sont d'abord séparées selon leur point isoélectrique (pl) selon le principe de l'électrofocalisation. Cette séparation s'effectue sur la strip contenant un gradient de pH pré-établi et fixe. Sous l'effet d'un courant électrique, les protéines migrent le long du gradient de pH et s'arrêtent à l'endroit où le pH est égal à leur point isoélectrique. La strip est ensuite incubée dans une solution de SDS puis déposée sur le haut d'un gel SDS-PAGE, pour une séparation selon leur masse. Dans ce type de gel les protéines sont visualisées sous forme de spots et une « carte protéique » est ainsi obtenue (Fig. 20).

Figure 20: Représentation du principe de séparation par de la 2D SDS-PAGE (Liebler 2002).

1. 3. 2. Chromatographie liquide

La chromatographie liquide a comme principe la séparation des composés entrainés par un liquide (phase mobile) à travers un solide (phase stationnaire) qui lui, est normalement fixé à une colonne appelé colonne chromatographique. La séparation se réalise selon les interactions chimiques ou physiques des molécules avec la phase mobile ainsi qu'avec la phase stationnaire. Cette séparation peut se faire avec une colonne chromatographique c'est à dire 1D ou ayant recours à deux colonnes chromatographiques séquentielles – 2D.

1. 4. Identification des protéines par spectrométrie de masse

Il existe deux approches différentes pour identifier une protéine digérée par spectrométrie de masse. La première ne peut être utilisée que pour une protéine purifiée (par exemple un spot de gel 2D). Il s'agit de la méthode d'identification par empreinte peptidique de masse, la masse des peptides obtenus après digestion d'une protéine est comparée aux masses théoriques des peptides des protéines répertoriées dans les banques de données. Quand les échantillons sont complexes, la spectrométrie de masse en tandem (MS/MS) est utilisée. Dans ce cas, une première analyse MS permet de mesurer la masse du peptide qui est ensuite isolé et fragmenté. Une deuxième analyse MS des fragments obtenus permet de déterminer la séquence peptidique : en effet, chaque acide aminé de la séquence peut être déterminé en calculant la distance entre deux pics adjacents.

Pour l'étape d'identification, les protéines sont digérées dans un premier temps en peptides à l'aide d'enzymes spécifiques. L'enzyme utilisée le plus classiquement est la trypsine qui clive après chaque acide aminé de type lysine ou arginine.

Les peptides issus de la digestion sont ensuite analysés par spectrométrie de masse qui se base sur la mesure du rapport masse sur charge (m/z) des peptides ionisés à l'état gazeux. Le spectromètre de masse est normalement composé de trois éléments : **une source d'ions**, **un analyseur de masse** et un **système de détection des ions** (Fig. 21).

Figure 21 : Structure de base d'un spectromètre de masse.

Couramment, il existe 2 types de sources d'ions :

 la source MALDI (Matrix Assisted Laser Desorption Ionisation) où la formation d'ions se fait par excitation d'un dépôt séché constitué à la base d'un mélange d'une solution de matrice et de l'analyte (Fig. 22)

Figure 22 : La source MALDI ionise, sous l'effet d'un laser, des analytes en phase solide qui sont co-cristallisés avec une matrice sensible à la longueur d'onde du laser. Cette source génère des ions majoritairement monochargés (z=1) (image repris de http://fr.academic.ru/dic.nsf/frwiki/1094130). la source ESI (ElectroSpray Ionisation) où les ions sont formés par électronébulisation de l'analyte en solution (Fig. 23).

Figure 23 : Source ElectroSpray (ESI) génère des ions à l'état gazeux à partir d'un échantillon liquide grâce à un spray d'électronébulisation. Elle produit des ions principalement multichargés (image reprise de http://www.lamondlab.com).

Il existe 4 types d'analyseurs : **temps de vol**, **trappe à ions, quadrupoles** et **analyseurs à résonance cyclotronique**. Dans ce travail de thèse c'est l'analyseur à trappe ionique qui a été utilisé.

 L'analyseur de type trappe ionique piège les peptides dans un champ électrique tridimensionnel. Une variation graduelle tridimensionnelle du champ électrique va progressivement expulser les peptides piégés, du plus léger au plus lourd. La valeur du champ électrique au moment de l'expulsion d'un peptide donné permet d'en déterminer la masse exacte.

Une deuxième dimension peut être ajoutée en spectrométrie de masse mettant en tandem l'analyseur (MS/MS). Ainsi dans une première séparation dans l'analyseur des ions sont sélectionnés et fragmentés et puis séparés à nouveau selon leur rapport m/z.

Les sources ESI sont en général couplées à un système de séparation de peptides par chromatographie liquide haute performance (HPLC) sur des colonnes capillaires (nanoLC) pour l'analyse de très faibles quantités.

1. 5. Analyse bioinformatique

Quelles que soient les méthodes utilisées, toute analyse protéomique par spectrométrie de masse a besoin d'outils informatiques puissants pour analyser et valider les données. Ainsi les bases de données telles que SwissProt et trEMBL utilisées pour l'identification des protéines sont consultées via des logiciels dédiés tels que MASCOT, Sequest, XTandem, etc. Ces logiciels comparent les masses des peptides obtenues avec les masses théoriques des peptides présents dans les bases de données. D'autres outils sont également *a posteriori* nécessaires pour approfondir l'étude des informations obtenues, comme la classification des protéines selon leur fonction biologique et/ou moléculaire, selon leurs interactions entres elles ou avec d'autres molécules et leur rôle dans les voies de signalisation entre autres. Ceci est possible grâce à des logiciels qui compilent toutes les informations publiées sur chaque protéine et qui croisent ces informations de façon à relier certaines protéines entre elles. Les différents logiciels utilisés dans ce travail sont décrits dans le chapitre matériels et méthodes.

2. La protéomique appliquée à la biologie de la reproduction

Dans le domaine de la santé, la protéomique s'est rapidement imposée comme un outil puissant principalement dans la mise en évidence de marqueurs diagnostiques ou pronostiques de maladies comme le cancer du sein, de la prostate et la maladie d'Alzheimer. Le domaine de la biologie de la reproduction ne fait pas exception et l'utilisation de cette approche a permis d'élargir la connaissance des évènements moléculaires des fonctions reproductrices chez l'homme et chez la femme avec l'analyse d'expression, de régulation et de modifications des protéines dans plusieurs types cellulaires, tissus et organes. Ainsi, au cours des dernières années, les principaux travaux de protéomique ont été réalisés, chez le male, sur les testicules, la maturation epididymaire des spermatozoides, les fluides séminaux et le développement du spermatozoïde, et chez la femelle, sur l'endomètre, l'endométriose, le syndrome des ovaires polykystiques, la maturation ovocytaire et le liquide folliculaire, mais aussi sur la fécondation, l'interaction gamétique et le développement embryonnaire initial (Upadhyay et al. 2013).

2. 1. L'étude protéomique dans la reproduction féminine

En biologie de la reproduction, pour le côté féminin, les études de protéomiques ont comme but essentiel :

- l'évaluation de la qualité ovocytaire et en conséquence sa capacité à reprendre la méiose ainsi que l'identification des protéines impliquées dans le développement initial de l'embryon
- l'étude de pathologies qui affectent la fertilité telles que l'endométriose et le syndrome des ovaires polykystiques
- l'étude de l'endomètre pour essayer de mettre en évidence des marqueurs sur la qualité de l'endomètre pour l'implantation.

Pendant les cinq dernières années, les études sur l'endomètre, chez la femme, ont permis de mettre en évidence des protéines différemment exprimées selon la phase du cycle menstruel, l'identification de protéines surexprimées pendant la fenêtre implantatoire et de protéines non connues auparavant pour leur régulation par les stéroïdes (Chen et al. 2009, DeSouza et al. 2005, Dominguez et al. 2009, Parmar et al. 2009, Rai et al. 2010). Ces résultats pourront ainsi permettre l'identification et l'analyse des protéines ayant un rôle potentiel dans la

capacité de l'endomètre à accueillir les embryons, ce qui peut aider à optimiser la préparation de l'endomètre en vue des transferts d'embryons et peut être même aider en cas d'échec d'implantation lors des cycles de FIV.

Plusieurs études ont effectué des analyses protéomiques pour comparer les endomètres ectopiques de femmes atteintes d'endométriose à des endomètres normaux révélant des protéines qui présentaient des expressions différentes selon la présence ou l'absence de la pathologie (Chehna-Patel et al. 2011, Fowler et al. 2007, Scotchie et al. 2009, Ten Have et al. 2007, Zhang et al. 2006).

En ce qui concerne l'ovaire, le plus souvent les études visent à mieux connaitre le syndrome des ovaires polykystiques. Cependant, dans un premier temps, c'est l'ovaire sain qui a été étudié, et récemment une grande étude sur le protéome de l'ovaire du Macaque Rhésus a permis l'identification de plus de 5 000 protéines constituant ainsi le plus grand protéome décrit pour l'ovaire (He et al. 2014). Dans cette étude le cycle cellulaire, la régulation de la mort cellulaire et de l'apoptose ainsi que l'organisation du cytosquelette étaient les processus biologiques les plus représentés en terme de nombre de protéines. Parmi les protéines identifiées, 48 avaient été antérieurement décrites comme ayant une expression variable entre les ovaires polykystiques et les ovaires normaux chez l'humain (Ma et al. 2007) établissant ainsi une liste de protéines qui devront faire l'objet d'études plus approfondies pour comprendre leur rôle exact dans la pathologie et ainsi parvenir à faire évoluer le diagnostic et le traitement du syndrome des ovaires polykystiques.

Le liquide folliculaire, par son origine et sa proximité avec l'ovocyte en croissance est aussi un important sujet d'études protéomiques pour en déduire la qualité folliculo-ovocytaire. Chez l'humain, la publication la plus récente, décrit l'identification de 480 protéines dont 320 jamais décrites dans le liquide folliculaire, et ce après avoir exclu les 14 protéines les plus abondantes déjà décrites antérieurement (Ambekar et al. 2013). Cela a permis d'élargir le nombre de protéines connues et présentes dans le liquide folliculaire. Ceci pourrait aider à mieux connaître sa fonction, aider au développement de marqueurs de qualité ovocytaire et ainsi augmenter les taux de grossesse et aider à la recherche des causes d'infertilité dans le futur (Ambekar et al. 2013).

2. 2. L'étude de l'ovocyte – approche protéomique

L'ovocyte du fait de son importance, de sa rareté et de la difficulté à en obtenir est une cellule difficilement analysable chez l'humain. En protéomique cela est d'autant plus important car les quantités d'échantillon nécessaires aux analyses impliquent un très grand nombre d'ovocytes. En conséquence les études protéomiques sur l'ovocyte sont souvent réalisées dans des modèles animaux et particulièrement chez la souris.

C'est au début de la dernière décennie que les premières études protéomiques ont été rapportées avec l'identification de protéines de l'ovocyte mature de souris, dans le but d'identifier les protéines de surface impliquées dans l'interaction entre le spermatozoïde et l'ovocyte lors de la fécondation. Après une électrophorèse 2D, environ 500 spots protéiques ont été mis en évidence. Entre ceux-ci, 80 protéines potentielles de surface ont été repérées après l'analyse avec un gel d'affinité et 30 ont été identifiées après analyse au spectromètre de masse (Coonrod et al. 2002). La même équipe a publié plus tard l'identification de 8 protéines chaperonnes très abondantes dans l'ovocyte mature avec la confirmation par immunofluorescence de leur localisation à la surface de l'ovocyte pour 4 d'entre elles, à savoir GRP78, GRP94, HSP90 et Calreticulin (Calvert et al. 2003).

Depuis ce sont surtout des études concernant la maturation ovocytaire et la recherche de protéines associées au développement initial de l'embryon qui ont été décrites avec l'établissement du protéome de l'ovocyte au stade VG et MII.

En 2007, une étude de l'équipe de Coonrod a comparé les cartes protéiques d'ovocytes en fin de croissance avant et après la reprise de la méiose, après séparation en gel 2D. Cette première étude sur la maturation ovocytaire a permis d'identifier 12 protéines qui varient entre les stades de VG et de MII (Vitale et al. 2007). La même année un profil protéique du complexe cumulus-ovocytaire a été décrit toujours après séparation des protéines par gel 2D. Dans cette étude les auteurs décrivent l'identification de 156 protéines et leur classification dans les différentes fonctions biologiques : 31 % des protéines sont impliquées dans l'expression des gènes/protéines, 24 % dans le métabolisme cellulaire, 12 % dans la défense cellulaire, encore 12 % dans la communication et signalisation cellulaire, 10 % dans la structure et mobilité cellulaire et finalement 7 % dans la division cellulaire et 4 % dans des processus non connus. Cette étude a également mis en évidence plusieurs familles de protéines pouvant jouer un rôle important dans le développement folliculaire. Ainsi l'identification de 9 hnRNPs (heterogeneous nuclear ribonucleo proteins) impliquées dans la synthèse et le transport des ARNm

a été rapportée, tout comme 9 enzymes impliquées dans la glycolyse, 4 peroxyredoxines, 10 protéines chaperonnes et 7 protéines de la famille TCP-1 (T-complex protein 1) (Meng et al. 2007). Cette étude est, à notre connaissance, la seule chez la souris à ne pas avoir été effectuée avec des ovocytes isolés, mais avec des CCO, s'intéressant ainsi aux cellules qui entourent l'ovocyte lors de la maturation.

En 2008, une équipe a étudié le protéome et le phosphoprotéome de l'ovocyte en MII sans la ZP, dans le but d'analyser les modifications post-traductionnelles et en particulier les phosphorylations. Ayant toujours recours à l'électrophorèse 2D et la spectrométrie de masse, cette équipe a identifié 380 protéines parmi lesquelles 53 présentaient des modifications post-traductionnelles (PTM) révélées par la coloration Pro-Q Diamond (qui détecte spécifiquement les protéines phosphorylées) démontrant pour la première fois la présence de protéines PTM dans l'ovocyte mature. Les fonctions biologiques avec le plus de protéines identifiées étaient associées au métabolisme et à la régulation des protéines : métabolisme des protéines (101) protéines de liaisons (100) et repliement des protéines (34), tandis que l'activité des enzymes tels que les protéasomes et les actetyltransferases n'avaient que 9 et 3 protéines attribuées respectivement. Avec cette étude le protéome de l'ovocyte mature a été élargi et la présence de protéines phosphorylées dans l'ovocyte mature a été prouvée (Ma et al. 2008). Une année plus tard, en 2009, la même équipe publiait l'identification des protéines de l'ovocyte en MII sans ZP, mais cette fois en ayant recours à une séparation des protéines avec un gel 1D SDS-PAGE et une analyse par spectrométrie de masse après fractionnement en chromatographie inversé (RP-LC-MS/MS). Avec cette approche 625 protéines ont été identifiées élargissant ainsi le panel des protéines décrites dans l'ovocyte mature. De plus, ils ont mis en évidence 76 protéines impliquées dans le développement embryonnaire. Leur analyse a démontré une surreprésentation significative des protéines impliquées dans des fonctions moléculaires telles que « unfolded protein binding », l'activité oxydoréductase, l'action sur les groupes CH-OH et l'activité des GTPases et aucune sous représentation. Pour les fonctions biologiques, le scénario s'est inversé avec une sous représentation significative dans l'ovocyte mature, par rapport à d'autres tissus, de protéines impliquées dans la régulation du métabolisme cellulaire, la transcription et le métabolisme de l'ARN, tandis qu'aucune fonction biologique n'était significativement surreprésentée. De plus dans cette étude, une analyse semi-quantitative par rapport au nombre de peptides uniques identifiés pour une protéine a été réalisée montrant 23 protéines avec plus de 10 peptides uniques identifiés (Zhang et al. 2009).

En 2010, une grande étude a établie et comparé le protéome d'ovocytes de souris aux stades VG et MII, avec 7 000 ovocytes à chaque stade ainsi que 7 000 zygotes en utilisant une analyse MS semi-quantitative. Au stade MII 2 973 protéines ont été identifiées, 2 781 au stade VG et 2 082 au stade zygotes. Les auteurs ont comparé le protéome des ovocytes VG et avec celui des ovocytes MII et le protéome des zygotes avec celui des cellules souches embryonnaires (ES). La distribution des protéines dans les différents groupes par fonctions biologiques était similaire, alors qu'une comparaison quantitative par rapport au nombre de peptides identifiés pour chaque protéine a été réalisée montrant que les ovocytes VG et MII avait plus de protéines en communs que les zygotes et les cellules ES. Les protéines de la famille TUDOR ont été identifiées seulement dans les ovocytes et les protéines de la famille F-box étaient aussi surexprimées dans les ovocytes. Au stade VG, les protéines associées au transport membranaire, les transporteurs primaires, les protéines de la famille des canaux cationiques et les jonctions de type gap étaient surexprimées, tandis qu'au stade de MII, les protéines surexprimées étaient les protéines associées aux facteurs de transcription, aux modifications épigénétiques, et au métabolisme de l'ADN (Wang et al. 2010).

Le plus récent et le plus grand protéome établi pour l'ovocyte mature a identifié plus de 3 699 groupes de protéines combinant les 29 fractions d'un gel 1D SDS-PAGE et l'analyse MS. De ces groupes de protéines, 2 842 ont pu être corrélées au transcriptome de souris analysé par microarray. Pour les groupes restant aucun ARN correspondant n'a été trouvé et 125 protéines n'avait même pas d'identifiant. Les fonctions biologiques les plus présentes étaient les processus métaboliques, les processus cellulaires, le transport et la communication cellulaire. Cette étude a aussi permis l'identification de 28 protéines probablement impliquées dans la reprogrammation lors du développement embryonnaire (Pfeiffer et al. 2011).

Même si dans cette introduction je résume seulement les principaux travaux menés chez la souris pour la constitution du protéome de l'ovocyte en fin de croissance aux stades VG et MII, des étude similaires ont été menées chez d'autres espèces en particulier celles ayant un intérêt industriel/économique comme par exemple le bovin (Berendt et al. 2009, Bhojwani et al. 2006, Memili et al. 2007, Peddinti et al. 2010).

Cependant toutes ces études sont faites sur l'ovocyte en fin de croissance, isolé, soit mature bloqué en métaphase II (MII) ou toujours bloqué en fin de

prophase I (VG), et décrivent les protéines impliquées au moment de la maturation et reprise de la méiose. Peu d'articles se sont intéressés aux cellules du CCO, mais encore une fois ceux-ci visaient l'étude moléculaire de la maturation ovocytaire. A notre connaissance, aucun article n'a décrit le protéome de l'ovocyte au cours de sa croissance, au sein du follicule ovarien, tout en sachant que la croissance ovocytaire et folliculaire sont inséparables. Ainsi cette structure fonctionnelle si particulière, par la dépendance des différents types cellulaires qui la composent, semble extrêmement importante à étudier.

II. Objectifs de la Thèse

Les études protéomiques dans le domaine de la gamétogenèse femelle faites jusque-là visent essentiellement l'étude des protéines impliquées dans la maturation ovocytaire et/ou le début du développement embryonnaire.

Au long de toute sa croissance l'ovocyte fait partie d'une structure fonctionnelle – le follicule - duquel il dépend pour croitre et inversement. Même si beaucoup d'évènements de la folliculogenèse et de l'ovogenèse ont déjà été décrits, il reste encore beaucoup de connaissances à acquérir. Puisque l'ovocyte acquiert sa capacité à reprendre la méiose et ainsi à être fécondable au cours de sa croissance au sein du follicule, il semble important d'essayer de mieux connaître les molécules nécessaires au développement ovocytaire et folliculaire.

Ainsi l'approche protéomique des follicules en culture semble être pertinente puisque celle-ci peut donner des informations qui permettront de mieux comprendre les mécanismes moléculaires impliqués au cours de leur croissance et de développer des marqueurs de qualité pendant la culture. En biologie de la reproduction ceci est d'autant plus important que dans le cadre de la préservation de fertilité certaines femmes ne peuvent pas bénéficier d'une greffe de leur fragment d'ovaire en raison d'un risque de réintroduction de la maladie de départ. Il est donc important d'améliorer et faire évoluer les techniques de culture folliculaire pour qu'elles soient une réalité pour ces femmes.

Puisque la souris est la seule espèce pour laquelle des souriceaux sont nés après développement *in vitro* de follicules ovariens et que pour les analyses protéomiques une importante quantité d'échantillon est nécessaire, celle-ci a été choisie comme modèle d'étude.

Ainsi ayant recours à une approche protéomique, l'objectif de mon travail de thèse a consisté à :

Identifier les protéines exprimées dans trois stades de développement folliculaire *in vitro* de façon à mettre en évidence des protéines spécifiques et des changements moléculaires caractéristiques des différents stades de développement. Puis, la distribution des fonctions biologiques, la quantification des protéines et la recherche de réseaux spécifiques d'interaction des protéines identifiées seront comparées entre les trois stades du développement folliculaire étudiés.

III. Matériels et méthodes

Le protéome du follicule ovarien n'ayant jamais été décrit, plusieurs étapes du protocole ont du être testées avant l'analyse protéomique, ce qui est le cas pour le milieu de culture, le choix d'étudier le follicule entier et les deux méthodes de préfractionnement. Ainsi dans cette partie de « matériels et méthodes » quelques résultats concernant ces mises au point seront décrits.

A. Culture de follicules ovariens de souris

1. Animaux

Des souris femelles de 12 jours F1 C57BI/CBA ont été utilisées. A cet âge, la population folliculaire est très homogène et est majoritairement composée de follicules secondaires.

Les souriceaux à cet âge ne sont pas encore sevrés, ils ont donc été achetés en portée avec leur mère (Charles River®, Lyon, France) et ont été élevés en animalerie avec des cycles de lumière/obscurité de 12h avec un libre accès à l'eau et à la nourriture, pendant une semaine au moins avant sacrifice.

2. Prélèvement des ovaires et isolement des follicules

Les souris ont été sacrifiées par dislocation cervicale et les ovaires ont été recueillis dans un milieu de dissection à 37°C, composé de Leibovitz L 15(Gibco®, Cergy-Pontoise, France) supplémenté avec 10 % de sérum de veau fœtal (SVF), 100 UI/mL pénicilline et 100 µg/mL de streptomycine (Sigma – Aldrich®, Saint Quentin Fallavier, France).

Sous loupe binoculaire (Nikon®, France), les ovaires ont été libérés de leur bourse à l'aide d'aiguilles de 27 gauges (Sherwood Médical®, Evry, France). Les follicules on été isolés en dissociant et grattant le stroma à l'aide d'aiguilles, puis ont été recueillis avec une micropipette et rincés 3 fois dans le milieu de dissection. Pendant les lavages successifs, les follicules constitués d'un ovocyte rond et central, entouré d'au moins 2 couches de cellules de la granulosa, avec un diamètre compris entre 100 µm et 130 µm et ayant quelques cellules de la thèque adhérentes ont été sélectionnés pour être soit analysés directement soit mis en culture.

3. Culture folliculaire

Dans ce travail un système de culture en microgouttes recouvertes d'huile minérale (Sigma – Aldrich®) a été utilisé. Ce type de culture est le plus couramment utilisé pour l'étude de la croissance folliculaire *in vitro*, chez la souris, y compris par notre équipe depuis plusieurs années (Anastacio et al. 2012, Dorphin et al. 2012, Kerjean et al. 2003, Lefevre et al. 2007, Mousset-Simeon et al. 2005, Pesty et al. 2007, Pesty et al. 2008).

Dans ce système de culture, dix follicules ont été mis individuellement en gouttes de 10 μ L de milieu, dans des boîtes de pétri stériles de 60 mm de diamètre (Falcon®, Meylan, France), recouvertes d'huile minérale (Sigma®) (Fig. 24). Le lendemain de la mise en culture, 10 μ L de milieu de culture ont été ajoutés à chaque goutte. Le milieu a ensuite été renouvelé quotidiennement en retirant 10 μ L de chaque goutte et en y ajoutant 10 μ L de milieu neuf.

Le jour de la mise en culture (J0) ainsi que tous les jours suivants (J1 – J12) les follicules ont été mesurés, au microscope inversé (10x15) (Nikon®) en prenant deux diamètres perpendiculaires à l'aide d'un oculomètre.

Pendant les douze jours de culture, les boites ont été placées dans un incubateur, à la température de 37°C et sous une atmosphère humide à 5 % de CO_2 .

Figure 24 : Boite de culture folliculaire

4. Maturation ovocytaire

Pour l'induction de l'ovulation les follicules sont transférés dans des nouvelles boites de culture avec des microgouttes de 20 µL de milieu de maturation, qui est le milieu de culture enrichi avec de l'hCG (Sigma-Aldrich®) et EGF (Boehringer Mannheim®, Meylan, France) (Tableau II). Les boites étaient remises sous atmosphère humide à 5 % de CO₂ et à 37°C. Au bout de 16 heures environ, la

maturation des ovocytes était vérifiée après dénudation des ovocytes et observation de l'expulsion du premier globule polaire (Fig. 25).

Figure 25 : Ovulation *in vitro* après induction avec hCG (a), à l'intérieur du cercle le CCO et à l'opposé les cellules de la granulosa; b) ovocyte mature avec expulsion du premier globule polaire.

5. Stades folliculaires étudiés

Pour cette étude, dont le but principal était l'obtention du protéome du follicule entier pendant son développement *in vitro*, il a été décidé de choisir les trois groupes à différents stades de la culture, basés sur des caractéristiques morphologiques plutôt que sur la durée de culture car à un même jour de culture les caractéristiques des follicules peuvent être très différentes les unes des autres. En se basant sur des caractéristiques morphologiques spécifiques les trois groupes étudiés ont été beaucoup plus homogènes. En conséquence, il a été décidé d'étudier le follicule au stade initial de la culture (IS), à un stade intermédiaire de la culture (RMS) et à la fin de la culture (FA).

5. 1. Stade initial (IS)

Constituant notre premier groupe d'étude, le stade initial (IS) est composé de follicules secondaires obtenus au moment de la dissection de l'ovaire. Ceux-ci sont caractérisés par un ovocyte entouré par au moins 2 couches de cellules de la granulosa, quelques cellules de la thèque adhérentes et un diamètre compris entre 100 μ m et 130 μ m (Fig. 26IS). Le choix de ce type de follicule comme un des groupes étudiés a été lié au fait que celui-ci est le type de follicule utilisé pour débuter la culture.

5. 2. Rupture complète de la membrane de Slavjanski (RMS)

Ce deuxième groupe d'étude était composé de follicules en culture et avait pour but de cibler une étape intermédiaire dans la culture. A ce stade folliculaire, il a été observé une importante prolifération des cellules de la granulosa, qui associée à l'adhésion au support de culture mène à la rupture de la membrane basale. Le choix de ce type de follicule pour le deuxième groupe a été fait car la rupture de la membrane de Slavjanski, à ce stade, est caractéristique de la croissance *in vitro* et est un indicateur de la croissance folliculaire puisqu'il est associé à la prolifération des cellules de granulosa (Fig. 26RMS).

5. 3. Follicules avec une cavité antrum like (FA)

Le troisième et dernier groupe étudié était composé de follicules en fin de culture (J12) et dans lesquels était observée la présence d'un espace entre les couches de cellules de la granulosa assimilé à l'antrum (Fig. 26FA). Ces follicules en culture sont équivalents aux follicules pré-ovulatoires *in vivo*. On observe, également différents secteurs dans la répartition des cellules de la granulosa avec localisation proche de l'ovocyte, le *cumulus oophorus* et une autre plus extérieure, la granulosa murale. De plus, ces follicules ont été choisis pour la maturation ovocytaire, car ce sont les follicules qui contiennent les ovocytes capables de reprendre leur méiose.

Figure 26 : Différents stades de développement choisis pour l'étude du protéome des follicules au cours de la culture folliculaire : IS (follicule en début de culture), RMS (follicule présentant une rupture complète de la membrane de Slavjanski) et FA (follicule avec une cavité similaire à l'antrum).

6. Choix d'étudier le follicule entier

Pour mieux comprendre le rôle et l'évolution des protéines dans la structure folliculaire, l'idée était dans un premier temps de caractériser le protéome dans chacun des types cellulaires qui compose le follicule.

6. 1. Séparation des différents types cellulaires

Etant donné que l'utilisation d'enzymes pourrait nuire à l'intégrité des différents types cellulaires qui composent le follicule et que la distinction des cellules de la granulosa et de la thèque serait très difficile sans avoir recours à des méthodes demandant des quantités trop importantes d'échantillon (ex : centrifugation différentielle), une séparation mécanique de l'ovocyte et des cellules folliculaires qui l'entoure a été testée.

Au stade IS, une première dissection à l'aide de fines aiguilles était réalisée, suivie de pipetages successifs avec un cône de 10 µL, puis avec un stripper (Stripper®, Limonest, France) muni d'un capillaire avec un embout de 125µm de diamètre pour retirer les cellules qui étaient en contact direct avec l'ovocyte.

Au stade RMS et AF les cellules folliculaires étalées dans le support de culture ont été d'abord recueillies en raclant le support avec un cône et les cellules restantes accrochées à l'ovocyte ont été séparées par pipetages successifs au stripper et/ou avec un embout jetable de pipette.

Néanmoins, l'isolement mécanique des ovocytes, aux différents stades s'est avéré très laborieux et pas satisfaisant. En effet, à aucun stade une dénudation complète de l'ovocyte n'a été obtenue avec les méthodes utilisées et le temps pris pour le réaliser était trop important pour valider cette technique. De plus au stade IS, la dissection à l'aiguille pour séparer les cellules folliculaires de l'ovocyte a provoqué la lésion de plusieurs ovocytes.

Ainsi j'ai décidé d'effectuer l'analyse protéomique sur les follicules entiers pour les trois stades pour établir le protéome et ainsi étudier les changements moléculaires de la structure fonctionnelle qu'est le follicule.

7. Comparaison des milieux de culture

Avec ce type de culture en microgouttes le milieu de culture le plus couramment utilisé est enrichi avec 5 % de SVF (Cortvrindt et al. 1996, Hirao 2011). Cependant, l'ajout de sérum dans le milieu de culture de follicules
secondaires n'est pas indispensable. Il a été décrit que des ovocytes issus de follicules développés *in vitro* en absence de sérum, étaient capables de reprendre leur méiose, être fécondés et se développer jusqu'au stade de blastocyste (Hirao 2011). De plus le sérum a une composition protéique complexe et pas entièrement connue, qui pourrait être gênante dans l'analyse protéomique en masquant les protéines les moins abondantes de notre échantillon.

Ainsi dans un premier temps un changement de milieu a été effectué en remplaçant le sérum par de l'albumine purifiée (Sigma-Aldrich®), qui lors de l'analyse protéomique pourrait être facilement identifiée. D'autre part, une concentration plus faible de SVF a été testée : 1 % au lieu des 5 % habituels. La composition de ces trois milieux est décrite dans le tableau II.

Les courbes de croissance, le taux de survie et le taux de maturation ainsi que plusieurs critères morphologiques, tels que l'adhésion au support, la rupture de la membrane de Slavjanski, l'extrusion ovocytaire (EO) au cours de la culture et la formation de l'antrum ont été les critères analysés pour permettre une comparaison entre ces deux milieux avec le milieu enrichi avec 5 % SVF (témoin). Le taux de survie est le pourcentage de follicules arrivant en fin de culture et pour lesquels une augmentation du diamètre a été observée. Le taux de maturation est le pourcentage d'ovocytes matures obtenus par rapport au nombre de follicules mis en maturation.

	Milieu sans SVF	Milieu 1% SVF	Milieu 5 % SVF	Milieu de maturation	
a MEM					
SVF	-	1 %	5 %	5 %	
Albumine bovine (BSA)	3 mg/mL	-	-	-	
Transferrine	5 µg∕mL	10 µg∕mL	10 µg∕mL	10 µg∕mL	
Insuline	5 µg∕mL	5 µg∕mL	5 µg∕mL	5 µg∕mL	
Sélénium	15 ng/mL	-	-	-	
rFSH	100 mUI/mL	100 mUI/mL	100 mUI/mL	100 mUI/mL	
Sodium Pyruvate	0,33 mM	-	-	-	
EGF	-	-	-	1,5 UI/mL	
hCG	-	-	-	5 ng/mL	

Tableau	II :	Composition	des	3	différents	milieux	de	culture	et	le	milieu	de
	m	aturation pou	r l'ir	ndu	iction de l'a	vulation						

7. 1. Courbes de croissance

Partant d'une taille moyenne de follicule similaire (114,6 \pm 1,2 µm) pour les 3 milieux, une différence dans l'évolution de leur diamètre a été observée dès J7 (Fig. 27). Ainsi, les follicules ayant évolué dans le milieu contenant 5 % de SVF ont atteint, en fin de culture, un diamètre 2 fois supérieur à celui des follicules cultivés dans les deux autres milieux (Fig. 27).

Figure 27 : Evolution des tailles moyennes des follicules mis en culture en utilisant 3 différents milieux

7. 2. Critères morphologiques et taux de maturation

Au cours de la culture avec le milieu sans SVF seulement 39 % de follicules cultivés ont adhérés au support, tandis que pour les milieux avec 1 % de SVF et 5 % de SVF tous les follicules ont adhéré (Tableau III). L'adhésion dans les milieux sans SVF a été également observée plus tardivement, puisque elle est survenue à J4 et J5 au lieu de J2 comme a été le cas pour les deux autres milieux. De plus, il a été observé que les follicules se décollaient et en fin de culture tous les follicules du milieu sans SVF étaient non adhérents. En conséquence, les follicules en culture avec de l'albumine, gardaient un aspect plutôt de culture en 3D et sans rupture complète de la membrane de Slavjanski.

Les résultats obtenus pour les autres critères sont résumés dans le tableau III. A noter qu'associée à une petite taille folliculaire on a observé également une absence de formation d'antrum et de maturation ovocytaire pour les milieux sans SVF ou avec 1 % de SVF. Les cultures avec ces deux milieux ont aussi été caractérisées par un important pourcentage d'EO.

Tableau III : Résultats de la culture en fonction paramètres utilisés pour évaluer la croissance folliculaire *in vitro* dans les 3 milieux de culture : taux d'adhésion des follicules au support de culture ; taux de rupture de la membrane de Slavjanski ; taux d'extrusion ovocytaire (EO) ; taux de formation de cavités antrum like ; taux de survie ; taux d'expulsion du complexe cumulus-ovocytaire (CCO), correspondant à l'ovulation et taux d'ovocytes matures obtenu (MII).

Milieux	Adhésion	Rupture Membrane Slavjanski	EO	Antrum	Survie	Expulsion CCO	MII
sans SVF	39 %	39 %	21 %	0 %	23 %	17 %	0 %
1% SVF	100 %	72 %	19 %	0 %	52 %	10 %	0 %
5% SVF	100 %	92 %	2 %	53 %	92 %	60 %	79 %

Même si d'autres études utilisant le même type de culture ont permis d'obtenir une croissance folliculaire *in vitro* de follicules secondaires isolés en remplaçant le SVF par de l'albumine bovine (Abedelahi et al. 2008, Choi et al. 2007) nos résultats avec l'albumine bovine ont été beaucoup moins performants que ceux avec le SVF. De plus, dans les cultures utilisant les milieux sans SVF ou avec 1 % de SVF aucun ovocyte mature n'a été observé après mise en maturation.

Ainsi, au vu des résultats obtenus j'ai choisi de poursuivre l'étude avec le milieu enrichi avec 5 % de SVF, en effectuant trois lavages successifs des follicules avec du PBS pour essayer d'éliminer au maximum le milieu de culture lors de la préparation des follicules avant les analyses protéomiques.

8. Sélection des follicules pour l'analyse protéomique

Pour le **groupe IS**, après la sélection dans le milieu de dissection les follicules ont été regroupés dans des microtubes coniques (VWR®, Fontenay-sous-Bois, France) et centrifugés (MiniSpin, Eppendorf®) pendant environ 13 secondes, le temps nécessaire pour monter au maximum de 13 400 rpm par minutes, et pour faire tomber les follicules au fond du tube. Le milieu de dissection a été ensuite éliminé et le culot de follicules a été lavé 3 fois avec 30 µL de PBS (tampon phosphate salin) (Gibco®). Chaque lavage consistait en une centrifugation de 10 minutes à 13 400 rpm avec élimination du surnageant à chaque fois. Après les lavages, les follicules ont été conservés dans l'azote liquide jusqu'à utilisation pour l'analyse protéomique.

Pour les **groupes RMS** et **FA** les follicules sélectionnés ont été raclés et recueillis avec un cône de 10 μ L, puis regroupés dans un microtube conique. Les étapes suivantes, c'est-à-dire l'élimination du milieu de culture, le lavage et le stockage ont été les mêmes que pour les follicules du groupe IS. Pour chaque jour de manipulation et pour chacun des groupes, un nouveau tube a été utilisé pour éviter les cycles de décongélation/congélation.

B. Analyse protéomique

Toutes les procédures réalisées pour l'analyse protéomique ont été effectuées au sein de la Plateforme Post-génomique de la Pitié-Salpêtrière (P3S) où j'ai reçu la formation et l'aide qui m'ont permis de réaliser cette partie de ma thèse.

1. Extraction des protéines

Tous les réactifs utilisés dans le traitement des cellules pour la protéomique ont été achetés chez Sigma-Aldrich[®] et chez GE Healthcare[®] (Vélizy, France). Dans le cas contraire le distributeur sera indiqué.

Après décongelation à température ambiante, les culots folliculaires correspondant à chaque stade sélectionné ont été repris dans 15 μL de tampon de lyse (7 M urée, 2 M thiourée, 1 % CHAPS, 10 % isobutanol, 0,5 % Triton X100, 0,5 % SB 3-10, 50 mM DTT et 0,5 % d'ampholytes (pH 3-10). Les tubes ont été ensuite mis 2 fois dans un bain à ultrasons pendant 5 minutes puis centrifugés à 20 000 xg pendant 45 minutes à 4°C. Les surnageants ont été récupérés et regroupés dans un tube pour chaque groupe étudié, qui a été nommé comme **Extrait Total (ET).** La concentration en protéines de chaque extrait a été dosée, en triplicats, utilisant la méthode de Bradford (Bradford 1976) (Bio-Rad®, France). Puis, les échantillons ont été stockés à – 80°C jusqu'à utilisation.

2. Préfractionnement des extraits protéiques

Pour les extraits protéiques très complexes, des protéines peu abondantes peuvent se retrouver « noyées » au sein des protéines les plus abondantes. Pour pallier ce problème, il est conseillé de décomplexifier l'échantillon en réalisant un fractionnement des extraits protéiques. En fractionnant les extraits, il est possible de réduire le nombre de protéines différentes contenues dans un échantillon et ainsi de mettre en évidence des protéines moins abondantes qui ne peuvent pas être détectées lors de l'analyse de l'extrait total.

Pendant ma thèse j'ai réalisé deux méthodes de fractionnement basées sur la focalisation isoélectrique (IEF) qui sépare les protéines en fonction de leur charge native. La première se fait en phase liquide (IEF OffGel) et la deuxième se fait directement dans une bandelette composé d'un gel de polyacrylamide à 4% contenant un gradient de pH immobilisé - strip IPG (immobilized pH gradient).

2. 1. Fractionnement IEF OffGel

Avec cette approche, les échantillons liquides était déposés dans 3 cupules adjacentes qui étaient en contact avec une strip IPG (immobilized pH gradient) (7 cm, gradient de pH 4-7) qui a été préalablement hydratée durant une nuit dans du tampon IEF (7 M urée, 2 M thiourée, 1 % CHAPS, 10 % isobutanol, 0,5 % Triton X100, 0,5 % SB 3-10, 40 mM DTT, 0.5 % ampholytes 4-7, 10 % glycérol). Après dilution de 130 μ g d'extrait total protéique dans du tampon IEF, il a été déposé dans chaque puits 75 μ L du mélange. Le tout a été recouvert d'huile et le programme IEF a été appliqué à l'aide d'un EttanIPGphor II (50 V pendant 1 heure, 200 V pendant 1 heure, gradient de 200V à 1000V pendant 30 min, 30 min à 1000 V, gradient de 1000 V à 4000 V pendant 45 min, 4000 V jusqu'à atteindre un total de 8500 Vhrs). Après fractionnement la solution de chaque puits (3 fractions) a été récupérée.

Un petit volume de chaque fraction et de l'extrait total a été utilisé pour une migration en gel (SDS-PAGE) (Fig. 28) et le reste du volume a été utilisé pour la précipitation des protéines avec le kit de précipitation Perfect Focus (G-Biosciences®, St. Louis, MO, USA) selon les consignes du distributeur, en vue de leur digestion.

Le gel SDS-PAGE a permis d'observer l'efficacité du fractionnement puisque certaines bandes de protéines présentes dans l'ET l'étaient dans une seule fraction (Fig. 28, rectangles jaunes). De plus, pour certaines bandes il y a une augmentation de l'intensité du signal protéique dans les fractions par rapport à l'extrait total (Fig. 28, rectangles noirs) et même des bandes qui sont visibles dans les fractions mais pas dans l'extrait total, vraisemblablement parce que dans l'ET celles-ci se retrouvaient noyés parmi les autres protéines (Fig. 28, rectangles rouges).

Figure 28 : Image du gel SDS PAGE effectué avec l'extrait total (ET) et les trois fractions (F1, F2 et F3) obtenues après le préfractionnement IEF OFFGEL. Les rectangles jaunes mettent en évidence des protéines présentes dans l'ET et dans une seule fraction ; les rectangles rouges soulignent la présence d'une bande de protéines dans une fraction mais non visible dans l'ET et finalement l'intensification du signal protéique dans une fraction par rapport à l'ET est illustrée par les rectangles noirs.

Cependant avec cette approche une grande perte de protéines a été observée puisque partant d'un total de 130 µg d'extrait protéique avant le fractionnement, après la précipitation le dosage des protéines était nul. Ceci peut être lié au fait qu'une plus faible quantité de protéines a été utilisée par rapport à d'autres études réalisés avant dans le laboratoire de protéomique qui utilisait entre 250 µg et 300 µg d'extrait protéique au départ, mais aussi du fait qu'avec cette méthode, les puits

n'étaient pas complètement adjacents au niveau de la strip, (Fig. 29) ayant ainsi des espaces « vides » où les protéines ne correspondant pas au pH de la zone des puits pouvaient s'immobiliser. Ayant aussi une perte des protéines qui restaient bloqués dans la strip (Fig. 29B)

Figure 29: Image représentative du Principe du fractionnement IEF OFFGEL. Démonstration de ce que les puits n'étaient pas adjacents dans notre modèle d'étude, ayant ainsi des pertes de protéines restées dans la strip aux endroits où il n'y avait pas cupule.

Ainsi vu que dans plusieurs étapes de la technique de préfractionnement IEF OffGel une importante perte de protéines était observée, une autre approche pour le fractionnement a été choisi : IEF in gel. Ce type de préfractionnement a aussi comme principe la séparation des protéines par point isoélectrique, mais contrairement à la technique précédente les extraits sont chargés directement dans la strip.

2. 2. Fractionnement IEF in gel

Pour chaque groupe étudié 100 µg de l'extrait total a été utilisé pour le fractionnement IEF dans une strip IPG de 7 cm, pH 4 - 7 (Immobiline Dry Strip). La strip a été mise à réhydrater avec l'échantillon d'extrait total préalablement dilué dans le tampon IEF (7 M urée, 2 M thiourée, 1 % CHAPS, 10 % isobutanol, 0,5 % Triton X100, 0,5 % SB 3-10, 40 mM DTT, 0,5 % ampholytes 4-7). La migration a été réalisée dans un Ettan IPG phor II avec un programme en plusieurs étapes : 50 V pendant 1 h, une autre heure à 200 V, puis une montée graduelle de 200 jusqu'à 1000 V en 45 minutes, stabilisation pendant 45 minutes à 1000 V, suivi d'une deuxième montée graduelle de 1000 V jusqu'à 4000 V en 45 minutes et pour finaliser 3 h à 4000 V. Une fois la migration terminée les strips ont été traitées avec une solution de réduction (6 M Urée, 75 mM Tris pH 8,8, 30 % glycérol, 2 % SDS and 135 mM iodo acetamide) pendant 15 minutes.

Les fractions ont été obtenues en découpant les strips en 5 parts égales de 1,2 cm, avec l'exclusion de 1 cm du coté acide de la strip, à l'aide d'un scalpel (Fig. 30b). Une courte migration de 1h à 10 mA dans un gel SDS PAGE classique à 12 % d'acrylamide a permis de retirer les protéines des bouts de strips et d'éliminer le tampon IEF qui n'est pas compatible avec la digestion trypsique (Fig. 30c et Fig. 31). Les gels ont été colorés au bleu de Coomassie grâce à l'utilisation du colorant Imperial ProteinStain (Pierce, Thermo Fischer Scientific, Courtaboeuf, France).

Figure 30 : Schéma du principe de la migration IEF. a) migration de l'ET sur toute la stripIPG. b) découpage des 5 fractions et c) migration rapide pour extraire les protéines des strips.

Figure 31 : Images des gels SDS PAGE après une courte migration pour les différents stades de développement avec l'obtention des 5 fractions.

3. Digestion trypsique

Pour chaque fraction une seule bande contenant toutes les protéines a été prélevée dans le gel SDS PAGE et puis découpée en petits cubes d'environ 1 mm³ (Fig. 32). Les bouts de gel ont été décolorés avec une solution de 25 mM d'AmBic et 50 % d'éthanol, déshydratés avec de l'acétonitrile (ACN) pendant 10 minutes et séchés à température ambiante. Ils ont été ensuite réhydratés avec 70 μ L d'une solution avec 2 μ g de trypsine et 50 mM d'AmBic pendant 30 minutes dans la glace et mis à incuber toute la nuit à 37°C.

Les surnageants ont été récupérés dans un nouveau tube. Pour extraire les peptides restant une solution de 60 % ACN et 0.1 % acide trifluoroacétique (TFA) a été ajoutée, deux fois, aux bouts des gels. Les extraits ont été concentrés au speed vac, resuspendus dans 40 μ L d'une solution à 30 % ACN et 0.1 % acide formique et stockés à - 80°C jusqu'à l'analyse en spectrométrie de masse.

Figure 32 : Schéma i) de l'extraction d'une bande unique pour chaque fraction après une rapide migration en gel SDS PAGE; ii) du découpage en petits cubes et iii) de la préparation pour décoloration des bouts de gels avant la digestion.

4. Identification des protéines par spectrométrie de masse

4. 1. Dessalage des mélanges de peptides issus de la digestion

Pour l'élimination des sels, les peptides ont été capturés dans un cône contenant une résine greffée C-18 (Zip-Tip). Ils ont été lavés 3 fois avec une solution 0,1 % TFA puis élués avec une solution 50 % ACNet 0,1 % TFA. L'éluat peptidique a été dilué dans une solution d'acide formique à 0,1% avant injection en nano LC-MS/MS.

4. 2. Analyse LC-MS/MS

Pour les analyses LC-MS/MS une chaîne de chromatographie liquide avec des nano débits (nanoLC) est couplée directement en ligne avec la source d'ions, une trappe ionique (ESI). Dans cette étude deux configurations de nano LC ont été utilisées : 1D LC-MS/MS et 2D LC-MS/MS.

4. 2. 1. Séparation des peptides par 1DLC

Dans cette configuration, les peptides étaient concentrés et dessalés pendant 5 minutes dans une pré-colonne C18 (5 mm, 300 μ mi.d., 100 Å, Dionex) avec une solution A1 (2 % ACN/0.1 % acide formique) à un débit de 20 μ L/min. Après ceci les peptides étaient séparés et élués dans une colonne analytique RP-C18 (15 cm, 75 μ m i.d., 100 Å, Dionex) à un débit de 300 nL/min, utilisant un gradient de 0 % à 30 % d'une solution à 95 % ACN, 0,1 % AF dans 0,1% AF. Pour chaque fraction et ET de chaque stade de développement folliculaire étudié, 4 injections ont été effectuées avec la configuration 1D.

4. 2. 2 Séparation des peptides par 2DLC

Dans la configuration 2D, les peptides ont été tout d'abord séquentiellement séparés grâce à l'injection de 20 μ L de solutions de concentration croissante de sels : 0, 20, 30, 50, 100 et 1000 mM d'acétate d'ammonium, dans une colonne SCX (silica capillary column Strong Cation eXchanger) (15 mm, 300 μ mi.d.,Dionex). Après cette étape, chacune des fractions salines obtenues a été concentrée et dessalée comme décrit pour la configuration 1D. L'analyse LC-MS/MS avec la configuration 2D a été réalisée 2 fois pour chaque fraction et l'ET de chaque groupe d'étude.

4. 2. 3. Analyse des peptides en MS/MS avec une trappe ionique

L'HPLC était directement connecté avec un spectromètre de masse (MS) de type trappe ionique (HCTultra, Bruker® (Bremen, Germany) pour faire l'identification des peptides. La trappe ionique a été utilisée dans le mode positif avec la sélection des 8 précurseurs les plus abondants pour chacun des spectres MS. Ces précurseurs ont été ensuite fragmentés par CID (collision-indunced dissociation) (Fig. 33).

Figure 33 : a) Spectre MS avec la sélection automatique des 8 précurseurs les plus abondants (en rouge) et b) Spectre MS/MS, montrant le résultat de la fragmentation du peptide de masse sur charge (m/z) =833,4 Da, permettant l'identification de la séquence en acides aminés, FVTNTPNFAV(en bleu) composant le peptide.

5. Identification des protéines

Pour l'identification des protéines, les données MS/MS ont été soumises au logiciel X-tandem V 3.3.2, via le logiciel X!tandem pipeline (<u>http://pappso.inra.fr/bioinfo/xtandempipeline/</u>). Les paramètres du logiciel étaient les suivants : enzyme = trypsine ; carbomidomethylation des cystéines ; oxydation des méthionines ; une tolérance d'erreur de masse en MS et MS/MS de

0.5 Da et un état des charges de + 1, + 2 ou + 3. Les données MS/MS ont été confrontées à la base de données Uniprot KB pour la souris datée de juin 2012. Les protéines identifiées par le logiciel ont été validées seulement si elles possédaient : au moins un peptide unique et des p value < 0,05 pour les peptides et p value < 0,003 pour les protéines. De plus, le taux de faux positifs FDR (false discovery rate) a été calculé et a toujours été trouvé inférieur à 1 % avec ces paramètres d'analyse.

6. Analyse des profils protéiques

Pour comparer les trois stades du développement *in vitro* et mieux comprendre les profils protéiques obtenus, une analyse complémentaire a été réalisée à l'aide de logiciels d'analyse et de description de listes de protéines.

6. 1. AnalyseGene Ontology (GO) via PANTHER

Toutes les protéines identifiées pour chaque groupe ont été soumises au système de classification de PANTHER version 8.1 (protein annotation through evolutionary relationship) – <u>http://www.pantherbd.org</u>). PANTHER est un logiciel accessible gratuitement sur internet qui permet d'analyser des données obtenues avec des approches de protéomique ou de séquençage génomique. Avec ce logiciel on peut obtenir une classification des protéines par rapport à leur fonction moléculaire, leur localisation cellulaire et les processus biologiques dans lesquels elles sont impliquées. Il permet également l'utilisation d'outils statistiques pour réaliser des études comparatives entre plusieurs groupes de données et/ou le génome de l'espèce étudiée.

Pour compléter l'étude du protéome de chacun de mes groupes d'étude, une classification par classe de protéines et processus biologiques a été réalisée pour chaque liste de protéines obtenues. De plus j'ai réalisé une étude comparative de mes données avec le génome de *Mus musculus* pour mettre en évidence des fonctions biologiques qui seraient sur ou sous exprimées dans mes données.

6. 2. Quantification label-free

La quantification label-free est une méthode d'analyse des données de spectrométrie de masse qui vise à déterminer la quantité relative des protéines entre plusieurs échantillons. Contrairement à d'autres méthodes de quantification, elle n'utilise pas un isotope stable composé d'un élément chimique qui se lie aux

protéines mais se base sur l'intensité du signal détecté pour les peptides lors de l'analyse MS. Elle nécessite la réalisation de plusieurs réplicats techniques et permet de comparer l'intensité du signal d'un même peptide entre plusieurs échantillons biologiques.

Pour ma thèse une quantification label-free a été effectuée sur les données obtenues avec l'analyse 1D LC-MS/MS uniquement, à l'aide du logiciel Progenesis LC-MS version 4.1.4832.42146 (Nonlinear Dynamics, Newcastle, Royaume Uni). Pour un échantillon donné, les données 1D LC-MS/MS sont représentées par une image dont l'axe horizontal représente la masse sur charge (m/z) des peptides et l'axe vertical le temps de rétention chromatographique (min). Les peptides apparaissent alors sous forme de spots plus ou moins foncés en fonction de leur abondance (Fig. 36). Les images de tous les échantillons (3 réplicats techniques par groupe) ont d'abord été alignées entre elles en combinant la fonction d'alignement automatique du logiciel et un alignement manuel. La détection et la quantification automatique des peptides étaient faites selon les critères suivants : un seuil d'intensité absolu des peptides de 100 000 (UA, unité arbitraire), des peptides avec une charge maximale de 3 et des temps de rétention compris entre 25 et 100 minutes. Pour chaque peptide, seuls les 5 spectres MS/MS les plus intenses ont été retenus pour l'identification par le logiciel Mascot version 2.2.07 (Matrix Science, Londres, Royaume Uni) utilisant la base de données SwissProt/Trembl Mus musculus du mois de mai 2013 (50807 protéines). Les paramètres pour l'identification étaient les suivants : enzyme = trypsine ; possibilité d'un seul clivage manqué; carbamidométhylation des cystéines; oxydation des méthionines; tolérance d'erreur de masse MS et MS/MS de 0,5 Da et un score Mascot > 33. Les résultats obtenus avec Mascot ont été ensuite réinsérés dans le logiciel Progenesis pour permettre la connexion entre les peptides identifiés et leur abondance respective.

La quantification des protéines a été réalisée avec un minimum de 2 peptides non conflictuels, c'est-à-dire ne pouvant appartenir qu'à une seule protéine, présentant une variation entre les groupes statistiquement significative (ANOVA qvalue < 0,05) et un ratio différentiel \geq 2. Finalement, seules les protéines ayant une différence significative entre les différents stades (ANOVA p-value < 0,05) et un ratio \geq 2 ont été retenues.

6. 3. Ingenuity Pathway Analysis (IPA)

IPA est un logiciel qui sélectionne des protéines "noyaux" pour la construction de réseaux biologiques. Les protéines "noyaux" sont des protéines présentes dans les échantillons et qui sont connues dans l'IPKB (Ingenuity Pathways Knowledge Base) et pour lesquelles des interactions avec d'autres protéines sont décrites. Ayant pour base ces interactions le logiciel IPA construit des réseaux avec un maximum de 35 protéines. Cette information est complétée avec la fonction Path Designer qui permet la construction de graphiques et images résumant les réseaux sélectionnés.

Pour chaque réseau ou voie canonique, une p-value est calculée avec un test de Fisher en fonction des protéines identifiées, et un score est attribué indiquant la probabilité que les protéines identifiées dans un même réseau ne se retrouvent pas là simplement par le fait du hasard.

Ainsi dans ma thèse une p-value $\leq 0,05$ et un score ≥ 2 ont été choisis, indiquant qu'à 99 % le réseau n'a pas été généré au hasard

6. 3. Pathway Studio

Pathway Studio (Elsevier, BV, New York, USA) est un outil d'aide à la décision biologique permettant au chercheur d'analyser ses données expérimentales, de comprendre leur contexte biologique et de visualiser interactions et mécanismes de maladie.

Ce logiciel utilise des moteurs de recherche bibliographiques automatisés pour extraire les informations de la littérature. Les listes de protéines ont été soumises à «9.0 ResNet Mammal», la base de données qu'Elsevier a élaborée en collaboration avec des revues de haute qualité, traitant interactions biologiques, ontologies et voies. Les informations sélectionnées sont appliquées aux listes de protéines pour faire apparaître leurs interactions. Les processus cellulaires trouvés sont classés par leur degré de similitude (score p), calculé comme le rapport du nombre de protéines en commun entre la liste à analyser et le nombre total de protéines impliquées dans le processus cellulaire.

IV. Résultats

A. Acquisition des profils protéiques

1. Composition des groupes étudiés

Pour le **groupe IS** 1143 follicules avec une taille moyenne de $116,5 \pm 8,1\mu$ m ont été sélectionnés lors de 7 manipulations différentes et ont permis l'obtention de 139,3 µg de protéines (Tableau IV).

Pour recueillir les 274 follicules, qui ont permis l'obtention de 338,5 μ g de protéines, qui constituent le **groupe RMS** j'ai réalisé 4 cultures. Les follicules de ce groupe ont été recueillis entre le sixième et le neuvième jour de la culture et avaient atteint une taille moyenne de 323,8 ± 63,9 μ m (Tableau IV).

Les 124 follicules composant le **groupe FA** ont permis l'obtention de 169,8 μ g de protéines. Les follicules de ce groupe ont été recueillis à J12 de la culture, au cours de 5 différentes cultures et avaient une taille moyenne de 570,2 ± 71,1 μ m (Tableau IV).

Tableau IV: Nombre de follicules, souris femelles, portées et manipulations nécessaires pour obtenir la quantité de protéines qui permettait les analyses protéomiques. Dans ce tableau il est ainsi indiqué les tailles moyennes des follicules composant chaque groupe et le jour de la culture auquel les recueils des follicules ont été faits.

	IS	RMS	FA
Nb de follicules	1143	274	124
Nb de souris femelles	19	19	22
Nb de portées	7	6	6
Nb de manipulations	7	4	5
Taille moyenne (μm)	116,5 ± 8,1	323,8 ± 63,9	570,2 ± 71,1
Jour de recueil	JO	J6 – J9	J12
Dosage de protéines après extraction	139,3 µg	338,5 µg	169,8 µg

2. Préfractionnement IEF in gel

En combinant les protéines identifiées avec les 5 fractions et l'extrait total obtenu pour les follicules au stade FA il a été possible d'identifier 3,3 fois plus de protéines par rapport aux protéines identifiées dans l'extrait total (Fig.34A). De plus, la qualité du fractionnement a été démontrée par le faible pourcentage de protéines identifiées en commun dans les 5 fractions (1 %) et le taux élevé de protéines identifiées dans une seule fraction (79 %) (Fig. 34B).

Figure 34 : Analyse de l'avantage et qualité du préfractionnent de l'extrait protéique avant digestion. A) nombre de protéines identifiées dans l'extrait total, fractions et en combinant les fractions et l'extrait total. B) Pourcentage de protéines identifiées dans une seule fraction ainsi que en commun dans 2, 3, 4 et 5 fractions.

3. Identification des protéines présentes dans les différents stades de développement

Plusieurs injections dans les deux configurations d'analyse LC – MS/MS ont été réalisées pour augmenter le nombre de protéines identifiées à chaque stade et ainsi essayer d'obtenir le plus d'informations possibles sur les protéines impliquées dans ces stades là. Avec les 4 injections réalisées avec la configuration 1D, 600 protéines ont été identifiées au stade IS, 737 au stade RMS et 711 stade FA (Fig. 35). Les 2 injections en configuration 2D ont permis l'identification de 751 protéines au stade IS, 1033 au stade RMS et 1049 au stade FA. La 2D a ainsi permis un gain de 25,2 % au stade IS avec 151 protéines de plus, identifiées ; de 40,2 % (296 protéines de plus) au stade RMS et au stade FA avec 338 protéines de plus identifiées, un gain de 47,5 % (Fig. 35).

La combinaison des résultats obtenus avec les 4 injections en 1D et ceux obtenus avec les 2 injections en 2D a permis ainsi d'augmenter le nombre de protéines identifiées pour chaque stade et avoir un profil protéique plus complet avec 775 protéines identifiées au stade IS, 1093 au stade RMS et 1101 au stade FA. Certaines protéines ont été identifiées à la fois grâce à la 1D et à la 2D.

Figure 35 : Graphique et tableau du nombre de protéines identifiées à chaque stade avec la configuration 1D (orange), 2D (rose) et en bleu le nombre de protéines identifiées en combinant les deux configurations (1D + 2D).

En combinant les protéines identifiées avec les deux configurations LC – MS/MS pour les trois stades 1403 différentes protéines ont été identifiées. De ces protéines 609 (43,4 %) étaient identifiées dans les 3 stades et 348 (24,8 %) étaient communes à 2 stades. Même si la majorité des protéines ont été identifiées à plusieurs stades quelques unes l'étaient dans un seul stade : 71 (5,1 %) pour le stade IS, 182 (13 %) pour le stade RMS et 193 (13,8 %) pour le stade FA (Fig. 36). La liste des protéines identifiées dans chaque stade peut être consultée dans le Tableau I en annexe.

Figure 36 : Diagramme de Venn résumant la répartition des protéines identifiées aux différents stades du développement folliculaire. Le cercle vert correspond au nombre de protéines au stade IS, avec mise en évidence (dans le rectangle vert) des 71 protéines uniquement identifiées à ce stade ; dans le cercle bleu celles identifiées au stade RMS et dans le cercle violet les protéines identifiées au stade FA ; au centre le nombre de protéines communes aux trois stades ; et en noir, celles communes à deux stades de développement.

B. Analyses des profils protéiques

1. Analyse Gene Ontology avec Panther

Pour chaque stade, toutes les protéines identifiées en combinant l'analyse 1D et 2D LC – MS/MS ont été classées en classe de protéines et processus biologiques en utilisant Panther GO analyses.

1. 1. Classes de protéines

Pour les 3 stades, les protéines identifiées ont été distribuées en 22 classes de protéines. La classe des protéines impliquées dans les liaisons aux acides nucléiques a été celle avec le plus de protéines attribuées dans les trois stades (22 % pour IS ; 20 % pour RMS et 18 % pour FA). Les 4 classes suivantes avec plus de protéines attribuées étaient des classes d'enzymes : hydrolases, oxydoréductases, transférases et modulateurs enzymatiques. Ces classes dans l'ensemble correspondaient approximativement à 45 % des protéines identifiées aux stades IS et RMS; et à 40 % des protéines identifiées dans le stade FA. Les protéines du cytosquelette, les chaperonnes et les protéases ont été les autres classes avec un minimum de 5 % de protéines attribuées dans les trois stades (Fig. 37).

La distribution des différentes protéines par classes de protéines est ainsi similaire entre les 3 stades.

Figure 37 : Distribution des protéines identifiées dans chaque stade par classes avec l'analyse Panther.

1. 2. Processus biologiques

Un autre outil de Panther est la classification des protéines par processus biologiques dans lesquelles elles sont impliquées. A noter qu'une même protéine peut être impliquée dans plusieurs des processus biologiques.

Les processus métaboliques sont ceux avec le plus grand nombre de protéines attribuées : 487 de IS, 701 de RMS et 670 de FA, ce qui correspond à plus de 60 % des protéines dans tous les stades. Les autres 5 processus biologiques avec plus de protéines attribuées dans les trois stades étaient les processus cellulaires, le transport et plus spécifiquement le transport de protéines, le cycle cellulaire et la communication cellulaire tous avec plus de 10 % des protéines identifiées (Fig. 38).

