

Ecole Doctorale EDITE

Thèse présentée pour l’obtention du diplôme de

Docteur de Télécom & Management SudParis

Doctorat conjoint Télécom & Management SudParis et Université Pierre et
Marie Curie

Spécialité : Informatique et Télécommunications

Par Sivasothy Shanmugalingam

Convergence du Web et des Services de

Communication

Soutenue le 30, Avril, 2012 devant le jury composé de :

Olivier Festor Directeur de recherche, INRIA Rapporteur

Mika Ylianttila� Professeur, University of Oulu Rapporteur

Woo Seop Rhee Professeur, Hanbat National University Examinateur

Peter Reichl Key researcher, Forschungszentrum

Telekommunikation Wien (FTW)

Examinateur

Marie-Pierre Gervais Professeur à l'Université Paris Ouest

Nanterre la Défense and Chercheur au

Laboratoire d'Informatique de Paris 6

Examinatrice

Nazim Agoulmine Professeur, University of Evry Val

d'Essonne

Examinateur

Paul Labrogere Department Head, Alcatel Lucent Bell Labs Encadrant

Noel Crespi Professeur, Télécom SudParis Directeur de thèse

 Thèse n°: 2012TELE0007

DEDICATION

To my father, Kandiah Shanmugalingam, who taught me the mean-

ing of sacrifice and perseverance.

ACKNOWLEDGEMENT

My Ph.D thesis has been jointly carried out at HybridCom Department,
Applications Domain, Alcatel Lucent Bell Labs France and Service Architec-
ture Group,Wireless Networks and Multimedia Services Department, Institut
Telecom/Telecom SudParis, France since 2008. I indulged in my passion for
research at these two institutions while refining my technical prowess.

This thesis is the result of collaborative work. My Ph.D journey created
many opportunities to work with many people at different locations. I inter-
acted with many individuals who encouraged me in many ways, such as through
discussion on ideas and new concepts, brainstorming and editing my various
drafts. I want to acknowledge them here.

First and foremost, I would like to thank my supervisors, Paul Labrogere,
and Noel Crespi for their invaluable guidance and support during the research.
We have enjoyed many vehement discussions in research problems, solutions and
results. They have given me an incredible breadth of perspective on numerous
topics. I am and will be profoundly thankful to them.

All my colleagues at HybridCom have lent a helping hand throughout my
stay. I have often sought and received insightful advice from Vincent Verdot,
Nicolas Bouche, Mathiew Boussard, and Dohy Hong. My deepest heartfelt
thanks to all of them.

I express my sincere thanks to the members of the Service Architecture
Group who inspired and encouraged me by way of their discussions on various
topics at each team meeting. I owe my special thanks to Gyu Moung Lee, a
post-doctoral scholar in the team, whose motivation has enabled me to create
papers and RFC drafts.

During the process of my research, I got a wonderful opportunity to work
in the SERVERY project. All colleagues in the SERVERY project have taught
me something unique and meaningful. I offer my sincere thanks.

I would like to express my eternal gratitude to my father, Kandiah Shan-
mugalingam, who passed away in March 2011. I will always be indebted for
his wisdom, guidance and support. I also wish to thank my mother, Eswary
Shanmugalingam, for her love and support throughout my life. Their dream
and sacrifices become true today. Last but not least, I want to thank my sib-
lings, Kugneswaray, Genga, and Pathma, for unconditional love and help. It is
not possible without my close friends who gave energy to stand up during the
difficult times.

ABSTRACT

Different communication services from delivery of written letters to tele-
phones, voice/video over Internet Protocol(IP), email, Internet chat rooms, and
video/audio conferences, immersive communications have evolved over time.

A communication system of voice/video over IP is the realization of a two
fundamental layered architecture, signaling layer and media layer. The signal-
ing protocol is used to create, modify, and terminate media sessions between
participants. The signaling layer is further divided into two layers, service layer
and service control layer, in the IP Multimedia Subsystem (IMS) specification.

Two widely used communication systems are IMS, and Peer-to-Peer Session
Initiation Protocol (P2P SIP). Service providers, who behave as brokers between
callers and callees, implement communication systems, heavily controlling the
signaling layer. These providers do not take the diversity aspect of end users
into account.

This dissertation identifies three technical barriers in the current communi-
cation systems especially in the signaling layer. Those are:

I. lack of openness and flexibility in the signaling layer for end users.

II. difficulty of development of network-based, session-based services.

III. the signaling layer becomes complex during the high call rate.

These technical barriers hinder the end-user innovation with communication
services.

Based on the above listed technical barriers, the first part of this thesis
defines a concept and architecture for a communication system in which an
individual user becomes the service provider. The concept, My Own Com-
munication Service Provider (MOCSP) and MOCSP system is proposed and
followed by a call flow. Later, this thesis provides an analysis that compares
the MOCSP system with existing communication systems in terms of openness
and flexibility.

The second part of this thesis presents solutions for network-based, session
based services, leveraging the proposed MOCSP system. Two innovative ser-
vices, user mobility and partial session transfer/retrieval are considered as ex-
amples for network-based, session-based services. The network-based, session-
based services interwork with a session or are executed within a session. In
both cases, a single functional entity between caller and callee consistently en-
ables the media flow during the call initiation and/or mid-call. In addition, the
cooperation of network call control and end-points is easily achieved.

The last part of the thesis is devoted to extending the MOCSP for a high
call rate and includes a preliminary comparative analysis. This analysis depends
on four factors - scalability limit, complexity level, needed computing resources
and session setup latency - that are considered to specify the scalability of
the signaling layer. The preliminary analysis clearly shows that the MOCSP
based solution is simple and has potential for improving the effective usage of
computing resources over the traditional communication systems.

Résumé

Les services de communication, du courrier postal à la téléphonie, en passant
par la voix et la vidéo sur IP (Internet Protocol), la messagerie électronique, les
salons de discussion sur Internet, les visioconférences ou les télécommunications
immersives ont évolué au fil du temps.

Un système de communication voix-vidéo sur IP est réalisé grâce à deux
couches architecturales fondamentales : la couche de signalisation et la couche
média. Le protocole de signalisation est utilisé pour créer, modifier et terminer
des sessions multimédias entre des participants. La couche de signalisation est
divisée en deux sous-couches - la couche de service et celle de contrôle - selon la
spécification de l’IP Multimedia Subsystem (IMS).

Deux systèmes de communication largement utilisés sont l’IMS et SIP Pair-à-
Pair (P2P SIP). Les fournisseurs de services, qui se comportent en tant qu’intermédiaires
entre appelants et appelés, implémentent les systèmes de communication, con-
trôlant strictement la couche signalisation. Or ces fournisseurs de services ne
prennent pas en compte la diversité des utilisateurs.

Cette thèse identifie trois barrières technologiques dans les systèmes de com-
munication actuels et plus précisément concernant la couche de signalisation.

I. Un manque d’ouverture et de flexibilité dans la couche de signalisation
pour les utilisateurs.

II. Un développement difficile des services basés sur le réseau et les sessions.

III. Une complexification du la couche de signalisation lors d’un très grand
nombre d’appels.

Ces barrières technologiques gênent l’innovation des utilisateurs avec ces
services de communication. Basé sur les barrières technologiques listées ci-
dessus, le but initial de cette thèse est de définir un concept et une architecture
de système de communication dans lequel chaque individu devient un fournisseur
de service. Le concept, "My Own Communication Service Provider" (MOCSP)
et le système MOCSP sont proposés, accompagné d’un diagramme de séquence.
Ensuite, la thèse fournit une analyse qui compare le système MOCSP avec les
systèmes de communication existants en termes d’ouverture et de flexibilité.

La seconde partie de la thèse présente des solutions pour les services basés sur
le réseau ou les sessions, mettant en avant le système MOCSP proposé. Deux
services innovants, user mobility et partial session transfer/retrieval (PSTR)
sont pris comme exemples de services basés sur le réseau ou les sessions. Les
services basés sur un réseau ou des sessions interagissent avec une session ou
sont exécutés dans une session. Dans les deux cas, une seule entité fonctionnelle
entre l’appelant et l’appelé déclenche le flux multimédia pendant l’initialisation
de l’appel et/ou en cours de communication. De plus, la coopération entre le
contrôle d’appel réseau et les différents pairs est facilement réalisé.

La dernière partie de la thèse est dédiée à l’extension de MOCSP en cas
de forte densité d’appels, elle inclut une analyse comparative. Cette analyse
dépend de quatre facteurs - limite de passage à l’échelle, niveau de complexité,
ressources de calcul requises et délais d’établissement de session - qui sont con-
sidérés pour évaluer le passage à l’échelle de la couche de signalisation. L’analyse
comparative montre clairement que la solution basée sur MOCSP est simple et

améliore l’usage effectif des ressources de calcul par rapport aux systèmes de
communication traditionnels.

List of Publications

The following original articles are produced during my Ph.D journey. Those
are:

Articles in International Journals

I. Shanmugalingam, S.; Crespi, N.; Labrogere, P.;, "Scalability and signal-
ing architecture," International Journal of Research and Reviews in Next
Generation Networks (IJRRNGN), Vol. 1, No. 2, December 2011, ISSN:
2046-6897.

II. Hongguang Zhang, Zhenzhen Zhao, Shanmugalingam Sivasothy, Cuiting
Huang, and Noël Crespi, “Quality-Assured and Sociality-Enriched Multi-
media Mobile Mashup,” EURASIP Journal on Wireless Communications
and Networking, vol. 2010, Article ID 721312, 11 pages, 2010.

Papers in International Conference Proceedings

I. Shanmugalingam, S.; Verdot, V; Crespi, N.; Labrogere, P.; , "A Solution
for Partial Video Voice over IP Session Transfer and Retrieval," The 14th
International Symposium on Wireless Personal Multimedia Communica-
tions , 3-7 Oct. 2011

II. Shanmugalingam, S.; Crespi, N.; Labrogere, P.; , "User mobility in a Web-
based communication system," Internet Multimedia Services Architecture
and Application(IMSAA), 2010 IEEE 4th International Conference on ,
vol., no., pp.1-6, 15-17 Dec. 2010

III. Shanmugalingam, S.; Crespi, N.; Labrogere, P.; , "My Own Communi-
cation Service Provider," Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2010 International Congress on , vol.,
no., pp.260-266, 18-20 Oct. 2010

IV. V. Verdot, M. Boussard, N. Bouché, S. Sivasothy, “The bridging of two
worlds: A Web-IMS Communication Solution”, Internet and Multimedia
Systems and Applications (EuroIMSA 2009), Cambridge, United King-
dom,2009

V. Zhang, Hongguang; Nguyen, Hang; Crespi, Noël; Sivasothy, Shanmu-
galingam; Le, Tien Anh; Zeghlache, Djamal; Wang, Hui; , "A Metadata-
Based Approach for Multimedia Service Mashup in IMS," Communication
Networks and Services Research Conference (CNSR), 2010 Eighth Annual
, vol., no., pp.356-360, 11-14 May 2010

VI. S. Sivasothy, G. M. Myoung, and N. Crespi. A unified session control proto-
col for IPTV services. In Proceedings of the 11th international conference
on Advanced Communication Technology, pages 961-965, Gangwon-Do,
South Korea, February 15-18, 2009.

VII. Sivasothy, S.; Gyu Myoung Lee; Crespi, N.; Bertin, E.; , "An enabler
gateway for service composition using SIP," Intelligence in Next Generation
Networks, 2009. ICIN 2009. 13th International Conference on , vol., no.,
pp.1-6, 26-29 Oct. 2009

Internet Drafts

I. S. Shanmugalingam, GM. Lee and N. Crespi, “SIP extensions for media
control”, draftsiva- sip-media-00.txt, March 2009.

II. S. Shanmugalingam, G.M. Lee, N. Crespi, “SIP extensions for media con-
trol” draft-sivasip- media-01.txt, IETF Sept 2009.

Patent

I. Shanmugalingam S., Verdot V, Bouche N. : “PROCEDE DE TRANS-
FERT PARTIEL D’UNE SESSION DE MEDIA”, Filed in France on 14-
Jan-2011 , n◦1100131

Contents

List of Figures 13

List of Tables 15

1 Introduction 17
1.1 Motivation . 17
1.2 Problem Statement . 18
1.3 Contributions . 21
1.4 Organization of the Thesis Manuscript 22

I State of the Art 23

2 IP Multimedia Subsystem 24
2.1 Background . 24

2.1.1 Session Initiation Protocol 24
2.1.2 IP Multimedia Subsystem 25
2.1.3 IMS Session Establishment Call Flow 27

2.2 Openness and Flexibility . 28
2.2.1 Openness . 28
2.2.2 Flexibility . 31

2.3 Network-based, Session-based Services 32
2.3.1 User Mobility . 33
2.3.2 Partial Session Transfer and Retrieval 37

2.4 Scalability . 40
2.4.1 Proposed Definition of Scalability 40
2.4.2 Interested Architecture 43
2.4.3 Existing Solutions . 44
2.4.4 Scalability Analysis . 47
2.4.5 Indirect Work . 48

2.5 Conclusion . 50

3 Other Communication Systems 52
3.1 P2P SIP . 52
3.2 Scalability . 53
3.3 XMPP/Jingle . 54
3.4 Web Service Initiation Protocol (WIP) based Service Oriented

Communication . 55

9

3.5 Conclusion . 56

4 Descriptive Model of IP Media Services 57
4.1 Introduction : IP Media Services 57
4.2 A Descriptive Model of Media Aspect of a Service 58

4.2.1 Signaling Path . 58
4.2.2 Media Channels . 59

4.3 Signaling Protocol . 60
4.3.1 Protocol Requirements . 60
4.3.2 Protocol Definition . 60
4.3.3 Properties of the Protocol 62

4.4 Protocol Comparison . 62
4.5 Conclusion . 62

II Contribution 64

5 My Own Communication Service Provider (MOCSP) 65
5.1 From Concept to System . 65

5.1.1 Concept . 65
5.1.2 System . 65
5.1.3 Definition of Communication Services 66
5.1.4 Communication Hyperlink (CH) 66
5.1.5 Architecture of the MOCSP System 67
5.1.6 MOCSP vs I-Centric Communications 69

5.2 Control Session in the MOCSP System 69
5.3 Impact on End Users . 71

5.3.1 Openness . 71
5.3.2 Flexibility . 72
5.3.3 Privacy . 72

5.4 Conclusion . 73

6 User Mobility 75
6.1 Descriptive Model . 75

6.1.1 Role of Network Box . 76
6.1.2 Usage of Network Box in the MOCSP system for the user

mobility use case . 77
6.2 Call Flow for User Mobility . 77
6.3 Phenomenon of Missed Call . 78
6.4 Conclusion . 79

7 Partial Session Transfer and Retrieval 83
7.1 Architecture . 83

7.1.1 Network Box . 83
7.1.2 Description of a Medium Device, Medium Sink and Medium

Source . 84
7.1.3 Caller Box/Callee Box . 85

7.2 Protocol . 86
7.3 Call Flow . 87

7.3.1 Network-Initiated Partial Session Transfer/Retrieval . . . 87

7.3.2 User-Initiated Partial Session Transfer/Retrieval 89

7.3.3 High Mobility Situation 90

7.3.4 Limitations . 91

7.4 Conclusion . 91

8 Scalability 95

8.1 MOCSP based Signaling Architecture 95

8.2 Impact of DNS . 97

8.2.1 Basic concepts in DNS . 97

8.2.2 DNS lookup and Caching 98

8.2.3 Conclusion: DNS lookup delay and Scalability of DNS . . 100

8.3 Calculation of Number of Servers 101

8.3.1 Performance of the Web server 101

8.3.2 Number of Network boxes in a Web server 101

8.3.3 Discussion on the Calculation 102

8.3.4 Virtual Web Hosting . 102

8.4 Scalability Analysis . 103

8.4.1 How Scalable . 103

8.4.2 Complexity . 103

8.4.3 Needed Computing Resources 104

8.4.4 Session Setup Latency . 105

8.5 Conclusion . 105

9 Discussion 106

9.1 Transfer Call Control . 106

9.1.1 SIP based Solution . 107

9.1.2 MOCSP and Transfer Call Control 108

9.2 IP Mobility . 109

9.2.1 SIP based Solution . 109

9.2.2 MOCSP and IP Mobility 109

9.3 Implementation Choices . 110

9.3.1 Web Browser . 111

9.3.2 Web Server . 116

9.3.3 Sample Code for the MOCSP system 119

9.3.4 Summary . 126

9.4 SDP Offer/Answer vs Media Description 126

9.4.1 Session Description Protocol 127

9.4.2 Offer/Answer Mechanism 130

9.4.3 Media based Negotiation 133

9.5 Conclusion . 134

III Conclusion 136

10 Conclusion 137

11 Future Work 140
11.1 Prototype and Further Validation 140
11.2 Scalability Validation . 141

11.2.1 Experimentation Setup 141
11.3 Contribution to Standard Bodies 145
11.4 Possible Extensions . 145

Bibliography 147

A French Summary 157
A.1 Motivation . 157
A.2 Enoncé du problème . 158
A.3 La solution proposée . 162

A.3.1 MOCSP: concept et système 162
A.3.2 Le flux d’appels . 163
A.3.3 L’ouverture et flexibilité 163
A.3.4 La mobilité utilisateur . 164
A.3.5 Partial session transfer and retrieval 165
A.3.6 La montée en charge . 165

List of Figures

2.1 IMS architecture with interested entities in the service control
layer and service layer . 26

2.2 IMS session establishment call flow 27
2.3 High level view of IMS based communication system. Callees and

Callers are user agents. ISC stands for IMS Service Control and
SP stands for Service Provider. 29

2.4 Existing abstractions for end user service creation 29
2.5 Diagram for the user mobility use case 33
2.6 IMS architecture connecting two different administrative domains

(suffix 1 and 2 denote two domains.). 43
2.7 A load balancer between callers and P-CSCF1. Network admin

1 has many physical nodes for a single functional entity, P-CSCF 46

4.1 General practice of implementing IP media services 57
4.2 Programming abstractions in a signaling path 58
4.3 The user interface at one end of a media channel shows message

transmission between two ends. The events preceded by exclama-
tion marks are chosen by the user, while the events preceded by
question marks are chosen by the other end of the channel. Com-
mas separate unrelated transition labels with the same source
and sink states. 59

4.4 Specification of a protocol endpoint. ? means received, ! means
sent. ?oack / !select means send select if and when oack is re-
ceived. !oack / !select means send the two signals in sequence.
Commas separate unrelated transition labels within the same
source and sink states . 60

4.5 Protocol usage between two endpoints 63

5.1 A formal definition of communication services 67
5.2 Simplified architecture of MOCSP system; thick line shows the

control path and dotted line shows the media path 68
5.3 A call flow diagram for a session in the MOCSP; A caller initiates

the session and a callee terminates the session. 74
5.4 High level view of the MOCSP system. Callee and callers are

Web browser based clients. 74

6.1 Diagram for descriptive model for user mobility 75
6.2 Call flow during the session mobility 80
6.3 Diagram for descriptive model for missed call situation 81

13

6.4 Call flow during the voice mail and call 82

7.1 Architecture of the partial session transfer and retrieval. Thick
lines show the connectivity established by the network box to
medium sources and sinks. Dotted lines are possible paths for
media flow . 84

7.2 The classification of medium . 85
7.3 Protocol stack for medium devices 85
7.4 Sample user interface for partial session transfer and retrieval. . . 86
7.5 A call flow for session establishment between caller and callee and

for partial session transfer at the caller side. 88
7.6 A call flow for partial session transfer at the callee side. 89
7.7 A call flow for partial session retrieval at the caller side and ses-

sion termination. 90
7.8 A call flow for user-initiated partial session transfer and retrieval 93
7.9 A sample scenario showing both ends sending a message for the

same purpose. 94

8.1 A scalable architecture for communication services. Each small
circle is represented by each user/callee. 96

8.2 Hierarchical Namespace in DNS. 98
8.3 Resolution of http://siva.mocsp.com in the Internet. 99
8.4 A sample deployment scenario. 102

9.1 SIP call flow for call transfer with consultation hold, protecting
the transfer target . 107

9.2 Entities involved in transfer with consultation hold (protecting
Transfer Target) call in MOCSP 108

9.3 A typical call flow in the MOCSP system with important points
that need to be considered during IP mobility 111

9.4 Architecture of WebRTC including MOCSP client side. 114
9.5 The high level architecture of Node.JS 118

11.1 Lab experimentation setup. Each thick line shows the TCP con-
nection to be used for sending (as well as receiving) the signaling
messages. Each connection indicates each client connection to
the MOCSP instance. 142

List of Tables

2.1 List of SIP Methods . 25

7.1 List of abstractions for the auxiliary protocol 86

8.1 Description of each step in Figure 8.3 99

9.1 List of Events defined in [1] . 113
9.2 Terminology list that is originally available as presented in [2] . 116

10.1 Comparison of different signaling architectures based on the pro-
posed scalability evaluation framework. Here, N is the number
of super-nodes in a P2P overlay 138

15

Chapter 1

Introduction

1.1 Motivation

The Web has changed the way people perform their day to day activities and
has evolved rapidly (e.g. Web 2.0 , HTML5) since the invention of the Web in
1989 by Sir Tim Berners Lee [3] [4]. The reason for this success is that "The
Web adopts relatively simple technologies with sufficient scalability, efficiency
and utility" [5]; other two factors that also contributed to the success of the Web
are: its openness and flexibility. These factors serve as the key means for high
user participation in creating applications. As a consequence, the Web paves
the way for innovative applications in the Internet era where end-users become
producers and consumers of contents and services.

Various communication services from postal delivery of letters to telephony,
voice/video over Internet Protocol(IP), email, Internet chat rooms, and video/au-
dio conferences, immersive communications [6] have evolved over time. Like
other communication services, voice/video over IP is an essential need of the
people. For example, around the first quarter of 2011, the number of Skype
users signed in is reached 30 million 1 - There were 30 million people online on
Skype at the same time. There is a pressing requirement for providing commu-
nication services to the people in the planet because, mobile subscription and
the number of individuals connected to the Internet at home keep on increasing
as of today. Approximately, two billion people are connected to the Internet
in the first quarter of 2011 2. As more and more people are connected to the
Internet, individuals become part of a networked world.

Voice/video over IP communication system is based on the famous layered
architecture, consisting of a signaling layer and a media layer. The signaling
protocol is used to create, modify, and terminate media sessions between partic-
ipants. Existing communication systems can be built by either IP Multimedia
Subsystem (IMS) [7] based on Session Initiation Protocol (SIP) [8] , Peer-to-Peer
(P2P) SIP[9], XMPP/Jingle (like gTalk) [10] , Web Service Initiation Proto-
col (WIP) [11] based Service Oriented Communication (SOC), Service oriented
VoIP (SOVoIP) [12] , or Web personal communication systems [13]. Generally,

1http://blogs.skype.com/en/2011/03/30_million_people_online.html
2http://www.eg8forum.com/fr/documents/actualites/McKinsey_and_Company-

internet_matters.pdf

17

communication systems take a bottom-up approach to provide communication
services for mass users without much personalization, thus serving as brokers
between callees and callers. Callee is the receiver of calls and Caller is the
originator of calls.

However, two widely used communication systems are IMS, and P2P SIP,
where SIP is used as the signaling protocol. The IMS architecture divides the
signaling layer into a service control layer and a service layer. The service con-
trol layer has many functional entities between caller and callee. Except for
user agents, all other functional entities are controlled by the operator. This
means that the operator has to deploy the required functional nodes. The nodes
mostly perform rendez-vous functions for signaling messages of a session. Simi-
larly, services such as presence are deployed in the service layer, relying on the
common service control layer. The important objectives of IMS specifications
are to reduce capex and opex of the provider, to encourage telecom and Internet
convergence and to shorten the time to market with new services. Remarkably,
the thought of end user innovation is underestimated in the initial design of the
IMS communication systems.

Much research has been devoted to develop the functional nodes and proto-
cols (SIP, Real-Time Transport Protocol (RTP)[14], Session Description Proto-
col(SDP)[15]) for the IMS architecture. Extended work such as providing the
click-to-dial function for web users is performed in order to lure end user contri-
butions. However, these approaches do not drive the end user innovation. For
example, according to ProgrammableWeb, there are around 200 mashups that
are communication services related out of listed 5100 mashups [16]. A mashups
is a service by combining existing services. The main factor behind these few
mashups of communication services is that these communication systems could
not accommodate diverse needs of end users. This triggers another issue that
service provider controlled infrastructure should change from middleware for
researchers and geeks to a day-to-day reality for billions of people.

1.2 Problem Statement

The overall research question this thesis tries to answer is:

"How to enable users to contribute to/develop different communication service-
based mashups? Or When will users get freedom (or without having to wait for
permission) to innovate with communication services ?"

This thesis considers that users are not naive regarding information and
communication technologies. In order to be able to answer the overall research
question, I defined a set of important research questions that address the prob-
lem in detail.

I. The existing communication infrastructure, IMS, does not have enough
openness and flexibility to attract third party or end users for developing
applications based on communication services.

I define the openness and flexibility as follows: 1) Openness means that
users develop their applications or implement their new ideas (for new

18

services) with less dependability. 2) Flexibility means that developed ap-
plications can be easily modified.

Key features of the communication services are session/call control, routing
between caller and callee, and state management. While defining the pro-
tocol and controlling the functionalities, the service provider (SP) initially
offers a call control Application Programming Interface (API) in order to
empower third party developers.

Communication service related functionalities that are now defined by SP
are given to end users by relevant APIs. These functionalities/APIs are
in the form of SIP API or HTTP API (e.g. ParlayX [17]). IMS Service
Control (ISC) interface is SIP API, standardized for developers or third
party. Therefore, services based on a Third Party Call Control (3PCC)
controller can be developed. However, service development is cumbersome
for developers because of the complexity of the SIP protocol and archi-
tecture. A lot of research has been carried out to hide the complexity of
the operator controlled infrastructure by providing abstractions or APIs.
A high level abstraction is defined by the Parlay Group (e.g. IMS net-
work) for Web developers. For example, click-to-dial application is based
on 3PCC [18]. Based on a click-to-dial application, a user in the web site
can initiate and terminate a session. This means that these APIs provide
limited functionality. These approaches do not meet the individual needs
of an end user (i.e. there are not many different composed services based
on this API).

Essentially, many of these APIs (e.g. Session Data Types [19]) are at
the research level and are not deployed in the network for end user us-
age because they are injecting complexity into the platform. The level of
complexity is also associated with granularity of APIs. Furthermore, third
party or end users strongly depend on a particular service provider.

Moreover, the design pattern of the communication system is similar to the
one-size-fits-all model where each session should behave similarly. The core
aspects of the signaling protocol are defined by the standards. Changes (for
new features) in the control protocol should be analyzed with more care.
Until changes are added into the prospective places, these new features
will not be enabled. For example, if one client does not have the feature
and establishes a session, this new feature will not be enabled. Typically,
changes for the features take long time to roll out during standardization
and deployment.

Providing enough openness and flexibility for end users will enable them
to get control on the signaling layer. This freedom encourages end users
to compose new services based on their needs.

II. Network-based, session-based services are very difficult to develop in the
existing infrastructure. The network-based, session-based services inter-
work with a session or are executed within a session. For example in Call
Forwarding on Busy, if callee is busy, call will be forwarded to the prede-
fined destination by the callee. This service is executed only during call
establishments. Many efforts have been devoted to compose this kind of
services. This kind of problem is referred as feature interactions. How-
ever, there is a special case where service should be executed during call

19

establishments and/or mid-calls. Such a situation is not considered by the
research community. Moreover, developing a solution based on the SIP
protocol and IMS architecture brings more complexity and requires deep
knowledge of interdependency of the functional nodes in the IMS network.

Moreover, network-based session-based services require the cooperation
of network call control and endpoints, as in Partial Session Transfer and
Retrieval (PSTR). In PSTR, service logic should be deployed in the SIP
Application Server (AS) and end points for supporting network-initiated
and user-initiated PSTR. In the SIP or IMS specifications, this kind of
cooperation is overlooked. Instead, placing the logic independently in the
network call control and endpoints is encouraged. This deployment is not
efficient in the IMS architecture because independently deployed services
logic in the intermediate and end points can not be easily coordinated. In
addition, this PSTR creates deployment complexity. Both user and net-
work side approaches need to deploy the 3PCC mechanism. This means
that for PSTR at the user side, two instances of 3PCC must be executed
and for the PSTR at the network side, one instance of 3PCC should be
executed in the SIP AS. Therefore, this separated deployment adds com-
plexity in developing a solution.

Besides, Eric et al focus on the composition of multiple SIP-based 3PCC
controllers [20]. If multiple SIP-based controllers are in a signaling path,
how does the system behave? Their research is in the direction of having
many call controllers in the signaling path. This aspect is not considered
in this thesis.

PSTR enables mobile users to transfer and retrieve media session partially
to devices that are located in their vicinity. Similarly, services that can be
deployed in the network enrich user experience.

III. The signaling infrastructures such as IMS and P2PSIP become complex
when a high call rate is experienced.

The signaling layer in IMS has many functional entities such Proxy-Call
Session Control Function (P-CSCF), Serving-CSCF (S-CSCF) and AS.
The two aspects listed below should be taken into account when a high
call rate is experienced. First, capacity of a node that implements the
functions, P-CSCF, S-CSCF, etc is finite, therefore, it becomes saturated
at one point. Second, the signaling protocol is a state-based protocol
unlike Hyper Text Transfer Protocol (HTTP). These states are kept in
these functional entities. Therefore, messages between caller and callee
should be consistent. This means within a session all messages should
follow the same path.

The two aspects listed above hinder an effective solution for the scalability
problem. One possible solution is to accommodate a load balancer within
the signaling layer as an additional functional entity.

In [21], H.Jiang et al propose a finer-grained load balancer that has knowl-
edge of SIP such as, different transactions in SIP and processing cost for
different transactions. This solution helps increasing the scalability of the
service control layer by forwarding the traffic to proxies based on the ca-
pacity. However, this load balancer falls recursively into the problem of

20

scalability. Furthermore, no work has been reported on how to solve the
problem of scalability when a large number of users are connected to ser-
vices (e.g. service logic in SIP AS) in the service layer.

When using load-balancers, the service provider should be aware of con-
gestion. This means that each node should not be overloaded during the
high call rate. If overloaded in one or many physical nodes, there should
be a throughput collapse in the IMS/SIP network [22]. In addition, the
overloaded network will not recover easily. Controlling overload in a net-
work of SIP servers is a widely discussed topic in research and standard
organizations (e.g. IETF). Existing solutions for congestion avoidance are
inefficient and complex, demanding computing resources for the congestion
avoidance algorithm.

This higher level of complexity that is injected by the load balancer and
congestion avoidance mechanism demands additional computing resources
and adds latency to the session setup. This inefficient usage of computing
resources also undermines the green IT efforts.

1.3 Contributions

A major contribution of this thesis is the specification of a communication sys-
tem architecture in the Web platform for enabling user innovation.

The specific contributions of this thesis work are the following:

1. Proposal of a new concept called My Own Communication Service Provider
(MOCSP) and a MOCSP system in the Web platform for providing the
control of the signaling protocol to end users. This natural convergence of
Web and communication services facilitates the end user innovation as it is
witnessed in the Web. Moreover, this model enables diversity while managing
the complexity.

2. Development of the solution for the user mobility use case based on MOCSP
system. This solution simplifies the development, because it reduces the in-
terdependency nodes between caller and callee into one that is called Network
box. Fundamentally, this thesis work merges two existing services (that are
sometimes called features)- which are complementary to each other - into one
service.

3. Development of the solution for the partial session transfer and retrieval use
case based on MOCSP system. The central node can accomplish the goals of
users (caller and callee) such as transfer and retrieval of partial media. This
solution permits any number of session transfers and retrievals at callee and
caller side effectively regardless of the originators (caller, callee, or network
side application).

4. Preliminary evaluation of the MOCSP system for scalability based on four pa-
rameters: scalability limit, complexity level, needed computing resources and
session setup latency. This preliminary evaluation shows that the MOCSP
based system is a simple solution for a high call rate compared to the existing
communication systems.

21

1.4 Organization of the Thesis Manuscript

In this thesis, I contribute to the architecture of the communication system
that facilitates the innovation with communication services. In addition, this
thesis contains a survey of existing communication systems towards the research
problems, a description of the work and an overview of the analytical results
and contributions.

This thesis is organized as follows: after the introduction, a review of the
existing literature that is relevant to the research problem at hand is presented.
Based on maturity and uniqueness of the communication systems, this thesis
initially considers the IMS architecture and relevant work in Chapter 2. Chapter
3 discusses other communication systems such as P2P SIP, XMPP/Jingle and
Web service initiation protocol. The P2P overlay natively supports scalability
and therefore, related work on the scalability aspect is reviewed in Chapter 3.
This thesis is built, leveraging the idea of the descriptive model of IP media
services that is presented in Chapter 4

The contribution part presents five chapters:
Chapter 5 presents the main contribution of the thesis, a new concept and

system of My Own Communication Services Provider (MOCSP). Next, I present
the solution for user mobility and partial session transfer and retrieval based
on the MOCSP system in Chapter 6 and 7, respectively. Then, Chapter 8
presents analytical results for the scalability problem based on MOCSP. After
all, it is important to verify whether some different important use cases(that
are common in SIP) can be developed in the MOCSP. Chapter 9 identifies the
ability of the MOCSP by considering two new use cases. Additionally, a possible
path for implementation is examined in Chapter 9.

Finally, I summarize and discuss future directions for this thesis work in
Chapter 10.

22

Part I

State of the Art

23

Chapter 2

IP Multimedia Subsystem

Before answering the research questions, it is important to show the weakness
of existing solutions. IP Multimedia Subsystem (IMS) is an important archi-
tecture for this thesis. Therefore, this chapter surveys the literature of IMS
that attempted to answer the listed research problems of this thesis. Initially,
background of Session Initiation Protocol (SIP), IMS and call flow is presented.
Then, three sections are devoted to review the mechanisms used for the listed
three research problems in Section 1.2, respectively.

2.1 Background

2.1.1 Session Initiation Protocol

Session Initiation Protocol (SIP), an application layer protocol, is initially stan-
dardized in 1999 as RFC 2543 for controlling multi-media sessions (set up, mod-
ify and tear down) in the IP network. Later, SIP becomes a de facto signaling
protocol, used widely by telecom service providers. Today, the main draft for
SIP is RFC 3261 that obsoletes RFC 2543.

This protocol co-exists with other protocols; two important protocols are Ses-
sion Description Protocol (SDP) [15] and Real-time Transport protocol (RTP)[14].
SDP is used to describe multimedia sessions, working together with SIP. Real
time data such as audio, video, messages are sent between two endpoints us-
ing RTP. Media capability negotiation between endpoints are performed using
offer/answer exchange as specified in RFC 3264.

Design of HTTP influenced on the SIP messages. This means SIP employs
text-based encoding and syntax as used in HTTP. However, SIP differs from
HTTP in terms of using the transport service. HTTP runs only over Transmis-
sion Control Protocol (TCP), but SIP is designed to run over User Datagram
Protocol (UDP) or TCP. Reliability mechanisms and message retransmission
timers are natively built in SIP. Therefore, SIP can be used over UDP.

Basic six methods are specified in RFC 3261. However, over time, there are
around eight other methods defined as extensions. The complete list of methods
and their descriptions are included in Table 2.1.

The another important aspect is a rendez-vous function that helps to locate
a given user. Rendezvous function or routing of SIP messages is carried by a
SIP server/proxy that can redirect to other servers or users or fork (replicate)

24

Method Description RFC No
INVITE (Re-)Initiation of new session RFC 3261 [8]
ACK Acknowledge a response to INVITE RFC 3261 [8]
CANCEL Cancel a pending request RFC 3261 [8]
BYE Terminate a existing session RFC 3261 [8]
OPTIONS Query another UA or SIP server for dis-

covering its capabilities
RFC 3261 [8]

REGISTRATION Temporary binding of SIP URI to an
address-of-record (or collect IP address
from UA)

RFC 3261 [8]

UPDATE Updating session parameters, but unlike
RE-INVITE method. No impact on the
state of dialog

RFC 3311[23]

PRACK Providing reliable provisional response
messages

RFC 3262 [24]

SUBSCRIBE Part of event notification framework and
requesting state updates in future

RFC 3265 [25]

NOTIFY Part of event notification framework and
Responding the current state information
after SUBSCRIBE

RFC 3265 [25]

PUBLISH Publishing event state RFC 3903 [26]
REFER Act upon the information in REFER and

inform the outcome of action to originators
RFC 3515 [27]

MESSAGE Transfer of messages between users RFC 3428 [28]
INFO Carrying application level information be-

tween endpoints
RFC 6086 [29]

Table 2.1: List of SIP Methods

the session INVITE method to many locations of an user. In SIP, messages are
routed in a hop-by-hop fashion. SIP used e-mail-like identifiers, called SIP URI.

2.1.2 IP Multimedia Subsystem

Third generation Partnership Project (3GPP) has specified the IMS as an archi-
tectural framework for delivering multimedia services. The specification of IMS
is initially available in 3GPP Release 5 [30] and is then continuously updated
in the following releases. The following objectives are taken into account when
designing the IMS: 1) convergence of telecom and Internet, 2) delivering rich
multimedia services, and 3) shortening the time to market with new services.

The IMS is intended to separate functions in a layered fashion. This thesis
concerns with two layers, service control and service layer as shown in Figure
2.1. Services in the service layer do not need to own control functions. 3GPP
chooses SIP, an IETF protocol as a signaling protocol in the IMS architecture.

The service control layer consists of three functional components, Proxy-Call
Session Control Function (P-CSCF), Serving-CSCF (S-CSCF), and Interrogating-
CSCF (I-CSCF) [7]. Splitting the SIP servers into S-CSCF, P-CSCF and I-
CSCF is considered as an innovative idea of IMS. I-CSCF is not shown in Figure
2.1. Home Subscriber Server (HSS) is a database for subscriber and service re-

25

Figure 2.1: IMS architecture with interested entities in the service control layer
and service layer

lated information that is used for Accounting, Authorization and Authentication
(AAA). Even though the signaling layer (i.e. functional entities) is associated
with AAA, the AAA feature is not in the scope of this thesis.

Application Servers (AS) host the services for execution and is linked to S-
CSCF via IMS Service Control Interface (ISC). ISC is typically a SIP interface.
The services in the ASs involve in originating, terminating and transiting the
sessions. In addition, presence server, instant messaging server, and group list
management server are some important application servers.

Different roles of SIP Proxies are as follows:

P-CSCF The first contact point for any UA to the IMS network is P-CSCF.
For sake of scalability and redundancy, an IMS network has a number of
P-CSCFs; each P-CSCF serves a number of UAs depending on capacity
of the proxy. Important roles for P-CSCF are lookup, forwarding, and
session management.

I-CSCF Main role of I-CSCF is to route SIP messages to proper destinations,
mostly an S-CSCF. This entity is the main contact point for messages
coming from outside.

S-CSCF It stores the binding of user location and the user’s SIP address of
record (also known as Public User Identity). In addition, it performs
session control. Beyond session control, S-CSCF decides to route SIP
messages to application servers based on information in the form of initial
Filter Criteria (iFC).

Some functional entities that are defined in the IMS specification are not
deeply discussed here as they are not relevant for the thesis. For media stream-
ing, only end-to-end media flow between participants is considered throughout
the thesis.

26

1. Gateway Control Function (GCF) is a gateway for controlling signaling
messages to the circuit switch networks.

2. Media Resource Function Controller (MRFC) performs controlling the
media resource functions.

3. Media Resource Function Processor (MRFP) supports media capabilities
such as playing or recording short announcements, conferencing, transcod-
ing, and DTMF detection.

4. Policy and Charging Rules Function (PCRF) maintains the allocation of
the quality of service and applies the required policies on the transport
and the access network and is responsible for charging.

2.1.3 IMS Session Establishment Call Flow

IMS provides many functionalities such as service control, security, routing ,
registration, QoS and charging. However, this thesis deals primarily with session
management - routing between SIP UAs. This subsection shows a call flow which
includes SIP messages and IMS functional entities which are discussed earlier.
The relevant call flows are shown in Figure 2.2. More details about call flows
are available in 3GPP TS 24.228 [31]. Additionally, behavior of each functional
entity for SIP messages is specified in 3GPP TS 24.229[32].

Figure 2.2: IMS session establishment call flow

27

Here, SIP UA (3GPP refers to it as an User Element (UE)) used to refer to
an endpoint. In Figure 2.2, three methods (INVITE, ACK and BYE in Table
2.1) are used in the call flow. Initially, SIP UA1 sends an INVITE message
that passes through P-CSCF, S-CSCF, again P-CSCF and ultimately SIP UA2.
Similarly, other two messages (200 OK and ACK) are transferred. Generally,
SIP UA2 has to accept the INVITE message. If accepted, 200 OK will be sent
back to SIP UA2. This kind of response is well defined in the standards. Once
ACK reaches SIP UA2, both endpoints (SIP UA1 and SIP UA2) transport the
media (e.g. video or audio) as specified in INVITE/OK/ACK.

There is another important message flow between SIP UA1 and SIP UA2, by
which both sides allocate resources in advance. The message flow takes places
between INVITE and 200 OK. However, this aspect is not discussed in the
call flow. Moreover, each message has many SIP headers that are sometimes
important for P-CSCF, and S-CSCF. These details are available in [31] and [32].
Interactions between S-CSCF and Application server are not also discussed here.

Finally, SIP UA2 wishes to terminate the session, so that SIP UA2 sends
the BYE message. In response, SIP UA1 sends the 200 OK message.

2.2 Openness and Flexibility

I assume the meaning of the openness and flexibility as follows: Openness means
that users develop their applications or implement their new ideas (i.e. new
services) with less dependability; Flexibility means that developed applications
can be easily modified. In this subsection, the present researcher reviews the
existing techniques in providing openness and flexibility and evaluates their
limitations.

2.2.1 Openness

It is possible to map the high level IMS architecture as in Figure 2.3 with more
emphasis on different roles. As shown in Figure 2.3, a service provider controls
all the intermediate routing entities (P-CSCF, S-CSCF and I-CSCF) between
caller and callee. Since services are hosted in the services layer, ISC interface is
provided to the services by the SP.

Communication systems evolve from the walled-garden manner that does not
include third parties, to the paradigm of open service marketplace for commu-
nication world that is influential for openness in communication systems [33]. It
means that SPs open their communication system for third party usage, making
end users active contributors. In this analysis, the present researcher considers
only IMS based communication system that has adopted many methods to pro-
vide openness for end users or developers. The service control layer and service
layer of IMS can be modeled, based on the roles of caller, callee and SP as shown
in Figure 2.3.

In IMS, SPs build communication system and services using open standards,
but users (tech savvy) can create and gain control over their clients, but need
to highly comply with the standard (e.g. 200 page SIP standard - RFC 3261
[8]).

IMS-based SPs can provide APIs to third party or end users for new service
creation. The basic way to expose the communication service functionality is via

28

Figure 2.3: High level view of IMS based communication system. Callees and
Callers are user agents. ISC stands for IMS Service Control and SP stands for
Service Provider.

ISC. This API is fine-grained and makes very difficult for Web developers to de-
velop applications. In order to empower the Web developers, many approaches
have been proposed by different researchers by abstracting the existing ISC in-
terface. I group the existing abstraction approaches into three groups: 1) Web
Programming level APIs, 2) Session Data Type (SDT) API, and 3) Domain
Specific Languages (DSLs).

Figure 2.4: Existing abstractions for end user service creation

For more clarity, the present researcher shows all the available open inter-
faces in Figure 2.4. The details of each block in Figure 2.4 are given below.

Protocol level APIs (e.g. SIP): IMS provides the ISC interface to applica-
tion servers (e.g. SIP Servlets) where users can implement their services.
A typical example is 3PCC that can be developed based on ISC interface.
Since the ISC interface is based on SIP, users should be strongly familiar
with the concepts of SIP and IMS such as dialog, transaction, session or
require more knowledge to manage the intricacies of the underlying tech-
nologies [34]. In addition, changes to the ISC interface need to undergo
a lengthy standardization process and require proper changes in the SP
controlled platform in Figure 2.3.

29

More importantly, this interface only provides a call control function based
on a finite-state machine and does not guarantee effectiveness of routing
and consistency between many interdependency nodes.

It is worth mentioning here that SIP Servlet API [35] is a programming
abstraction and standardized architecture for SIP application servers that
is built on the SIP standard.

Web Programming level APIs: The ParlayX web service specification [17]
defines how to expose communication functions using the Web standards.
This allows software developers to use the communication functions that
are high level abstractions and simple to use. The available functions
are Third Party Call, Call Notification, Call Handling and Multimedia
Conference (not an exhaustive list).

In the Third Party Call function or the click-to-call service, the HTTP
request is translated into a request to a third-party call controller to es-
tablish a SIP call between caller and callee so that it sets up a media
session between them.

This simplified API supplies less capability than Protocol level APIs, but is
more Web developer friendly thanks to the functional abstractions. How-
ever, in the IMS network, Parlay gateway is newly added to provide ab-
straction in a HTTP fashion from the signaling protocol. Moreover, to the
best of the present researcher’s knowledge, there is no real deployment us-
ing ParlayX standard to provide fine-grained APIs.

WIMS 2.0 proposes another way of exposing the IMS session capability
(REST APIs) in order to support interactions from both Worlds, Internet
and Telecom. However, users who are using these exposure APIs need
to take care of the interactions between user and exposure framework.
Moreover, this method does not advance further [36].

Session Data Type (SDT) API: The paper [19] argues that telco should
provide a simple and expressive model that represents telco services. There-
fore, many telco+web mashups can be created.

SDT has a number of primitive concepts:

1. Bubble refers to a shared conversion over a single medium.

2. Session refers to a group of related bubbles, possible over different
media.

3. Event triggers are used to communicate device actions back to an
application.

This approach tries to reduce effort and deep knowledge of telecommuni-
cations network compared to the ISC interface. In fact, developer users
should know about abstraction of session, bubble, finite state machine and
notification along with a more integrated view of multimedia communica-
tion. End users can create particular classes of advanced services in this
way more easily than doing it with the ISC interface.