Figure 38 : Distribution des protéines identifiées, aux trois stades de développement, par processus biologique.

Malgré la similitude de distribution des protéines entre les trois stades une surreprésentation pour certains processus biologiques a été observée en comparaison avec la distribution de tous les gènes de l'espèce *Mus musculus*.

Les protéines associées à la morphogenèse des composants cellulaires et des structures anatomiques ainsi que celles impliquées dans le transport mitochondrial et la localisation de l'ARN étaient surreprésentées uniquement au stade IS. Entre les processus métaboliques ceux associés aux ferrédoxines et aux pyrimidines étaient surreprésentés seulement au stade RMS tandis que la biosynthèse des vitamines avec 10 protéines associées étaient surreprésentée au stade FA (Tableau II en annexe).

Des processus métaboliques associés au glycogène, acides gras et à l'ADN, plus précisément la réplication de l'ADN étaient surreprésentés aux stades RMS et FA mais pas au stade IS.

Pour 32 autres processus biologiques parmi lesquels le cycle cellulaire, la production de précurseurs métaboliques et d'énergie, la traduction, les processus métaboliques concernant les protéines et le transport nucléaire et de protéines sont surreprésentés dans les trois stades de développement (Tableau II en annexe).

2. Réseaux d'interactions

Pendant la croissance folliculaire, la survie et la multiplication des cellules de la granulosa sont essentielles au développement d'un ovocyte viable. *In vitro* il y a un risque augmenté d'apoptose et de stress des cellules de la granulosa et de la thèque puisque elles ne sont plus dans leur environnement naturel et ainsi nuire au développement d'un ovocyte viable. L'analyse comparative des processus biologiques a démontré que les protéines impliquées dans l'apoptose et dans la réparation de l'ADN n'étaient pas surreprésentées dans nos échantillons. Cependant cette même analyse a démontré que les processus métaboliques liés aux dérivés aux ROS (dérivés réactifs de l'oxygène) étaient surreprésentées dans les trois stades de développement.

Pour obtenir une visualisation sur la variation des protéines impliquées dans ces processus une analyse Pathway Studio a été réalisée.

Parmi les 95 protéines identifiées, dans le profil protéique du follicule ovarien de souris et assignées par le logiciel à la **réparation de l'ADN** 50,5 % (48) n'étaient pas identifiées au stade IS. Par contre 83 soit 87,4 % étaient identifiées à RMS et 78,9 % (75) à FA.

Pour les 112 protéines ayant un lien avec les ROS, la variation des protéines au long du développement folliculaire *in vitro* était similaire avec celles impliquées dans la réparation de l'ADN. En effet pour les deux évènements biologiques il y avait dans mes échantillons moins de protéines à IS par rapport aux deux autres stades, le stade RMS étant celui dans lequel plus de protéines ayant un lien avec les ROS et impliquées dans la réparation de l'ADN était identifiées (Fig. 39B). Ainsi pour le stade IS 59 protéines ont été identifiées, 98 en RMS et 96 pour FA.

Figure 39 : Groupes de protéines identifiées dans les trois stades liés à la réparation de l'ADN (A) et à la formation de ROS (B). Les protéines identifiées à un stade donné sont représentées avec un fond blanc tandis que celles absentes ont un fond coloré. L'analyse des protéines identifiées avec Ingenuity Pathway Analysis (IPA) a permis de mettre en évidence un réseau d'interactions de protéines impliquées dans le cycle cellulaire, notamment les cyclines dépendantes kinases (CDKs). En effet, dans ce réseau, douze protéines, dont les CDKs, ont montré une expression différenciée entre les trois stades (Fig. 40).

Au stade IS, 4 de ces protéines tels que **SKP1** (S-phase kinase-associated protein 1), **FBXW12** (F-box/WD repeat-containing protein 12), **BRCA2** (breast cancer type 2 susceptibility protein homolog) et **UBAP2L** (Ubiquitin-associated protein 2-like) ont été identifiées même en absence des CDKs (Fig. 40 IS).

Au stade RMS, 3 des 4 cyclines impliquées dans ce réseau ont été identifiées – CDK 1, CDK 4 et CDK 6, ainsi que quatre autres protéines associées directement ou pas avec ces cyclines : CDK5RAP3 (CDK5 regulatory subunit-associated protein 3), FOXO1 (Forkhead box protein O1), OGT (UDP-N-acetylglucosamine--peptide Nacetylglucosaminyl transferase 110 kDa subunit) et FN1 (fibronectin). De plus, les 4 protéines identifiées au stade IS l'ont été aussi à ce stade (Fig. 40RMS).

Au stade FA, un inhibiteur des CDKs - **CDKN1B** (cyclin-dependent kinase inhibitor 1B) a été identifié. En conséquence les protéines liées à cet inhibiteur tels que les 3 CDKs, SKP1/SKP2, FBXW12, BRCA2, FOXO1, OGT et UBAP2L et qui étaient identifiées dans les stades précédents ne l'ont plus été au stade FA, illustrant un « swicth off » de ce réseau à ce stade (Fig. 40AF).

Figure 40 : Réseau d'interaction associé aux CDKs suggéré par l'analyse IPA avec mise en évidence des protéines différemment identifiées entres les trois stades IS, RMS et FA. Les protéines entourées en vert étaient identifiées au stade correspondant et en rouge celles non identifiées.

3. Analyse quantitative des protéines dans les trois stades de développement

Une quantification label-free des données, obtenues avec l'analyse 1D LC-MS/MS, a été réalisée pour mettre en évidence des variations d'abondance des protéines au long du développement *in vitro*.

Des variations quantitatives significatives entre les trois stades ont été observées pour 57 protéines (Tableau III en annexe). Ces variations, au long de la culture folliculaire, ont pu être caractérisées en cinq profils (Fig. 41).

Le profil 1 (P1) est caractérisé par les 15 protéines plus abondantes au stade IS (Fig. 41 P1). Parmi elles, 11 protéines telles que les **ZP2** et **ZP3** (zona pellucida sperm-binding protein 2 and 3), la **OOEP** (Oocyte-expressed protein homolog), la protéine **Filia** (KH domain-containing protein 3), la **TLE6** (transducin-like enhancer protein 6), la **PADI6** (protein-arginine deiminase type-6) et la **Pla2g4c** (phospholipase A2, group IVC) étaient significativement plus abondantes à IS en comparaison avec les deux autres stades (RMS et FA). Dans le même profil deux protéines étaient significativement plus abondantes à IS par rapport à RMS mais pas par rapport à FA. Les deux autres protéines appartenant à ce profil étaient significativement moins abondantes au stade FA par rapport aux stades IS et RMS.

Des cinq protéines plus abondantes au stade RMS, qui caractérise le profil 2 (Fig. 41 P2), trois sont des protéines de liaison aux ions de calcium – **CALR** (calreticulin), **CALU** (calumenin) et **MYL6** (myosin light polypeptide 6) et leur abondance était significativement inférieure aux stades IS et FA. Les deux autres protéines variaient entre RMS et FA.

La majorité des protéines (28) présentaient une abondance croissante au long du développement, caractérisant le profil 3 (Fig. 41 P3). Le quatrième profil était caractérisé par deux protéines significativement moins abondantes au stade RMS par rapport aux stades IS et FA (Fig. 41 P4).

Le profil 5 est caractérisé par des protéines significativement plus abondantes au stade FA par rapport aux deux autres stades IS et RMS (Fig. 41 P5). Deux de ces protéines, **ENOA** (alpha-enolase) et **PGM1** (phosphoglucomutase-1) sont des enzymes impliquées dans la glycolyse et une troisième, la protéine **FABP5** (fatty acid-binding protein), est un transporteur de glucose. La protéine **PKAR2B** (regulatory subunit of the cAMP-dependent protein kinases), qui était également plus abondante au stade FA, a un rôle dans la signalisation cellulaire de cAMP.

Figure 41 : Illustration des différents profils observés selon l'abondance des protéines au long du développement folliculaire *in vitro*. Profil 1 : (P1) 15 protéines plus abondantes à IS. Profil 2 : (P2) 5 protéines plus abondantes à RMS. Profil 3 : (P3) 28 protéines avec une abondance croissante au long du développement folliculaire. Profil 4 (P4) 2 protéines significativement moins abondantes à RMS par rapport à IS et FA. Profil 5 : (P5) 7 protéines significativement plus abondantes au stade FA par rapport aux stades IS et RMS.

De plus, l'analyse des 57 protéines avec IPA a suggéré la glycolyse comme la voie canonique principale avec neuf protéines impliquées. Huit de ces protéines présentaient une abondance croissante au long du développement folliculaire *in vitro* atteignant une abondance maximale à FA. La neuvième protéine, au contraire, était plus abondante à IS décroissant au long du développement (Fig. 42).

Figure 42 : Profils des neuf protéines impliquées dans la glycolyse, avec une abondance significativement différente entre les trois stades. En rouge, les 8 protéines avec une abondance croissante au long du développement folliculaire. En bleu la protéine LDHB, dont l'abondance décroît durant le développement folliculaire.

V. Discussion, Conclusion et Perspectives

Discussion

La majorité des travaux de recherche en protéomique, concernent l'ovocyte en métaphase II (mature). Le protéome d'ovocytes en fin de croissance mais qui n'ont pas repris leur méiose a aussi été décrit ainsi que celui du complexe cumulusovocytaire.

Le développement ovocytaire est indiscutablement lié à celui du follicule auquel il appartient avec des interactions et échanges moléculaires entre l'ovocyte et les cellules somatiques qui l'entourent. Pendant la folliculogenèse il y a un taux de transcription très élevé avec la production de protéines essentielles au développement du follicule et de l'ovocyte ainsi qu'à l'acquisition des capacités à la maturation de l'ovocyte et au développement embryonnaire.

Pour essayer de comprendre les évènements moléculaires pendant la culture et obtenir des groupes les plus homogènes possibles, les stades étudiés ont été choisis selon des caractéristiques morphologiques plutôt qu'à partir d'une durée de culture, puisque tous les follicules en culture ont des rythmes de croissance différents. Pour établir le protéome du follicule lors de sa croissance *in vitro*, trois stades ont été choisis de façon à obtenir des informations sur les follicules à des stades différents et caractéristiques de leur développement. Ces trois stades sont : IS, follicules comprenant un ovocyte entouré de peu de CG qui, débutent leur croissance; RMS, correspondant aux follicules, qui en culture, montrent leur croissance par la prolifération des cellules de la granulosa provocant une rupture de la membrane de Slavjanski ; et en dernier lieu FA, les follicules qui ont atteint la fin de leur croissance *in vitro* et qui réunissent les meilleures conditions pour que l'ovocyte qu'ils contiennent mature. A notre connaissance notre étude est la première à analyser le protéome au cours de la croissance *in vitro* de follicules entiers.

Construction des profils protéiques

Dans un premier temps et puisque le protéome de follicule n'avait jamais été décrit une mise au point des milieux de culture afin d'éviter toute contamination par les protéines du sérum lors de l'analyse protéomique. Ainsi après une recherche bibliographique le sérum de veau a été remplacé par de l'albumine bovine, dans le milieu de culture, qui, étant purifiée, pourrait être facilement identifiée lors de l'analyse protéomique et ainsi écartée de nos résultats. Cependant et malgré les résultats décrits dans la littérature comme satisfaisants pour la culture de follicules ovariens (Abedelahi et al. 2008, Choi et al. 2007, Hirao 2011), nos résultats ont été très décevants avec entre autre une croissance beaucoup moins importante des follicules, une absence de formation d'antrum, une absence d'adhésion au support et une absence d'ovocyte mature. Ainsi pour cette étude, nous avons finalement conservé le milieu conventionnel utilisé pour ce type de culture (Cortvrindt et al. 1996), en effectuant plusieurs lavages des follicules sélectionnés avant l'étape d'extraction des protéines pour l'analyse protéomique, afin d'éliminer le maximum de molécules du sérum présentes dans le milieu de culture.

Du fait de la complexité de l'échantillon étudié un préfractionnement des extraits protéiques a été réalisé, basé sur la séparation des protéines en fonction de leur charge native : IEF « in gel ». Cette étape de fractionnement a permis d'augmenter le nombre de protéines identifiées d'environ 3,3 fois par rapport à une identification directe de l'extrait total. De plus la qualité de ce fractionnement a été démontrée par le fait que 79 % des protéines n'ont été identifiées que dans une seule fraction et que seulement 1 % ont été identifiées dans les 5 fractions obtenues avec ce fractionnement.

Ainsi après ces mises au point des milieux de culture et du type de préfractionnement, le protéome du follicule ovarien de souris pouvait être établi en combinant les donnés obtenues après les analyses des 5 fractions et des extraits totaux protéiques obtenus à chaque stade de développement étudiés.

Combinant les données obtenues avec les deux configurations d'analyse LC-MS/MS (1D et 2D) de l'extrait total et des 5 fractions obtenues après le préfractionnement à chaque stade, 1403 protéines ont pu être identifiées constituant, à notre connaissance le premier profil protéique du follicule ovarien. A partir de ces protéines identifiées en combinant les données obtenues dans les trois stades 609 protéines sont présentes dans le follicule ovarien de souris en culture quel que soit son stade de développement et 365 n'ont pas été décrites dans les articles concernant l'ovocyte isolé soit au stade VG soit au stade MII (Demant et al. 2012, Ma et al. 2008, Meng et al. 2007, Pfeiffer et al. 2011, Wang et al. 2010, Zhang et al. 2009), ni dans l'étude sur les CCO (Meng et al. 2007) (Tableau IV en annexe). Puisque dans cette étude c'est le follicule entier qui a été analysé et non l'ovocyte isolé il est probable qu'une partie de ces protéines qui n'ont jamais été décrites soient exprimées exclusivement dans les cellules de la granulosa ou de la thèque. Parmi les 897 protéines identifiées communes à notre étude et à l'étude de Wang, 97 n'ont été observées qu'avec des ovocytes MII ou des zygotes (Wang et al. 2010). Puisque nos protéomes, ont été obtenus uniquement avec des ovocytes bloqués en fin de prophase I (VG), nous pouvons en conclure que ces protéines, si exprimés uniquement dans l'ovocyte, sont fort probablement déjà exprimées avant la reprise de la méiose.

Analyse des profils protéiques

Aucune différence, entre les trois stades, n'a été observée dans le classement des protéines identifiées, que ce soit par classes ou par fonction biologique. Comme dans le classement des protéines identifiées auparavant avec le protéome de l'ovocyte (Meng et al. 2007; Ma et al. 2008; Zhang et al. 2009; Wang et al. 2010; Pfeiffer et al. 2011; Demant et al. 2012), les processus métaboliques correspondent à la fonction biologique avec le plus grand nombre de protéines attribuées, suivi des processus cellulaires, du transport et de la communication cellulaire. Ceci indique que la distribution des protéines identifiées, en termes de fonctions biologiques, dans l'ovocyte en fin de croissance et dans le follicule pendant son développement est identique.

L'importance de certaines fonctions biologiques dans le développement *in vitro* du follicule ovarien de souris a été suggérée par les 44 fonctions biologiques qui étaient surreprésentées dans nos groupes par rapport à la distribution des fonctions des gènes constituant le génome de *Mus musculus*.

Plus de 20 fonctions biologiques étaient surreprésentées aux trois stades de développement, comme le cycle cellulaire et la mitose, plusieurs processus métaboliques liés aux protéines et aux acides aminés, ainsi que la traduction, le transport nucléaire et le transport de protéines. Nos résultats sont cohérents avec l'intense prolifération des cellules somatiques qui se vérifie dans le follicule en croissance, l'intense traduction menant à la production des protéines nécessaires

non seulement à la croissance du follicule et de l'ovocyte mais aussi à l'acquisition de compétences pour des évènements futurs, ainsi que le besoin d'interactions entre les différentes cellules du follicule pour favoriser les échanges moléculaires indispensables au bon développement de cette structure fonctionnelle.

D'autre part, certaines fonctions biologiques sembleraient avoir un rôle prépondérant à certains moments du développement puisqu'elles ne sont surreprésentées qu'à un des trois stades du développement folliculaire. C'est le cas des protéines impliquées dans la formation et organisation des structures cellulaires, la localisation de l'ARN et le transport impliquant les mitochondries qui sont surreprésentées uniquement au stade IS.

Les processus métaboliques impliquant des ferrédoxines sont surreprésentés uniquement au stade RMS et c'est aussi uniquement à ce stade que l'adrénodoxine (**FDX1**), appelée ferrédoxine 1 chez l'humain, a été identifiée. Cette protéine est, entre autres processus métaboliques, impliquée dans la stéroïdogenèse (Miller 2005) et sa transcription semble augmenter proportionnellement au taux d'AMPc (Imamichi et al. 2013) pouvant ainsi indiquer l'augmentation de l'activité stéroïdogène des follicules en croissance. Ces résultats sont en accord avec des études de sécrétion d'œstradiol dans les follicules ovariens en culture, qui associent la sécrétion à la prolifération cellulaire, décrivant que la sécrétion stagne ou diminue avec le ralentissement de la prolifération des cellules de la granulosa (Boland et al. 1993, Dorphin et al. 2012, Liu et al. 2002).

Au stade AF c'est la biosynthèse de vitamines qui semble avoir un rôle particulier, puisque c'est uniquement à ce stade qu'une surreprésentation de ce processus métabolique a été observée. La présence de vitamines dans les cellules de la granulosa a été décrite à différents stades de développement (Deane 1952, Murray et al. 2001, Wojtusik et al. 2012) et dans le liquide folliculaire (Ozkan et al. 2010, Prieto et al. 2012). Plusieurs fonctions leurs sont attribuées, selon la vitamine, et leur présence a été décrite comme nécessaire au développement folliculaire mais pas indispensable (Kinuta et al. 2000, Murray et al. 2001, Sun et al. 2010, Wojtusik et al. 2012). Leur addition aux milieux de culture semble aussi améliorer plusieurs paramètres de croissance et avoir un effet antioxydant, protégeant des effets survenues dû au stress oxydative (Deb et al. 2012, Murray et al. 2001, Talebi et al. 2012). Dans nos résultats aucune vitamine en particulier a été identifiée, mais puisque les protéines impliquées dans leur synthèse étaient uniquement surreprésentées en fin de culture il semble que le follicule arrive lui

même à produire des vitamines et que cette activité est plus nécessaire en fin de culture. Ceci est cohérant avec le rôle de la vitamine C et D, par exemple, qui ont été décrites comme stimulant l'activité stéroïdienne des follicules (Byrd et al. 1993, Murray et al. 2001, Ozkan et al. 2010).

L'importance croissante et proportionnelle des processus métaboliques liés au glycogène et aux acides gras avec la croissance folliculaire (Collado-Fernandez et al. 2012) a été appuyée par la détection d'une surreprésentation de ces processus métaboliques dans nos résultats aux stades RMS et FA uniquement.

Implications des protéines du cycle cellulaire

Pendant la croissance folliculaire une augmentation importante du volume et de la taille du follicule est observée. Ceci est lié à l'intense prolifération des cellules de la granulosa par mitose. Dans notre étude, les protéines associées au cycle cellulaire, et plus spécifiquement à la mitose sont surreprésentées dans les trois stades de développement. La progression du cycle cellulaire et en conséquence la prolifération cellulaire sont régulées par les CDKs, les cyclines et par des inhibiteurs des CDKs (Robker et al. 1998, Schwartz et al. 2005). L'analyse IPA de nos résultats a pu mettre en évidence un réseau dans lequel l'expression de 12 protéines impliquées dans le cycle cellulaire et l'interaction avec des CDKs, variait au cours du développement folliculaire établissant un parallèle avec l'intensité de la prolifération des CG.

Au stade IS, seulement 4 des 12 protéines qui variaient, ont été identifiées et aucune des CDKs n'était présente. Ces résultats sont en accord avec le fait qu'à ce stade le follicule possède encore très peu de cellules de la granulosa et l'activité mitotique est moins intense qu'aux autres stades.

Au stade RMS, qui lui, est associé à une forte prolifération des cellules de la granulosa et de la thèque, 11 des 12 protéines qui variaient ont été identifiés. Parmi elles les **CDKs 1, 4 et 6**. **FOXO1** et **OGT** ont été identifiées uniquement à ce stade. La présence des CDKs à ce stade uniquement, corrobore l'intense activité mitotique des cellules somatiques du follicule pendant sa croissance, puisque celles-ci liées aux cyclines sont responsables de la progression du cycle cellulaire et en conséquence de la prolifération des CG (Coqueret 2002, Sherr 1994, Shimizu et al. 2013). Une autre protéine identifiée uniquement à ce stade a été **FOXO1** qui a été décrite comme exclusivement exprimé dans les CG de follicules en croissance (Tarnawa et al. 2013) avec des niveaux d'expression moins important dans les plus grands follicules antraux et périovulatoires (Shi et al. 2003). Elle régule l'expression
de gènes associés à la prolifération, l'apoptose et l'homéostasie des CG en culture (Liu et al. 2009, Liu et al. 2013, Park et al. 2005). De plus les CDKs 4/6 et FOXO1 font partie de la liste de protéines jamais décrites dans le protéome de l'ovocyte isolé appuyant leur localisation dans les CG.

A partir de J9, un ralentissement de la prolifération des cellules de la granulosa est observé *in vitro* (Pesty et al. 2007). Ainsi le follicule continue de croître mais l'activité mitotique se ralentit. Dans notre étude, ceci a été mis en évidence par l'identification uniquement au stade FA de la protéine **CDKN1B**. Cette protéine inhibe la progression du cycle cellulaire, en empêchant la formation des complexes cycline E-CDK2, cycline D-CDK4/CDK6, et en conséquence la croissance cellulaire (Bayrak et al. 2003, Rajareddy et al. 2007). Vu que la présence de cette protéine a été décrite dans les cellules de la granulosa de follicules à tous les stades de développement, nos résultats suggèrent qu'au stade FA cette protéine devient plus abondante par rapport aux autres stades. De plus des études ont démontré que cette protéine est importante pour la lutéinisation des follicules et pour l'ovulation (Fero et al. 1996, Kiyokawa et al. 1996, Nakayama et al. 1996). Pouvant être ainsi un bon marqueur pour la qualité de la culture et du follicule apte a ovuler.

L'apoptose, ROS et réparation de l'ADN

Au cours de la folliculogenèse un grand nombre de follicules ne finissent pas leur croissance et dégénèrent. Cette dégénérescence est essentiellement due à l'arrêt de la prolifération des cellules de la granulosa et, en conséquence, leur mort par apoptose. Puisque dans l'ovaire environ 99 % des follicules qui entrent en croissance dégénèrent, il semble naturel que, dans le protéome de l'ovaire, l'apoptose soit une des fonctions biologiques ayant le plus de protéines attribuées (He et al. 2014).

Dans chacun des trois stades étudiés, uniquement 5 % des protéines étaient attribuées à cette fonction. L'apoptose n'était surreprésentée à aucun stade de développement, ce qui peut montrer que les conditions de culture n'induisaient pas la production de protéines liées à l'apoptose montrant ainsi une bonne qualité des conditions de culture. *In vivo* les follicules en croissance sont constamment en concurrence pour les ressources qui leur permettent de se développer ce qui conduit à la « mort des plus faibles ». Cependant en culture, les follicules évoluent isolement et sans concurrence pour les ressources. Ceci permet que beaucoup plus de follicules arrivent à se développer et atteindre la maturation et que les taux

d'apoptose observée *in vitro* soient beaucoup moins importants que ceux observés *in vivo*.

Cependant une analyse avec Pathway Studio a montré qu'aux stades RMS et FA il y avait presque 2 fois plus de protéines impliquées dans la production de ROS et dans la réparation de l'ADN, par comparaison avec le stade IS. Ceci pourrait être justifié par l'exposition aux conditions de culture, puisque contrairement aux deux autres groupes, les follicules constituant le groupe IS y sont beaucoup moins exposés. Cependant au stade FA, qui correspond aux follicules en fin de culture, donc plus exposés, moins de protéines associées à ces deux évènements ont été identifiées par rapport au stade RMS. Cette différence pourrait avoir un rapport avec le changement de structure du follicule qui passe de 3D à 2D avec la rupture de la membrane de Slavjanski. Néanmoins si cette modification de structure fait augmenter la transcription de protéines impliquées dans la production de ROS et dans la réparation de l'ADN cela ne semble pas être très délétère à la croissance folliculaire puisque elle se poursuit sans augmenter, ce type de protéines étant même moins abondantes en fin de culture.

Protéines différemment abondantes entre les stades

La quantification label free a été une autre façon d'analyser et de comparer les protéines identifiées dans les trois stades de développement choisis, pour essayer de trouver des protéines qui, bien qu'également identifiées dans les trois stades, se distingueraient par leur abondance à un stade déterminé. A cause des limites du logiciel utilisé, cette analyse n'a pu être effectuée qu'avec les données obtenues par l'analyse 1D LC-MS/MS.

Du fait que l'étude a été réalisée avec des follicules entiers et que le nombre de follicules composant chaque stade de développement était diffèrent, il apparait normal que les protéines essentiellement exprimées dans les ovocytes diminuent au cours de la croissance folliculaire et qu'en sens inverse celles associées aux cellules de la granulosa augmentent.

C'est le cas, par exemple, de six protéines qui, dans notre étude, sont plus abondantes au stade IS, alors qu'elles ont été décrites dans l'ovocyte avec une expression croissante au cours du développement ovocytaire, à savoir les glycoprotéines **ZP2** et **ZP3** (Epifano et al. 1995), la protéine **PAD16** (egg and embryo abundant PAD) (Wright et al. 2003) et 3 membres du SCMC (subcortical maternal complex) : **OOEP**, Filia (**KHDC3**) et **TLE6** (Li et al. 2008).

Néanmoins les 57 protéines présentant une abondance variable ont été distribuées en 5 profils de variation différents indiquant un schéma plus complexe qu'une simple réduction des protéines de l'ovocyte et augmentation des protéines de la granulosa.

Surexpression de protéines associées au calcium

Certaines protéines, par exemple, ont un niveau d'expression maximum ou au contraire minimum au stade RMS, suggérant des régulations spécifiques à ce stade à l'échelle du follicule. C'était le cas, notamment, de la protéine calréticuline (CALR) qui était significativement plus abondante au stade RMS où une grande prolifération des cellules de la granulosa est observée. Cette protéine a été considérée comme l'une des plus importantes protéines chaperonnes de liaisons avec le Ca²⁺ dans l'ovocyte (Zhang et al. 2010). De plus, cette protéine qui avait été identifiée comme une des protéines de surface de l'ovocyte la plus abondante (Calvert et al. 2003), n'a pas été identifiée au stade IS, de même que la protéine caluménine (CALU). La protéine MYL6 (myosine light protein 6), identifiées aux trois stades était également plus abondante au stade RMS. Ces trois protéines, plus abondantes au stade RMS, sont impliquées dans la fixation des ions calcium suggérant un rôle crucial des échanges de calcium, dans le follicule, à ce stade.

Protéines associées à la glycolyse et au métabolisme des glucides

L'analyse quantitative a aussi mis en évidence les protéines impliquées dans le métabolisme des glucides et en particulier la glycolyse. La glycolyse est décrite comme une voie très importante d'utilisation du glucose dans les grands follicules en développement, puisqu'elle est nécessaire non seulement à leur développement mais aussi à la production d'œstradiol (Boland et al. 1993, Collado-Fernandez et al. 2012, Xu et al. 2009). Pour le follicule antral obtenu *in vitro*, la glycolyse constitue même la source principale d'ATP (Boland et al. 1993, Harris et al. 2007).

Plusieurs protéines impliquées dans cette voie ont été identifiées telles que la pyruvate kinase M2 (KPYM), la PGM1, les L-lactate dehydrogenase chain A and B (LDHA, et LDHB), l'ALDOA (Fructose-bisphosphate aldolase A), l'ENOA (enolase alpha), l'ENOG (enolase gamma), l'ADPGK (ADP glucokinase), la GAPDH, la G6PD1 (glucose-6-phosphate), la TPIS (Triosephosphate isomerase) la K6PP (6-phosphofructokinase type C), la PGAM1 (phosphoglycerate mutase 1), la MDHC (Malate dehydrogenase, cytoplasmic) .et la PGK1 (phosphoglycerate kinase 1). Pour

neuf d'entre elles une abondance variable au long du développement folliculaire *in vitro* a été observée : 8 augmentaient graduellement étant toutes plus abondantes à AF, tandis que, la protéine **LDHB** présentait un comportement complètement contraire, étant plus abondante à IS. Ces résultats confirment ainsi le besoin plus important d'énergie des follicules en fin de culture.

La protéine LDHB et son mARN correspondant ont été identifiés dans l'ovocyte en quantités croissantes au cours du développement folliculaire, dans les ovocytes après maturation et même au début du développement embryonnaire (Brinkworth et al. 1978, Li et al. 2006, Roller et al. 1989, Winger et al. 2000). Nos résultats cependant montrent une diminution d'abondance de cette protéine, ce qui pourrait indiquer que cette protéine est spécifiquement localisée dans l'ovocyte uniquement.

Régulation de la PKA

Au stade FA une autre protéine a attiré notre attention – la **PRKAR2B**, qui est une sous-unité de la PKA (cAMP-dependent protein kinase) impliquée dans la signalisation de l'AMPc dans les cellules.

Des taux élevés d'AMPc dans l'ovocyte sont essentiels pour le maintien du blocage méiotique, cependant la source de l'AMPc reste discutée puisque une théorie défend le fait que l'ovocyte produit lui-même un inhibiteur à la dégradation de l'AMPc (Mehlmann 2005, Scotchie et al. 2009, Zhang et al. 2006) et une autre que le blocage méiotique est maintenue grâce aux apports d'AMPc, par les cellules de la granulosa via les gap junctions (Sela-Abramovich et al. 2006). Des taux plus élevés d'une protéine impliquée dans la signalisation de l'AMPc pourraient plutôt suggérer sa production par les cellules de la granulosa, puisque à ce stade il y a un plus grand nombre de cellules de granulosa par rapport aux autres stades.

Conclusions et perspectives

L'importance du follicule en tant que structure qui permet le développement du gamète féminin est indiscutable. Les connaissances moléculaires au sujet du follicule décrivent essentiellement leur activation, leur sortie du pool de réserve, et leur maturation en fin de croissance avec l'expulsion de l'ovocyte mature. Cependant beaucoup d'évènements se passent entre ces étapes. Pendant cette période, l'ovocyte va lui aussi grandir et acquérir les compétences qui en feront un gamète féminin de qualité. Ainsi décrire et connaitre les changements moléculaires qui ont lieu tout au long du développement folliculaire pourraient permettre de mieux connaître et comprendre les besoins de cette structure pour aboutir à la formation de cette cellule si rare qu'est l'ovocyte mature.

Ce travail de thèse, qui avait comme objet d'étude le follicule entier, a permis de mettre en évidence 1403 protéines impliquées dans le développement folliculaire représentant jusque là le premier profil protéique du follicule en croissance. Cette liste qui n'est pas exhaustive et qui représente quelques protéines les plus abondantes dans le follicule pourra servir de point de départ pour beaucoup d'autres études qui permettront de mieux comprendre le rôle et l'enjeu de certaines de ces protéines dans le développement folliculaire. De plus, les analyses qualitatives et quantitatives réalisées ont pu mettre en évidence des différences non seulement d'expression mais aussi d'abondance des protéines au cours du développement folliculaire suggérant qu'à certains moments leur rôle dans le développement est plus prépondérant. Quelques exemples ont pu être vérifiés dans cette étude comme la dynamique d'interaction de quelques protéines impliquées dans le cycle cellulaire mettant en évidence le moment où les cellules du follicule sont plus actives mitotiquement et inversement moins actives avec même l'identification d'un inhibiteur au stade plus tardif (FA), ce qui dans le futur pourrait servir de marqueur de croissance folliculaire. L'expression et l'abondance plus importantes de protéines impliquées dans la glycolyse en fin de croissance montrant qu'à ce stade la production d'énergie est plus importante qu'à d'autres stades du développement. Les protéines impliquées dans la régulation et la liaison aux ions calcium sont plus actives au stade intermédiaire du développement.

Beaucoup d'autres fonctions biologiques, qui ont été mis en évidence avec cette étude comme étant surreprésentées dans le follicule par rapport au génome de la souris, doivent être l'objet de futures études plus approfondies pour comprendre les causes de cette surreprésentation et leur conséquence dans le développement folliculaire.

Ainsi, ce travail ouvre de nombreuses perspectives pouvant servir de point de départ pour d'autres études plus ciblées sur le rôle spécifique de certaines familles de protéines dans le développement folliculaire.

Concernant les protéines qui n'ont pas été identifiées aux trois stades simultanément, il serait aussi important de vérifier si elles sont en plus faible abondance ou totalement absentes dans les autres stades et d'en étudier l'impact sur développement folliculaire. Ceci permettrait ainsi d'aider à mieux comprendre entre autres les évènements moléculaires impliqués dans le développement folliculaire à des stades moins connues et qui permettront également d'améliorer les conditions de culture ainsi que l'étude de follicules issus de la préservation de la fertilité avec le développement de marqueurs de qualité du développement folliculaire.

VI. Bibliographie

Abedelahi, A., Salehnia, M. and Allameh, A. A. (2008). "The effects of different concentrations of sodium selenite on the in vitro maturation of preantral follicles in serum-free and serum supplemented media." <u>J Assist Reprod Genet</u> **25**(9-10): 483-488.

Abir, R., Franks, S., Mobberley, M. A., Moore, P. A., Margara, R. A. and Winston, R. M. (1997). "Mechanical isolation and in vitro growth of preantral and small antral human follicles." <u>Fertil Steril</u> **68**(4): 682-688.

Abir, R., Roizman, P., Fisch, B., Nitke, S., Okon, E., Orvieto, R. and Ben Rafael, Z. (1999). "Pilot study of isolated early human follicles cultured in collagen gels for 24 hours." <u>Hum Reprod</u> **14**(5): 1299-1301.

Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Hamalainen, T., Cooney, A. J., Huhtaniemi, I., Lan, Z. J. and Liu, K. (2010). "Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles." <u>Hum Mol Genet</u> **19**(3): 397-410.

Ambekar, A. S., Nirujogi, R. S., Srikanth, S. M., Chavan, S., Kelkar, D. S., Hinduja, I., Zaveri, K., Prasad, T. S., Harsha, H. C., Pandey, A. and Mukherjee, S. (2013). "Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis." <u>J Proteomics</u> **87**: 68-77.

Anastacio, A., Broca, O., Golmard, J. L. and Poirot, C. (2012). "[Freezing effects on the in vitro development of mice preantral follicles.]." <u>Gynecol Obstet Fertil</u>.

Aubard, Y., Poirot, C., Piver, P., Galinat, S. and Teissier, M. P. (2001). "Are there indications for ovarian tissue cryopreservation?" <u>Fertil Steril</u> **76**(2): 414-415.

Baker, T. G. (1963). "A Quantitative and Cytological Study of Germ Cells in Human Ovaries." <u>Proc R Soc Lond B Biol Sci</u> **158**: 417-433.

Bayrak, A. and Oktay, K. (2003). "The expression of cyclin-dependent kinase inhibitors p15, p16, p21, and p27 during ovarian follicle growth initiation in the mouse." <u>Reprod Biol Endocrinol</u> **1**: 41.

Berendt, F. J., Frohlich, T., Bolbrinker, P., Boelhauve, M., Gungor, T., Habermann, F. A., Wolf, E. and Arnold, G. J. (2009). "Highly sensitive saturation labeling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro." <u>Proteomics</u> **9**(3): 550-564.

Bhojwani, M., Rudolph, E., Kanitz, W., Zuehlke, H., Schneider, F. and Tomek, W. (2006). "Molecular analysis of maturation processes by protein and phosphoprotein profiling during in vitro maturation of bovine oocytes: a proteomic approach." <u>Cloning Stem Cells</u> **8**(4): 259-274.

Blume-Jensen, P., Jiang, G., Hyman, R., Lee, K. F., O'Gorman, S. and Hunter, T. (2000). "Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility." <u>Nat Genet</u> **24**(2): 157-162.

Boland, N. I., Humpherson, P. G., Leese, H. J. and Gosden, R. G. (1993). "Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro." <u>Biol Reprod</u> **48**(4): 798-806.

Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." <u>Anal</u> <u>Biochem</u> **72**: 248-254.

Brinkworth, R. I. and Masters, C. J. (1978). "On the localization of lactate dehydrogenase in the ovaries and reproductive tracts of rats and mice." <u>Mech</u> <u>Ageing Dev</u> **8**(5): 299-310.

Bristol-Gould, S. K., Hutten, C. G., Sturgis, C., Kilen, S. M., Mayo, K. E. and Woodruff, T. K. (2005). "The development of a mouse model of ovarian endosalpingiosis." <u>Endocrinology</u> **146**(12): 5228-5236.

Byrd, J. A., Pardue, S. L. and Hargis, B. M. (1993). "Effect of ascorbate on luteinizing hormone stimulated progesterone biosynthesis in chicken granulosa cells in vitro." <u>Comp Biochem Physiol Comp Physiol</u> **104**(2): 279-281.

Calvert, M. E., Digilio, L. C., Herr, J. C. and Coonrod, S. A. (2003). "Oolemmal proteomics--identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane." <u>Reprod Biol Endocrinol</u> **1**: 27.

Carabatsos, M. J., Elvin, J., Matzuk, M. M. and Albertini, D. F. (1998). "Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice." <u>Dev Biol</u> **204**(2): 373-384. Carroll, J., Whittingham, D. G., Wood, M. J., Telfer, E. and Gosden, R. G. (1990). "Extra-ovarian production of mature viable mouse oocytes from frozen primary follicles." <u>J Reprod Fertil</u> **90**(1): 321-327.

Carroll, J., Whittingham, D. G. and Wood, M. J. (1991a). "Effect of dibutyryl cyclic adenosine monophosphate on granulosa cell proliferation, oocyte growth and meiotic maturation in isolated mouse primary ovarian follicles cultured in collagen gels." <u>J Reprod Fertil</u> **92**(1): 197-207.

Carroll, J., Whittingham, D. G. and Wood, M. J. (1991b). "Effect of gonadotrophin environment on growth and development of isolated mouse primary ovarian follicles." <u>J Reprod Fertil</u> **93**(1): 71-79.

Chehna-Patel, N., Warty, N., Sachdeva, G. and Khole, V. (2011). "Proteolytic tailoring of the heat shock protein 70 and its implications in the pathogenesis of endometriosis." <u>Fertil Steril</u> **95**(5): 1560-1567 e1561-1563.

Chen, J. I., Hannan, N. J., Mak, Y., Nicholls, P. K., Zhang, J., Rainczuk, A., Stanton, P. G., Robertson, D. M., Salamonsen, L. A. and Stephens, A. N. (2009). "Proteomic characterization of midproliferative and midsecretory human endometrium." <u>J Proteome Res</u> **8**(4): 2032-2044.

Choi, W. J., Yeo, H. J., Shin, J. K., Lee, S. A., Lee, J. H. and Paik, W. Y. (2007). "Effect of vitrification method on survivability, follicular growth and ovulation of preantral follicles in mice." <u>J Obstet Gynaecol Res</u> **33**(2): 128-133.

Collado-Fernandez, E., Picton, H. M. and Dumollard, R. (2012). "Metabolism throughout follicle and oocyte development in mammals." <u>Int J Dev Biol</u> **56**(10-12): 799-808.

Coonrod, S. A., Wright, P. W. and Herr, J. C. (2002). "Oolemmal proteomics." <u>J</u> <u>Reprod Immunol</u> **53**(1-2): 55-65.

Coqueret, O. (2002). "Linking cyclins to transcriptional control." <u>Gene</u> **299**(1-2): 35-55.

Cortvrindt, R., Smitz, J. and Van Steirteghem, A. C. (1996). "In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system." <u>Hum Reprod</u> **11**(12): 2656-2666.

Cortvrindt, R. and Smitz, J. (1998). "Early preantral mouse follicle in vitro maturation: oocyte growth, meiotic maturation and granulosa-cell proliferation." <u>Theriogenology</u> **49**(4): 845-859.

Cortvrindt, R. G. and Smitz, J. E. (2002). "Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function?" <u>Hum Reprod Update</u> **8**(3): 243-254.

Deane, H. W. (1952). "Histochemical observations on the ovary and oviduct of the albino rat during the estrous cycle." <u>Am J Anat</u> **91**(3): 363-413.

Deb, G. K., Dey, S. R., Bang, J. I., Lee, J. G. and Kong, I. K. (2012). "9-cis Retinoic acid inhibits cumulus cell apoptosis during the maturation of bovine cumulusoocyte-complexes." <u>J Anim Sci</u> **90**(6): 1798-1806.

dela Pena, E. C., Takahashi, Y., Katagiri, S., Atabay, E. C. and Nagano, M. (2002). "Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles." <u>Reproduction</u> **123**(4): 593-600.

Demant, M., Trapphoff, T., Frohlich, T., Arnold, G. J. and Eichenlaub-Ritter, U. (2012). "Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected." <u>Hum Reprod</u> **27**(4): 1096-1111.

DeSouza, L., Diehl, G., Rodrigues, M. J., Guo, J., Romaschin, A. D., Colgan, T. J. and Siu, K. W. (2005). "Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and clCAT with multidimensional liquid chromatography and tandem mass spectrometry." <u>J Proteome Res</u> **4**(2): 377-386.

Dierich, A., Sairam, M. R., Monaco, L., Fimia, G. M., Gansmuller, A., LeMeur, M. and Sassone-Corsi, P. (1998). "Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance." <u>Proc Natl Acad Sci U S A</u> **95**(23): 13612-13617.

Dobson, A. T., Raja, R., Abeyta, M. J., Taylor, T., Shen, S., Haqq, C. and Pera, R. A. (2004). "The unique transcriptome through day 3 of human preimplantation development." <u>Hum Mol Genet</u> **13**(14): 1461-1470.

Dominguez, F., Garrido-Gomez, T., Lopez, J. A., Camafeita, E., Quinonero, A., Pellicer, A. and Simon, C. (2009). "Proteomic analysis of the human receptive versus

non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated." <u>Hum Reprod</u> **24**(10): 2607-2617.

Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N. and Matzuk, M. M. (1996). "Growth differentiation factor-9 is required during early ovarian folliculogenesis." <u>Nature</u> **383**(6600): 531-535.

Dorphin, B., Prades-Borio, M., Anastacio, A., Rojat, P., Coussieu, C. and Poirot, C. (2012). "Secretion profiles from in vitro cultured follicles, isolated from fresh prepubertal and adult mouse ovaries or frozen-thawed prepubertal mouse ovaries." <u>Zygote</u> **20**(2): 181-192.

Downs, S. M., Daniel, S. A., Bornslaeger, E. A., Hoppe, P. C. and Eppig, J. J. (1989). "Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity." <u>Gamete Res</u> **23**(3): 323-334.

Duckworth, B. C., Weaver, J. S. and Ruderman, J. V. (2002). "G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A." <u>Proc Natl Acad</u> <u>Sci U S A</u> **99**(26): 16794-16799.

Durlinger, A. L., Kramer, P., Karels, B., de Jong, F. H., Uilenbroek, J. T., Grootegoed, J. A. and Themmen, A. P. (1999). "Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary." <u>Endocrinology</u> **140**(12): 5789-5796.

Epifano, O., Liang, L. F., Familari, M., Moos, M. C., Jr. and Dean, J. (1995). "Coordinate expression of the three zona pellucida genes during mouse oogenesis." <u>Development</u> **121**(7): 1947-1956.

Eppig, J. J. (1982). "The relationship between cumulus cell-oocyte coupling, oocyte meiotic maturation, and cumulus expansion." <u>Dev Biol</u> **89**(1): 268-272.

Eppig, J. J. (1989). "The participation of cyclic adenosine monophosphate (cAMP) in the regulation of meiotic maturation of oocytes in the laboratory mouse." <u>J Reprod</u> <u>Fertil Suppl</u> **38**: 3-8.

Eppig, J. J. and Schroeder, A. C. (1989). "Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro." <u>Biol Reprod</u> **41**(2): 268-276.

Eppig, J. J. (1991). "Intercommunication between mammalian oocytes and companion somatic cells." <u>Bioessays</u> **13**(11): 569-574.

Eppig, J. J. and O'Brien, M. J. (1996). "Development in vitro of mouse oocytes from primordial follicles." <u>Biol Reprod</u> **54**(1): 197-207.

Faddy, M. J., Gosden, R. G., Gougeon, A., Richardson, S. J. and Nelson, J. F. (1992). "Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause." <u>Hum Reprod</u> **7**(10): 1342-1346.

Fauser, B. C., Rutherford, A., Strauss, J. and Van Steirteghem, A. (1999). <u>Molecular</u> <u>biology in reproductive medicine</u>, Parthenon Publishing Group.

Fehrenbach, A., Nusse, N. and Nayudu, P. L. (1998). "Patterns of growth, oestradiol and progesterone released by in vitro cultured mouse ovarian follicles indicate consecutive selective events during follicle development." <u>J Reprod Fertil</u> **113**(2): 287-297.

Fero, M. L., Rivkin, M., Tasch, M., Porter, P., Carow, C. E., Firpo, E., Polyak, K., Tsai, L. H., Broudy, V., Perlmutter, R. M., Kaushansky, K. and Roberts, J. M. (1996). "A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice." <u>Cell</u> **85**(5): 733-744.

Fowler, P. A., Tattum, J., Bhattacharya, S., Klonisch, T., Hombach-Klonisch, S., Gazvani, R., Lea, R. G., Miller, I., Simpson, W. G. and Cash, P. (2007). "An investigation of the effects of endometriosis on the proteome of human eutopic endometrium: a heterogeneous tissue with a complex disease." <u>Proteomics</u> **7**(1): 130-142.

Gomes, J. E., Correia, S. C., Gouveia-Oliveira, A., Cidadao, A. J. and Plancha, C. E. (1999). "Three-dimensional environments preserve extracellular matrix compartments of ovarian follicles and increase FSH-dependent growth." <u>Mol Reprod</u> <u>Dev</u> **54**(2): 163-172.

Gougeon, A. (1986). "Dynamics of follicular growth in the human: a model from preliminary results." <u>Hum Reprod</u> **1**(2): 81-87.

Gougeon, A. (2010). "Human ovarian follicular development: from activation of resting follicles to preovulatory maturation." <u>Ann Endocrinol (Paris)</u> **71**(3): 132-143.

Griffin, J., Emery, B. R., Huang, I., Peterson, C. M. and Carrell, D. T. (2006). "Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human)." <u>J Exp Clin Assist Reprod</u> **3**: 2.

Grondahl, C., Hyttel, P., Grondahl, M. L., Eriksen, T., Gotfredsen, P. and Greve, T. (1995). "Structural and endocrine aspects of equine oocyte maturation in vivo." <u>Mol</u> <u>Reprod Dev</u> **42**(1): 94-105.

Han, S. J. and Conti, M. (2006). "New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate." <u>Cell Cycle</u> **5**(3): 227-231.

Harris, S. E., Adriaens, I., Leese, H. J., Gosden, R. G. and Picton, H. M. (2007). "Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro." <u>Reproduction</u> **134**(3): 415-424.

Hartshorne, G. M. (1997). "In vitro culture of ovarian follicles." <u>Rev Reprod</u> 2(2): 94-104.

He, H., Teng, H., Zhou, T., Guo, Y., Wang, G., Lin, M., Sun, Y., Si, W., Zhou, Z., Guo, X. and Huo, R. (2014). "Unravelling the proteome of adult rhesus monkey ovaries." <u>Mol Biosyst</u>.

Hirao, Y. (2011). "Conditions affecting growth and developmental competence of mammalian oocytes in vitro." <u>Anim Sci J</u> **82**(2): 187-197.

Hovatta, O., Silye, R., Abir, R., Krausz, T. and Winston, R. M. (1997). "Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture." <u>Hum Reprod</u> **12**(5): 1032-1036.

Hovatta, O., Wright, C., Krausz, T., Hardy, K. and Winston, R. M. (1999). "Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation." <u>Hum Reprod</u> **14**(10): 2519-2524.

Hreinsson, J. G., Scott, J. E., Rasmussen, C., Swahn, M. L., Hsueh, A. J. and Hovatta, O. (2002). "Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture." <u>J Clin</u> <u>Endocrinol Metab</u> **87**(1): 316-321.

Imamichi, Y., Mizutani, T., Ju, Y., Matsumura, T., Kawabe, S., Kanno, M., Yazawa, T. and Miyamoto, K. (2013). "Transcriptional regulation of human ferredoxin 1 in ovarian granulosa cells." <u>Mol Cell Endocrinol</u> **370**(1-2): 1-10.

Ito, M., Harada, T., Tanikawa, M., Fujii, A., Shiota, G. and Terakawa, N. (2001). "Hepatocyte growth factor and stem cell factor involvement in paracrine interplays of theca and granulosa cells in the human ovary." <u>Fertil Steril</u> **75**(5): 973-979.

Joshi, S., Davies, H., Sims, L. P., Levy, S. E. and Dean, J. (2007). "Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor." <u>BMC</u> <u>Dev Biol</u> **7**: 67.

Kaipia, A. and Hsueh, A. J. (1997). "Regulation of ovarian follicle atresia." <u>Annu Rev</u> <u>Physiol</u> **59**: 349-363.

Kerjean, A., Couvert, P., Heams, T., Chalas, C., Poirier, K., Chelly, J., Jouannet, P., Paldi, A. and Poirot, C. (2003). "In vitro follicular growth affects oocyte imprinting establishment in mice." <u>Eur J Hum Genet</u> **11**(7): 493-496.

Kikuchi, K., Ekwall, H., Tienthai, P., Kawai, Y., Noguchi, J., Kaneko, H. and Rodriguez-Martinez, H. (2002). "Morphological features of lipid droplet transition during porcine oocyte fertilisation and early embryonic development to blastocyst in vivo and in vitro." <u>Zygote</u> **10**(4): 355-366.

Kim, J. Y. (2012). "Control of ovarian primordial follicle activation." <u>Clin Exp Reprod</u> <u>Med</u> **39**(1): 10-14.

Kinuta, K., Tanaka, H., Moriwake, T., Aya, K., Kato, S. and Seino, Y. (2000). "Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads." <u>Endocrinology</u> **141**(4): 1317-1324.

Kiyokawa, H., Kineman, R. D., Manova-Todorova, K. O., Soares, V. C., Hoffman, E. S., Ono, M., Khanam, D., Hayday, A. C., Frohman, L. A. and Koff, A. (1996). "Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1)." <u>Cell</u> **85**(5): 721-732.

Kol, S. and Adashi, E. Y. (1995). "Intraovarian factors regulating ovarian function." <u>Curr Opin Obstet Gynecol</u> **7**(3): 209-213.

Laissue, P., Christin-Maitre, S., Touraine, P., Kuttenn, F., Ritvos, O., Aittomaki, K., Bourcigaux, N., Jacquesson, L., Bouchard, P., Frydman, R., Dewailly, D., Reyss, A.

C., Jeffery, L., Bachelot, A., Massin, N., Fellous, M. and Veitia, R. A. (2006). "Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure." <u>Eur J Endocrinol</u> **154**(5): 739-744.

Lass, A., Silye, R., Abrams, D. C., Krausz, T., Hovatta, O., Margara, R. and Winston, R. M. (1997). "Follicular density in ovarian biopsy of infertile women: a novel method to assess ovarian reserve." <u>Hum Reprod</u> **12**(5): 1028-1031.

Lefevre, B., Pesty, A., Courtot, A. M., Martins, C. V., Broca, O., Denys, A., Arnault, E., Poirot, C. and Avazeri, N. (2007). "The phosphoinositide-phospholipase C (PI-PLC) pathway in the mouse oocyte." <u>Crit Rev Eukaryot Gene Expr</u> **17**(4): 259-269.

Li, L., Baibakov, B. and Dean, J. (2008). "A subcortical maternal complex essential for preimplantation mouse embryogenesis." <u>Dev Cell</u> **15**(3): 416-425.

Li, R., Phillips, D. M. and Mather, J. P. (1995). "Activin promotes ovarian follicle development in vitro." <u>Endocrinology</u> **136**(3): 849-856.

Li, S. S., Liu, Y. H., Tseng, C. N. and Singh, S. (2006). "Analysis of gene expression in single human oocytes and preimplantation embryos." <u>Biochem Biophys Res</u> <u>Commun</u> **340**(1): 48-53.

Liang, L., Soyal, S. M. and Dean, J. (1997). "FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes." <u>Development</u> **124**(24): 4939-4947.

Liebler, D. C. (2002). <u>Introduction to proteomics : tools for the new biology</u>. Totowa, NJ, Humana Press.

Liu, H. C., He, Z. and Rosenwaks, Z. (2002). "In vitro culture and in vitro maturation of mouse preantral follicles with recombinant gonadotropins." <u>Fertil</u> <u>Steril</u> **77**(2): 373-383.

Liu, J., Van der Elst, J., Van den Broecke, R. and Dhont, M. (2001). "Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation." <u>Biol Reprod</u> **64**(1): 171-178.

Liu, K., Rajareddy, S., Liu, L., Jagarlamudi, K., Boman, K., Selstam, G. and Reddy, P. (2006). "Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer." <u>Dev Biol</u> **299**(1): 1-11.

Liu, Z., Rudd, M. D., Hernandez-Gonzalez, I., Gonzalez-Robayna, I., Fan, H. Y., Zeleznik, A. J. and Richards, J. S. (2009). "FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells." <u>Mol Endocrinol</u> **23**(5): 649-661.

Liu, Z., Castrillon, D. H., Zhou, W. and Richards, J. S. (2013). "FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH." <u>Mol</u> <u>Endocrinol</u> **27**(2): 238-252.

Luberda, Z. (2005). "The role of glutathione in mammalian gametes." <u>Reprod Biol</u> **5**(1): 5-17.

Ma, M., Guo, X., Wang, F., Zhao, C., Liu, Z., Shi, Z., Wang, Y., Zhang, P., Zhang, K., Wang, N., Lin, M., Zhou, Z., Liu, J., Li, Q., Wang, L., Huo, R., Sha, J. and Zhou, Q. (2008). "Protein expression profile of the mouse metaphase-II oocyte." <u>J Proteome</u> <u>Res</u> **7**(11): 4821-4830.

Ma, X., Fan, L., Meng, Y., Hou, Z., Mao, Y. D., Wang, W., Ding, W. and Liu, J. Y. (2007). "Proteomic analysis of human ovaries from normal and polycystic ovarian syndrome." <u>Mol Hum Reprod</u> **13**(8): 527-535.

Mainigi, M. A., Ord, T. and Schultz, R. M. (2011). "Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system." <u>Biol Reprod</u> **85**(2): 269-276.

Matzuk, M. M., Burns, K. H., Viveiros, M. M. and Eppig, J. J. (2002). "Intercellular communication in the mammalian ovary: oocytes carry the conversation." <u>Science</u> **296**(5576): 2178-2180.

McLaughlin, E. A. and McIver, S. C. (2009). "Awakening the oocyte: controlling primordial follicle development." <u>Reproduction</u> **137**(1): 1-11.

McLaughlin, M. and Telfer, E. E. (2010). "Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system." <u>Reproduction</u> **139**(6): 971-978.

McMullen, M. L., Cho, B. N., Yates, C. J. and Mayo, K. E. (2001). "Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit." <u>Endocrinology</u> **142**(11): 5005-5014. Mehlmann, L. M. (2005). "Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation." Reproduction **130**(6): 791-799.

Meirow, D., Hardan, I., Dor, J., Fridman, E., Elizur, S., Ra'anani, H., Slyusarevsky, E., Amariglio, N., Schiff, E., Rechavi, G., Nagler, A. and Ben Yehuda, D. (2008). "Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients." <u>Hum Reprod</u> **23**(5): 1007-1013.

Memili, E., Peddinti, D., Shack, L. A., Nanduri, B., McCarthy, F., Sagirkaya, H. and Burgess, S. C. (2007). "Bovine germinal vesicle oocyte and cumulus cell proteomics." <u>Reproduction</u> **133**(6): 1107-1120.

Meng, Y., Liu, X. H., Ma, X., Shen, Y., Fan, L., Leng, J., Liu, J. Y. and Sha, J. H. (2007). "The protein profile of mouse mature cumulus-oocyte complex." <u>Biochim</u> <u>Biophys Acta</u> **1774**(11): 1477-1490.

Miller, W. L. (2005). "Minireview: regulation of steroidogenesis by electron transfer." <u>Endocrinology</u> **146**(6): 2544-2550.

Motta, P. M. and Makabe, S. (1986). "Germ cells in the ovarian surface during fetal development in humans. A three-dimensional microanatomical study by scanning and transmission electron microscopy." <u>J Submicrosc Cytol</u> **18**(2): 271-290.

Mousset-Simeon, N., Jouannet, P., Le Cointre, L., Coussieu, C. and Poirot, C. (2005). "Comparison of three in vitro culture systems for maturation of early preantral mouse ovarian follicles." <u>Zygote</u> **13**(2): 167-175.

Murray, A. A., Molinek, M. D., Baker, S. J., Kojima, F. N., Smith, M. F., Hillier, S. G. and Spears, N. (2001). "Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro." <u>Reproduction</u> **121**(1): 89-96.

Nakayama, K., Ishida, N., Shirane, M., Inomata, A., Inoue, T., Shishido, N., Horii, I., Loh, D. Y. and Nakayama, K. (1996). "Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors." <u>Cell</u> **85**(5): 707-720.

Nayudu, P. L. and Osborn, S. M. (1992). "Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro." <u>J Reprod Fertil</u> **95**(2): 349-362.

Neilson, L., Andalibi, A., Kang, D., Coutifaris, C., Strauss, J. F., 3rd, Stanton, J. A. and Green, D. P. (2000). "Molecular phenotype of the human oocyte by PCR-SAGE." <u>Genomics</u> **63**(1): 13-24.

Nilsson, E., Parrott, J. A. and Skinner, M. K. (2001). "Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis." <u>Mol Cell</u> <u>Endocrinol</u> **175**(1-2): 123-130.

Nilsson, E., Rogers, N. and Skinner, M. K. (2007). "Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition." <u>Reproduction</u> **134**(2): 209-221.

Nilsson, E. E., Detzel, C. and Skinner, M. K. (2006). "Platelet-derived growth factor modulates the primordial to primary follicle transition." <u>Reproduction</u> **131**(6): 1007-1015.

O'Brien, M. J., Pendola, J. K. and Eppig, J. J. (2003). "A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence." <u>Biol Reprod</u> **68**(5): 1682-1686.

O'Shaughnessy, P. J., Dudley, K. and Rajapaksha, W. R. (1996). "Expression of follicle stimulating hormone-receptor mRNA during gonadal development." <u>Mol Cell</u> <u>Endocrinol</u> **125**(1-2): 169-175.

Oktay, K., Briggs, D. and Gosden, R. G. (1997a). "Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles." <u>J Clin</u> <u>Endocrinol Metab</u> **82**(11): 3748-3751.

Oktay, K., Nugent, D., Newton, H., Salha, O., Chatterjee, P. and Gosden, R. G. (1997b). "Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue." <u>Fertil Steril</u> **67**(3): 481-486.

Otsuka, F., Yao, Z., Lee, T., Yamamoto, S., Erickson, G. F. and Shimasaki, S. (2000). "Bone morphogenetic protein-15. Identification of target cells and biological functions." <u>J Biol Chem</u> **275**(50): 39523-39528.

Ozkan, S., Jindal, S., Greenseid, K., Shu, J., Zeitlian, G., Hickmon, C. and Pal, L. (2010). "Replete vitamin D stores predict reproductive success following in vitro fertilization." <u>Fertil Steril</u> **94**(4): 1314-1319.

Pangas, S. A., Saudye, H., Shea, L. D. and Woodruff, T. K. (2003). "Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes." <u>Tissue Eng</u> **9**(5): 1013-1021.

Pangas, S. A., Choi, Y., Ballow, D. J., Zhao, Y., Westphal, H., Matzuk, M. M. and Rajkovic, A. (2006). "Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8." <u>Proc Natl Acad Sci U S A</u> **103**(21): 8090-8095.

Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L. and Conti, M. (2004). "EGF-like growth factors as mediators of LH action in the ovulatory follicle." <u>Science</u> **303**(5658): 682-684.

Park, Y., Maizels, E. T., Feiger, Z. J., Alam, H., Peters, C. A., Woodruff, T. K., Unterman, T. G., Lee, E. J., Jameson, J. L. and Hunzicker-Dunn, M. (2005). "Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from Smad." <u>J Biol Chem</u> **280**(10): 9135-9148.

Parmar, T., Gadkar-Sable, S., Savardekar, L., Katkam, R., Dharma, S., Meherji, P., Puri, C. P. and Sachdeva, G. (2009). "Protein profiling of human endometrial tissues in the midsecretory and proliferative phases of the menstrual cycle." <u>Fertil Steril</u> **92**(3): 1091-1103.

Parrott, J. A., Vigne, J. L., Chu, B. Z. and Skinner, M. K. (1994). "Mesenchymalepithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells." <u>Endocrinology</u> **135**(2): 569-575.

Peddinti, D., Memili, E. and Burgess, S. C. (2010). "Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction." <u>PLoS One</u> **5**(6): e11240.

Pepling, M. E. and Spradling, A. C. (2001). "Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles." <u>Dev Biol</u> **234**(2): 339-351.

Pesty, A., Miyara, F., Debey, P., Lefevre, B. and Poirot, C. (2007). "Multiparameter assessment of mouse oogenesis during follicular growth in vitro." <u>Mol Hum Reprod</u> **13**(1): 3-9.

Pesty, A., Broca, O., Poirot, C. and Lefevre, B. (2008). "The role of PLC beta 1 in the control of oocyte meiosis during folliculogenesis." <u>Reprod Sci</u> **15**(7): 661-672.

Pfeiffer, M. J., Siatkowski, M., Paudel, Y., Balbach, S. T., Baeumer, N., Crosetto, N., Drexler, H. C., Fuellen, G. and Boiani, M. (2011). "Proteomic analysis of mouse oocytes reveals 28 candidate factors of the "reprogrammome"." <u>J Proteome Res</u> **10**(5): 2140-2153.

Picton, H., Briggs, D. and Gosden, R. (1998). "The molecular basis of oocyte growth and development." <u>Mol Cell Endocrinol</u> **145**(1-2): 27-37.

Picton, H. M. and Gosden, R. G. (2000). "In vitro growth of human primordial follicles from frozen-banked ovarian tissue." <u>Mol Cell Endocrinol</u> **166**(1): 27-35.

Picton, H. M., Danfour, M. A., Harris, S. E., Chambers, E. L. and Huntriss, J. (2003). "Growth and maturation of oocytes in vitro." <u>Reprod Suppl</u> **61**: 445-462.