Examples of a shared-experience service are active conference call, family
chat-room and coffer-room experience.

30

The SDT prototype reveals that SDT can be deployed to any communi-
cation systems (e.g. IMS based). In fact, SDT focuses on the functional
abstraction (session, bubble) for end user service creation (e.g. shared-
experience services).

However, for IMS service providers, this feature brings more complexity to
the platform. For example, SDT framework manages explicitly the finite
state machine that describes the behavior of the involved session’s end
points. This complexity is hidden into the session manager which provides
session, bubble, finite state machine and notification to the applications.

Domain Specific Languages (DSLs): Domain specific approach offers high
level abstraction that describes the domain.

In telephony domain, many domain specific modeling languages such as
Call Processing Language (CPL) [37], VisuCom, Session Processing Lan-
guage (SPL) [38] and Language for End System Services (LESS) [39] are
available. These languages are scripting languages and are used to create
call routing logic only.

DiaSpec [40] [41] is an approach to separate architecture description and
implementation. In this case, users develop programs at the architec-
ture/design level. The compilers will transform these programs for the
implementation. Hence, complexity of developing new applications will
be reduced. This approach is also used to develop new telephony applica-
tions [40] [41]. The new layer with high level abstractions is added on top
of SIP.

In fact, these languages are created for end user services creation since
abstraction reduces complexity in service development. However, these
languages consider abstraction of call control features. These services can
be deployed in the 3PCC controller, SIP AS, or endpoint.

Furthermore, like SDT, many of these languages do not reach the end
users from research labs.

2.2.2 Flexibility

Flexibility means that changes to semantic/functionality of the signaling pro-
tocol should be an easy task. Nevertheless, achieving flexibility in the IMS
architecture for new session based services is a challenging task due to three
reasons.

Firstly, one-size-fits-all model is chosen for the service control layer. This
means that behavior of all sessions should be similar. The core aspect of the pro-
tocol and many extensions have been defined in the standard organization based
on one-size-fits-all model not based on diversity. The key reason is complexity
for not considering the diversity.

The second factor is derived from the above reason. In this case, signaling
protocol is static and strictly implemented in order to avoid interoperability
issues.

Thirdly, the IMS architecture has symmetric peers - end points. Fundamen-
tally, all the communication systems deliver communication services to mass
users based on the end-to-end paradigm – less knowledge at the core and more
knowledge at the end points, resulting in symmetric peers. For example, SIP

31

end points are in charge for complete message creation and processing. If there
is a new header, all clients have to understand this new header to avoid inter-
operability issues or simply message discarding. This problem can be viewed as
a version control issue.

In the end-to-end paradigm, network protocol design needs strong analysis in
order to prevent the race conditions created by peers when sending and receiving
messages [42]. Consequently, changes to clients require a huge amount of time
and work.

Finally, changes or extensions need an agreement at the standard body (i.e.
IETF) (and operators) as specified in RFC 5727 [43]. This will take a long time
before rolling out new versions ubiquitously.

2.3 Network-based, Session-based Services

The network-based, session-based services interwork with a session or are ex-
ecuted within a session. For example, Call Forwarding on Busy (CFB) is a
feature/service for existing telephone calls enabled by callee by providing the
third party number. If callee/destination is busy, i.e. generally in another call,
call will be forwarded to another destination provided by callee. The Call For-
warding on Busy is executed only during the call establishment. Many efforts
have been devoted to compose this kind of services. This kind of problem is
referred to as feature interactions [44].

There are a few techniques that discuss feature interactions during the initial
media connections in different situations such as features in a single application
server (e.g.Distributed Feature Composition (DFC)[45]), features in distributed
SIP call control services [46], and features in Internet services and Telecommu-
nication services [47]. Recently, the research community has looked into feature
interaction problem during the mid-call [48]. However, all solutions are not
general. This means the solution depends on the case.

This thesis examines two different cases that are not similar to feature inter-
actions. The first one is that a service should be executed during call establish-
ments and/or mid-calls. And the second one is that network-based session-based
services require the cooperation of network call control and endpoints. These
different cases are not discussed widely by the SIP community. Besides, devel-
oping a solution based on the SIP protocol and IMS architecture brings more
complexity and requires deep knowledge of interdependency of the functional
nodes in the IMS network.

This section starts explaining two unique requirements with the help of two
innovative use cases for building network-based session services. The first use
case is user mobility in which service logic should consistently be executed during
the initial media connection and the mid-call. Another use case is partial session
transfer and retrieval in which network call control and endpoints should be
cooperated.

The organization of this section is as follows: initially, the user mobility sub-
section presents the detailed description of the use case and available solutions
for user mobility based on the SIP protocol and IMS architecture. Likewise, the
next subsection elaborates on the use case description and available solutions
for partial session transfer and retrieval.

32

2.3.1 User Mobility

Introduction

The present researcher describes a use case, followed by requirements in this
sub-section. An elderly inhabitant is living in a smart home which can detect
the context of inhabitant (e.g. location). He receives a video call on his TV
screen while sitting in the living room. During the call, he feels sleepy and
walks to the bedroom. Once he reaches the bedroom, he is able to continue
his video call on his bedroom TV screen without any disruption or issuing any
commands. Once he finishes the call, he issues a cancel command using remote
button while in the bed. When a caretaker calls, the call is directed to the
bedroom TV screen. His smart house has many TV screens installed in each
room and has the ability to receive and make a video call. Figure 2.5 visually
presents the above-described use case.

Figure 2.5: Diagram for the user mobility use case

From this use case, the following requirements are derived before discussing
different solutions. For clarity, the present researcher mentions that the commu-
nication end points have audio/video processing capabilities and are connected
to the Internet.

Multiple registrations: A user (‘callee’) should register in advance from dif-
ferent locations where the user moves around. This registration indicates
the possible locations for transferring the calls by the network. When
registering from different locations, the user uses the same username and
password.

Network-initiated session transfer: During the user’s movements, after re-
ceiving ambient knowledge information, the network (or application) in-
forms the user (here, the ‘callee’) about a new call. If the call is accepted
by the user, then media will be established. During the call, the user moves
to a new communication end point. In this situation, the network informs
the callee that call can be forwarded to his/her new location. Until the
user accepts the call, media flow will not be disturbed. If the user accepts
the call at the new end point, the network asks the caller to transfer the

33

media to the new end point and terminates the session with the callee’s
previous end point. For this use case, network-initiated session transfer
gives much user experience compared to user-initiated session transfer.

Ambient knowledge: This means user context detection, distribution and
derivation of high level knowledge. This use case depends on context
information of a person. The context information is the location, e.g.
the room the user is in. This low-level information should be derived
to make a decision about which communication end point is near to the
user. The framework that handles the ambient knowledge informs the
communication system about the changes dynamically and provides high
level information such as details of communication end points near to a
user.

Existing Solutions based on SIP

There are four kinds of mobility (personal mobility [49], terminal mobility, ser-
vice mobility [50] and session mobility) discussed in the literature. This use case
closely involves personal mobility and session mobility. Personal mobility refers
to the user’s ability to access personalized mobility services that they are sub-
scribed to from anywhere, at any time and using any terminal. Session mobility
refers to the user’s ability to maintain an active session while moving across
networks or switching between terminals. This literature review considers the
case where devices are located in the IP network, not in the circuit switched
network.

Session transfer across multiple devices can be performed in two ways: par-
tial session mobility [50] and complete session mobility. “Transferring parts
of a multimedia session (e.g. video part in one device and audio part in an-
other device) between different devices is defined partial session mobility” [50].
Complete session mobility means that signaling and media parts of a session
completely transfer from one device to another device. The user mobility use
case focuses only on a complete session transfer.

The SIP specification has defined mechanisms related to personal and session
mobility. The present researcher considers personal mobility at session initia-
tion and session mobility during a session. In order to deliver an integrated
solution, the existing standards recommend to deploy service intelligence in a
forking proxy, end points and a SIP AS separately. The service developer should
consider a proper coordination mechanism among these entities.

Personal Mobility at session initiation SIP network has a stateful proxy
(Forking proxy) [8] that implements three different mechanisms: sequen-
tial, parallel and pipeline [51] for personal mobility at the session initiation.
This approach pre-requires multiple registrations of user agents to the SIP
network and needs to resolve the address of record with different contacts.
This service poorly utilizes the resource (many SIP messages over the net-
work) in a parallel search and involves a long delay for call set up in a
serial search. Integration of knowledge of user mobility is important for
delivering this service. The work reported in [51] models the user mobility
and derives the values for making the best decision in the forking. The
other work related to making a decision in forking is that receiving devices

34

are grouped into active and standby in order to reduce delay and amount
of message traffic [52].

The articles [53][54][55] indicate that getting the context information and
integrating with communication services are feasible and useful. For ex-
ample, in [53], using Radio Frequency Identification (RFID), a solution for
personal mobility (not session continuity) is proposed for a SIP network
that resolves RFID with SIP user identification. This solution avoids mul-
tiple registrations and reduces changes in the IMS network. In [56] [57],
the authors propose a special proxy (loosely coupled application interac-
tion proxy [56], context-aware SIP proxy [57]) for the SIP network. The
efforts behind these new proxies are orthogonal to this thesis because they
involve semantically enhanced interaction models and context aware ser-
vice adaptation.

In the present researcher’s proposal, context enabler is proposed separately
and it provides a functional interface to the communication system. The
information via the functional interface is used to make decisions in routing
calls at session initiation and during a session. Therefore, two different
entities, forking server and AS do not need to interact with the context
enabler.

Session Mobility during a session Complete session mobility can be per-
formed by either a user agent (UA) or a network entity. The present
researcher provides the literature review based on user-initiated transfer
and network-initiated transfer.

UA- initiated transfer: REFER method [27] is proposed to transfer
calls from one device to another device by an action of the user.
The user should know the identity of the target UA and make the
transfer using REFER method and Refer-To header. This method
allows moving signaling and media paths together and has join and
replace headers. The REFER mechanism is hostile to ASs in the
network. It means that ASs in the old and new signaling paths are
different.

This method does not improve the user experience since it requires
the user’s involvement in knowing the target device addresses and in
performing the transfer action.

In UA-initiated transfer in SIP, all the devices use a dedicated Address-
of-Record (AOR), such as sip:user1@example.com. In this use case,
users log into the system using a single AOR (username). Therefore,
mid-call session transfer gives an undesirable result as the initiator
sends a REFER message with the same AOR for REFER method and
contact header. Alternatively, if instances for the same AOR can be
differentiated using terminal contact or Globally Routable UA URI
(GRUU) [58], performing the session mobility will become easier.

Network-initiated inter UE session transfer: IMS network deploys
SIP ASs for initiating and managing sessions across many devices. In
this case, one SIP AS performs as Back-to-Back User Agent (B2BUA)
or executes third party call control by sitting in the signaling path.

35

This approach relieves users from dealing with session transfer. Be-
sides, network based application is easy to integrate with other ser-
vices such as context information (presence, location) in order to
provide rich communication services. However, scalability is a show
stopper in the B2BUA approach. It means that single application
can not serve for all the users who can access simultaneously. Further
details about scalability are available in Section 2.4 and Chapter8.

In addition, B2BUA manages the session transfer based on SIP ad-
dresses. For the proposed use case in this thesis, a single user logs in
from different user agents using the same user ID. As a result, B2BUA
applications have to depend on the forking functionality from the SIP
network. Due to this dependency, a B2BUA application needs to first
close the session and then it has to restart the session during the ses-
sion transfer, so a hard hand off. Otherwise, B2BUA should depend
on terminal contact or GRUU to support the soft hand-off.

Alternative Solution As discussed earlier in this section, solutions for per-
sonal and session mobility are working separately. In fact, current IMS
specifications do not provide clear design guidelines for the user mobility
use case and as a consequence, this thesis has to develop a workaround
solution for the IMS architecture. A possible alternative solution is to
implement the logic for personal and session mobility in B2BUA of IMS.
It means that B2BUA is able to do forking and/or session continuity.

One assumption is made that each user in the network has a unique
B2BUA application that implements the personal and session mobility.
Thus, this solution is free of the scalability problem. In this alternative
solution, S-CSCF in the IMS architecture should scan the incoming session
request (e.g. INVITE) messages and forward them to the right B2BUA
applications. Hence, this method requires at least a B2BUA application,
and an S-CSCF. In this case, S-CSCF should process at least six SIP mes-
sages for address binding and message routing - three (INVITE/ACK/OK)
messages between B2BUA and callee and between B2BUA and caller, as
well. In addition, S-CSCF can be stateful (depending on the implementa-
tion) and well-defined routing decisions should be implemented in the IMS
network. As indicated in [59], each stateful transaction request requires
additional memory and CPU cycles compared to a stateless transaction
request.

As explained in the previous paragraph, this alternative solution suffers
from inefficient SIP routing or going through S-CSCF to reach the B2BUA
application. The solution presented in this thesis eliminates the overhead
(delay and processing power, etc) in S-CSCF and does not worry about
routing decisions. Rather, it depends on simple HTTP. In addition, this
thesis intends to reduce session set-up time and session transfer time (ses-
sion mobility).

This alternative solution and the thesis proposal compare in terms of devel-
opment and complexity. In addition, I provide an evaluation of scalability
in Section 2.4 and Chapter 8.

36

2.3.2 Partial Session Transfer and Retrieval

Introduction

Ubiquitous digital devices with rich media processing and networking capabili-
ties open an avenue for enriching user experiences, especially in video voice over
IP communication sessions because a communication session can be partially
transferred to multiple devices that are in the vicinity of caller and (or) callee.
Then, the transferred partial session can be retrieved back to the original place.
For supporting partial video voice session transfer and retrieval, the solution
needs a proper orchestration for the media channels. In this case, the initiator
of partial session transfer and retrieval is a network entity that has service in-
telligence or users (caller/callee). For example, a session can span (or transfer)
over many devices for different media streams as presented in [50] (i.e. partial
session mobility).

The solution for the above-mentioned complex scenario of Partial Session
Transfer and Retrieval (PSTR) should include a proper orchestration mech-
anism for media streams, service/device discovery and negotiation [50]. An
orchestration mechanism establishes right media streams across media devices
regardless of the originator (network side or users).

This thesis focuses on the orchestration mechanism. The existing solutions
are divided into either user side [60] or network side [50] mechanism. In this
sub-section, a review of the existing solutions for PSTR based on Session Initi-
ation Protocol (SIP) is presented. Then, the present researcher highlights the
weakness of the integration of universal plug-and-play (UPnP) devices with SIP
user agent for PSTR.

Existing Solutions for PSTR based on SIP

The current solutions for PSTR do not provide a single orchestrator to support
network-initiated and user-initiated PSTR (based on initiator). Therefore, this
thesis classifies the existing solutions into two types: network-initiated, and
user-initiated.

Network-initiated: In this kind of solution, a network entity (e.g. application
server) should take care of partial transfer and retrieval at both sides of a
session (caller/callee). To the best of the present researcher’s knowledge,
there is only one solution [50] that addresses the use case (not all its
features). The detailed comparisons of the solution are as follows:

In [50], the authors propose a SIP B2BUA application, called a sub-session
controller (SSC) that performs partial session mobility based on a modified
SIP mechanism (INVITE-based). This approach defines two new headers
called pst-to and pst-call-id; these headers are used with the INVITE
method to inform the user about the partial session transfer (PST). If
new headers are not implemented in the UAs, it is difficult to benefit from
this kind of service. In the approach used in this thesis, changes can be
easily made because user agents (which are identified as caller and callee
boxes) are downloaded at run-time [13] [61].

When a Mobile Node (MN) retrieves the session, MN sends the INVITE
message to the Correspondent Node (CN). Throughout the document, MN
and CN stand for caller and callee or vice versa. In this case, the SSC

37

may not be aware of this retrieval. The MN closes the opened connections
by sending the BYE message to the auxiliary devices that are involved in
partial session mobility on the MN side. This logic should be implemented
in the MN in addition to the SSC.

This approach [50] does not separate the different aspects (goals of PSTR
and session initiation/modification). Instead, it uses (RE-)INVITE to
inform users about session-transfer approval. Therefore, this approach
adds complexity to UE development and further maintenance.

The SSC approach does not provide adequate partial session mobility at
both MNs and CNs. In my approach, the network box performs all the
media control for the PSTR (Ref Section 7). The present researcher’s
solution leverages the protocol [62] for media control and defines its own
messages that instruct the transfer and retrieval between the network and
the caller/callee boxes.

Furthermore, services developed based on the B2BUA method are encoun-
tered with the scalability problem [50].

User-initiated: In this kind of solution, caller/callee should take care of partial
transfer and retrieval at both sides of a session (caller/callee). To the best
of my knowledge, the basic idea is presented in RFC 5631 [60]. RFC 5631
proposes two different transfer modes: Session Handoff (SH) and Mobile
Node Control (MNC). The focus is on enabling the media transfer based
on the end-point (SIPUA) [60]. Nevertheless, some efforts are devoted to
enhance the session handoff method further. This thesis reviews all the
techniques presented in RFC 5631, followed by extensions based on the
session handoff method.

For the SH mode, an MN sends a REFER request to a local device
(SIPUA) that can participate in the session. For transferring partial ses-
sions to many local devices, the MN should send multiple REFER mes-
sages. However, the sending of many REFER methods is not supported
by the existing SIP standards. Hence, [63] proposes a new entity called
Multi Device System Manager (MDSM) that acts as a 3PCC controller
between the CN and the local devices. As a result, MDSM encounters the
same problems as the MNC.

In MNC, an MN implements the 3PCC [18] for PSTR. When the MN
and the CN perform 3PCC, it will increase transfer/retrieval delay during
the PSTR. This means that MN and CN need to send a RE-INVITE
message for every session transfer and retrieval (i.e. new media end-point
descriptions). If any of these events simultaneously occur on both sides,
there will be a race condition as reported in [64]. Moreover, MN and
CN should implement UA and B2BUA, and thereafter, MN and CN can
support PSTR. Obviously, this approach is very complex for development
and implementation. In [63], it is not explained how a user interface is
designed to show the transfer and retrieval based on the 3PCC approach.

Similar to the SH mode, [65] and [66] present different solutions for trans-
ferring and retrieving a partial SIP session over multiple devices using
the modified REFER method. To split a SIP session, the authors in [65]
propose a new header called "Mobility" and a new concept called "Asso-
ciation". In this approach (i.e SSIP), MN establishes a session with CN.

38

During the splitting, the MN sends a REFER request to a free node with
a mobility header. Later, the free node sends a new invite message with
the mobility header to the CN. In this case, the CN should identify that
there are many sub-sessions within a single session. For terminating the
session, the CN sends an individual BYE message based on association.

The mobility header in the REFER method allows the referee to be in-
formed about the session medium by the mobile node. The main drawback
in the SSIP method is that it does not support the case when both the
caller and callee sides start transferring the partial session. This means
that session transfer and retrieval is considered only in the MN and not
in the CN. In the approach presented in this thesis, both end-points can
perform session transfer and retrieval at any time; the present researcher
explicitly defines the free nodes based on media capabilities (Ref sub-
section 7.1.2).

For another example, the SSIP concept is extended to support retrieval
using the nested REFER method [66] [67]. To retrieve a transferred session
back to the mobile node, four messages must be sent between the mobile
node and the free node because of the nested REFER message. In my
approach, only two messages need to be sent between a mobile node (caller
and callee boxes) and the network box.

Integration of UPnP devices and SIP UA

UPnP: Interaction between control point and media servers/renderers:
UPnP supports ad-hoc networking of devices and interaction of services
[68]. The UPnP protocol stack includes addressing, discovery, descrip-
tion, control, eventing, and presentation. To the best of the present re-
searcher’s knowledge, UPnP has only defined the interaction between a
control point, and media servers/media renderers for media sharing in the
UPnP AV specification. Even though ConnectionManager (CM) Service
and an optional AVTransport Service (AVT) (depending on the supported
transfer protocols) are defined in the UPnP standards, these standards do
not have solutions for the integration of media servers and renderers for
PSTR (in real-time communication services). One work has been reported
by integrating the UPnP devices and SIP UA for PSTR. The following
paragraph discusses the work.

Integration of UPnP devices and SIP UA: In Sub-Section 2.3.2, the me-
dia orchestration when all end points are SIP UA, was initially presented.
Now, the present researcher reviews the integration of UPnP devices and
SIP UA for PSTR. The UPnP protocol enables control of the devices con-
nected to the network. For this integration, a new device called VVoIP
- (a SIP UA and a UPnP control point for interacting with UPnP media
servers and UPnP media renderers) is proposed [69].

This solution [69] has five drawbacks.

1. During the PSTR, a SIP UA should send the Re-INVITE message.
If both ends send the re-invite message at the same time, then there
is a race condition [64]; it has the same problem as MNC.

39

2. Development of VVoIP requires a very large work investment - the
proper linking of the SIP UA and the UPnP control point.

3. The UPnP AV standard was not developed for the real-time commu-
nication services. For example, changing the codec during a session,
VVoIP requires a work-around solution.

4. This solution is available only in UPnP-enabled networks.

5. UPnP devices have synchronous interfaces (HTTP/SOAP), there-
fore, they are not better positioned for real-time communication ser-
vices.

In this thesis proposal, devices (e.g. UPnP media servers and media ren-
derers) implement the media control logic (open, modify and close). A
central entity manages the session based on the method in [62], among the
devices, caller and callee. The solution developed in this thesis simplifies
integration in which all media servers and renderers are media end-points
(Ref Chapter 7).

2.4 Scalability

The last two sections (Section 2.2 and 2.3) present the related work for the
first two research problems of this thesis. In order to discuss the third prob-
lem and the related work, this thesis starts with a new definition of scalability
associated with the signaling layer. Next, the present researcher introduces an
interested IMS architecture and discusses possible solutions in order to support
the scalability in the two following sections. Then, based on the proposed def-
inition, architecture and possible solutions, a detailed analysis for scalability
is provided. Finally, there are some complimentary work. Since they are not
mature and efficient, they are not taken into account for the comparison.

2.4.1 Proposed Definition of Scalability

Scalability is an important attribute and is taken into account when designing
a network, system or process/algorithm. Poor scalability of any network or
system is considered to provide poor system performance.

The term scalability has been defined based on the context in the literature
[70], [71] because of different intrinsic properties and behavior of the systems.
Different systems (e.g. information retrieval system/communication system)
offer different definitions.

Determining factors for scalability are not always clear, and may vary from
one system to another. As a consequence, scalability is not defined properly in
literature by definition. To fill this gap, [71] attempts to classify scalability at a
high level, reflecting the four different aspects: structural scalability, space scal-
ability, space-time scalability and load scalability. According to [71], "Structural
scalability is the ability of a system to expand in a chosen dimension without
major modifications to its structure." Load scalability is the ability of a system
to perform gracefully as the offered traffic increases. ’Performing graceful’ means
performing without undue delay and with unproductive resource consumption
or resource contention at different loads (light,moderate and heavy)and making
good use of available resources.

40

The main question here is: Is it possible to model the communication system
to suit a situation where the number of calls increase? In other words, it is a
question of load scalability. Therefore, this thesis concerns of load scalability. A
system with poor load scalability has different states such as graceful function
and overloaded. When an overload situation arises, it is possible to have a
deadlock. This kind of situation may happen in an IMS with poor scalability.
More relevant information on overload in IMS has been given in Section 2.4.4.
The ineffectiveness of IMS in handling growing number of calls takes toll on the
resources.

One general idea presented in [71] is that performance and scalability are
closely intertwined and need not be considered separately. In fact, this thesis
takes this bottom line idea when defining the scalability for signaling architec-
ture. In addition, when exploring different scalability, it is possible to see that
they are independent completely and sometimes overlap, as well.

The scalability aspect can be further explained with help of operating sys-
tem and local area network. Ethernet and Token Ring are good examples of
poor load scalability. For instance, effective usage of bandwidth in an Ethernet
decreases at heavy loads, because of high collision rate within Ethernet.

Another example of load scalability is information retrieval system. A large-
scale information retrieval system has many parameters that should be consid-
ered while dimensioning [70]. Google search engine is an example of information
retrieval system which crawls the Web and indexes pages against words. Users
pose requests and retrieve relevant answers from the system.

The important parameters are:

1. Number of documents indexed: The number or size of the documents is
indexed.

2. Queries/sec: The number of queries that must be handled per second by the
system.

3. Index freshness/update rate: Sometimes pages become old and not relevant.
Additionally, some pages are expired and newly developed. Index refresh
rate is important to tackle this kind of situations.

4. Query latency: The amount of time taken by the system to respond a user’s
request.

5. Information kept about each document: The number of key words used to
describe each document. Some words are not necessary to describe the doc-
ument.

6. Complexity/cost of retrieval algorithms: The type of ranking algorithm used
for retrieval and its associated cost/complexity.

Another work related to this thesis is reported in [72] that attempted to eval-
uate SIP server clusters developed by different software vendors for availability
and scalability. Here SIP servers are either a proxy, a user agent client, a user
agent server, or a B2BUA. Three criteria are considered to validate scalability.
They are:

1. Scaling Increment: Resources should be added at small increments, so, it
permits fine-grained tuning of the cluster.

41

2. Operational cost of scaling: The operational cost incurred to deployers should
be minimized while scaling a cluster.

3. Scaling efficiency: Efficiency of usage of additional resource should be high.

The above mentioned three parameters are used to evaluate the scalability
of a SIP server cluster. In fact, this thesis ascertains scalability across any
communication system (IMS, P2P SIP, etc). On the other hand, these three
parameters can not be used to evaluate the scalability of the signaling layer as
they do not reflect the global view of the signaling layer. All the same, the
core aspect is taken into account. For instance, the operation cost of scaling is
considered as complexity in the present research.

In this thesis, scalability means that a communication system is able to cope
with a concurrent high number of calls. It is simply load scalability according to
[71]. To the best of the present researcher’s knowledge, there is no proper defi-
nition for the scalability that is linked with a signaling architecture. This thesis
intends to establish a common framework for characterization of scalability that
is linked with a signaling architecture. In other words, considering a signaling
architecture as a whole, but not the scalability of an individual component in
the signalling architecture, is the goal of this thesis

Proposed Definition for Scalability

The following four intrinsic properties of the signaling architecture are consid-
ered as requirements for the definition of scalability.

1. The number of users that is connected by the architecture: Typically this
means total number of users that are registered to the network.

2. Which entities, except endpoints, handle session management: This is im-
portant to create network-based session services, for the reason that these
entities keep session state information and demand computing resources.

3. The call rate: The number of successful calls that can be served by a system
at a time.

4. Session duration: The length of each session.

Based on these four different requirements, I propose four properties - how
scalable, complexity level, needed computing resources and session setup latency -
to the characterization of scalability. The details of each properties are presented
as follows:

How scalable means that up to which point a signaling architecture performs
without failure. For example, architecture will work as long as any number of
users is added into the architecture. This refers to the factor limits scalability.

Complexity level means that when a call rate varies, any new functional
entity should be added into the architecture and it involves the level of easi-
ness/difficulty in coordinating all the entities to accomplish goals.

Needed computing resources refer to the costs towards the overall system in
terms of computing resources (e.g. CPU, memory).

Session setup latency is an important parameter for communication services.
This parameter enables to show how latency is influenced during the scale up
and down.

42

Figure 2.6: IMS architecture connecting two different administrative domains
(suffix 1 and 2 denote two domains.).

In any case, there are some interesting properties (availability/reliability) of
the system, which are not explicitly considered with scalability.

2.4.2 Interested Architecture

Based on the above listed four parameters, I compare the signaling architecture
when it experiences a low to high call rate (billion per second). This signaling
architecture is assumed to serve for the entire population of the world (assuming
6+ billions of people).

The IMS signaling architecture is grouped into two layers, a service control
layer and a service layer. This thesis considers the architecture for the scalability
analysis shown in Figure 2.6 in which entities are involved in executing network-
based session services, for example user mobility. Figure 2.6 also shows two
different administrative regions that are marked with suffix 1 and 2 in proxies.

The proxies in the service control layer is responsible for routing, address
resolution and session management. These functions are deployed in proxies
that are shown in Figure 2.6. Even though some other factors (for example,
location server) may impede the scalability in the service control layer, only the
routing aspect is considered by the present researcher, here.

To route SIP requests from SIP User Agent (UA)1 to SIP UA 2 (similar to
caller and callee in Figure 2.6), IMS specifications have defined three proxies,
P-CSCF, I-CSCF, and S-CSCF. I-CSCF is not shown in Figure 2.6. These SIP
proxies perform host discovery, routing, maintaining states (for retransmissions,
accounting etc.) and authentication.

During a UA registration process, I-CSCF assigns the S-CSCF. Thereafter,
P-CSCF sends the SIP messages directly to the S-CSCF. In this case, I-CSCF
acks as a load balancer. This is different from the dynamic assignment (see

43

Section 2.4.3) that performs load balancing during the session initiation.
For routing messages, the following operation modes demand different com-

puting resources (CPU resources) in a proxy [59]:

1. Stateless with No Lookup: During the handling of session messages, ses-
sion state is not kept. This operation depends on the message that has
sufficient information (IP address within the SIP URI of the endpoint) to
be forwarded.

2. Stateless with Lookup : Handling of message takes places as in the first
case, but for forwarding messages, lookup is performed to map the URI
to an IP address.

3. Transaction Stateful with Lookup: Session state is kept only for individual
transactions. Also, lookup is performed to map the URI to an IP address.

4. Dialog Stateful with Lookup: Session state is kept during the call, consist-
ing of multiple transactions. Also, lookup is performed to map the URI
to an IP address.

5. Dialog Stateful with Authentication: While session state is kept during
the call, proxy needs to validate the credentials of the clients.

In addition, a proxy needs additional computing resources to maintain states
[59]. Therefore, the present researcher assumes that S-CSCF only performs
dialog stateful, and that the other proxies (P-CSCF and I-CSCF) are stateless.
This means that each call needs one dialog stateful with lookup and one or
more stateless dialogs with lookup actions. This helps to reduce the needed
computing resources in the intermediate entities for a single session.

2.4.3 Existing Solutions

In IMS, state of a session can be memorized in intermediate proxies while for-
warding the SIP messages. Essentially, messages in a session should traverse
via the same proxy in order to be consistent. These two aspects are reported in
Sub-Section 2.4.2. Considering the above mentioned two aspects, this subsection
presents two solutions in IMS, pre-defined and dynamic assignment, which can
support a higher call rate. The details of each solution are provided hereunder.

Pre-defined Assignment

Based on the capacity of a physical node (like one in [73]), users are pre-defined
to one physical node. It will exist for a long period whether the user makes
calls, receives calls or not. This can be achieved in two ways. One is by making
settings in DNS. This is done by allocating a set of users to one server, by default.
For example, from user1@domain1.com to user500@domain1.com is statically
defined to one physical node (assuming that to be the maximum capacity). The
other is based on the unique domain names for a set of users, like pre-defined-
numbersofusers@domain1.com and pre-defined-numbersofusers@domain2.com.

These servers only serve for assigned users and session set up delay is con-
stant (with an average of three hops). Since call arrival rate varies (low to high

44

over time), keeping the physical nodes for signaling purpose is not an econom-
ically viable solution (over-provisioned). To address this problem, assigning a
server is dynamically considered when user requests arrive.

Dynamic Assignment

When many requests arrive simultaneously, all the requests should be divided
into different servers based on the servers’ capacity. The users are dynamically
assigned to proxies with the help of a Load Balancer (LB). In this setup, there
are many proxy physical nodes. Based on the algorithm, each user is assigned to
a particular server by the load balancer. User requests go first to a load balancer
that forwards the request to a right proxy. It is important that transactions
corresponding to the same call must be routed to same server due to the session-
oriented nature of the SIP. This aspect should be taken into account when
employing the load balancer.

The LB is either fine-grained or coarse-grained. In a session, all the requests
and responses go through the LB; then it is referred to as fine-grained. Figure 2.7
shows load balancer deployed between users and P-CSCF1. In coarse-grained
LB, the initial message (e.g. INVITE) goes through the LB and then the subse-
quent messages for the same session go directly to the proxy that is selected by
the LB; a main challenge is to collect instantaneous information from proxies
for effective decision making in LB.

As per the literature, load balancing across many nodes can be achieved by
many different algorithms, such as Hash, FNVHash, Round Robin, response-
time Weighted Moving Average (RWMA), Call-Join-Shortest-Queue (CJSQ),
Transaction-Join-Shortest-Queue (TJSQ), and Transaction-Least-Work-Left (TLWL)[21].
Information regarding the above algorithms is as follows:

1. Hash and FNVHash: This approach is static where the central entity, let’s say
load balancer, assigns a new call to server (Hash(x) mod N), where Hash(x)
is a hash function of Call-ID x and N is the number of servers. More details
of FNVHash are available in [74].

2. Round Robin: The central entity assigns a new call to each server rotation-
ally. Hence, load is distributed equally across servers. Based on the previous
call assignment to server M, the next call is assigned to server (M + 1)modN,
where N is again the number of servers in the cluster. In the Hash method,
it is not possible to guarantee equal load across the servers.

3. Response-Time Weighted Moving Average: This method helps to make load
balancing decisions based on server response times. [75] provides details of
Response-time Weighted Moving Average (RWMA) algorithm that assigns
calls to the server with the lowest weighted moving average response time of
the last n response time samples. The main idea of this method is to make
load balancer responsive to dynamically changing loads. The load balancer
can determine the response time for a request based on the time when the
request is forwarded to the server and the time the load balancer receives a
200 OK reply from the server for the request.

4. Call-Join-Shortest-Queue: The central entity tracks the number of calls and
assigns a new call to the server that has the least number of active calls.

45

Figure 2.7: A load balancer between callers and P-CSCF1. Network admin 1
has many physical nodes for a single functional entity, P-CSCF

5. Transaction-Join-Shortest-Queue: SIP has different transactions such as IN-
VITE and BYE. In this case, instead of considering a complete call, the
central entity assigns a new call to the server that has the fewest active
transactions.

6. Transaction-Least-Work-Left: In this case, each transaction is given relative
estimation of a transaction cost. Typically, an INVITE transaction needs
more work than a BYE transaction. The central entity assigns a new call to
the server that has performed least work. This means that the central entity
should know the relative overhead of each SIP transaction.

The present researcher describes two different load balancers and the algo-
rithms employed before getting into the scalability analysis. This way, readers
can understand the complexity when supporting scalability in IMS.

1. Fine-grained Load Balancer:

The authors in [21] propose an algorithm (select a server for handling re-
quests) called Transaction-Least-Work-Left (TLWL) and deployed with a

46

fine-grained load balancer. Based on this algorithm, a new call is routed to
the SIP proxy that has the least work. In this case, the load balancer knows
in advance the number of transactions each server can handle and the cost
of each transaction. The authors found that 1.75:1 is the cost ratio between
INVITE and BYE in a SIP session.

H. Jiang et al claim that TLWL-1.75 can linearly increase throughput when
the number of nodes increases (up to 10 nodes) [21]. In the TLWL approach,
the load balancer is fine-grained (i.e. all requests and responses pass through
the load balancer) and is compatible with the SIP (can deal with variability
in call lengths, distinguish transactions within calls, and can assess different
processing costs for different SIP transaction types).

A fine-grained load balancer requires high computing resources (processes all
incoming and outgoing messages) and increases the session setup delay (by
one hop). Another problem is the scalability of a load balancer. This problem
becomes recursive; a solution for increasing the capacity of a load balancer
must be found. Consequently, the scalability presents a major bottleneck for
real-life deployment with high call rates (in thousands).

2. Coarse-grained Load Balancer:

In this case, after the first message, all the messages are routed to the
proxy without going through the LB. For effective decision making at the
load-balancer, the LB should monitor all the available servers over the time
whether assigned jobs in proxies are finished or not. In this case, the heart-
beat mechanism is used to convey information between proxies and the LB
as explained in [76]. There is a considerable overhead in sending information
between proxies and the LB. The effectiveness of the heartbeat mechanism in
the context of signaling architecture remains a question. More importantly,
the present researcher has not found any work (with results) that is linked
to any algorithm (like round-robin) with a coarse-grained load balancer in-
cluding in [76].

Coarse-grained LB can scale well compared to fine-grained because the coarse-
grained LB only processes the first message of each session. However, both
approaches consider only in balancing the originating requests from UAs. As
per Figure 2.6, callees are assigned to a particular B2BUA, S-CSCF and P-
CSCF. In this case, callees are willing to receive call via this particular setup.
It is not clear how to use (both) load balancing techniques in this situation.

2.4.4 Scalability Analysis

The proposed scalability evaluation framework has four parameters as presented
in Section 2.4.1. Additionally, two different solutions based on IMS are presented
in Section 2.4.3. This sub-section presents the scalability analysis based on the
proposed scalability evaluation framework.

How Scalable

The scalability can be achieved by deploying needed resources in advance based
on the pre-defined approach. But scalability is a bottleneck with a load balancer
in the dynamic assignment approach especially during a high call rate. The

47

capacity planning for the IMS signaling architecture is an important aspect in
both approaches. If the capacity of an IMS network (i.e. capacity of each
proxy) is not sufficient during the high call rate, the IMS network experiences
overload and is likely to cause throughput collapse [22]. In addition, recovering
the throughput is also very slow.

To avoid throughput collapse in overload situations, several suggestions for
the overload control method have been presented [77][78] (not a complete list).
Before applying these prevention mechanisms (i.e. preventing throughput col-
lapse), the IMS network should know when and which proxies are under over-
load. Besides, it is very clear that these overload control solutions are complex
and demand computing resources for implementing the overload control mech-
anisms. More significantly, when deploying the dynamic assignment approach,
more efforts should be devoted for the overload situation and throughput col-
lapse as these factors affect the scalability.

Overload control algorithms, for example in [77], demand rejecting messages
during the demand burst situation. However, the cost of rejecting a session is
nearly equivalent to the cost of serving a session [78]. In a nutshell, turning
computing resources used for rejection and overload control mechanisms (e.g.
[77]) is into serving the calls

Complexity Level

The pre-defined approach is straightforward and complexity is only associated
with properly defining the SIP routing rules. On the other hand, complexity
is related with the load balancer and load balancing algorithm in the dynamic
assignment approach. At the same time, overload control mechanisms also add
complexity in developing the overall system.

Needed Computing Resources

This is associated with the number of users connected to the network and the
number of intermediate entities between callee and caller. In IMS, minimum
three nodes (P-CSCF1 and S-CSCF1, B2BUA2, and P-CSCF2 and S-CSCF2)
are between callee and caller (see Figure 2.6). If deployed the dynamic assign-
ment approach, the load balancer is also added into the overall system. During
the low to moderate call rate, the dynamic assignment approach effectively uses
computing resources when compared with the pre-defined approach.

Session Setup Latency

As mentioned in the previous sub-section, session setup latency is also associ-
ated with traversing three nodes (See Figure 2.6). In the dynamic assignment
approach, the load balancer also contributes to the latency.

2.4.5 Indirect Work

The present researcher describes a few recent studies that are more relevant
to scalability. The possible ideas - SERVaruka presented in [59] and a self-
organization concept to IMS - intend to address the scalability problem. Any-
how, these solutions are not matured. Then, this thesis presents a discussion on

48

the different approaches that augment the SIP server performance. Nonetheless,
these approaches are complementary to the present research.

SERVaruka

The authors [59] propose an algorithm to SIP servers that determines optimal
fraction of the SIP requests to be handled statefully in a SIP server in order
to increase the call throughput. The amount of state locally maintained is the
main idea behind this algorithm. The algorithm dynamically shares the states
amongst servers. The experiment results show that scalability is not linear; there
is a 15 percent increase in it. The state distribution algorithm for any config-
uration of servers achieves optimal call throughput in the cost of distributing
states dynamically. SERVaruka does not globally address the problem of load
scalability while injecting complexity (due to algorithm implementation) in the
deployment.

Self-Organization Concept

Self-organization concept promotes to give the control to the network; so that
it re-organizes itself quickly when load (number of calls) increases in the net-
work. Generally, designing the right algorithm for such tasks involves a high
intellectual cost.

IMS is an operator-controlled IP-based signaling infrastructure that has
many functional components and is associated with many interactions with
those functional components. The authors propose architecture based on self-
organization concepts in order to reduce the operational cost [79]. I consider that
this work also fits into the domain of scalability because the proposal has the
bottom line of network loads, number of users, and available system resources.
The main idea of this proposal is to merge and split functional components
among nodes as network load increases [79]. Compared with the proposal pre-
sented in this thesis, this solution involves high cost in developing an algorithm,
lacks in effectiveness and adds more complexity into the overall IMS system
(adding new entity in the message path and reconfiguration cost with S-CSCF
and P-CSCF).

More importantly, this proposal does not indicate the relationship between
the number of concurrent sessions and needed system resources.

SIP Server Performance

Individual SIP proxy performance is an important factor for increasing the scal-
ability. The fact is that throughput of a stateful SIP proxy is equivalent to half of
the throughput of a stateless SIP proxy server. Therefore, SERVaruka proposes
a state distribution algorithm in order to increase the overall throughput at a
time. However, there are a few techniques to increase the throughput/scalabil-
ity performance of a single proxy server that is hosted in different environments
(e.g. multi-core processor) or designed and implemented in different ways (e.g.
SIP parser, concurrency mechanisms - thread and process architecture). They
are:

I. SIP parsing: This takes a significant percentage (20% to 40%) of CPU
time [80] since SIP is CPU-bound. One method is to separate (or offload)

49

the SIP parser from SIP stack, so that throughput can be increased. Here,
the complete list of the SIP parser is not included, but more information
is available in [81].

II. Making SIP server as a bare PC application [82]: A BarePC approach
intends to reduce the overhead in the OS. Generally, BarePC applica-
tions run without support of an operating system and/or kernel. Here,
SIP proxy should handle SIP functions and messages processing, efficient
CPU tasking and direct Ethernet-level data manipulation. Therefore, SIP
proxy performance scalability can be increased compared to conventional
deployment. Additionally, this approach brings much complexity into de-
velopment.

III. Multi-process programming model [83]: SIP proxy server, running on a
multi-core processor, should consider two factors in order to determine
performance scalability. They are :

1. In side the operating system, overhead using the coarse-grained locks
in the UDP socket layer.

2. Multi-process programming model.

1. overhead from passing socket descriptors among processes.

2. overhead with sharing transaction objects among processes.

Additionally, the authors have proposed several incremental optimiza-
tions for these issues.

This thesis benefits from these performance optimization approaches and
considers these mechanisms when designing the underlying service infrastruc-
ture.

2.5 Conclusion

Three perspectives of the IMS architecture are reviewed and the weakness of
the existing solutions have been pointed out in this chapter. Initially, the basic
idea of the SIP signaling protocol, IMS architecture and session establishment
and termination in the IMS architecture are presented in Section 2.1.

Then, the existing mechanisms for providing openness and flexibility in IMS
are presented in Section 2.2. This thesis ascertains that the idea of controlling
the signaling infrastructure is a major challenge in providing openness to end
users. The existing research work focuses on the abstraction of the SIP protocol
interface. Significantly, the blue print of the signaling infrastructure - one-size-
fits-all-model - hinders the flexibility in the signaling layer. IMS is not feasible
to extend or modify in order to provide more openness and flexibility because
of its own complexity.

Even though basic voice and video call is enabled in IMS, IMS does not
natively support the development of network-based session-based services. This
aspect is explained with help of two use cases: user mobility and partial session
transfer and retrieval, in Section 2.3. Coordinating properly forking proxy and
B2BUA is a problem for user mobility use case in IMS. For the PSTR use case,
deploying the 3PPC mechanism in each end point and SIP AS is needed. All the

50

same, the solution for PSTR in IMS does not support seamless partial session
transfer and retrieval at the callee and caller sides.

Finally, this chapter discusses of the scalability aspect with a signaling layer
in Section 2.4. This section starts with different definitions for scalability and
defines a new evaluation framework for scalability associated with a signaling
layer. This evaluation framework has four parameters - how scalable, complexity
level, needed computing resources and session setup latency. Based on this
framework, it is possible to evaluate any signaling architecture. Following this
evaluation framework, Sub-Section 2.4.2 presents a possible architecture that
should be considered for the scalability analysis. Existing solution - dynamic
assignment in Sub-Section 2.4.3 - in order to support scalability still needs a
proper load balancer and algorithm. This new evaluation framework is used to
evaluate the IMS signaling layer as presented in Sub-Section 2.4.4. Based on
this analysis, a proper capacity plan for each functional node in IMS or over
provisioning computing resources can serve the purpose of supporting the high
scalability in the IMS architecture.

All the existing solutions for the listed research questions are patch-ups or
extensions to the IMS architecture which is itself quite complex. Considering
the drawbacks of the IMS architecture, it is important to propose a new commu-
nication system that needs to be simple and supports the end user innovation.

51

Chapter 3

Other Communication
Systems

Chapter 2 is devoted to discuss different solutions for the research problems of
this thesis. Similarly, this chapter discusses the related work based on P2P SIP,
XMPP/Jingle, and Web service Initiation Protocol.

3.1 P2P SIP

P2P overlay is a network of nodes where there is no central entity/server. Be-
sides lack of a single point of failure, P2P overlay is scalable and reliable. In
P2P overlay, each user is a peer that helps each other in order to achieve certain
objectives such as locating files and users.

The P2P overlay architecture can be classified into structured or unstruc-
tured [84] [85]. In unstructured P2P overlay, there is no structure in organizing
nodes or content in nodes. In contrast, structured overlays such as Chord [86],
Content Addressable Network [87] and Pastry [88] are organized in a way to op-
timize the lookup latency and join or leave maintenance. In Chord, each node
is connected like a ring and each node contains at most Log(N) entries in its
finger table to point to other peers. Lookup is done in O(Log N).