Picton, H. M., Harris, S. E., Muruvi, W. and Chambers, E. L. (2008). "The in vitro growth and maturation of follicles." <u>Reproduction</u> **136**(6): 703-715.

Poirot, C., Brugieres, L., Genestie, C. and Martelli, H. (2005). "[Ovarian tissue cryopreservation for prepubertal girls: indications and feasibility]." <u>Gynecol Obstet</u> <u>Fertil</u> **33**(10): 799-803.

Poirot, C. J., Martelli, H., Genestie, C., Golmard, J. L., Valteau-Couanet, D., Helardot, P., Pacquement, H., Sauvat, F., Tabone, M. D., Philippe-Chomette, P., Esperou, H., Baruchel, A. and Brugieres, L. (2007). "Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer." <u>Pediatr Blood Cancer</u> **49**(1): 74-78.

Prieto, L., Quesada, J. F., Cambero, O., Pacheco, A., Pellicer, A., Codoceo, R. and Garcia-Velasco, J. A. (2012). "Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis." <u>Fertil Steril</u> **98**(1): 126-130.

Rai, P., Kota, V., Sundaram, C. S., Deendayal, M. and Shivaji, S. (2010). "Proteome of human endometrium: Identification of differentially expressed proteins in proliferative and secretory phase endometrium." <u>Proteomics Clin Appl</u> **4**(1): 48-59.

Rajareddy, S., Reddy, P., Du, C., Liu, L., Jagarlamudi, K., Tang, W., Shen, Y., Berthet, C., Peng, S. L., Kaldis, P. and Liu, K. (2007). "p27kip1 (cyclin-dependent

kinase inhibitor 1B) controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice." <u>Mol Endocrinol</u> **21**(9): 2189-2202.

Rajkovic, A., Pangas, S. A., Ballow, D., Suzumori, N. and Matzuk, M. M. (2004). "NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression." <u>Science</u> **305**(5687): 1157-1159.

Reddy, P., Shen, L., Ren, C., Boman, K., Lundin, E., Ottander, U., Lindgren, P., Liu, Y. X., Sun, Q. Y. and Liu, K. (2005). "Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development." <u>Dev Biol</u> **281**(2): 160-170.

Reddy, P., Adhikari, D., Zheng, W., Liang, S., Hamalainen, T., Tohonen, V., Ogawa, W., Noda, T., Volarevic, S., Huhtaniemi, I. and Liu, K. (2009). "PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles." <u>Hum Mol Genet</u> **18**(15): 2813-2824.

Reynolds, L. P., Killilea, S. D. and Redmer, D. A. (1992). "Angiogenesis in the female reproductive system." <u>FASEB J</u> **6**(3): 886-892.

Robker, R. L. and Richards, J. S. (1998). "Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1." <u>Mol Endocrinol</u> **12**(7): 924-940.

Roller, R. J., Kinloch, R. A., Hiraoka, B. Y., Li, S. S. and Wassarman, P. M. (1989). "Gene expression during mammalian oogenesis and early embryogenesis: quantification of three messenger RNAs abundant in fully grown mouse oocytes." <u>Development</u> **106**(2): 251-261.

Roy, S. K. (1993). "Epidermal growth factor and transforming growth factor-beta modulation of follicle-stimulating hormone-induced deoxyribonucleic acid synthesis in hamster preantral and early antral follicles." <u>Biol Reprod</u> **48**(3): 552-557.

Roy, S. K. and Treacy, B. J. (1993). "Isolation and long-term culture of human preantral follicles." <u>Fertil Steril</u> **59**(4): 783-790.

Sadeu, J. C., Cortvrindt, R., Ron-El, R., Kasterstein, E. and Smitz, J. (2006). "Morphological and ultrastructural evaluation of cultured frozen-thawed human fetal ovarian tissue." <u>Fertil Steril</u> **85 Suppl 1**: 1130-1141. Sanchez, F. and Smitz, J. (2012). "Molecular control of oogenesis." <u>Biochim Biophys</u> <u>Acta</u> **1822**(12): 1896-1912.

Schmidt, D., Ovitt, C. E., Anlag, K., Fehsenfeld, S., Gredsted, L., Treier, A. C. and Treier, M. (2004). "The murine winged-helix transcription factor FoxI2 is required for granulosa cell differentiation and ovary maintenance." <u>Development</u> **131**(4): 933-942.

Schwartz, G. K. and Shah, M. A. (2005). "Targeting the cell cycle: a new approach to cancer therapy." <u>J Clin Oncol</u> **23**(36): 9408-9421.

Scotchie, J. G., Fritz, M. A., Mocanu, M., Lessey, B. A. and Young, S. L. (2009). "Proteomic analysis of the luteal endometrial secretome." <u>Reprod Sci</u> **16**(9): 883-893.

Sela-Abramovich, S., Edry, I., Galiani, D., Nevo, N. and Dekel, N. (2006). "Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation." <u>Endocrinology</u> **147**(5): 2280-2286.

Sherr, C. J. (1994). "G1 phase progression: cycling on cue." <u>Cell</u> **79**(4): 551-555.

Shi, F. and LaPolt, P. S. (2003). "Relationship between FoxO1 protein levels and follicular development, atresia, and luteinization in the rat ovary." <u>J Endocrinol</u> **179**(2): 195-203.

Shikanov, A., Xu, M., Woodruff, T. K. and Shea, L. D. (2009). "Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development." <u>Biomaterials</u> **30**(29): 5476-5485.

Shikanov, A., Xu, M., Woodruff, T. K. and Shea, L. D. (2011). "A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3 dimensional system." <u>J Vis Exp</u>(49).

Shimizu, T., Hirai, Y. and Miyamoto, A. (2013). "Expression of cyclins and cyclindependent kinase inhibitors in granulosa cells from bovine ovary." <u>Reprod Domest</u> <u>Anim</u> **48**(5): e65-69.

Skinner, M. K. (2005). "Regulation of primordial follicle assembly and development." <u>Hum Reprod Update</u> **11**(5): 461-471. Smitz, J. and Cortvrindt, R. (1998). "Inhibin A and B secretion in mouse preantral follicle culture." <u>Hum Reprod</u> **13**(4): 927-935.

Smitz, J., Dolmans, M. M., Donnez, J., Fortune, J. E., Hovatta, O., Jewgenow, K., Picton, H. M., Plancha, C., Shea, L. D., Stouffer, R. L., Telfer, E. E., Woodruff, T. K. and Zelinski, M. B. (2010). "Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation." <u>Hum Reprod Update</u> **16**(4): 395-414.

Soyal, S. M., Amleh, A. and Dean, J. (2000). "FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation." <u>Development</u> **127**(21): 4645-4654.

Sun, F., Betzendahl, I., Shen, Y., Cortvrindt, R., Smitz, J. and Eichenlaub-Ritter, U. (2004). "Preantral follicle culture as a novel in vitro assay in reproductive toxicology testing in mammalian oocytes." <u>Mutagenesis</u> **19**(1): 13-25.

Sun, W., Xie, H., Ji, J., Zhou, X., Goltzman, D. and Miao, D. (2010). "Defective female reproductive function in 1,25(OH)2D-deficient mice results from indirect effect mediated by extracellular calcium and/or phosphorus." <u>Am J Physiol Endocrinol Metab</u> **299**(6): E928-935.

Talebi, A., Zavareh, S., Kashani, M. H., Lashgarbluki, T. and Karimi, I. (2012). "The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles." <u>J Assist Reprod Genet</u> **29**(2): 175-183.

Tarnawa, E. D., Baker, M. D., Aloisio, G. M., Carr, B. R. and Castrillon, D. H. (2013). "Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse Mammalian species." <u>Biol Reprod</u> **88**(4): 103.

te Velde, E. R., Scheffer, G. J., Dorland, M., Broekmans, F. J. and Fauser, B. C. (1998). "Developmental and endocrine aspects of normal ovarian aging." <u>Mol Cell</u> <u>Endocrinol</u> **145**(1-2): 67-73.

Telfer, E. E., Binnie, J. P., McCaffery, F. H. and Campbell, B. K. (2000). "In vitro development of oocytes from porcine and bovine primary follicles." <u>Mol Cell</u> <u>Endocrinol</u> **163**(1-2): 117-123.

Telfer, E. E., McLaughlin, M., Ding, C. and Thong, K. J. (2008). "A two-step serumfree culture system supports development of human oocytes from primordial follicles in the presence of activin." <u>Hum Reprod</u> **23**(5): 1151-1158.

Telfer, E. E. and Zelinski, M. B. (2013). "Ovarian follicle culture: advances and challenges for human and nonhuman primates." <u>Fertil Steril</u> **99**(6): 1523-1533.

Ten Have, S., Fraser, I., Markham, R., Lam, A. and Matsumoto, I. (2007). "Proteomic analysis of protein expression in the eutopic endometrium of women with endometriosis." <u>Proteomics Clin Appl</u> **1**(10): 1243-1251.

Thibault, C. and Levasseur, M.-C. (2001). <u>La reproduction chez les mammifères et</u> <u>I'homme</u>, Editions Quae.

Tingen, C., Kim, A. and Woodruff, T. K. (2009). "The primordial pool of follicles and nest breakdown in mammalian ovaries." <u>Mol Hum Reprod</u> **15**(12): 795-803.

Torrance, C., Telfer, E. and Gosden, R. G. (1989). "Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture." <u>J Reprod</u> <u>Fertil</u> **87**(1): 367-374.

Uda, M., Ottolenghi, C., Crisponi, L., Garcia, J. E., Deiana, M., Kimber, W., Forabosco, A., Cao, A., Schlessinger, D. and Pilia, G. (2004). "Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development." <u>Hum</u> <u>Mol Genet</u> **13**(11): 1171-1181.

Upadhyay, R. D., Balasinor, N. H., Kumar, A. V., Sachdeva, G., Parte, P. and Dumasia, K. (2013). "Proteomics in reproductive biology: beacon for unraveling the molecular complexities." <u>Biochim Biophys Acta</u> **1834**(1): 8-15.

van den Hurk, R. and Zhao, J. (2005). "Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles." <u>Theriogenology</u> **63**(6): 1717-1751.

Vanderhyden, B. C., Telfer, E. E. and Eppig, J. J. (1992). "Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro." <u>Biol</u> <u>Reprod</u> **46**(6): 1196-1204.

Vanhoutte, L., Nogueira, D., Dumortier, F. and De Sutter, P. (2009). "Assessment of a new in vitro maturation system for mouse and human cumulus-enclosed oocytes:

three-dimensional prematuration culture in the presence of a phosphodiesterase 3inhibitor." <u>Hum Reprod</u> **24**(8): 1946-1959.

Vitale, A. M., Calvert, M. E., Mallavarapu, M., Yurttas, P., Perlin, J., Herr, J. and Coonrod, S. (2007). "Proteomic profiling of murine oocyte maturation." <u>Mol Reprod</u> <u>Dev</u> **74**(5): 608-616.

Vitt, U. A., Kloosterboer, H. J., Rose, U. M., Mulders, J. W., Kiesel, P. S., Bete, S. and Nayudu, P. L. (1998). "Isoforms of human recombinant follicle-stimulating hormone: comparison of effects on murine follicle development in vitro." <u>Biol Reprod</u> **59**(4): 854-861.

Wandji, S. A., Srsen, V., Voss, A. K., Eppig, J. J. and Fortune, J. E. (1996). "Initiation in vitro of growth of bovine primordial follicles." <u>Biol Reprod</u> **55**(5): 942-948.

Wang, S., Kou, Z., Jing, Z., Zhang, Y., Guo, X., Dong, M., Wilmut, I. and Gao, S. (2010). "Proteome of mouse oocytes at different developmental stages." <u>Proc Natl</u> <u>Acad Sci U S A</u> **107**(41): 17639-17644.

West, E. R., Shea, L. D. and Woodruff, T. K. (2007a). "Engineering the follicle microenvironment." <u>Semin Reprod Med</u> **25**(4): 287-299.

West, E. R., Xu, M., Woodruff, T. K. and Shea, L. D. (2007b). "Physical properties of alginate hydrogels and their effects on in vitro follicle development." <u>Biomaterials</u> **28**(30): 4439-4448.

Winger, Q. A., Hill, J. R., Shin, T., Watson, A. J., Kraemer, D. C. and Westhusin, M. E. (2000). "Genetic reprogramming of lactate dehydrogenase, citrate synthase, and phosphofructokinase mRNA in bovine nuclear transfer embryos produced using bovine fibroblast cell nuclei." <u>Mol Reprod Dev</u> **56**(4): 458-464.

Wojtusik, J. and Johnson, P. A. (2012). "Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen." <u>Biol Reprod</u> **86**(3): 91.

Wright, C. S., Hovatta, O., Margara, R., Trew, G., Winston, R. M., Franks, S. and Hardy, K. (1999). "Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles." <u>Hum Reprod</u> **14**(6): 1555-1562.

Wright, P. W., Bolling, L. C., Calvert, M. E., Sarmento, O. F., Berkeley, E. V., Shea, M. C., Hao, Z., Jayes, F. C., Bush, L. A., Shetty, J., Shore, A. N., Reddi, P. P., Tung,

K. S., Samy, E., Allietta, M. M., Sherman, N. E., Herr, J. C. and Coonrod, S. A. (2003). "ePAD, an oocyte and early embryo-abundant peptidylarginine deiminaselike protein that localizes to egg cytoplasmic sheets." <u>Dev Biol</u> **256**(1): 73-88.

Xu, M., Kreeger, P. K., Shea, L. D. and Woodruff, T. K. (2006a). "Tissue-engineered follicles produce live, fertile offspring." <u>Tissue Eng</u> **12**(10): 2739-2746.

Xu, M., West, E., Shea, L. D. and Woodruff, T. K. (2006b). "Identification of a stagespecific permissive in vitro culture environment for follicle growth and oocyte development." <u>Biol Reprod</u> **75**(6): 916-923.

Xu, M., Barrett, S. L., West-Farrell, E., Kondapalli, L. A., Kiesewetter, S. E., Shea, L. D. and Woodruff, T. K. (2009). "In vitro grown human ovarian follicles from cancer patients support oocyte growth." <u>Hum Reprod</u> **24**(10): 2531-2540.

Yokota, H., Yamada, K., Liu, X., Kobayashi, J., Abe, Y., Mizunuma, H. and Ibuki, Y. (1997). "Paradoxical action of activin A on folliculogenesis in immature and adult mice." Endocrinology **138**(11): 4572-4576.

Zhang, D. X., Li, X. P., Sun, S. C., Shen, X. H., Cui, X. S. and Kim, N. H. (2010). "Involvement of ER-calreticulin-Ca2+ signaling in the regulation of porcine oocyte meiotic maturation and maternal gene expression." <u>Mol Reprod Dev</u> **77**(5): 462-471.

Zhang, H., Niu, Y., Feng, J., Guo, H., Ye, X. and Cui, H. (2006). "Use of proteomic analysis of endometriosis to identify different protein expression in patients with endometriosis versus normal controls." <u>Fertil Steril</u> **86**(2): 274-282.

Zhang, P., Ni, X., Guo, Y., Guo, X., Wang, Y., Zhou, Z., Huo, R. and Sha, J. (2009). "Proteomic-based identification of maternal proteins in mature mouse oocytes." <u>BMC Genomics</u> **10**: 348.

Zhao, J., Taverne, M. A., van der Weijden, G. C., Bevers, M. M. and van den Hurk, R. (2001). "Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II." <u>Biol Reprod</u> **65**(3): 967-977.

Zheng, W., Nagaraju, G., Liu, Z. and Liu, K. (2012). "Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary." <u>Mol Cell Endocrinol</u> **356**(1-2): 24-30.

VII. Annexes

Tableau I en annexe : Liste des protéines identifiées pour les trois stades de développement utilisant le comparateur de données XTandem. "log (e-value)" est la valeur statistique de la probalilité qu'une protéine a d'être identifiée au hasard, et il est le produit des e-values des peptides uniques identifiés dans chaque protéine. Les protéines validées ont un log e-value < -2,5. "Spectres" correspond au nombre de spectres que l'analyse MS/MS a identifié pour chaque protéine. "Pep Specif Uniq" correspond au nombre de peptides specifiques à la protéine identifiée par rapport aux protéines identifiées du même groupe. "Pep Uniq" correspond au nombre de sequences peptidiques identifiés pour chaque protéine eliminant les répetitions.</p>

					IS				RMS						FA					
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Unic
P20029	78 kDa glucose-regulated protein	Hspa5	-159,3	41,0	72,3	409	25	28	-214,6	48,0	72,3	1316	32	36	-214,6	48,0	72,3	1316	32	36
P63017	Heat shock cognate 71 kDa protein	Hspa8	-155,5	48,0	70,7	539	25	31	-186,1	53,0	70,7	949	26	33	-181,0	51,0	70,7	793	20	31
P17879	Heat shock 70 kDa protein 1B	Hspa1b	-41,4	17,0	70,0	138	2	8	-60,8	24,0	70,0	230	6	13	-72,5	26,0	70,0	208	5	14
P63260	Actin, cytoplasmic 2	Actg1	-102,7	53,0	41,7	493	1	20	-130,6	63,0	41,7	943	2	24	-134,3	67,0	41,7	1119	13	28
P68134	Actin, alpha skeletal muscle	Acta1	-41,8	33,0	41,9	245	4	13	-69,2	48,0	41,9	525	2	18	-67,2	44,0	41,9	549	1	18
Q8BFZ3	Beta-actin-like protein 2	Actbl2	-32,3	19,0	41,9	208	2	7	-32,8	18,0	41,9	441	1	6	-34,5	26,0	41,9	451	2	8
Q71LX8	Heat shock protein 84b	Hsp90ab1	-114,2	37,0	83,1	334	13	24	-141,5	37,0	83,1	660	15	28	-157,2	44,0	83,1	533	19	32
P08113	Endoplasmin	Hsp90b1	-88,3	29,0	92,3	183	18	20	-152,0	39,0	92,3	618	31	34	-135,9	38,0	92,3	596	29	31
P07901	Heat shock protein HSP 90-alpha	Hsp90aa1	-92,9	32,0	84,6	275	12	21	-100,8	27,0	84,6	435	12	22	-103,1	32,0	84,6	337	12	23
Q9CQN1	Heat shock protein 75 kDa, mitochondrial	Trap1	-39,9	14,0	80,0	92	7	8	-40,9	14,0	80,0	164	7	8	-41,5	15,0	80,0	121	8	9
P99024	Tubulin beta-5 chain	Tubb5	-124,0	66,0	49,5	530	4	28	-120,4	71,0	49,5	844	4	28	-150,7	66,0	49,5	1072	4	28
P68372	Tubulin beta-2C chain	Tubb2c	-122,3	62,0	49,7	384	2	27	-118,3	70,0	49,7	575	2	27	-143,0	66,0	49,7	702	1	27
Q7TMM9	Tubulin beta-2A chain	Tubb2a	-116,8	58,0	49,8	388	3	25	-108,1	60,0	49,8	519	3	24	-131,7	60,0	49,8	685	4	25
Q9ERD7	Tubulin beta-3 chain	Tubb3	-89,9	39,0	50,3	330	2	18	-77,8	34,0	50,3	472	1	16	-97,0	37,0	50,3	542	1	17
P68373	Tubulin alpha-1C chain	Tuba1c	-101,4	51,0	49,8	376	6	18	-98,5	46,0	49,8	759	6	17	-110,6	51,0	49,8	1014	1	19
P56480	ATP synthase subunit beta, mitochondrial	Atp5b	-112,9	46,0	56,2	387	-	20	-122,7	51,0	56,2	723	-	23	-156,3	58,0	56,2	1137	-	26
P27773	Protein disulfide-isomerase A3	Pdia3	-150,5	56,0	56,5	366	-	33	-187,7	61,0	56,5	982	-	38	-195,9	65,0	56,5	852	-	42
P17182	Alpha-enolase	Eno1	-72,7	37,0	47,0	82	-	14	-136,1	54,0	47,0	630	-	25	-234,0	65,0	47,0	1204	37	44
P62259	14-3-3 protein epsilon	Ywhae	-54,7	57,0	29,1	121	12	13	-58,1	54,0	29,1	151	13	14	-67,8	61,0	29,1	200	15	16
P63101	14-3-3 protein zeta/delta	Ywhaz	-50,8	47,0	27,7	107	9	11	-48,1	53,0	27,7	124	9	10	-48,4	38,0	27,7	149	8	9
P68254-1	Isoform 1 of 14-3-3 protein theta	Ywhaq	-30,9	27,0	27,7	52	7	8	-35,1	32,0	27,7	67	8	9	-55,5	46,0	27,7	90	11	12
P61982	14-3-3 protein gamma	Ywhag	-20,0	20,0	28,2	50	3	5	-26,4	24,0	28,2	60	4	6	-31,5	28,0	28,2	64	4	6
Q9CQV8-1	Isoform Long of 14-3-3 protein beta/alpha	Ywhab	-20,8	29,0	28,0	33	3	6	-36,4	42,0	28,0	44	6	8	-32,0	33,0	28,0	53	5	7
P68510	14-3-3 protein eta	Ywhah	-19,2	14,0	28,1	25	3	4	-24,7	21,0	28,1	21	4	5	-32,8	35,0	28,1	37	8	9
P16125	L-lactate dehydrogenase B chain	Ldhb	-95,8	43,0	36,5	460	18	19	-57,3	37,0	36,5	260	12	14	-68,5	43,0	36,5	199	13	16
P06151	L-lactate dehydrogenase A chain	Ldha	-7,3	9,0	36,4	40	1	2	-36,5	30,0	36,4	89	9	11	-47,6	31,0	36,4	111	10	13
Q8K3V4	Protein-arginine deiminase type-6	Padi6	-112,5	44,0	76,6	579	-	23	-82,1	28,0	76,6	227	-	14	-80,7	34,0	76,6	189	-	17
P63038-1	Isoform 1 of 60 kDa heat shock protein, mitochondrial	Hspd1	-104,2	46,0	60,8	178	-	20	-112,9	46,0	60,8	317	-	22	-120,5	48,0	60,8	348	-	24
035737	Heterogeneous nuclear ribonucleoprotein H	Hnrnph1	-61,3	25,0	49,1	82	6	8	-83,5	28,0	49,1	221	4	11	-102,3	42,0	49,1	270	7	14
Q9Z2X1-1	Isoform 1 of Heterogeneous nuclear ribonucleoprotein F	Hnrnpf	-58,9	31,0	45,6	79	8	10	-63,9	31,0	45,6	161	7	10	-64,0	34,0	45,6	205	8	10
P09103	Protein disulfide-isomerase	P4hb	-82,8	38,0	57,0	123	-	20	-102,9	40,0	57,0	337	-	24	-121,6	42,0	57,0	362	18	28
P61979-2	Isoform 2 of Heterogeneous nuclear ribonucleoprotein K	Hnrnpk	-69,4	40,0	50,9	181	2	15	-71,2	45,0	50,9	258	3	16	-69,4	39,0	50,9	314	1	13
Q3U6X2	Putative uncharacterized protein	Hnrnpk	-66,4	39,0	50,9	178	1	14	-69,0	43,0	50,9	252	1	15	-68,0	39,0	50,9	309	1	13
Q01853	Transitional endoplasmic reticulum ATPase	Vcp	-102,2	31,0	89,2	127	-	23	-163,3	44,0	89,2	348	-	33	-138,8	41,0	89,2	278	-	27
Q3THH1	Putative uncharacterized protein	Pdia6	-56,8	30,0	48,5	84	-	10	-69,2	36,0	48,5	274	-	13	-81,8	45,0	48,5	360	-	15
P47738	Aldehyde dehydrogenase, mitochondrial	Aldh2	-89,4	40,0	56,4	186	-	17	-76,9	34,0	56,4	220	-	15	-79,7	38,0	56,4	210	-	16
P60843	Eukaryotic initiation factor 4A-I	Eif4a1	-67,3	42,0	46,0	131	7	14	-76,2	38,0	46,0	230	10	16	-75,0	43,0	46,0	160	9	14
P10630-1	Isoform 1 of Eukaryotic initiation factor 4A-II	Eif4a2	-42,3	21,0	46,3	93	1	8	-47,6	21,0	46,3	161	1	8	-51,2	25,0	46,3	114	3	9
Q91VC3	Eukaryotic initiation factor 4A-III	Eif4a3	-25,1	16,0	46,7	34	5	6	-38,0	19,0	46,7	60	6	7	-35,1	18,0	46,7	67	6	7
P20152	Vimentin	Vim	-76,1	44,0	53,6	95	-	18	-86,4	51,0	53,6	162	-	22	-105,6	57,0	53,6	321	-	27

Annexes:	Taleau
,	

			15								RMS	;					FA			
				% Protéine	Poid Moleculaire	_	Pep Specif		log(E	% Protéine	Poid Moleculaire	_	Pep Specif		log(E	% Protéine	Poid Moleculaire	_	Pep Specif	
ID 014206	Nom de la Proteine	Nom du Gene	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq
P14206	405 ribosomai protein SA	npsa Ddia4	-55,7	40,0	32,7	97	-	10	-/1,4	48,0	32,7	190	-	15	-72,3	47,0	32,7	107	-	14
P08003	Clyceraldebyde-3-nbocnbate debydrogenace	Fulu4	-70,7	31.0	71,0	30	5	7	-100,0	42.0	71,0	190	1	15	-125,0	40,0	71,0	102	3	20
P10030	CAMP dependent protein kingso type II beta socialstan subunit	Dekas2b	-34,0	20.0	46.0	27	,	,	-00,5	42,0	46.0	76	1	12	117.0	50,0	35,7	200	3	21
002052	Ubiquitin-like medifier activating enzyme 1	PIKUI20	-55,4	19,0	40,0	27	-	15	-00,5	40,0	40,0	102	-	13	-117,0	39,0	40,0	129	-	21
060854	Sernin B6	Serninh6	-66.8	18.0	117,0	71		15	-103.4	28,0	117,0	192		22	-99.8	26,0	117,6	138	-	20
D52480-1	Isoform M2 of Purulate kinase isotumes M1/M2	Dkm2	-26.1	15.0	57.7	11	_	6	-06.2	45.0	57.7	152		22	-125.3	52.0	57.7	214	25	26
P80314	T-complex protein 1 subunit beta	Cot2	-20,1	30.0	57.3	72		14	-50,2	34.0	57 3	146		15	-108.4	51.0	57 3	149	25	20
D14733	lamin_R1	lmnh1	-90.4	39.0	55,5	103	21	22	-68.5	38.0	57,5	140	16	17	-107.4	49.0	56.6	155	23	25
P21610.1	Isoform P2 of Lamin-P2	Imph2	-21.2	7.0	67.2	103	21	4	-14.1	4.0	67.2		10	2	-16.6	45,0 6.0	67.2	17	1	20
P21013-1	60% acidic ribosomal protein P0	RoloO	-21,2	34.0	34.1	77	5	*	-14,1	38.0	34.1	137	1	2	-10,0	38.0	34.1	130	-	4
061171	Deroviredovin-2	Prdy2	-28.6	27.0	21.7	59		5	-28.2	27.0	21.7	104		5	-31.5	31.0	21.7	168	-	6
003265	ATP synthese subunit alpha mitochondrial	Ata5a1	-18.7	13.0	50.6	7		6	-78.8	34.0	50.6	195		19	-68.7	31.0	50.6	135		15
D11083-1	Isoform 1 of T-complex protein 1 subunit alpha	Tcn1	-10,7	30.0	60.3	69		14	-92.0	44.0	60.3	128		10	-108.0	47.0	60.3	129	-	23
097204-1	Isoform C2 of Heterogeneous nuclear ribonucleoproteins C1/C2	Haranc	-30.0	29.0	34.3	71		10	-40.2	29.0	34.3	120	1	- 15	-42.7	20.0	34.3	123	1	2.5
P14152	Malate dehydrogenase cytonlasmic	Mdb1	-42.2	30.0	36.4	51	-	8	-42.0	33.0	36.4	107	-	9	-53.3	37.0	36.4	145	-	10
008807	Peroviredovin-4	DrdyA	-24.3	26.0	30.0	20	6	7	-37.6	32.0	30.9	03	5	7	-64.8	67.0	30.0	84	13	14
P35700	Peroxiredoxin-1	Prdx1	-18.5	31.0	22.1	39	5	6	-31.9	51.0	22.1	80	9	11	-22.4	40.0	22.1	51	6	7
P60335	Poly(rC)-binding protein 1	Pchn1	-32.7	27.0	37.4	46	4	6	-47.2	36.0	37.4	77	6	8	-41.5	34.0	37.4	66	5	7
061990-1	Isoform 1 of Poly(rC)-binding protein 2	Pchn2	-35.1	26.0	38.1	51	5	7	-35.1	27.0	38.1	58	5	7	-33.2	23.0	38.1	46	5	7
P42932	T-complex protein 1 subunit theta	Cct8	-70.1	31.0	59.4	66		16	-75.4	44.0	59.4	124	-	19	-79.9	39.0	59.4	90	-	17
P21107-2	Isoform 2 of Tropomyosin alpha-3 chain	Tom3	-54.0	45.0	28.9	52	11	15	-70.8	48.0	28.9	75	14	18	-72.3	49.0	28.9	67	15	19
F90455	Uncharacterized protein	Tom1	-23.2	30.0	28.4	27	4	8	-36.5	41.0	28.6	41	3	11	-29.3	36.0	28.6	26	3	10
P58771-2	Isoform 2 of Tropomyosin alpha-1 chain	Tom1	-12.4	20.0	32.6	15	2	6	-41.0	40.0	32.6	50	2	13	-29.2	36.0	32.6	21	3	11
099020	Heterogeneous nuclear ribonucleoprotein A/B	Hnrnpab	-16.4	12.0	30.7	42	2	3	-26.7	16.0	30.7	65	4	5	-29.5	21.0	30.7	75	5	6
060668-1	Isoform 1 of Heterogeneous nuclear ribonucleoprotein D0	Hnrnnd	-17.2	10.0	38.2	20	2	4	-12.2	8.0	38.2	30	1	3	-13.1	80	38.2	43	1	3
097130	Heterogeneous nuclear ribonucleoprotein D-like	Hnrodi	-15.8	19.0	33.5	16	3	5	-17.3	16.0	33 5	22	- 3	5	-17.7	14.0	33 5	32	2	4
O9R0P9	Ubiguitin carboxyl-terminal hydrolase isozyme 11	Uchl1	-43.5	40.0	24.7	125		8	-31.8	39.0	24.7	71	-	7	-33.8	40.0	24.7	58	-	7
P48036	Annexin A5	Anxa5	-22.4	24.0	35.6	29	-	8	-46.0	39.0	35.6	89	-	13	-67.8	53.0	35.6	120	-	16
P34914-1	Isoform 1 of Epoxide hydrolase 2	Ephx2	-57.9	26.0	62.4	62	-	12	-79.9	30.0	62.4	65	-	14	-97.5	45.0	62.4	109	-	20
P70296	Phosphatidylethanolamine-binding protein 1	Pebp1	-32.7	40.0	20.7	61		7	-31.0	45.0	20.7	70		6	-42.6	70.0	20.7	100	-	10
P09405	Nucleolin	Ncl	-38.8	15.0	76.6	45	-	9	-36.3	17.0	76.6	90	-	10	-53.3	18.0	76.6	93	-	12
P08228	Superoxide dismutase [Cu-Zn]	Sod1	-22.1	32.0	15.9	59		5	-27.4	36.0	15.9	90	-	7	-37.7	55.0	15.9	73	-	9
Q61316	Heat shock 70 kDa protein 4	Hspa4	-79.1	26.0	94.0	64	16	17	-44.6	17.0	94.0	56	10	11	-52.6	21.0	94.0	45	12	13
O61699-1	Isoform HSP105-alpha of Heat shock protein 105 kDa	Hsph1	-19.5	10.0	96.2	14	6	7	-31.8	13.0	96.2	35	8	9	-27.2	12.0	96.2	18	7	8
P58252	Elongation factor 2	Eef2	-48,7	18.0	95.1	35	-	14	-69.6	22.0	95,1	116	-	16	-68.0	25.0	95,1	69	-	17
P80316	T-complex protein 1 subunit epsilon	Cct5	-38,7	27,0	59,5	34		10	-45,4	19,0	59,5	85	-	9	-67,6	31,0	59,5	64	14	15
P57759	Endoplasmic reticulum resident protein 29	Erp29	-23.9	30.0	28.7	27	-	7	-29.4	30.0	28.7	81	-	7	-37.0	42.0	28,7	108	-	9
P57776-1	Isoform 1 of Elongation factor 1-delta	Eef1d	-31,1	29,0	31,2	53	1	6	-42,4	30,0	31,2	79	1	7	-40,3	30,0	31,2	69	1	7
P57776-2	Isoform 2 of Elongation factor 1-delta	Eef1d	-29,0	31,0	28,6	47	1	6	-38,7	31,0	28,6	72	2	8	-37,0	31,0	28,6	58	1	7

					IS						RMS						FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine	Poid Moleculaire (KDa)	Spectres	Pep Specif	Pen Ilnia	log(E	% Protéine	Poid Moleculaire (KDa)	Spectres	Pep Specif	Pen Unia	log(E	% Protéine	Poid Moleculaire (KDa)	Spectres	Pep Specif	f Pen IIn
0920E5	Farnesyl pyrophosphate synthase	Edos	-8.9	14.0	40.5	5	-	4	-32.7	24.0	40.5	82	-	8	-49.4	33.0	40.5	127	-	10
O9IKR6	Hypoxia up-regulated protein 1	Hyou1	-30.2	14.0	111.0	18	-	9	-64.3	22.0	111.0	84	-	15	-64.2	24.0	111.0	111	-	18
Q9Z1N5	Spliceosome RNA helicase Ddx39b	Ddx39b	-53.1	31.0	48.9	73	8	12	-38.9	25.0	48.9	61	5	9	-41.0	25.0	48.9	45	5	9
08VDW0-1	Isoform 1 of ATP-dependent RNA belicase DDX39A	Ddx39a	-26.8	15.0	48.9	31	2	6	-21.7	13.0	48.9	34	1	5	-35 5	23.0	48.9	29	4	8
Q8CDN6	Thioredoxin-like protein 1	Txn/1	-36.7	31.0	32.1	37	-	6	-55.3	43.0	32.1	73	-	9	-60.7	52.0	32.1	88	-	11
P80318	T-complex protein 1 subunit gamma	Cct3	-60,0	38.0	60,5	52	-	16	-41,1	26,0	60,5	71	-	11	-60,4	40.0	60,5	73	-	17
Q9DBJ1	Phosphoglycerate mutase 1	Paam1	-20.8	27.0	28.7	18	-	6	-51.6	52.0	28.7	80	-	12	-57.3	51.0	28.7	96	9	13
P56395	Cytochrome b5	Cyb5a	-16,6	34,0	15,2	30	-	4	-32,3	48,0	15,2	73	-	8	-27,8	42,0	15,2	88	-	7
P17918	Proliferating cell nuclear antigen	Pcna	-31,2	38.0	28,7	43	-	7	-45,3	46.0	28,7	82	-	8	-45,2	53.0	28,7	64	-	8
Q9WTM5	RuvB-like 2	Ruvbl2	-57.4	31.0	51.0	49	-	11	-60.0	35.0	51.0	73	-	13	-68.1	42.0	51.0	67	-	16
Q62318-1	Isoform 1 of Transcription intermediary factor 1-beta	Trim28	-42,6	15.0	88,7	43	-	8	-56,0	20,0	88,7	87	-	11	-52,9	17.0	88,7	59	-	9
Q3UAV7	Isocitrate dehydrogenase [NADP]	ldh1	-32,6	20.0	46.6	24	-	7	-64.4	39.0	46.6	83	-	14	-57,8	35.0	46,6	80	-	12
Q9D8N0	Elongation factor 1-gamma	Eef1a	-39.8	21.0	49.9	37	-	10	-38.1	18.0	49.9	96	-	9	-38.7	21.0	49.9	53	-	8
Q9D1A2	Cytosolic non-specific dipeptidase	Cndp2	-31.6	24.0	52.6	21	-	9	-57,1	36.0	52.6	88	-	14	-63.0	39.0	52,6	77	-	14
P50247	Adenosylhomocysteinase	Ahcy	-43,1	26,0	47,6	55	-	10	-43,8	22,0	47,6	68	-	9	-53,8	28,0	47,6	61	10	11
P0CG49	Polyubiquitin-B	Ubb	-11,0	11,0	34,3	50	-	3	-23,8	18,0	34,3	77	3	6	-14,3	15,0	34,3	53	-	4
008553	Dihydropyrimidinase-related protein 2	Dpysl2	-32,9	22,0	62,1	24	8	9	-38,2	28,0	62,1	27	10	11	-72,8	41,0	62,1	71	16	18
E9PWE8	Uncharacterized protein	Dpysl3	-42,0	24,0	73,7	29	10	11	-19,4	12,0	73,7	11	5	6	-55,3	30,0	73,7	38	11	13
Q8BHN3-1	Isoform 1 of Neutral alpha-glucosidase AB	Ganab	-21,0	7,0	106,7	14	-	5	-45,5	15,0	106,7	65	-	11	-98,2	30,0	106,7	93	-	24
Q60864	Stress-induced-phosphoprotein 1	Stip1	-42,4	30,0	62,4	40	-	12	-55,7	32,0	62,4	68	-	16	-61,0	28,0	62,4	63	-	14
P23198	Chromobox protein homolog 3	Cbx3	-29,4	30,0	20,8	31	6	7	-32,0	29,0	20,8	43	4	6	-34,7	42,0	20,8	58	5	7
P83917	Chromobox protein homolog 1	Cbx1	-13,5	23,0	21,3	24	2	3	-18,3	24,0	21,3	20	3	4	-25,5	30,0	21,3	43	4	5
Q61686	Chromobox protein homolog 5	Cbx5	-5,9	14,0	22,1	3	-	2	-6,2	11,0	22,1	3	1	2	-4,8	11,0	22,1	4	1	2
Q91W90	Thioredoxin domain-containing protein 5	Txndc5	-35,7	22,0	46,3	24	-	7	-46,9	34,0	46,3	62	-	11	-60,4	36,0	46,3	76	-	11
P67778	Prohibitin	Phb	-40,6	38,0	29,7	36	-	9	-43,9	38,0	29,7	57	-	8	-45,2	38,0	29,7	69	-	8
Q8BTM8-1	Isoform 1 of Filamin-A	Fina	-31,5	4,0	280,8	14	-	7	-100,0	14,0	280,8	115	-	27	-43,4	7,0	280,8	29	-	13
P08249	Malate dehydrogenase, mitochondrial	Mdh2	-17,2	12,0	35,5	6	-	3	-69,1	53,0	35,5	86	-	13	-60,6	53,0	35,5	66	-	13
A2AGN7	Proteasome (Prosome, macropain) 26S subunit ATPase 3	Psmc3	-48,2	44,0	44,6	26	-	13	-44,8	44,0	44,6	37	-	12	-65,8	49,0	44,6	92	2	14
Q91WT7	3-alpha-hydroxysteroid dehydrogenase type 1	Akr1c14	-20,5	15,0	37,1	6	-	4	-23,4	15,0	37,1	36	4	5	-35,9	29,0	37,1	43	8	9
Q9CZ13	Cytochrome b-c1 complex subunit 1, mitochondrial	Uqcrc1	-42,1	33,0	52,6	46	-	10	-34,8	27,0	52,6	45	-	8	-46,3	33,0	52,6	63	-	11
P10126	Elongation factor 1-alpha 1	Eef1a1	-14,8	12,0	50,0	17	-	4	-41,3	28,0	50,0	86	-	10	-21,1	14,0	50,0	51	-	5
A2A875	Retinoblastoma binding protein 4	Rbbp4	-28,2	15,0	47,5	40	4	5	-26,9	22,0	47,5	38	5	6	-30,8	22,0	47,5	33	5	6
Q60973	Histone-binding protein RBBP7	Rbbp7	-16,8	11,0	47,7	39	3	4	-19,8	11,0	47,7	33	3	4	-22,3	18,0	47,7	27	4	5
O08709	Peroxiredoxin-6	Prdx6	-45,4	48,0	24,8	34	-	10	-57,3	61,0	24,8	64	-	12	-58,0	57,0	24,8	48	-	10
P24815	3 beta-hydroxysteroid dehydrogenase/Delta 54-isomerase type	Hsd3b1	-3,9	4,0	41,9	1	-	1	-40,6	24,0	41,9	60	-	9	-55,2	34,0	41,9	85		13
Q9CWU5-2	i Isoform 2 of Protein Filia	Khdc3	-58,5	39,0	37,7	78	2	11	-49,0	31,0	37,7	42	-	10	-33,6	27,0	37,7	20	-	8
P80317	T-complex protein 1 subunit zeta	Cct6a	-31,5	16,0	57,9	26	-	7	-34,4	23,0	57,9	68	-	9	-36,9	28,0	57,9	51	-	10
P10853	Histone H2B type 1-F/J/L	Hist1h2bf	-9,3	20,0	13,9	16	-	2	-13,5	28,0	13,9	58	2	3	-15,9	28,0	13,9	70	-	4
Q3TS85	Putative uncharacterized protein	Rdx	-50,5	20,0	68,4	55	6	10	-19,7	12,0	68,4	24	2	6	-30,4	13,0	68,4	27	4	7
P26040	Ezrin	Ezr	-33,0	15,0	69,3	26	4	8	-25,3	15,0	69,3	25	4	8	-27,0	10,0	69,3	22	3	6

Annexes: Taleau I

Annexes: Taleau I

					IS						RM	5					FA			
10	Nom de la Destáine	Nom du Còno	log(Eucluo)	% Protéine	Poid Moleculaire	6	Pep Specif	Pop Upig	log(E	% Protéine	Poid Moleculaire	6t	Pep Specif	Pon Unia	log(E	% Protéine	Poid Moleculaire	6	Pep Specif	f Bon Unio
E9P7E0	Nucleoside dinhosohate kinase	Nme2	-20.8	26.0	30.1	37	- Uniq	rep Uniq	-21.6	22.0	30.1	5pectres		rep Uniq	-21.6	26.0	30.1	40	pino	Pep Oniq 7
099PT1	Rho GDP-dissociation inhibitor 1	Arhadia	-22.1	30.0	23.3	29	-	5	-27.7	30.0	23.3	49	-	6	-29.8	42.0	23.3	58	-	7
091VD9	NADH-ubiguinone oxidoreductase 75 kDa subunit, mitochondrial	Ndufs1	-60.5	25.0	79.6	39	-	14	-35.6	16.0	79.6	20		9	-75.1	28.0	79.6	77	-	17
P60122	RuyB-like 1	Ruvbl1	-43 7	30.0	50.1	37	-	11	-44 2	30.0	50.1	66	-	10	-38.5	23.0	50 1	33	-	8
093092	Transaldolase	Taldo1	-13.5	9.0	37.3	15	-	3	-25.9	22.0	37.3	41		7	-44.2	35.0	37.3	79	-	12
Q8BG32	26S proteasome non-ATPase regulatory subunit 11	Psmd11	-33.9	26.0	47.3	30	-	9	-43.7	35.0	47.3	51	-	12	-50.9	37.0	47.3	54	-	12
P20108	Thioredoxin-dependent peroxide reductase, mitochondrial	Prdx3	-29,1	27,0	28,0	28	-	7	-30,0	22,0	28,0	52	-	6	-38,5	29,0	28,0	55	-	7
Q9Z2I8-1	Isoform 1 of Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial	SucIg2	-41,3	23,0	46,7	28	-	7	-47,4	31,0	46,7	56	-	11	-52,0	33,0	46,7	50	-	10
Q8VEK3	Heterogeneous nuclear ribonucleoprotein U	Hnrnpu	-28,8	9,0	87,8	32	-	6	-41,0	13,0	87,8	61	-	8	-34,1	15,0	87,8	39	-	7
P17751	Triosephosphate isomerase	Tpi1	-10,0	15,0	26,6	8	-	3	-36,3	31,0	26,6	40	-	7	-44,5	48,0	26,6	80	-	9
Q91VI7	Ribonuclease inhibitor	Rnh1	-30,8	21,0	49,7	25	-	8	-41,6	26,0	49,7	33	-	9	-78,9	47,0	49,7	69	-	17
P63028	Translationally-controlled tumor protein	Tpt1	-19,7	30,0	19,4	20	-	4	-25,8	31,0	19,4	56	-	6	-22,3	31,0	19,4	51	-	5
Q9Z2U1	Proteasome subunit alpha type-5	Psma5	-21,9	34,0	26,3	26	-	6	-35,6	52,0	26,3	46	-	9	-34,9	43,0	26,3	54	-	8
Q61937	Nucleophosmin	Npm1	-20,2	19,0	32,5	17	-	3	-41,7	32,0	32,5	75	-	6	-33,8	23,0	32,5	34	-	5
Q61753	D-3-phosphoglycerate dehydrogenase	Phgdh	-29,7	16,0	56,5	37	-	8	-42,0	23,0	56,5	62	-	10	-36,7	24,0	56,5	26	-	9
P40142	Transketolase	Tkt	-25,6	15,0	67,5	16	-	6	-56,4	25,0	67,5	75	-	12	-41,9	21,0	67,5	32	-	10
Q8BL97-1	Isoform 1 of Serine/arginine-rich splicing factor 7	Srsf7	-15,0	12,0	30,7	21	2	3	-22,3	18,0	30,7	25	4	5	-24,9	18,0	30,7	29	4	5
P84104-1	Isoform Long of Serine/arginine-rich splicing factor 3	Srsf3	-13,8	24,0	19,2	19	3	4	-16,8	28,0	19,2	34	3	4	-17,2	28,0	19,2	19	4	5
Q61553	Fascin	Fscn1	-26,9	17,0	54,4	20	-	7	-47,6	25,0	54,4	53	-	11	-43,6	25,0	54,4	49	-	11
P19324	Serpin H1	Serpinh1	-3,0	4,0	46,5	1	-	1	-51,8	29,0	46,5	80	-	11	-30,7	18,0	46,5	39	-	8
Q8CAQ8-1	Isoform 1 of Mitochondrial inner membrane protein	lmmt	-42,2	17,0	83,7	21	-	11	-37,1	17,0	83,7	28	-	10	-78,0	32,0	83,7	70	-	19
Q61598-1	Isoform 1 of Rab GDP dissociation inhibitor beta	Gdi2	-18,8	17,0	50,4	16	-	6	-27,6	28,0	50,4	32	-	9	-60,6	42,0	50,4	60	11	15
Q64727	Vinculin	Vcl	-31,1	10,0	116,5	14	-	9	-25,6	12,0	116,5	23	-	9	-96,1	29,0	116,5	81	-	25
Q9QUM9	Proteasome subunit alpha type-6	Psma6	-34,4	33,0	27,3	37	-	7	-27,5	29,0	27,3	40	-	6	-22,4	26,0	27,3	40	-	6
Q8BFR5-1	Isoform 1 of Elongation factor Tu, mitochondrial	Tufm	-45,2	27,0	49,4	32	-	11	-45,9	31,0	49,4	43	-	11	-40,9	26,0	49,4	40	-	10
P10761	Zona pellucida sperm-binding protein 3	Zp3	-44,2	21,0	46,2	79	-	11	-26,4	14,0	46,2	27	-	6	-15,7	9,0	46,2	7	-	3
P62137	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit	t Ppp1ca	-19,2	24,0	37,4	15	5	7	-27,3	25,0	37,4	25	4	7	-33,2	36,0	37,4	18	3	9
P62141	Serine/threonine-protein phosphatase PP1-beta catalytic subunit	Ppp1cb	-14,6	12,0	37,1	12	1	3	-24,9	19,0	37,1	24	2	6	-28,4	27,0	37,1	15	2	8
P63087-1	gamma catalytic subunit	Ppp1cc	-15,5	15,0	36,9	10	2	4	-23,0	18,0	36,9	20	2	6	-33,2	35,0	36,9	17	2	9
P63328-1	Isoform 1 of Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform	Ррр3са	-6,7	4,0	58,5	3	-	2	-6,8	5,0	58,5	5	1	2	-5,8	2,0	58,5	1	-	1
Q9R1P4	Proteasome subunit alpha type-1	Psma1	-12,5	16,0	29,4	23	-	3	-20,8	20,0	29,4	46	-	6	-33,3	34,0	29,4	41	-	8
Q8VDD5	Myosin-9	Myh9	-18,5	1,0	226,0	10	-	3	-76,7	15,0	226,0	60	18	24	-15,1	1,0	226,0	11	-	3
Q61879	Myosin-10	Myh10	-8,2	1,0	228,7	3	-	3	-41,7	7,0	228,7	20	8	12	-10,3	1,0	228,7	9	-	3
P20239	Zona pellucida sperm-binding protein 2	Zp2	-40,6	19,0	80,1	69	-	12	-15,2	7,0	80,1	21	-	4	-15,0	10,0	80,1	19	-	5
P70168	Importin subunit beta-1	Kpnb1	-28,9	12,0	97,0	24	-	8	-33,1	12,0	97,0	57	-	8	-26,3	7,0	97,0	27	-	5
Q99L47	Hsc70-interacting protein	St13	-32,1	16,0	41,5	31	-	6	-30,9	16,0	41,5	35	-	6	-28,3	16,0	41,5	40	-	6
Q99KV1	DnaJ homolog subfamily B member 11	Dnajb11	-15,6	13,0	40,4	8	-	3	-24,1	21,0	40,4	37	-	6	-43,6	33,0	40,4	61	-	10
P15626	Glutathione S-transferase Mu 2	Gstm2	-28,0	41,0	25,6	25	6	8	-27,9	39,0	25,6	20	5	8	-31,6	44,0	25,6	22	5	9
P10649	Glutathione S-transferase Mu 1	Gstm1	-8,8	17,0	25,9	10	1	3	-25,2	39,0	25,9	19	5	8	-15,7	26,0	25,9	14	2	5
Q9DCX2	ATP synthase subunit d, mitochondrial	Atp5h	-21,5	29,0	18,7	18	-	5	-28,2	45,0	18,7	38	-	6	-39,1	62,0	18,7	48	-	10

Annexes:	Taleau	Ι

					IS						RMS	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
Q6PDM2-1	Isoform 1 of Serine/arginine-rich splicing factor 1	Srsf1	-21,5	20,0	27,6	27	-	6	-23,9	30,0	27,6	33	-	7	-24,2	30,0	27,6	43	-	7
Q9JHU9	Inositol-3-phosphate synthase 1	lsyna1	-34,2	20,0	60,8	40	-	8	-31,5	19,0	60,8	37	-	7	-33,0	17,0	60,8	26	-	7
Q8BVQ9	Putative uncharacterized protein	Psmc2	-23,5	12,0	52,7	26	-	5	-40,1	30,0	52,7	53	-	11	-27,3	21,0	52,7	22	-	8
P30416	Peptidyl-prolyl cis-trans isomerase FKBP4	Fkbp4	-28,7	23,0	51,4	20	-	8	-29,5	29,0	51,4	29	-	10	-61,7	42,0	51,4	52	-	14
Q99KE1	NAD-dependent malic enzyme, mitochondrial	Me2	-26,9	14,0	65,7	15	-	7	-19,8	9,0	65,7	17	-	5	-73,6	34,0	65,7	68	-	15
Q05816	Fatty acid-binding protein, epidermal	Fabp5	-7,6	15,0	15,1	4	-	2	-5,2	15,0	15,1	16	-	2	-47,6	72,0	15,1	79	-	10
P50580	Proliferation-associated protein 2G4	Pa2g4	-32,3	26,0	43,6	21	-	8	-51,2	28,0	43,6	44	-	10	-44,5	28,0	43,6	33	-	9
Q9R1P1	Proteasome subunit beta type-3	Psmb3	-24,8	28,0	22,9	23	-	4	-25,4	21,0	22,9	38	-	4	-32,1	30,0	22,9	37	-	5
Q9DAW9	Calponin-3	Cnn3	-30,9	29,0	36,3	43	-	7	-28,5	29,0	36,3	38	-	7	-21,8	22,0	36,3	16	-	5
P62821	Ras-related protein Rab-1A	Rab1A	-2,7	5,0	22,6	1	-	1	-10,5	18,0	22,6	14	2	3	-21,6	32,0	22,6	27	3	5
Q9D1G1	Ras-related protein Rab-1B	Rab1b	-3,2	4,0	22,1	1	-	1	-5,7	10,0	22,1	7	1	2	-16,3	31,0	22,1	22	3	5
Q60715-1	Isoform 1 of Prolyl 4-hydroxylase subunit alpha-1	P4ha1	-4,6	2,0	60,8	1	-	1	-31,0	13,0	60,8	34	-	7	-58,1	23,0	60,8	60	1	11
Q02819	Nucleobindin-1	Nucb1	-13,5	8,0	53,3	8	-	3	-31,3	27,0	53,3	27	-	10	-53,3	36,0	53,3	59	-	13
Q3THE2	Myosin regulatory light chain 12B	Myl12b	-16,8	34,0	19,7	27	-	5	-24,2	39,0	19,7	33	-	6	-26,9	39,0	19,7	33	-	6
Q9CZ44-1	Isoform 1 of NSFL1 cofactor p47	Nsfl1c	-44,3	36,0	40,6	26	-	9	-45,8	36,0	40,6	35	-	9	-44,6	31,0	40,6	31	-	8
P47754	F-actin-capping protein subunit alpha-2	Capza2	-21,1	15,0	32,9	16	-	4	-18,4	13,0	32,9	23	3	4	-25,0	25,0	32,9	26	5	6
P47753	F-actin-capping protein subunit alpha-1	Capza1	-11,2	17,0	32,8	8	-	3	-12,1	20,0	32,8	11	3	4	-12,0	13,0	32,8	12	2	3
Q921F2	TAR DNA-binding protein 43	Tardbp	-19,5	9,0	44,4	20	-	3	-24,3	14,0	44,4	28	-	5	-33,8	20,0	44,4	42	-	8
Q9WVB3	Transducin-like enhancer protein 6	Tle6	-60,1	30,0	65,0	77	-	13	-14,0	8,0	65,0	11	-	4	-5,5	4,0	65,0	2	-	2
Q9Z1Q5	Chloride intracellular channel protein 1	Clic1	-18,2	17,0	26,9	20	-	3	-25,0	22,0	26,9	31	-	4	-28,8	35,0	26,9	38	-	6
Q8BH04	Phosphoenolpyruvate carboxykinase [GTP], mitochondrial	Pck2	-39,9	21,0	70,4	27	-	10	-31,2	14,0	70,4	29	-	7	-39,9	18,0	70,4	33	-	8
Q91XH5	Sepiapterin reductase	Spr	-18,3	22,0	27,8	8	-	4	-42,8	37,0	27,8	40	-	7	-70,3	56,0	27,8	40	-	11
P63158	High mobility group protein B1	Hmgb1	-30,7	27,0	24,8	22	-	6	-12,2	13,0	24,8	15	-	2	-47,0	39,0	24,8	51		10
Q9D6R2-1	Isoform 1 of Isocitrate dehydrogenase [NAD] subunit alpha,	ldh3a	-15,0	15,0	39,5	18	-	5	-21,1	22,0	39,5	24	-	5	-39,8	34,0	39,5	44	2	10
Q62167	ATP-dependent RNA helicase DDX3X	Ddx3x	-11,4	5,0	73,0	8	2	3	-29,1	13,0	73,0	30	6	8	-28,2	12,0	73,0	19	5	7
Q501J6-1	Isoform 1 of Probable ATP-dependent RNA helicase DDX17	Ddx17	-6,8	3,0	72,3	4	1	2	-25,8	13,0	72,3	21	3	8	-25,0	12,0	72,3	14	5	7
Q9CQ60	6-phosphogluconolactonase	Pgls	-32,5	34,0	27,2	15	-	6	-37,5	30,0	27,2	39	-	7	-47,8	49,0	27,2	32	-	9
070435	Proteasome subunit alpha type-3	Psma3	-18,7	19,0	28,3	18	-	4	-25,4	29,0	28,3	26	-	6	-30,8	29,0	28,3	41	-	6
P57780	Alpha-actinin-4	Actn4	-39,0	12,0	104,8	21	-	8	-48,6	17,0	104,8	48	7	12	-8,0	3,0	104,8	5	1	2
P97371	Proteasome activator complex subunit 1	Psme1	-29,1	35,0	28,6	20	-	8	-31,2	30,0	28,6	27	-	6	-49,5	59,0	28,6	38	-	12
P46638	Ras-related protein Rab-11B	Rab11b	-7,0	11,0	24,4	7	-	2	-20,3	26,0	24,4	29	-	5	-25,6	29,0	24,4	48	-	6
Q99KP3	Lambda-crystallin homolog	Cryl1	-33,5	32,0	35,1	37	-	7	-22,2	23,0	35,1	30	-	4	-24,8	25,0	35,1	16	-	5
P54227	Stathmin	Stmn1	-17,3	24,0	17,2	27	-	4	-16,8	24,0	17,2	35	-	4	-11,6	18,0	17,2	20	-	3
Q68FD5	Clathrin heavy chain 1	Cltc	-16,3	2,0	191,3	9	-	4	-52,1	11,0	191,3	58	-	13	-26,1	6,0	191,3	14	-	8
Q76MZ3	Serine/threonine-protein phosphatase 2A 65 kDa regulatory	Ppp2r1a	-29,1	15,0	65,2	11	-	6	-27,9	19,0	65,2	25	-	8	-44,4	24,0	65,2	45	-	10
P62827	GTP-binding nuclear protein Ran	Ran	-14,0	20,0	24,3	15	-	4	-30,9	33,0	24,3	36	-	7	-14,5	20,0	24,3	29	-	4
008749	Dihydrolipoyl dehydrogenase, mitochondrial	DId	-24,4	16,0	54,1	17	-	6	-25,2	16,0	54,1	28	-	6	-32,0	21,0	54,1	35	-	8
P29758	Ornithine aminotransferase, mitochondrial	Oat	-14,2	8,0	48,2	4	-	4	-29,3	15,0	48,2	18	-	6	-75,9	41,0	48,2	58	-	14
Q9D819	Inorganic pyrophosphatase	Ppa1	-25,7	18,0	32,6	9	-	5	-37,5	33.0	32,6	45	-	9	-36,5	36.0	32,6	26	-	8
Q8BMF4	Dihydrolipoyllysine-residue acetyltransferase component of	Dlat	-28,7	13,0	67,8	20	-	6	-29,4	10,0	67,8	19	-	5	-34,8	15,0	67,8	41	-	7

					IS						RMS	;					FA			
ID	Norr de la Doubline	Nam du Càna	la a(E usikus)	% Protéine	Poid Moleculaire		Pep Specif	Den Unin	log(E	% Protéine	Poid Moleculaire		Pep Specif	Den Unin	log(E	% Protéine	Poid Moleculaire		Pep Specif	Dan Unio
067WX6	Fukaryotic translation initiation factor 2 subunit 1	Fif2s1	-17.4	19.0	36.0	spectres	Uniq	rep Uniq	-24.1	24.0	36.0	Spectres 28	Uniq	Pep Uniq	value)	28.0	36.0	spectres	Uniq	Pep Uniq
O9D0F9	Phosphoglucomutase-1	Pam1	-24.2	11.0	61.4	12	-	5	-12.2	5.0	61.4	7	-	2	-64.7	35.0	61.4	60	-	14
Q78ZA7	Nucleosome assembly protein 1-like 4	Nap1/4	-14.7	14.0	42.6	4	-	3	-27.6	21.0	42.6	28	-	7	-34.6	26.0	42.6	21	7	8
Q9WVJ2	26S proteasome non-ATPase regulatory subunit 13	Psmd13	-18.1	18.0	42.7	15	-	5	-34.0	28.0	42.7	34	-	9	-37,2	28.0	42.7	30	-	9
070251	Elongation factor 1-beta	Eef1b	-15,1	12,0	24,6	18	-	2	-16,6	20,0	24,6	31	-	3	-17,3	12,0	24,6	30	-	2
P61205	ADP-ribosylation factor 3	Arf3	-13,8	19,0	20,5	18	-	3	-9,6	14,0	20,5	10	1	2	-22,2	33,0	20,5	39	2	4
Q8K2B3	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	Sdha	-25,1	15,0	72,4	12		7	-28,7	13,0	72,4	19	-	8	-57,1	27,0	72,4	46	-	13
Q80UL3	Galactokinase 1	Galk1	-11,8	9,0	42,2	9	-	3	-20,1	19,0	42,2	20	-	6	-34,8	24,0	42,2	48	-	9
P05064	Fructose-bisphosphate aldolase A	Aldoa	-13,2	12,0	39,2	8	-	3	-43,1	29,0	39,2	41	-	10	-29,4	30,0	39,2	28	-	9
P47757-1	Isoform 1 of F-actin-capping protein subunit beta	Capzb	-35,8	35,0	31,2	22	-	8	-23,5	21,0	31,2	20	-	5	-33,1	35,0	31,2	34	-	7
Q61166	Microtubule-associated protein RP/EB family member 1	Mapre1	-30,4	44,0	29,9	17	-	8	-33,7	44,0	29,9	28	-	8	-31,0	40,0	29,9	30	-	6
Q00612	Glucose-6-phosphate 1-dehydrogenase X	G6pdx	-27,7	17,0	59,1	22	-	7	-24,4	14,0	59,1	19	-	5	-41,4	24,0	59,1	33	-	10
Q8CGK3	Lon protease homolog, mitochondrial	Lonp1	-25,1	11,0	105,7	11	-	8	-31,6	13,0	105,7	16	-	9	-71,0	31,0	105,7	47	-	23
P61089	Ubiquitin-conjugating enzyme E2 N	Ube2n	-9,9	16,0	17,1	15	-	2	-13,2	29,0	17,1	29	-	3	-17,9	42,0	17,1	29	-	5
P54869	Hydroxymethylglutaryl-CoA synthase, mitochondrial	Hmgcs2	-28,7	15,0	56,7	37	-	7	-17,6	14,0	56,7	17	5	6	-15,5	15,0	56,7	13	5	6
P19096	Fatty acid synthase	Fasn	-17,5	2,0	272,0	4	-	4	-62,9	9,0	272,0	48	-	18	-41,0	5,0	272,0	20	-	11
Q99L13	3-hydroxyisobutyrate dehydrogenase, mitochondrial	Hibadh	-34,3	22,0	35,3	19	-	5	-35,2	27,0	35,3	24	-	6	-46,1	32,0	35,3	28	-	7
Q99LX0	Protein DJ-1 NADH dehvdrogenase (ubiquinone) iron-sulfur protein 3.	Park7	-13,1	35,0	19,9	12	-	4	-17,0	43,0	19,9	19	-	5	-22,0	43,0	19,9	40	-	5
Q9DCT2	mitochondrial	Ndufs3	-23,9	18,0	30,0	23	-	4	-18,9	14,0	30,0	24	-	3	-26,1	28,0	30,0	24	-	6
Q3TG52	Putative uncharacterized protein	Aldh9a1	-39,3	21,0	55,7	19	-	9	-26,4	23,0	55,7	20	-	9	-37,6	23,0	55,7	31	-	9
P19536	Cytochrome c oxidase subunit 5B, mitochondrial	Cox5b	-14,2	37,0	13,7	13	-	4	-16,6	37,0	13,7	25	-	4	-21,9	37,0	13,7	31	-	5
P99026	Proteasome subunit beta type-4 Isoform PI-VDAC1 of Voltage-dependent anion-selective channel	Psmb4	-1/,1	17,0	29,0	11	-	3	-20,6	25,0	29,0	27	-	4	-22,8	25,0	29,0	30	-	4
Q60932-1	protein 1	Vdac1	-8,1	11,0	32,2	3	2	3	-21,4	29,0	32,2	28	5	6	-23,7	22,0	32,2	1/	5	6
Q60931	Voltage-dependent anion-selective channel protein 3	Vdac3	-9,5	19,0	30,7	4	3	4	-15,5	23,0	30,7	25	5	6	-7,9	14,0	30,7	6	2	3
Q9JIF0-1	Isoform 1 of Protein arginine N-methyltransferase 1	Prmti	-36,6	23,0	42,3	22	-	8	-21,1	17,0	42,3	9	-	5	-40,3	31,0	42,3	36	-	10
Q308X1	Putative uncharacterized protein	Elf3f	-28,9	21,0	37,9	19	-	6	-27,4	25,0	37,9	26	-	/	-31,0	25,0	37,9	22	-	/
080145	Voltage-dependent anion-selective channel protein 2	Vaacz	-12,5	14,0	31,0	12	-	5	-18,1	18,0	31,6	20	-	5	-36,4	28,0	31,0	22	-	12
001752		Cohas	-10,0	10,0	25.0	13		5	-27,9	19,0	25.0	21		10	-40,5	23,0	25.0	32	-	12
Q91255	265 protease regulatory subunit 68	Brmod	-19,0	13.0	35,2	12	-	0	-25,1	21,0	35,2	27	-	7	-31,5	29,0	35,2	21	-	0
0900019	Bifunctional nurine biosynthesis protein PLIRH	Atic	-37.2	23.0	47,2 64.1	22		4	-25,5	17.0	47,2 64.1	31		7	-37,4	15.0	47,2 64.1	12		5
P63242	Eukaryotic translation initiation factor 54-1	Fif5a	-23.1	46.0	16.7	13		6	-27.3	44.0	16.7	19	-	6	-33.2	44.0	16.7	33	-	8
0311010	Annevin A4 isoform CPA h	AnvaA	-49.2	36.0	35.8	26		10	-28.9	29.0	35.8	12		8	-33.7	26.0	35.8	26		6
OSTNHO	Putative uncharacterized protein	Tmpo	-15.0	14.0	45.9	13		4	-24.7	20.0	45.9	31	-	5	-25.4	20,0	45.9	20	-	5
Q67W76	40S ribosomal protein S12	Ros12	-23.5	52.0	14.4	17	-	6	-33.7	51.0	14.4	26	-	6	-27.6	58.0	14.4	20	-	6
O8VDM4	26S proteasome pon-ATPase regulatory subunit 2	Psmd2	-16.2	7.0	100.0	10		4	-31.2	10.0	100.0	28		8	-25.2	11.0	100.0	25	-	7
P62880	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2	Gnb2	-9.1	10.0	37.2	4	2	3	-9.0	10.0	37.2	10	2	3	-26.8	20.0	37.2	28	4	5
P62874	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1	Gnb1	-6.2	6.0	37.3	2	1	2	-4.9	7.0	37.3	6	1	2	-30,6	27.0	37.3	19	6	7
P24527	Leukotriene A-4 hydrolase	Lta4h	-27.3	12.0	68.9	15		6	-21.5	10.0	68.9	11	-	5	-50.4	25.0	68.9	34	-	13
007417	Short-chain specific acvI-CoA dehvdrogenase, mitochondrial	Acads	-20.2	21.0	44.8	19		6	-18.6	16.0	44.8	17	-	5	-21.7	19.0	44.8	24	-	6
				,-					23,0	- 3,0				-	,-	,•	,.			-