The main goal of P2P SIP is to enable communication services over a dis-
tributed P2P overlay where the signaling protocol is SIP [9]. A P2P SIP system
can thus avoid being dependent upon central server components, as is the case
with IMS networks. A P2P SIP system can be either a structured or an un-
structured overlay.

Researchers are interested in deploying a P2P SIP system in a mobile en-
vironment [85] where unstructured overlay is leveraged to enable sessions. In
this case, nodes are in mobility. Therefore, churn rate will not influence the
maintenance overhead.

Compared to unstructured P2P overlay, structured P2P SIP systems has
less lookup latency, thus P2P SIP remains a structured overlay where mobility
of nodes is not an important aspect.

This thesis considers structured P2P SIP systems for the literature review.
The research work reported in [89] has shown how Chord based overlay is used

52

for a P2P SIP system. Besides basic voice/video communication services, ser-
vices such as offline messages and multi-party conference are proposed in the
P2P SIP infrastructure.

Concerning the listed research problems in Section 1.2,

1. A service provider who deploys P2P SIP takes care of the signaling aspect.
Each user downloads needed software and does not have any control over the
signaling protocol. Instead, it is an operator choice.

2. No relevant work has been reported for the user mobility use case and partial
session transfer and retrieval use case.

3. Regarding the scalability aspect, I review the P2P SIP literature and high-
light its weakness when used for real-time communication services in Section
3.2.

3.2 Scalability

Chord based P2P SIP infrastructure is proposed in [89] for Internet telephony.
There are other kinds of overlays that can be used for P2P SIP infrastructure.
For the comparison here, I choose the Chord based P2P SIP that is general
enough.

To enable a session between two peers, by employing the Chord based P2P
SIP infrastructure, message overhead per node is depending on four parameters
as listed below [89]:

1. keep-alive and finger table refresh rate

2. call arrival distribution

3. user registration refresh interval

4. node join, leave, failure rates

Accordingly, message overhead is :

M = rs + rf (log(N))2 + c ∗ log(N) + (k/t)log(N) + λ(log(N))2/N
Assume that the overlay has N super-nodes. Here k is the number of keys

stored per node, rs is REGISTER refresh rate to successor and predecessor
to keep the Chord ring correct, rf is refresh rate for finger table entry, call
arrival is Poisson distributed with mean c per node, user registration is uniformly
distributed with mean interval t per user, and node joining and leaving are
Poisson distributed with mean λ.

The above mentioned formula shows how the message overhead is associated
with call message routing. Hereafter, scalability analysis is provided according
to four parameters based on P2P SIP.

How Scalable

Theoretically, P2P overlay is scalable. Therefore, P2P SIP architecture is also
scalable as long as many nodes join the overlay. Any how there are two basic
limitations - the first limitation is the capacity (CPU, memory and bandwidth)

53

of the super-node. And the second limitation is that P2P SIP overlay has
much message overhead from peer nodes during registration, refresh, session
establishment and node joining and leaving. Dimensioning the right set of super-
nodes by taking the message overhead into account enables scalability during
the high call rate. This is more linked with the latency aspect, as well (see
below).

During high call rate, the failure of some super nodes compels an outage
of the overall system. For example, Skype underwent 24 hours of worldwide
outage in December, 2010. The cause for this downtime is the failure of su-
pernodes. Initially, supernodes responsible for offline messages were overloaded.
Then, over the time, the other supernodes were also overloaded due to message
transmissions [90]. Therefore, reliability of P2P SIP based infrastructure is a
question.

Complexity

P2P SIP infrastructure does not need a new functional entity (like a load bal-
ancer in IMS) in order to bear the high call rate. However, organizing the P2P
overlay will be cumbersome when a large number of peers are connected (e.g.
big distributed hash table). This factor will add complexity in to the overall
system.

Like in Skype, proposing supernodes can reduce the complexity associated
with big hash table. Typically, supernodes perform connecting ordinary nodes
together and build a distributed database. In fact, these systems do not provide
network-based, session-based services.

Needed Computing Resources

A P2P SIP signaling architecture has a huge message overhead as shown in
the equation in Section 3.2. This message processing requires huge computing
resources. It is not easy to quantify this parameter, but it is obvious that
computing resources are needed more in P2P SIP than in MOCSP based system.
The reason is that at least signaling messages should traverse log(N) hops in P2P
SIP. Traversing many super nodes demands extra processing power. Globally,
the message overhead associated with the overlay maintenance is high. This
implies that a larger network has a higher message overhead. The churn rate
(node joining/leaving) also demands computing resources.

Session Setup Latency

Session setup delay is high;it is always log(N). N is the average number of super
nodes. When the number of users is high, there should be many super nodes.
This means high latency. In addition, the call setup latency is associated with
node dynamics (joining/leaving) [84] in P2P SIP.

3.3 XMPP/Jingle

The Extensible Messaging and Presence Protocol (XMPP), a protocol for stream-
ing Extensible Markup Language (XML) elements between any two network
endpoints is defined in IETF RFC 3920 and IETF RFC 3921 [91]. This is not a

54

real-time protocol, but close to a real-time protocol. XMPP was initially used
for instant messaging, present events, offline messaging and voice mailing.

A typical architecture for deploying the XMPP system is a client-server
model. A client gets a XMPP access to connect to the server. Servers are
connected each other based on TCP. The path length between caller and callee
is at least two XMPP servers. To and From headers of XML message are used
to establish a session between caller and callee via two XMPP servers.

Jingle is a set of extensions to XMPP for enabling voice/video over IP mul-
timedia sessions and the basic one is XEP-166: Jingle [10]. The initial objective
of Jingle design is to provide real-time communication services for XMPP users.
The most popular service, Google Talk, is implemented based on XMPP/Jingle.

The XMPP architecture emphasizes more on end points like in SIP. This
means that end-to-end message transfer for a session is considered while travers-
ing intermediate entities.

Concerning the research problems of this thesis, a few works have been
reported.

1. Every provider will employ their own XMPP servers for providing real time
services. In order to be interoperable, everyone should implement the same
protocol. Changes are not easy, as well. Providing openness at the protocol
level is not reached based on the XMPP/Jingle approach. Likewise, achieving
flexibility in the signaling protocol is very cumbersome.

2. I could not find any research work on network-based session services. To
be precise, enduser-initiated session transfer (transferring from one person
to another) is discussed in the draft [92]. This service does not fall within
interest of this thesis.

3. Scalability should be considered in two ways : single provider having many
users and many providers having many users. In single provider case, there
should be a federation of many XMPP servers. In this architecture, com-
plexity is two servers or hops (in-bound and out-bound). Session setup delay
and needed computing resources are proportional to these two hops.

This thesis did not consider configuration overhead that is associated with
a federation of XMPP servers.

Addressing scheme used in XMPP systems is user@domain1.com. Therefore,
any messages towards a user should be forwarded to domain1.com regardless of
the user name. To be horizontally scalable, there should be at least one load
balancer between users and XMPP servers.

3.4 Web Service Initiation Protocol (WIP) based
Service Oriented Communication

Industry and academia had shown much attention on Web services [93] in order
to integrate applications across enterprises. The open standards of Universal
Description, Discovery and Integration (UDDI), Web Services Description Lan-
guage (WSDL) and Simple Object Access Protocol (SOAP) are the key pillars of
Web services technology. The developers of the application integration benefit
from software modularity, reuse, language and platform independence.

55

Two separate worlds, Web services and IMS/SIP services satisfy different
user needs. Hence, some efforts are devoted to integrate both domains; it al-
lows re-using the existing services to provide new converged web and telephony
services for enriching user experience.

Due the different nature of these two worlds (e.g. request-response model
in Web Services and session based in SIP), the authors propose a signaling
protocol and possible architecture for multimedia and voice communication over
IP based on Web services standards [11]; as a result, it will naturally enable the
composition of Web services.

The name of the signaling protocol is Web Service Initiation Protocol, re-
laying on WS-Session, replacing the SIP [11]. Signaling can be performed in a
end-to-end fashion or via a B2B (back-to-back) broker mode. In any manner,
Web Service Initiation Protocol did not evolve further from basic communication
services. More importantly, this work did not consider the research problems
that this thesis has looked into.

3.5 Conclusion

Three different communication systems such as P2P SIP, XMPP/Jingle, and
Web Service Initiation Protocol based Service oriented communication are re-
viewed in depth. In fact, these three systems did not address the problem
directly. The above analysis illustrates that providing extensions or patches
will not solve the research problems of this thesis.

56

Chapter 4

Descriptive Model of IP
Media Services

This chapter reviews the research work on compositional media control in [62].
Initially, a protocol has been defined for facilitating composition/media control
between two users who are connected through application servers. This new
protocol minimizes the programme complexity, programme state and latency
compared to SIP.

This chapter includes the architecture-independent descriptive model, and
protocol definition for IP media services. Because, the contributions of this
thesis depend on the descriptive model, programming primitives and protocol.
Note that [62] does not address the research problems of this thesis.

4.1 Introduction : IP Media Services

Telephony service (i.e. voice/video call) is one of the IP Media Services that
have signaling and media separation in practice.

Figure 4.1: General practice of implementing IP media services

57

A signaling path consists of many nodes (such as application servers) and a
media path is direct-to-direct between caller and callee. Nodes in the signaling
path do not know each other, executing specific functions based on generality.
This triggers to have a cooperation mechanism across nodes between caller and
callee. This requirement drives the research work as reported in [62].

4.2 A Descriptive Model of Media Aspect of a
Service

4.2.1 Signaling Path

The architecture-independent descriptive model is shown in Figure 4.2.

Figure 4.2: Programming abstractions in a signaling path

The descriptions of the key abstractions are as follows:

1. An endpoint involved in media control is indicated as a box.

2. A signaling channel, connecting boxes is two-way, First-In-First-Out (FIFO)
and reliable. Therefore, TCP is ideal for signaling messages between boxes.
Signaling channels carry tunnel signals and meta-signals that set up and
tear down signaling channels.

3. A tunnel is proposed to control a media channel. There are many tunnels
(based on different media) within a signaling channel. The slot is a point
of intersection between a tunnel and a box. Each tunnel executes signaling
protocol as defined in Section 4.3.

4. A flowlink is an object connecting two slots in a box. The flowlink can read
and write signal messages at the slots. A chain of flowlinks and tunnels
set up a signaling path between boxes.

No one has defined how to implement this descriptive model in IMS or SIP,
so far. In my proposal, HTTP message transactions and setting up a Web Socket
connection are considered as meta-signals. All the tunnel signals traverse over

58

the established Web Socket connections. When a caller clicks on the hyperlinks,
the Web server responds with a HTTP response that consists of information of
availability of the callee and the demanding media services. Refer to Section
5.2, for further details. The vocabulary in the descriptive model specifies the
media control and is general enough to leverage in this thesis.

4.2.2 Media Channels

When a signaling path is established between two endpoints, there are media
channels between these two endpoints. The endpoint slot is associated with IP
address and port number that are used for sending and receiving the media.
These attributes are static (not necessarily). Others are dynamic, depending on
users desires. The dynamic attributes are described in a finite-state machine as
shown in Figure 4.3.

A channel can be either closed, opened, opening or flowing state. In order to
change into a different state, an endpoint sends/receives different events (such as
open, accept, reject, and modify as shown in Figure 4.3) to the other endpoint.

Figure 4.3: The user interface at one end of a media channel shows message
transmission between two ends. The events preceded by exclamation marks are
chosen by the user, while the events preceded by question marks are chosen by
the other end of the channel. Commas separate unrelated transition labels with
the same source and sink states.

Due to the different media channel behavior, each slot consists of a medium
and state attributes (four different states in Figure 4.3) in the abstract model.

59

4.3 Signaling Protocol

4.3.1 Protocol Requirements

The major requirement of the signaling protocol is to establish a media flow
between two endpoints. This requirement implies that each endpoint should
know which IP address and port number are used by the other endpoint for
streaming media. A codec for medium streaming in each direction should be
agreed by both parties.

Today, Web browsers have started supporting different codecs such as VP8
video codec and iSAC/iLBC voice codec [94]. It is possible to have different
codecs for the two directions of a media channel or a single codec for both
directions. It is useful that each endpoint knows which codec is used for media
streaming. Thus, endpoints can allocate different resources for interpreting the
codec.

4.3.2 Protocol Definition

A protocol endpoint i.e., a slot is associated with a particular medium. There-
fore, the scope of the protocol definition is one tunnel in one signaling channel.
The finite-state machine specification of the protocol is shown in Figure 4.4.

Figure 4.4: Specification of a protocol endpoint. ? means received, ! means
sent. ?oack / !select means send select if and when oack is received. !oack /
!select means send the two signals in sequence. Commas separate unrelated
transition labels within the same source and sink states

The protocol is used to open, modify and close a media channel between

60

two media endpoints. How protocol is used between two endpoints is shown in
Figure 4.5.

An (open) signal is used to open a media channel by either end of a tunnel.
The other end can respond affirmatively with (oack) or negatively with (close).
Either end can close the media channel at any time by sending (close), which
must be acknowledged by the other end with a (closeack). The role of both
close and reject is satisfied by a single abstraction, close.

The open signal contains information of the medium and a descriptor.

A descriptor describes an endpoint that is the receiver of media; it consists
of an IP address, port number, and a priority-ordered list of codecs that it can
handle.

If muteIn, a boolean variable, is true, i.e., the endpoint does not want to
accept media, then the only offered codec is noMedia.

If an endpoint accepts the open signal, the endpoint should send the oack
signal that carries a descriptor of acceptor.

In response to the descriptor message, an endpoint informs the other end-
point by a selector, agreed to send to the endpoint as specified (i.e. IP address of
the sender and the port number of the sender) in the descriptor message. This
selector message has information of the codec (a single codec) it will be using.
A single codec is selected from the list in the descriptor. The selection process
may vary, but mostly the codec that has a highest priority in the descriptor is
selected. The selector message may have noMedia, if the selecting endpoint does
not want to send media. This means that muteOut of the selecting endpoint is
true.

Generally, the selector is a response to the descriptor. If an endpoint receives
an open signal, it may send an oack signal. The endpoint sends a selector mes-
sage, followed by an oack signal. Here the selector is a response to the descriptor
in the open signal. Both endpoints can send the descriptors and selectors many
times in a session. Therefore, there should be a mechanism indicating the rela-
tionship between descriptor and selector, for example numbering. As soon as an
endpoint sends the selector message with a real codec, it starts sending media.
Similarly, an endpoint becomes ready for receiving media once it receives the
selector message.

This protocol allows to send select signals many times after sending the first
selector in response to a descriptor. This means that selector can select the new
codec from the list in the descriptor at any time. This case is explained with
select(sel’2) in Figure 4.5.

Similarly, an endpoint can send a new descriptor after sending or receiving
oack. The new descriptor may have a new address and (or) a new codec list.
Then, the endpoint should respond with a new selector with a select signal.
This interaction is shown in Figure 4.5 with descriptor3 and selector3.

Preventing a race condition is taken into account when designing this pro-
tocol. One possibility for a race condition is that both endpoints send an open
signal simultaneously within a tunnel. In this case, a simple rule for giving
priority to the initiator of the signaling channel is defined. Therefore, the less
priority open message will be ignored.

61

4.3.3 Properties of the Protocol

The user interface at each end of a signaling path supports to reflect the interest
of user (Figure 4.4) and to convert the interest of user into implemented protocol
(Figure 4.5) and vice versa.

Accept events trigger oack signals at the endpoint user interface. Describe
and select signals are needed during the modify events. Descriptors and selectors
can carry values of mute variables.

One advantage of this protocol is that both endpoints can send a describe
signal and it is selected at the same time. This will not trigger a race condition
and will not add complexity.

To make the programme state simpler, the protocol considers not to enforce
pairing of describe/select signals that is relevant to one direction of the media
transmission. This means that describe can be sent without awaiting a select
response for the previous describe signal. In the same, a select can be sent at
any time after sending the first select message.

4.4 Protocol Comparison

This section discusses the way the new protocol differs from the SIP. The new
protocol differs in three aspects.

1. Transactional nature of SIP vs Idempotent

2. Codec choices

3. Media bundling in SIP vs tunnel within a signaling path

More detailed information is available in [62].

4.5 Conclusion

This chapter reviews the important building blocks for IP media services such
as descriptive model and signaling protocol. These building blocks (for exam-
ple, signaling protocol) are re-used in proposed solutions of this thesis (where
appropriate).

62

Figure 4.5: Protocol usage between two endpoints

63

Part II

Contribution

64

Chapter 5

My Own Communication
Service Provider (MOCSP)

From the literature review, it is learnt that the signaling layer middleware is
shared by all and is controlled by an operator. In any case, solutions for the
research problems of this thesis are complex and demand a high cost for sup-
porting interoperability (in IMS). Hence, this thesis intends to take a feasible
new approach for addressing the research problems to design from scratch. This
approach is called My Own Communication Service Provider. First this chapter
explains the MOCSP concept and MOCSP system. Next, a demonstration of
how to make a communication session in the MOCSP system is provided. At
last, there is an analytical briefing on openness and flexibility.

5.1 From Concept to System

This section presents the MOCSP concept and system in detail.

5.1.1 Concept

MOCSP is a concept which allows end-users to create their own communication
platforms themselves, for communication services, and own them. This concept
intends to give all the basic elements of the communication services for end
users. For the communication services, end users need control on a signaling
layer and media layer. This thesis presents how end users can get complete
control in the signaling layer in order to design their innovate needs.

5.1.2 System

I propose a top-down and Web-based approach for realizing the MOCSP con-
cept.

For the top-down approach, the goal is to enable end-users to concentrate
on defining what the service should do first, and then dealing with every single
detail of how to implement it. It means that end-users are facilitated to define
the services rather than defining or putting more focus on control and media
flow.

65

The alignment of the MOCSP system with the Web platform is strongly
motivated by three factors:

• Predication of blending of the future of the Web and the future of the
human society [4]. It means that end users will accomplish their needs in
the Web in the future, as well.

• Openness and flexibility of the Web platform. In the Web platform, users
own and control all the functionalities they need in order to develop ser-
vices. In other words, users do not depend on anyone. Moreover, users
get more freedom to modify.

• Simplicity of the Web architecture based on HTTP, URL and HTML. A
general perception is that simplicity always wins. In reality, Web has been
successful beyond anyone’s wild dream. Technical ingredients - HTTP,
URL and HTML are easy to understand and simpler in operation.

In the remaining part of this section, the present researcher provides the two
basic building blocks that are used in the MOCSP system. One is the formaliza-
tion of communication services at the high level, and other one is the mapping
of these services into a Web concept (e.g. URI) since our realization is based on
the Web platform. Then, the architecture of the MOCSP system is provided.
Conclusively, this thesis shows that the MOCSP system is a realization of an
I-centric communication system for communication services.

5.1.3 Definition of Communication Services

The present researcher takes a top-down approach to define the communication
services instead of designing the control protocol. Thus this thesis formalizes the
communication services at a high level and in the social context. It means that
users want to define how they can be reached by others in different situations
[13]. The formalization as shown in Figure 5.1 gives importance to the user
session (not like a session in SIP which is composed of transactions and dialog)
and becomes the basis for deriving meaningful abstractions on communication
services.

A user session typically means person-to-person communication (personal
communication) and should have one callee, one or more callers and one or two
media. Each user session hides the control session that defines and controls
the media sessions between end points; hence, it is viewed at a very high level
where caller, callee and medium properties (audio/video/text) are important
parameters.

Unlike other communication platforms (e.g. IMS), the present research con-
siders the following factors – identity for users (e.g. SIP address), authenti-
cation, control protocol and media protocol in the context of communication
services/ session – as supplementary details. Therefore, an implementer (e.g.
users) can choose the relevant features based on their context. This approach
is contrary to the existing bottom-up approaches.

5.1.4 Communication Hyperlink (CH)

The World Wide Web (WWW, or simply Web) is an information space in which
the items of interest, referred to as resources, are identified by global identi-

66

Figure 5.1: A formal definition of communication services

fiers called Uniform Resource Identifiers (URI) [5]. Accordingly, the present
researcher considers communication services (e.g. user session) as resources, in
which callee, caller and corresponding medium (or user session) are considered
as a resource and identified by a global identifier (URIs), called communication
hyperlink.

Communication Hyperlink is initially defined in [13] for providing client ap-
plications to users (i.e. callers) on demand but this thesis formally defines a
resource and communication hyperlink as explained in the previous paragraph.

In WIMS 2.0 [36], an IMS session is modeled as a resource, consisting of
signaling protocol information; it enables easy access of session based IMS ca-
pability using the HTTP protocol. For example, the format of the URI is like:

OpenAPIsRoot/IMPU/Service/SessionID.

Here, IMPU stands for IMS Public Identities and service is one of the IMS
services.

This kind of fine-grained partition is useful in exposing the IMS session, but
the present researcher asserts that there is no technical necessity to define all the
information within a control session (i.e. fine-grained partition) as a resource
for the research proposal of this thesis. Based on CH model[13], once caller
clicks on CH, the client that is downloaded immediately will perform necessary
actions. Thus, this approach is completely orthogonal to WIMS 2.0.

5.1.5 Architecture of the MOCSP System

The MOCSP architecture follows the principal of signaling and media separation
in order to be a flexible architecture. Based on this advantageous practice, the
present researcher proposes a high-level architecture of the MOCSP system as
shown in Figure 5.2, consisting of control plane and media plane.

The MOCSP control plane is instantiated as a Web application and deployed
in a Web server, enriched by communication hyperlinks. Caller and Callee are
in two Web browsers connected to the MOCSP Web server. Signaling messages

67

Figure 5.2: Simplified architecture of MOCSP system; thick line shows the
control path and dotted line shows the media path

traverse between caller and callee via the Web server.
For media, the present researcher proposes the direct-to-direct media stream-

ing between caller and callee. This means that video and audio are transported
separately by Real-Time Transport Protocol (RTP). The codecs for video and
audio are not in the scope of this thesis. In addition, multiplexing audio and
video is being discussed in the new work group (RTC-WEB) in IETF. This work
will improve the media transport. Furthermore, media server (optional entity)
is proposed for the transcoding purpose if both caller and callee do not have
same codec.

MOCSP Web application (in the control plane) executes three functionalities
for callee:

1. Support to create different communication hyperlinks. When a callee creates
hyperlinks, service logic for control session is developed for MOCSP Web
server, callee side and caller side and placed in the MOCSP Web server. See
Chapters 6 and 7 that place a specific service logic in the Web server.

2. Provide a relevant user agent to callee and caller. At the run-time, MOCSP
provides dynamically relevant user agents (kind of a client software to manage
a session) to caller and callee. Thanks to this simplicity for users, caller is
not concerned about user agent, configuration and installation, but depends
on the Web browser.

3. Create and manage control session when a caller clicks on communication
hyperlinks, given by callee. MOCSP is a key element in session management,
for the callee and caller clients in that it does not follow a pure end-to-end
paradigm. More details on control session are given in section 5.2.

Naming of the MOCSP System

MOCSP enables each user (typically callee) to host relevant applications in the
Web server that has a unique hostname (for example, http://www.siva.mocsp.com).
The caller is given a URL. This means that caller is given a URL like http://www.siva.mocsp.com/friends.
The specific logic in the Web server (here www.siva.mocsp.com) interconnects
the caller and the callee.

Each callee has a unique hostname in the mocsp.com domain. It is not
mandatory, as users can have a unique hostname in the other domains such as
.fr, .edu, etc. This thesis assumes that all users have a unique name in the
mocsp.com domain.

68

5.1.6 MOCSP vs I-Centric Communications

I-centric communication, putting the individual user (“I”) in the center of service
provisioning rather than offering inflexible services that are unaware of actual
customer needs or situations, is proposed in [95][96]. This paradigm emphasizes
on giving more importance to individual communication needs, but not to spe-
cific technologies. In the I-centric vision, I-centric services adapt to end-users
according to the ambient awareness, personalization and adaptation.

Compared with this generic model of I-centric communication in [96], MOCSP
uniquely instantiates the I-centric vision for communication services. At this
point, I-centric services (i.e. communication services) in the MOCSP system
are not concerned with ambient awareness and adaptation, though they will be
integrated later. Callee designs I-centric services (i.e. communication services)
in the MOCSP system, based on the context (who can be reached and how (me-
dia type)) and encapsulates the session control within it. However, MOCSP and
I-centric communication take the top-down approach for realizing the services.

5.2 Control Session in the MOCSP System

The main purpose of the control session is to control the media flow, including
codec negotiation between caller and callee. However, MOCSP does not define a
default signaling protocol because users define their own protocol and extensions
based on their unique needs. This section intends to show how a communication
session is made possible between two browsers. This use case generates two
requirements – what is the signaling protocol; and how to enable asynchronous
communication between Web browser and Web server.

The present researcher chooses the protocol for a control session from [62]
(re-produced in Chapter 4) compared with the existing protocols such as SIP
and XMPP, because:

1. Compared with SIP, the proposal [62] brings many benefits; it is a uni-
lateral protocol, based on TCP reliability; it adopts a simple negotiation
mechanism for codec choices; control session can manage and change the
media flow in both directions separately and independently.

2. Based on the proposal [62], MOCSP Web Server gains intelligence on the
media behaviour of callee and caller. This intelligence is very useful to
make decisions in forwarding messages; it can also help to reduce the race
conditions in the control session. In other words, two sides (caller and
callee) are merged based on the piecewise approach protocol (proposal
[62]) in the MOCSP Web Server.

HTTP is a request-response protocol where a Web browser sends a HTTP
request to the Web server that replies with a HTTP response [97]. This is called
synchronous communication where the Web server cannot ’natively’ initiate a
HTTP message. Signaling messages in the communication services need to
send messages between Web server and Web browser asynchronously. Even
though a few mechanisms such as Asynchronous JavaScript and XML (AJAX),
polling, long polling and Flash exist, these techniques are not efficient and true
bidirectional web communication.

69

To address this problem, IETF [98] and W3C [99] (through Web Hypertext
Application Technology Working Group (WHATWG)) have jointly defined a
new technology, WebSocket. WebSocket is "TCP for the Web", allowing bidirec-
tional communications between Web browser and Web server. This technology
has two parts: WebSocket protocol and WebSocket API. The WebSocket proto-
col specification at IETF becomes more stable and mature. An initial handshake
and subsequently any messages over TCP is the basic idea behind the WebSocket
protocol. The WebSocket API defined by W3C and protocol is available in ma-
jor browsers such Chrome and Mozilla and major Web servers such as jetty.
JavaScript applications create a persistent connection with a server and receive
messages via an onmessage callback.

As a result, for asynchronous communication between Web browser and
Web server, the MOCSP system depends on the WebSocket technology; it will
increase the programming efficiency and reduce the latency for calls set up in the
Web environment. The present researcher employs WebSocket for connecting
callee and the MOCSP Web Server; and caller and the MOCSP Web Server.
The MOCSP Web Server identifies the callee and caller based on the established
WebSocket connections.

The call flow for a single user session/control session is proposed in Figure
5.3. The main aim of the call flow is to reduce latency in the call setup. The
details of the all steps are given below.

Initially, callee logs in to the MOCSP Web Server (MWS); it is shown as
REGISTER message in Figure 5.3. The REGISTER message may have many
request and response messages, but for the sake of simplicity, it is not shown. In
this phase, Callee Web Browser (Callee WB) creates a Web Socket and waits for
receiving a call. Once caller clicks on the communication hyperlink (provided
by callee), Caller Web Browser (Caller WB) sends a HTTP POST message to
the MWS; it is shown as CLICK message in Figure 5.3.

Once MWS receives the HTTP POST message, it sends the open (medium,
nomedia) message to the Callee WB over the established Web Socket. It means
that caller is willing to send the medium (e.g. video or audio), but no description
of the media flow is provided at this point of time. Callee WB indicates the
call arrival and once callee accepts the call, Callee WB sends the oack(desc1)
message to the MOCSP Web Server, indicating that callee is willing to receive
the media on a particular address, port number and a priority-ordered list of
codecs that it can handle.

After the open (medium, nomedia) message to Callee WB, MWS sends the
response message to caller (shown as ACCEPT message in Figure 5.3). Next,
Caller WB creates a Web Socket with MWS and sends the open(medium, desc2)
message. Then, if oack(desc1) message is received by MWS, and open(medium,desc2)
message is also received by MWS, oack(desc1) message will be sent to the
Caller WB. At the same time, MWS sends the describe (desc2) message to
the Callee WB. After that, both callee and caller WBs send the select messages
(select(sel2), select(sel1)); it indicates which codec they use to send the media.
When both callee and caller WBs send select messages, they start the media
transmission. When Caller WB receives select(sel2), it is able to receive the
media from the other end. Similarly, when Callee WB receives the select(sel1),
it is able to receive the media from other end. In any case, if caller, callee, or
MOCSP Web Server wants to stop the session; they can issue a close message
and stop it.

70

There are many ways to establish a session, even based on 3PCC call flow
(RFC 3725 flow I) in the MOCSP system, but it will increase the latency of
call setup compared to the proposed call flow in Figure 5.3. Since 3PCC works
on transactional mode, the Caller WB responds to session once it receives the
offer of Callee WB. In Figure 5.3, while MWS receives the descriptor from the
Callee WB, Caller WB sends descriptor to the MWS. Importantly, this thesis
assumes that media component (media codec and media transport protocol) is
part of Web browser and will not be downloaded from the Web server when a
session starts. The major Web browser vendors are working on this direction.

This section discusses clearly relevant signaling messages and its transport
protocol. In fact, the call flow in Figure 5.3 has a few HTTP messages (for
example, CLICK and ACCEPT messages) and some messages (e.g. open, and
describe) over Web sockets. However, one important aspect not mentioned so
far is the Domain Name System (DNS) which the Web relies on. It means that
Web browser has to find the IP address for the Fully Qualified Domain Name
(FQDN) that is given in the address bar of the Web browser. DNS behaves as a
registry of hostnames and IP addresses and performs a hostname-to-IP address
resolution for Web browsers. For example, caller Web browser should make
a DNS resolution before sending a HTTP message (indicated as the CLICK
message in Figure) to the Web server. Additionally, Chapter 8.2 presents a
complete DNS resolution mechanism and impact of DNS.

5.3 Impact on End Users

The MOCSP system can be modeled as shown in Figure 5.4. Since at least two
sides involve in a session, callee gets more control in the MOCSP system. This
model offers an individual platform (merging the service layer and session control
layer in IMS). Initially, the present researcher analyzes the MOCSP system from
the perspective of openness and flexibility. Later, there is a discussion on the
users’ privacy that is ensured in the MOCSP system.

5.3.1 Openness

With communication services, if a user wants to design new services, he needs to
have control over the signaling protocol. In the MOCSP system, the end-users
gain complete openness or ownership in the signaling protocol. For particular
services, users design a proper signaling protocol without depending on any
provider.

SIP defines routing between two user agents and semantic of the message in
order to enable a session between two user agents. MOCSP system leverages
established TCP connections for identifying users and users can define their
own semantic of the message for a session. This arrangement does not add
complexity to the architecture.

Abstractions on routing and message sequences help end users for develop-
ing service compositions. However, users need the basic knowledge of control
session and Web programming, on account of simple and individualized plat-
form. Based on this simplification, it is possible to state that MOCSP system
will help users to define new services for their needs. In this thesis, standard
primitives/abstractions that can help users in reducing programming complex-

71

ity with control session have not been defined. Moreover, users are left with
the freedom of designing the signaling protocol. In Section 5.2, the present re-
searcher presents a general model for the control session which can be used for
all the user sessions, yet it is not mandatory to use one control session model
for all the user sessions. This call flow ensures that communication services can
be made between two Web browsers.

5.3.2 Flexibility

The existing system and protocol (e.g. IMS/SIP) do not quickly adopt changes
excepting important features due to security, complexity and interoperability
problems. The change process for SIP is explained in RFC 5727 [43]. How-
ever, changes can be made quickly to the message sequences of the signaling
protocol in the MOCSP system. The present researcher presents the design
considerations that enhance the flexibility.

When a service is developed, all the service logic resides in the Web server.
The clients are stored in the Web server and are delivered to callers and callees
on demand. This means that a callee gets his client on his registration and
callers download their clients when they click on a hyperlink that is provided
by the callee. If changes are made, they should be importantly reflected in
the client side. This can be performed easily in one place. Since the MOCSP
platform is developed for an individual, complexity associated with changes is
less. When callee creates hyperlinks, only he should decide how it has to behave.

Intelligence of the services is placed in caller’s side, callee’s side and MOCSP
Web server. Conceptually putting more intelligence in the network (MOCSP
Web Server) is the main design consideration. This consideration enables to
reduce the work at the Web browser and to prevent the race conditions in the
signaling protocols. Importantly, MOCSP Web server is not exactly a back-to-
back user agent in the signaling path (as in SIP), but it acts as a master element
for session control.

The proposal for flexibility can be further explained as follows. The MOCSP
system can implement different semantics for the control session for different
communication hyperlinks (or user sessions). It means that all the communica-
tion sessions are private and only understandable by MOCSP web server and
user agents (callee, and caller) or semantics of a session need not to be globally
understandable. Therefore, control session (semantic of the session) for each
user session can be different. These changes are easily implemented and do not
require much analysis of the protocol. This flexibility in the MOCSP system
supports end-users to experience personalized communication services.

5.3.3 Privacy

We are living in the Web 2.0 era today, where users are inspired by Web 2.0
applications and are seriously concerned about their privacy on the Internet
[100]. In fact, many Web 2.0 applications do not concern users privacy, thus
leaking user privacy information easily or Web 2.0 applications do profiling,
analyzing and exposing of the personal information. In the same way, telecom
service providers adopted many similar methods associated with user privacy:
applying the data mining technique to extract the patterns from call detail data
and inspecting and filtering the packets in the communication session to gather

72

both historical and real-time information [101] [102]. All these situations depict
privacy as a serious problem with communication services. Technically, MOCSP
system addresses this issue for callee. It means that the MOCSP system can
only profile and share call detail data (i.e. session details) by virtue of overall
control to end-users, thus overcoming the major privacy concern.

5.4 Conclusion

The new architecture for the voice/video over IP communication system is pro-
posed in this chapter. The primary goal of giving openness and flexibility can
be achieved in the MOCSP system. In MOCSP, each user designs and deploys
own communication system, therefore, openness in the signaling layer is given
to end users. MOCSP system is not a one-size-fits-all model, but an individual
system for each user. In addition, each session can design different semantics
for the signaling protocol as per the users’ wish. This gives enough flexibility in
the semantic of the protocol.

73

Figure 5.3: A call flow diagram for a session in the MOCSP; A caller initiates
the session and a callee terminates the session.

Figure 5.4: High level view of the MOCSP system. Callee and callers are Web
browser based clients.

74

Chapter 6

User Mobility

Chapter 5 presented the MOCSP concept and architecture that strives to pro-
vide more openness and flexibility to end users. These openness and flexibility
allow to develop new innovative services. One such innovative service is user
mobility. This chapter presents a solution for the user mobility use case. The
complete description of the use case is presented in Section 2.3.1. The solu-
tion includes a descriptive architecture model and a call flow. Afterwards, the
present researcher presents a new innovative use case, a missed call situation
and a solution that is leveraged based on the proposed descriptive architecture
for the user mobility.

6.1 Descriptive Model

Figure 6.1: Diagram for descriptive model for user mobility

The main idea is to propose a descriptive model that should be architecture-
independent. For this reason, engineers have freedom to implement in a partic-
ular platform. In this case, a descriptive model is to consider a single entity that
will be responsible for managing the media within a session for the user mobility

75

use case. A general descriptive model for the user mobility is shown in Figure
6.1, leveraging the descriptive model proposed in [62]. The proposal in [62]
is initially developed for identifying the correct media behavior by application
servers.

The proposed descriptive model consists of three boxes: Caller Box, Callee
Box and Network Box. A callee box and a caller box are connected to a network
box by a signaling channel that is two way, First-In First-Out (FIFO) and
reliable. This model has many callee boxes and only one caller box because of
multiple callee registrations. The caller box is terminated once a call is finished,
but the callee boxes are in active stage until the callee closes the signaling
channel. Figure 6.1 clearly shows media channel and signaling path before and
after the session transfer.

Though this model is intuitive, it is important to indicate how it manages a
session. For the user mobility use case, session management is principally del-
egated to the network box which is an intermediary between caller and callee.
In an equivalent SIP terminology, the network box is made to act as a regis-
ter, a B2BUA and a forking proxy. The network box based approach reduces
unwanted message processing in each session and complexity in the functional
coordination.

6.1.1 Role of Network Box

As mentioned before, a network box can perform either as a B2BUA, or a forking
proxy or both. A B2BUA can create, terminate and modify the SIP dialogs.
Typically, the B2BUA concept is used to develop arbitrarily complex services
[103]. This means that a B2BUA application can keep two or more dialogs and
interact with other applications.

However, B2BUA is not initially defined in the SIP specification. There-
fore, some research efforts have been devoted to give deep understanding of the
B2BUA concept. At a high level, there are two different operational modes iden-
tified: Transparent Mode and Handle Mode [104]. These two modes support
the interworking of call control by endpoints and network applications. The
details of these two modes are given below:

1. Transparent Mode: In this mode, the B2BUA application propagates re-
quests and responses between dialogs that connect two end points. In this
case, the dialog identifier, made up of the Call-ID and tags in the From
and To headers, should be considered carefully while propagating. The
dialog identifier is not preserved across dialogs. For example, the B2BUA
applications, behaving in the transparent mode, relay NOTIFY requests
and responses related to a REFER request. Assume that the REFER
method passes through the B2BUA application.

2. Handle Mode: Handle mode performs necessary actions upon call control
requests from endpoints instead of relaying as in the transparent mode.
When acting on the handle mode, B2BUA should comply with endpoints.
For example, B2BUA sends response messages to the REFER method
and creates new dialog (i.e. INVITE message) with the target destination
(mentioned in the REFER method).

76

As these two modes are widely discussed in [104], choosing the right mode
totally depends on the specific deployments. However, the basic idea of two
modes can be used in the network box. The developer will decide based on the
usages. In user mobility and PSTR solutions, the network box is programmed
to work in both modes. Information regarding the PSTR solution is available
in Chapter 7.

6.1.2 Usage of Network Box in the MOCSP system for
the user mobility use case

This section describes how the network box is designed in order to support
user mobility. For managing the session, the network box keeps information of
callee/caller boxes such as IP address and IP port number or TCP connection
and dynamic attributes (such as closed, opening, opened and flowing) of media
channel of each end point. Based on this information, logic in the network box
performs session management at session initiation or during a session. In fact,
the network box sets and updates the flow link with different callee boxes.

The network box connects two tunnels via a flow link. A tunnel is used to
control a media channel and is established within a signaling channel. In other
words, a signaling path is a combination of two tunnels and one flow link. Flow
link is a software entity in the network box, representing a connection of two
tunnels.

End points of a signaling path establish the media channel. One end of
the media channel can be in four different states: closed, opening, opened and
flowing, as modeled in [62]. Caller box and callee box are software entities
similar to user agents in SIP, but running in the Web browser. In Chapter
5, caller box and callee box are shown as caller Web browser and callee Web
browser, respectively. Network box is a responsible entity in the MOCSP Web
server. This descriptive model is easy to deploy in the MOCSP system without
facing a lot of engineering problems.

6.2 Call Flow for User Mobility

Before presenting the corresponding call flow, the functionality of the network
box is listed for the user mobility use case.

The network box makes decisions about which media channels should exist.
In order to make the decision, the network box depends on a context enabler
that will satisfy the requirement as listed in Section 2.3.1. The specification of
the context enabler is out of scope for this thesis, but a network box needs two
functional interfaces such as:

1. Providing the location of the end user (IP address) or code name that
helps to identify the terminal.

2. Providing the location of an end user during a session and if the user is in
motion.

A lot of information related to context (enabler) can be found in the C-CAST
project website in which the context enabler provides user action, user situation
and physical environment information [105] [106]. The C-CAST project intends

77

to address the content creation, adaptation and delivery for multicast and broad-
cast services based on context information. The session management enabler
(SME), a B2BUA application, performs session management for multicast and
broadcast services [107].

Separating the context enabler from the communication system serves to
reduce the complexity. In [55], M.E. Barachi et al propose a gateway for IMS
and Wireless Sensor Network (WSN) internetworking. Data from the WSN
provides context information about the user, but the solution proposed in this
thesis is more focused on the communication service side.

For the session transfer, this thesis decides to adopt a soft handoff for decreas-
ing the disruption time. Soft handoff means creating a session before breaking
the former one. Thus, it will increase the user experience in real time commu-
nication services because there is no disruption delay. Soft handoff techniques
are widely used in mobile networks. Another aspect that enriches the user ex-
perience is that the user does not issue any command for transferring a session.
The system follows the user. This feature can be seen in the call flow below
(6.2).

I describe the call flow in the next two paragraphs. Callee X signs in to the
Web server from the two communication end points identified by callee@diningroom
and callee@bedroom in Figure 6.2. It means that both end points open a Web
Socket connection with the Web server. The Web Socket connection opening
and closing are not shown in Figure 6.2. Once the caller establishes a call
(shown as CLICK message in Figure 6.2), the network box checks the context
of the callee with the help of the context enabler. The network box forwards
the call to the right communication end point if the particular callee signs in
from that end point. In Figure 6.2, network box sends the open message to
Callee@DiningRoom. In Figure 6.2, CLICK and ACCEPT are two HTTP mes-
sages (request and response).

After the ACCEPT message, caller establishes a Web socket connection that
is not shown in Figure 6.2. Other messages such as open, select, describe are de-
fined in [62] and are routed via a Web socket connection. Session establishment
is shown in Fig 6.2.

Figure 6.2 also shows the call flow for the session mobility. In this case,
network box sends the open message to Callee@Bedroom when it receives the
information of changed context. If callee accepts the session at the bedroom,
network box sends a close message to the old location (dining room) and media
description (describe (desc3)) to the caller. Then, the session continues. More
importantly, session setup time in this call flow during the movement is reduced
because the network box is able to memorize the session description of caller
and to send it to the new callee box. See the open (medium,desc2) message sent
to callee@bedroom. Desc2 is received by the network box when caller initially
starts the session. Some messages (describe and select) are unilateral in Figure
6.2.

6.3 Phenomenon of Missed Call

The previous two sections present the solution for user mobility. However, the
user mobility use case considers an ideal situation. One different situation is
that the user is not near to any end point, when a new call arrives. Therefore,

78

this call will be missed because the user is not reachable.
In this case, if callee has activated the call forwarding service to voice mail

for this kind of unreachable situation, the caller or incoming call should be
forwarded to the video/voice message service (i.e. voice mail service). During
the voice/video recording, if the user becomes reachable, he will be notified that
one caller is forwarded to the messaging services and wants to communicate. The
sample notification message is "Alice is leaving you a message, do you want to
receive the call?". In this situation, if the callee is willing to communicate, the
call will be established. This use case is referred to as a session-based service
composition. It also illustrates the need for a single orchestrator that manages
a session across different end points.

This new use case is realized based on the previous descriptive model because
voice mail server is an end point like callee, and network box can execute a
specific logic that is establishing a session between caller and voice mail, and
between caller and callee. This missed call scenario is well explained in Figure
6.3.

Based on this idea, the present researcher develops the call flow for this new
use case as shown in Figure 6.4. It is assumed that Figure 6.4 has two kinds
of call flow where the thick lines show the session with voice mail server and
the dotted lines show the update of the session for the voice communication
between caller and callee. In order to update the session, callee should accept
the notification from the network box. If the callee is not reached until caller
leaves the voice mail server, messages that are shown by the dotted lines will
not be executed. The voice mail server sends/receives audio to/from users. The
signaling part of the voice mail needs an implementation of "open","modify",
and "close" messages that come from the network box. Also, it is not necessary
to have a Web Socket connection between network box and voice mail.

6.4 Conclusion

This chapter presents the solution, including abstract architecture and call flows.
This solution can be used in any situation where logic needs to be executed
during the call establishment and mid-call. Based on this solution, user mobility
use case is well explained in this chapter. This solution is simple to develop and
deploy in the MOCSP system.

79

Figure 6.2: Call flow during the session mobility

80

Figure 6.3: Diagram for descriptive model for missed call situation

81

Figure 6.4: Call flow during the voice mail and call

82

Chapter 7

Partial Session Transfer and
Retrieval

Chapter 6 shows the benefits of gaining openness and flexibility in the com-
munication system. As a result, the solution of the user mobility is easy to
develop since all the service logic is able to merge into one single place. As
a consequence, difficulty in coordinating the intermediate entities is reduced.
To the contrary, there is another case, where the cooperation of intermediate
entities and end points is needed. The partial session transfer and retrieval is
an example for the cooperation between intermediate entity and end point.

This chapter presents a solution for partial session transfer and retrieval.
This proposed solution consists of architecture, control protocol and call flow di-
agrams for network-initiated and user-initiated partial session transfer/retrieval.

7.1 Architecture

The proposed architecture has a network box, caller box and callee box. A
caller/callee box is an end-point for callers and callees. Medium devices can
send and/or receive the medium (audio/video) and are available and near to a
callee and caller during a session. These medium devices can be divided into
medium sources or sinks. In Figure 7.1, the medium device is not shown, but
the medium sink and source are shown. A network box coordinates the media
flow across the caller/callee box and medium devices (and medium sinks and
sources) according to user requests or its understanding of callee and caller
context. In this sub-section, I describe each entity shown in Figure 7.1 and its
functionality.

7.1.1 Network Box

In Chapter 6, a network box, a signaling layer entity, is proposed to accomplish
complete session mobility. In this chapter, the network box is leveraged for
PSTR. While the network box manages the session across the medium devices
based on medium classification (see the next sub-section), it interacts with the
caller and the callee via caller/callee box for PSTR.

83

Figure 7.1: Architecture of the partial session transfer and retrieval. Thick lines
show the connectivity established by the network box to medium sources and
sinks. Dotted lines are possible paths for media flow

7.1.2 Description of a Medium Device, Medium Sink and
Medium Source

Generally, medium devices are capable of sending/receiving the media. Each
medium device can play different roles such as behaving as a sink, source or
both for a medium (audio/video). A medium sink is a device that is able to
receive media from any destination (in IP network). Similarly, a medium source
is a device that is able to send media. If both capabilities are placed in one
device, it is called as a medium device. These different roles are shown in the
tree structure in Figure 7.2.