Annexes: Taleau I

					IS						RMS	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
Q6PB66	Leucine-rich PPR motif-containing protein, mitochondrial	Lrpprc	-49,2	13,0	156,4	25	-	15	-27,7	6,0	156,4	18	-	7	-38,1	9,0	156,4	17	-	10
088569-1	Isoform 1 of Heterogeneous nuclear ribonucleoproteins A2/B1	Hnrnpa2b1	-5,0	4,0	37,3	6	-	1	-30,1	28,0	37,3	41	-	6	-22,3	18,0	37,3	13	-	4
Q9DB05	Alpha-soluble NSF attachment protein	Napa	-18,6	27,0	33,1	14	-	6	-26,4	29,0	33,1	16	-	6	-46,1	53,0	33,1	29	-	11
Q8BFZ9	Erlin-2	Erlin2	-24,4	17,0	37,8	16	-	5	-23,0	17,0	37,8	18	-	5	-23,0	19,0	37,8	23	3	5
Q3THS6	S-adenosylmethionine synthase isoform type-2	Mat2a	-15,7	13,0	43,6	15	-	4	-19,6	16,0	43,6	27	-	5	-17,3	16,0	43,6	16	-	5
P24472	Glutathione S-transferase A4	Gsta4	-13,9	24,0	25,5	23	-	4	-12,5	25,0	25,5	11	-	4	-17,7	29,0	25,5	24	-	5
Q9D1Q6	Endoplasmic reticulum resident protein 44	Erp44	-17,8	17,0	46,7	8	-	5	-18,9	17,0	46,7	15	-	5	-34,6	30,0	46,7	35	-	8
P35564	Calnexin	Canx	-8,6	4,0	67,1	4	-	2	-20,9	13,0	67,1	29	-	6	-25,2	11,0	100,0	25	-	7
P10518	Delta-aminolevulinic acid dehydratase	Alad	-38,5	30,0	35,9	36	-	8	-15,7	19,0	35,9	12	-	4	-10,4	9,0	35,9	9	-	2
Q7TQI3	Ubiquitin thioesterase OTUB1	Otub1	-18,2	20,0	31,2	22	-	4	-17,9	20,0	31,2	16	-	4	-22,2	23,0	31,2	19	-	5
Q6IRU2	Tropomyosin alpha-4 chain	Tpm4	-21,1	19,0	28,4	10	-	5	-33,6	28,0	28,4	17	-	8	-50,6	42,0	28,4	30	-	12
Q62186	Translocon-associated protein subunit delta	Ssr4	-9,6	13,0	18,8	9	-	2	-12,6	24,0	18,8	27	-	3	-12,5	24,0	18,8	21	-	3
P24369	Peptidyl-prolyl cis-trans isomerase B	Ppib	-3,6	5,0	23,6	1	-	1	-25,0	35,0	23,6	51	-	7	-7,5	11,0	23,6	5	-	2
Q9CZD3	Glycyl-tRNA synthetase	Gars	-9,0	6,0	81,7	8	-	4	-28,0	14,0	81,7	26	-	8	-25,3	12,0	81,7	23	-	7
Q05186	Reticulocalbin-1	Rcn1	-20,0	13,0	38,0	11	-	5	-23,7	13,0	38,0	21	-	4	-27,5	18,0	38,0	24	-	6
D3Z7P3	Uncharacterized protein	Gls	-27,3	14,0	65,9	12	-	6	-37,3	17,0	65,9	28	2	8	-26,7	15,0	65,9	14	1	6
P09411	Phosphoglycerate kinase 1	Pgk1	-4,1	4,0	44,4	1	-	1	-25,2	19,0	44,4	20	-	6	-40,9	34,0	44,4	35	-	10
P42208	Septin-2	Sept2	-32,3	21,0	41,4	9	-	5	-31,3	18,0	41,4	25	-	4	-42,2	28,0	41,4	21	-	7
P84089	Enhancer of rudimentary homolog	Erh	-10,9	37,0	12,2	12	-	3	-7,3	10,0	12,2	19	-	1	-15,3	26,0	12,2	24	-	2
P99027	60S acidic ribosomal protein P2	Rplp2	-4,3	10,0	11,6	4	-	1	-28,8	69,0	11,6	45	-	5	-16,2	55,0	11,6	6	-	3
Q99JB2	Stomatin-like protein 2	Stom/2	-30,1	22,0	38,3	17	-	5	-29,4	22,0	38,3	14	-	5	-41,3	26,0	38,3	23	-	7
P53994	Ras-related protein Rab-2A	Rab2a	-10,9	17,0	23,5	6	-	3	-24,7	33,0	23,5	12	-	5	-37,6	48,0	23,5	36	-	8
Q9CWE6	Oocyte-expressed protein homolog	Ооер	-9,4	18,0	18,4	41	-	3	-6,6	12,0	18,4	9	-	2	-5,3	12,0	18,4	4	-	2
Q9D051	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	Pdhb	-7,5	10,0	38,8	5	-	3	-29,6	19,0	38,8	21	-	5	-28,8	25,0	38,8	28	-	7
088544	COP9 signalosome complex subunit 4	Cops4	-7,5	10,0	38,8	5	-	3	-29,6	19,0	38,8	21	-	5	-28,8	25,0	38,8	28	-	7
Q60692	Proteasome subunit beta type-6	Psmb6	-6,2	8,0	25,3	11	-	2	-10,7	12,0	25,3	18	-	3	-21,6	28,0	25,3	24	-	6
035459	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	Ech1	-29,1	20,0	36,0	13	-	6	-22,9	19,0	36,0	15	-	4	-34,6	23,0	36,0	25	-	6
Q9D2G2-1	Isoform 1 of Dihydrolipoyllysine-residue succinyltransferase	Dist	-14,1	8,0	48,9	15	-	4	-26,0	21,0	48,9	18	-	7	-25,3	18,0	48,9	19	-	6
008795-1	Isoform 1 of Glucosidase 2 subunit beta	Prkcsh	-13,7	6,0	58,7	13	-	4	-18,6	9,0	58,7	23	-	5	-14,3	6,0	58,7	15	-	4
P26039	Talin-1	Tin1	-40,3	5,0	269,5	10	-	9	-61,5	7,0	269,5	31	-	15	-30,5	3,0	269,5	10	-	7
Q64674	Spermidine synthase	Srm	-21,0	25,0	33,9	13	-	7	-22,0	20,0	33,9	22	-	6	-15,8	17,0	33,9	16	-	5
P35979	60S ribosomal protein L12	Rpl12	-6,0	9,0	17,7	2	-	1	-15,4	24,0	17,7	45	-	3	-10,4	18,0	17,7	4	-	2
Q9WVA3	Mitotic checkpoint protein BUB3	Bub3	-17,9	21,0	36,9	14	-	5	-27,1	27,0	36,9	21	-	7	-24,3	27,0	36,9	15	-	7
Q9JHI5	IsovaleryI-CoA dehydrogenase, mitochondrial	lvd	-30,1	21,0	46,2	11	-	7	-17,6	22,0	46,2	16	-	7	-30,5	25,0	46,2	23	-	8
P00493	Hypoxanthine-guanine phosphoribosyltransferase	Hprt1	-13,8	16,0	24,5	12	-	3	-17,2	21,0	24,5	20	-	4	-16,8	21,0	24,5	18	-	4
Q9CXY6	Interleukin enhancer-binding factor 2	llf2	-21,8	21,0	42,9	14	-	6	-26,1	31,0	42,9	21	-	9	-19,7	17,0	42,9	15	-	5
Q9CT10	Ran-binding protein 3	Ranbp3	-21,9	11,0	52,4	15	-	4	-26,1	16,0	52,4	17	-	6	-26,4	14,0	52,4	17	-	5
Q61205	Platelet-activating factor acetylhydrolase IB subunit gamma	Pafah1b3	-11,1	24,0	25,8	18	-	4	-14,7	25,0	25,8	14	-	5	-14,6	24,0	25,8	17	-	4
Q9CPT4	UPF0556 protein C19orf10 homolog	D17Wsu104e	-7,2	12,0	17,9	4	-	2	-12,0	21,0	17,9	19	-	3	-16,3	28,0	17,9	26	-	4
Q3TSB2	Putative uncharacterized protein	Zbed3	-18,2	24,0	25,5	37	-	4	-8,0	10,0	25,5	7	-	2	-8,1	16,0	25,5	4	-	3
					IS				RMS						FA					
----------	--	-------------	--------------	------------------------	------------------------------	----------	-----------------------	----------	-----------------	------------------------	------------------------------	----------	--------------------	----------	-----------------	------------------------	------------------------------	----------	--------------------	----------
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
Q9QXT0	Protein canopy homolog 2	Cnpy2	-6,2	8,0	20,7	2	-	1	-17,1	35,0	20,7	13	-	5	-19,7	35,0	20,7	33	-	5
035685	Nuclear migration protein nudC	Nudc	-17,4	18,0	38,2	20	-	6	-19,6	20,0	38,2	12	-	6	-22,7	24,0	38,2	16	-	7
P61957	Small ubiquitin-related modifier 2	Sumo2	-4,2	12,0	10,8	13	-	1	-3,9	12,0	10,8	20	-	1	-4,0	12,0	10,8	14	-	1
P51174	Long-chain specific acyl-CoA dehydrogenase, mitochondrial	Acadl	-21,9	14,0	47,8	14	-	5	-14,8	8,0	47,8	19	-	3	-23,8	15,0	47,8	14	-	5
Q9DBZ5-1	Isoform 1 of Eukaryotic translation initiation factor 3 subunit K	Eif3k	-11,4	24,0	25,0	9	-	4	-26,5	32,0	25,0	21	-	6	-25,8	26,0	25,0	17	-	5
Q62465	Synaptic vesicle membrane protein VAT-1 homolog	Vat1	-22,1	13,0	43,0	18	-	4	-15,2	9,0	43,0	10	-	3	-26,0	16,0	43,0	19	-	5
O88696	Putative ATP-dependent CIp protease proteolytic subunit, mitochondrial	Clpp	-17,9	21,0	29,7	11	-	4	-28,4	31,0	29,7	18	-	6	-35,2	32,0	29,7	18	-	7
Q9EPK6	Nucleotide exchange factor SIL1	Sil1	-33,2	23,0	52,3	29	-	9	-14,1	11,0	52,3	12	-	4	-33,2	23,0	52,3	29	-	9
055022	Membrane-associated progesterone receptor component 1	Pgrmc1	-14,8	21,0	21,6	9	-	4	-25,7	23,0	21,6	24	-	5	-26,2	23,0	21,6	14	-	4
008810	116 kDa U5 small nuclear ribonucleoprotein component	Eftud2	-10,2	5,0	109,2	5	-	4	-30,6	9,0	109,2	24	-	7	-27,8	8,0	109,2	18	-	6
P48678-1	Isoform A of Prelamin-A/C	Lmna	-11,1	5,0	74,1	3	-	3	-35,5	19,0	74,1	22	-	11	-31,4	15,0	74,1	21	-	9
Q9DB15	39S ribosomal protein L12, mitochondrial	Mrpl12	-15,3	24,0	21,6	11	-	4	-18,1	24,0	21,6	19	-	4	-15,1	24,0	21,6	16	-	4
P97855	Ras GTPase-activating protein-binding protein 1	G3bp1	-16,5	9,0	51,7	11	2	4	-19,0	9,0	51,7	21	-	4	-19,4	9,0	51,7	13	-	4
Q60865	Caprin-1	Caprin1	-9,9	4,0	78,0	9	-	3	-13,3	4,0	78,0	17	-	3	-18,7	6,0	78,0	19	-	4
P34022	Ran-specific GTPase-activating protein	Ranbp1	-9,8	16,0	23,5	10	-	3	-8,2	10,0	23,5	16	-	2	-9,5	16,0	23,5	19	-	3
Q8BGC4	Zinc-binding alcohol dehydrogenase domain-containing protein 2	Zadh2	-16,5	14,0	40,4	15	-	4	-5,8	3,0	40,4	12	-	1	-14,9	14,0	40,4	18	-	4
P45376	Aldose reductase	Akr1b1	-5,1	4,0	35,6	2	-	1	-13,4	13,0	35,6	26	-	4	-19,3	17,0	35,6	17	-	5
P10639	Thioredoxin	Txn	-8,9	31,0	11,6	13	-	3	-9,4	29,0	11,6	15	-	3	-13,0	31,0	11,6	16	-	4
Q9R1P3	Proteasome subunit beta type-2	Psmb2	-11,3	15,0	22,8	6	-	2	-15,0	21,0	22,8	15	-	3	-17,9	30,0	22,8	23	-	4
Q6ZQ38	Cullin-associated NEDD8-dissociated protein 1	Cand1	-17,9	5,0	136,1	11	-	5	-28,3	9,0	136,1	31	-	9	-6,6	2,0	136,1	2	-	2
P97372	Proteasome activator complex subunit 2	Psme2	-15,3	17,0	27,0	10	-	3	-15,6	17,0	27,0	17	-	3	-16,0	17,0	27,0	17	-	3
Q920A5	Retinoid-inducible serine carboxypeptidase	Scpep1	-5,0	3,0	50,8	1	-	1	-13,0	5,0	50,8	21	-	2	-14,1	9,0	50,8	21	-	3
Q9DAR7	Scavenger mRNA-decapping enzyme DcpS	Dcps	-9,9	8,0	38,9	13	-	2	-8,9	8,0	38,9	18	-	2	-14,1	9,0	50,8	21	-	3
Q9CZU6	Citrate synthase, mitochondrial	Cs	-2,7	2,0	51,6	1	-	1	-23,8	12,0	51,6	26	-	6	-16,8	13,0	51,6	16	-	5
Q8R081	Heterogeneous nuclear ribonucleoprotein L	Hnrnpl	-5,4	4,0	63,8	4	-	2	-21,2	14,0	63,8	23	-	6	-25,9	11,0	63,8	16	-	5
Q9WUK2-1	Isoform Long of Eukaryotic translation initiation factor 4H	Eif4h	-11,9	23,0	27,2	16	-	4	-11,8	23,0	27,2	22	-	4	-7,8	18,0	27,2	4	-	3
P12787	Cytochrome c oxidase subunit 5A, mitochondrial	Cox5a	-7,7	10,0	16,0	9	-	1	-15,5	17,0	16,0	15	-	3	-12,2	16,0	16,0	18	-	2
P34884	Macrophage migration inhibitory factor	Mif	-4,1	9,0	12,4	4	-	1	-8,0	17,0	12,4	22	-	2	-7,1	17,0	12,4	16	-	2
Q91YW3	DnaJ homolog subfamily C member 3	Dnajc3	-4,7	4,0	57,3	4	-	2	-9,9	11,0	57,3	12	-	5	-24,5	21,0	57,3	25	-	7
P46664	Adenylosuccinate synthetase isozyme 2	Adss	-10,7	11,0	49,9	19	-	4	-8,3	7,0	49,9	7	-	3	-19,3	15,0	49,9	15	-	5
035295	Transcriptional activator protein Pur-beta	Purb	-13,9	12,0	33,8	6	-	2	-21,1	21,0	33,8	10	-	4	-29,4	24,0	33,8	25	-	5
P62192	26S protease regulatory subunit 4	Psmc1	-10,9	11,0	49,1	11	-	4	-23,3	14,0	49,1	13	4	5	-16,4	13,0	49,1	10	4	5
P56399	Ubiquitin carboxyl-terminal hydrolase 5	Usp5	-3,0	1,0	95,7	2	-	1	-20,9	11,0	95,7	15	-	7	-18,2	7,0	95,7	24	-	5
P62715	Serine/threonine-protein phosphatase 2A catalytic subunit beta	Ppp2cb	-6,9	8,0	35,5	8	-	2	-13,3	13,0	35,5	13	-	3	-28,5	22,0	35,5	20	-	5
Q9JMA1	Ubiquitin carboxyl-terminal hydrolase 14	Usp14	-14,8	12,0	55,9	11	-	4	-17,9	11,0	55,9	14	-	4	-16,4	11,0	55,9	16	-	4
Q9QZM0	Ubiquilin-2	UbqIn2	-12,7	4,0	67,2	5	-	2	-9,1	2,0	67,2	12	-	1	-21,4	9,0	67,2	13	2	4
Q8R317-1	Isoform 1 of Ubiquilin-1	Ubqin1	-4,8	7,0	61,8	3	-	2	-8,8	9,0	61,8	5	-	3	-15,6	7,0	61,8	6	2	3
Q6P1F6	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	Ppp2r2a	-8,0	4,0	51,6	7	-	2	-14,4	12,0	51,6	13	-	4	-28,8	18,0	51,6	20	-	7
Q3UJU1	Methylmalonyl-Coenzyme A mutase	Mut	-34,4	15,0	82,7	15	-	9	-11,8	6,0	82,7	10	-	4	-38,2	18,0	82,7	15	-	10
Q9JHW2	Omega-amidase NIT2	Nit2	-25,9	28,0	30,4	14	-	5	-18,7	29,0	30,4	13	-	6	-27,6	39,0	30,4	13	-	8

					IS						RMS	;					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
Q9QYR9	Acyl-coenzyme A thioesterase 2, mitochondrial	Acot2	-24,0	15,0	49,5	27	2	6	-10,4	5,0	49,5	5	-	2	-10,3	7,0	49,5	5	-	3
055137	Acyl-coenzyme A thioesterase 1	Acot1	-23,8	16,0	46,0	26	2	6	-10,4	5,0	46,0	5	-	2	-10,3	8,0	46,0	5	-	3
Q91WD5	NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial	Ndufs2	-21,5	16,0	52,5	19	-	7	-10,8	9,0	52,5	9	-	4	-19,3	11,0	52,5	12	-	5
Q9QUR6	Prolyl endopeptidase	Prep	-29,1	14,0	80,6	10	-	7	-21,9	8,0	80,6	13	-	4	-36,5	12,0	80,6	17	-	7
Q9CQE8	UPF0568 protein C14orf166 homolog		-14,0	15,0	28,1	9	-	3	-21,0	26,0	28,1	21	-	5	-18,4	19,0	28,1	10	-	4
Q8VIJ6	Splicing factor, proline- and glutamine-rich	Sfpq	-2,9	2,0	75,3	1	-	1	-11,5	7,0	75,3	24	-	4	-11,4	4,0	75,3	15	-	3
Q99KP6-1	Isoform 1 of Pre-mRNA-processing factor 19	Prpf19	-14,1	13,0	55,1	7	-	5	-14,7	12,0	55,1	8	-	5	-42,7	25,0	55,1	24	-	9
Q9D0M3-1	Isoform 1 of Cytochrome c1, heme protein, mitochondrial	Cyc1	-15,5	24,0	35,2	6	-	5	-16,5	15,0	35,2	12	-	3	-26,1	29,0	35,2	21	-	6
089023	Tripeptidyl-peptidase 1	Tpp1	-8,4	6,0	61,2	3	-	2	-12,1	6,0	61,2	11	-	2	-16,8	8,0	61,2	25	-	3
Q9CWZ3-1	Isoform 1 of RNA-binding protein 8A	Rbm8a	-17,8	32,0	19,8	9	-	3	-19,6	32,0	19,8	15	-	3	-23,0	32,0	19,8	14	-	3
Q922B2	Aspartyl-tRNA synthetase, cytoplasmic	Dars	-28,4	21,0	57,0	13	-	9	-11,5	8,0	57,0	5	-	4	-48,5	30,0	57,0	19	-	11
P70670-1	Isoform 2 of Nascent polypeptide-associated complex subunit	Naca	-21,5	3,0	220,3	9	-	5	-30,8	3,0	220,3	22	-	5	-18,7	1,0	220,3	6	-	3
Q9CPV4-1	Isoform 1 of Glyoxalase domain-containing protein 4	Glod4	-27,4	37,0	33,2	10	-	8	-23,4	26,0	33,2	12	-	6	-25,0	35,0	33,2	15	-	7
Q5XJY5	Coatomer subunit delta	Arcn1	-14,4	10,0	57,1	11	-	5	-16,9	10,0	57,1	10	-	5	-15,7	10,0	57,1	16	-	5
P70288	Histone deacetylase 2	Hdac2	-8,7	8,0	55,2	14	1	3	-8,8	10,0	55,2	10	2	3	-7,9	8,0	55,2	5	1	3
009106	Histone deacetylase 1	Hdac1	-11,2	9,0	54,9	11	1	3	-7,5	6,0	54,9	8	1	2	-17,7	13,0	54,9	10	2	4
P26638	Seryl-tRNA synthetase, cytoplasmic	Sars	-22,7	14,0	58,3	9	-	5	-21,7	18,0	58,3	13	-	7	-30,5	22,0	58,3	15	-	8
Q9CS42	Ribose-phosphate pyrophosphokinase 2	Prps2	-16,6	19,0	34,7	5	-	4	-27,2	25,0	34,7	22	-	5	-22,1	19,0	34,7	10	-	4
Q9CR86	Calcium-regulated heat stable protein 1	Carhsp1	-6,5	10,0	16,0	6	-	1	-6,0	10,0	16,0	22	-	1	-5,1	10,0	16,0	9	-	1
055023	Inositol monophosphatase 1	Impa1	-19,6	20,0	30,3	10	-	5	-8,1	7,0	30,3	8	-	2	-17,1	19,0	30,3	16	1	5
Q9DBF1-1	Isoform 1 of Alpha-aminoadipic semialdehyde dehydrogenase	Aldh7a1	-12,9	5,0	58,7	10	-	2	-17,4	10,0	58,7	13	-	4	-19,3	7,0	58,7	13	-	3
Q9JKX6	ADP-sugar pyrophosphatase	Nudt5	-19,2	24,0	23,9	18	-	5	-10,6	18,0	23,9	9	-	3	-19,3	7,0	58,7	13	-	3
Q91V92	ATP-citrate synthase	Acly	-3,4	1,0	119,5	1	-	1	-35,4	9,0	119,5	30	-	8	-15,0	4,0	119,5	5	-	3
P54923	[Protein ADP-ribosylarginine] hydrolase	Adprh	-17,8	22,0	40,0	9	-	5	-19,2	25,0	40,0	15	-	5	-16,9	22,0	40,0	12	-	5
Q9DCD0	6-phosphogluconate dehydrogenase, decarboxylating	Pgd	-2,8	3,0	53,1	1	-	1	-33,4	29,0	53,1	27	-	10	-8,6	5,0	53,1	8	-	2
Q9JK81	UPF0160 protein MYG1, mitochondrial	Myg1	-16,3	19,0	42,6	10	-	6	-15,2	14,0	42,6	13	-	5	-16,6	17,0	42,6	12	-	5
070591	Prefoldin subunit 2	Pfdn2	-14,0	29,0	16,4	10	-	4	-11,8	22,0	16,4	14	-	3	-16,6	32,0	16,4	11	-	4
Q9CPU0	Lactoylglutathione lyase	Glo1	-12,3	19,0	20,7	11	-	3	-11,0	19,0	20,7	13	-	3	-14,5	34,0	20,7	11	-	4
P62814	V-type proton ATPase subunit B, brain isoform	Atp6v1b2	-13,8	8,0	56,4	6	-	3	-13,2	7,0	56,4	9	-	3	-40,9	23,0	56,4	20	-	9
P50516-1	Isoform 1 of V-type proton ATPase catalytic subunit A	Atp6v1a	-10,8	4,0	68,2	6	-	2	-25,8	11,0	68,2	13	-	5	-28,7	18,0	68,2	16	-	7
Q8BWY3	Eukaryotic peptide chain release factor subunit 1	Etf1	-23,5	16,0	48,9	8	-	6	-22,6	12,0	48,9	15	-	5	-17,2	10,0	48,9	12	-	4
P49312-1	Isoform Long of Heterogeneous nuclear ribonucleoprotein A1	Hnrnpa1	-5,3	4,0	34,1	1	-	1	-20,7	16,0	34,1	30	-	4	-6,4	4,0	34,1	4	-	1
Q99MN1	Lysyl-tRNA synthetase	Kars	-29,9	12,0	67,7	5	-	5	-19,9	7,0	67,7	12	-	3	-37,4	18,0	67,7	17	-	8
Q91ZA3	Propionyl-CoA carboxylase alpha chain, mitochondrial	Pcca	-22,1	11,0	79,8	8	-	6	-12,9	4,0	79,8	6	-	3	-35,5	14,0	79,8	20	-	8
Q4VAA2-1	Isoform 1 of Protein CDV3	Cdv3	-8,4	18,0	29,6	5	-	2	-11,1	18,0	29,6	20		2	-7,1	10,0	29,6	9	-	1
P50171-1	Isoform Short of Estradiol 17-beta-dehydrogenase 8	Hsd17b8	-16,9	20,0	26,5	11	-	4	-16,9	20,0	26,5	13	-	4	-24,0	35,0	26,5	10	-	6
Q9CQX2	Cytochrome b5 type B	Cyb5b	-9,6	25,0	16,2	6	-	3	-11,0	25,0	16,2	13	-	3	-14,9	34,0	16,2	15	-	4
Q99JY9	Actin-related protein 3	Actr3	-9,7	11,0	47,2	6	-	3	-8,9	8,0	47,2	11	-	2	-23,8	28,0	47,2	17	-	8
Q99LP6	GrpE protein homolog 1, mitochondrial	Grpel1	-3,9	5,0	24,2	3	-	1	-11,2	24,0	24,2	19		4	-6,1	9,0	24,2	12	-	2
Q8R326-1	Isoform 1 of Paraspeckle component 1	Pspc1	-14,1	6,0	58,6	10	-	3	-17,3	9,0	58,6	15	-	4	-16,8	12,0	58,6	9	-	5

					IS						RMS	;					FA			
10		Nora da Circa	Let (Free let)	% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif	Den Hain	log(E	% Protéine	Poid Moleculaire		Pep Specif	Den Hein
09/681	Nom de la Proteine	Nom au Gene	-13.6	15.0	(KDa)	Spectres 11	Uniq	rep Uniq	value)	22.0	(KDa)	Spectres	Uniq	Pep Uniq	value)	24.0	(KDa)	Spectres	Uniq	Pep Uniq
P70349	Histidine triad nucleotide-binding protein 1	Hint1	-9.3	11.0	13.7	8	-	1	-8.7	11.0	13 7	16		1	-8.3	11.0	13.7	9	-	1
Q9D554	Splicing factor 3A subunit 3	Sf3a3	-13.7	8.0	58.7	10	-	4	-7.2	4.0	58.7	7		2	-15.6	10.0	58.7	16	-	5
O8BRF7-1	Isoform 1 of Sec1 family domain-containing protein 1	Scfd1	-21.4	9.0	72.2	7	-	4	-23.0	15.0	72.2	15	-	6	-12.3	6.0	72.2	11	-	3
Q64433	10 kDa heat shock protein, mitochondrial	Hspe1	-8.3	13.0	10.9	4	-	1	-14.6	25.0	10.9	24	-	2	-8.0	13.0	10.9	5	-	1
A2ADY9	Protein DDI1 homolog 2	Ddi2	-10,5	7,0	44,5	5	-	2	-23,6	13,0	44,5	13	-	3	-24,0	26,0	44,5	15	-	6
Q8K4Z3	Apolipoprotein A-I-binding protein	Apoa1bp	-12,9	10,0	30,9	10	-	2	-15,1	10,0	30,9	11		2	-8,9	10,0	30,9	12	-	2
Q9CQM9	Glutaredoxin-3	GIrx3	-16,0	20,0	37,7	10	-	6	-11,9	13,0	37,7	11	-	4	-19,9	20,0	37,7	11	-	7
Q60605-1	Isoform Non-muscle of Myosin light polypeptide 6	Myl6	-3,6	8,0	16,8	1	-	1	-29,8	55,0	16,8	29		7	-4,4	8,0	16,8	2	-	1
P61327	Protein mago nashi homolog	Magoh	-3,0	6,0	17,1	4	-	1	-9,3	23,0	17,1	10	-	4	-12,4	23,0	17,1	18	-	4
Q8R5C5	Beta-centractin	Actr1b	-7,9	6,0	42,2	9	-	2	-12,0	18,0	42,2	13	-	4	-15,2	14,0	42,2	9	1	3
Q9CRD2	Tetratricopeptide repeat protein 35	Ttc35	-18,3	18,0	34,8	6	-	4	-21,7	22,0	34,8	12	-	5	-27,5	22,0	34,8	13	-	5
Q64GA5	Egg and early embryo abundant protein	Pla2g4c	-30,8	14,0	67,7	26	-	8	-5,8	4,0	67,7	2	-	2	-5,0	2,0	67,7	3	-	1
Q8BQ47	Protein canopy homolog 4	Cnpy4	-3,0	4,0	28,0	3	-	1	-2,9	4,0	28,0	5	-	1	-18,3	26,0	28,0	23	-	7
Q9D8B3	Charged multivesicular body protein 4b	Chmp4b	-8,4	11,0	24,8	12	-	2	-9,3	11,0	24,8	8	-	2	-7,8	11,0	24,8	10	-	2
Q9Z1Z2	Serine-threonine kinase receptor-associated protein	Strap	-19,6	12,0	38,3	5	-	3	-24,2	16,0	38,3	6	-	4	-28,0	24,0	38,3	19	-	6
Q9R062	Glycogenin-1	Gyg1	-14,0	8,0	37,3	5	-	2	-21,5	14,0	37,3	16	-	4	-18,6	11,0	37,3	9	-	3
Q61576	Peptidyl-prolyl cis-trans isomerase FKBP10	Fkbp10	-6,0	5,0	64,5	3	-	2	-12,4	10,0	64,5	9	-	4	-21,2	17,0	64,5	18	-	7
Q9CQU0	Thioredoxin domain-containing protein 12	Txndc12	-7,4	17,0	19,0	4	-	2	-18,7	25,0	19,0	12	-	3	-18,4	25,0	19,0	14	-	4
Q3U0V1	Far upstream element-binding protein 2	Khsrp	-18,2	10,0	76,7	7	-	5	-17,5	10,0	76,7	14	-	5	-12,3	12,0	76,7	8	-	5
P63085	Mitogen-activated protein kinase 1	Mapk1	-10,4	9,0	41,2	4	1	3	-13,2	11,0	41,2	6	2	3	-19,0	24,0	41,2	12	4	6
Q63844	Mitogen-activated protein kinase 3	Mapk3	-10,2	14,0	42,9	5	2	4	-6,1	6,0	42,9	2	1	2	-9,2	14,0	42,9	5	2	4
Q8BH95	Enoyl-CoA hydratase, mitochondrial	Echs1	-2,7	3,0	31,4	1	-	1	-16,9	19,0	31,4	10	-	4	-21,9	24,0	31,4	18	-	5
Q9DBG5	Perilipin-3	Plin3	-7,8	9,0	47,1	3	-	3	-17,2	16,0	47,1	10	-	5	-14,0	13,0	47,1	16	-	4
035593	26S proteasome non-ATPase regulatory subunit 14	Psmd14	-17,9	24,0	34,5	5	-	4	-23,9	29,0	34,5	16	-	5	-10,4	12,0	34,5	8	-	2
Q9CYZ2	Tumor protein D54	Tpd52l2	-15,9	21,0	23,9	6	-	3	-24,6	21,0	23,9	11	-	3	-17,1	13,0	23,9	11	-	2
Q9D880	Mitochondrial import inner membrane translocase subunit TIM50	Timm50	-9,8	9,0	39,7	10	-	3	-9,8	9,0	39,7	11	-	3	-10,3	10,0	39,7	7	-	3
Q9D1J3	SAP domain-containing ribonucleoprotein	Sarnp	-15,0	22,0	23,4	12	-	4	-15,9	22,0	23,4	13	-	4	-9,5	15,0	23,4	3	-	2
Q9CPY7-1	Isoform 1 of Cytosol aminopeptidase	Lap3	-5,6	5,0	56,0	3	-	2	-25,7	15,0	56,0	16	-	6	-15,6	13,0	56,0	9	-	5
Q99L45	Eukaryotic translation initiation factor 2 subunit 2	Eif2s2	-11,9	10,0	38,0	6	-	3	-10,0	7,0	38,0	13	-	2	-17,7	14,0	38,0	9	-	4
Q99PU5	Long-chain-fatty-acidCoA ligase ACSBG1	Acsbg1	-10,5	4,0	80,3	3	-	3	-14,7	5,0	80,3	5	-	3	-35,1	16,0	80,3	20	-	9
Q99LB6-2	Isoform 2 of Methionine adenosyltransferase 2 subunit beta	Mat2b	-15,7	15,0	36,1	7	-	3	-17,5	20,0	36,1	15	-	4	-13,2	15,0	36,1	6	-	3
Q3THK7	GMP synthase [glutamine-hydrolyzing]	Gmps	-16,5	8,0	76,6	15	-	5	-11,5	5,0	76,6	8	-	3	-6,7	3,0	76,6	4	-	2
Q61584-1	protein 1	Fxr1	-7,7	5,0	76,1	5	-	3	-14,0	9,0	76,1	13	-	4	-11,2	6,0	76,1	9	-	3
Q04447	Creatine kinase B-type	Ckb	-18,6	19,0	42,6	14	-	5	-10,7	10,0	42,6	7	-	3	-6,7	6,0	42,6	6	-	2
035215	D-dopachrome decarboxylase	Ddt	-5,1	21,0	13,0	4	-	2	-6,9	21,0	13,0	8	-	2	-19,2	42,0	13,0	15	-	4
Q9Z2N8	Actin-like protein 6A	Act/6a	-15,2	11,0	47,3	9	-	4	-13,4	9,0	47,3	8		3	-16,8	9,0	47,3	10		3
Q9JKV1	Proteasomal ubiquitin receptor ADRM1	Adrm1	-3,7	3,0	41,9	6	-	1	-3,9	3,0	41,9	15	-	1	-4,2	3,0	41,9	6	-	1
Q9CXW4	60S ribosomal protein L11	Rpl11	-3,5	7,0	20,2	2	-	1	-11,5	19,0	20,2	20		3	-6,9	12,0	20,2	5		2
P54728	UV excision repair protein RAD23 homolog B	Rad23b	-8,7	8,0	43,4	9	-	3	-8,3	5,0	43,4	8	-	2	-11,0	9,0	43,4	10	-	3

							RMS	5					FA							
				% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif	F
ID	Nom de la Protèine	Nom du Géne	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq
Q9R1T2-1	Isoform 1 of SUMO-activating enzyme subunit 1	Sael	-12,5	18,0	38,5	11	-	4	-11,6	13,0	38,5	5	-	3	-17,5	17,0	38,5	10	-	4
P62869	I ranscription elongation factor B polypeptide 2	ICED2	-9,4	24,0	13,1	/	-	3	-17,4	49,0	13,1	13	-	4	-13,3	57,0	13,1	17	-	5
Q31X04	Putative uncharacterized protein	Saria		46.0		-			-4,2	11,0	22,2	3	-	2	-11,0	23,0	22,2	1/	2	3
Q99LD8	N(G),N(G)-dimethylarginine dimethylaminohydrolase 2	Ddah2	-9,0	16,0	29,5	5	-	3	-4,/	4,0	29,5	2	-	1	-31,9	33,0	29,5	19	-	6
P59325	Eukaryotic translation initiation factor 5	Elf5	-5,3	9,0	48,8	3	-	3	-19,0	13,0	48,8	15	-	5	-17,3	17,0	48,8	8	-	6
P30412	Peptidyl-prolyl cis-trans isomerase C	Рріс	-8,1	11,0	22,7	5	-	2	-13,9	23,0	22,7	19	-	4	-4,1	6,0	22,7	2	-	1
070400	PDZ and LIM domain protein 1	Pdlim1	-3,3	4,0	35,7	1	-	1	-19,7	19,0	35,7	22	-	5	-6,7	8,0	35,7	3	-	2
O35639	Annexin A3	Anxa3	-8,1	9,0	36,3	4	-	2	-17,3	20,0	36,3	10	-	5	-13,0	17,0	36,3	12	-	4
088487	Cytoplasmic dynein 1 intermediate chain 2	Dync1i2	-17,9	5,0	68,3	5	-	2	-18,4	5,0	68,3	9	-	2	-18,6	5,0	68,3	11	-	2
Q3UM45	Protein phosphatase 1 regulatory subunit 7	Ppp1r7	-8,3	8,0	41,2	5	-	3	-7,7	8,0	41,2	5	-	3	-15,9	15,0	41,2	15	-	5
P25206	DNA replication licensing factor MCM3	Mcm3	-5,6	3,0	91,4	3	-	2	-16,5	6,0	91,4	18	-	4	-8,4	3,0	91,4	4	-	2
P58389	Serine/threonine-protein phosphatase 2A activator	Ppp2r4	-11,5	10,0	36,6	11	-	3	-11,2	14,0	36,6	11	-	4	-5,8	6,0	36,6	3	-	2
P47968	Ribose-5-phosphate isomerase	Rpia	-6,6	9,0	32,3	2	-	2	-14,5	21,0	32,3	7	-	4	-26,3	21,0	32,3	16	-	4
Q9CQ38	phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoribosylaminoimidazole. succinocarboxamide	Paics	-9,6	11,0	46,9	5	-	4	-23,7	14,0	46,9	17	-	7	-5,2	5,0	46,9	2	-	2
Q99KJ8	Dynactin subunit 2	Dctn2	-6,4	8,0	44,0	2	-	2	-10,5	11,0	44,0	5	-	4	-24,7	20,0	44,0	17	-	6
035864	COP9 signalosome complex subunit 5	Cops5	-13,3	20,0	37,4	5	-	4	-11,9	22,0	37,4	9	-	4	-17,7	13,0	37,4	10	-	3
Q9QZD9	Eukaryotic translation initiation factor 3 subunit I	Eif3i	-13,3	14,0	36,4	5	-	4	-13,4	14,0	36,4	13	-	4	-8,5	7,0	36,4	5	-	2
Q8K4Z5	Splicing factor 3A subunit 1	Sf3a1	-12,1	3,0	88,4	9	-	2	-11,2	3,0	88,4	7	-	2	-10,8	3,0	88,4	7	-	2
Q9Z2I9	Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial	Sucla2	-12,1	3,0	88,4	9	-	2	-11,2	3,0	88,4	7	-	2	-23,7	14,0	50,0	16	-	4
Q61081	Hsp90 co-chaperone Cdc37	Cdc37	-17,2	11,0	44,5	6	-	3	-16,8	16,0	44,5	5	-	4	-21,4	16,0	44,5	12	-	4
Q8CCS6-1	Isoform 1 of Polyadenylate-binding protein 2	Pabpn1	-13,3	8,0	32,2	7	-	2	-14,1	11,0	32,2	8	-	3	-12,8	13,0	32,2	8	-	3
Q5SUR0	Phosphoribosylformylglycinamidine synthase	Pfas	-11,8	2,0	144,4	3	-	3	-17,3	4,0	144,4	15	-	4	-14,2	2,0	144,4	5	-	3
Q9R0P3	S-formylglutathione hydrolase	Esd	-12,2	20,0	31,2	9	-	4	-7,1	11,0	31,2	5	-	2	-7,1	12,0	31,2	9	-	2
P83940	Transcription elongation factor B polypeptide 1	Tceb1	-9,0	28,0	12,4	2	-	2	-18,0	41,0	12,4	12	-	4	-17,7	41,0	12,4	9	-	3
P24668	Cation-dependent mannose-6-phosphate receptor	M6pr	-7,5	12,0	31,1	4	-	2	-7,4	12,0	31,1	5	-	2	-17,3	17,0	34,9	6	-	4
O89079	Coatomer subunit epsilon	Cope	-3,1	3,0	34,5	1	-	1	-18,0	22,0	34,5	8	-	4	-30,7	22,0	34,5	14	-	5
P62962	Profilin-1	Pfn1	-5,8	9,0	14,9	1	-	1	-21,1	43,0	14,9	17	-	4	-8,8	21,0	14,9	5	-	2
Q9D1M0	Protein SEC13 homolog	Sec13	-7,3	8,0	35,5	5	-	2	-10,6	12,0	35,5	6	-	3	-15,6	19,0	35,5	11	-	4
Q8K310	Matrin-3	Matr3	-12,4	6,0	94,5	6	-	4	-2,7	1,0	94,5	1	-	1	-27,1	11,0	94,5	15	-	7
088958	Glucosamine-6-phosphate isomerase 1	Gnpda1	-8,3	8,0	32,4	3	-	2	-10,4	14,0	32,4	9	-	3	-10,4	14,0	32,4	10	-	3
Q9Z1F9	SUMO-activating enzyme subunit 2	Uba2	-7,6	6,0	70,4	3	-	3	-9,3	6,0	70,4	4	-	3	-21,3	8,0	70,4	15	-	4
Q99JX4	Eukarvotic translation initiation factor 3 subunit M	Eif3m	-7.4	8.0	42.4	8	-	3	-12.5	8.0	42.4	9	-	2	-13.4	10.0	42.4	5	-	3
P62307	Small nuclear ribonucleoprotein F	Snrpf	-7.1	14.0	9.6	7	-	1	-8.3	14.0	9.6	6		1	-8.7	14.0	9.6	8	-	1
P62878	E3 ubiquitin-protein ligase RBX1	Rbx1	-8.9	17.0	12.2	5	-	2	-15.0	17.0	12.2	11	-	2	-11.1	17.0	12.2	5	-	2
091HR7	Insulin-degrading enzyme	Ide	-73	3.0	117.6	3	-	3	-15.2	4.0	117.6	12		4	-13.6	60	117.6	6	-	5
P62627	Dynein light chain roadblock-type 1	Dvn/rh1	-7.7	21.0	10.9	7	-	2	-9.4	38.0	10.9	11	-	3	-8.0	21.0	10.9	3	-	2
P28667	MARCKS-related protein	Marcksl1	-6.2	7.0	20.1	5		1	-6.3	7.0	20.1		-	1	-6.2	7.0	20,5	9		1
P62500-1	Isoform 1 of TSC22 domain family protein 1	Tsc22d1	-63	10	109.6	7	-	1	-4.4	1.0	109.6	6	-	1	-5.1	1.0	109.6	7	-	1
F90760	Uncharacterized protein	Numa1	-2.2	1,0	235.2	2	-	-	-73.6	3.0	235.2	12	_	- 7	-9.2	1,0	235.2	6	-	-
D371M3	Uncharacterized protein	Miec	-3,3	4.0	200,0	2	-	1	-23,0	9,0	233,3	10	-	,	-0,5	14.0	233,3		-	2

					IS						RMS	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia
Q3UHX2	28 kDa heat- and acid-stable phosphoprotein	Pdap1	-4,9	7,0	20,5	6	-	1	-12,8	15,0	20,5	8	-	2	-16,7	16,0	20,5	6	-	3
Q3U8F5	Putative uncharacterized protein	Psmd12	-6,7	5,0	52,7	3	-	2	-15,8	12,0	52,7	10	-	5	-16,4	9,0	52,7	7	-	4
P70697	Uroporphyrinogen decarboxylase	Urod	-7,7	7,0	40,6	6	-	2	-6,5	7,0	40,6	6		2	-14,7	13,0	40,6	8	-	4
Q3V122	Putative uncharacterized protein	Mcm7	-30,0	15,0	81,2	17	-	9	-3,5	2,0	81,2	1	-	1	-3,6	3,0	81,2	2	-	2
P61924	Coatomer subunit zeta-1	Copz1	-9,7	13,0	20,1	3	-	2	-4,9	7,0	20,1	9	-	1	-9,0	13,0	20,1	8	-	2
P31938	Dual specificity mitogen-activated protein kinase kinase 1	Map2k1	-5,4	6,0	43,4	3	1	2	-8,0	9,0	43,4	7	-	3	-4,9	5,0	43,4	9	-	2
Q8CG76	Aflatoxin B1 aldehyde reductase member 2	Akr7a2	-12,5	12,0	40,5	4	-	3	-13,0	10,0	40,5	10	-	3	-9,0	10,0	40,5	6	-	3
Q62393-1	Isoform 1 of Tumor protein D52	Tpd52	-7,8	10,0	24,2	8	-	2	-11,9	10,0	24,2	5	-	2	-6,5	6,0	24,2	6	-	1
E9Q6U4	Uncharacterized protein	Pfdn4	-8,6	20,0	14,6	3	-	2	-12,3	29,0	14,6	12	-	3	-8,6	18,0	14,6	4	-	2
Q99LC3	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit	Ndufa10	-12,8	8,0	40,5	6	-	3	-5,4	3,0	40,5	3	-	1	-10,3	6,0	40,5	10	-	2
Q5FWK3	10. mitochondrial Rho GTPase-activating protein 1	Arhgap1	-8,4	7,0	50,3	5	-	3	-11,6	11,0	50,3	9	-	4	-13,4	8,0	50,3	5	-	3
Q9Z0S1	3'(2'),5'-bisphosphate nucleotidase 1	Bpnt1	-5,0	7,0	33,1	2	-	2	-3,1	3,0	33,1	2	-	1	-29,0	34,0	33,1	15	-	7
Q922Y1	UBX domain-containing protein 1	Ubxn1	-4,0	4,0	33,5	5	-	1	-4,2	4,0	33,5	8	-	1	-7,6	14,0	33,5	6	-	3
Q8BK64	Activator of 90 kDa heat shock protein ATPase homolog 1	Ahsa1	-3,4	3,0	38,0	1	-	1	-15,8	23,0	38,0	14	-	5	-9,8	10,0	38,0	4	-	2
P01942	Hemoglobin subunit alpha	Hba	-7,7	16.0	15.0	7	-	2	-3,3	10.0	15.0	2	-	1	-5,7	10.0	15.0	10	-	1
Q9Z1D1	Eukaryotic translation initiation factor 3 subunit G	Eif3g	-12,2	12,0	35,5	7	-	3	-9,6	9,0	35,5	5	-	3	-11,4	9,0	35,5	7	-	3
Q3UEB3-2	Isoform 2 of Poly(U)-binding-splicing factor PUF60	Puf60	-9,6	6,0	58,4	5	-	3	-13,9	14,0	58,4	7	-	4	-12,1	9,0	58,4	7	-	4
Q8C2D2	Putative uncharacterized protein	Ufd1I	-8,7	8,0	34,5	6	-	2	-10,7	12,0	34,5	7	-	3	-9,9	12,0	34,5	6	-	3
Q3UJN1	Putative uncharacterized protein	Mcm2	-6,5	2,0	103,0	2	-	2	-20,8	7,0	103,0	12	-	5	-5,7	2,0	103,0	4	-	2
P28658	Ataxin-10	Atxn10	-13,5	9,0	53,6	5	-	3	-9,2	5,0	53,6	6	-	2	-12,0	9,0	53,6	7	-	3
Q99MN9	Propionyl-CoA carboxylase beta chain, mitochondrial	Pccb	-8,9	5,0	58,3	2	-	2	-5,3	2,0	58,3	1	-	1	-26,7	20,0	58,3	15	-	7
Q99MR6-1	Isoform A of Serrate RNA effector molecule homolog	Srrt	-5,0	1,0	100,3	2	-	1	-9,3	2,0	100,3	3	-	2	-14,0	5,0	100,3	13	-	4
P97823-1	Isoform 1 of Acyl-protein thioesterase 1	Lypla1	-5,0	5,0	24,6	2	-	1	-5,4	10,0	24,6	4	-	2	-16,7	21,0	24,6	12	-	4
Q9DBH5	Vesicular integral-membrane protein VIP36	Lman2	-2,7	3,0	40,3	1	-	1	-3,4	3,0	40,3	2	-	1	-18,0	21,0	40,3	15	-	6
Q62093	Serine/arginine-rich splicing factor 2	Srsf2	-8,6	14,0	25,4	3	-	2	-12,6	14,0	25,4	6		2	-4,1	10,0	25,4	9	-	2
008915	AH receptor-interacting protein	Aip	-3,0	4,0	37,5	3	-	1	-5,7	4,0	37,5	10	-	1	-4,5	4,0	37,5	5	-	1
P61290	Proteasome activator complex subunit 3	Psme3	-5,4	10,0	29,4	2	-	2	-9,9	14,0	29,4	7	-	3	-17,6	20,0	29,4	9	-	4
Q91WK2	Eukaryotic translation initiation factor 3 subunit H	Eif3h	-5,7	3,0	39,7	4	-	1	-7,6	8,0	39,7	10	-	2	-5,3	3,0	39,7	3	-	1
Q61035	Histidyl-tRNA synthetase, cytoplasmic	Hars	-7,5	4,0	57,3	5	-	2	-9,9	4,0	57,3	5	-	2	-15,1	7,0	57,3	7	-	3
Q9JK23	Proteasome assembly chaperone 1	Psmg1	-7,1	7,0	33,0	3	-	2	-8,0	7,0	33,0	7	-	2	-11,1	12,0	33,0	7	-	3
088342	WD repeat-containing protein 1	Wdr1	-10,4	4,0	66,3	3	-	2	-2,7	1,0	66,3	1	-	1	-24,3	17,0	66,3	13	-	7
Q9R0E1	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3	Plod3	-5,9	3,0	84,8	2	-	2	-10,2	4,0	84,8	4	-	3	-19,1	9,0	84,8	11	-	5
089086	Putative RNA-binding protein 3	Rbm3	-7,6	20,0	16,5	5	-	2	-8,8	20,0	16,5	11	-	2	-2,6	7,0	16,5	1	-	1
P70195	Proteasome subunit beta type-7	Psmb7	-2,6	3,0	29,8	3	-	1	-4,5	7,0	29,8	9	-	2	-2,8	3,0	29,8	4	-	1
Q921G7	Electron transfer flavoprotein-ubiquinone oxidoreductase,	Etfdh	-8,5	7,0	67,9	4	-	4	-8,8	5,0	67,9	3	-	3	-15,9	9,0	67,9	9	-	6
P62748	Hippocalcin-like protein 1	Hpcal1	-21,7	25,0	22,2	14	-	4	-6,8	6,0	22,2	1	-	1	-8,3	6,0	22,2	1	-	1
Q9CX34	Suppressor of G2 allele of SKP1 homolog	Sugt1	-22,7	21,0	38,0	13	-	5	-5,5	3,0	38,0	1	-	1	-9,3	7,0	38,0	2	-	2
D3YWT1	MCG11326, isoform CRA_b	Hnrnph3	-11,3	9,0	35,1	5	-	2	-10,4	9,0	35,1	3	-	2	-21,0	22,0	35,1	8	-	5
Q9CRA5-1	Isoform 1 of Golgi phosphoprotein 3	Golph3	-4,8	5,0	33,6	3	-	1	-6,1	5,0	33,6	5	-	1	-11,3	9,0	33,6	8	-	2
O564P4	Adenine phosphoribosyl transferase	Aprt	-87	21.0	19.6	4		3	-73	12.0	10.6	5		2	-10.8	21.0	19.6	7		3

			IS								RM	s					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine	Poid Moleculaire (KDa)	Spectros	Pep Specif	Pen I Inia	log(E	% Protéine	Poid Moleculaire (KDa)	Spectros	Pep Specif	Pen I Inia	log(E	% Protéine	Poid Moleculaire (KDa)	Spectrar	Pep Specif	Pen I Inig
092008-1	Isoform 1 of Influenza virus NS1A-binding protein homolog	lvns1abp	-3.1	2.0	71.4	1	-	1	-4.2	2.0	71.4	4	-	1	-14.5	10.0	71.4	11	-	5
090YJ0	Dnal homolog subfamily A member 2	Dnaia2	-6.3	5.0	45.6	4	-	2	-5.0	6.0	45.6	5	-	2	-8.7	10.0	45.6	7	-	3
P46061	Ran GTPase-activating protein 1	Ranaap1	-6.5	5.0	63.5	4	-	3	-6.4	4.0	63.5	2		2	-15.7	10.0	63.5	10	-	5
Q62261-1	Isoform 1 of Spectrin beta chain. brain 1	Sptbn1	-5.9	1.0	273.8	2	-	2	-16.7	2.0	273.8	9	-	4	-6.4	0.0	273.8	5	-	1
Q3U1J4	DNA damage-binding protein 1	Ddb1	-14.8	5.0	126.6	3	-	3	-10,7	5.0	126,6	4	-	4	-18,4	6.0	126.6	9	-	4
Q8BGD9	Eukaryotic translation initiation factor 4B	Eif4b	-3,3	2,0	68,7	2	-	1	-5,4	5,0	68,7	5	-	2	-13,4	8,0	68,7	9	-	4
Q9JJV2-1	Isoform 1 of Profilin-2	Pfn2	-4,1	9,0	14,9	2	-	1	-4,6	9,0	14,9	7	-	1	-9,9	19,0	14,9	6	-	2
035857	Mitochondrial import inner membrane translocase subunit TIM44	Timm44	-13,0	8,0	51,1	5	-	3	-11,1	8,0	51,1	5	-	3	-10,8	8,0	51,1	5	-	3
P52293	Importin subunit alpha-2	Kpna2	-8,7	5,0	57,8	4	-	2	-8,6	7,0	57,8	7	-	3	-14,4	11,0	57,8	4	-	4
Q9D6J6-1	Isotorm 1 of NADH dehydrogenase [ubiquinone] flavoprotein 2,	Ndufv2	-8,6	21,0	27,2	4	-	3	-5,8	16,0	27,2	3	-	2	-11,4	24,0	27,2	8	-	4
Q9ESP1	Stromal cell-derived factor 2-like protein 1	Sdf2l1	-6,2	14,0	23,6	3	-	2	-5,6	9,0	23,6	5	-	1	-9,2	14,0	23,6	7	-	2
Q9JMH6-1	Isoform 1 of Thioredoxin reductase 1, cytoplasmic	Txnrd1	-12,5	6,0	66,8	9	-	3	-4,8	4,0	66,8	3	-	2	-8,6	4,0	66,8	3	-	2
P35278	Ras-related protein Rab-5C	Rab5c	-3,1	5,0	23,3	1	-	1	-9,8	17,0	23,3	7	-	3	-10,4	17,0	23,3	7	-	3
Q9Z0X1	Apoptosis-inducing factor 1, mitochondrial	Aifm1	-5,6	5,0	66,6	2	-	2	-19,1	11,0	66,6	9	-	5	-10,5	6,0	66,6	4	-	3
P26516	26S proteasome non-ATPase regulatory subunit 7	Psmd7	-7,5	10,0	36,4	3	-	3	-7,4	8,0	36,4	4	-	2	-13,3	11,0	36,4	8	-	3
Q80UW8	DNA-directed RNA polymerases I, II, and III subunit RPABC1	Polr2e	-8,0	6,0	24,5	5	-	1	-8,2	6,0	24,5	6	-	1	-12,3	10,0	24,5	4	-	2
Q921M7	Protein FAM49B	Fam49b	-2,6	4,0	36,7	2	-	1	-8,4	8,0	36,7	6	-	2	-11,6	8,0	36,7	7	-	2
Q91108	SH3 domain-binding glutamic acid-rich-like protein	Sh3bgrl	-3,3	11,0	12,7	3	-	1	-14,5	44,0	12,7	8	-	4	-3,4	11,0	12,7	3	-	1
P43883	Perilipin-2	Plin2	-25,1	17,0	46,5	7	-	5	-6,6	3,0	46,5	3	-	1	-12,7	10,0	46,5	4	-	3
Q9WUK4	Replication factor C subunit 2	Rfc2	-18,3	15,0	38,6	8	-	4	-8,2	8,0	38,6	4	-	2	-5,6	3,0	38,6	2	-	1
Q91WN1	DnaJ homolog subfamily C member 9	Dnajc9	-6,6	8,0	30,0	4	-	2	-8,8	12,0	30,0	6	-	3	-9,3	13,0	30,0	4	-	3
Q9D358-1	Isoform 1 of Low molecular weight phosphotyrosine protein phosphatase	Acp1	-4,6	12,0	18,1	5	-	2	-3,8	16,0	18,1	4	-	2	-10,1	25,0	18,1	5	-	3
Q9CZS1	Aldehyde dehydrogenase X, mitochondrial	Aldh1b1	-24,7	14,0	57,4	11	-	5	-7,2	2,0	57,4	2	-	1	-3,3	2,0	57,4	1	-	1
Q91VM9-1	Isoform 1 of Inorganic pyrophosphatase 2, mitochondrial	Ppa2	-10,9	11,0	38,0	7	-	3	-6,3	7,0	38,0	3	-	2	-9,7	17,0	38,0	4	-	4
P61087	Ubiquitin-conjugating enzyme E2 K	Ube2k	-10,1	18,0	22,3	7	-	3	-3,7	5,0	22,3	1	-	1	-6,2	16,0	22,3	6	-	3
Q8BPG6	Sulfatase-modifying factor 2	Sumf2	-9,6	8,0	34,6	3	-	2	-15,8	17,0	34,6	7	-	4	-12,5	16,0	34,6	4	-	3
Q91V76	Ester hydrolase C11orf54 homolog	_	-2,5	5,0	34,9	1	-	1	-3,2	5,0	34,9	3	-	1	-12,7	19,0	34,9	10	-	4
054734	bolichyl-diphosphooligosaccharideprotein glycosyltransferase 48 kDa subunit	^B Ddost	-7,2	4,0	48,9	4	-	2	-12,9	7,0	48,9	8	-	3	-5,3	4,0	48,9	2	-	2
055135	Eukaryotic translation initiation factor 6	Eif6	-9,5	11,0	26,4	3	-	2	-10,0	13,0	26,4	3	-	2	-19,9	32,0	26,4	8	-	5
Q9QZE7	Translin-associated protein X	Tsnax	-4,5	6,0	32,8	3	-	2	-9,7	12,0	32,8	5	-	3	-7,2	6,0	32,8	5	-	2
Q9QYI3	DnaJ homolog subfamily C member 7	Dnajc7	-11,3	7,0	56,3	7	-	3	-6,7	5,0	56,3	4	-	2	-10,8	7,0	56,3	2	-	2
Q9Z2M7	Phosphomannomutase 2	Pmm2	-6,1	9,0	27,6	2	-	2	-14,3	18,0	27,6	8	-	4	-4,6	9,0	27,6	3	-	2
Q8JZQ9	Eukaryotic translation initiation factor 3 subunit B	Eif3b	-3,5	2,0	91,2	1	-	1	-13,7	6,0	91,2	7	-	3	-12,0	5,0	91,2	5	-	2
Q3THG9	Alanyl-tRNA editing protein Aarsd1	Aarsd1	-14,8	13,0	44,9	7	-	4	-7,1	8,0	44,9	3	-	2	-8,1	5,0	44,9	3	-	2
Q60597-1	Isoform 1 of 2-oxoglutarate dehydrogenase, mitochondrial	Ogdh	-15,5	7,0	116,2	4	3	4	-11,1	5,0	116,2	5	-	4	-4,1	0,0	116,2	1	-	1
Q9DBL1	snortypranched chain specific acyl-CoA dehydrogenase, mitochondrial	Acadsb	-5,0	3,0	47,8	2	-	1	-4,5	4,0	47,8	3	-	1	-21,3	13,0	47,8	8	-	4
P70303-1	Isoform 1 of CTP synthase 2	Ctps2	-10,6	6,0	65,4	5	-	3	-5,7	4,0	65,4	2	-	2	-11,7	4,0	65,4	4	-	2
Q8BJY1	26S proteasome non-ATPase regulatory subunit 5	Psmd5	-11,7	7,0	55,8	5	-	3	-6,6	6,0	55,8	2	-	2	-17,3	10,0	55,8	6	-	4
Q9D0T1	NHP2-like protein 1	Nhp2l1	-3,0	9,0	14,1	1	-	1	-15,7	27,0	14,1	9	-	3	-7,9	27,0	14,1	3	-	3
P27612	Phospholipase A-2-activating protein	Plaa	-11,4	6,0	87,1	5	-	3	-7,4	2,0	87,1	3	-	1	-8,2	4,0	87,1	4	-	2

					IS						RM	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
P62774	Myotrophin	Mtpn	-5,1	14,0	12,8	3	-	1	-5,6	14,0	12,8	4	-	1	-7,8	14,0	12,8	5	-	1
Q9CQ45	Neudesin	Nenf	-2,7	6,0	18,8	1	-	1	-4,9	16,0	18,8	6	-	2	-5,2	16,0	18,8	5	-	2
Q921I9	Exosome complex component RRP41	Exosc4	-6,6	9,0	26,2	3	-	2	-5,8	4,0	26,2	5	-	1	-9,8	14,0	26,2	4	-	3
Q8BTW3	Exosome complex component MTR3	Ехозсб	-5,7	5,0	28,3	6	-	1	-8,9	14,0	28,3	5	-	2	-4,9	5,0	28,3	1	-	1
Q9Z2U0	Proteasome subunit alpha type-7	Psma7	-4,8	4,0	27,8	1	-	1	-19,4	16,0	27,8	10	-	3	-7,3	6,0	27,8	1	-	1
P00405	Cytochrome c oxidase subunit 2	Mtco2	-5,0	4,0	25,9	4	-	1	-4,9	13,0	25,9	3	-	2	-2,7	4,0	25,9	5	-	1
Q04997	Inhibin alpha chain	Inha	-4,7	5,0	39,4	1	-	1	-8,1	10,0	39,4	10	-	2	-4,2	5,0	39,4	1	-	1
Q9CQF9	Prenylcysteine oxidase	Pcyox1	-11,9	5,0	56,4	3	-	2	-7,7	9,0	56,4	4	-	3	-15,1	5,0	56,4	5	-	2
Q9WU28	Prefoldin subunit 5	Pfdn5	-7,1	9,0	17,3	1	-	1	-13,3	19,0	17,3	10	-	2	-7,8	9,0	17,3	1	-	1
Q8CG72-1	Isoform 1 of Poly(ADP-ribose) glycohydrolase ARH3	Adprhl2	-7,5	3,0	39,3	3	-	1	-4,2	6,0	39,3	2	-	1	-20,7	16,0	39,3	6	-	4
Q8QZS1	3-hydroxyisobutyryl-CoA hydrolase, mitochondrial	Hibch	-7,7	6,0	42,9	3	-	2	-8,6	8,0	42,9	3	-	3	-12,8	11,0	42,9	5	-	4
Q8K1M6-1	Isoform 1 of Dynamin-1-like protein	Dnm1l	-21,3	10,0	82,5	7	-	6	-3,5	1,0	82,5	1	-	1	-11,2	4,0	82,5	3	-	3
P09055	Integrin beta-1	ltgb1	-4,9	2,0	88,1	2	-	2	-4,5	2,0	88,1	2	-	2	-9,3	5,0	88,1	7	-	3
Q8BWT1	3-ketoacyl-CoA thiolase, mitochondrial	Acaa2	-6,5	3,0	41,7	5	-	1	-9,4	6,0	41,7	4	-	2	-4,6	3,0	41,7	2	-	1
Q9DB29	Isoamyl acetate-hydrolyzing esterase 1 homolog	lah1	-8,8	6,0	27,9	2	-	1	-3,9	6,0	27,9	1	-	1	-12,5	12,0	27,9	8	-	2
Q8VH51-1	Isoform 1 of RNA-binding protein 39	Rbm39	-21,3	9,0	59,4	7	-	4	-6,4	6,0	59,4	2	-	2	-4,9	3,0	59,4	2	-	1
P16546-1	Isoform 1 of Spectrin alpha chain, brain	Sptan1	-13,1	2,0	284,2	5	-	5	-8,3	1,0	284,2	4	-	3	-5,0	0,0	284,2	2	-	2
Q8C2C6	Trk-fused	Tfg	-7,8	23,0	21,3	3	-	2	-13,6	18,0	37,4	4	-	3	-12,1	23,0	37,4	4	-	4
Q9DAK9	14 kDa phosphohistidine phosphatase	Phpt1	-3,2	9,0	13,9	1	-	1	-4,3	9,0	13,9	2	-	1	-8,9	22,0	13,9	8	-	3
035654	DNA polymerase delta subunit 2	Pold2	-13,5	9,0	51,2	3	-	3	-12,8	9,0	51,2	4	-	3	-14,7	6,0	51,2	4	-	2
Q3TWW8	Splicing factor, arginine/serine-rich 6	Srsf6	-6,4	7,0	38,9	3	-	2	-2,6	3,0	38,9	2	-	1	-7,3	7,0	38,9	5	-	3
Q2TPA8	Hydroxysteroid dehydrogenase-like protein 2	Hsdl2	-16,7	12,0	54,1	5	-	4	-6,9	4,0	54,1	2	-	2	-10,0	4,0	54,1	3	-	2
Q9ER69-1	Isoform 1 of Pre-mRNA-splicing regulator WTAP	Wtap	-8,3	7,0	44,1	2	-	2	-13,5	7,0	44,1	3	-	2	-11,2	7,0	44,1	5	-	2
Q8CIG8	Protein arginine N-methyltransferase 5	Prmt5	-12,9	5,0	72,5	6	-	3	-9,3	3,0	72,5	3	-	2	-3,7	2,0	72,5	1	-	1
Q921H9	Sel1 repeat-containing protein 1	Selrc1	-10,4	9,0	25,5	4	-	2	-9,1	9,0	25,5	3	-	2	-12,0	17,0	25,5	3	-	2
Q9CY64	Biliverdin reductase A	Blvra	-6,9	9,0	33,4	4	-	2	-5,6	4,0	33,4	3	-	1	-6,5	9,0	33,4	3	-	2
009172	Glutamatecysteine ligase regulatory subunit	Gclm	-3,5	4,0	30,4	3	-	1	-7,7	4,0	30,4	5	-	1	-6,6	4,0	30,4	2	-	1
Q8VDL4-1	Isoform 1 of ADP-dependent glucokinase	Adpgk	-5,0	5,0	53,8	2	-	2	-5,0	6,0	53,8	4	-	2	-7,9	6,0	53,8	4	-	2
Q61655	ATP-dependent RNA helicase DDX19A	Ddx19a	-4,1	2,0	53,8	2	-	1	-10,3	7,0	53,8	4	-	3	-9,1	7,0	53,8	4	-	3
Q8BTS4	Nuclear pore complex protein Nup54	Nup54	-3,2	2,0	55,6	2	-	1	-8,6	5,0	55,6	2	-	2	-10,6	8,0	55,6	6	-	3
P23591	GDP-L-fucose synthase	Tsta3	-10,5	8,0	35,8	3	-	2	-12,6	8,0	35,8	3	-	2	-12,8	8,0	35,8	4	-	2
Q8R1V4	Transmembrane emp24 domain-containing protein 4	Tmed4	-4,0	4,0	25,9	3	-	1	-3,8	4,0	25,9	2	-	1	-7,8	9,0	25,9	5	-	2
Q9D898	Actin-related protein 2/3 complex subunit 5-like protein	Arpc5l	-9,9	16,0	16,9	5	-	2	-7,0	7,0	16,9	4	-	1	-5,3	7,0	16,9	1	-	1
P70202	Latexin	Lxn	-3,0	5,0	25,4	2	-	1	-4,4	5,0	25,4	2	-	1	-10,2	13,0	25,4	6	-	2
Q8VBV7	COP9 signalosome complex subunit 8	Cops8	-3,3	6,0	23,2	2	-	1	-6,1	16,0	23,2	2	-	2	-12,2	22,0	23,2	6	-	3
P62082	40S ribosomal protein S7	Rps7	-2,6	6,0	22,0	2	-	1	-6,2	10,0	22,0	4	-	2	-5,4	6,0	22,0	4	-	1
Q9ERE7	LDLR chaperone MESD	Mesdc2	-2,9	4,0	25,1	1	-	1	-15,6	16,0	25,1	6	-	4	-4,6	9,0	25,1	3	-	2
Q91WG2-2	Isoform 3 of Rab GTPase-binding effector protein 2	Rabep2	-6,8	5,0	54,2	5	-	2	-5,9	3,0	54,2	2	-	1	-5,0	3,0	54,2	2	-	1
Q61792	LIM and SH3 domain protein 1	Lasp1	-9,9	15,0	29,9	5	-	3	-5,8	10,0	29,9	3	-	2	-3,5	5,0	29,9	1	-	1
Q5SUF2-1	Isoform 1 of Luc7-like protein 3	Luc7l3	-10,6	9,0	51,3	6	-	3	-6,5	4,0	51,3	1	-	1	-4,8	5,0	51,3	2	-	2

					IS				RMS						FA					
D	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine	Poid Moleculaire (KDa)	Snertres	Pep Specif Unia	Pen Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unio	log(E value)	% Protéine	Poid Moleculaire (KDa)	Spectres	Pep Specif	Pen Unia
Q3SXD3	HD domain-containing protein 2	Hddc2	-4,4	6,0	22,7	2	-	1	-6,3	15,0	22,7	5	-	2	-3,6	6,0	22,7	2	-	1
P49717	DNA replication licensing factor MCM4	Mcm4	-5,3	1,0	96,6	1	-	1	-7,8	3,0	96,6	7	-	2	-4,0	1,0	96,6	1	-	1
P70677	Caspase-3	Casp3	-4,4	4,0	31,4	1	-	1	-6,4	8,0	31,4	3	-	2	-8,7	20,0	31,4	5	-	4
Q9WVA2	Mitochondrial import inner membrane translocase subunit Tim8 A	Timm8a1	-6,2	22,0	11,0	2	-	2	-3,0	11,0	11,0	3	-	1	-8,7	22,0	11,0	4	-	2
P42669	Transcriptional activator protein Pur-alpha	Pura	-9,2	8,0	34,8	1	-	1	-12,7	16,0	34,8	6	-	3	-8,4	8,0	34,8	2	-	1
Q9EQ80	NIF3-like protein 1	Nif3/1	-5,7	3,0	41,6	2	-	1	-5,1	3,0	41,6	3	-	1	-7,7	3,0	41,6	4	-	1
Q80V26	Inositol monophosphatase 3	Impad1	-4,4	3,0	38,5	3	-	1	-4,2	3,0	38,5	4	-	1	-2,6	3,0	38,5	2	-	1
Q9D0I9	Arginyl-tRNA synthetase, cytoplasmic	Rars	-5,0	2,0	75,5	1	-	1	-13,5	7,0	75,5	7	-	4	-3,6	2,0	75,5	1	-	1
Q7TNC4-1	Isoform 1 of Putative RNA-binding protein Luc7-like 2	Luc7l2	-7,8	3,0	46,5	2	-	1	-6,4	3,0	46,5	3	-	1	-6,9	3,0	46,5	3	-	1
Q61550	Double-strand-break repair protein rad21 homolog	Rad21	-8,4	4,0	71,9	3	-	2	-4,9	2,0	71,9	1	-	1	-4,9	2,0	71,9	4	-	1
Q66JS6	Eukaryotic translation initiation factor 3 subunit J	Eif3j	-7,2	16,0	29,4	3	-	3	-6,3	8,0	29,4	3	-	2	-5,2	8,0	29,4	2	-	2
P62077	Mitochondrial import inner membrane translocase subunit Tim8 E	Timm8b	-4,9	15,0	9,2	1	-	1	-5,0	15,0	9,2	3	-	1	-5,7	28,0	9,2	4	-	2
Q8BH69	Selenide, water dikinase 1	Sephs1	-4,0	3,0	42,8	3	-	1	-3,0	3,0	42,8	2	-	1	-6,8	6,0	42,8	3	-	2
Q9ERF3	WD repeat-containing protein 61	Wdr61	-3,1	2,0	33,7	2	-	1	-3,4	2,0	33,7	2	-	1	-10,7	12,0	33,7	4	-	3
P60229	Eukaryotic translation initiation factor 3 subunit E	Eif3e	-13,2	12,0	52,1	4	-	4	-7,7	5,0	52,1	2	-	2	-4,4	6,0	52,1	2	-	2
Q7TNG5-1	Isoform 1 of Echinoderm microtubule-associated protein-like 2	Eml2	-5,2	2,0	70,6	2	-	1	-5,2	2,0	70,6	1	-	1	-7,2	5,0	70,6	5	-	2
Q11136	Xaa-Pro dipeptidase	Pepd	-3,7	2,0	54,9	1	-	1	-6,2	5,0	54,9	3	-	2	-8,6	5,0	54,9	4	-	2
Q6PDL0	Cytoplasmic dynein 1 light intermediate chain 2	Dync1li2	-8,0	5,0	54,1	3	-	2	-2,7	3,0	54,1	2	-	1	-5,6	5,0	54,1	3	-	2
Q8BH58	TIP41-like protein	Tiprl	-5,2	5,0	31,2	2	-	1	-5,3	5,0	31,2	2	-	1	-5,4	5,0	31,2	3	-	1
Q60739-1	Isoform 1 of BAG family molecular chaperone regulator 1	Bag1	-4,4	3,0	39,6	2	-	1	-4,3	3,0	39,6	2	-	1	-4,4	3,0	39,6	3	-	1
035127	Protein C10	Grcc10	-9,2	12,0	13,1	1	-	1	-18,5	24,0	13,1	3	-	2	-16,3	38,0	13,1	3	-	3
Q8BJU0-1	Isoform 1 of Small glutamine-rich tetratricopeptide repeat- containing protein alpha	Sgta	-4,3	3,0	34,2	1	-	1	-5,0	3,0	34,2	3	-	1	-6,0	7,0	34,2	3	-	2
Q9D3D9	ATP synthase subunit delta, mitochondrial	Atp5d	-3,0	8,0	17,5	1	-	1	-7,7	8,0	17,5	4	-	1	-8,1	8,0	17,5	2	-	1
B1AUN2	Eukaryotic translation initiation factor 2B, subunit 3	Eif2b3	-7,4	3,0	50,4	1	-	1	-15,8	9,0	50,4	4	-	3	-8,2	3,0	50,4	2	-	1
Q8R146-1	Isoform 1 of Acylamino-acid-releasing enzyme	Apeh	-3,3	1,0	81,4	1	-	1	-6,7	2,0	81,4	1	-	1	-8,8	3,0	81,4	5	-	2
Q9WV85	Nucleoside diphosphate kinase 3	Nme3	-5,4	10,0	19,0	1	-	1	-9,4	17,0	19,0	2	-	2	-13,2	22,0	19,0	4	-	3
D3Z3F4	Uncharacterized protein	Mtx1	-7,4	7,0	39,5	2	-	2	-3,2	3,0	39,5	1	-	1	-10,4	7,0	39,5	3	-	2
Q9DC61	Mitochondrial-processing peptidase subunit alpha	Pmpca	-3,9	2,0	58,1	1	-	1	-2,8	1,0	58,1	1	-	1	-8,4	8,0	58,1	4	-	3
Q60872	Eukaryotic translation initiation factor 1A	Eif1a	-3,8	8,0	16,4	1	-	1	-6,3	19,0	16,4	2	-	2	-3,3	8,0	16,4	3	-	1
Q9D8U8	Sorting nexin-5	Snx5	-8,1	3,0	46,7	2	-	1	-10,5	6,0	46,7	3	-	2	-8,0	3,0	46,7	1	-	1
Q8BP40-1	Isoform 1 of Lysophosphatidic acid phosphatase type 6	Асрб	-3,2	2,0	47,5	1	-	1	-4,6	2,0	47,5	2	-	1	-12,1	9,0	47,5	3	-	3
Q9D0B0	Serine/arginine-rich splicing factor 9	Srsf9	-3,2	2,0	47,5	1	-	1	-4,6	2,0	47,5	2	-	1	-12,1	9,0	47,5	3	-	3
P70372	ELAV-like protein 1	Elavl1	-4,0	3,0	36,0	2	-	1	-5,2	3,0	36,0	3	-	1	-3,8	3,0	36,0	1	-	1
Q8BGE6	Cysteine protease ATG4B	Atg4b	-4,5	3,0	44,3	1	-	1	-5,7	3,0	44,3	3	-	1	-6,0	3,0	44,3	1	-	1
Q6PAM1-1	Isoform 1 of Alpha-taxilin	Txina	-3,7	2,0	62,2	1	-	1	-4,0	4,0	62,2	3	-	1	-3,5	2,0	62,2	1	-	1
Q9DBP5	UMP-CMP kinase	Cmpk1	-5,0	10,0	22,1	2	-	1	-4,7	10,0	22,1	1	-	1	-5,1	15,0	22,1	2	-	2
Q9CPW4	Actin-related protein 2/3 complex subunit 5	Arpc5	-3,3	8,0	16,2	1	-	1	-3,3	8,0	16,2	1	-	1	-3,3	8,0	16,2	3	-	1
Q6P9R2	Serine/threonine-protein kinase OSR1	Oxsr1	-4,6	4,0	58,1	2	-	2	-3,7	2,0	58,1	2	-	1	-3,1	2,0	58,1	1	-	1
Q8VED9	Galectin-related protein A	Grpa	-3,5	6,0	18,9	1	-	1	-3,9	6,0	18,9	1	-	1	-5,0	6,0	18,9	2	-	1
Q9JI46	Diphosphoinositol polyphosphate phosphohydrolase 1	Nudt3	-3,0	5,0	18,9	1	-	1	-3,2	8,0	18,9	1	-	1	-4,6	14,0	18,9	2	-	2

			IS								RMS	;					FA			
					Poid		Рер				Poid						Poid			
ID	Nom de la Protéine	Nom du Gène	log(F value)	% Protéine N Couverte	Aoleculaire (KDa)	Spectres	Specif Unia	Pen Unia	log(E value)	% Protéine Couverte	Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine M Couverte	Aoleculaire (KDa)	Snectres	Pep Specif Unia	Pep Unia
Q99LT0	Protein dpy-30 homolog	Dpy30	-3,4	11,0	11,1	1	-	1	-3,5	11,0	11,1	1	-	1	-4,3	11,0	11,1	2	-	1
Q9D0D5	General transcription factor IIE subunit 1	Gtf2e1	-3,1	3,0	49,5	1	-	1	-2,9	3,0	49,5	2	-	1	-3,3	3,0	49,5	1	-	1
P63073	Eukaryotic translation initiation factor 4E	Eif4e	-7,3	6,0	25,0	1	-	1	-5,8	6,0	25,0	1	-	1	-8,0	6,0	25,0	2	-	1
Q9D287	Pre-mRNA-splicing factor SPF27	Bcas2	-3,1	5,0	26,0	1	-	1	-3,1	5,0	26,0	1	-	1	-5,5	5,0	26,0	2	-	1
Q9CQR6	Serine/threonine-protein phosphatase 6 catalytic subunit	Ррр6с	-3,1	3,0	35,1	1	-	1	-5,0	4,0	35,1	1	-	1	-4,2	8,0	35,1	2	-	2
P60898	DNA-directed RNA polymerase II subunit RPB9	Polr2i	-4,6	11,0	14,4	1	-	1	-3,0	11,0	14,4	1	-	1	-3,3	11,0	14,4	1	-	1
Q8R1Q8	Cytoplasmic dynein 1 light intermediate chain 1	Dync1li1	-2,7	2,0	56,5	1	-	1	-3,3	3,0	56,5	1	-	1	-4,3	3,0	56,5	1	-	1
Q8R4N0	Citrate lyase subunit beta-like protein, mitochondrial	Clybl	-6,2	3,0	37,4	1	-	1	-9,3	2,0	99,7	3	-	2	-9,6	7,0	37,4	4	-	2
Q9CX22	Putative uncharacterized protein	Cfl1	-12,2	28,0	18,4	12	1	4	-11,5	22,0	18,4	22	2	3	-11,9	22,0	18,4	13	2	3
Q3TW93	Putative uncharacterized protein	Hspa9	-114,9	39,0	73,3	176	20	21	-120,2	43,0	73,3	265	23	24	-125,5	43,0	73,3	243	1	23
P48774	Glutathione S-transferase Mu 5	Gstm5	-26,2	32,0	26,5	20	7	8							-13,0	26,0	25,6	12	1	5
Q80W21	Glutathione S-transferase Mu 7	Gstm7	-9,2	17,0	25,6	10	1	3							-7,2	14,0	26,5	8	2	3
Q9CQC9	GTP-binding protein SAR1b	Sar1b	-7,1	11,0	22,3	3	-	2							-11,3	17,0	22,3	13	2	3
A8DUK2	Beta-globin	Hbb-b1	-12,5	21,0	16,1	9	2	3							-2,7	6,0	16,1	2	-	1
Q9WU78-1	Isoform 1 of Programmed cell death 6-interacting protein	Pdcd6ip	-23,4	10,0	95,8	10	-	7							-17,1	7,0	95,8	6	-	5
Q07076	Annexin A7	Anxa7	-14,8	8,0	49,8	10	-	3							-13,0	8,0	49,8	5	-	3
Q8CHP8	Phosphoglycolate phosphatase	Pgp	-5,2	8,0	34,4	3	-	2							-12,1	19,0	34,4	9	-	5
P51859	Hepatoma-derived growth factor	Hdgf	-3,0	4,0	26,2	4	-	1							-7,1	19,0	26,2	7	-	3
Q8K3J1	NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial	Ndufs8	-6,3	14,0	23,9	4	-	3							-10,5	23,0	23,9	8	-	4
Q9D0M5	Dynein light chain 2, cytoplasmic	Dynll2	-8,5	36,0	10,3	6	1	2							-5,8	24,0	10,3	2	-	1
P63168	Dynein light chain 1, cytoplasmic	Dynll1	-8,1	36,0	10,3	4	1	2							-4,7	24,0	10,3	1	-	1
P26369	Splicing factor U2AF 65 kDa subunit	U2af2	-11,7	9,0	53,4	8	-	3							-4,0	3,0	53,4	3	-	1
P61226	Ras-related protein Rap-2b	Rap2b	-8,0	10,0	20,4	6	-	2							-7,1	12,0	20,4	4	-	2
Q5BL10	Kinesin family member 5B	Kif5b	-17,8	7,0	109,4	7	-	6							-5,4	2,0	109,4	2	-	2
P60766-2	Isoform 2 of Cell division control protein 42 homolog	Cdc42	-5,2	10,0	21,2	3	-	2							-8,1	19,0	21,2	5	-	3
Q8C0L6-1	Isoform 1 of Peroxisomal N(1)-acetyl-spermine/spermidine oxidase	Paox	-9,4	3,0	55,3	8	-	1							-5,5	3,0	55,3	1	-	1
Q91WU5	Arsenite methyltransferase	As3mt	-3,3	3,0	41,7	1	-	1							-15,9	18,0	41,7	7	-	5
P13020-1	Isoform 1 of Gelsolin	Gsn	-8,5	3,0	85,8	2	-	2							-13,1	5,0	85,8	6	-	3
Q9QXN5	Inositol oxygenase	Miox	-11,3	12,0	33,1	6	-	3							-3,1	4,0	33,1	2	-	1
P97760	DNA-directed RNA polymerase II subunit RPB3	Polr2c	-6,1	8,0	31,2	3	-	2							-2,8	3,0	31,2	1	-	1
P36993-1	Isoform Beta-1 of Protein phosphatase 1B	Ppm1b	-4,4	3,0	42,7	2	-	1							-5,1	4,0	42,7	5	-	2
Q61703	Inter-alpha-trypsin inhibitor heavy chain H2	ltih2	-7,1	1,0	105,7	5	-	1							-6,8	1,0	105,7	2	-	1
P08752	Guanine nucleotide-binding protein G(i) subunit alpha-2	Gnai2	-2,5	3,0	40,4	1	-	1							-5,7	7,0	40,4	4	1	2
Q9CQC6	Basic leucine zipper and W2 domain-containing protein 1	Bzw1	-4,7	2,0	47,9	4	-	1							-3,3	2,0	47,9	2	-	1
P51863	V-type proton ATPase subunit d 1	Atp6v0d1	-5,2	6,0	40,2	3	-	2							-6,2	6,0	40,2	3	-	2
Q62426	Cystatin-B	Cstb	-8,8	35,0	11,0	3	-	2							-2,8	11,0	11,0	1	-	1
P21279	Guanine nucleotide-binding protein G(q) subunit alpha	Gnaq	-2,7	4,0	42,0	1	-	1							-8,5	10,0	42,0	5	-	3
Q9JI75	Ribosyldihydronicotinamide dehydrogenase [quinone]	Nqo2	-11,9	22,0	26,2	4	-	3							-2,9	4,0	26,2	2	-	1
Q9D7X8	Gamma-glutamylcyclotransferase	Ggct	-7,1	12,0	21,1	4	-	2							-2,6	6,0	21,1	1	-	1
Q921F4-1	Isoform 1 of Heterogeneous nuclear ribonucleoprotein L-like	Hnrpll	-5,9	4,0	64,0	2	-	2							-4,4	2,0	64,0	3	-	1

			IS								RMS	;					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unig	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
Q9CSU0-1	Isotorm 1 of Regulation of nuclear pre-mRNA domain-containing	Rprd1b	-4,4	4,0	36,8	1		1							-7,1	13,0	36,8	3	-	3
Q9R0Q3	Transmembrane emp24 domain-containing protein 2	Tmed2	-2,7	5,0	22,6	1	-	1							-4,1	5,0	22,6	4	-	1
Q8C878-1	Isoform 1 of NEDD8-activating enzyme E1 catalytic subunit	Uba3	-5,3	3,0	51,6	2	-	1							-8,7	3,0	51,6	3	-	1
Q9D7S9	Charged multivesicular body protein 5	Chmp5	-4,8	9,0	24,5	1	-	1							-5,2	17,0	24,5	3	-	2
035326	Serine/arginine-rich splicing factor 5	Srsf5	-2,7	5,0	30,8	1	-	1							-7,9	10,0	30,8	4	-	2
Q9D142	Uridine diphosphate glucose pyrophosphatase	Nudt14	-5,1	6,0	24,3	1	-	1							-9,5	12,0	24,3	3	-	2
054941	SWI/SNF-related matrix-associated actin-dependent regulator	Smarce1	-4,4	4,0	46,5	2	-	2							-3,3	3,0	46,5	2	-	1
Q6PFR5	Transformer-2 protein homolog alpha	Tra2a	-2,9	4,0	32,2	2	-	1							-4,5	4,0	32,2	2	-	1
Q9JIX8-1	Isoform 1 of Apoptotic chromatin condensation inducer in the	Acin1	-4,3	0,0	150,5	2	-	1							-3,1	0,0	150,5	1	-	1
Q99NB8	Ubiquilin-4	Ubqin4	-3,5	2,0	63,4	1	-	1							-3,2	2,0	63,4	1	-	1
P59235	Nucleoporin Nup43	Nup43	-4,2	3,0	41,9	1	-	1							-5,6	3,0	41,9	2	-	1
P61963	DDB1- and CUL4-associated factor 7	Dcaf7	-3,9	4,0	38,8	1	-	1							-9,0	8,0	38,8	2	-	2
Q9CWS0	N(G),N(G)-dimethylarginine dimethylaminohydrolase 1	Ddah1	-3,5	4,0	31,3	1	-	1							-6,3	8,0	31,3	2	-	2
Q8BFQ8	Parkinson disease 7 domain-containing protein 1	Pddc1	-4,3	5,0	23,2	1	-	1							-3,2	5,0	23,2	1	-	1
Q6NVF9	Cleavage and polyadenylation specificity factor subunit 6	Cpsf6	-3,5	1,0	59,0	1	-	1							-6,6	2,0	59,0	1	-	1
O55060	Thiopurine S-methyltransferase	Tpmt	-3,8	8,0	16,4	1	-	1							-4,1	3,0	42,0	2	-	1
P62737	Actin, aortic smooth muscle	Acta2							-85,2	51,0	41,9	533	2	19	-81,0	50,0	41,9	524	1	19
P63268	Actin, gamma-enteric smooth muscle	Actg2							-73,6	48,0	41,8	522	1	17	-80,8	46,0	41,8	522	1	18
P70333	Heterogeneous nuclear ribonucleoprotein H2	Hnrnph2							-44,4	18,0	49,2	116	1	7	-52,1	24,0	49,2	140	2	8
Q9D154	Leukocyte elastase inhibitor A	Serpinb1a							-43,5	34,0	42,5	41	9	10	-50,9	36,0	42,5	63	-	11
Q9Z204-3	Isoform 3 of Heterogeneous nuclear ribonucleoproteins C1/C2	Hnrnpc							-38,3	34,0	32,2	114	1	9	-40,4	34,0	32,2	117	1	9
P58774-2	Isoform 2 of Tropomyosin beta chain	Tpm2							-20,5	22,0	32,9	25	3	8	-14,6	13,0	32,9	16	1	5
P80315	T-complex protein 1 subunit delta	Cct4							-33,5	19,0	57,9	22	-	7	-24,5	12,0	57,9	16	4	5
Q3UXL1	RIKEN cDNA 4921521F21, isoform CRA_b	Akr1cl							-28,5	39,0	36,8	48	8	9	-17,3	21,0	36,8	27	4	5
P22752	Histone H2A type 1	Hist1h2ab							-12,9	28,0	14,1	68	-	3	-9,3	22,0	14,1	65	-	2
P14211	Calreticulin	Calr							-64,1	39,0	47,9	104	-	18	-13,4	13,0	47,9	13	-	4
P51656	Estradiol 17-beta-dehydrogenase 1	Hsd17b1							-17,2	17,0	36,7	21	-	5	-44,5	28,0	36,7	76	-	8
Q91V41	Ras-related protein Rab-14	Rab14							-7,3	10,0	23,8	9	1	2	-23,0	39,0	23,8	21	6	7
P35279-1	Isoform 1 of Ras-related protein Rab-6A	Rab6a							-4,1	10,0	23,5	5	1	2	-15,2	27,0	23,5	22	4	5
P24549	Retinal dehydrogenase 1	Aldh1a1							-39,6	22,0	54,3	48	-	8	-49,6	24,0	54,3	46	-	9
Q9CZK9	Peptidyl-prolyl cis-trans isomerase	Ppia							-31,1	49,0	18,2	42	2	6	-24,4	41,0	18,2	16	1	5
Q7TPR4	Alpha-actinin-1	Actn1							-29,5	13,0	102,9	35	4	9	-10,9	6,0	102,9	8	3	4
P28656	Nucleosome assembly protein 1-like 1	Nap1/1							-18,7	16,0	45,2	20	-	4	-8,9	6,0	45,2	7	1	2
P61750	ADP-ribosylation factor 4	Arf4							-8,0	22,0	20,3	8	2	3	-17,8	39,0	20,3	29	3	5
P68040	Guanine nucleotide-binding protein subunit beta-2-like 1	Gnb2l1							-50,9	42,0	35,0	50	-	11	-28,3	16,0	35,0	23	-	5
Q8JZK9	Hydroxymethylglutaryl-CoA synthase, cytoplasmic	Hmgcs1							-5,5	4,0	57,4	2	1	2	-8,4	9,0	57,4	5	3	4
P45591	Cofilin-2	Cf12							-9,2	13,0	18,6	16	2	2	-8,1	13,0	18,6	5	2	2
Q91YQ5	subunit 1	Rpn1							-24,3	12,0	68,4	52	-	6	-10,1	7,0	68,4	8	-	3
035226-2	ISOTORM KPNIUB OF 265 proteasome non-AIPase regulatory subunit 4	Psmd4							-18,9	26,0	40,9	21	1	6	-20,8	22,0	40,9	17	-	5
Q8BMK4	Cytoskeleton-associated protein 4	Ckap4							-34,4	21,0	63,6	29	-	9	-32,4	19,0	63,6	24	-	8

155

			IS								RM	s					FA			
				% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif	ł .
ID D14024	Nom de la Protèine	Nom du Géne	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq
P14824	Annexin Ab	Anxab						_	-34,3	23,0	/5,/	21	-	12	-37,3	24,0	/5,/	28	-	- 11
P10242		0150							-10,7	12,0	44,0	15	-	4	-51,6	25,0	44,0	35	-	•
E9QM54	Uncharacterized protein	PlodZ						_	-20,5	11,0	84,3	19	-	6	-35,1	13,0	84,3	30	-	8
	Alpha-N-acetyigiucosaminidase (Santilippo disease IIIB)	Nagiu Robe 1							-0,0	3,0	82,5	6	-	2	-44,8	23,0	82,5	38	-	12
000100	Spot like sectors slobe	Krop1						_	-51,9	5,0	1/2,6	18	-	,	-41,0	9,0	1/2,6	25	-	9
Q8R180	EROI-like protein alpha	Eroli							-8,2	7,0	54,0	6	-	3	-33,7	19,0	54,0	35	-	8
P62196	26S protease regulatory subunit 8	Psmc5						_	-8,2	9,0	45,5	6	2	3	-11,0	10,0	45,5	6	2	3
Q8BH97	Reticulocalbin-3	Kcn3							-23,7	14,0	37,9	14	-	5	-31,3	19,0	37,9	27	-	6
Q9D0E1-1	Isoform 1 of Heterogeneous nuclear ribonucleoprotein M	Hnrnpm							-28,8	14,0	77,5	20	3	8	-23,4	13,0	77,5	14	2	7
Q99JF5	Diphosphomevalonate decarboxylase	Mvd							-15,0	7,0	44,0	15	-	2	-22,9	15,0	44,0	23	-	4
Q3V1T4-1	Isoform 1 of Prolyl 3-hydroxylase 1	Lepre1							-26,8	13,0	83,5	12	-	7	-41,3	15,0	83,5	25	-	9
P51660	Peroxisomal multifunctional enzyme type 2	Hsd17b4							-35,4	13,0	79,3	26	-	7	-20,5	8,0	79,3	10	-	5
Q3TQP6	Malic enzyme	Me1							-15,8	9,0	61,3	17	-	3	-15,2	10,0	63,9	17	-	4
Q8BGQ7	Alanyl-tRNA synthetase, cytoplasmic	Aars							-25,6	10,0	106,7	17	-	7	-30,6	10,0	106,7	16	-	7
P62806	Histone H4	Hist1h4a							-14,8	40,0	11,3	26	-	4	-5,0	21,0	11,3	3	-	2
P80313	T-complex protein 1 subunit eta	Cct7							-33,9	21,0	59,5	18	-	9	-18,6	16,0	59,5	13	-	7
A2AFQ2	Hydroxysteroid (17-beta) dehydrogenase 10	Hsd17b10							-22,1	33,0	28,3	13	-	5	-29,9	42,0	28,3	17	-	7
Q60716-1	Isoform IIb of Prolyl 4-hydroxylase subunit alpha-2	P4ha2							-2,7	2,0	60,9	1	-	1	-35,5	19,0	60,9	28	-	8
P49935	Pro-cathepsin H	Ctsh							-3,6	3,0	37,1	4	-	1	-25,9	20,0	37,1	24	-	5
Q9QXX4	Calcium-binding mitochondrial carrier protein Aralar2	Slc25a13							-23,6	12,0	74,3	18	-	7	-17,3	8,0	74,3	10	-	5
P51150	Ras-related protein Rab-7a	Rab7a							-8,0	12,0	23,4	4	-	2	-19,0	27,0	23,4	24	-	4
P26443	Glutamate dehydrogenase 1, mitochondrial	Glud1							-30,2	17,0	61,2	20	-	8	-18,6	13,0	61,2	8	-	6
P07356	Annexin A2	Anxa2							-18,9	22,0	38,6	18	-	6	-15,2	12,0	38,6	9	-	4
P97311	DNA replication licensing factor MCM6	Mcm6							-25,7	9,0	92,7	19	-	5	-14,4	8,0	92,7	8	-	4
Q9CPP0	Nucleoplasmin-3	Npm3							-11,6	17,0	18,9	13	-	2	-9,7	9,0	18,9	14	-	1
054984	ATPase Asna1	Asna1							-3,3	5,0	38,7	1	-	1	-29,9	34,0	38,7	24	-	8
P23492	Purine nucleoside phosphorylase	Pnp							-31,6	31,0	32,2	10	-	7	-32,2	36,0	32,2	16	-	7
Q8QZV3	Dci protein	Dci							-20,8	20,0	32,1	15	-	4	-16,3	20,0	32,1	11	-	4
Q8CIF4	Biotinidase	Btd							-12,7	7,0	58,0	9	-	3	-25,7	10,0	58,0	16	-	4
P16045	Galectin-1	Lgals1							-14,5	25,0	14,8	9	-	2	-27,1	44,0	14,8	16	-	4
Q3UWT6	Proteasome subunit alpha type	Psma2							-22,4	28,0	27,4	23	-	5	-3,7	5,0	27,4	2	-	1
P22935	Cellular retinoic acid-binding protein 2	Crabp2							-15,1	33,0	15,7	11	-	5	-25,1	41,0	15,7	13	-	6
Q9CYD3	Cartilage-associated protein	Crtap							-13,8	15,0	46,0	12	-	5	-19,3	17,0	46,0	10	-	5
D3YZZ5	Uncharacterized protein	Tmed7							-9,1	10,0	25,1	6	-	2	-17,2	20,0	25,1	17	-	4
Q3TVK3	Putative uncharacterized protein	Dnpep							-21,3	16,0	52,3	19	-	6	-6,7	5,0	52,3	4	-	2
Q99LC5	Electron transfer flavoprotein subunit alpha, mitochondrial	Etfa							-20,9	16,0	34,9	16	-	4	-17,3	17,0	34,9	6	-	4
Q99K51	Plastin-3	PIs3							-8,6	4,0	70,6	4	-	2	-11,1	4,0	70,6	2	-	2
P29391	Ferritin light chain 1	Ft/1							-2.6	7,0	20.7	1	-	1	-19,7	35.0	20,7	21	-	4
035887	Calumenin	Calu							-12,2	15,0	37,0	18	-	3	-4,8	8,0	37,0	3	-	2
P46935	E3 ubiquitin-protein ligase NEDD4	Nedd4							-12,9	8.0	102,5	16	-	5	-7.8	4.0	102,5	5	-	3

			IS								RMS	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia
Q3TMF5	Dihydrolipoamide branched chain transacylase E2	Dbt							-13,2	9,0	53,1	7	-	4	-21,3	15,0	53,1	12	-	6
Q9ET22	Dipeptidyl peptidase 2	Dpp7							-3,9	1.0	56,1	2	-	1	-14,7	9.0	56,1	18	-	4
Q9EQU5-1	Isoform 1 of Protein SET	Set							-6.8	8.0	33.3	9	-	2	-8.6	12.0	33.3	10	-	3
055234	Proteasome subunit beta type-5	Psmb5							-20,9	27,0	28,4	16	-	7	-5,7	9,0	28,4	3	-	2
Q8CGC7	Bifunctional aminoacyl-tRNA synthetase	Eprs							-30,5	7,0	169,8	16	-	7	-10,7	1,0	169,8	3	-	2
Q3UZ58	Putative uncharacterized protein	Fdxr							-25,5	16,0	57,2	12	-	7	-10,6	7,0	57,2	7	-	3
035129	Prohibitin-2	Phb2							-17,5	22,0	33,2	17	-	5	-5,5	10,0	33,2	2	-	2
P05202	Aspartate aminotransferase, mitochondrial	Got2							-16,1	13,0	47,3	13	-	4	-11,0	10,0	47,3	6	-	3
Q8CI94	Glycogen phosphorylase, brain form	Pygb							-15,8	5,0	96,6	17	-	4	-2,7	1,0	96,6	1	-	1
P58044	Isopentenyl-diphosphate Delta-isomerase 1	ldi1							-6,7	10,0	26,2	7	-	2	-11,5	15,0	26,2	11	-	3
Q9WV54	Acid ceramidase	Asah1							-2,7	4,0	44,6	2	-	1	-19,6	20,0	44,6	16	-	6
Q99M71-1	Isoform 1 of Mammalian ependymin-related protein 1	Epdr1							-6,7	9,0	25,4	3	-	2	-21,4	24,0	25,4	14	-	5
Q8C1B7-1	Isoform 1 of Septin-11	Sept11							-17,5	12,0	49,6	9	-	5	-14,7	13,0	49,6	7	-	5
Q99KI0	Aconitate hydratase, mitochondrial	Aco2							-20,7	7,0	85,3	8	-	4	-15,8	5,0	85,3	9	-	3
Q8BG05-2	Isoform 2 of Heterogeneous nuclear ribonucleoprotein A3	Hnrnpa3							-27,6	27,0	37,0	12	-	7	-15,4	9,0	37,0	5	-	2
P62311	U6 snRNA-associated Sm-like protein LSm3	Lsm3							-5,5	32,0	11,8	10	-	2	-6,7	32,0	11,8	6	-	2
Q3U8W9	Putative uncharacterized protein	Hnrnpr							-10,0	7,0	70,7	6	3	4	-10,6	7,0	70,7	6	3	4
Q7TMK9-1	Isoform 1 of Heterogeneous nuclear ribonucleoprotein Q	Syncrip							-10,0	7,0	70,7	6	3	4	-10,6	7,0	70,7	6	3	4
P26645	Myristoylated alanine-rich C-kinase substrate	Marcks							-4,1	6,0	29,6	4	-	1	-11,4	10,0	29,6	12	-	2
Q9QYG0-1	Isoform 1 of Protein NDRG2	Ndrg2							-3,9	4,0	40,7	1	-	1	-17,6	13,0	40,7	15	-	3
P54071	Isocitrate dehydrogenase [NADP], mitochondrial	ldh2							-21,4	20,0	50,8	15	-	7	-3,9	2,0	50,8	1	-	1
Q3UGY5	Putative uncharacterized protein	Fn1							-24,0	4,0	262,5	14	-	9	-2,6	0,0	262,5	2	-	1
P47955	60S acidic ribosomal protein P1	Rplp1							-6,4	13,0	11,4	10	-	1	-5,5	13,0	11,4	6	-	1
Q80X87	Glia maturation factor, beta	Gmfb							-7,3	11,0	16,7	2	-	1	-7,9	11,0	16,7	13	-	1
Q9EST5-1	Isoform 1 of Acidic leucine-rich nuclear phosphoprotein 32 family	Anp32b							-7,6	11,0	31,0	9	-	2	-7,8	15,0	31,0	6	-	3
Q9QZ82	Cholesterol side-chain cleavage enzyme, mitochondrial	Cyp11a1							-3,9	2,0	60,2	1	-	1	-28,2	19,0	60,2	13	-	8
Q9DB20	ATP synthase subunit O, mitochondrial	Atp5o							-17,9	45,0	23,3	10	-	7	-7,8	16,0	23,3	4	-	3
P26350	Prothymosin alpha	Ptma							-8,4	12,0	12,2	10	-	1	-7,9	12,0	12,2	3	-	1
Q9R0P5	Destrin	Dstn							-7,6	13,0	18,4	7	-	2	-8,6	13,0	18,4	4	-	2
Q91YR1	Twinfilin-1	Twf1							-15,6	15,0	40,0	4	-	4	-24,5	16,0	40,0	9	-	6
P14873	Microtubule-associated protein 1B	Map1b							-17,1	3,0	270,0	8	-	6	-11,8	2,0	270,0	5	-	4
Q9CYA0	Cysteine-rich with EGF-like domain protein 2	Creld2							-5,6	4,0	38,1	3	-	1	-17,5	19,0	38,1	10	-	5
035900	U6 snRNA-associated Sm-like protein LSm2	Lsm2							-6,7	19,0	10,8	4	-	1	-10,0	19,0	10,8	9	-	1
Q3UPL0-1	Isoform 1 of Protein transport protein Sec31A	Sec31a							-13,9	3,0	133,4	6	-	3	-15,6	6,0	133,4	7	-	5
Q6GQT9	Nodal modulator 1	Nomo1							-8,9	2,0	133,2	3	-	2	-21,8	5,0	133,2	10	-	5
Q3TW96-1	Isoform 1 of UDP-N-acetylhexosamine pyrophosphorylase-like	Uap1l1							-8,9	6,0	56,5	2	-	2	-9,0	6,0	56,5	11	-	2
Q64191	N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase	Aga							-9,8	14,0	36,9	5	-	3	-14,4	8,0	36,9	7	-	3
Q8BMD8	Calcium-binding mitochondrial carrier protein SCaMC-1	Sic25a24							-5,4	2,0	52,8	5	-	1	-7,8	5,0	52,8	7	-	2
Q8VEH8	Endoplasmic reticulum lectin 1	Erlec1							-5,4	2,0	52,8	5	-	1	-7,8	5,0	52,8	7	-	2
Q8R016	Bleomycin hydrolase	Blmh							-9,2	5,0	52,4	4	-	2	-12,7	10,0	52,4	7	-	4

Annexes:	Tal	eau
7 11 10 100.	i ui	uuu

					IS						RM	s					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia
Q9EQH3	Vacuolar protein sorting-associated protein 35	Vps35							-13,8	9,0	91,5	10	-	5	-4,4	3,0	91,5	2	-	2
Q7M739	Nuclear pore complex-associated intranuclear coiled-coil protein	Tpr							-18,2	3,0	266,6	9	-	6	-7,0	1,0	266,6	3	-	3
Q3UFY7-1	Isoform 1 of Cytosolic 5'-nucleotidase III-like protein	Nt5c3l							-12,8	9,0	33,5	8	-	2	-4,6	8,0	33,5	4	-	2
Q91VR2	ATP synthase subunit gamma, mitochondrial	Atp5c1							-14,6	19,0	32,8	11	-	5	-2,9	4,0	32,8	1	-	1
Q80UU9	Membrane-associated progesterone receptor component 2	Pgrmc2							-5,4	6,0	23,2	2	-	1	-21,3	26,0	23,2	10	-	3
P13439	Uridine 5'-monophosphate synthase	Umps							-5,6	4,0	52,2	3	-	2	-14,3	11,0	52,2	9	-	4
Q9JJF0	Nucleosome assembly protein 1-like 5	Nap1I5							-7,2	15,0	16,9	6	-	2	-9,2	21,0	16,9	6	-	3
054962	Barrier-to-autointegration factor	Banf1							-7,6	40,0	10,0	5	-	2	-8,9	40,0	10,0	7	-	2
088545	COP9 signalosome complex subunit 6	Cops6							-4,1	12,0	35,8	3	-	2	-10,8	8,0	35,8	9	-	2
P18572-2	Isoform 2 of Basigin	Bsg							-6,9	10,0	29,6	2	-	2	-18,0	14,0	29,6	9	-	4
Q06890	Clusterin	Clu							-5,1	6,0	51,5	2	-	2	-13,1	10,0	51,5	9	-	3
Q3TMX5	Arginine-rich, mutated in early stage tumors, isoform CRA_b	Manf							-16,1	36,0	20,3	9	-	5	-7,7	7,0	20,3	2	-	1
Q9WVJ3-1	Isoform 1 of Plasma glutamate carboxypeptidase	Pgcp							-5,9	5,0	51,7	3	-	2	-10,9	5,0	51,7	8	-	2
Q64337-1	Isoform 1 of Sequestosome-1	Sqstm1							-9,0	3,0	48,0	2	-	1	-12,0	17,0	48,0	9	-	4
Q9Z0N1	Eukaryotic translation initiation factor 2 subunit 3, X-linked	Eif2s3x							-19,0	13,0	50,9	9	-	5	-7,1	6,0	50,9	2	-	2
E9Q4L8	Uncharacterized protein	Ptbp1							-17,5	16,0	56,5	9	-	6	-4,0	3,0	56,5	2	-	1
Q9QZ88-1	Isoform 1 of Vacuolar protein sorting-associated protein 29	Vps29							-9,5	12,0	20,4	6	-	3	-8,0	12,0	20,4	4	-	2
Q8QZT1	Acetyl-CoA acetyltransferase, mitochondrial	Acat1							-10,2	8,0	44,7	5	-	3	-6,7	5,0	44,7	5	-	2
Q6P5E4	UDP-glucose:glycoprotein glucosyltransferase 1	Uggt1							-23,7	4,0	176,2	9	-	6	-2,6	0,0	176,2	1	-	1
A2BDX3	Adenylyltransferase and sulfurtransferase MOCS3	Mocs3							-5,0	1,0	49,3	5	-	1	-4,1	1,0	49,3	5	-	1
035855	Branched-chain-amino-acid aminotransferase, mitochondrial	Bcat2							-2,6	3,0	44,0	5	-	1	-5,5	7,0	44,0	5	-	2
P16675	Lysosomal protective protein	Ctsa							-3,4	2,0	53,7	2	-	1	-19,2	15,0	53,7	8	-	5
P51655	Glypican-4	Gpc4							-2,7	1,0	62,4	3	-	1	-12,6	10,0	62,4	7	-	4
Q9CXT8	Mitochondrial-processing peptidase subunit beta	Pmpcb							-2,7	2,0	54,5	1	-	1	-11,9	13,0	54,5	8	-	6
Q3UGL3	Putative uncharacterized protein	Clint1							-8,7	4,0	67,5	3	-	2	-14,2	10,0	67,5	7	-	4
Q9CQJ6	Density-regulated protein	Denr							-5,0	8,0	22,1	2	-	1	-14,3	8,0	22,1	7	-	2
P54822	Adenylosuccinate lyase	Adsl							-12,5	7,0	54,7	7	-	3	-6,9	2,0	54,7	2	-	1
Q8R2U4	Alpha N-terminal protein methyltransferase 1A	Mett/11a							-12,1	12,0	25,3	6	-	2	-6,9	12,0	25,3	3	-	2
Q8BLN5	Lanosterol synthase	Lss							-4,0	1,0	83,0	1	-	1	-12,3	5,0	83,0	8	-	3
088456	Calpain small subunit 1	Capns1							-7,8	8,0	28,4	6	-	2	-6,0	8,0	28,4	3	-	2
P97807-1	Isoform Mitochondrial of Fumarate hydratase, mitochondrial	Fh							-18,2	8,0	54,2	7	-	3	-4,3	2,0	54,2	2	-	1
Q9EQH2	Endoplasmic reticulum aminopeptidase 1	Erap1							-4,4	1,0	106,4	5	-	1	-8,6	3,0	106,4	4	-	2
P06745	Glucose-6-phosphate isomerase	Gpi							-8,3	4,0	62,6	8	-	2	-4,4	3,0	62,6	1	-	1
Q62084	Protein phosphatase 1 regulatory subunit 14B	Ppp1r14b							-10,6	34,0	15,9	7	-	2	-9,7	34,0	15,9	2	-	2
Q8C854-1	Isoform 3 of Myelin expression factor 2	Myef2							-6,4	4,0	52,1	6	-	1	-5,5	4,0	52,1	2	-	1
A2A7S7	Tyrosyl-tRNA synthetase	Yars							-7,8	4,0	62,9	4	-	2	-7,4	5,0	62,9	4	-	3
Q3TEL0	Palmitoyl-protein thioesterase 1	Ppt1							-6,4	11,0	34,0	4	-	2	-4,4	4,0	34,0	4	-	1
Q91ZX7	Prolow-density lipoprotein receptor-related protein 1	Lrp1							-13,0	0,0	504,1	6	-	3	-6,4	0,0	504,1	2	-	2
P56812	Programmed cell death protein 5	Pdcd5							-9,1	18,0	14,2	4	-	2	-9,4	27,0	14,2	4		3
Q9DB77	Cytochrome b-c1 complex subunit 2, mitochondrial	Uqcrc2							-10,9	6,0	48,1	7	-	2	-7,4	3,0	48,1	1	-	1

					IS						RMS						FA			
				% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire	_	Pep Specif		log(E	% Protéine	Poid Moleculaire	_	Pep Specif	
	Nom de la Proteine	Nom du Gene	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq
Q9QWR0	Alpha 2 macroglobulin recenter accorded protein	Naga							-3,2	2,0	47,1	1	-	1	-9,7	8,0	47,1	1	-	2
P35302		Lipupi							-10,6	15,0	42,1	4	-	3	-0,2	7,0	42,1	4	-	2
Q91V64	Isocnorismatase domain-containing protein 1	ISOC1							-21,1	17,0	51,9	6	-	4	-3,2	5,0	51,9	1	-	1
P40124	Adenyiyi cyclase-associated protein 1	Capi							-14,2	8,0	51,4	0	-	3	-4,1	3,0	51,4	2	-	1
000002	2,4-dienoyi-coa reductase, mitochondriai	Decri							-3,7	5,0	30,1	5	-	1	-5,6	5,0	22.0	2	-	1
Q9CR20	Vacuolar protein sorting-associated protein VIA1 nomolog	VIUI							-4,5	4,0	55,6	4	-	1	-4,7	4,0	55,6	3	-	1
0007849	Putative uncharacterized protein (Fragment)	Leprei4							-5,2	5,0	16.2	2	-	2	-5,8	5,0	16.2	4	-	2
Q9D7M8	DNA-directed KNA polymerase il subunit KPB4	Poirza							-5,8	10,0	16,2	2	-	1	-6,4	10,0	16,2	5	-	1
Q60676	Serine/threonine-protein phosphatase 5	PppSc							-3,0	2,0	56,7	1	-	1	-15,0	7,0	56,7	6	-	3
Q9CQ11	Methylthioribose-1-phosphate isomerase	Mri1							-8,0	7,0	39,3	4	-	2	-10,2	10,0	39,3	2	-	2
Q61425	Hydroxyacyi-coenzyme A dehydrogenase, mitochondrial	Hadh							-3,6	3,0	34,4	4		1	-4,0	3,0	34,4	3	-	1
Q8CAY6	Acetyl-CoA acetyltransferase, cytosolic	Acat2							-7,7	9,0	41,2	4	-	2	-6,2	3,0	41,2	3	-	1
P35293	Ras-related protein Rab-18	Rab18							-3,7	4,0	22,9	1	-	1	-13,1	22,0	22,9	6	-	4
Q9D7B6	IsobutyryI-CoA dehydrogenase, mitochondrial	Acad8							-6,9	6,0	44,9	3	-	2	-10,6	6,0	44,9	4	-	2
Q7TQ40	Zinc finger protein ZIC 5	Zic5							-3,2	2,0	64,4	4	-	1	-3,6	2,0	64,4	3	-	1
Q9DCG9	tRNA methyltransferase 112 homolog	Trmt112							-8,4	21,0	14,1	5	-	2	-3,7	9,0	14,1	2	-	1
Q9WUA3-1	Isoform 1 of 6-phosphofructokinase type C	Pfkp							-3,5	1,0	85,3	1	-	1	-7,9	4,0	85,3	5	-	2
035344	Importin subunit alpha-3	КрпаЗ							-3,9	2,0	57,6	1	-	1	-7,7	6,0	57,6	4	-	2
Q8CC35-1	Isoform 1 of Synaptopodin	Synpo							-10,0	2,0	99,4	5	-	2	-5,0	1,0	99,4	1	-	1
Q61595-10	Isoform 10 of Kinectin	Ktn1							-8,9	1,0	146,4	3	-	2	-10,2	2,0	146,4	3	-	2
P06797	Cathepsin L1	Cts/1							-6,0	10,0	37,4	4	-	2	-5,3	10,0	37,4	2	-	2
Q3TCN2-1	Isoform 1 of Putative phospholipase B-like 2	Plbd2							-7,6	2,0	66,1	2	-	1	-2,9	4,0	26,2	2	-	1
Q8BFR4	N-acetylglucosamine-6-sulfatase	Gns							-5,0	2,0	61,0	1	-	1	6,0	61,0	5,0	-	3	0
Q8BFY6	Peflin	Pef1							-5,6	4,0	29,1	4	-	1	-5,1	9,0	29,1	2	-	2
P62835	Ras-related protein Rap-1A	Rap1a							-3,3	5,0	20,9	1	-	1	-6,2	11,0	20,9	5	-	2
Q91WV0	Protein Dr1	Dr1							-3,4	7,0	19,3	2	-	1	-3,3	7,0	19,3	4	-	1
Q60876	Eukaryotic translation initiation factor 4E-binding protein 1	Eif4ebp1							-3,3	10,0	12,2	3	-	1	-3,1	10,0	12,2	2	-	1
Q924M7	Mannose-6-phosphate isomerase	Mpi							-7,3	6,0	46,5	3	-	2	-7,4	3,0	46,5	2	-	1
P62488	DNA-directed RNA polymerase II subunit RPB7	Polr2g							-5,0	7,0	19,2	2	-	1	-10,7	20,0	19,2	3	-	3
P98078-1	Isoform p96 of Disabled homolog 2	Dab2							-5,4	3,0	82,2	2	-	2	-6,3	2,0	82,2	2	-	1
Q9WUP7-1	Isoform 1 of Ubiquitin carboxyl-terminal hydrolase isozyme L5	UchI5							-3,7	3,0	37,5	1	-	1	-4,1	6,0	37,5	4	-	2
P35486	Pyruvate dehydrogenase E1 component subunit alpha, somatic form mitochondrial	Pdha1							-5,3	3,0	43,1	3	-	1	-3,8	3,0	43,1	1	-	1
Q9CVB6	Actin-related protein 2/3 complex subunit 2	Arpc2							-5,9	12,0	34,3	3	-	3	-5,4	8,0	34,3	2	-	2
P09671	Superoxide dismutase [Mn], mitochondrial	Sod2							-7,0	12,0	24,5	3	-	2	-4,4	6,0	24,5	2	-	1
A2ARJ0	Signal transducing adaptor molecule (SH3 domain and LIAM motif) 1 (Fragment)	Stam							-3,0	5,0	22,5	2	-	1	-4,1	5,0	22,5	3	-	1
Q9JHQ5	Leucine zipper transcription factor-like protein 1	Lztfl1							-12,0	15,0	34,7	3	-	3	-5,6	5,0	34,7	1	-	1
Q3UI33	Methionine aminopeptidase	Metap2							-6,4	10,0	54,0	3	-	3	-5,8	6,0	54,0	2	-	2
P62996-1	Isoform 1 of Transformer-2 protein homolog beta	Tra2b							-7,5	4,0	33,6	2	-	1	-8,0	10,0	33,6	3	-	2
Q8BVI4	Dihydropteridine reductase	Qdpr							-4,4	6,0	25,5	2	-	1	-6,1	6,0	25,5	3	-	1
Q9CZR8	Elongation factor Ts, mitochondrial	Tsfm							-4,2	8,0	35,2	1	-	1	-10,7	12,0	35,2	4	-	2

					IS						RM	s					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specit Uniq	f Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Unic
Q62193	Replication protein A 32 kDa subunit	Rpa2							-4,1	8,0	29,6	2	-	2	-6,7	12,0	29,6	3	-	2
Q99LI6	Glutathione peroxidase 7	Gpx7							-6,4	12,0	21,0	4	-	2	-6,1	6,0	21,0	1	-	1
008788-1	Isoform 1 of Dynactin subunit 1	Dctn1							-6,7	1,0	141,5	3	-	2	-3,4	0,0	141,5	1	-	1
Q8BMP6	Golgi resident protein GCP60	Acbd3							-5,0	2,0	60,0	2	-	1	-4,7	2,0	60,0	2	-	1
070318	Band 4.1-like protein 2	Epb41/2							-4,8	1,0	109,6	1	-	1	-8,5	2,0	109,6	3	-	2
Q9D927	Putative uncharacterized protein	1810009N02R	ik						-4,1	6,0	25,0	1	-	1	-4,9	6,0	25,0	3	-	1
Q91WT9-1	Isoform 1 of Cystathionine beta-synthase	Cbs	1						-3,7	1,0	61,4	2	-	1	-3,8	1,0	61,4	2	-	1
055057	Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic	Pde6d							-6,6	15,0	17,3	3	-	2	-3,5	7,0	17,3	1	-	1
Q9WV80	Sorting nexin-1	Snx1							-3,3	2,0	58,8	1	-	1	-8,9	7,0	58,8	3	-	3
Q01405	Protein transport protein Sec23A	Sec23a							-6,6	1,0	86,0	2	-	1	-4,2	3,0	86,0	2	-	2
Q8BGS2-1	Isoform 1 of BolA-like protein 2	Bola2							-6,9	32,0	10,1	3	-	2	-3,9	10,0	10,1	1	-	1
Q9ET26	RING finger protein 114	Rnf114							-4,6	7,0	25,6	3	-	1	-3,4	7,0	25,6	1	-	1
Q9WTX8-1	Isoform 1 of Mitotic spindle assembly checkpoint protein MAD1	Mad1/1							-3,5	2,0	83,4	1	-	1	-13,4	5,0	83,4	3	-	3
Q99KK7	Dipeptidyl peptidase 3	Dpp3							-5,4	2,0	82,7	1	-	1	-7.0	2,0	82,7	3	-	1
P32921-1	Isoform 1 of Tryptophanyl-tRNA synthetase, cytoplasmic	Wars							-7.7	3.0	54.2	2	-	1	-10.8	7.0	54.2	2	-	2
Q6P5G6	UBX domain-containing protein 7	Ubxn7							-4,7	2,0	52,0	2	-	1	-4,5	2,0	52,0	2	-	1
Q80Y14	Glutaredoxin-related protein 5. mitochondrial	GIrx5							-10.1	18.0	16.2	3	-	2	-4.4	9.0	16.2	1	-	1
Q3TL27	Putative uncharacterized protein	Xpnpep1							-4,0	2,0	65,9	3	-	1	-3,2	1,0	65,9	1	-	1
Q9CWY8	Ribonuclease H2 subunit A	Rnaseh2a							-7,1	8,0	33,4	3	-	2	-4,9	5,0	33,4	1	-	1
Q9DAU1-1	Isoform 1 of Protein canopy homolog 3	Cnpv3							-4.6	11.0	30.4	2	-	2	-6,5	11.0	30,4	2	-	2
P18654	Ribosomal protein S6 kinase alpha-3	Rps6ka3							-3,2	1,0	83,5	1	-	1	-7,4	4,0	83,5	3	-	3
P97450	ATP synthase-coupling factor 6, mitochondrial	Atp5j							-4,8	33,0	12,4	2	-	2	-7,2	33,0	12,4	2	-	2
Q3V3R1	Monofunctional C1-tetrahydrofolate synthase, mitochondrial	Mthfd1l							-4,2	2,0	105,5	3	-	2	-5,6	1.0	105,5	1	-	1
Q8CHU3-1	Isoform 1 of Epsin-2	Epn2							-8,1	4,0	63,3	2	-	2	-3,5	1,0	63,3	2	-	1
Q9CQY3	Putative uncharacterized protein	Atp5l							-7,5	11,0	14,1	3	-	1	-5,5	11,0	14,1	1	-	1
070378	Neighbor of COX4	Cox4nb							-11,1	12,0	23,3	3	-	2	-3,4	6,0	23,3	1	-	1
P29416	Beta-hexosaminidase subunit alpha	Неха							-2,9	1,0	60,5	1	-	1	-5,8	4,0	60,5	3	-	2
Q3UPH1	Protein PRRC1	Prrc1							-3,9	4,0	46,2	2	-	1	-7,0	6,0	46,2	2	-	2
P53810	Phosphatidylinositol transfer protein alpha isoform	Pitpna							-4,2	4,0	31,8	3	-	1	-2,9	8,0	31,8	1	-	1
Q8JZL3	Thiamine-triphosphatase	Thtpa							-7,6	7,0	24,2	1	-	1	-10.0	7,0	24,2	2	-	1
Q9JIY5	Serine protease HTRA2, mitochondrial	Htra2							-4.2	2.0	49.2	1	-	1	-3.3	2.0	49.2	1	-	1
P61222	ATP-binding cassette sub-family E member 1	Abce1							-6,4	4.0	67,2	2	-	2	-3,5	2,0	67,2	1	-	1
Q7TMY4-1	Isoform 1 of THO complex subunit 7 homolog	Thoc7							-2.5	4.0	23.6	1	-	1	-6.6	11.0	23.6	2	-	2
P83877	Thioredoxin-like protein 4A	Txnl4a							-3,4	7.0	16.7	1	-	1	-2.8	7.0	16.7	1	-	1
Q6P4P1-1	Isoform 1 of Serine protease inhibitor A3A	Serpina3a							-5,3	3,0	47,6	1	-	1	-7,4	6,0	47,6	2	-	2
Q6A068	Cell division cycle 5-related protein	Cdc5l							-2.9	1.0	92.0	1	-	1	-4.1	1.0	92.0	2	-	1
P62897	Cytochrome c, somatic	Cycs							-5,1	13.0	11,5	2	-	1	-3,7	13.0	11,5	1	-	1
Q922P9	Putative oxidoreductase GLYR1	Glyr1							-4.1	2.0	59.6	1	-	1	-6.9	4,0	59,6	2	-	2
Q8BMS1	Trifunctional enzyme subunit alpha. mitochondrial	Hadha							-5.9	2.0	82.5	2		1	-4.5	2,0	82.5	1		1
OGRAM	PEST proteolytic signal-containing purclear protein	Pcnn							-4.1	6.0	18.0	-		1	-3.0	7.0	18.0	1		1