In addition, medium devices have a control interface, therefore, the network
box can instruct medium devices for both sending and receiving of media. The
present researcher proposes naming the media device based on the uniform
resource identifier (URI) format and to access the control interface via Web
Socket connections. For example, a control interface of a medium device is
ws://example.com/service or ws://ip:port/service/resource. Web socket APIs
facilitate a simple integration between medium devices and the network box via
an asynchronous manner.

A detailed description of medium devices can help to differentiate the devices
that can be either source, sink or both - fine-grained description. This will
allow the medium device to be instructed based on the medium or the medium
source/sink. In SIP, manipulation of Session Description Protocol (SDP) is
needed to understand which medium the device supports. Here, the devices are
explicitly defined based on their medium capabilities. The proposed naming
convention based on URI is used to describe and to control services. The list of
URIs for audio and video is shown below:

1. ws://ip:port/service/medium/audio

84

Figure 7.2: The classification of medium

2. ws://ip:port/service/medium/audio/source

3. ws://ip:port/service/medium/audio/sink

4. ws://ip:port/service/medium/video

5. ws://ip:port/service/medium/video/source

6. ws://ip:port/service/medium/video/sink

Each device should implement a three-message logic – ’open’, ’modify’ and
’close’. The URI provides two details: the address of the device and which
medium it supports.

Each media device has a user agent that can manage signaling and me-
dia. The present researcher proposes the protocol stack shown in Figure 7.3,
by replacing a complete UPnP protocol stack [68] that deals with addressing,
discovering, description, controlling, eventing and presentation. This protocol
stack is light-weight in terms of processing compared to the UPnP stack that
depends on Simple Object Access Protocol (SOAP).

Figure 7.3: Protocol stack for medium devices

7.1.3 Caller Box/Callee Box

A caller box and a callee box represent a caller and a callee who establish a
session using their Web browser. A caller box or a callee box is shown as a Web
widget - in fact, each medium device can be represented as a Web widget as
shown in Figure 7.4, which shows a sample user interface with the caller/callee
widget, medium source widget, and medium sink widget. Therefore, users can

85

perform a simple drag-and-drop action for PSTR. It is paramount to mention
that the caller and callee box are always part of a session. This means that
although all media components are transferred to nearby devices, the main
contact points for users are caller and callee boxes.

Later on, there is a discussion on how the caller and callee boxes manage
the protocol for PSTR in which the user is informed and in control during the
network-initiated session transfer and retrieval, in section 7.3.

Figure 7.4: Sample user interface for partial session transfer and retrieval.

7.2 Protocol

Before diving into call flows, I describe the approach for developing the con-
trol protocol that will support PSTR. As this approach attempts to separate
the concerns, the two protocols are identified, namely, media control [62] and
my protocol which is also known as auxiliary protocol. These two protocols
are dedicated to two different concerns; therefore, the overall protocol develop-
ment complexity will be reduced. The separation of concerns is one of the key
principles of software engineering.

With the auxiliary protocol, abstractions facilitate carrying PSTR informa-
tion between the network box and caller/callee boxes. This auxiliary protocol
functions based on a request and response model, relying on TCP. All the ab-
stractions in the auxiliary protocol are listed in Table 7.1.

Abstractions needed to initiate
PSTR by a caller or callee

Abstractions needed to initiate
PSTR by network box

Split (URI) IsSplit (URI)
Splitted (URI) YesSplit(URI)
NoSplit(URI) NoSplit(URI)
Retrieve (URI) IsRetrieve(URI)
Retrieved (URI) YesRetrieve (URI)
NoRetrieval (URI) NoRetrieve (URI)

Table 7.1: List of abstractions for the auxiliary protocol

The abstractions above carry out the goals of transfer and retrieval. For
example, if a caller/callee wants to transfer a partial session, they send a Split
message to the network box. If the network accepts the Split message, it will
send the Splitted message. Otherwise, the network box sends the NoSplit mes-
sage. Each abstraction has a single argument in the form of a URI (as mentioned

86

in Section 7.1.2). The next section explains how the media control protocol and
the auxiliary protocol work together.

7.3 Call Flow

This section presents two different scenarios: network-initiated and user-initiated
PSTR. These call flows are composed of media control protocol and auxiliary
protocol. The present researcher has made a change in the caller/callee box
during the transfer/retrieval of a particular medium compared with [62]. Dur-
ing the session transfer, the caller box or callee box considers that muteIn, and
muteOut are true [62]. If a session is retrieved, muteIn and(or) muteOut become
false.

Since transfer or retrieval can be initiated by users or the network, users
are always privileged. All the activities initiated by the network side should be
approved by the user. This means that the user keeps complete control.

7.3.1 Network-Initiated Partial Session Transfer/Retrieval

This sub section illustrates partial session transfer/retrieval at callee and caller
sides by the network box. Since the user always has the control, the network
box requests user approval for PSTR. For this purpose, this thesis proposes to
use two different messages such as IsSplit and IsRetrieve for PSTR. These two
messages inform the goals to user for approval. The complete call flow is divided
into three parts:

I. Session establishment between caller and callee and transferring the session
partially at the caller side.

Figure 7.5 shows details of a session established between caller and callee.
Once the media channel is established between callee and caller, network
box asks caller for Partial Session Transfer (PST) by sending the IsSplit
message. If caller accepts, the session will be transferred as indicated in
the IsSplit message. To transfer a session partially, network box sends
the open message to the new device and modifies media parameters of the
caller box by sending the describe message.

II. Transfer the session partially at the callee side

There is another transfer on the callee side as shown in Figure 7.6. In this
case, network box asks permission of the callee box by sending the IsSplit
message. When callee accepts the request, session is transferred partially
at the callee side.

III. Retrieve the partial session back to the caller side and terminate the session

As in the previous situation, network box requests caller to retrieve the
session by sending the IsRetrieve message. When caller accepts the request,
the session is retrieved. For retrieval, the network box closes the existing
connection and updates media parameters with the caller box. Then, if a
user (caller or callee) wants to stop the session, he/she can send a close
request to the network box that ensures disconnections with all the devices
involved-including caller and callee boxes. This is explained in Figure 7.7.

87

Figure 7.5: A call flow for session establishment between caller and callee and
for partial session transfer at the caller side.

Three different figures show the important snapshots during PSTR by the
network box. Any how, these following points are not defined in this thesis:

1. How does the network box know the devices near to caller/callee during the
session?

2. How does the network box make a decision that the splitted session should
be retreived?

To serve this purpose, context information of users and medium devices
(location and capability of the device) is useful. Some research efforts look at
this problem within a network (e.g. Bluetooth and a UPnP within a local area
network). These efforts do not completely address the problem. Therefore, this
complementary work will be performed in the future. This future work enables
to perform automatic partial session transfer and retrieval by the network box.

88

Figure 7.6: A call flow for partial session transfer at the callee side.

7.3.2 User-Initiated Partial Session Transfer/Retrieval

For this scenario, a user issues two commands such as Split(URI) and Re-
trieve(URI) from the caller/callee box to network box. Depending on the URIs,
callee/caller box and network box perform media control.

If a URI refers to a medium source in a transfer request or a Split message,
the network box sends an open request to the URI mentioned (i.e. medium
source) and a description message to caller/callee box. Then, medium source
accepts the request; and network box sends a describe message with the nomedia
description to callee/caller box. As a result, callee/caller box does not send the
media. Later, the network box sends the Splitted message to callee/callee box
as a confirmation. This example call flow is shown in Figure 7.8 and includes
WebCam@caller, caller box and network box entities.

If a URI refers to a medium sink, the network box opens a connection with
the medium sink. If the medium sink accepts, the network box sends the Split-
ted message back. If the caller/callee box receives the Splitted message, the
caller/callee box sends the describe message with nomedia. This interaction
is included in Figure 7.8 that spans between VideoDis@callee, callee box and
network box.

If a URI in a Split message refers to a medium, the network box sends an
open message to the medium device. When the medium device accepts the
request, the network box sends back the Splitted message. After sending the
Splitted message by the network box or receiving the Splitted message by the
caller/callee box, either end sends a describe message in order to make MuteOut
and MuteIn true. The corresponding call flow is not included in Figure 7.8.

At last, when the caller/callee box demands a retrieval from the medium

89

Figure 7.7: A call flow for partial session retrieval at the caller side and session
termination.

source, the network box closes the existing media session with medium source
and updates a media session with a new configuration. This is shown in Figure
7.8 where caller box issues a retrieve command. Moreover, if any user wants to
close the session, the network box will take care of closing all the media session.

7.3.3 High Mobility Situation

In Section 7.3.1 and 7.3.2, call flow diagrams with details of two different scenar-
ios have been presented. However, these diagrams do not show four important
scenarios that are classified as high mobility situations in this thesis.

I. Caller and callee send the split message at the same time. In this case,
the central entity manages the session for all participants. When network
box gets the split message from one end, it re-produces the two messages
: open and describe messages. In addition to this, network box properly
manages the description parameters across all the entities during a session.
This case will not add any constraints like SIP. In a SIP, if both sides send
an INVITE message, there is a race condition.

II. Caller and callee send the retrieve message at the same time. Like in the
previous case, network box retrieves the partial session back at both sides
when both caller and callee are requested. This situation will also not add
any constraint to the solution presented in this thesis.

90

III. Caller and callee send a split and retrieve message, respectively at the
same time. The network box manages opening up a new media device
and closing down another device while consistently managing the session
description parameters.

IV. caller/callee sends the split message while network box sends the IsSplit
message. But, there is a possibility that users and the network box can
simultaneously send the message for the same purpose. This means that
when the user sends a split message, the network box also sends IsSplit
message as shown in Figure 7.9. This may lead to an undesirable situation
and must be taken into account.

To handle this situation, the solution presented in this thesis depends on a
medium classification based on the tree structure shown in Figure 7.2. If
Split and IsSplit messages have the same URI, then the IsSplit message will
be rejected automatically by the caller/callee box. If the Split and IsSplit
message have exclusively different URIs, the IsSplit message is shown in the
user interface for the user approval. Similarly, medium classification also
helps to reduce any conflict raised by a Retrieve and IsRetrieve request.

7.3.4 Limitations

This sub-section provides a list of requirements that are not considered when
designing the solution for the PSTR in MOCSP.

The first issue is that changing the primary contact point of caller/callee
during the session is not considered. Caller/callee box is the primary contact
for caller/callee. Even if the media part of the session is transferred to near
by devices, caller/call box will be active. In addition, terminating the ses-
sion should be decided by caller/callee box. However, users sometimes wish to
change the primary contact point to one of the devices that is part of a partial
session. This aspect is also useful, but not considered in the current design and
implementation. For this need, it is possible to extend the solution of the user
mobility.

The following two requirements are mostly relevant with user-initiated par-
tial session transfer and retrieval. When a user informs about the transfer, the
user only receives the results - success or failure. However, it may be helpful if
the user is provided with the referral progress indication. Since message loss is
not possible in this solution, implementation of this feature will not be difficult
and important. The last requirement is that the user should be able to inform
the media devices to keep the session after issuing the transfer request. How-
ever, by default, the session will not be closed unless the respective user issues
a close request.

7.4 Conclusion

This chapter demonstrates the solution for the PSTR use case, leveraging the
MOCSP system. In the solution, the network box, behaving in a handle mode,
supports the needs of the user and network-initiated transfer and retrieval. It is
possible to have a partial session transfer and retrieval at the caller and callee

91

sides, simultaneously. A single orchestrator and separation of concern in the
signaling protocol are the main design considerations for the PSTR solution.

92

Figure 7.8: A call flow for user-initiated partial session transfer and retrieval

93

Figure 7.9: A sample scenario showing both ends sending a message for the
same purpose.

94

Chapter 8

Scalability

Chapter 6 and 7 emphasize the need of having a central entity to manage the
sessions. However, what will happen when many users intend to use these
services at the same time? This chapter proposes a solution in order to support
a higher call rate based on MOCSP, followed by a scalability analysis based on
four parameters: scalability limit, complexity level, needed computing resources,
and session setup latency. Impact of DNS is also included into the scalability
analysis since MOCSP is realized over Web. This chapter includes four sections
: 1) MOCSP based global architecture, 2) impact of DNS, 3) calculation of
needed computing resources, and 3) scalability analysis.

8.1 MOCSP based Signaling Architecture

As explained in Chapter 5, each user should have a unique MOCSP instance in
the Web platform, identified by a global Web identifier. In addition, callers and
callees use their web browser for their sessions. A MOCSP instance provides
relevant logic (e.g. logic implemented in JavaScript) for callers and the callee
and deploys a network box in the web server. The network box (proposed in
Section 6.1) manages a session between caller and callee.

The simple message flow path diagram between caller and callee is shown in
Figure 5.3. More details can be found in Chapters 6, & 7. To make it clear, it is
not necessary to use a specific signaling protocol in the MOCSP system, but the
user can choose the one that satisfies his needs. The present researcher assumes
that media streaming between caller and callee is established in a direct peer-
to-peer manner. Therefore, scalability aspect with the media layer (e.g. media
server) will not be an issue.

Overall architecture can be diagrammatically shown as in Figure 8.1, where
users do not depend on each other for locating other users. Quite simply, this
approach is individually running the MOCSP systems. Here, the number of
circles is equivalent to the number of users who are using the MOCSP system.
Seen in this way, there should be 6 billion MOCSP instances for providing
services to 6 billion people. Each dot in Figure 8.1 is expanded as in Figure
5.3. The following paragraphs discuss three aspects: impact on Domain Name
System (DNS) [108], roles of a service provider, and failure of a single physical
node.

95

Figure 8.1: A scalable architecture for communication services. Each small
circle is represented by each user/callee.

In the Web platform, the entity that is not visible to users is DNS. Impact
on DNS should be considered when designing the MOCSP system. This thesis
assumes that the number of DNS records should be equivalent to the number
of users using the MOCSP system, as each user has an unique address. These
entries are static, meaning that the IP address of the MOCSP instance will
not change over the time (i.e., there is no need to change the IP address of
the network box). As an example of a dynamic assignment, first the SIP UA1
connects one time to P-CSCF1, and later on it connects to another P-CSCF2
for the reason that P-CSCF1 would be under overload.

Whenever a callee logs into the MOCSP system, the callee depends on the
DNS to resolve the address as it happens in the Web browsing. In this case,
local cache of DNS resolver helps at the callee side. Similarly, callers also depend
on DNS resolving. The dependency of the local cache of the DNS resolvers
is associated with the frequency of the calls a caller makes with a particular
callee. The MOCSP system does not assign any new functions to DNS, but
only depends on it for address resolution. This resolution is similar to SIP
where proxies and SIP ASs need to resolve SIP URI (which can be identifiers
for users) to an IP address.

Another important aspect of the MOCSP system is how users deploy their
MOCSP system in the Web platform. The user has to do two things: the first
is to pick his unique Web address (e.g. URL) and the second is to host his

96

MOCSP system on a physical web server. For these two needs, users may need
to depend on a service provider who can allocate a unique Web address and
physical space on the Web server.

I discuss what will happen if one physical server fails. In this case, until
the physical server is recovered, users who deploy their MOCSP systems will
not able to receive calls. But they can still make calls through communication
hyperlinks [13]. If other physical servers do not fail, those physical servers will
perform as usual and will not receive much traffic.

During high call rate periods, the failure of some super nodes compels an
outage of the overall system [90], because other super nodes receive more traffic
including many retransmission messages. Therefore, P2P SIP-based infrastruc-
ture is less reliable compared with this thesis proposal, in which the network
boxes are separated individually.

As suggested in [71], three factors compromise load scalability. They are:
1) scheduling of a shared resource, 2) scheduling of class of resources, and 3)
insufficient exploitation of parallelism. In the MOCSP case, two factors out
of three mentioned above are important. First exploitation of parallelism is
natural in the MOCSP system. Every instance is unique and separated. Load
scalability will be improved. Second sharing of resources (like in proxy server
in IMS) is not an issue because of unique instances for each user. However,
underlying infrastructure (Web server for MOCSP) and its scalability are not
discussed here. This means that scheduling of shared resources (e.g. CPU, or
memory) should be considered in the future.

8.2 Impact of DNS

The MOCSP solution depends on DNS because the solution develops on Web.
In MOCSP, caller and callee need to depend on the DNS resolution to connect
to the Web server (ref to Section 5.2). However, an analysis of the scalability of
signaling layer based on MOCSP should consider the scalability of DNS. This
section is devoted to discuss the latency of DNS lookup and scalability of DNS
in detail. Initially, the basic concepts defined in DNS are presented. Next, the
caching mechanism used in DNS to reduce DNS lookup delay and to improve
the DNS scalability is discussed. Finally, a conclusion that is important to the
MOCSP solution is presented.

8.2.1 Basic concepts in DNS

It is important to present the basic concepts and important terminology of DNS
system. Therefore, it allows readers to understand easily latency, and scalability
issues in the DNS system. These two issues make an impact on the proposed
MOCSP solution.

The basic function of DNS is to map between human understandable host-
names (such as siva.mocsp.com) and IP addresses (both IPv4 and IPv6). Web
clients (or resolvers) query DNS name servers for resolving hostnames. Typi-
cally, DNS is a globally distributed, scalable, hierarchical, and dynamic database.
Apart from resolving hostnames to IP addresses, DNS can be used for a num-
ber of other purposes such as finding a host that handles the mail service for

97

a domain. All the different types of DNS queries are specified in the DNS
specification. See the pointers in [109] to get relevant RFCs.

Even though DNS can be used for different applications (e.g. mail exchange),
this thesis considers only Web applications. In this case, two kinds of mapping
are needed. A mapping in DNS is determined by a resource record. The two
common types of resource records are address records (A records) and name
server records (NS records) [110]. An A record specifies the IP address of a
hostname; an NS record specifies the name of a DNS server that is authoritative
for a zone. Thus, NS records are used to handle delegation paths.

In DNS, the namespace is hierarchically organized as shown in Figure 8.2 (all
the sub-domains from the root are not included). The root of the hierarchy is
the central server called root server. Sub-domains (such as .com) are delegated
to other servers that are called as authoritative servers. These authoritative
servers are responsible for the portions of the namespace. The domains such
as .com and .org are called top-level domains. The dedicated "generic top level
domain" (gTLD) servers are responsible for each generic top level domain.

Figure 8.2: Hierarchical Namespace in DNS.

8.2.2 DNS lookup and Caching

Any website, for example http://www.siva.mocsp.com, should be reachable from
a Web browser. To initiate the transaction with a host that is identified as
http://www.siva.mocsp.com, the Web browser should find the IP address for
the hostname. Then, the Web browser makes a TCP connection towards Web
server.

In a typical Web browsing, the Web browser uses a stub resolver that looks
at a local nearby DNS server (e.g., recursive DNS nameserver) for a hostname
(e.g., http://siva.mocsp.com) into IP address resolution. If the recursive DNS
nameserver does not have a response, it sends the request to the root DNS
server.

The root server returns a referral response that is a collection of name server
records, if delegated responsibility for a particular name is saved in the root
server. By choosing one of the name server records, the local server repeats the

98

Step No Description
1 Query for address of siva.mocsp.com
2 Referral to com nameserver
3 Query for address of siva.mocsp.com
4 Referral to mocsp.com
5 Query for address of siva.mocsp.com
6 Address of siva.mocsp.com

Table 8.1: Description of each step in Figure 8.3

question until it finds the answer. The graphical description of the DNS lookup
is shown in Figure 8.3.

Figure 8.3: Resolution of http://siva.mocsp.com in the Internet.

As shown in Figure 8.3, the hostname-to-IP address resolution has to traverse
many nodes and each resolution request must reach the root server. Therefore,
DNS lookup latency is high and root server may become overloaded. To over-
come these two problems, a DNS caching technique is proposed. More informa-
tion about DNS cache is available in [111]. DNS cache means that the resource
records from authoritative name servers are stored in non-authoritative name
servers. These non-authoritative name servers (for example, local cache server
in Figure 8.3) respond to the user requests quickly.

It is important to make sure that copies of resource records in non-authoritative
servers are consistent with original resource records over the time. Therefore, it
is imperative to control DNS cached records. Here, the basic idea is to control
the cache of each resource record using expiration time that is referred as Time
To Live (TTL) in the DNS specification. Each resource record is expired in a
DNS cache server according to the value set in the TTL parameter. By adjust-
ing the TTL value, the administrator of a domain can control the valid resource

99

record in the DNS server. After the expiration of the resource record, the DNS
cache server fetches data afresh from the authoritative origin server once a new
query reaches the DNS cache server.

The scalability of DNS is widely believed to be high because of two factors.
One is hierarchical design around administratively delegated name spaces and
aggressive use of caching. DNS performance and Effectiveness of DNS caching
is discussed in [111], which gives more importance to NS records than A records.
This argues that caching NS records substantially reduces the DNS lookup la-
tency even though it may involve some referrals to complete the lookup. Cached
NS records are especially beneficial as they greatly reduce the load on the root
server. Consequently, the cacheability of NS-records that efficiently partition
the name space is a major reason for the scalability of DNS.

For example in Figure 8.3, the response obtained in step 2 and 4 are stored
in the resolver cache during the particular TTL value. If the NS record of the
mocsp.com domain is cached in the local cache server for one day (assume that
TTL value for the NS record is 24 hours), the same query requests within 24
hours will be resolved with two hops (local cache server and authoritative name
server). It means that the local cache server directly finds the authoritative
server and gets the response back to the client. There is another possibility
that the local cache server can keep the A- records for specified TTL value.
This will reduce the latency, as well. However, the effect of caching A-record
is not considered for the scalability analysis. Finally, without cache, it takes 4
hops for the query to resolve as shown in Figure 8.3.

In a nutshell, the caching aspect in DNS reduces latency and increase the
scalability by eliminating the DNS requests to the root server and the corre-
sponding top level domain servers.

DNS cache at client side

Additionally, DNS cache is available in the operating systems to avoid the DNS
lookup delay for the regularly visiting websites.

In this case, DNS A-records are kept in the OS for a period as specified
in Time to Live (TTL). If TTL becomes zero, the resolved domain name in
the cache is removed and a new request to that domain is forwarded to the
nameserver. Each DNS record has also a unique TTL value. Therefore, the
latency with DNS name resolution (for the previously resolved name) would
become zero, performing better than caching A-records and NS-records in the
local cache server.

The mechanisms at the client side vary across different OSs. Detailed in-
formation about DNS cache in windows OS can be found in [112], including
configurations, activation and deactivation services.

8.2.3 Conclusion: DNS lookup delay and Scalability of
DNS

The four different configurations are possible to perform the DNS lookup. The
first one is typically following the DNS hierarchy path. The second and third
one are caching A-records and NS-records in the local cache server. And the
last one is caching in client side. Out of these four different configurations, this
thesis depends on caching NS-records in the local cache server for analyzing

100

the DNS lookup delay and scalability aspect. Therefore, the average lookup
delay is 2 hops (local name server and authoritative server). This assumption
is consistent with the possible DNS lookup delay for Web browsing [113].