					IS						RMS	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq
Q9R008	Mevalonate kinase	Mvk							-3,2	3,0	41,8	2	-	1	-3,5	3,0	41,8	1	-	1
Q8VE80	THO complex subunit 3	Thoc3							-3,3	2,0	38,6	1	-	1	-6,1	5,0	38,6	2	-	2
Q99K48-1	Isoform 1 of Non-POU domain-containing octamer-binding	Nono							-4,8	5,0	54,4	2	-	2	-3,9	2,0	54,4	1	-	1
Q9DC13	Lysosomal membrane glycoprotein 1, isoform CRA_a	Lamp1							-3,3	2,0	43,8	2	-	1	-3,3	2,0	43,8	1	-	1
Q8BWU5	Probable tRNA threonylcarbamoyladenosine biosynthesis protein	Osgep							-2,9	5,0	36,2	1	-	1	-5,8	3,0	36,2	2	-	1
Q9D967	Oseep Magnesium-dependent phosphatase 1	Mdp1							-3,3	7,0	18,5	2	-	1	-3,9	7,0	18,5	1	-	1
Q64520	Guanylate kinase	Guk1							-6,6	8,0	21,8	1	-	1	-7,9	14,0	21,8	2	-	2
Q64442	Sorbitol dehydrogenase	Sord							-3,1	4,0	38,1	1	-	1	-6,5	7,0	38,1	2	-	2
Q923B1	Lariat debranching enzyme	Dbr1							-5,4	2,0	62,2	1	-	1	-8,3	2,0	62,2	1	-	1
Q9QZ06	Toll-interacting protein	Tollip							-3,0	5,0	30,2	1	-	1	-4,0	5,0	30,2	1	-	1
Q9EQX4	Allograft inflammatory factor 1-like	Aif1l							-5,7	10,0	16,9	1	-	1	-2,7	6,0	16,9	1	-	1
Q99MZ7	Peroxisomal trans-2-enoyl-CoA reductase	Pecr							-5,0	4,0	32,3	1	-	1	-4,2	4,0	32,3	1	-	1
Q99LM2	CDK5 regulatory subunit-associated protein 3	Cdk5rap3							-4.0	2.0	56.9	1	-	1	-6.5	2.0	56.9	1	-	1
Q922H2	[Pyruvate dehydrogenase [lipoamide]] kinase isozyme 3,	Pdk3							-5,1	3.0	47.8	1	-	1	-5,4	3.0	47,8	1	-	1
Q8BME1	mitochondrial Putative uncharacterized protein	Pam3							-3.7	2.0	60,3	1	-	1	-3.0	2.0	60.3	1	-	1
Q91VA6	Polymerase delta-interacting protein 2	Poldip2							-3,2	3,0	41,8	1	-	1	-3,0	3,0	41,8	1	-	1
Q9CX86	Putative uncharacterized protein	Hnrnpa0							-4.7	5.0	30.4	1		1	-4.6	5.0	30.4	1	-	1
Q9QXE7	F-box-like/WD repeat-containing protein TBL1X	Tbl1x							-3,8	2,0	56,7	1	-	1	-4,5	2,0	56,7	1	-	1
P45952	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial	Acadm							-3,7	3,0	46,4	1	-	1	-5,1	3,0	46,4	1	-	1
Q8VEE4	Replication protein A 70 kDa DNA-binding subunit	Rpa1							-3.0	1.0	68.9	1	-	1	-3.1	2.0	68.9	1	-	1
Q80U83	MKIAA0079 protein (Fragment)	Sec24c							-3,9	1.0	112,2	1	-	1	-5.0	1.0	112,2	1	-	1
Q921M4-1	Isoform 1 of Golgin subfamily A member 2	Golga2							-4,0	1,0	113,1	1	-	1	-3,2	1,0	113,1	1	-	1
P11404	Fatty acid-binding protein, heart	Fabp3							-2.8	10.0	14.7	1	-	1	-5.0	10.0	14.7	1	-	1
055106	Striatin	Strn							-6.0	1.0	85,9	4	-	1	-3.8	1.0	85,9	1	-	1
P24270	Catalase	Cat							-21.6	15.0	59.6	11	-	6	-8.2	4.0	59.6	5	-	2
P32020-1	Isoform SCPx of Non-specific lipid-transfer protein	Scp2							-3.0	1.0	59.0	1	-	1	-4.8	3.0	59.0	3	-	2
B1AT82	MCG6846, isoform CRA_c	Prpsap1							-7.9	10.0	42.4	3	-	3	-2.6	3.0	42,4	2	-	1
Q9D0R2	Threonyl-tRNA synthetase, cytoplasmic	Tars							-5,0	3.0	83,2	2	-	2	-2,7	1.0	83,2	1	-	1
E9Q509	Pyruvate kinase	Pklr													-5.5	3.0	58.7	21	1	2
P38647	Stress-70 protein. mitochondrial	Hspa9													-120.8	43.0	73.4	234	1	23
Q80ZJ2	Impa1 protein	Impa1													-19,9	24.0	29,8	17	1	5
P17156	Heat shock-related 70 kDa protein 2	Hspa2													-56.4	15.0	69.6	318	1	11
P16627	Heat shock 70 kDa protein 1-like	Hspa1/													-46.7	16.0	70.5	245	1	10
E9Q2D1	Uncharacterized protein	Actb													-45.2	47.0	11.3	240	3	8
09D6F9	Tubulin beta-4A chain	Tubb4a													-114.0	56.0	49.5	558	1	22
P68369	Tubulin alpha-1A chain	Tuba1a													-121.4	55.0	50.0	982	1	20
P05213	Tubulin alpha-1B chain	Tuba1b													-126.6	56.0	50,0	1070	2	21
P17183	Gamma-enolase	Eno2													-46.6	17.0	47.2	249	1	8
E9Q8G8	Uncharacterized protein	P4hb													-43.4	50.0	18.4	124	1	12
Q8CEV2	Putative uncharacterized protein	3000002C10Rik													-6.9	17.0	16,4	34	1	2
COULV2	Future uncharacterized protein	300002C10KIK													-0,9	17,0	10,4	34	1	2

					IS						RMS	;					FA			
				% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif	
ID	Nom de la Protèine	Nom du Géne	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uni
P48/22-1	ISOTORM 1 OF Heat Shock 70 kDa protein 4L	Hspa4i													-7,6	3,0	94,2	6	1	2
070250	Phosphoglycerate mutase 2	Pgam2													-22,6	18,0	28,7	30	1	D
Q68FL4-1	Isoform 1 of Putative adenosylhomocysteinase 3	Ahcyl2													-6,2	3,0	66,8	2	1	2
088685	26S protease regulatory subunit 6A	Psmc3													-55,2	37,0	49,4	75	1	13
P50396	Rab GDP dissociation inhibitor alpha	Gdi1													-39,1	25,0	50,4	35	5	9
P63011	Ras-related protein Rab-3A	Rab3a													-7,9	12,0	24,9	8	1	2
Q60715-2	Isoform 2 of Prolyl 4-hydroxylase subunit alpha-1 Isoform 2 of Isocitrate dehydrogenase (NAD) subunit alpha	P4ha1													-58,9	23,0	60,7	57	1	11
Q9D6R2-2	mitochondrial	ldh3a													-33,1	33,0	31,4	38	1	9
Q91X78	Erlin-1	Erlin1													-13,5	11,0	38,8	15	1	3
P10605	Cathepsin B	Ctsb													-39,8	26,0	37,2	32	-	8
P61164	Alpha-centractin	Actr1a													-17,6	12,0	42,5	8	1	3
Q9WUU7	Cathepsin Z	Ctsz													-18,7	11,0	33,9	17	-	3
Q9QUI0	Transforming protein RhoA	Rhoa													-20,6	28,0	21,7	12	1	4
Q62159	Rho-related GTP-binding protein RhoC	Rhoc													-22,0	28,0	21,9	10	1	4
Q8BGJ9	Splicing factor U2AF 26 kDa subunit	U2af1/4													-8,1	10,0	25,7	13	-	2
P55264-1	Isoform Long of Adenosine kinase	Adk													-10,5	13,0	40,0	8	-	4
Q9DBZ1-1	Isoform 1 of Inhibitor of nuclear factor kappa-B kinase-interacting protein	Ikbip													-20,0	18,0	42,4	9	-	5
Q9R0E2	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	Plod1													-16,8	9,0	83,4	8	-	5
Q99K87	Serine hydroxymethyltransferase	Shmt2													-3,5	2,0	55,6	1	-	1
P81117	Nucleobindin-2	Nucb2													-7,8	8,0	50,2	7	-	3
P63094-1	Isoform Gnas-1 of Guanine nucleotide-binding protein G(s) subunit alpha isoforms short	Gnas													-6,9	6,0	45,5	4	1	2
Q9DC51	Guanine nucleotide-binding protein G(k) subunit alpha	Gnai3													-6,0	7,0	40,4	4	1	2
008579	Emerin	Emd													-16,8	20,0	29,3	7	-	4
Q6NVG7	Procollagen galactosyltransferase 2	Glt25d2													-11,1	7,0	72,6	7	-	4
P97370	Sodium/potassium-transporting ATPase subunit beta-3	Atp1b3													-4,5	5,0	31,7	5	-	1
D3YYT8	Uncharacterized protein	Mpst													-13,0	13,0	33,2	6	-	3
Q60648	Ganglioside GM2 activator	Gm2a													-10,9	25,0	20,7	6	-	4
Q8QZY9	Splicing factor 3B subunit 4	Sf3b4													-5.1	3.0	44.2	5	-	1
Q78IS1	Transmembrane emp24 domain-containing protein 3	Tmed3													-9.7	10.0	25.4	5	-	2
Q9D0L8-1	Isoform 1 of mRNA cap guanine-N7 methyltransferase	Rnmt													-16.7	9.0	53.2	3	-	3
091HI0	Tropomodulin-3	Tmod3													-10.0	9.0	39.4	5	-	3
P97821	Dipentidyl pentidase 1	Ctsc													-4.2	2.0	52.2	5		1
055013	Trafficking protein particle complex subunit 3	Tranne3													-8.2	19.0	20.2	4		3
054879	High mobility group protein B3	Hmah3													-3.3	5.0	22.9	5		1
P58242	Arid shhingomyelinase-like nhoshodiesterase 3h	Smodi3h													-6.7	8.0	51.5	5		2
P60487	Pyridoval phosphate phosphatare	Pdyn													-10.0	10.0	31.4	5		2
028777	Mannore-1-phorphate guandtraseferare beta	Gmnnh													-7.2	10,0	20.0			2
062027		Omppo Den?													-1,2	0,0	20.0	4	-	2
00/08/	Serum paraoxonase/lactonase 3	Pons Defet2													-3,/	4,0	39,2	4	-	1
USVHI3	GDP-TUCOSE protein U-TUCOSyltransferase 2	Pojut2													-12,2	11,0	49,3	5	-	4

					IS						RMS	1					FA			
					Poid		Рер				Poid						Poid			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine	Moleculaire	Snectres	Specif	Pen Unia	log(E value)	% Protéine	Moleculaire (KDa)	Spectres	Pep Specif	Pen Unia	log(E value)	% Protéine	Moleculaire (KDa)	Snectres	Pep Specif	f Pen Uni
08CF66	UPF0539 protein C7orf59 homolog	lamtes/	log(c func)	courter	(NDU)	эресиез	oniq	1 cp ollig	value)	courter	(RDd)	Spectres	oniq	1 cp oliiq	-4.0	10.0	10.6	2	-	1
O60631-1	Isoform 1 of Growth factor receptor-bound protein 2	Grh2													-4.0	5.0	25.1	1	-	1
Q9QX60-1	Isoform 1 of Deoxyguanosine kinase, mitochondrial	Dauok													-9.1	9.0	32.1	4		2
O8VCA8	Secernin-2	Scrn2													-8.9	9.0	46.5	4	-	3
035405	Phospholipase D3	Pld3													-5.5	4.0	54.3	4		2
Q6P8X1	Sorting nexin-6	Snx6													-6.6	6.0	46,5	3	-	2
Q64737-1	Isoform Long of Trifunctional purine biosynthetic protein	Gart													-5.3	1.0	107.2	3		1
P70699	adenosine-3 Lysosomal alpha-glucosidase	Gaa													-14,6	4,0	106,1	4	-	3
P50544	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	Acadvl													-9,7	6,0	70,7	4		3
Q9R013	Cathepsin F	Ctsf													-6,6	6,0	51,5	4	-	2
Q9DBB8	Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase	Dhdh													-11,6	14,0	36,2	4	-	4
Q99K23	Ufm1-specific protease 2	Ufsp2													-3,1	4,0	52,4	4	-	1
Q9JI10-1	Isoform 1 of Serine/threonine-protein kinase 3	Stk3													-6,7	7,0	56,7	3		3
Q99J09	Methylosome protein 50	Wdr77													-5,3	4,0	36,8	4	-	1
Q91W50	Cold shock domain-containing protein E1	Csde1													-7,7	4,0	88,6	4		3
Q5XG73-2	Isoform 2 of Acyl-CoA-binding domain-containing protein 5	Acbd5													-3,5	2,0	52,2	3	-	1
Q9CQ48	NudC domain-containing protein 2	Nudcd2													-12,8	18,0	17,6	3	-	2
Q8BT60	Copine-3	Cpnc3													-5,8	4,0	59,4	2	-	2
070252	Heme oxygenase 2	Hmox2													-8,2	12,0	35,6	3	-	2
Q8BVQ5	Protein phosphatase methylesterase 1	Ppme1													-4,9	9,0	42,1	3	-	2
Q99JX3-1	Isoform 1 of Golgi reassembly-stacking protein 2	Gorasp2													-5,5	7,0	46,9	3	-	2
Q9EQI8	39S ribosomal protein L46, mitochondrial	Mrpl46													-6,5	8,0	32,0	3	-	2
P50543	Protein S100-A11	\$100a11													-10,1	27,0	11,0	2	-	2
009159	Lysosomal alpha-mannosidase	Man2b1													-9,7	2,0	114,4	3	-	2
Q8BP47	Asparaginyl-tRNA synthetase, cytoplasmic	Nars													-4,7	2,0	64,1	3	-	1
Q9Z0J0	Epididymal secretory protein E1	Npc2													-7,7	15,0	16,4	3	-	2
Q4KML4	Costars family protein C6orf115 homolog	Abracl													-3,1	19,0	9,0	3	-	1
Q9Z0P4-1	Isoform 1 of Paralemmin	Palm													-4,6	3,0	41,5	2	-	1
P61922-1	Isoform 1 of 4-aminobutyrate aminotransferase, mitochondrial	Abat													-4,1	4,0	56,3	2	-	2
P46414	Cyclin-dependent kinase inhibitor 1B	Cdkn1b													-4,3	6,0	22,1	2	-	1
Q3TDN2-1	Isoform 1 of FAS-associated factor 2	Faf2													-3,3	2,0	52,3	2	-	1
089017	Legumain	Lgmn													-4,9	2,0	49,2	2	-	1
Q9JHP7-1	Isoform 1 of KDEL motif-containing protein 1	Kdelc1													-6,6	3,0	57,9	2	-	1
Q3U944	Putative uncharacterized protein	Lman1													-3,7	2,0	61,1	2	-	1
Q9CZW5	Mitochondrial import receptor subunit TOM70	Tomm70a													-4,4	1,0	67,4	2	-	1
P17897	Lysozyme C-1	Lyz1													-3,8	8,0	16,7	2	-	1
Q9DBR0	A-kinase anchor protein 8	Akap8													-5,4	2,0	76,1	2	-	1
P70665-1	Isoform 1 of Sialate O-acetylesterase	Siae													-3,4	2,0	60,6	2	-	1
P70441-1	Isoform 1 of Na(+)/H(+) exchange regulatory cofactor NHE-RF1	Slc9a3r1													-3,8	6,0	38,5	2	-	1
Q9EPJ9-1	Isoform 1 of ADP-ribosylation factor GTPase-activating protein 1	Arfgap1													-6,2	3,0	45,2	2	-	1

					IS						RMS	s					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine	Poid Moleculaire (KDa)	Spectres	Pep Specif Unio	Pen Unio	log(E	% Protéine	Poid Moleculaire (KDa)	Spectrer	Pep Specif	Penlinia	log(E	% Protéine	Poid Moleculaire (KDa)	Spectres	Pep Specif	Pen Unio
P56873	Signation syndrome/scleroderma autoantigen 1 homolog	Sssca1	IDELE VOIGE)	couverte	(KDd)	spectres	ping	r cp oniq	valuej	couverte	(KDd)	spectres	oniq	r cp oniq	-4.1	13.0	21.2	2	-	1
O3TIV5-1	Isoform 1 of Zinc finger CCCH domain-containing protein 15	7c3h15													-6.9	7.0	48.2	2	-	2
OSBSED	Regulator of microtubule dynamics protein 2	Fam82a1													-7.3	60	46.9	2		2
Q9WUZ9	Ectonucleoside triphosphate diphosphohydrolase 5	Entpd5													-3,2	3,0	47,0	2	-	1
P08556	GTPase NRas	Nras													-3,7	6,0	21,1	2	-	1
Q61823	Programmed cell death protein 4	Pdcd4													-3,3	2,0	51,6	2	-	1
Q6PEB6	Mps one binder kinase activator-like 3	Mobkl3													-3,4	10,0	25,9	2	-	2
Q91VM5	Heterogeneous nuclear ribonucleoprotein G-like 1	Rbmxl1													-4,1	3,0	42,0	2	-	1
Q9D0J4	ADP-ribosylation factor-like protein 2	Arl2													-6,1	11,0	20,8	2	-	2
Q99P88	Nuclear pore complex protein Nup155	Nup155													-3,2	0,0	154,9	1	-	1
Q9ESZ8-1	Isoform 1 of General transcription factor II-I	Gtf2i													-7,5	1,0	112,1	2	-	1
Q3U3J1	Branched chain ketoacid dehydrogenase E1, alpha polypeptide	Bckdha													-6,2	5,0	50,6	2	-	2
P07214	SPARC	Sparc													-9,1	9,0	34,3	2	-	2
Q00PI9	Heterogeneous nuclear ribonucleoprotein U-like protein 2	Hnrnpul2													-6,1	1,0	84,8	2	-	1
P97765	WW domain-binding protein 2	Wbp2													-6,0	7,0	27,9	2	-	2
055201-1	Isoform 1 of Transcription elongation factor SPT5	Supt5h													-4,6	1,0	120,5	2	-	1
P53811	Phosphatidylinositol transfer protein beta isoform	Pitpnb													-3,3	4,0	31,4	1	-	1
O88448	Kinesin light chain 2	Kic2													-10,2	5,0	66,5	2	-	2
Q8R059	UDP-glucose 4-epimerase	Gale													-7,5	10,0	38,1	2	-	2
Q8BHJ5	F-box-like/WD repeat-containing protein TBL1XR1	Tbl1xr1													-6,6	4,0	55,5	2	-	1
P02802	Metallothionein-1	Mt1													-4,3	35,0	5,9	1	-	1
P52432	DNA-directed RNA polymerases I and III subunit RPAC1	Polr1e													-3,3	2,0	39,0	1	-	1
Q8R5H1-1	Isoform 1 of Ubiquitin carboxyl-terminal hydrolase 15	Usp15													-3,6	1,0	112,1	1	-	1
Q63829	COMM domain-containing protein 3	Commd3													-3,6	4,0	21,9	1	-	1
Q9JLR9	HIG1 domain family member 1A	Higd1a													-6,0	18,0	10,3	1	-	1
Q5F2E7-1	Isoform 1 of Nuclear fragile X mental retardation-interacting	Nufip2													-6,3	1,0	75,5	1	-	1
Q9QZ08	N-acetyl-D-glucosamine kinase	Nagk													-4,6	3,0	37,2	1	-	1
Q6PD26	GPI transamidase component PIG-S	Pigs													-4,4	2,0	61,6	1	-	1
Q8K3H0	DCC-interacting protein 13-alpha	Appl1													-3,4	1,0	79,2	1	-	1
Q9D864	Actin-related protein 6	Actr6													-6,8	3,0	45,7	1	-	1
Q9D6J5	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial	Ndufb8													-3,5	5,0	21,8	1	-	1
Q3THK3	General transcription factor IIF subunit 1	Gtf2f1													-4,7	3,0	57,1	1	-	1
Q8VD04	GRIP1-associated protein 1	Gripap1													-3,4	1,0	92,5	1	-	1
Q9CWU9	Nucleoporin Nup37	Nup37													-3,1	4,0	36,6	1	-	1
Q99LC2	Cleavage stimulation factor subunit 1	Cstf1													-6,3	3,0	48,3	1	-	1
Q9JIQ3	Diablo homolog, mitochondrial	Diablo													-3,8	8,0	26,7	1	-	1
A2ALV5	Likely orthologue of H. sapiens chromosome 9 open reading frame 84	e Al481877													-3,1	1,0	167,8	1	-	1
Q8K297	Procollagen galactosyltransferase 1	Glt25d1													-4,5	2,0	70,9	1	-	1
Q9DCV4	Regulator of microtubule dynamics protein 1	Fam82b													-4,3	3,0	34,9	1	-	1
A1L3T3	N-sulfoglucosamine sulfohydrolase (Sulfamidase)	Sgsh													-5,2	2,0	56,6	1	-	1

					IS						RMS						FA			
					n-t-t		Dem				n-14						D-14			
				% Protéine	Moleculaire		Pep Specif		log(E	% Protéine	Moleculaire		Pep Specif		log(E	% Protéine	Pola Moleculaire		Pep Specit	ŧ
ID	Nom de la Protéine	Nom du Gène I	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Unio
Q9ER39	Torsin-1A	Tor1a													-3,9	3,0	37,7	1	-	1
Q9ERR7	15 kDa selenoprotein	Sep15													-3,1	7,0	17,6	1	-	1
035648	Centrin-3	Cetn3													-3,6	7,0	19,4	1	-	1
Q3TLY5	Putative uncharacterized protein	Gla													-4,8	2,0	47,7	1	-	1
Q6NSR8	Probable aminopeptidase NPEPL1	Npepl1													-5,2	2,0	55,8	1	-	1
Q8BFS6-1	protein 1	Cpped1													-3,4	3,0	35,1	1	-	1
Q571I9	Aldehyde dehydrogenase family 16 member A1	Aldh16a1													-3,9	1,0	84,6	1	-	1
Q8K0Q5	Rho GTPase-activating protein 18	Arhgap18													-4,2	1,0	74,8	1	-	1
Q3UJB9-1	Isoform 1 of Enhancer of mRNA-decapping protein 4	Edc4													-6,5	1,0	152,2	1	-	1
Q9EPC1	Alpha-parvin	Parva													-6,3	4,0	42,2	1	-	1
Q9EP71	Ankycorbin	Rai14													-4,3	1,0	108,7	1	-	1
Q9Z0Y1	Dynactin subunit 3	Dctn3													-3,5	5,0	20,9	1	-	1
Q6DIC0	Probable global transcription activator SNF2L2	Smarca2													-4,5	0,0	180,0	1	-	1
Q8CI32	BAG family molecular chaperone regulator 5	Bag5													-5,2	3,0	50,8	1	-	1
Q64213-1	Isoform CW17 of Splicing factor 1	Sf1													-3,3	2,0	70,3	1	-	1
P24452	Macrophage-capping protein	Capg													-4,9	3,0	39,1	1	-	1
Q9CPX6	Ubiquitin-like-conjugating enzyme ATG3	Atg3													-3,4	4,0	35,7	1	-	1
P56380	Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical]	Nudt2													-4,3	9,0	16,9	1	-	1
Q80TH2-1	Isoform 1 of Protein LAP2	Erbb2ip													-4,4	0,0	154,1	1	-	1
Q6PDG5-1	Isoform 1 of SWI/SNF complex subunit SMARCC2	Smarcc2													-3,6	1,0	132,4	1	-	1
Q8C166	Copine-1	Cpne1													-3,1	1,0	58,8	1	-	1
Q8C5W3-1	Isoform 1 of Tubulin-specific chaperone cofactor E-like protein	Tbcel													-3,9	3,0	47,9	1	-	1
Q9EPU0-1	Isoform 1 of Regulator of nonsense transcripts 1	Upf1													-4,2	0,0	123,8	1	-	1
Q8N7N5-1	Isoform 1 of DDB1- and CUL4-associated factor 8	Dcaf8													-3,2	2,0	65,9	1	-	1
Q9DBX2	Phosducin-like protein	Pdcl													-3,2	8,0	34,3	1	-	1
Q8BNU0-1	Isoform 1 of Armadillo repeat-containing protein 6	Armc6													-5,7	3,0	50,6	1	-	1
Q9QXE0	2-hydroxyacyl-CoA lyase 1	Hacl1													-4,0	2,0	63,5	1		1
Q91W67	Ubiquitin-like protein 7	UbI7													-3,9	3,0	40,3	1	-	1
Q8BFQ4	WD repeat-containing protein 82	Wdr82													-3.6	4.0	35.0	1		1
090075	NADH dehvdrogenase (ubiguinone) 1 alpha subcomplex subunit 6	Ndufa6													-4.1	12.0	15.2	1	-	1
O9DCJ1	Target of rapamycin complex subunit LST8	Mist8													-4.6	3.0	35.7	1	-	1
067088	lysine-snerific histone demethylase 14	Kdm1a													-7.5	1.0	92.7	1	-	1
0511409	THO complex subunit 6 homolog	Thors													-4.3	1,0	37.2	1		1
050405	Hirtona H2 1	Hist1h2a													-2.7	+,0 6.0	15.2	2		1
000772		22100105108													-2,7	0,0	10,5	1		1
Q9D7A2	August and a second and a secon	2210010F10KIK													-5,0	7,0	18,0	1	-	1
001100	MCC1423C4 inform CRA_a	2510061104KIK													-2,8	2,0	20,0	1	-	1
032494	MUG142204, ISOTOFM UKA_a	AKTIDIU													-5,8	8,0	32,6	2	-	2
P61211	ADP-ribosylation factor-like protein 1	Ari1													-2,6	6,0	20,3	1	-	1
Q4KL14	I ratticking protein particle complex subunit 3-like protein	Bet3l													-2,7	2,0	20,7	1	-	1
O9WUM3	Coronin-1B	Coro1h													-2.8	2.0	53.8	1	-	1

					IS						RMS	;					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unig	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Speci Uniq	if Pep Unic
P47941	Crk-like protein	Crkl				-									-3,0	5,0	33,7	1	-	1
Q9JHI7	Exosome complex exonuclease RRP45	Exosc9													-2.7	2.0	48.8	2	-	1
Q9D281	Protein Noxp20	Fam114a1													-2,8	3.0	60,9	1	-	1
P23780	Beta-galactosidase	Glb1													-2,5	1,0	73,0	1	-	1
A2AQR0	Glycerol phosphate dehydrogenase 2, mitochondrial	Gpd2													-4,9	3,0	82,7	2		2
P12265	Beta-glucuronidase	Gusb													-2,8	1,0	74,1	1	-	1
Q9Z2L6	Multiple inositol polyphosphate phosphatase 1	Minpp1													-2,6	2,0	54,4	1		1
Q91ZG2	Metallophosphoesterase domain-containing protein 1	Mpped1													-2,9	3,0	37,1	1	-	1
Q9R060	Cytosolic Fe-S cluster assembly factor NUBP1	Nubp1													-2,5	6,0	34,0	1	-	1
O35386	Phytanoyl-CoA dioxygenase, peroxisomal	Phyh													-2,8	3,0	38,5	2	-	1
Q9D1G2-1	Isoform 1 of Phosphomevalonate kinase	Pmvk													-2,8	5,0	21,8	2		1
P48453-1	Isoform 2 of Serine/threonine-protein phosphatase 2B catalytic	Ppp3cb													-5,8	2,0	59,0	1	-	1
Q8BIW1	Protein prune homolog	Prune													-2,8	1,0	50,1	1	-	1
P51410	60S ribosomal protein L9	Rpl9													-2,8	5,0	21,8	1	-	1
Q8C650-1	Isoform 1 of Septin-10	Sept10													-2,8	2,0	52,3	1		1
P63166	Small ubiquitin-related modifier 1	Sumo1													-2,7	15,0	11,5	1	-	1
Q8K0G5	Protein TSSC1	Tssc1													-2,7	3,0	43,1	1		1
P83887	Tubulin gamma-1 chain	Tubg1													-2,6	2,0	51,0	1	-	1
Q91XD6	Vacuolar protein-sorting-associated protein 36	Vps36													-2,6	3,0	43,6	1	-	1
P53657-1	Isoform R-type of Pyruvate kinase isozymes R/L	Pklr													-5,5	2,0	62,2	21	1	2
P37804	Transgelin	Tagin													-5,5	6,0	22,5	1	-	1
P60710	Actin, cytoplasmic 1	Actb	-110,6	53,0	41,6	506	2	21	-134,7	63,0	41,6	993	2	24						
P28352	DNA-(apurinic or apyrimidinic site) lyase	Apex1	-12,5	10,0	35,4	5	-	2	-11,4	10,0	35,4	2	-	2						
P68368	Tubulin alpha-4A chain	Tuba4a	-89,6	44,0	49,8	240	4	16	-89,2	42,0	49,8	432	5	16						
035226-1	Isoform Rpn10A of 26S proteasome non-ATPase regulatory	Psmd4	-18,0	17,0	40,6	17	-	5	-25,1	26,0	40,6	23	2	7						
Q8BKC5-1	Isoform 1 of Importin-5	lpo5	-3,2	1,0	123,4	2	-	1	-39,0	16,0	123,4	26	-	13						
Q9WTX5	S-phase kinase-associated protein 1	Skp1	-7,9	12,0	18,6	6	-	2	-20,1	24,0	18,6	17	-	6						
Q9JII6	Alcohol dehydrogenase [NADP+]	Akr1a1	-11,0	8,0	36,5	5	-	2	-12,5	14,0	36,5	8	-	3						
Q9CWM4	Prefoldin subunit 1	Pfdn1	-3,3	8,0	14,2	3	-	1	-6,3	17,0	14,2	7	-	2						
E9Q616	Uncharacterized protein	Ahnak	-6,1	0,0	603,5	3	-	1	-18,8	1,0	603,5	9	-	5						
Q91WJ8-1	Isoform 1 of Far upstream element-binding protein 1	Fubp1	-16,7	13,0	68,4	7	-	6	-4,6	3,0	68,4	3	-	2						
Q8BPB0	Mps one binder kinase activator-like 1A	Mobkl1a	-3,4	5,0	25,0	3	-	1	-3,1	5,0	25,0	5	-	1						
Q91YI0	Argininosuccinate lyase	Asl	-10,0	7,0	51,6	5	-	3	-6,7	4,0	51,6	4	-	2						
Q3ULI3	Putative uncharacterized protein	Psmd9	-8,2	9,0	25,3	3	-	2	-7,8	10,0	25,3	6	-	2						
Q9CX56	26S proteasome non-ATPase regulatory subunit 8	Psmd8	-3,5	4,0	39,8	1	-	1	-6,1	7,0	39,8	6	-	2						
Q9WV98	Mitochondrial import inner membrane translocase subunit Tim9	Timm9	-7,4	42,0	10,3	5	-	3	-4,2	12,0	10,3	2	-	1						
Q8VEJ4	Notchless protein homolog 1	NIe1	-3,4	3,0	53,0	1	-	1	-6,7	3,0	53,0	6	-	1						
Q9JHU4	Cytoplasmic dynein 1 heavy chain 1	Dync1h1	-2,7	0,0	531,3	1	-	1	-14,8	1,0	531,3	6	-	4						
P46460	Vesicle-fusing ATPase	Nsf	-12,1	4,0	82,5	3	-	3	-6,3	1,0	82,5	3	-	1						
0000000	290 ribecomal protein 622 mitechendrial	Mrnc22	-25	2.0	41.1	2		1	-2.6	2.0	41.1	2		1						

					IS						RMS	;					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	l Spectres	Pep Specif Uniq	Pep Uniq
P61759	Prefoldin subunit 3	Vbp1	-3,3	4,0	22,3	1	-	1	-4,1	10,0	22,3	3	-	2	-					
035286	Putative pre-mRNA-splicing factor ATP-dependent RNA helicase	Dhx15	-7,7	5,0	90,8	3	-	3	-3,2	1,0	90,8	2	-	1						
Q8BH93	MAPK-interacting and spindle-stabilizing protein-like	Mapk1ip1I	-4,7	10,0	23,8	3		1	-4,5	10,0	23,8	3	-	1						
Q80YV2-1	Isoform 1 of Nuclear-interacting partner of ALK	Zc3hc1	-4,5	2,0	55,1	2	-	1	-7,8	2,0	55,1	3	-	1						
Q60598	Src substrate cortactin	Cttn	-7,6	4,0	61,1	2		2	-5,4	4,0	61,1	2	-	2						
Q99J36	THUMP domain-containing protein 1	Thumpd1	-10,6	8,0	38,8	2	-	2	-4,9	8,0	38,8	3	-	2						
Q3ULL9	Putative uncharacterized protein	Acad9	-9,9	5,0	68,6	4		3	-4,2	2,0	68,6	1	-	1						
Q923D4	Splicing factor 3B subunit 5	Sf3b5	-3,4	17,0	10,0	1	-	1	-3,9	17,0	10,0	4	-	1						
Q80X50-1	Isoform 1 of Ubiquitin-associated protein 2-like	Ubap2l	-3,2	1,0	116,6	1	-	1	-10,0	2,0	116,6	4	-	2						
Q8VDF2	E3 ubiquitin-protein ligase UHRF1	Uhrf1	-4,0	1,0	88,1	3	-	1	-4,4	3,0	88,1	2	-	2						
Q62419	Endophilin-A2	Sh3gl1	-3,4	3,0	41,4	2	-	1	-7,4	7,0	41,4	2	-	2						
Q80VJ3	Deoxyribonucleoside 5'-monophosphate N-glycosidase	Rcl	-4,5	8,0	18,9	1	-	1	-4,9	8,0	18,9	4	-	1						
Q9CZU3	Superkiller viralicidic activity 2-like 2	Skiv2l2	-3,2	1,0	117,4	2		1	-8,3	1,0	117,4	2	-	1						
Q8CIN4	Serine/threonine-protein kinase PAK 2	Pak2	-3,5	2,0	57,8	1	-	1	-11,0	6,0	57,8	3	-	2						
B2RQC6	Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase	Cad	-4,0	0,0	242,9	1	-	1	-10,2	2,0	242,9	3	-	3						
Q9JIH2	Nuclear pore complex protein Nup50	Nup50	-3,7	2,0	49,4	1	-	1	-5,7	5,0	49,4	3	-	2						
Q9DBG3-1	Isoform 1 of AP-2 complex subunit beta	Ap2b1	-2,6	1,0	104,4	1	-	1	-6,4	2,0	104,4	3	-	2						
Q9DCC8	Mitochondrial import receptor subunit TOM20 homolog	Tomm20	-3,0	8,0	16,2	1	-	1	-3,4	8,0	16,2	2	-	1						
Q9R1M5-1	Isoform 1 of NACHT, LRR and PYD domains-containing protein 5	NIrp5	-3,5	1,0	131,1	2	-	1	-2,8	1,0	131,1	1	-	1						
Q9Z1Q9	ValyI-tRNA synthetase	Vars	-3,5	0,0	140,0	1	-	1	-4,9	0,0	140,0	2	-	1						
Q8VE70	Programmed cell death protein 10	Pdcd10	-3,1	5,0	24,6	1	-	1	-3,4	7,0	24,6	1	-	1						
Q8BFY9-1	Isoform 1 of Transportin-1	Tnpo1	-2,8	1,0	102,2	1	-	1	-4,4	1,0	102,2	2	-	1						
Q8BTI8-1	Isoform 1 of Serine/arginine repetitive matrix protein 2	Srrm2	-3,7	0,0	294,3	2	-	1	-4,3	0,0	294,3	1	-	1						
P40336-1	Isoform 1 of Vacuolar protein sorting-associated protein 26A	Vps26a	-5,9	7,0	38,0	2	-	2	-2,8	3,0	38,0	1	-	1						
Q8R3C0	Mini-chromosome maintenance complex-binding protein	Mcmbp	-2,6	1,0	72,7	1	-	1	-6,5	4,0	72,7	2	-	2						
Q8JZX4	Splicing factor 45	Rbm17	-7,3	3,0	45,2	1	-	1	-5,2	3,0	45,2	1	-	1						
P97929	Breast cancer type 2 susceptibility protein homolog	Brca2	-3,4	0,0	370,2	1	-	1	-3,8	0,0	370,2	1	-	1						
Q9CWK3	CD2 antigen cytoplasmic tail-binding protein 2	Cd2bp2	-3,0	4,0	37,6	1	-	1	-5,7	4,0	37,6	1	-	1						
Q8BGB7-1	Isoform 1 of Enolase-phosphatase E1	Enoph1	-4,2	4,0	28,5	1	-	1	-2,8	4,0	28,5	1	-	1						
P70353	Nuclear transcription factor Y subunit gamma	Nfyc	-2,6	3,0	37,1	1	-	1	-4,4	3,0	37,1	1	-	1						
P63037	DnaJ homolog subfamily A member 1	Dnaja1							-8,3	6,0	44,7	8	-	2						
Q8BW50	Putative uncharacterized protein	Eef1d							-15,4	33,0	13,2	17	1	4						
D3YYZ2	MCG1031578	Gm5239							-12,2	35,0	14,0	19	1	4						
P70696	Histone H2B type 1-A	Hist1h2ba							-4,5	20,0	14,2	10	1	2						
E9QPE7	Uncharacterized protein	Myh11							-15,3	3,0	223,0	8	1	6						
Q61656	Probable ATP-dependent RNA helicase DDX5	Ddx5							-20,6	11,0	69,2	21	2	7						
Q922D8	C-1-tetrahydrofolate synthase, cytoplasmic	Mthfd1							-30,4	8,0	101,1	31	-	6						
Q78PY7	Staphylococcal nuclease domain-containing protein 1	Snd1							-27,4	11,0	101,9	17	-	8						
P62908	40S ribosomal protein S3	Rps3							-21,3	26,0	26,6	16	-	5						
Q8R5L1	Complement component 1, q subcomponent binding protein	C1qbp							-8,7	7,0	30,9	13	-	1						

					IS						RMS	5					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Uniq	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	l Spectres	Pep Specif Uniq	Pep Uniq
Q9WTP6-1	Isoform 1 of Adenylate kinase 2, mitochondrial	Ak2							-13,4	19,0	26,4	7	-	4						
P67984	60S ribosomal protein L22	Rpl22							-13,1	30,0	14,7	8	-	3						
P05201	Aspartate aminotransferase, cytoplasmic	Got1							-11,5	11,0	46,1	7	1	4						
Q3UJH8	Aspartate aminotransferase	Got1							-10,8	11,0	46,1	7	1	4						
Q9Z110-1	Isoform Long of Delta-1-pyrroline-5-carboxylate synthase	Aldh18a1							-14,4	7,0	87,1	8	-	5						
P19157	Glutathione S-transferase P 1	Gstp1							-9,8	12,0	23,5	7	-	2						
P06728	Apolipoprotein A-IV	Apoa4							-13,1	12,0	44,9	7	-	4						
Q99MD9-1	Isoform 1 of Nuclear autoantigenic sperm protein	Nasp							-11,7	7,0	83,8	7	-	3						
009131	Glutathione S-transferase omega-1	Gsto1							-10,3	13,0	27,4	6	-	3						
Q61024	Asparagine synthetase [glutamine-hydrolyzing]	Asns							-9,0	4,0	64,1	6	-	2						
Q8BKZ9	Pyruvate dehydrogenase protein X component, mitochondrial	Pdhx							-5,3	9,0	53,9	4	-	3						
008797	SPI6	Serpinb9							-7,8	8,0	42,1	6	-	2						
P62305	Small nuclear ribonucleoprotein E	Snrpe							-7,9	24,0	10,7	6	-	2						
P62858	40S ribosomal protein S28	Rps28							-3,2	17,0	7,8	6	-	1						
Q80YQ1	Thrombospondin 1	Thbs1							-7,7	3,0	129,5	6	-	3						
P97351	40S ribosomal protein S3a	Rps3a							-3,4	4,0	29,8	5	-	1						
P51881	ADP/ATP translocase 2	Slc25a5							-15,0	15,0	32,8	4	-	4						
P23116	Eukaryotic translation initiation factor 3 subunit A	Eif3a							-13,1	3,0	161,7	5	-	4						
P43406	Integrin alpha-V	ltgav							-12,3	4,0	115,1	5	-	4						
Q8JZY2	COMM domain-containing protein 10	Commd10							-6,2	13,0	22,7	4	-	2						
Q8VDJ3	Vigilin	Hdlbp							-12,1	2,0	141,5	5	-	2						
P29341	Polyadenylate-binding protein 1	Pabpc1							-10,1	6,0	70,5	5	-	3						
P46656	Adrenodoxin, mitochondrial	Fdx1							-3,2	4,0	20,0	4	-	1						
Q64514-1	Isoform Long of Tripeptidyl-peptidase 2	Tpp2							-9,0	2,0	139,7	4	-	3						
P62334	26S protease regulatory subunit 10B	Psmc6							-12,3	14,0	44,1	4	-	4						
Q9CQR2	40S ribosomal protein S21	Rps21							-6,8	28,0	9,1	4	-	2						
Q9WV55	Vesicle-associated membrane protein-associated protein A	Vapa							-11,0	16,0	27,8	4	-	3						
P47856-1	Isoform 1 of Glucosaminefructose-6-phosphate	Gfpt1							-9,5	3,0	78,4	2	-	2						
Q99J62	Replication factor C subunit 4	Rfc4							-6,9	9,0	39,8	3	-	3						
Q923G2	DNA-directed RNA polymerases I, II, and III subunit RPABC3	Polr2h							-9,3	17,0	17,1	3	-	2						
P07607	Thymidylate synthase	Tyms							-4,8	3,0	34,9	2	-	1						
P11440	Cyclin-dependent kinase 1	Cdk1							-2,8	1,0	102,2	1	-	1						
035841	Apoptosis inhibitor 5	Api5							-3,7	2,0	56,6	1	-	1						
P97478	Ubiquinone biosynthesis protein COQ7 homolog	Coq7							-3,6	5,0	23,9	2	-	1						
Q9DCW4	Electron transfer flavoprotein subunit beta	Etfb							-3,7	8,0	27,5	3	-	2						
Q8BIQ5-1	Isoform 1 of Cleavage stimulation factor subunit 2	Cstf2							-3,7	2,0	61,2	2	-	1						
008804	NK13	Serpinb6b							-9,6	13,0	42,4	3	-	3						
E9QNX7	Uncharacterized protein	Atp4a							-4,8	3,0	113,9	2	1	2						
Q8VDN2	Sodium/potassium-transporting ATPase subunit alpha-1	Atp1a1							-6,2	2,0	112,8	2	1	2						
Q9CQ65	S-methyl-5'-thioadenosine phosphorylase	Mtap							-9,1	12,0	31,0	3	-	2						

			IS Poid Pep						RMS						FA					
ID	Nom de la Protéine	Nom du Gène	log(F value)	% Protéine Couverte	Poid Moleculaire (KDa)	Snertres	Pep Specif Unio	Pen Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif	Pen Unia	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unio	Pen Unia
Q9Z247	Peptidyl-prolyl cis-trans isomerase FKBP9	Fkbp9	iog(2 funct)	councile	(nou)	Specials	oniq	rep oniq	-3,1	2,0	62,9	3	-	1	Paracy.	courterte	(nod)	spectres	oniq	r cp oinq
P30285	Cyclin-dependent kinase 4	Cdk4							-4,7	5,0	33,6	3	-	1						
Q99J77	N-acetylneuraminic acid synthase (Sialic acid synthase)	Nans							-5,7	8,0	39,9	3	-	2						
Q99K85	Phosphoserine aminotransferase	Psat1							-5,1	6,0	40,4	3	-	2						
Q9CQL7	MORF4 family-associated protein 1	Mrfap1							-10,2	26,0	14,1	3	-	2						
P62204	Calmodulin	Calm1							-5,0	8,0	16,8	3	-	1						
Q61245-1	Isoform Long of Collagen alpha-1(XI) chain	Col11a1							-3,4	0,0	180,7	2	-	1						
P63325	40S ribosomal protein S10	Rps10							-6,0	13,0	18,8	2	-	2						
Q8JZV7	Putative N-acetylglucosamine-6-phosphate deacetylase	Amdhd2							-3,4	3,0	43,4	1	-	1						
Q9D1E6	Tubulin-folding cofactor B	Tbcb							-4,2	4,0	27,3	1	-	1						
Q925B0-1	Isoform 1 of PRKC apoptosis WT1 regulator protein	Pawr							-8,9	4,0	35,8	2	-	1						
Q60936-1	Isoform 1 of Chaperone activity of bc1 complex-like,	Adck3							-5,0	1,0	71,6	2	-	1						
Q62418-1	Isoform 1 of Drebrin-like protein	Dbnl							-5,7	7,0	48,6	2	-	2						
P11103-1	Isoform 1 of Poly [ADP-ribose] polymerase 1	Parp1							-7,0	2,0	112,9	2	-	2						
Q8VE88-1	Isoform 1 of Protein FAM114A2	Fam114a2							-6,9	3,0	53,9	1	-	1						
Q9R1E0	Forkhead box protein O1	Foxo1							-6,3	4,0	69,4	2	-	2						
P54823	Probable ATP-dependent RNA helicase DDX6	Ddx6							-3,0	4,0	54,1	2	-	2						
Q3UHK6-1	Isoform 1 of Teneurin-4	Odz4							-5,0	0,0	308,0	2	-	1						
Q91VS7	Microsomal glutathione S-transferase 1	Mgst1							-4,8	7,0	17,5	2		1						
Q3UKJ7-1	Isoform 1 of WD40 repeat-containing protein SMU1	Smu1							-4,7	2,0	57,4	2	-	1						
Q99LD9	Translation initiation factor eIF-2B subunit beta	Eif2b2							-4,3	4,0	38,8	2	-	1						
Q9WV32	Actin-related protein 2/3 complex subunit 1B	Arpc1b							-4,0	7,0	18,8	2	-	1						
Q9CQ89-1	Isoform 1 of Protein CutA	Cuta							-4,0	7,0	18,8	2	-	1						
P56959	RNA-binding protein FUS	Fus							-3,6	3,0	52,6	2	-	1						
Q3UX61	N-alpha-acetyltransferase 11, NatA catalytic subunit	Naa11							-8,6	14,0	24,6	2	-	2						
Q3UGA8	Amidophosphoribosyltransferase	Ppat							-7,2	4,0	61,9	2	-	2						
P08122	Collagen alpha-2(IV) chain	Col4a2							-3,7	1,0	167,1	2	-	2						
Q8C2Q3-1	Isoform 1 of RNA-binding protein 14	Rbm14							-7,1	3,0	69,3	2	-	2						
035381	Acidic leucine-rich nuclear phosphoprotein 32 family member A	Anp32a							-3,9	4,0	28,4	2	-	1						
Q91V12-2	Isoform A of Cytosolic acyl coenzyme A thioester hydrolase	Acot7							-3,6	4,0	37,4	2	-	1						
Q80UM7	Mannosyl-oligosaccharide glucosidase	Mogs							-4,3	1,0	91,7	2	-	1						
Q8BMJ2	Leucyl-tRNA synthetase, cytoplasmic	Lars							-4,4	2,0	134,0	2	-	2						
Q99K01-1	Isoform 1 of Pyridoxal-dependent decarboxylase domain-	Pdxdc1							-8,2	3,0	87,2	2	-	2						
Q9CZ04-1	Isoform 1 of COP9 signalosome complex subunit 7a	Cops7a							-4,2	5,0	30,1	1	-	1						
Q6ZWU9	40S ribosomal protein S27	Rps27							-5,1	15,0	9,4	2	-	1						
P62889	60S ribosomal protein L30	Rpl30							-6,3	24,0	12,7	2	-	2						
P62830	60S ribosomal protein L23	Rpl23							-6,8	10,0	14,8	2	-	1						
P03930	ATP synthase protein 8	Mtatp8							-3,8	14,0	7,7	2	-	1						
Q8CCF0-1	Isoform 1 of U4/U6 small nuclear ribonucleoprotein Prp31	Prpf31							-3,1	2,0	55,3	2	-	1						
P60867	40S ribosomal protein S20	Rps20							-5,3	19,0	13,3	2	-	2						

					IS						RMS	;					FA			
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unig	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Uniq	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	F Spectres	Pep Specif Uniq	Pep Uniq
Q9QZE5	Coatomer subunit gamma	Сорд							-5,3	4,0	97,3	2	-	2						
P48758	Carbonyl reductase [NADPH] 1	Cbr1							-3,3	5,0	30,5	2	-	1						
Q78JW9	Ubiquitin domain-containing protein UBFD1	Ubfd1							-8,9	8,0	40,0	2	-	2						
Q8BP27-1	Isotorm 1 of Swi5-dependent recombination DNA repair protein 1	Meir5							-5,3	3,0	35,1	1	-	1						
Q91XV3	Brain acid soluble protein 1	Basp1							-3,4	9,0	22,0	1	-	1						
Q9D600	DNA replication complex GINS protein PSF2	Gins2							-3,7	7,0	21,1	1	-	1						
Q9D7E4	UPF0449 protein C19orf25 homolog								-3,8	11,0	12,0	1	-	1						
P10711-1	Isoform 2 of Transcription elongation factor A protein 1	Tcea1							-3,3	3,0	33,8	1	-	1						
Q91WE2	Protein FAM192A	Fam192a							-4,9	4,0	28,6	1	-	1						
Q9D0S9	Histidine triad nucleotide-binding protein 2, mitochondrial	Hint2							-3,6	7,0	17,2	1	-	1						
P11157	Ribonucleoside-diphosphate reductase subunit M2	Rrm2							-3,0	2,0	45,0	1	-	1						
Q8K1Z0	Ubiquinone biosynthesis protein COQ9, mitochondrial	Coq9							-4,6	6,0	35,0	1	-	1						
Q9D8Y0	EF-hand domain-containing protein D2	Efhd2							-3,4	5,0	26,7	1	-	1						
Q9CRB9	Colled-coll-helix-colled-coll-helix domain-containing protein 3, mitochondrial	Chchd3							-3,2	6,0	26,2	1	-	1						
P10852	4F2 cell-surface antigen heavy chain	Slc3a2							-3,1	3,0	58,2	1	-	1						
Q8R0Y6	Aldehyde dehydrogenase family 1 member L1	Aldh1l1							-3,6	1,0	98,5	1	-	1						
Q9D0B6-1	Isotorm 1 of Polysaccharide biosynthesis domain-containing	Pbdc1							-4,1	5,0	22,1	1	-	1						
P47791-1	Isoform Mitochondrial of Glutathione reductase, mitochondrial	Gsr							-5,2	2,0	53,5	1	-	1						
Q61074	Protein phosphatase 1G	Ppm1g							-3,4	2,0	58,6	1	-	1						
P03958	Adenosine deaminase	Ada							-3,7	3,0	39,9	1	-	1						
P97461	40S ribosomal protein S5	Rps5							-4,4	8,0	22,8	1	-	1						
Q9Z2V4	Phosphoenolpyruvate carboxykinase, cytosolic [GTP]	Pck1							-7,0	2,0	69,2	1	-	1						
Q9CR27	WASH complex subunit CCDC53	Ccdc53							-3,2	6,0	21,0	1	-	1						
Q6P9Z1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3	Smarcd3							-5,8	2,0	54,9	1	-	1						
054946-1	Isoform A of DnaJ homolog subfamily B member 6	Dnajb6							-4,3	3,0	39,7	1	-	1						
Q64261	Cyclin-dependent kinase 6	Cdk6							-4,8	4,0	36,9	1	-	1						
Q9CXA2	Probable proline racemase	L3hypdh							-3,2	3,0	37,7	1	-	1						
Q8VCG1	Deoxyuridine triphosphatase	Dut							-3,9	5,0	21,2	1	-	1						
Q64331	Myosin-VI	Муоб							-4,2	1,0	146,2	1	-	1						
P62264	40S ribosomal protein S14	Rps14							-5,0	8,0	16,2	1	-	1						
Q9R1J0	Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating	Nsdhl							-3,7	3,0	40,6	1	-	1						
Q8BXL7	ADP-ribosylation factor-related protein 1	Arfrp1							-3,7	4,0	22,6	1	-	1						
Q9Z1X4-1	Isoform 1 of Interleukin enhancer-binding factor 3	llf3							-3,5	1,0	95,8	1	-	1						
P27546-1	Isoform 1 of Microtubule-associated protein 4	Map4							-3,9	1,0	117,2	1	-	1						
Q8R010	Aminoacyl tRNA synthase complex-interacting multifunctional protein 2	Aimp2							-6,9	7,0	35,3	1	-	1						
Q6ZPJ3	Ubiquitin-conjugating enzyme E2 O	Ube2o							-3,6	1,0	140,6	1	-	1						
Q3UQ44	Ras GTPase-activating-like protein IQGAP2	lqgap2							-3,3	0,0	180,3	1	-	1						
Q922Q4	Pyrroline-5-carboxylate reductase 2	Pycr2							-3,2	4,0	33,6	1	-	1						
Q61543	Golgi apparatus protein 1	Glg1							-4,3	0,0	133,5	1	-	1						
P63005-1	isotorm 1 of Platelet-activating factor acetylhydrolase IB subunit albha	Pafah1b1							-3,6	3,0	46,5	1	-	1						

			15				RMS	5					FA							
				% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif	
ID	Nom de la Proteine	Nom du Géne	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq
Q8KUD5	Elongation factor G, mitochondrial	GJM1							-3,3	1,0	83,4	1	-	1						_
P61082	NEDD8-conjugating enzyme Ubc12	Ube2m							-3,0	5,0	20,8	1	-	1						
P56391	Cytochrome c oxidase subunit 6B1	Cox6b1							-3,1	12,0	10,0	1	-	1						
Q8VE37	Regulator of chromosome condensation	Rcc1							-4,4	3,0	44,8	1	-	1						
Q80WP0	Killer cell lectin-like receptor family E member 1	Kire1							-3,4	4,0	26,2	1	-	1						
009061	Proteasome subunit beta type-1	Psmb1							-4,2	5,0	26,3	1	-	1						
Q9R0Q7	Prostaglandin E synthase 3	Ptges3							-3,3	8,0	18,6	1	-	1						
Q3TA75	Putative uncharacterized protein (Fragment)	Fxr2							-4,6	1,0	70,4	1	-	1						
Q9CQA3	Succinate dehydrogenase [ubiquinone] iron-sultur subunit, mitochondrial	Sdhb							-3,9	4,0	31,7	1	-	1						
POCOS6	Histone H2A.Z	H2afz							-4,0	10,0	13,5	1	-	1						
Q9CR51	V-type proton ATPase subunit G 1	Atp6v1g1							-4,5	16,0	13,6	1	-	1						
Q5U5M8	Biogenesis of lysosome-related organelles complex 1 subunit 3	Bloc1s3							-4,4	8,0	20,3	1	-	1						
P00375	Dihydrofolate reductase	Dhfr							-3,7	15,0	8,2	1	-	1						
Q06185	ATP synthase subunit e, mitochondrial	Atp5i							-3,7	15,0	8,2	1	-	1						
A2RSX9	Arfip1 protein	Arfip1							-5,4	8,0	38,3	2	-	2						
B8JJI2	Novel protein (A930001N09Rik)	A930001N09Ril	k						-2,6	1,0	74,4	1	-	1						
D3Z482	Uncharacterized protein	Ankrd26							-2,9	0,0	191,9	1		1						
E9PZW0	Uncharacterized protein	Dsp							-2,6	0,0	261,1	1	-	1						
055143-1	Isoform SERCA2B of Sarcoplasmic/endoplasmic reticulum calcium	Atp2a2							-2,5	1.0	114,7	1		1						
P24288	A I Pase 2 Branched-chain-amino-acid aminotransferase, cytosolic	Bcat1							-5.2	5.0	42.7	2	-	2						
P45878	Peptidyl-prolyl cis-trans isomerase FKBP2	Fkhn2							-3.0	80	15.3	1		1						
P53996-1	Isoform 1 of Cellular nucleic acid-binding protein	Cnbn							-2.6	80	19.5	1		1						
P59999	Actin-related protein 2/3 complex subunit 4	Arnc4							-3.0	6.0	19.6	2		1						
008024-1	Icoform 1 of Core-binding factor subunit beta	Chfh							-2.7	9.0	21.0	1		1						
0311497-1	Isoform 1 of E3 ubiquitip-protein ligase HECTD3	Hectd3							-2,7	1.0	07.2	1		1						
0211414	Butative uncharacterized protein	06262							-2,0	2.0	08.0	2	-	2						
0210414		5J502							-4,9	5,0	50,0	2		2						
Q30W35	Novel gene (ESSU009P21Rik)	FDXW21							-5,0	5,0	50,5	2	-	2						_
Q55W09-1	Isoform 1 of Acetyl-CoA Carboxylase 1	Acaca							-4,9	1,0	264,9	2	-	2						
Q61545	RNA-binding protein Ews	EWSF1							-2,1	2,0	68,3	1		1						_
Q62425	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4	Ndufa4							-2,9	14,0	9,2	2	-	1						
Q6ZWQ0-1	Isoform 1 of Nesprin-2	Syne2							-2,7	0,0	781,8	1	-	1						
Q80VJ2-1	Isoform 1 of Steroid receptor RNA activator 1	Sra1							-4,7	12,0	24,2	2	-	2						
Q8BGT5	Alanine aminotransferase 2	Gpt2							-2,8	2,0	57,8	1	•	1						
Q8C5P5-1	Isoform 1 of 5'-nucleotidase domain-containing protein 1	Nt5dc1							-2,6	2,0	53,0	1	-	1						
Q8CGY8-1	acetylglucosaminyltransferase 110 kDa subunit	Ogt							-2,9	1,0	116,8	2	-	1						
Q8CH25-1	Isoform 1 of SAFB-like transcription modulator	Sitm							-2,5	1,0	116,7	1	-	1						
Q8K354	Carbonyl reductase 3	Cbr3							-2,9	3,0	30,9	1	-	1						
Q8R2Y8	Peptidyl-tRNA hydrolase 2, mitochondrial	Ptrh2							-2,7	8,0	19,4	1	-	1						
Q8VCH0	3-ketoacyl-CoA thiolase B, peroxisomal	Acaa1b							-4,6	7,0	43,9	2	-	2						
Q91YN9	BAG family molecular chaperone regulator 2	Bag2							-3,0	5,0	23,4	1	-	1						

			IS Poid Pep						RMS	5					FA					
ID	Nom de la Protéine	Nom du Gène	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unig	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unig	log(E value)	% Protéine Couverte	Poid Moleculaire (KDa)	Spectres	Pep Specif Unia	Pep Unia
Q91YP3	Putative deoxyribose-phosphate aldolase	Dera				-			-2,7	4,0	34,9	1	-	1				-		
Q921W4-1	Isoform 1 of Quinone oxidoreductase-like protein 1	Cryzl1							-2,7	3,0	38,6	1	-	1						
Q9CY50	Translocon-associated protein subunit alpha	Ssr1							-2,7	3,0	32,0	1	-	1						
Q9CZ28	Vacuolar-sorting protein SNF8	Snf8							-2,9	4,0	28,8	1	-	1						
Q9D0R8	Protein LSM12 homolog	Lsm12							-2,6	6,0	21,6	1	-	1						
Q9D7E3	Ovarian cancer-associated gene 2 protein homolog	Ovca2							-2,7	5,0	24,2	1	-	1						
Q9JK48-1	Isoform 1 of Endophilin-B1	Sh3glb1							-2,8	3,0	40,7	1	-	1						
Q9JKP7	DNA polymerase epsilon subunit 3	Pole3							-2,8	7,0	16,5	1	-	1						
Q9JLM9	Growth factor receptor-bound protein 14	Grb14							-2,9	2,0	60,4	1	-	1						
Q9WU84	Copper chaperone for superoxide dismutase	Ccs							-2,9	4,0	28,8	1	-	1						
Q9Z206-2	Isoform 2 of Neuroepithelial cell-transforming gene 1 protein	Net1							-2,6	2,0	61,6	1	-	1						
Q9Z2R6	Protein unc-119 homolog A	Unc119							-2,9	5,0	26,9	1	-	1						
008738	Caspase-6	Casp6	-2,6	3,0	31,5	1	-	1												
055032	SH2/SH3 adaptor protein	Nck1	-2,8	3,0	42,6	1	-	1												
Q61206	Platelet-activating factor acetylhydrolase IB subunit beta	Pafah1b2	-2,8	9,0	25,5	1	-	1												
Q811L6-1	Isoform 1 of Microtubule-associated serine/threonine-protein kinase 4	Mast4	-2,6	0,0	283,7	1	-	1												
Q99P31	Hsp70-binding protein 1	Hspbp1	-2,9	3,0	39,1	1	-	1												
Q8BGH2	Sorting and assembly machinery component 50 homolog	Samm50	-4,3	4,0	51,7	2	-	2												
Q8C599	Putative uncharacterized protein	Celsr2	-2,8	3,0	17,1	1	-	1												
Q8CES0-1	Isoform 1 of N-alpha-acetyltransferase 30, NatC catalytic subunit	Naa30	-5,0	8,0	39,3	2	-	2												
Q8HW98	IgLON family member 5	Iglon5	-2,6	2,0	36,7	1	-	1												
Q9R0U0-1	Isoform 1 of Serine/arginine-rich splicing factor 10	Srsf10	-2,7	4,0	31,2	1	-	1												
Q922F4	Tubulin beta-6 chain	Tubb6	-64,1	35,0	50,0	143	2	14												
Q9CWU5-1	Isoform 1 of Protein Filia	Khdc3	-51,1	29,0	47,9	77	1	10												
P26041	Moesin	Msn	-16,8	10,0	67,6	14	2	5												
Q9D5J8	Putative uncharacterized protein	Gstm6	-10,7	10,0	27,2	5	-	2												
Q3UDK4	Putative uncharacterized protein	Anxa6	-8,9	7,0	75,8	4	-	4												
P97379-1	Isoform A of Ras GTPase-activating protein-binding protein 2	G3bp2	-10,1	5,0	54,0	7	1	3												
Q61233	Plastin-2	Lcp1	-23,5	10,0	70,0	16	-	5												
Q63932	Dual specificity mitogen-activated protein kinase kinase 2	Map2k2	-5,1	6,0	44,3	2	1	2												
P02104	Hemoglobin subunit epsilon-Y2	Hbb-y	-6,7	15,0	16,1	9	1	2												
E9Q7L0	Uncharacterized protein	Ogdhl	-15,0	5,0	116,4	4	3	4												
Q9D964	Glycine amidinotransferase, mitochondrial	Gatm	-16,4	14,0	48,2	12	-	4												
Q8R0X9	Serine hydroxymethyltransferase	Shmt1	-11,3	7,0	52,5	4	-	3												
P27106	Muellerian-inhibiting factor	Amh	-10,5	7,0	59,6	7	-	3												
Q8K2T1-1	Isoform 1 of NmrA-like family domain-containing protein 1	Nmral1	-16,5	18,0	34,3	6	-	4												
088712-1	Isoform 1 of C-terminal-binding protein 1	Ctbp1	-13,0	11,0	47,6	5	-	4												
Q9CQS7	Developmental pluripotency-associated protein 5A	Dppa5a	-12,0	42,0	13,7	6	-	4												
P11031	Activated RNA polymerase II transcriptional coactivator p15	Sub1	-4,1	15,0	14,3	4	-	2												
P17563	Selenium-binding protein 1	Selenbp1	-12,2	8,0	52,4	6	-	4												

Nom de la Protéme Zyx -12,4 8,0 60,4 5 -3 -3 -12,4 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -12,4 11,0 38,9 5 -3 -12,4 -1	
Q3TCR9 Putative uncharacterized protein Zyx -12,4 8,0 60,4 5 - 3 Q61249 Immunoglobulin-binding protein 1 <i>Igbp1</i> -14,5 11,0 38,9 5 - 3	re Pep Specif Spectres Uniq Pep Uniq
Q61249 Immunoglobulin-binding protein 1 Igbp 1 -14,5 11,0 38,9 5 - 3	
Q9DCHb AN1-type zinc finger protein 6 Zfand6 -5,3 5,0 23,9 3 - 1	
P61161 Actin-related protein 2 Actr2 -8,1 9,0 44,6 4 - 3	
E9PXM9 Uncharacterized protein <i>Fbxw24</i> -7,4 4,0 53,3 3 - 2	
Q04857 Collagen alpha-1(VI) chain Col6a1 -11,0 2,0 108,3 4 - 2	
088271 Craniofacial development protein 1 Cfdp1 -5,4 10,0 32,8 3 - 2	
Q9R111 Guanine deaminase Gda -8,2 4,0 50,9 4 - 2	
Q6HA09-1 Isoform 1 of Astacin-like metalloendopeptidase Ast/ -15,2 15,0 47,3 4 - 4	
A3KMP2-1 Isoform 1 of Tetratricopeptide repeat protein 38 Ttc38 -8,5 7,0 52,1 4 - 3	
P97470 Serine/threonine-protein phosphatase 4 catalytic subunit Ppp4c -3,1 3,0 35,0 2 - 1	
Q9D892 Inosine triphosphate pyrophosphatase Itpa -3,6 7,0 21,8 1 - 1	
Q8K411-1 Isoform 1 of Presequence protease, mitochondrial Pitrm1 -5,3 4,0 117,2 3 - 3	
Q62005 Zona pellucida sperm-binding protein 1 Zp1 -5,2 5,0 68,6 3 - 2	
Q8BHG2-1 Isoform 1 of UPF0587 protein C1orf123 homolog -4,2 18,0 17,9 3 - 2	
008691 Arginase-2, mitochondrial Arg2 -6,3 8,0 38,8 3 - 2	
070194 Eukaryotic translation initiation factor 3 subunit D Eif3d -6,4 4,0 63,8 3 - 2	
Q9CYA6 Zinc finger CCHC domain-containing protein 8 Zcchc8 -5,4 1,0 77,9 1 - 1	
Q9Z2C8-1 Isoform 1 of Y-box-binding protein 2 Ybx2 -5,0 4,0 38,2 2 - 1	
Q56926 Thyroid hormone receptor-associated protein 3 Thrap3 -5,7 2,0 108,0 2 - 2	
P35821 Tyrosine-protein phosphatase non-receptor type 1 Ptpn1 -7,3 6,0 49,5 2 - 2	
035943 Frataxin, mitochondrial Fxn -3,9 5,0 22,8 1 - 1	
035969-1 Isoform 1 of Guanidinoacetate N-methyltransferase Gamt -4,4 5,0 26,2 1 - 1	
Q9Z2D8-1 Isoform 1 of Methyl-CpG-binding domain protein 3 Mbd3 -3,6 3,0 32,1 1 - 1	
Q91ZR2 Sorting nexin-18 Snx18 -7,0 2,0 67,8 1 - 1	
Q6DFW4 Nucleolar protein 58 Nop58 -3,2 2,0 60,2 1 - 1	
E9PWQ3 Uncharacterized protein Col6a3 -4,8 0,0 286,4 1 - 1	
054818 Tumor protein D53 Tpd52/1 -6,4 6,0 22,4 1 - 1	
Q8K157 Aldose 1-epimerase Galm -6,0 4,0 37,7 1 - 1	
054974 Galectin-7 <i>Lgals</i> 7 -4,7 8,0 15,1 1 - 1	
P60670-1 Isoform 1 of Nuclear protein localization protein 4 homolog Nploc4 -4,8 2,0 67,9 1 - 1	
Q91YP2 Neurolysin, mitochondrial N/n -3,5 1,0 80,3 1 - 1	
AND dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, Ndufb5 -3,4 5,0 21,6 1 - 1	
Q8BMS4 Hexaprenyldihydroxybenzoate methyltransferase, mitochondrial Coq3 -4,5 4,0 40,8 1 - 1	
Q8VBW6 NEDD8-activating enzyme E1 regulatory subunit Nae1 -3,3 2,0 60,1 1 - 1	
Q61739-1 Isoform Alpha-6X1B of Integrin alpha-6 Itga6 -3,1 1,0 121,9 1 - 1	
Q8BHL8 Proteasome inhibitor PI31 subunit Psmf1 -3,3 4,0 29,6 1 - 1	
Q9D824-1 Isoform 1 of Pre-mRNA 3'-end-processing factor FIP1 Fip1/1 -4,5 2,0 64,8 1 - 1	
Q921E6-1 Isoform 1 of Polycomb protein EED Eed -3,9 3,0 50,1 1 - 1	
Q9QYB1 Chloride intracellular channel protein 4 Clic4 -4,0 5,0 28,6 1 - 1	

					IS						RMS	5					FA			
				% Protéine	Poid Moleculaire		Pep Specif		log(E	% Protéine	Poid Moleculaire		Pep Specif	f	log(E	% Protéine	Poid Moleculaire		Pep Specif	
ID	Nom de la Protéine	Nom du Gène	log(E value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq	value)	Couverte	(KDa)	Spectres	Uniq	Pep Uniq
Q3TC72	Fumarylacetoacetate hydrolase domain-containing protein 2A	Fahd2	-3,9	4,0	34,6	1	-	1												
Q61292	Laminin subunit beta-2	Lamb2	-3,4	0,0	196,1	1	-	1												
E9Q3X0	Uncharacterized protein	Mvp	-3,6	1,0	96,7	1	-	1												

Tableau II en annexe : Liste des fonctions biologiques surreprésentées dans un, deux ou dans les trois stades de développement comparant avec la représentation de ces mêmes fonctions biologiques dans la totalité du génome de *Mus musculus*. Les chiffres entre parenthèses correspondent au nombre total de gênes ou protéines reconnues par la base de données de PANTHER.

	Mus musculus	5				5	
Fonctions Biologiques	liste de référence (22160)	Protéines identifiées IS (766)	P-value	Protéines identifiées RMS (1077)	P-value	Protéines identifiées FA (1078)	P-value
Cycle cellulaire	1673	104	1.10E-06	138	1.62E-07	131	1.26E-05
mitose	574	44	2.30E-04	55	3.99E-04	56	2.24E-04
Organisation composants cellulaires	1262	77	2.46E-04	95	3.30E-03	96	2.48E-03
morphogenèse composants cellulaires	964	57	1.38E-02	69	1.71E-01	68	3.04E-01
Transport mitochondrial	27	7	9.11E-03	6	3.87E-01	4	1.00E00
Morphogenèse des structures anatomiques	964	57	1.38E-02	69	1.71E-01	68	3.04E-01
Production précurseur métabolique et d'énergie	389	51	3.05E-13	68	9.43E-17	66	1.77E-15
ARN localisation	80	12	5.40E-03	11	3.71E-01	11	3.87E-01
Processus métaboliques	8657	487	1.81E-40	701	1.37E-65	670	1.31E-50
processus métaboliques primaires	8326	457	5.65E-33	663	6.16E-56	627	1.86E-40
processus métaboliques des protéines	3482	235	5.69E-23	339	3.15E-36	316	3.77E-27
assemblement des protéines	97	17	1.57E-05	23	1.79E-07	23	1.99E-07
repliement des protéines	203	41	1.27E-16	54	7.36E-21	51	1.68E-18

Fonctions Biologiques	Mus musculus liste de référence (22160)	Protéines identifiées IS (766)	P-value	Protéines identifiées RMS (1077)	P-value	Protéines identifiées FA (1078)	P-value
protéolyse	1246	74	1.01E-03	104	1.33E-05	102	5.66E-05
processus métaboliques des glucides	839	65	4.38E-07	96	3.93E-12	95	1.37E-11
régulation du métabolisme des glucides	21	9	1.32E-05	9	2.13E-04	9	2.23E-04
processus métaboliques monosaccharides	255	26	2.89E-04	33	1.13E-04	35	1.53E-05
voie pentoses-phosphates	10	6	2.96E-04	6	1.99E-03	6	2.05E-03
processus métaboliques glycogène	90	11	6.50E-02	17	5.48E-04	15	8.88E-03
processus métaboliques des acides gras	283	19	9.34E-01	29	3.20E-02	29	3.51E-02
B oxydation des acides gras	49	9	1.16E-02	17	1.11E-07	17	1.20E-07
processus métaboliques des acides aminés (aa) et dérivés	403	30	1.80E-02	56	1.14E-09	47	1.31E-05
processus métaboliques des aa	403	30	1.80E-02	56	1.14E-09	47	1.31E-05
processus biosynthétiques des aa	149	14	1.50E-01	29	1.14E-07	21	3.75E-03
processus cataboliques des aa	86	8	1.00E00	14	1.87E-02	15	5.36E-03
processus métaboliques nucléobase, nucléoside et nucléotide	3853	174	1.71E-02	240	2.89E-03	230	8.32E-02
processus métaboliques ARN	673	64	1.57E-10	86	2.49E-13	87	1.21E-13
transformation ARNm	450	58	6.98E-15	76	5.14E-18	76	7.07E-18
raccordement ARN nucléaire, via spliceosome	368	47	1.01E-11	63	5.06E-15	63	6.58E-15
transformation mARN 3'- extremité	101	12	4.63E-02	17	2.39E-03	17	2.56E-03
processus métaboliques ADN	493	32	1.14E-01	51	1.11E-04	45	1.13E-02

	<i>Mus musculus</i> liste de	Protéines		Protéines		Protéines	
Fonctions Biologiques	référence (22160)	identifiées IS (766)	P-value	identifiées RMS (1077)	P-value	identifiées FA (1078)	P-value
ADN réplication	257	21	5.80E-02	37	1.74E-06	36	6.16E-06
processus métaboliques des pyrimidines	67	8	4.53E-01	15	2.75E-04	11	9.62E-02
processus métaboliques purines	122	19	1.71E-05	34	2.16E-13	31	4.79E-11
traduction	613	61	8.59E-11	93	3.26E-19	74	4.87E-10
amine acétylation des tARN pour la traduction de protéines	41	8	1.93E-02	14	4.25E-06	13	3.26E-05
processus métaboliques des coenzymes	104	19	1.46E-06	27	8.83E-10	25	2.90E-08
processus métaboliques acyl-CoA	28	5	5.41E-01	9	2.10E-03	8	1.49E-02
processus métaboliques composants nitrogène	78	12	4.24E-03	16	3.80E-04	14	7.19E-03
oxygène et réactives d'oxygène	66	12	8.28E-04	17	8.19E-06	15	2.46E-04
processus métaboliques ferrédoxines	12	3	1.00E00	6	5.48E-03	4	5.19E-01
processus biosynthétiques des vitamines	44	7	1.69E-01	9	6.23E-02	10	1.35E-02
Transport nucléaire	96	21	1.02E-08	23	1.47E-07	20	1.85E-05
Transport protéines	1496	100	5.58E-08	123	1.78E-06	131	1.64E-08

Tableau III en annexe : Tableau des protéines présentant une abondance significativement différente entre les trois stades de développement. Le ratio et l'ANOVA ont été calculés avec les abondances maximales et minimales calculées pour chaque protéine. Le score de la protéine est l'addition des scores des peptides, composant la protéine, identifiés par MASCOT. La figure 41 illustre le comportement de l'abondance normalisée de chaque protéine distribué dans les 5 types de profils (P1 à P5).

ID	Nom de la protéine	Nom du gène	Score de la protéine	ANOVA p-value	Ratio	Max	Min	Type de Profil
Q8K3V4	Protein-argininedeiminase type-6	Padi6	1103.2	1.9E-07	3.6	IS	FA	P1
P16125	L-lactate dehydrogenase B chain	Ldhb	879.7	7.0E-06	4.9	IS	FA	P1
F8WIV2	Protein Serpinb6a	Serpinb6a	648.1	3.4E-07	2.4	IS	FA	P1
Q9CWU5	KH domain-containingprotein 3	Khdc3	569.8	5.9E-05	3.2	IS	RMS/FA	P1
Q9R0P9	Ubiquitincarboxyl-terminal hydrolaseisozyme L1	Uchl1	509.7	6.9E-05	4.4	IS	FA	P1
P24549	Retinaldehydrogenase 1	Aldh1a1	418.6	8.0E-04	2.0	IS	RMS	P1
P10761	Zona pellucidasperm-bindingprotein 3	Zp3	346.3	7.2E-05	4.9	IS	FA	P1
P54869	Hydroxymethylglutaryl-CoAsynthase, mitochondrial	Hmgcs2	335.2	1.0E-02	2.1	IS	RMS	P1
Q9DAW9	Calponin-3	Cnn3	308.2	2.3E-04	2.5	IS	FA	P1
Q9WVB3	Transducin-likeenhancerprotein 6	Tle6	239.0	1.9E-06	3.5	IS	FA	P1
P10518	Delta-aminolevulinicaciddehydratase	Alad	230.6	2.0E-04	2.7	IS	FA	P1
P20239	Zona pellucidasperm-bindingprotein 2	Zp2	189.8	7.0E-05	2.6	IS	FA	P1
Q08EC7	Pla2g4c protein	Pla2g4c	188.0	2.4E-04	3.1	IS	FA	P1
P24472	Glutathione S-transferase A4	Gsta4	153.6	3.3E-04	2.7	IS	RMS	P1
Q9CWE6	Oocyte-expressedproteinhomolog	Ooep	94.9	2.0E-02	4.8	IS	RMS/FA	P1
P14211	Calreticulin	Calr	276.5	1.3E-05	4.6	RMS	IS	P2

ID	Nom de la protéine	Nom du gène	Score de la protéine	ANOVA p-value	Ratio	Max	Min	Type de Profil
Q60817	Nascentpolypeptide- associatedcomplexsubunitalpha	Naca	270.9	1.6E-04	2.3	RMS	FA	P2
Q60605	Myosinlightpolypeptide 6	MyI6	174.3	1.6E-03	3.4	RMS	IS/FA	P2
G3UWR0	Calumenin	Calu	161.2	5.1E-05	3.1	RMS	IS	P2
Q4VAA2	Protein CDV3	Cdv3	106.5	2.1E-04	2.5	RMS	FA	P2
P20029	78 kDa glucose-regulatedprotein	Hspa5	2951.4	2.6E-05	2.7	FA	IS	P3
P17182	Alpha-enolase	Eno1	1548.7	4.5E-07	5.0	FA	IS	P3
P05213	Tubulin alpha-1B chain	Tuba1b	1527.4	7.0E-04	2.7	FA	IS	P3
P09103	Proteindisulfide-isomerase	P4hb	1416.4	4.3E-06	2.7	FA	IS	P3
P16858	Glyceraldehyde-3-phosphate dehydrogenase	Gapdh	701.4	1.6E-07	4.0	FA	IS	P3
P14152	Malatedehydrogenase, cytoplasmic	Mdh1	462.0	4.8E-06	2.1	FA	IS	P3
P48036	Annexin A5	Anxa5	445.8	5.5E-04	2.0	FA	IS	P3
Q99KV1	DnaJ homolog subfamily B member 11	Dnajb11	420.4	1.1E-03	2.2	FA	IS	P3
G5E8N5	L-lactatedehydrogenase	Ldha	412.5	3.1E-06	3.4	FA	IS	P3
P24815	3 beta-hydroxysteroiddehydrogenase/Delta >4-isomerase type 1	5 Hsd3b1	394.6	6.4E-03	3.1	FA	IS	P3
E9PXX7	Thioredoxindomain-containingprotein 5	Txndc5	380.2	4.7E-03	2.1	FA	IS	P3
P57759	Endoplasmicreticulumresidentprotein 29	Erp29	361.6	3.1E-05	2.5	FA	IS	P3
008807	Peroxiredoxin-4	Prdx4	358.2	4.0E-05	2.2	FA	IS	P3
P29758	Ornithineaminotransferase, mitochondrial	Oat	354.1	5.3E-04	2.1	FA	IS	P3
P51656	Estradiol 17-beta-dehydrogenase 1	Hsd17b1	351.2	3.6E-03	2.4	FA	IS	P3
P53994	Ras-relatedprotein Rab-2A	Rab2a	330.6	3.3E-03	2.0	FA	IS	P3
Q9DBJ1	Phosphoglyceratemutase 1	Pgam1	329.4	6.5E-04	2.2	FA	IS	P3

ID	Nom de la protéine	Nom du gène	Score de la protéine	ANOVA p-value	Ratio	Max	Min	Type de Profil
P17742	Peptidyl-prolylcis-trans isomerase A	Ppia	325.5	5.8E-03	2.2	RMS	IS	P3
P09411	Phosphoglyceratekinase 1	Pgk1	300.5	2.8E-03	2.7	FA	IS	P3
Q60715	Prolyl 4-hydroxylase subunit alpha-1	P4ha1	271.1	7.0E-05	2.2	FA	IS	P3
Q9QXT0	Proteincanopyhomolog 2	Cnpy2	254.6	3.8E-03	2.3	RMS	IS	P3
A2A7Q5	Prolyl 3-hydroxylase 1	Lepre1	225.9	2.7E-03	2.3	FA	IS	P3
G5E850	Cytochrome b-5, isoformCRA_a	Cyb5	222.6	4.9E-05	3.4	FA	IS	P3
Q3U4W8	Ubiquitincarboxyl-terminal hydrolase	Usp5	216.6	5.5E-03	2.2	FA	IS	P3
G3XA14	Protein Akr1cl	Akr1cl	212.7	7.5E-03	3.4	RMS	IS	P3
P34884	Macrophagemigrationinhibitory factor	Mif	210.1	1.6E-05	2.1	FA	IS	P3
P22935	Cellular retinoic acid-binding protein 2	Crabp2	130.9	2.2E-04	2.6	FA	IS	P3
Q9CYA0	Cysteine-rich with EGF-like domain protein 2	Creld2	107.5	2.0E-02	2.9	FA	IS	P3
P63158	High mobility group protein B1	Hmgb1	267.9	2.0E-03	2.5	IS	RMS	P4
Q9JKB1	Ubiquitincarboxyl-terminal hydrolaseisozyme L3	Uchl3	226.8	1.1E-03	2.6	IS	RMS	P4
Q9ERD7	Tubulin beta-3 chain	Tubb3	1342.8	1.6E-03	3.3	FA	RMS	P5
P31324	cAMP-dependent protein kinase type II-beta regulatory subunit	Prkar2b	1129.2	1.7E-04	3.7	FA	IS	P5
Q05816	Fatty acid-binding protein, epidermal	Fabp5	781.9	9.1E-05	3.1	FA	IS	P5
P17751	Triosephosphate isomerase	Tpi1	627.6	5.7E-05	2.3	FA	IS	P5
Q9D0F9	Phosphoglucomutase-1	Pgm1	403.2	1.2E-04	2.3	FA	IS/RMS	P5
Q99JF5	Diphosphomevalonatedecarboxylase	Mvd	161.0	9.7E-05	3.6	FA	IS	P5
Q62159	Rho-related GTP-binding protein RhoC	Rhoc	136.3	2.1E-04	2.4	FA	RMS	P5

Tableau IV en annexe : Liste de protéines non identifiées dans le protéome de l'ovocyte isolé. Sur le coté indication si la protéine

en cause a été identifiée dans un seul stade et lequel, ou si elle a été identifiée en commun avec un autre stade.

	ID	Nom de la Protéine	Nom du gène
Uniquement en IS	Q04857	Collagen alpha-1(VI) chain	Col6a1
	O54974	Galectin-7	Lgals7
	Q9D964	Glycine amidinotransferase, mitochondrial	Gatm
	Q8BMS4	Hexaprenyldihydroxybenzoate methyltransferase, mitochondrial	Coq3
	Q921E6-1	Isoform 1 of Polycomb protein EED	Eed
	Q61292	Laminin subunit beta-2	Lamb2
	P27106	Muellerian-inhibiting factor	Amh
	P17563	Selenium-binding protein 1	Selenbp1
	Q569Z6	Thyroid hormone receptor-associated protein 3	Thrap3
	054818	Tumor protein D53	Tpd52l1
	P35821	Tyrosine-protein phosphatase non-receptor type 1	Ptpn1
	E9PWQ3	Uncharacterized protein	Col6a3
	P97470	Serine/threonine-protein phosphatase 4 catalytic subunit	Ppp4c
	088271	Craniofacial development protein 1	Cfdp1
	035969-1	Isoform 1 of Guanidinoacetate N-methyltransferase	Gamt
	Q9Z2D8-1	Isoform 1 of Methyl-CpG-binding domain protein 3	Mbd3
	P02104	Hemoglobin subunit epsilon-Y2	Hbb-y
	088712-1	Isoform 1 of C-terminal-binding protein 1	Ctbp1
	P26041	Moesin	Msn
	Q9D5J8	Putative uncharacterized protein	Gstm6
	Q9CWU5-1	Isoform 1 of Protein Filia	Khdc3
	008738	Caspase-6	Casp6
	Q811L6-1	Isoform 1 of Microtubule-associated serine/threonine-protein kinase 4	Mast4
	Q8C599	Putative uncharacterized protein	Celsr2
	Q8HW98	IgLON family member 5	lglon5
	Q9R0U0-1	Isoform 1 of Serine/arginine-rich splicing factor 10	Srsf10
	ID	Nom de la Protéine	Nom du gène
-----	----------	---	-------------
	Q8BXL7	ADP-ribosylation factor-related protein 1	Arfrp1
	Q3UGA8	Amidophosphoribosyltransferase	Ppat
	P06728	Apolipoprotein A-IV	Apoa4
	Q61024	Asparagine synthetase [glutamine-hydrolyzing]	Asns
	Q5U5M8	Biogenesis of lysosome-related organelles complex 1 subunit 3	Bloc1s3
	P08122	Collagen alpha-2(IV) chain	Col4a2
	P30285	Cyclin-dependent kinase 4	Cdk4
	Q64261	Cyclin-dependent kinase 6	Cdk6
	Q9D600	DNA replication complex GINS protein PSF2	Gins2
	Q923G2	DNA-directed RNA polymerases I, II, and III subunit RPABC3	Polr2h
	Q9D8Y0	EF-hand domain-containing protein D2	Efhd2
	Q9R1E0	Forkhead box protein O1	Foxo1
6	Q60936-1	Isoform 1 of Chaperone activity of bc1 complex-like, mitochondrial	Adck3
ž	Q9Z1X4-1	Isoform 1 of Interleukin enhancer-binding factor 3	llf3
2	Q925B0-1	Isoform 1 of PRKC apoptosis WT1 regulator protein	Pawr
eD	Q8BP27-1	Isoform 1 of Swi5-dependent recombination DNA repair protein 1 homolog	Meir5
Ę	Q8CCF0-1	Isoform 1 of U4/U6 small nuclear ribonucleoprotein Prp31	Prpf31
ler	Q61245-1	Isoform Long of Collagen alpha-1(XI) chain	Col11a1
Ц.	Q9Z110-1	Isoform Long of Delta-1-pyrroline-5-carboxylate synthase	Aldh18a1
nk	Q80WP0	Killer cell lectin-like receptor family E member 1	KIre1
j	Q91VS7	Microsomal glutathione S-transferase 1	Mgst1
5	008804	NK13	Serpinb6b
	Q9Z247	Peptidyl-prolyl cis-trans isomerase FKBP9	Fkbp9
	Q9Z2V4	Phosphoenolpyruvate carboxykinase, cytosolic [GTP]	Pck1
	Q99K85	Phosphoserine aminotransferase	Psat1
	Q61074	Protein phosphatase 1G	Ppm1g
	Q8VE37	Regulator of chromosome condensation	Rcc1
	008797	SPI6	Serpinb9
	Q6P9Z1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3	Smarcd3
	Q80YQ1	Thrombospondin 1	Thbs1
	E9QNX7	Uncharacterized protein	Atp4a
	Q9CR27	WASH complex subunit CCDC53	Ccdc53

	ID	Nom de la Protéine	Nom du gène
	Q9CXA2	Trans-L-3-hydroxyproline dehydratase	L3hypdh
	Q9D7E4	UPF0449 protein C19orf25 homolog	
	Q8JZY2	COMM domain-containing protein 10	Commd10
	P97478	Ubiquinone biosynthesis protein COQ7 homolog	Coq7
	D3YYZ2	MCG1031578	Gm5239
	B8JJI2	Novel protein (A930001N09Rik)	A930001N09Ri k
AIS	D3Z482	Uncharacterized protein	Ankrd26
A A	P24288	Branched-chain-amino-acid aminotransferase, cytosolic	Bcat1
Ç	Q08024-1	Isoform 1 of Core-binding factor subunit beta	Cbfb
ц С	Q3UWS5	Novel gene (E330009P21Rik)	Fbxw21
en	Q8C5P5-1	Isoform 1 of 5'-nucleotidase domain-containing protein 1	Nt5dc1
Ĕ	Q8CH25-1	Isoform 1 of SAFB-like transcription modulator	SItm
ne	Q8K354	Carbonyl reductase 3	Cbr3
iq	Q91YN9	BAG family molecular chaperone regulator 2	Bag2
n	Q921W4-1	Isoform 1 of Quinone oxidoreductase-like protein 1	Cryzl1
	Q9D0R8	Protein LSM12 homolog	Lsm12
	Q9D7E3	Ovarian cancer-associated gene 2 protein homolog	Ovca2
	Q9JLM9	Growth factor receptor-bound protein 14	Grb14
	Q9Z206-2	Isoform 2 of Neuroepithelial cell-transforming gene 1 protein	Net1
	Q9Z2R6	Protein unc-119 homolog A	Unc119
	Q9ERR7	15 kDa selenoprotein	Sep15
	Q9QXE0	2-hydroxyacyl-CoA lyase 1	Hacl1
ΕÞ	Q9EQI8	39S ribosomal protein L46, mitochondrial	MrpI46
Ç	Q9D864	Actin-related protein 6	Actr6
t e	Q9DBR0	A-kinase anchor protein 8	Akap8
en	Q9EPC1	Alpha-parvin	Parva
neme	Q8CI32	BAG family molecular chaperone regulator 5	Bag5
	Q9R013	Cathepsin F	Ctsf
iq	Q9WUU7	Cathepsin Z	Ctsz
L L	035648	Centrin-3	Cetn3
	Q99LC2	Cleavage stimulation factor subunit 1	Cstf1
	Q91W50	Cold shock domain-containing protein E1	Csde1

	ID	Nom de la Protéine	Nom du gène
	P46414	Cyclin-dependent kinase inhibitor 1B	Cdkn1b
	P97821	Dipeptidyl peptidase 1	Ctsc
	P52432	DNA-directed RNA polymerases I and III subunit RPAC1	Polr1e
	Q9Z0Y1	Dynactin subunit 3	Dctn3
	Q9WUZ9	Ectonucleoside triphosphate diphosphohydrolase 5	Entpd5
	008579	Emerin	Emd
	Q8BHJ5	F-box-like/WD repeat-containing protein TBL1XR1	Tbl1xr1
	Q60648	Ganglioside GM2 activator	Gm2a
	Q3THK3	General transcription factor IIF subunit 1	Gtf2f1
	Q8VD04	GRIP1-associated protein 1	Gripap1
	Q91VM5	Heterogeneous nuclear ribonucleoprotein G-like 1	Rbmxl1
	Q00PI9	Heterogeneous nuclear ribonucleoprotein U-like protein 2	Hnrnpul2
1	054879	High mobility group protein B3	Hmgb3
F,F	Q9EPJ9-1	Isoform 1 of ADP-ribosylation factor GTPase-activating protein 1	Arfgap1
C.	Q8BNU0-1	Isoform 1 of Armadillo repeat-containing protein 6	Armc6
ц ц	Q3TDN2-1	Isoform 1 of FAS-associated factor 2	Faf2
en	Q9ESZ8-1	Isoform 1 of General transcription factor II-I	Gtf2i
Ē	Q9DBZ1-1	Isoform 1 of Inhibitor of nuclear factor kappa-B kinase-interacting protein	Ikbip
ne	Q9JHP7-1	Isoform 1 of KDEL motif-containing protein 1	Kdelc1
iq	Q5F2E7-1	Isoform 1 of Nuclear fragile X mental retardation-interacting protein 2	Nufip2
N	Q9Z0P4-1	Isoform 1 of Paralemmin	Palm
	Q80TH2-1	Isoform 1 of Protein LAP2	Erbb2ip
	Q9CW46-1	Isoform 1 of Ribonucleoprotein PTB-binding 1	Raver1
	P70665-1	Isoform 1 of Sialate O-acetylesterase	Siae
	Q6PDG5-1	Isoform 1 of SWI/SNF complex subunit SMARCC2	Smarcc2
	055201-1	Isoform 1 of Transcription elongation factor SPT5	Supt5h
	Q8C5W3-1	Isoform 1 of Tubulin-specific chaperone cofactor E-like protein	Tbcel
	Q5XG73-2	Isoform 2 of AcyI-CoA-binding domain-containing protein 5	Acbd5
	088448	Kinesin light chain 2	KIc2
	089017	Legumain	Lgmn
	A2ALV5	Likely orthologue of H. sapiens chromosome 9 open reading frame 84	AI481877
	P70699	Lysosomal alpha-glucosidase	Gaa
	009159	Lysosomal alpha-mannosidase	Man2b1

	ID	Nom de la Protéine	Nom du gène
	P24452	Macrophage-capping protein	Capg
	P02802	Metallothionein-1	Mt1
	A1L3T3	N-sulfoglucosamine sulfohydrolase (Sulfamidase)	Sgsh
	P81117	Nucleobindin-2	Nucb2
	Q9CQ48	NudC domain-containing protein 2	Nudcd2
	Q9DBX2	Phosducin-like protein	Pdcl
	Q8K297	Procollagen galactosyltransferase 1	GIt25d1
	Q6NVG7	Procollagen galactosyltransferase 2	GIt25d2
	Q9R0E2	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1	Plod1
	Q3TLY5	Putative uncharacterized protein	Gla
	Q8BSE0	Regulator of microtubule dynamics protein 2	Fam82a1
	Q8K0Q5	Rho GTPase-activating protein 18	Arhgap18
	Q62159	Rho-related GTP-binding protein RhoC	Rhoc
ЧЦ	P07214	SPARC	Sparc
Ç	Q8QZY9	Splicing factor 3B subunit 4	Sf3b4
t e	Q8BGJ9	Splicing factor U2AF 26 kDa subunit	U2af1I4
e D	Q5U4D9	THO complex subunit 6 homolog	Thoc6
Ĕ	Q9ER39	Torsin-1A	Tor1a
ne	Q78IS1	Transmembrane emp24 domain-containing protein 3	Tmed3
id	Q91W67	Ubiquitin-like protein 7	UbI7
n L	Q4KML4	Costars family protein C6orf115 homolog	Abracl
	Q62087	Serum paraoxonase/lactonase 3	Pon3
	P53811	Phosphatidylinositol transfer protein beta isoform	Pitpnb
	P50543	Protein S100-A11	S100a11
	E9Q509	Pyruvate kinase	Pklr
	Q6P8X1	Sorting nexin-6	Snx6
	Q8CF66	Ragulator complex protein LAMTOR4	Lamtor4
	P17183	Gamma-enolase	Eno2
	P16627	Heat shock 70 kDa protein 1-like	Hspa11
	Q60715-2	Isoform 2 of Prolyl 4-hydroxylase subunit alpha-1	P4ha1
	070250	Phosphoglycerate mutase 2	Pgam2
	Q8CEV2	Putative uncharacterized protein	3000002C10Rik
	D3Z494	MCG142264, isoform CRA_a	Akr1b10

	ID	Nom de la Protéine	Nom du gène
	Q4KL14	Trafficking protein particle complex subunit 3-like protein	Bet3I
en	Q9D281	Protein Noxp20	Fam114a1
	A2AQR0	Glycerol phosphate dehydrogenase 2, mitochondrial	Gpd2
J	P12265	Beta-glucuronidase	Gusb
Ae	Q91ZG2	Metallophosphoesterase domain-containing protein 1	Mpped1
Б	Q9R060	Cytosolic Fe-S cluster assembly factor NUBP1	Nubp1
d	O35386	Phytanoyl-CoA dioxygenase, peroxisomal	Phyh
in	Q9D1G2-1	Isoform 1 of Phosphomevalonate kinase	Pmvk
	Q8C650-1	Isoform 1 of Septin-10	Sept10
	Q91YI0	Argininosuccinate lyase	Asl
	B2RQC6	Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase	Cad
S	Q80YV2-1	Isoform 1 of Nuclear-interacting partner of ALK	Zc3hc1
qe	Q8BH93	MAPK-interacting and spindle-stabilizing protein-like	Mapk1ip1I
sta	Q8R3C0	Mini-chromosome maintenance complex-binding protein	Mcmbp
S	Q9DCC8	Mitochondrial import receptor subunit TOM20 homolog	Tomm20
u t	Q8VEJ4	Notchless protein homolog 1	NIe1
e e	P70353	Nuclear transcription factor Y subunit gamma	Nfyc
es diffé	Q923D4	Splicing factor 3B subunit 5	Sf3b5
	Q8JZX4	Splicing factor 45	Rbm17
	Q9CZU3	Superkiller viralicidic activity 2-like 2	Skiv2l2
<u>_</u>	E9Q616	Uncharacterized protein	Ahnak
ţ	Q9CXW2	28S ribosomal protein S22, mitochondrial	Mrps22
e L	Q8VE70	Programmed cell death protein 10	Pdcd10
Ē	Q9CQ62	2,4-dienoyl-CoA reductase, mitochondrial	Decr1
nu	Q9WV54	Acid ceramidase	Asah1
Ĕ	A2BDX3	Adenylyltransferase and sulfurtransferase MOCS3	Mocs3
0	Q9EQX4	Allograft inflammatory factor 1-like	Aif1I
L L	Q8R2U4	Alpha N-terminal protein methyltransferase 1A	Mettl11a
ш	P07356	Annexin A2	Anxa2
	P05202	Aspartate aminotransferase, mitochondrial	Got2
	P29416	Beta-hexosaminidase subunit alpha	Hexa
	Q8CIF4	Biotinidase	Btd

	ID	Nom de la Protéine	Nom du gène
	O35855	Branched-chain-amino-acid aminotransferase, mitochondrial	Bcat2
	Q9QXX4	Calcium-binding mitochondrial carrier protein Aralar2	Slc25a13
	Q8BMD8	Calcium-binding mitochondrial carrier protein SCaMC-1	SIc25a24
	P06797	Cathepsin L1	Ctsl1
	Q6A068	Cell division cycle 5-related protein	Cdc5I
	Q9QZ82	Cholesterol side-chain cleavage enzyme, mitochondrial	Cyp11a1
	Q9CQJ6	Density-regulated protein	Denr
	Q9ET22	Dipeptidyl peptidase 2	Dpp7
S S	P28352	DNA-(apurinic or apyrimidinic site) lyase	Apex1
ade	P46935	E3 ubiquitin-protein ligase NEDD4	Nedd4
sta	Q9EQH2	Endoplasmic reticulum aminopeptidase 1	Erap1
N	Q8VEH8	Endoplasmic reticulum lectin 1	Erlec1
L L	Q60876	Eukaryotic translation initiation factor 4E-binding protein 1	Eif4ebp1
ê Û	Q9QXE7	F-box-like/WD repeat-containing protein TBL1X	Tbl1x
iff	Q99LJ6	Glutathione peroxidase 7	Gpx7
G	P51655	Glypican-4	Gpc4
es	Q9D7B6	IsobutyryI-CoA dehydrogenase, mitochondrial	Acad8
۵ ا	P54071	Isocitrate dehydrogenase [NADP], mitochondrial	ldh2
tr	Q91WT9-1	Isoform 1 of Cystathionine beta-synthase	Cbs
e L	Q3UFY7-1	Isoform 1 of Cytosolic 5'-nucleotidase III-like protein	Nt5c3l
Ę	Q99M71-1	Isoform 1 of Mammalian ependymin-related protein 1	Epdr1
Ĕ	Q9WTX8-1	Isoform 1 of Mitotic spindle assembly checkpoint protein MAD1	Mad1I1
Ē	Q9WVJ3-1	Isoform 1 of Plasma glutamate carboxypeptidase	Рдср
S	Q9DAU1-1	Isoform 1 of Protein canopy homolog 3	Cnpy3
<u> </u>	Q9QYG0-1	Isoform 1 of Protein NDRG2	Ndrg2
ш	Q3TCN2-1	Isoform 1 of Putative phospholipase B-like 2	PIbd2
	P35279-1	Isoform 1 of Ras-related protein Rab-6A	Rab6a
	Q64337-1	Isoform 1 of Sequestosome-1	Sqstm1
	Q6P4P1-1	Isoform 1 of Serine protease inhibitor A3A	Serpina3a
	Q7TMY4-1	Isoform 1 of THO complex subunit 7 homolog	Thoc7
	P62996-1	Isoform 1 of Transformer-2 protein homolog beta	Tra2b
	Q8C854-1	Isoform 3 of Myelin expression factor 2	Myef2
	Q99PL5-1	Isoform 3 of Ribosome-binding protein 1	Rrbp1

	ID	Nom de la Protéine	Nom du gène
	Q60716-1	Isoform IIb of Prolyl 4-hydroxylase subunit alpha-2	P4ha2
	P53657-1	Isoform R-type of Pyruvate kinase isozymes R/L	Pklr
	Q8BLN5	Lanosterol synthase	Lss
	Q923B1	Lariat debranching enzyme	Dbr1
	Q9D154	Leukocyte elastase inhibitor A	Serpinb1a
	P16675	Lysosomal protective protein	Ctsa
	Q9D967	Maesium-dependent phosphatase 1	Mdp1
	P45952	Medium-chain specific acyl-CoA dehydrogenase, mitochondrial	Acadm
SS	Q9R008	Mevalonate kinase	Mvk
ade	Q64191	N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase	Aga
sta	Q9CPP0	Nucleoplasmin-3	Npm3
S	Q9JJF0	Nucleosome assembly protein 1-like 5	Nap1I5
, in the second s	Q8BFY6	Peflin	Pef1
êre	Q91VA6	Polymerase delta-interacting protein 2	Poldip2
Ξŧ	Q8BWU5	Probable tRNA threonylcarbamoyladenosine biosynthesis protein Osgep	Osgep
q	Q91ZX7	Prolow-density lipoprotein receptor-related protein 1	Lrp1
e les	Q62084	Protein phosphatase 1 regulatory subunit 14B	Ppp1r14b
	Q3UPH1	Protein PRRC1	Prrc1
tr	P23492	Purine nucleoside phosphorylase	Pnp
e	Q922P9	Putative oxidoreductase GLYR1	Glyr1
Ę	Q9D927	Putative uncharacterized protein	1810009N02Rik
J	Q3UGY5	Putative uncharacterized protein	Fn1
Ē	Q9CX86	Putative uncharacterized protein	Hnrnpa0
8	Q8BME1	Putative uncharacterized protein	Pgm3
C	Q3TL27	Putative uncharacterized protein	Xpnpep1
ш	Q8C112	Putative uncharacterized protein (Fragment)	Leprel4
	Q8BH97	Reticulocalbin-3	Rcn3
	P24549	Retinal dehydrogenase 1	Aldh1a1
	055057	Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta	Pde6d
	Q9CWY8	Ribonuclease H2 subunit A	Rnaseh2a
	A2ARJ0	Sial transducing adaptor molecule (SH3 domain and ITAM motif) 1 (Fragment)	Stam
	Q64442	Sorbitol dehydrogenase	Sord

	ID	Nom de la Protéine	Nom du gène
	Q9WV80	Sorting nexin-1	Snx1
	Q8JZL3	Thiamine-triphosphatase	Thtpa
	Q8VE80	THO complex subunit 3	Thoc3
	P37804	Transgelin	TagIn
	Q9DCG9	tRNA methyltransferase 112 homolog	Trmt112
	Q6P5G6	UBX domain-containing protein 7	Ubxn7
	D3YZZ5	Uncharacterized protein	Tmed7
	E9QM54	Uncharacterized protein	Plod2
SS	Q7TQ40	Zinc finger protein ZIC 5	Zic5
ade	P62737	Actin, aortic smooth muscle	Acta2
sta	P63268	Actin, gamma-enteric smooth muscle	Actg2
S	Q8BMK4	Cytoskeleton-associated protein 4	Ckap4
L L	Q3TMF5	Dihydrolipoamide branched chain transacylase E2	Dbt
ê Lê	P70333	Heterogeneous nuclear ribonucleoprotein H2	Hnrnph2
ĮĮ	O35344	Importin subunit alpha-3	Kpna3
σ	P58774-2	Isoform 2 of Tropomyosin beta chain	Tpm2
les	P83877	Thioredoxin-like protein 4A	Txnl4a
e e	B1AT82	MCG6846, isoform CRA_c	Prpsap1
t -	Q91WU5	Arsenite methyltransferase	As3mt
en	P61963	DDB1- and CUL4-associated factor 7	Dcaf7
Ę	P13020-1	Isoform 1 of Gelsolin	Gsn
7	P59235	Nucleoporin Nup43	Nup43
Ē	Q8BFQ8	Parkinson disease 7 domain-containing protein 1	Pddc1
	O54941	SWI/SNF-related matrix-associated actin-dependent regulator chromatin subfamily E member 1	Smarce1
ΞŪ	Q6PFR5	Transformer-2 protein homolog alpha	Tra2a
	A8DUK2	Beta-globin	Hbb-b1
	P51859	Hepatoma-derived growth factor	Hdgf
	Q9JIX8-1	Isoform 1 of Apoptotic chromatin condensation inducer in the nucleus	Acin1
	Q9CSU0-1	Isoform 1 of Regulation of nuclear pre-mRNA domain-containing protein 1B	Rprd1b
	Q99NB8	Ubiquilin-4	UbqIn4
	Q91WT7	3-alpha-hydroxysteroid dehydrogenase type 1	Akr1c14
	Q8QZS1	3-hydroxyisobutyryl-CoA hydrolase, mitochondrial	Hibch

	ID	Nom de la Protéine	Nom du gène
	Q9CPW4	Actin-related protein 2/3 complex subunit 5	Arpc5
	055137	Acyl-coenzyme A thioesterase 1	Acot1
	Q9QYR9	Acyl-coenzyme A thioesterase 2, mitochondrial	Acot2
	Q9CZS1	Aldehyde dehydrogenase X, mitochondrial	Aldh1b1
	P28658	Ataxin-10	Atxn10
	Q9CY64	Biliverdin reductase A	Blvra
	Q60865	Caprin-1	Caprin1
	P70677	Caspase-3	Casp3
6 SC	Q9Z1Q5	Chloride intracellular channel protein 1	Clic1
ade	Q61686	Chromobox protein homolog 5	Cbx5
sta	O35459	Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial	Ech1
S	008553	Dihydropyrimidinase-related protein 2	Dpysl2
, international sectors in the sector sectors in the sector sectors in the sector sectors in the sector sector sectors in the sector sector sectors in the sector sector sectors in the sectors in the sectors in the sector sectors in the sect	Q80UW8	DNA-directed RNA polymerases I, II, and III subunit RPABC1	Polr2e
ê Lê	Q61550	Double-strand-break repair protein rad21 homolog	Rad21
Iffe	P62878	E3 ubiquitin-protein ligase RBX1	Rbx1
q	Q921G7	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial	Etfdh
re les	Q8BTW3	Exosome complex component MTR3	Exosc6
	Q921I9	Exosome complex component RRP41	Exosc4
htr	Q8VED9	Galectin-related protein A	Grpa
e	Q9D0D5	General transcription factor IIE subunit 1	Gtf2e1
Ę	P10649	Glutathione S-transferase Mu 1	Gstm1
ے م	P15626	Glutathione S-transferase Mu 2	Gstm2
Ē	Q3SXD3	HD domain-containing protein 2	Hddc2
9	Q9Z130	Heterogeneous nuclear ribonucleoprotein D-like	Hnrpdl
<u> </u>	009106	Histone deacetylase 1	Hdac1
ш	P54869	Hydroxymethylglutaryl-CoA synthase, mitochondrial	Hmgcs2
	Q80V26	Inositol monophosphatase 3	Impad1
	Q60739-1	Isoform 1 of BAG family molecular chaperone regulator 1	Bag1
	Q7TNG5-1	Isoform 1 of Echinoderm microtubule-associated protein-like 2	Eml2
	P34914-1	Isoform 1 of Epoxide hydrolase 2	Ephx2
	Q920Q8-1	Isoform 1 of Influenza virus NS1A-binding protein homolog	lvns1abp
	Q5SUF2-1	Isoform 1 of Luc7-like protein 3	Luc7I3
	Q8R326-1	Isoform 1 of Paraspeckle component 1	Pspc1

	ID	Nom de la Protéine	Nom du gène
	Q8CCS6-1	Isoform 1 of Polyadenylate-binding protein 2	Pabpn1
	Q60715-1	Isoform 1 of Prolyl 4-hydroxylase subunit alpha-1	P4ha1
	Q7TNC4-1	Isoform 1 of Putative RNA-binding protein Luc7-like 2	Luc712
	Q8VH51-1	Isoform 1 of RNA-binding protein 39	Rbm39
	Q9CWZ3-1	Isoform 1 of RNA-binding protein 8A	Rbm8a
	P63328-1	Isoform 1 of Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform	Ррр3са
	Q9Z2I8-1	Isoform 1 of SuccinyI-CoA ligase [GDP-forming] subunit beta, mitochondrial	Suclg2
S	Q91WG2-2	Isoform 3 of Rab GTPase-binding effector protein 2	Rabep2
q	P21619-1	Isoform B2 of Lamin-B2	Lmnb2
sta	P70202	Latexin	Lxn
Ś	P24527	Leukotriene A-4 hydrolase	Lta4h
, ut	Q61792	LIM and SH3 domain protein 1	Lasp1
e Le	Q99PU5	Long-chain-fatty-acidCoA ligase ACSBG1	Acsbg1
ffé	P28667	MARCKS-related protein	Marcksl1
q	P62077	Mitochondrial import inner membrane translocase subunit Tim8 B	Timm8b
les	Q99LD8	N(G),N(G)-dimethylarginine dimethylaminohydrolase 2	Ddah2
ط	Q9CQ45	Neudesin	Nenf
tr	Q9D0T1	NHP2-like protein 1	Nhp2l1
eu	P30412	Peptidyl-prolyl cis-trans isomerase C	Ppic
<u> </u>	Q61576	Peptidyl-prolyl cis-trans isomerase FKBP10	Fkbp10
2	P43883	Perilipin-2	Plin2
Ę	Q8BH04	Phosphoenolpyruvate carboxykinase [GTP], mitochondrial	Pck2
<u> </u>	Q9D287	Pre-mRNA-splicing factor SPF27	Bcas2
Ē	Q9R0E1	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3	Plod3
ш	P97371	Proteasome activator complex subunit 1	Psme1
	P97372	Proteasome activator complex subunit 2	Psme2
	Q8CIG8	Protein arginine N-methyltransferase 5	Prmt5
	P61327	Protein mago nashi homolog	Magoh
	089086	Putative RNA-binding protein 3	Rbm3
	P97855	Ras GTPase-activating protein-binding protein 1	G3bp1
	Q05186	Reticulocalbin-1	Rcn1
	Q920A5	Retinoid-inducible serine carboxypeptidase	Scpep1

	ID	Nom de la Protéine	Nom du gène
	Q9D1J3	SAP domain-containing ribonucleoprotein	Sarnp
	Q921H9	Sel1 repeat-containing protein 1	Selrc1
<i>(</i>)	Q6P1F6	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	Ppp2r2a
	P19324	Serpin H1	Serpinh1
e se	Q9JJU8	SH3 domain-binding glutamic acid-rich-like protein	Sh3bgrl
nti	Q9D8U8	Sorting nexin-5	Snx5
ste	Q9D554	Splicing factor 3A subunit 3	Sf3a3
un its	Q8BH58	TIP41-like protein	Tiprl
e j	P42669	Transcriptional activator protein Pur-alpha	Pura
Lế Lế	Q8R1V4	Transmembrane emp24 domain-containing protein 4	Tmed4
Life C	089023	Tripeptidyl-peptidase 1	Трр1
<u> </u>	Q9QZM0	Ubiquilin-2	UbqIn2
Ξ	E9PWE8	Uncharacterized protein	Dpysl3
	D3Z7P3	Uncharacterized protein	Gls
	Q8BGC4	Zinc-binding alcohol dehydrogenase domain-containing protein 2	Zadh2

VIII. Communications

Communication affichée aux **16èmes Journées Nationales de la Fédération Française d'Etudes de la Reproduction (FFER)**, Marseille, France, 21-23 Septembre 2011.

16^{èmes} journées de la FFER – Marseille, 21-23 Septembre 2011

Communication affichée au **29ème Congrès de la Société Française d'Electrophorèse et d'Analyse Protéomique (SFEAP)**, Rouen, France, 15-17 Octobre 2012.

Combination of IEF prefractionation with 1D and 2DLC-MS/MS analysis for the proteomic study of mice ovarian follicles during in vitro development A. Anastácio¹, C. Pionneau², <u>S. Chardonnet²</u>, C. Poirot¹ FCT Fundação para a Ciência e a Tecnologi **UPmC** ¹ UF Biologie de la Reproduction Groupe Hospitalier Pitié-Salpêtrière, UPMC, Paris 6 ÛĤÛ Plateforme Post-génomique de la Pitié-Salpêtrière (P3S) INSERM, UPMC, Paris 6 ASSISTANCE PUBLIQUE DE PARIS Introduction Aim Woman fertility can be altered by severe medical treatments such as chemotherapy. The cryoconservation of ovarian tissue, followed by *in vitro* folliculogenesis, is one of the major outlooks for fertility preservation. Nows though the regulation and molecular mechanisms of *in vitro* folliculogenesis remain poorly characterized. In order to investigate the molecular aspects of *in vitro* folliculogenesis, we examined three different developmental stages, characterized by specific morphological aspects, in mice cultured folicles. We used an original proteomic approach to study whole follicle protein extracts through the combination of IEF prefractionation, short SDS-PAGE migration and 10+2DL-KMS analysis. Secondary folicles consist of a central oocyte, blocked in meiosis prophase 1 surrounded by two or more layers of granulosa cells. Along folicle developme granulosa cells proliferate and the oocyte size increases. Identification, molecular characterization and functional elucidation of proteins expressed during *in vitro* folicle development may provide a better understanding of the foliculogenesis process and be of use for the development of medical to the development of medical to the second second better understanding of the foliculogenesis process and be of use for the development of medical to the development of medical to the second seco SF: Start culture Follicle SMR: Slavjanski Membrane Few proteomic studies have been performed in this field, mainly focusing on the isolated fully growth occyte. Regarding the major importance of the interaction between occytes and their surrounding cells, it appears favorable to engage a global proteomic study of the whole follicle. vitro culture of isolated mice secondary follicles. ree distinct developmental stages were used for theomic analysis Ruptur AF: Antrum Formation follicle **Experimental Strategy** Materials and Methods Microdrops system culture of isolated secondary mice follicles: 100-130µm of diameter 2 or more granulosa cells layers / presence of thecal cells 1043 follicles for SF stage, 359 for SMR stage and 124 for AF stagge Whole follicle protein extraction in IEF buffe Protein extraction: 7M Urea, 2M Thiourea, 1% CHAPS, 0.5% SB3-10, 0.5% Triton X-100, 10% isobutanol IEF migra IEF "in-gel" Prefractionation: 100 µg proteins / sample IPG strip 7 cm, pH 4-7, 15000 VH → cut into 5 peaces of 1 cm long SDS-PAGE: 12% acrylamide, migration in the first 5 mm of the resolving gel Coomassie Blue staining, manual cutting of the 5 large bands Short SDS-PAGE al b . nd excis Tryptic digestion and peptide extraction for LC-MS/MS analysis 1D and 2DLC-MS/MS performed on HPLC Ultimate3000 (Dionex) coupled to an HCTultra ion trap (Bruker). 1st dimension: 6 steps SCX separation with ammonium acetate solutions (0-20-35-50-100-1000mM); 2nd dimension: RP C-18 400.4 Tryptic digestion ammo 100Å. Total Protein identification: X!tandem was run using the X!tandem pipeline (
 http://pappso.inra.fr/bioinfo/xtandempipeline) with 1 peptide, p<0.05, prote
 Evalue < 0.003, FDR<1% 4 x 1D LC-MS/MS and 2 x 2DLC-MS/MS e of IEF prefractionation roteins identified by 1D+2DLC-MS/MS ber of p 1000 800 Results The analysis of total extract and the 5 IEF fractions by both 1DLC and 2DLC-MS/ MS allowed the identification of a total of 1330 proteins in the 3 developmental The combination of IEF separation and short SDS-PAGE migration on 5 fractions led to a strong increase in the number of identified proteins. ➤ Twice more proteins were identified following "in-gel" prefractionation (1330) compared to the crude total extract (664). SF SMR 1DLC-MS/MS (4 runs) 2DLC-MS/MS (2 runs) This approach proved to be quite resolving since more than half of the proteins were found in a single fraction. 124 117 127 37 In our experimental conditions, the gain corresponding to each LC-MS/MS injection was also measured: • 1DLC: 141 injection $2^{nd} \rightarrow +63\%$ $3^{nd} \rightarrow +11\%$ $4^{1b} \rightarrow +3\%$ • 553 +347 +97 +27 proteins • 2DLC: 141 injection $2^{nd} \rightarrow +12\%$ +154 proteins F3 F4 30 pH 7 718 Number of proteins specific to each fraction 125 239 In the 1DLC-MS/MS approach, the first 3 injections offered a profitable gain although the 4th injection poorly increased the total number of proteins. 1 Fraction 2 Fractions 58% A single injection 2DLC-MS/MS injection leads to the identification of a higher number of proteins than all TDLC experiments taken together. The general gain obtained by using a combination of 2DLC and 1DLC compared to 1DLC is of 30%. mparison of the number on ntified proteins at the three 3 Fractions 4 Fractions different stages of de 5 Fraction About half of the identified proteins were found to be common to the 3 developmental stages while the other half was identified in only one or two stages. A functional analysis of these data is under progress. Number of proteins identified in individual IEF fraction or common to several fractions **Conclusions and Perspectives** In this study, we demonstrate the efficiency of *in-gel* IEF associated with a short SDS-PAGE migration as a fractionation strategy prior to LC-MSIMS analysis for very complex samples. Using this particular approach, we were able to identify twice more proteins out of mice ovarian whole follicles. Metabolism, transport, cell communication, cell cycle, cellular component organization and developmental process are the major functional categories identified in this study. A detailed comparison of the proteins identified in the 3 stages is under progress in order to highlight some particular proteins or groups of proteins involved in *in vitro* follicle development.

This study was financed by FCT - Fundação para a Ciência e a Tecnologia

Communication affichée au **7ême Congrès Annuel de l'European Proteomics Association (EuPA)**, Saint-Malo, France, 14-17 Octobre 2013

3 different stages durin	g in vitro development
A. Anastácio ¹ , <u>S. Chardonnet</u> ² , C.	Pionneau ² , C. Federici ³ , C. Poirot ¹
Predicto gura v Citeta e a Tendoga method decisional analysis Production 1 UF Biologie de la Reproduction Groupe H 2 Plateforme Post-génomique de la Pitié-S 3 Plateforme 3P5, Institut Cochin, U	ospitalier Pitié-Salpêtrière, UPMC, Paris 6 alpêtrière (P3S) INSERM, UPMC, Paris 6 Iniversité Paris-Descartes, Paris 5 ASSISTANCE DE PARIS
orman fertility can be altered by severe medical treatments such as chemotherapy. For fertility servation, a major outlook is to cryopreserve ovarian tissue and achieve folliculogenesis by <i>vitro</i> culture of secondary follicles isolated from the tissue. The main issue is to optimize <i>in</i> or culture conditions and to get quality markers of the development process in order to select best follicles for fertilization.	Only a few proteomic studies have been performed in this field, mainly focusing on isolated ful growth occytes. Regarding the major role of interactions between occytes and the surrounding granulosa cells, the use of whole follicles is a relevant model to investigate protei regulations during the early stages of <i>in vitro</i> development.
the ovary, secondary foliciles consist of a central ocorte, blocked in meiosis prophase 1, rounded by two or more layers of granulosa cells. Nang foliced development, granulosa is proliferate and the ocorte size increases. Identification, molecular characterization and citonal elucidation of proteins expressed during in vitro folicle development may provide a ter understanding of the folliculogenesis process.	→ In order to investigate the molecular aspects of in vitro folliculogenesis and identifitime resolved markers, we engaged a large scale proteomic study on mice cultured follicle using IEF in-gel protein fractionation associated with MudPIT. Three different development stages, that are characterized by specific morphological aspects, were qualitatively an quantitatively compared in order to highlight stage specific protein profiles.
Aaterials and Methods	
Folicies selection for microdrops system culture (Figure 1) Diameter = 100-130µm With 2 or more granulosa cells layers, presence of thecal cells & presence of a round and central occyte 1043 folicies were isolated at SF stage, 359 at SMR stage and 124 at AF stage Protein extraction: 7M Urea, 2M Thiourea, 1% CHAPS, 0.5% SB3-10, 0.5% Triton X-100, 10% isobutanol IEF in-gel fractionation: 100 µg proteins / sample [JPG sthj 7 cm, pH 4-7, 1500 VH → cut into 5 pieces of 1,2 cm long SDS-PAGE: 12% acrylamide, migration in the first 5 mm of the resolving gel Coornassie Bue staining, manaul cutting of the Starge bands Tryptic digestion and peptide extraction for LC-MS/MS analysis <u>Figure 1: In vitro culture of isolated micc folicies:</u> <u>3 distinct developmental stages</u>	 10 (4 runs) and 2DLC-MS/MS (2 runs) were performed on HPLC Ullimate3000 (Diomes coupled to an HCTUIte in trap (Bruker), 15 CX = 6 att 8 tesps with 0-20.550-100 att 1000mM ammonium acetate solutions ;2) RP = C18 15 cm, 3 µm, 100A. Protein identification: Xltandem was run using the Xltandem pipeline. http://pacpace.tms/fb/sinfo/xlandempipeline] with FDR<1% and 1 peptide, p<0.00 protein Evalue < 0.003. G0 anajsis was performed with Panther (<u>http://www.pantherdb.org</u>) and protein networ analysis was performed using Ingenuty Pathway Analysis
Start culture Follicles / SMR: Slavjanski Membrane Rupture / AF: Antrum Formation follicle	= = = = = sps.pAGE → digestion → analys
Use of IEF in-gel fractionation prior to MudPIT analysis dPIT analysis of the crude protein extracts led to the identification of XXX proteins. In ter to reduce sample complexity and increase the number of identified proteins, we formed IEF in-gel fractionation to generate 5 independent fractions based on protein ve charge separation. This approach offered a very good resolution since 79% of the tens were specifically identified in a single fraction. With only 5 fractions, we could ntifly 3 times more proteins with a total of 1403 (Figure 3).	SF 1200 10
Sare Ontology analysis ong the 1402 proteins, 610 were common to the 3 stages (Figure 4). SMR and AF are most similar samples with 862 common proteins. This is in accordance with their cellular nposition since the number of granulosa cells surrounding the occyte is much higher at se 3 stages compared to SF.	SF RMS AF Figure 3: Influence of IEF in-gel fractionation on the number of identified proteins in each fraction of identified proteins at the 3 stage
ne Ontology analysis of these data highlighted the high abundance of proteins involved in tabolic process, cellular process, transport, cell communication, cell cycle and velopmental process. In particular, energy and metabolic process as well as cell cycle, nsport and cellular component organization are overrapresented compared to the ole mouse proteome (Figure 5). This is consistent with the high mitotic activity in the nulosa layer and the strong need for cellular communication between occyte and its rounding cells.	Network analysis in the 3 developmental stages As shown in figure 4, 71 proteins were identified in SF only, 182 in SMR and 193 in AF. In order to highlight differences between the 3 stages, we compared their protein contents and networks using Ingenuity Pathway Analysis. This analysis brought out in particular neoglucogenesis and cyclin networks. The evolving pattern of cyclin associated proteins along <i>in vitro</i> development is given in fig. 6.
Gene Ontology : Biological Process Figure 5: 59% ne Ontology analysis 40% UWble mouse proteone Combined 1 tases	4 proteins involved in cell cycle regulation and DNA repair are detected from SF stage and 7 others appear at SMR stage schwing a peak in cell cycle activity at SMR stage. These proteins are not detected anymore at AF stage. On the other hand, the cyclin-
Comparison of the loopical processes and distribution in mice lices cuttred for virtue proteome.	dependent kinase inhibitor 18, which BRCA2 CDK1 CDKN1 engatively regulates cell cycle through SXP1/3KP2 CDK4 = KPX1/3KP2 CDK4 complex, FBXW12 CDK6 Cyclin- appears at AF stage. CDKN18 is involved in G1 arrest which coincides with slowing dwn of granulosa cells mitosis when antrum is UBAP2L formed in the follide. Those profeires FN1 exhibition a control or profile are set which or profile are set when a stage are set with the follide. Those profeires exhibition a control or profile are set which or profile are set when a stage are set with the follide. Those profession are set which or profile are set when a stage are set when a stage are set with a set of the follion of the set of the
1 1 1 1 1	good candidates to follow up the efficiency of in vitro folliculogenesis.
onclusions and Perspectives	
s study allowed us to highlight several proteins which expression profiles vary along <i>in vitro</i> ture of mice ovarian follicles. Proteins involved in neoglucogenesis or cell cycle processes, ih as the cell cycle inhibitor CDKN1B, show up as ture resolved markers during <i>in vitro</i> culogenesis which could be used to follow up the proper follicle development. a major goal is to find out markers of follicles quality in order to optimize follicle selection for	fertilization. Further experiments will be performed to establish a correlation between the expression profile of some of these proteins and the quality of cultured folicides in terms or fertility efficiency. Moreover, a further outlook will be to analyze protein expression profile in cryopreserved folicides in order to evaluate the impact of freezing on <i>in vitro</i> foliculogenesis or a molecular point of view and eventually point out new specific quality markers.

Communication Orale au **29th Annual Meeting of the European Society of Human Reproduction and Embryology (ESHRE)**, London, United Kingdom, 7-10

July 2013.

O-036 Comparative proteomic analysis of proteins identified at three different stages of ovarian follicles during in vitro development in mice

- . A. Anastácio¹, C. Pionneau², S. Chardonnet², T. Almeida Santos³ and C. Poirot¹
- . ¹Hôpitaux Universitaires de l'Est Parisien Hôpital Tenon, Service d'Histologie à orientation Biologie de la Reproduction-CECOS, Paris, France
- ²Hopital Pitié Salpetrière, Post-Genomic Platform P3S, Paris, France
- . ³University Hospitals of Coimbra, Human Reproduction Service, Coimbra, Portugal

Abstract

Study question Identification and molecular characterization of proteins expressed during follicle development will provide a better understanding of folliculogenesis process. We propose to establish the proteome of isolated mouse ovarian follicles at three different developmental stages during in vitro development: initial stage of culture (IS); Slavjanski membrane rupture (SMR) and antral follicle (AF).

Summary answer More than 1,000 proteins for SMR and AF stages and 838 proteins for IS were identified. Gene Ontology (GO) analysis revealed that several biological processes were over –represented in the three stages when compared with all genome mouse and some processes were over-represented in only one stage.

What is known already Till now the few works using proteomics in this field concern the isolated fully growth oocyte before and after meiosis resume. In 2010 a team published the largest proteome of oocyte at vesicle germinative and metaphase II stages with more than 2,000 proteins identified at each stage. Even if is known the major importance of interaction between oocyte and their surrounding cells until now any author has studied the proteome of the whole follicle.

Study design, size, duration Ovarian follicles were isolated from 12 day old B6CBA/F1 mice. 1143 IS follicles from 19 females were collected at 7 different times; 1803 secondary follicles from 41 females were cultured in a microdrop under oil system during 9 experiments. From those we selected 359 SMR follicles and 124 AF follicles.

Participants/materials, setting, methods Follicle proteome was analyzed by coupling Isoelectric focusing (IEF) prefractioning with 1D and 2D LC-MS/MS analysis.

Protein identification was performed by X-TANDEM software and SWISSPROT mouse database.

The obtained lists were submitted to the 'Compare gene list' tool in the PANTHER website to insight about the Gene Ontology Biological process.

Main results and the role of chance The combined analysis of 1D and 2D nano LC-MS/MS allowed the identification of 838 proteins to IS, 1,124 to SMR and 1,116 to AF. 53.9% of them were common to the three stages, 2.8% were only identified in IS and 9.4% only at SMR and AF.

Gene Ontology (GO) analysis demonstrated that approximately 20 GO Biological Process were over-represented in the different stages when we compared the submitted list with the all list of mouse genes. Nevertheless some biological processes were over-represented in a single stage. Mitochondrion organization, chromosome segregation and RNA localization are only over-represented in IS, DNA metabolic process and vesicle-mediated transport only in the SMR and porphyrin metabolic process only in the AF.

Limitations, reason for caution The results contain a large list of proteins. Proteins below the detection level of the technique used, will not appear. As such, the absence of a given protein from the list in a specific stage, may signify it is below the detection level and not absent at all.

Wider implications of the findings This study allowed a general view of the proteins that are implicated in the follicle development in vitro and it represents the most complete catalogue of the follicle proteome available so far. Not only well known proteins in the oocyte were identified but also proteins that are probably expressed only in granulosa cells or proteins never described in the female gamete development.

Study funding/competing interest(s) This study was supported by the Foundation for Science and Technology of the Portuguese Ministry of Education and Science grant PhD fellowship SFRH/BD/65299/2009 to AIA.

Article soumis au journal **Reproduction** (le pdf présenté ne contient pas les images et tableaux annexes appartenant à l'article car il sont déjà présents dans le chapitre résultats).

Proteomic profile of mice ovarian follicles at three different developmental stages in vitro

Journal:	Reproduction
Manuscript ID:	Draft
mstype:	Research paper
Date Submitted by the Author:	n/a
Complete List of Authors:	ANASTACIO, Amandine; 1Université Paris VI (UPMC), Service du Professeur Catherine Poirot Service d'Histologie à orientation Biologie de la Reproduction-CECOS Chardonnet, Solenne; Université Paris VI (UPMC), Plateforme Post- Génomique de la PitiéSalpetrière (P3S) Pionneau, Cedric; Université Paris VI (UPMC), Plateforme Post- Génomique de la PitiéSalpetrière (P3S) Federici, Christian; Université Paris Descartes, 3P5 Proteomics facility Almeida-Santos, Teresa; University Hospitals of Coimbra, Reproduction Unit Poirot, Catherine; APHP hopital Tenon, CECOS
Keywords:	Ovarian Follicle, In vitro development, Proteomics, Mice
	-

SCHOLARONE[™] Manuscripts

reproduction@bioscientifica.com

- 1 Proteomic profile of mice ovarian follicles at three different developmental stages in vitro
- 2 Amandine Anastácio^{*1}, Solenne Chardonnet², Cédric Pionneau², Christian Federici³, Teresa
- 3 Almeida Santos^{4,5}, Catherine Poirot^{1,6}
- 4
- 5 ¹Université Paris VI (UPMC), Paris, France
- 6 ²Plateforme Post- Génomique de la Pitié Salpetrière (P3S), Université Paris VI (UPMC), Paris,
- 7 France
- 8 ³3P5 Proteomicsfacility, Université Paris Descartes, Paris, France
- 9 ⁴Human Reproduction Department, University Hospital of Coimbra, Coimbra, Portugal
- 10 ⁵Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- 11 ⁶Service de Biologie de la Reproduction, Hôpital Tenon, Paris, France
- 12 *Corresponding author
- 13 Amandine Anastácio
- 14 Service du Professeur Catherine Poirot
- 15 Service d'Histologie à orientation Biologie de la Reproduction-CECOS
- 16 Hôpitaux Universitaires de l'Est Parisien
- 17 Hôpital Tenon
- 18 4 rue de la Chine, 75020 Paris, France
- 19 Tel :(+33) 01 56 01 77 00 Fax : (+33) 01 56 01 78 03
- 20 Email : amandine@ua.pt
- 21
- 22 Short title: Proteins of mice ovarian follicle in vitro
- 23
- 24
- 25
- 26
- 27

28 Abstract

Follicle is an important cell structure since oocyte development is strictly associated with his surrounding somatic cells. A characterization of follicle proteins can help us to elucidate those that can play an important role on follicle development. Thus, we proposed a protein identification of whole mouse follicle, at three development stages during *in vitro* development: early secondary stage, described as initial stage (IS); follicles with a complete Slavjanski membrane rupture (SMR) and follicles with an antrum like cavity formation (AF).

35 Combining the three protein lists obtained, 1403 different proteins were identified. Cell cycle, 36 protein transport, generation of precursor metabolites and energy, carbohydrate metabolic 37 processes and translation were some of the biological processes over-represented in the three 38 stages of development, when compared to Musmusculus gene database. Furthermore, some 39 proteins were identified at one stage only: 71 in IF stage, 182 in SMR stage and 193 in AF stage. 40 Among them, proteins associated to the Cyclin dependent kinases (CDKs) network exhibited a 41 specific profile: 11 out of 12 were identified at SMR stage, including the CDKs themselves, 42 while an inhibitor for CDKs was identified at AF stage only. Additionally, a quantitative analysis 43 of these data highlighted the higher abundance of proteins associated with calcium at SMR 44 stage and of proteins implicated in glycolysis at AF stage.

This report represents so far the most complete catalogue of follicle proteins and could be an important milestone in the proteomic study of the follicle metabolism throughout *in vitro* development.

48

- 49 Keywords: Ovarian follicle/in vitro development/proteomics/mouse
- 50
- 51
- 52

53 Introduction

54 A competent oocyte is primordial to fertilization. Developmental competence was defined as 55 the capacity of an oocyte to undergo maturation, fertilization and early embryo development 56 (Trounson, et al., 2001). This competence is gained gradually during folliculogenesis, which is a 57 highly complex process with several mechanisms and steps that remain unclear. Since the 58 activation of primordial follicle, and throughout follicular development, important changes 59 occur, such as granulosa and theca cells differentiation and proliferation. Simultaneously the 60 oocyte volume increases and it grows until it reaches the appropriate size to induce nuclear 61 maturation and allow the fertilization and the development of a viable embryo. These 62 processes have several critical steps and involve a cascade of molecular interactions with high 63 transcriptional activity with the synthesis of several new proteins (Eppig, et al., 2005, Gilchrist, 64 et al., 2004, Picton, et al., 1998). Expanding the knowledge on protein expression during these 65 stages, may give important information about the different events occurring in follicle 66 development. Proteomic approaches allow the identification and characterization of proteins 67 that are expressed in a cell. This approach presents several advantages over mRNA expression 68 profiling since the presence of mRNA in a cell is not strictly correlated with protein abundance 69 (Ma, et al., 2008).

70 Over the last decade some groups reported the study of isolated oocytes proteome at 71 different development stages in bovine (Memili, et al., 2007, Peddinti, et al., 2010), pig 72 (Ellederova, et al., 2004, Novak, et al., 2004) and mice(Coonrod, et al., 2002, Ma, et al., 2008, 73 Pfeiffer, et al., 2011, Vitale, et al., 2007, Wang, et al., 2010). Early attempts to provide a list of 74 oocyte's proteins were based on two-dimensional polyacrylamide gel electrophoresis (2D-75 PAGE) and spots identification by mass spectrometry(Calvert, et al., 2003, Coonrod, et al., 76 2002).Nowadays, multidimensional liquid chromatography separation, coupled to mass 77 spectrometry (MudPIT), has become a very efficientmethod to study proteomes and identify a 78 large number of proteins particularly when the sample is rare and complex like the mammalian

79 oocyte (Pfeiffer, et al., 2011).

In mice, the proteome of fully growth oocyte before and after meiosis resumption has been reported, with an increasingly larger list of proteins at each report. Additionally, comparative studies between germinal vesicle (GV) oocytes, from fully grown follicles, and MII oocytes (Vitale, et al., 2007, Wang, et al., 2010), MII oocytes and zygotes (Wang, et al., 2010) and between MII oocytes and undifferentiated embryonic stem cells (ES) (Pfeiffer, et al., 2011) were also performed.

Nonetheless, all these studies report proteins identified from isolated oocytes despite the essential roleplayed by the bidirectional communication between oocyte and its surrounding cells in the follicle, during oocyte development(Matzuk, et al., 2002). Yet, Meng and colleagues reported the identification of 156 proteins from mature mouse cumulus-oocyte complex(Meng, et al., 2007). Although, at this stage of development the cumulus cells are differentiated from previous granulosa cells due to the disruption of intercellular connections and consequent expansion occurred during ovulation (Hawkins and Matzuk, 2010).

To the best of our knowledge, no study of the whole follicle proteome has been reported to date. Thus, in order to identify proteins expressed during follicle development, before ovulation, we performed the analysis of protein profile of mice follicles at three specific morphological stages during *in vitro* development. The present report is thus an important milestone in the proteomic study of the follicle metabolism throughout *in vitro* development.

98

99 Materials and Methods

100 Animals and pre-antral follicle isolation and culture

101 B6CBA/F1 mice (Charles River[®], Lyon, France) housed with their mothers in a controlled 102 temperature environment with a 12 h light/dark cycle were used. 120 ovaries were collected 103 from 12 days old mice, killed by cervical dislocation, in a 37°C warmed dissection medium 104 containing Leibovitz's L - 15 media supplemented with 10 % fetal bovine serum (FBS) (Gibco[®],

106

Cergy-Pontoise, France), 100 IU/mL penicillin and 100 μg/mL streptomycin (Sigma – Aldrich[®], Saint Quentin Fallavier, France).Follicles with a diameter between 100 μm and 130 μm, two or

107 more granulosa cell layers, a round and central oocyte and some adherent theca cells were

108 mechanically dissected using 25 gauge needles (Sherwood Medical [®], Evry, France).

For individually follicle culture we used a microdrop (10 x 20 μL) system, under oil in an atmosphere 5 % CO₂ at 37°C (Cortvrindt et al, 1996). Culture medium was composed of αminimal essential medium with glutaMAX (α-MEM GlutaMAX, Gibco®) supplemented with 5 %
FBS (Gibco®), 10 µg/mL transferrin (Boehringer Mannheim®, Meylan, France), 5 µg/mL insulin
(Boehringer Mannheim®) and 100 mIU/mL recombinant follicle stimulating hormone (rFSH)
(MSD®, Puteaux, France). Every day, follicles were measured, half medium renewed and
morphological characteristics noted.

116

117 Preantral follicle selection for proteomic analysis

Proteomic analyses were performed in three distinct groups: (i) 1143 preantral follicles directly selected after isolation, without culture, considered to be the initial stage (IS); (ii) 359 follicles, selected during the culture, presenting a completeSlavjanski membrane rupture (SMR) and (iii) 124 follicles with an antral like cavity at the 12thday of culture (AF) (Fig.1). A total of 1803 preantral follicles were cultured in 9 independent experiments to compose the SMR and the AF groups. Selected follicles were washed three times in phosphate-buffered saline (PBS) (Gibco-BRL®) dried and stored at -196°C until needed.

125

126 Protein extraction and fractionation

The majority of products used in the proteomic approach were purchased from Sigma-Aldrich[®] (Saint Quentin Fallavier, France) and GE Healthcare[®] (Vélizy, France), those were not are indicated in the text.Protein extraction was performed by adding 15 μL/vial lysis buffer containing 7 M urea, 2 M thiourea, 1% 3 - [3-cholamidopropyl)dimethylamonio] - 1-

propanesulfonate (CHAPS), 0.5 % 3 - (Decyldimethylammonio) propane sulfonate inner salt
(SB3 - 10), 0.5 % Triton X 100, 10 % isobutanol, 50 mMdithiothreiol (DTT) and 0.5 % ampholyte
3 - 10. After 2 x 5 minutes sonication and 45 minutes of 20,000 xg centrifugation at 4 °C the
supernatants were collected. Protein concentration was measured using the
Bradford(Bradford, 1976)assay and samples were stored at - 80 °C until use.

136 For each group isoelectrofocusing (IEF) prefractionation was performed with 100 µg of proteins, in an Immobilized pH gradient (IPG) ImmobilineDryStrip(7 cm, pH 4 - 7). IEF migration 137 was performed on an EttanIPGphor II isoelectric focusing system, with a multistep program: 138 139 50 V for 1 h, 200 V for 1 h, gradient from 200 to 1000 V in 45 min, 1000 V for 45 min, gradient 140 from 1000 to 4000 V in 1 h and finally 4000 V for 3 h.Following isoelectric migration, the strips 141 were first treated 15 minutes with a reduction buffer (6 M Urea, 75 mMTris pH 8.8, 30 % 142 glycerol, 2 % SDS and 65 mM DTT) followed by 15 minutes in an alkylation buffer (6 M Urea, 143 75 mMTris pH 8.8, 30% glycerol, 2 % SDS and 135 mMiodoacetamide) and then cut into 5 144 equal fractions of 1.2 cm long using a scalpel blade.Proteins from each strip fraction were 145 extracted with a short (1 h at 10 mA) migration in a SDS PAGE gel 12 % acrylamide. Gels were 146 stained with Coomassie Blue R - 250 using Imperial Protein Stain (Pierce, Thermo Fischer 147 Scientific, Courtaboeuf, France).

148

149 In gel tryptic digestion

For each fraction a unique large band was excised and cut into several 1 mm³ cubes. Gel pieces were destained with a 25 mM ammonium bicarbonate (AmBic) - 50 % ethanol solution, dehydrated in acetonitrile (ACN) for 10 minutes and dried at room temperature. Gel slices were then rehydrated with 70 μL of a trypsin solution (200ng/μL in 50mM AmBic) on ice for 30 minutes and incubated overnight at 37°C. Supernatants were collected into new tubes and the gel pieces were incubated twice with 60 % ACN in 0.1 % trifluoroacetic acid (TFA) to extract the remaining peptides. The extracts were concentrated in a speed vacuum dryer, resuspended in

- 157 40 μL of 30 % ACN with 0.1 % formic acid and stored at 80°C until MS analysis.
- 158

159 1D and 2D LC-MS/MS analysis

160 Peptide samples were desalted using Zip-Tip C18 pipettes tips, following manufacturer's 161 instructions. Two configurations of High-Performance Liquid Chromatography (HPLC) were 162 used for LC-MS/MS analysis: 1D LC-MS/MS and 2D LC-MS/MS. In 1D configuration, peptide 163 mixtures were concentrated and desalted for 5 min on a precolumm C18 (5 mm, 300 µm i.d., 164 100 Å, Dionex) with a mobile phase A1 (2 % ACN/0.1 % formic acid) at a flow rate of 20 μL/min. 165 Then the peptide mixtures were separated and eluted on an analytical column RP-C18 (15 cm, 166 75μm i.d., 100 Å, Dionex) at a flow rate of 200 nL/min using 0 % to 30 % gradient Buffer 1 (95 % ACN, 0.1 % AF). In the 2D configuration, peptides were first separated by sequential 167 168 elution from a silica capillary column strong cation exchanger (SCX, 15mm, 300 µm i.d., Dionex) 169 with 20 µl of 0, 20, 30, 50, 100 and 1000 mM of ammonium acetate. Each one of these salt 170 steps was then treated like the 1D approach. The HPLC was directly coupled to an ion trap mass spectrometer (MS) (HCTultra, Bruker®(Bremen, Germany)) for peptide identification. The 171 172 ion trap was used in the positive mode with the selection of 8 precursors from each MS 173 spectrum for fragmentation by collision induced dissociation (CID).

174

175 Protein Identification

MS/MS data were submitted to X-tandem V 3.3.2 using the X!tandem pipeline (http://pappso.inra.fr/bioinfo/xtandempipeline/) considering the following parameters: Trypsin as digesting enzyme, Carbamidomethylation of cysteine residues as a fixed modification and methionine oxidation as variable modification, a peptide mass tolerance of 0.5 Da and a charge of +1, +2 or +3. Proteins were identified with a false discovery rate (FDR) lower than 1 % with at least 1 unique peptide, a p value < 0.05 for peptides and p value < 0.003 for proteins using Uniprot KB mouse databases from June 2012.

183 Gene Ontology (GO) analysis

All proteins from each stage were subjected to the PANTHER 8.1 (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org) that is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The proteins of each stage were classified in protein classes and biological processes. The comparative tool to gene base for *Musmusculus* was also used to highlight biological processes over-expressed in our samples.

191

192 Ingenuity pathway analysis (IPA)

193 To gain insights into the biological pathways and networks that are statistically significantly 194 represented in our proteomic datasets we used Ingenuity Pathways Analysis (IPA; Ingenuity 195 Systems, Qiagen Company, Redwood City, CA, USA). IPA selects "focus proteins" to be used for 196 generating biological networks. Focus proteins are the proteins from our datasets that are 197 mapped to corresponding gene objects in the Ingenuity Pathways Knowledgebase (IPKB) and 198 are known to interact with other proteins based on published, peer reviewed content in the 199 IPKB. Based on these interactions IPA builds networks with a size of no more than 35 genes or 200 proteins. A p-value for each network and canonical pathway is calculated according to the fit of 201 the user's set of significant genes/proteins. IPA computes a score for each network from the p-202 value that indicates the likelihood of the focus proteins in a network being found together due 203 to chance. We selected only networks scoring ≥ 2 , which have >99% confidence of not being 204 generated by chance. Biological functions are assigned to each network by using annotations from scientific literature and stored in the IPKB. A Fisher exact test is used to calculate the p-205 206 value determining the probability of each biological function or pathway being assigned by 207 chance. We used $P \leq 0.05$ to select highly significant biological functions and pathways 208 represented in our proteomic datasets. The build function of IPA allows for generating

8

pathways that can complete the data analysis by showing interactions of identified proteins with a specific group of molecules. The Path Designer feature in IPA is used to create pattern graphics that communicate insights from experiments and serve as working models. Path Designer completes the research workflow from data analysis through the creation of images able to suggest a summary of networks selected.

214

215 Label free quantification

216 For label-free quantitation, Bruker® raw data files from 1D LC-MS/MS acquisitions were 217 imported into the Progenesis LC -MS software version 4.1.4832.42146 (Nonlinear Dynamics, 218 Newcastle upon Tyne, UK) for feature detection, alignment, and quantitation. For each 219 developmental stage, three replicate samples were aligned according to retention time using a 220 combination of automatic and manual alignment. Peptides peak picking was done with an 221 absolute ion intensity threshold of 100 000, a maximal ion charge state of three and in the 222 retention time range from 25 to 100 minutes. MS/MS peak lists were generated with the 100 223 most intense fragment ion peaks. For a given peptide, only the 5 most intense MS/MS spectra 224 were used to generate MS/MS peak lists, which were exported as mgf files. Protein 225 identification was performed using in-house Mascot software version 2.2.07 (Matrix Science, 226 London, UK) against the Musmusculus proteome set (release 2013-05, containing 50807 227 sequences) from SwissProt/Trembl database. The instrument setting was specified as "ESI-228 Trap". Parameters used for Mascot search were as follows: a maximum of one missed 229 cleavage; carbamidomethylation of cysteines as a fixed modification and oxidation of 230 methionine as a variable modification; trypsin as the enzyme; a peptide mass tolerance of 0.5 231 Da; a fragment mass tolerance of 0.5 Da. Mascot search results were imported back 232 intoProgenesis software to link the identified peptides to the detected abundances of these 233 peptides. Peptide identified with a Mascot score lower than 33 (significance threshold of p< 234 0.05) were removed. The protein quantitation was made using non-conflicting peptides. Only

- proteins with a significant change between the groups (ANOVA p-value < 0.05), a fold change
 greater than two and having at least two peptides with significant change (ANOVA q-value
- 237 < 0.05 and fold-change greater than two) were accepted.
- 238
- 239 Results
- 240 Protein identification of follicles developed in vitro
- Three distinct morphological stages of mice ovarian follicle developed *in vitro* were compared using a large scale proteomic approach. Protein extracts from each stage were first fractionated using IEF in-gel fractionation. Six serial injections were performed for each fraction, four in 1D LC-MS/MS and two in 2D LC-MS/MS. This approach allowed us to successfully identify 775 proteins in Initial Stage (IS), 1093 in Slavjanski Rupture Membrane stage (SMR) and 1101 in Antral Follicle stage (AF) (Supplementary data, Table SI).
- From a total of 1403 different proteins identified, 609 (43.4%) were common to the three stages. Whilst 348 (24.8%) were common to two stages of development and some proteins were identified in a single stage: 71 (5.1%) in IS, 182 (13%) in SMR and 193 (13.8%) in AF.
- 250

251 Gene Ontology analysis

Proteins identified in each stage were assigned to protein class and biological process using Panther GO analysis. For the three stages GO analysis distributed the hit genes in 22 protein classes. Nucleic binding, with 18 to 22 % of the proteins, was the class with the highest number ofproteins attributed in the three stages, followed by hydrolase, oxidoreductase, transferase, enzyme modulator and cytoskeletal proteins (Fig.2A).

In biological processes, 488 proteins from IS, 704 from SMR and 673 from AF were assigned to the cluster metabolic process. Cellular process, transport, cell cycle, cell communication and protein transport were the other clusters with most proteins assigned to (Fig.2B). In spite of similar biological process distribution between the stages, some were shown to be

- 261 predominant in a given stage when compared to the whole gene*Musmusculus*base
 262 (Supplementary data, Table SII).
- 263 At IS stage a total of 77 identified proteins could be matched to cellular component 264 organization, wherein 57 and 7 proteins were assigned to cellular component morphogenesis 265 and mitochondrial transport respectively. These subclusters were over-represented in this 266 stage only, as well as anatomical structure morphogenesis and RNA localization. Within 267 metabolic processes, ferredoxin and pyrimidine metabolic processes were over-represented in 268 SMR stage with 15 and 6 proteins assigned while vitamin metabolic process was most 269 prominent in AF stage. Over 20 others biological processes were significantly over-represented 270 in our three groups of study. These include cell cycle, more specifically mitosis within cellular 271 process, generation of precursor metabolites and energy, protein metabolic processes 272 including protein folding carbohydrate metabolic process, translation and nuclear and protein 273 transport (Supplementary data, Table SII).

275 Protein network analysis

276 Proteins involved in cell cycle process were highlighted by Ingenuity Pathway Analysis, with a 277 particular focus on acyclin-dependent kinases (CDKs) network. Indeed, twelve proteins, 278 including CDKs and related proteins, exhibit a particular expression in the three groups (Fig.3). 279 We observed that, at IS stage, 4 of those proteins such as S-phase kinase-associated protein 1 280 (SKP1), F-box/WD repeat-containing protein 12 (FBXW12), breast cancer type 2 susceptibility 281 protein homolog (BRCA2) and Ubiquitin-associated protein 2-like (UBAP2L) were identified 282 even if cyclins were not (Fig.3a). At SMR stage, 3 of the 4 cyclinsof this network were identified 283 namely CDK 1, 4 and 6. Four other proteins that are directly or indirectly associated to those 284 CDKs were detected at SMR stage, such as CDK5 regulatory subunit-associated protein 3 285 (CDK5RAP3), Forkhead box protein O1 (FOXO 1), UDP-N-acetylglucosamine--peptide N-286 acetylglucosaminyltransferase 110 kDa subunit (OGT) and fibronectin (FN1), in addition to the

four proteins already detected at IS stage (Fig.3b). At AF stage a cyclin-dependent kinase inhibitor 1B (CDKN1B) was identified. Consequently, other proteins connected with this inhibitor and identified in the previous stages were no more observed such as the three CDKs, SKP1/SKP2, FBXW12, BRCA2, FOXO1, OGT and UBAP2L. This illustrated a complete reversal of the CDK network protein profile at this stage (Fig.3c).

292

293 Analysis of protein abundance in the three developmental stages

Label-free quantification was performed on 1D LC-MS/MS data in order to emphasize abundance protein variations along *in vitro* follicle development. Differential levels of expression were found to be significant for 57 proteins between the three stages (Table I) and were distributed into five distinct abundance profiles (Fig.4).

298 Fifteen proteins had their maximal abundance at IS stage (Fig.4 P1). Of these, elevenhad 299 significant variations between this stage and the two others, including seven .proteins 300 associated to the oocyte, such as zonapellucida sperm-binding protein 2 and 3 (ZP2 and ZP3), 301 Oocyte-expressed protein homolog (OOEP), KH domain-containing protein 3 (Filia), transducin-302 like enhancer protein 6 (TLE6), protein-arginine deiminase type-6 (PADI6) and phospholipase 303 A2, group IVC (Pla2g4c). In this same profile type we also observed two proteins with a 304 significant variation between IS and SMR stages but not with AF stage. The two remaining 305 proteins had a significantly lower abundance at AF stage compared to IS and SMR stage.

From the five proteins with a highest abundance at SMR stage, that characterized profile 2, three calcium ion binding proteins -calreticulin (CALR), calumenin (CALU) and myosin light polypeptide 6 (MYL6) - were significantly less abundant in the other stages. The two other proteins varied between SMR and AF stage. A gradual increase in protein abundance throughout the stages was the most frequent profile observed with 28 fitting proteins(Fig.4 P3).On the opposite, the profile with a lower abundance at SMR stage compared to IS and AF stages, corresponding to two proteins, was the less frequent profile (Fig.4 P4). At AF stage, seven proteins had their maximal abundance with a significant variation between this stage and the other two (Fig.4 P5). Two of them are enzymes implicated in glycolysis: alpha-enolase (ENOA) and phosphoglucomutase-1 (PGM1) and athird one, fatty acid-binding protein (FABP5) is a glucose transporter. A regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells named PKAR2B was also particularly abundant at this stage.

Moreover, by analyzing the list of 57 proteins differentially expressed, Ingenuity Pathway Analysis suggested that glycolysis was the top canonical pathway with nine proteins involved in this pathway. Eight of them showed a regular increase along follicle development with a maximal expression at AF stage. On the contrary, the remaining one has a maximal expression at IS stage and decrease along the development (Fig. 5).

324

325 Discussion

In the female reproduction field, previousproteomic studies have been focused on isolated 326 327 oocytes (Demant, et al., 2012, Ma, et al., 2008, Pfeiffer, et al., 2011, Wang, et al., 2010, Zhang, 328 et al., 2009) and cumulus oocyte complex(Meng, et al., 2007). However those studies were 329 performed using fully grown germinal vesicle (VG) oocytes obtained after stimulation and/or metaphase II (MII) oocytes with the analysis of the meiosis resumption and the acquisition of 330 331 development capacity. Meiotic resumption capacity is acquired during oocyte development 332 and is completely dependent on follicle development and on interaction between the different 333 cell types of this structure. Thus, we decided to focus on earlier stages of follicle development 334 and our study is the first large scale proteomic study performed on whole follicles during 335 development in vitro.

We compared the proteome profile of three distinct stages of mice ovarian follicles grown *in vitro*. The choice of the different stages was based on morphological differences observed

reproduction@bioscientifica.com

338 during in vitro development using a microdrop culture system under oil. IS stage, composed by 339 secondary follicles, was the stage chosen for culture initiation. In this type of culture, it is 340 observable an adhesion of the follicle to the support. The high proliferation of granulosa 341 cells, associated to the support adhesion, leads to tridimensional structure loss by rupture of 342 the Slavsjanki membrane. So, in this study, SMR stage was composed by follicles with a 343 complete rupture of the Slavjanski membrane and a diffuse granulosa cells distribution. Finally, 344 the AF stage comprised follicles reaching at least 500µm in diameter after 12 days of culture 345 and where the presence of an antrum like cavity was observed. This type of follicle is 346 comparable to Graaffian follicle of the in vivo system and it is currently chosen to be stimulated with hCG for maturation in thein vitro system. 347

348 Protein identification of follicles developed in vitro

349 By applying a combined 1D and 2D LC-MS/MS analysis, preceded by in-gel IEF fractionation, we 350 have successfully identified 1403 different proteins in all three stages. Within those proteins, 351 365 were never described in previous proteomic studies on oocyte or cumulus-oocyte complex 352 cells(Demant, et al., 2012, Ma, et al., 2008, Meng, et al., 2007, Pfeiffer, et al., 2011, Wang, et 353 al., 2010, Zhang, et al., 2009) (Supplementary data, Table SIII). We noted an increasing number 354 of previously undescribed proteins with the stage of development, namely 134 at IS, 240 at 355 SMR and 273 at AF. A possible explanation is that most of these proteins may be expressed by 356 granulosa or theca cells, which were not present in those studies. Moreover, since the 357 oocyte / granulosa cells ratio decreases along follicle development, the proportion of proteins 358 originating from granulosa cells versus the oocyte should increase.

Of the 897 proteins that were also described in Wang's study (Wang, et al., 2010), 97 were contained in their dataset derived from MII oocytes or zygotes. Since our samples were composed only by VG oocytes, those proteins appeared to be already expressed before meiosis resumption.

363 Gene Ontology analysis

364 Similarly to previous studies in the oocyte proteome, metabolic process, cellular process, 365 transport and cell communication are the biological process clusters that have more proteins 366 attributed to (Meng et al. 2007; Ma et al. 2008; Zhang et al. 2009; Wang et al. 2010; Pfeiffer et 367 al. 2011; Demant et al. 2012). However we observed that, compared to the whole 368 Musmusculus genome some biological processes were over-represented in our samples with 369 special attention for nuclear and protein transport, mitosis, generation of precursor 370 metabolites and energy, carbohydrate metabolic process, protein folding and translation. 371 These results are consistent with the high proliferation of granulosa cells and the major role of 372 interaction between the granulosa cells and the oocyte, as well as the high levels of 373 transcription at this stage of oocyte development. Despite similar distribution within biological 374 processes, among the three stages, some proteins were identified at a single stage and complementary analysis highlighted differential distribution and expression of proteins 375 376 between the three stages.

377 Protein network analysis

Ingenuity Pathway Analysis (IPA)emphasized protein expression variationsin functional 378 379 networks among the stages. During follicle development, the size of the follicle dramatically 380 increases with the proliferation of granulosaand theca cells by mitosis. Indeed proteins with a 381 role in cell cycle, and more specifically concerning mitosis, were over-represented in the three 382 stages. Nevertheless, we observed that, at IS stage, only 4 of the 12 proteins, with expression 383 variation in the CDKs network suggested by IPA were identified. Particularly, the CDKs 384 themselves were not detected. This is consistent with the fact that at this stage the follicle has 385 only a few granulosa cell layers and consequently the mitotic activity is lower than in others 386 stages of development. On the contrary, the highest mitotic activity happens at SMR stage, 387 with an extremely high level of proliferation of granulosaand theca cells. This is underlined by 388 the identification of CDK1, CDK4 and CDK6 only at this stage as well as other eight cyclin 389 partners. At the end of the culture, AF stage, the mitotic activity and consequent proliferation

reproduction@bioscientifica.com

of granulosa cells stabilizes. In terms of protein expression, this has resulted in the detection of one negative regulator of the CDKs, the cyclin-dependent kinase inhibitor 1B (CDKN1B), also known as p27Kip1. This protein negatively regulates cell cycle through modulation of cyclintype D-CDK4 complex (Bayrak and Oktay, 2003, Rajareddy, et al., 2007). Additionally, the SPK1/SPK2 complex that is known to be involved in p27kip1 degradation was not identified at this stage although it was detected in the previous stages. All these observations suggested a higher level of this inhibitor, at AF stage, corroborating mitotic activity decline.

397 Analysis of protein abundance in the three developmental stages

398 We also identified different levels of expression, between the 3 stages, for 57 proteins. The 399 majority of the proteins more abundant in IS stage are expressed in the oocyte, such as the 400 glycoproteins ZP2 and ZP3 (Epifano, et al., 1995), egg and embryo abundant PAD (PADI6) 401 (Wright, et al., 2003) and 3 protein members of the subcortical maternal complex (SCMC) -402 OOEP, Filia (KHDC3) and TLE6 (Li, et al., 2008). Although these proteins have been shown to 403 increase along oocyte development(Epifano, et al., 1995, Li, et al., 2008, Wright, et al., 2003, 404 Yurttas, et al., 2010, Zheng and Dean, 2009), their expression decreased when looking for 405 entire follicle during in vitro development. This is consistent with the higher representation of 406 oocyte proteins in IS stage follicles, when compared to the later stages where granulosa cells 407 become much more abundant.

408 The focus of this study was the follicle in its global nature to look for potential developmental 409 markers of the entire functional structure, rather than the study of different cell types 410 individually. Interestingly, quantification analysis pointed out to at least two groups of proteins 411 of interest. One bears calcium associated proteins, which is one of the most ubiquitous signaling molecules and controls a wide variety of cellular processes. Calreticulin (CRL) is the 412 major Ca^{2+} - binding chaperone in occytes (Zhang, et al., 2010). Accumulating evidence found 413 that intracellular free Ca²⁺ plays an important role in regulation of the meiotic maturation of 414 415 oocytes and early embryonic development (Homa, et al., 1993, Sousa, et al., 1997, Whitaker,

416 2006). Our quantitative analysis of the proteome reveals that this protein, as well as other 417 calcium binding proteins like calumenin (CALU) and myosine light protein 6 (MYL6), were more 418 abundant in SMR stage. This suggests that calcium exchanges in the follicle may have a 419 relevant role at this moment of the development.

420 Quantitative analysis also highlighted the carbohydrate metabolism and particularly glycolysis, 421 which is described as an important pathway for glucose utilization by larger follicles, as an 429 422 important biological process in follicle development(Collado-Fernandez, et al., 2012, Harris, et 423 al., 2007, Xu, et al., 2009). Glycolysis is required for follicle growth and estradiol secretion and 424 is the main source of ATP in mouse preantral follicles in vitro(Boland, et al., 1994, Boland, et 425 al., 1994). We identified several proteins involved in this pathway, such as pyruvate kinase M2 426 (KPYM), PGM1, L-lactate dehydrogenase chain A and B (LDHA, LDHB), Fructose-427 bisphosphatealdolase A (ALDOA), alpha and gamma enolase (ENOA, ENOG), ADP glucokinase 428 (ADPGK), GAPDH, Triosephosphateisomerase (TPIS), 6-phosphofructokinase type C (K6PP), 429 glucose-6-phosphate (G6PD1) and phosphoglyceratemutase 1 (PGAM1). Quantitative analysis 430 showed a variable abundance for 9 of those proteins throughout follicle development (Table I). 431 The expression of LDHB was maximized at IS stage, while the other eight exhibited an increase 432 in abundance throughout follicle development, achieving a maximum at AF stage. These 433 results illustrate a strong need for energy supply at this stage of in vitro development.

434 Another protein with relevant interest, and that was more abundant in AF stage, wasPRKAR2B, 435 which is a regulatory subunit of the cAMP-dependent protein kinase (PKA) involved in cAMP 436 signaling. High levels of AMP within the oocyte are essential to keep the meioticcycle on hold. 437 Nevertheless, the source of cAMP is still a matter of controversy since one theory suggests that 438 the oocyte generates the inhibitory cAMP on its own (Horner, et al., 2003, Mehlmann, 2005, 439 Mehlmann, et al., 2002), whereas another one claims that meiotic arrest is dependent on the 440 cumulus/granulosa cells for the supply of this inhibitor (Sela-Abramovich, et al., 2006). Higher 441 levels of a protein implicated in cAMP signaling at AF stage suggest that this protein is likely to

reproduction@bioscientifica.com
18

- be produced in the granulosa cells, since at this stage, in our samples, we have a highernumber of granulosa cells compared to the other stages.
- 444

445 Conclusion

446 The results presented herein represent, so far, the most complete catalogue of the follicle 447 proteome. The comparative analysis of the three distinct morphological stages of follicles 448 allowed us to highlight several functional groups of proteins exhibiting differential expression 449 along in vitro development. The combination of qualitative and quantitative analyses pointed 450 out specific expression patterns for proteins associated with the CDK network, glycolysis, 451 calcium binding and regulation as well as a regulatory subunit of PKA. Further complementary studies should follow to understand specific activation of developmental pathways allow 452 453 follicle development and maturation.

454

455 Funding

- 456 This study was supported by the Foundation for Science and Technology of the Portuguese
- 457 Ministry of Education and Science PhD fellowship SFRH/BD/65299/2009 to A.A.
- 458 The authors of the study have no conflict of interest to report.
- 459

460 References

- 461 Bayrak A and Oktay K. The expression of cyclin-dependent kinase inhibitors p15, p16, p21, and
- 462 p27 during ovarian follicle growth initiation in the mouse. Reproductive biology and
- 463 endocrinology : RB&E 2003; 1:41.
- 464 Boland NI, Humpherson PG, Leese HJ and Gosden RG. Characterization of follicular energy
- 465 metabolism. *Hum Reprod* 1994; **9**:604-609.

466	Boland NI, Humpherson PG, Leese HJ and Gosden RG. The effect of glucose metabolism on
467	murine follicle development and steroidogenesis in vitro. Hum Reprod 1994; 9:617-623.
468	Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of
469	protein utilizing the principle of protein-dye binding. <i>Analytical biochemistry</i> 1976; 72 :248-254.
470	Calvert ME, Digilio LC, Herr JC and Coonrod SA. Oolemmal proteomicsidentification of highly
471	abundant heat shock proteins and molecular chaperones in the mature mouse egg and their
472	localization on the plasma membrane. Reproductive biology and endocrinology : RB&E 2003;
473	1:27.
474	Collado-Fernandez E, Picton HM and Dumollard R. Metabolism throughout follicle and oocyte
475	development in mammals. The International journal of developmental biology 2012; 56:799-
476	808.
477	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. Journal of reproductive
477 478	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65.
477 478 479	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre-
477 478 479 480	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in
477 478 479 480 481	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. <i>Hum Reprod</i> 2012; 27 :1096-
477 478 479 480 481 482	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. <i>Hum Reprod</i> 2012; 27 :1096- 1111.
477 478 479 480 481 482 483	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. <i>Hum Reprod</i> 2012; 27 :1096- 1111. Ellederova Z, Halada P, Man P, Kubelka M, Motlik J and Kovarova H. Protein patterns of pig
477 478 479 480 481 482 483 484	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. <i>Hum Reprod</i> 2012; 27 :1096- 1111. Ellederova Z, Halada P, Man P, Kubelka M, Motlik J and Kovarova H. Protein patterns of pig oocytes during in vitro maturation. <i>Biology of reproduction</i> 2004; 71 :1533-1539.
477 478 479 480 481 482 483 484 485	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. <i>Hum Reprod</i> 2012; 27 :1096- 1111. Ellederova Z, Halada P, Man P, Kubelka M, Motlik J and Kovarova H. Protein patterns of pig oocytes during in vitro maturation. <i>Biology of reproduction</i> 2004; 71 :1533-1539. Epifano O, Liang LF, Familari M, Moos MC, Jr. and Dean J. Coordinate expression of the three
477 478 479 480 481 482 483 484 485 485	Coonrod SA, Wright PW and Herr JC. Oolemmal proteomics. <i>Journal of reproductive immunology</i> 2002; 53 :55-65. Demant M, Trapphoff T, Frohlich T, Arnold GJ and Eichenlaub-Ritter U. Vitrification at the pre- antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. <i>Hum Reprod</i> 2012; 27 :1096- 1111. Ellederova Z, Halada P, Man P, Kubelka M, Motlik J and Kovarova H. Protein patterns of pig oocytes during in vitro maturation. <i>Biology of reproduction</i> 2004; 71 :1533-1539. Epifano O, Liang LF, Familari M, Moos MC, Jr. and Dean J. Coordinate expression of the three zona pellucida genes during mouse oogenesis. <i>Development</i> 1995; 121 :1947-1956.

488 cooperativity between granulosa cells and oocytes: amino acid transport. Biology of

- 489 reproduction 2005; **73**:351-357.
- 490 Gilchrist RB, Ritter LJ and Armstrong DT. Oocyte-somatic cell interactions during follicle
- 491 development in mammals. Animal reproduction science 2004; 82-83:431-446.
- 492 Harris SE, Adriaens I, Leese HJ, Gosden RG and Picton HM. Carbohydrate metabolism by
- 493 murine ovarian follicles and oocytes grown in vitro. Reproduction 2007; 134:415-424.
- 494 Hawkins SM and Matzuk MM. Oocyte-somatic cell communication and microRNA function in
- 495 the ovary. Annales d'endocrinologie 2010; 71:144-148.
- 496 Homa ST, Carroll J and Swann K. The role of calcium in mammalian oocyte maturation and egg
- 497 activation. *Hum Reprod* 1993; 8:1274-1281.
- 498 Horner K, Livera G, Hinckley M, Trinh K, Storm D and Conti M. Rodent oocytes express an
- 499 active adenylyl cyclase required for meiotic arrest. Developmental biology 2003; 258:385-396.
- 500 Li L, Baibakov B and Dean J. A subcortical maternal complex essential for preimplantation
- 501 mouse embryogenesis. *Developmental cell* 2008; **15**:416-425.
- 502 Ma M, Guo X, Wang F, Zhao C, Liu Z, Shi Z, Wang Y, Zhang P, Zhang K, Wang N et al. Protein
- 503 expression profile of the mouse metaphase-II oocyte. Journal of proteome research 2008;
- 504 **7**:4821-4830.
- 505 Matzuk MM, Burns KH, Viveiros MM and Eppig JJ. Intercellular communication in the 506 mammalian ovary: oocytes carry the conversation. *Science* 2002; **296**:2178-2180.
- 507 Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the
- regulation of meiotic arrest and oocyte maturation. *Reproduction* 2005; **130**:791-799.
- 509 Mehlmann LM, Jones TL and Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs
- 510 protein in the oocyte. *Science* 2002; **297**:1343-1345.
- 511 Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H and Burgess SC. Bovine

- 512 germinal vesicle oocyte and cumulus cell proteomics. *Reproduction* 2007; **133**:1107-1120.
- 513 Meng Y, Liu XH, Ma X, Shen Y, Fan L, Leng J, Liu JY and Sha JH. The protein profile of mouse
- 514 mature cumulus-oocyte complex. *Biochimica et biophysica acta* 2007; **1774**:1477-1490.
- 515 Novak S, Paradis F, Savard C, Tremblay K and Sirard MA. Identification of porcine oocyte
- 516 proteins that are associated with somatic cell nuclei after co-incubation. Biology of
- 517 reproduction 2004; **71**:1279-1289.
- 518 Peddinti D, Memili E and Burgess SC. Proteomics-based systems biology modeling of bovine
- 519 germinal vesicle stage oocyte and cumulus cell interaction. *PloS one* 2010; **5**:e11240.
- 520 Pfeiffer MJ, Siatkowski M, Paudel Y, Balbach ST, Baeumer N, Crosetto N, Drexler HC, Fuellen G
- 521 and Boiani M. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the
- 522 "reprogrammome". Journal of proteome research 2011; **10**:2140-2153.
- 523 Picton H, Briggs D and Gosden R. The molecular basis of oocyte growth and development.
- 524 Molecular and cellular endocrinology 1998; 145:27-37.
- 525 Rajareddy S, Reddy P, Du C, Liu L, Jagarlamudi K, Tang W, Shen Y, Berthet C, Peng SL, Kaldis P et
- al. p27kip1 (cyclin-dependent kinase inhibitor 1B) controls ovarian development by
 suppressing follicle endowment and activation and promoting follicle atresia in mice. *Mol Endocrinol* 2007; **21**:2189-2202.
- Sela-Abramovich S, Edry I, Galiani D, Nevo N and Dekel N. Disruption of gap junctional
 communication within the ovarian follicle induces oocyte maturation. *Endocrinology* 2006;
 147:2280-2286.
- Sousa M, Barros A, Silva J and Tesarik J. Developmental changes in calcium content of
 ultrastructurally distinct subcellular compartments of preimplantation human embryos.
 Molecular human reproduction 1997; 3:83-90.

22

- 535 Trounson A, Anderiesz C and Jones G. Maturation of human oocytes in vitro and their 536 developmental competence. *Reproduction* 2001; **121**:51-75.
- 537 Vitale AM, Calvert ME, Mallavarapu M, Yurttas P, Perlin J, Herr J and Coonrod S. Proteomic
- 538 profiling of murine oocyte maturation. Molecular reproduction and development 2007; 74:608-

539 616.

540 Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I and Gao S. Proteome of mouse

541 oocytes at different developmental stages. Proceedings of the National Academy of Sciences of

- 542 the United States of America 2010; **107**:17639-17644.
- 543 Whitaker M. Calcium at fertilization and in early development. *Physiological reviews* 2006;
 544 86:25-88.
- 545 Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, Hao Z, Jayes FC, Bush
- 546 LA, Shetty J et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like
- 547 protein that localizes to egg cytoplasmic sheets. *Developmental biology* 2003; **256**:73-88.
- 548 Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD and Woodruff TK. In
- 549 vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod
- 550 2009; **24**:2531-2540.
- 551 Yurttas P, Morency E and Coonrod SA. Use of proteomics to identify highly abundant maternal
- factors that drive the egg-to-embryo transition. *Reproduction* 2010; **139**:809-823.
- 553 Zhang DX, Li XP, Sun SC, Shen XH, Cui XS and Kim NH. Involvement of ER-calreticulin-Ca2+
- 554 signaling in the regulation of porcine oocyte meiotic maturation and maternal gene
- expression. *Molecular reproduction and development* 2010; **77**:462-471.
- 556 Zhang P, Ni X, Guo Y, Guo X, Wang Y, Zhou Z, Huo R and Sha J. Proteomic-based identification
- of maternal proteins in mature mouse oocytes. BMC genomics 2009; 10:348.

reproduction@bioscientifica.com

- 558 Zheng P and Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during
- 559 cleavage-stage mouse embryogenesis. Proceedings of the National Academy of Sciences of the
- 560 United States of America 2009; **106**:7473-7478.
- 561
- 562

IX. Liste des figures

Figure 1 : Représentation schématique de l'organisation interne de l'ovaire ainsi que des follicules aux différents stades de leur développement (adaptée de
http://apbrwww5.apsu.edu) 14
Figure 2 : Diagramme de la réserve ovarienne et devenir des follicules au long de lavie de la femme (adapté de Kaipia et al. 1997).16
Figure 3 : Courbe descriptive de l'évolution du nombre de follicules constituant laréserve ovarienne avec l'âge (adapté de te Velde et al. 1998)
Figure 4 : Représentation schématique des différentes phases de l'ovogenèse (adapté de <u>http://www.as.miami.edu</u>). 17
Figure 5 : Migration des cellules germinales chez les Mammifères. Les cellules germinales primitives migrent depuis le sac vitellin jusqu'aux crêtes germinales, via l'allantoïde (adapté de http://www.snv.jussieu.fr)
Figure 6 : Représentation schématique de l'hypothèse des taux de cAMP dans le blocage et reprise de la méiose dans l'ovocyte (adapté de https://www.bioscience.org)
Figure 7 : Coupes histologiques des différentes types morphologiques folliculaires : a) follicule primaire; b) follicule primaire; c) follicule secondaire; d) follicule antral (début antrum) et e) follicule pré ovulatoire ou follicule de De Graaf (adapté de http://www.studyblue.com)
Figure 8 : Voie de signalisation proposée pour l'activation des follicules primordiaux et le maintien de la réserve ovarienne (adapté de Kim 2012) 28
Figure 9 : Schéma de l'influence de quelques facteurs dans les différents stades du développement folliculaire. En rose les facteurs produits/présents dans les cellules germinales et en violet ceux produits/présents dans les cellules somatiques (adapté de Sanchez et al. 2012)
Figure 10 : Représentation schématique des différents évènements qui ont lieu en parallèle au cours du cycle menstruel : A) courbes des taux de gonadotrophines ; B) évènements dans l'ovaire ; C) courbes des taux d'hormones ovariennes et D) l'influence dans l'endomètre (adapté de http://9e.devbio.com).
Figure 11 : Schéma représentatif des différentes étapes de la croissance folliculaire (adapté de Gougeon 2010)

- Figure 12 : Résumé des paramètres à prendre en compte pour la croissance et maturation *in vitro* d'ovocytes chez les mammifères selon Picton (Picton et al. 2003). Les paramètres sont à adapter selon les différentes étapes de culture . 36
- Figure 14 : Croissance *in vitro* de follicules secondaires dans un système de capsules de matrice d'hydrogel (3D). A) illustration du maintien de la structure tridimensionnelle du follicule et interaction avec les cellules somatiques (adaptée de West et al. 2007b) B) images de la croissance folliculaire au jour de la mise en culture JO (i) ; après 4 jours de croissance *in vitro* avec une augmentation de taille (ii) ; et follicule en fin de culture J12 (iii) (adapté de Xu et al. 2006a). Barre d'échelle =100 μm.

- Figure 17 : Contexte biochimique du protéome.
 48
- Figure 18 : Représentation du principe d'un gel 1D SDS-PAGE (Liebler 2002)..... 52

 Figure 19 : Principe du fractionnement IEF OFFGEL. A) Dépôt d'un même volume d'extrait protéique dans les trois puits ; B) migration des protéines qui pénètrent dans la strip, migrent en fonction de leur charge native puis diffusent dans le puits correspondant à leur point isoélectrique ; C) Chaque fraction contient un pool de protéines dont le pl correspond à la zone de pH couverte par le puits sur la strip. 53
Figure 20 : Représentation du principe de séparation par de la 2D SDS-PAGE (Liebler 2002). 54
Figure 21 : Structure de base d'un spectromètre de masse
Figure 22 : La source MALDI ionise, sous l'effet d'un laser, des analytes en phase solide qui sont co-cristallisés avec une matrice sensible à la longueur d'onde du laser. Cette source génère des ions majoritairement monochargés (z=1) (image repris de http://fr.academic.ru/dic.nsf/frwiki/1094130)
Figure 23 : Source ElectroSpray (ESI) génère des ions à l'état gazeux à partir d'un échantillon liquide grâce à un spray d'électronébulisation. Elle produit des ions principalement multichargés (image reprise de http://www.lamondlab.com). 57
Figure 24 : Boite de culture folliculaire 69
 Figure 25 : Ovulation <i>in vitro</i> après induction avec hCG (a), à l'intérieur du cercle le CCO et à l'opposé les cellules de la granulosa; b) ovocyte mature avec expulsion du premier globule polaire
 Figure 26 : Différents stades de développement choisis pour l'étude du protéome des follicules au cours de la culture folliculaire : IS (follicule en début de culture), RMS (follicule présentant une rupture complète de la membrane de Slavjanski) et FA (follicule avec une cavité similaire à l'antrum)
Figure 27 : Evolution des tailles moyennes des follicules mis en culture en utilisant 3 différents milieux 74
Figure 28 : Image du gel SDS PAGE effectué avec l'extrait total (ET) et les trois fractions (F1, F2 et F3) obtenues après le préfractionnement IEF OFFGEL. Les rectangles jaunes mettent en évidence des protéines présentes dans l'ET et dans une seule fraction ; les rectangles rouges soulignent la présence d'une bande de protéines dans une fraction mais non visible dans l'ET et finalement l'intensification du signal protéique dans une fraction par rapport à l'ET est illustrée par les rectangles noirs

Figure 29: Image représentative du Principe du fractionnement IEF OFFGEL.
Démonstration de ce que les puits n'étaient pas adjacents dans notre modèle
d'étude, ayant ainsi des pertes de protéines restées dans la strip aux endroits
où il n'y avait pas cupule

Figure 30 : Schéma du principe de la migration IEF. a) migration de l'ET sur toute la strip IPG. b) découpage des 5 fractions et c) migration rapide pour extraire les protéines des strips.

- Figure 32 : Schéma i) de l'extraction d'une bande unique pour chaque fraction après une rapide migration en gel SDS PAGE; ii) du découpage en petits cubes et iii) de la préparation pour décoloration des bouts de gels avant la digestion. 83
- Figure 34 : Analyse de l'avantage et qualité du préfractionnent de l'extrait protéique avant digestion. A) nombre de protéines identifiées dans l'extrait total, fractions et en combinant les fractions et l'extrait total. B) Pourcentage de protéines identifiées dans une seule fraction ainsi que en commun dans 2, 3, 4 et 5 fractions.
 91

Figure 37 : Distribution des protéines identifiées dans chaque stade par classes avec l'analyse Panther. 94
Figure 38 : Distribution des protéines identifiées, aux trois stades de développement, par processus biologique
Figure 39 : Groupes de protéines identifiées dans les trois stades liés à la réparation de l'ADN (A) et à la formation de ROS (B). Les protéines identifiées à un stade donné sont représentées avec un fond blanc tandis que celles absentes ont un fond coloré. 97
 Figure 40 : Réseau d'interaction associé aux CDKs suggéré par l'analyse IPA avec mise en évidence des protéines différemment identifiées entres les trois stades IS, RMS et FA. Les protéines entourées en vert étaient identifiées au stade correspondant et en rouge celles non identifiées
Figure 41 : Illustration des différents profils observés selon l'abondance des protéines au long du développement folliculaire <i>in vitro</i> . Profil 1 : (P1) 15 protéines plus abondantes à IS. Profil 2 : (P2) 5 protéines plus abondantes à RMS. Profil 3 : (P3) 28 protéines avec une abondance croissante au long du développement folliculaire. Profil 4 (P4) 2 protéines significativement moins abondantes à RMS par rapport à IS et FA. Profil 5 : (P5) 7 protéines significativement plus abondantes au stade FA par rapport aux stades IS et RMS
Figure 42 : Profils des neuf protéines impliquées dans la glycolyse, avec une abondance significativement différente entre les trois stades. En rouge, les 8 protéines avec une abondance croissante au long du développement folliculaire.

En bleu la protéine LDHB, dont l'abondance décroît durant le développement

X. Liste des Tableaux

Tableau I: Résumé des principaux résultats obtenus pour la culture de follicules
ovariens humains, utilisant soit du tissu frais (F) soit après cryoconservation
(C) en fonction du système de culture in situ (—) ou de follicules isolés (—) et
du stade folliculaire

- Tableau III : Résultats de la culture en fonction paramètres utilisés pour évaluer la croissance folliculaire *in vitro* dans les 3 milieux de culture : taux d'adhésion des follicules au support de culture ; taux de rupture de la membrane de Slavjanski ; taux d'extrusion ovocytaire (EO) ; taux de formation de cavités antrum like ; taux de survie ; taux d'expulsion du complexe cumulus-ovocytaire (CCO), correspondant à l'ovulation et taux d'ovocytes matures obtenu (MII)... 75
- Tableau IV: Nombre de follicules, souris femelles, portées et manipulations nécessaires pour obtenir la quantité de protéines qui permettait les analyses protéomiques. Dans ce tableau il est ainsi indiqué les tailles moyennes des follicules composant chaque groupe et le jour de la culture auquel les recueils des follicules ont été faits.
- Tableau II en annexe : Liste des fonctions biologiques surreprésentées dans un, deux ou dans les trois stades de développement comparant avec la représentation de ces mêmes fonctions biologiques dans la totalité du génome de *Mus musculus*. Les chiffres entre parenthèses correspondent au nombre total de gênes ou protéines reconnues par la base de données de PANTHER 174
- **Tableau III en annexe :** Tableau des protéines présentant une abondancesignificativement différente entre les trois stades de développement. Le ratio et

 Tableau IV en annexe : Liste de protéines non identifiées dans le protéome de

 l'ovocyte isolé. Sur le coté indication si la protéine en cause a été identifiée dans

 un seul stade et lequel, ou si elle a été identifiée en commun avec un autre

 stade.
 180

Résumé

Alors que le protéome de l'ovocyte isolé, aux stades VG et MII a déjà été étudié, celui du follicule en croissance n'a jamais été décrit.

Dans cette étude, nous avons cherché à identifier, comparer et caractériser les profils protéiques de follicules ovariens de souris à trois stades de leur développement *in vitro* distincts morphologiquement : follicules secondaires en début de culture - stade initial (IS), follicules avec une rupture complète de la membrane de Slavjanski (RMS) et follicules avec une cavité similaire à l'antrum (FA).

Après un préfractionnement par IEF et une analyse LC-MS/MS en deux configurations (1D et 2D), 1403 protéines ont pu être identifiées dans le follicule ovarien de souris. 43,4 % (609) des protéines identifiées étaient communes aux trois stades et d'autres ont été identifiées uniquement à un stade : 71 au stade IS, 182 au stade RMS et 193 au stade FA. De plus, on a identifié 365 protéines qui n'avaient pas été décrites antérieurement dans le protéome de l'ovocyte ce qui pourrais indiquer qu'elles sont exprimées dans les cellules somatiques du follicule. Des analyses qualitatives et quantitatives complémentaires ont démontré une surreprésentation pour 44 fonctions biologiques par rapport aux fonctions biologiques des gènes constituant le génome de *Mus musculus* et mis en évidence des différences d'expression et d'abondance des protéines liées au cycle cellulaire, à la fixation des ions de calcium et à la glycolyse selon le stade de développement. Ces résultats représentent un point de départ pour beaucoup d'autres études de caractérisation moléculaire du développement folliculaire.

Mots clés : follicule ovarien/développement *in vitro*/préfractionnement IEF/1D et 2D LC-MS MS /souris

Abstract

Until now only the proteome of isolated oocyte from fully grown follicle were described with the aim of oocyte maturation characterization. However the ability of oocyte to mature is acquired during its development within the follicle. Thus in this study we proposed a protein identification and characterization of whole mice ovarian follicle at three morphological stages during *in vitro* development: early secondary stage, described as initial stage (IS); follicles with a complete Slavjanski membrane rupture (RMS) and follicles with an antrum like cavity formation (FA).

Using an IEF pre fractionation before protein digestion and two configurations of LC-MS/MS analysis (1D and 2D), 1403 proteins were successfully identified in the murine ovarian follicle. From those, 43.4 % (609) were commonly identified in the three stages and some were identified only at one single stage: 71 at IS stage, 182 at RMS stage and 193 at FA stage. Compared to the proteomes of isolated oocyte previously described, 365 proteins were only identified in our samples indicating that those ones were probably expressed in the somatic cells of the follicle. Additional qualitative and quantitative analysis highlighted 44 biological processes over represented in our samples when compared to *Mus musculus* gene database and different expressions and protein abundance implicated in cell cycle, calcium ion binding and glycolysis, throughout *in vitro* follicle development.

This report represents so far the most complete catalogue of follicle proteins and could be an important milestone in the proteomic study of the follicle metabolism throughout *in vitro* development.

Keywords: ovarian follicle/*in vitro* growth/IEF pre fractionation/1D and 2D LC-MS MS /mice