In MOCSP, each session incurs 2- hop delay (on an average). This means
that the caller needs to find the callee’s Web address before sending signaling
messages to make a session. It is possible to avoid the 2-hop delay if a caller
regularly makes many sessions with the the same callee and have a caching
mechanism at the client side.

While considering scalability, the authoritative server for the mocsp.com
domain should have sufficient computing resources to handle the anticipated
DNS query requests (equivalent to the number of sub-domain in the mocsp.com).
In the worst case scenario, no caching mechanism is used and the other three
DNS servers (root server, top level domain name server and name server of
mocsp.com) should have similar capacity to serve the anticipated DNS query
requests.

8.3 Calculation of Number of Servers

This section presents the estimation of the Web servers when providing six
billion MOCSP systems.

8.3.1 Performance of the Web server

System Performance Evaluation Cooperative (SPEC) is one of the most success-
ful performance standardization bodies. SPEC benchmarks high-end work sta-
tions and servers such as SIP server and Web server. WEB2005 and WEB 2009
are available benchmarks for measuring the performance of the Web servers;
they consider three different work load – banking, e-commerce and support
[114]. Each workload calibrates the maximum number of simultaneous user
sessions that a web server is able to support while still meeting the specific
throughput and error rate requirements.

Apache Web server can manage around 50000 concurrent connections in a
server [115] & [116]. [116] indicates that all the concurrent connections sup-
port to download big data content as specified in SPEC web 2005 [114]. This
benchmarked Web server helps to estimate computing resources for the solution
stated in this thesis.

8.3.2 Number of Network boxes in a Web server

In MOCSP, a network box is hosted in the Web server to manage the session
between callee and caller. Therefore, two TCP connections are needed for a
session. As shown in the sample deployment scenario in Figure 8.4, if a Web
server hosts five network boxes, then 5 TCP connections are used for callee’s
connections only. It means that the Web server should have capacity to open the
new 5 TCP connections for the caller’s side at any time. Therefore, a Web server
hosts a number of network boxes that should be half the number of concurrent
TCP connections that Web server can handle at a time. The single Web server
[116] hosts 25 000 network boxes or serves 25 000 users.

101

Figure 8.4: A sample deployment scenario.

Based on this calculation, I estimate that around 240 000 similar Web servers
[116] (25 000 into 240 000 is equivalent to 6 billion) are enough to provide
communication services for 6 billion people.

8.3.3 Discussion on the Calculation

It is important to consider the behavior of TCP based servers, because the
behavior impacts on the calculation. As said in [73], "maintaining TCP connec-
tions affects neither the performance of establishing new TCP connections nor
of exchanging user data". The main bottleneck is with CPU cycles and kernel
memory when each connection is sending data simultaneously. It means that
the sustainable request rate and the transaction response time are important
parameters for performance. The same authors indicate that the bottleneck of
sustainable request rate is the thread queue, where the number and lifetime of
threads cause queuing delay of threads in the thread-pool model. I believe that
any of the findings in [73] will not affect the calculation in this thesis, because
the size of the signaling message is less than the size stated in [115] [116]. In
this MOCSP model, each TCP connection may carry maximum of 5 into 500
bytes (open/oack/describe/select) during the session setup.

8.3.4 Virtual Web Hosting

Virtual web hosting is a technique for running multiple virtual web servers on
a single physical host computer. This technique is used by commercial web
hosting service providers because of manageability, efficiency and scalability
of the service infrastructure. This technique totally depends on virtual DNS
resolution that can be achieved by adopting two different approaches: name-
based and IP-based.

In the name-based approach, each web site in the single machine shares a
single public IP address using a unique name. The Web server forwards the
HTTP requests to the right virtual site based on the information supplied in
the form of host field in an HTTP request. The host header field is supported by
almost all browsers today. RFC 2616 defines the Host request-header field that
specifies the Internet host and port number of the resource being requested.

102

The IP-based method gives an unique IP address to each virtual web site.
The HTTP requests are resolved based on the IP address, but not the name.
The name-based approach is preferred compared with the IP-based approach
on account of IP address limitation and operating system limitation. On the
other hand, a few technical limitations (e.g. secure socket layer) prevent using
name-based virtual hosting.

This thesis argues that each MOCSP instance is a web site, so the name-
based approach should be used for the virtual DNS resolution when deploying
many MOCSP instances in a single physical machine. It is also worth noting
that the IP-based method does not bear any difficulties and it should be easy
to get an IP address for each MOCSP instance when IPv6 is ubiquitously rolled
out.

8.4 Scalability Analysis

Based on the proposed scalability framework in Section 2.4.1, this section pro-
vides a scalability analysis for the MOCSP architecture. This scalability anal-
ysis considers two components: MOCSP and DNS. MOCSP is responsible for
session management and executing services (See user mobility and PSTR) and
DNS helps Web browser to perform the hostname to IP resolution.

8.4.1 How Scalable

By default, each MOCSP instance is separated and individually needed re-
sources will increase along with a number of network boxes and a number of
calls received. Therefore, it is easy to adopt an approach of vertical scalability.
This means that the number of MOCSP instances that can be added is limited
by the capacity of a single physical server or resources have to scale along with
the number of network boxes deployed and the number of calls received. Based
on this approach, the overall system is scalable.

Relying on the distributed arrangement and cacheability of NS-records and
A-records, DNS is scalable - that is able to handle many DNS requests.

8.4.2 Complexity

The MOCSP architecture is straightforward and simple. The users who imple-
ment the MOCSP systems do not need to implement load balancing techniques
and need not worry about the routing aspect defined especially in SIP and P2P
overlay. A session is established between two users, based on TCP connections.
The messages needed for a session are sent back and forth between two web
browsers via a network box. At last, the service provider should consider a
proper calculation of deploying of network boxes in a single server.

It is worth mentioning about the difference between MOCSP and existing
communication systems. The key issue in the existing communication system
has a server federation. This means that in typical scenarios, if two SIP servers
(Assume single session passes through those two servers) are operated by differ-
ent entities, signaling protocol should be agreed upon, either by standardization
or by other means of agreement. This means that both should talk using the
same protocol or one should provide a gateway function. Furthermore, if there

103

are many operators, routing and configuration should be defined in advance to
provide services across the operators.

This kind of federation contributes much to complexity of the existing com-
munication systems. For example, the XMPP federation configuration is a dif-
ficult task even for a system administrator, as reported in [117]. The MOCSP
approach completely eliminates the complexity associated with the federation
of nodes or servers. In MOCSP, signaling messages of the session originator will
be forwarded to the proxy (i.e. network box) of the receiver thanks to the Web
and DNS system.

The relevant DNS mechanism is presented in Section 8.2. Initial configura-
tion and operation of DNS is relatively easy and does not cause complexity.

8.4.3 Needed Computing Resources

As analytically proved in section 8.3, the complete system needs approximately
240, 000 Web servers for supporting 6 billion people who use MOCSP systems.
In this case, any 3 billion people can call the remaining 3 billion people. In this
calculation, computing resources needed for the media layer are not considered.
But computing resources required for DNS operations should be included into
the evaluation. At least, the name servers for the mocsp.com domain should
have enough computing capacity to handle the higher number of requests per
second (e.g. three billion calls per second). Additionally, required computing
resources at the local (cache) name server and root name server are also taken
into account.

Even though it is possible to calculate needed computing resources for the
MOCSP systems, it is not possible to quantitatively compare the MOCSP sys-
tem with the existing other communication systems. Analytically, I argue that
MOCSP needs minimum resources. For a session, a network box that consists of
two TCP connections should handle the session and perform state management
(i.e. stateful mode) for caller and callee. In the MOCSP system, a network
box needs computing resources only for state management and forwarding and
there is a resource demand for a DNS lookup. In contrast, two nodes (S-CSCF2
and B2BUA2 in Figure 2.6) at least should perform the state management and
messaging forwarding in IMS. When the number of calls increases, there should
be a load balancing entity (sometimes more) in the dynamic assignment (See
Section 2.4.3). This overhead will increase based on different configurations. In
P2P SIP, message overhead is proportional to log(N) and will be higher when
the number of nodes is very high (say billions)

To be more precise, the role of the service provider is clarified again here.
There might be a single provider who can install all the needed Web servers
(roughly 240, 000 physical servers). However, obtaining an unique name and
Web space is the role of the end user who has to design the signaling protocol
based on his needs and deploy it in the Web server.

When compared with the pre-defined assignment approach in IMS, the num-
ber of physical servers is less in the MOCSP approach because the only entity
here is between caller and callee.

Essentially, computing resources needed for the DNS name servers are also
included in overall calculation of needed computing resources. These DNS name
servers should serve for the highest number of DNS query per second.

104

8.4.4 Session Setup Latency

The session setup latency incurs at the network box and DNS. The initial lookup
will be performed by each caller via DNS. After that the caller sends and receives
messages (HTTP messages and messages over Web socket) to and from the
network box in order to establish a session.

In Figure 5.3, the time between sending the CLICK message and receiving
the select(sel2) message is referred to as session setup latency. The CLICK
message is an HTTP request that needs to resolve the hostname into an IP
address at the beginning. The average DNS lookup delay is two-hop. Based on
the discussion before, session setup delay is proportional to three-hop delay.

Additionally, relying on the capacity planning (presented in Section 8.3),
session setup latency can be independent of the number of calls made in the
MOCSP system or session setup time will not be dependent on the load in the
server.

8.5 Conclusion

The scalability analysis based on the MOCSP system is presented in this chap-
ter. The analysis framework is based on the following four parameters - scala-
bility level, complexity level, required computing resources and session set up
latency. MOCSP is a scalable method when increasing computing resources
(for MOCSP Web server, and the mocsp.com nameserver). Additionally, this
method does not introduce complexity.

105

Chapter 9

Discussion

The previous four chapters, i.e., Chapter 5, 6, 7 and 8 offered solutions for the
research problems of this thesis. The basic solution goes for a new design from
scratch, not for extensions to existing communication systems. It is important
to verify that the new solution is able to support the already existing services.
In this light, this thesis finds two services and evaluates whether these services
can be implemented in this new system. These two services do not show any
similarity to the established research problems.

Initially, this chapter presents a use case of transfer call control that involves
three parties, followed by a solution in SIP and MOCSP. Later, there is a discus-
sion on IP mobility and its impact. Finally, the groundwork for implementing
the solutions is presented.

9.1 Transfer Call Control

RFC 5589 listed a number of transfer services including blind transfer, consul-
tative transfer and attended transfer [118]. This kind of call transfer is very
useful in people’s day-to-day life, for example, a customer calls to an agent who
in turn transfers the call to the expert after consulting with the expert. These
services are well-addressed in the SIP standard.

As explained in RFC 5589, fundamentally, this kind of transfer is multiparty
call control and needs a minimum three parties. These call transfers take place
after the initial media establishment. Call transfer is achieved using the REFER
method [27]. This kind of situation is not discussed in the MOCSP system.
In the user mobility use case, there are two parties and one is moving across
different terminals. In PSTR, only two parties are key entities and the network
box coordinates the media flow across devices near to the parties. Therefore,
looking for a solution for transfer call control will shed some light on the new
design.

This section discusses the transfer with consultation hold. Initially, transfer
call control protecting the transfer target ([118] Section 7.2) is presented, in-
cluding the SIP based solution. Later, the possible difficulties while providing
this service in the MOCSP system is examined .

106

9.1.1 SIP based Solution

First of all, as mentioned earlier, three parties are involved in a call transfer,
the description of each party is as follows:

I. Transferee: the party that is being forwarded to the Transfer Target.

II. Transferor: the party that triggers the transfer.

III. Transfer Target: the new party that is being introduced into a call with
the Transferee.

Like a customer’s call to an agent (as explained previously), transfer with
consultation hold involves a session between the Transferor and the Transfer
Target before the transfer actually takes place. This is implemented with SIP
Hold using INVITE and Transfer using REFER.

Figure 9.1: SIP call flow for call transfer with consultation hold, protecting the
transfer target

In this case, Transfer Target is informed by receiving the REFER method
that has the address of Transferee. Here, Transfer Target is protected, because
Transferor does not provide the identity of Transfer Target to Transferee. The

107

relevant call flow is shown in Figure 9.1 based on [118](Ref. Section 7.2). Here,
one assumption is made that the Transferee’s agent has a reliable mechanism
that associates a new call with the call it already has with the Transferor. This
means that there is no new call on the appearance.

9.1.2 MOCSP and Transfer Call Control

Figure 9.2 shows the entities needed for transfer with consultation hold. Here,
Transfer Target is protected. This means Transferee does not know Transfer
Target. Initially, caller box (Transferee) initiates a call with callee box (Trans-
feror). The relevant call flow for this interaction is available in Section 5.2.
Now, callee box (Transferor) thinks of consulting with an expert. So, callee
box (Transferor) makes a call to callee box (Transfer Target). Here, callee box
(Transferor) puts caller box (Transferee) on hold. Obviously, desc(nomedia) is
used for putting the call on hold. These two different calls need to depend on
the corresponding network boxes. In fact, there is no change in the signaling
protocol.

Figure 9.2: Entities involved in transfer with consultation hold (protecting
Transfer Target) call in MOCSP

While discussion continues, callee box (Transferor) decides to make a con-
nection between caller box (Transferee) and callee box (Transfer Target) and
moves out of call. For this purpose, one message (like Split message in the PSTR
solution) should be defined. However, the problem is with the identity of caller
box (Transferee) that is not global, but only known to the network box (Trans-
feror), in the MOCSP system. Caller makes a call based on the communication
hyperlink provided by callee.

To solve this problem, there are two solutions. The first one is that caller
box (Transferee) explicitly mentions its network box to callee box (Transferor).
Then, it will pass to callee box (Transfer Target) that makes a new session.
This is a simple solution, but requires an input from the user. The second
solution is based on the coordination of network box (Transferor) and network
box (Transfer Target). The relevant network boxes are connected by a dotted
line in Figure 9.2. This thesis leaves the solution to this coordination of network

108

boxes, but it is typically harder than the first solution, because of the federation
across servers/network boxes.

9.2 IP Mobility

A communication session is forced to terminate when a device changes its IP
address due to mobility or connectivity to different access networks. Change
of IP address of mobile terminal can not be avoided in many situations such
as connectivity from 3G to 3G Femto Access Point (not always changing the
IP address) or 3G to WLAN, etc. When this IP mobility takes place, it is
important to give user experience by continuing the session without disturbing
or expecting inputs from users.

Mobility has been a widely discussed topic and this thesis considers an ap-
plication layer solution rather than other layer solutions, for example on an IP
layer (e.g. Mobile IP). Explicitly, the reason for this choice is that the applica-
tion layer solution is easy to implement. In a typical situation, both terminals
(caller and callee sides) may undergo IP mobility during the session. This is the
worst case situation, as well. The following subsection explains the best solu-
tion based on the SIP. Then, a possible solution based on the MOCSP system
is presented.

9.2.1 SIP based Solution

SIP protocol has a simple solution for IP mobility. This means that the terminal
only needs the RE-INVITE method in order to support the IP mobility. The
terminal device that has undergone IP mobility, sends a RE-INVITE message
to the other end of the session. The SIP specifies the RE-INVITE method in
order to update the session parameters such as IP address of endpoint, codec,
etc. The RE-INVITE message can be sent only after the initial INVITE has
been completed.

In fact, the solution has two parts - off-call and on-call. As the name implies,
off-call means users are not in a call. During the IP mobility,"off-call" mobility
management consists of the Registration process. The "on-call" handover is
performed using the RE-INVITE messages. After the IP mobility, the SIP
RE-INVITE message is sent to the opponent’s side. In the communication
services, both sides can undergo IP mobility at the same time. This situation
triggers both sides to send the RE-INVITE messages. Thus, it will create a
race condition. Consequently, the delay to re-setup the session due to the race
condition is higher than of 2s [64].

During the IP mobility, the SIP based solution does not require user at-
tention. Both endpoints (callee and caller) update automatically the session
descriptors. Here, any intermediate entity (e.g. B2BUA) is not part of the
session establishment.

9.2.2 MOCSP and IP Mobility

In HTTP, messages are sent between Web server and Web browser, in an es-
tablished TCP connection. A TCP connection is identified uniquely by a set of
four parameters: source IP address, source port number, destination IP address,

109

and destination port number. During the single IP mobility in the end-device,
the established TCP connection is terminated and a new TCP connection has
to be established by the client, therefore, message loss is possible. In this case,
application layer has to take care of message loss. In the Web browsing context,
application layer does not consider the message loss, instead it makes a new
HTTP request.

TCP Migrate

TCP Migrate is a mechanism to migrate a new TCP connection that uses an-
other IP address/TCP port pair in an application-transparent manner [119].
Therefore, applications do not consider message failures and recoveries. Also, a
migrate compliant TCP stack should be deployed in the client side and server
side.

MOCSP based Solution

The solution consists of two parts - off-call and on-call - like a SIP. During the
off-call situation, callee only needs to connect to the Web server, not caller. This
will take place before callee gets an open message (Ref Figure 9.3). The on-call
situation is shown in Figure 9.3 marked with numbers 2 and 5. If IP mobility
takes place, this device should send a new description message. This means that
with two unilateral messages (desc/selec), the session can be continued.

If callee changes the IP address, callee sends the media immediately. But
callee receives the media once it receives the select message from caller. This
situation is the same when a caller alone changes the IP address. However, if
both change the IP address, both will send the describe message unilaterally.

However, much care should be given to places marked with the numbers 1,
3 and 4 in Figure 9.3. Here, reliability and message loss are taken into account
when proposing a solution. The similar situation is not considered in SIP, where
RE-INVITE can not be sent before an INVITE transaction is finished. In order
to address this problem, TCP Migrate is considered for the MOCSP based
solution for IP mobility. TCP reliability is maintained, whereas message loss will
be eliminated. In those regions, message loss is simply recovered, thanks to TCP
migrate. However, application logic should verify whether a new description is
used for the media transport.

9.3 Implementation Choices

In the middle of the thesis, two different implementations are being carried
out by two different players - WebRTC.org [94] and Ericsson Labs [120]. In
fact, the MOCSP system has two layers - signaling and media layer, but on
the implementation, components can be classified at the Web browser and Web
server sides. While Web browser deals with the media transport (sending and
receiving) and signaling part, Web server deals with the signaling messages. The
following section describes the recent implementation in Web browser and Web
server.

110

Figure 9.3: A typical call flow in the MOCSP system with important points
that need to be considered during IP mobility

9.3.1 Web Browser

The existing Web browsers need a plug-in module in order to natively sup-
port the real-time communication services. To avoid plug-in dependency, W3C
through its Web Real-Time Communication Working group coordinates in defin-
ing and specifying all the required features in the Web browser. The scope of
the W3C is to define:

I. API functions to explore device capabilities, e.g. camera, microphone and
speakers (currently in scope for the Device APIs & Policy Working Group)

II. API functions to capture media from the local devices (camera and micro-
phone) (currently in scope for the Device APIs & Policy Working Group)

III. API functions for encoding and other processing of the media streams,

IV. API functions for establishing direct peer-to-peer connections, including
firewall/NAT traversal

111

V. API functions for decoding and processing (including echo canceling, stream
synchronization and a number of other functions) of those streams at the
incoming end,

VI. Delivery to the user of the media streams via local screens and audio output
devices (partially covered with HTML5)

Even though W3C does not produce the stable standards, it is worth men-
tioning about some of the important APIs. The latest draft of W3C [1]-WebRTC
1.0: Real-time Communication Between Browsers-included the specification of
Stream API, Peer-to-Peer Connections, The data stream, Garbage collection
and Event definition. Details of Stream API, Peer-to-Peer Connections, and
Event Definition are presented as follows:

I. Stream API: This group has seven important interfaces – MediaStream,
LocalMediaStream, MediaStreamTrack, AudioMediaStreamTrack, Medi-
aStreamTrackList and MediaStreamrecorder. The key need of sending
and receiving of different media (audio or video) is considered in the spec-
ification.

MediaStream represents different streams of media regardless of local and
remote location. The MediaStream class is presented as follows:

[Constructor (MediaStreamTrackList? audioTracks, MediaStreamTrack-
List? videoTracks)]
interface MediaStream {
readonly attribute DOMString label;
readonly attribute MediaStreamTrackList audioTracks;
readonly attribute MediaStreamTrackList videoTracks;
MediaStreamRecorder record ();
attribute boolean ended;
attribute Function? onended;
};

II. Peer-to-Peer Connections: PeerConnection is an important interface de-
fined for the dealing of media transport between two Web Browsers. It is
a coarse-grained interface, taking care of NAT/Firewall, SDP creation and
processing and media transport. A complete information of the PeerCon-
nection interface is given below:

[Constructor (DOMString configuration, SignalingCallback signalingCall-
back)]
interface PeerConnection {
void processSignalingMessage (DOMString message);
const unsigned short NEW = 0;
const unsigned short NEGOTIATING = 1;
const unsigned short ACTIVE = 2;
const unsigned short CLOSING = 4;
const unsigned short CLOSED = 3;
readonly attribute unsigned short readyState;
const unsigned short ICE_GATHERING = 0x100;
const unsigned short ICE_WAITING = 0x200;

112

const unsigned short ICE_CHECKING = 0x300;
const unsigned short ICE_CONNECTED = 0x400;
const unsigned short ICE_COMPLETED = 0x500;
const unsigned short ICE_FAILED = 0x600;
const unsigned short ICE_CLOSED = 0x700;
readonly attribute unsigned short iceState;
const unsigned short SDP_IDLE = 0x1000;
const unsigned short SDP_WAITING = 0x2000;
const unsigned short SDP_GLARE = 0x3000;
readonly attribute unsigned short sdpState;
void addStream (MediaStream stream, MediaStreamHints hints);
void removeStream (MediaStream stream);
readonly attribute MediaStream[] localStreams;
readonly attribute MediaStream[] remoteStreams;
void close ();
attribute Function? onconnecting;
attribute Function? onopen;
attribute Function? onstatechange;
attribute Function? onaddstream;
attribute Function? onremovestream;
};

A detailed description of each element is given in Section 4.1 of [1].

III. Event: There are many events associated with all the interfaces defined
above. The summary of defined events (See Section 8 of [1]) is as follows:

Interface Name The list of events
MediaStream ended
MediaStreamTrack muted, unmuted, ended
MediaStreamTrackList addtrack, removetrack
PeerConnection Connecting, open, message, addstream, removestream

Table 9.1: List of Events defined in [1]

Based on these defined APIs, this thesis includes two different implementa-
tions carried out by WebRTC.org and Ericsson Labs.

1. WebRTC.org

The overall architecture proposed by WebRTC.org [94] is modified as shown
in Figure 9.4 in order to include the MOCSP application. This architecture
intends to show two different groups of users – web browser developer and
Web app developer. MOCSP is developed by a Web app developer, interfac-
ing the Web browser via Web API edited by W3C (See the starting of this
section).

WebRTC provides voice engine, video engine and transport components, giv-
ing flexibility to Web browser developers to develop custom modules for au-
dio capture/display, video capture, network I/O and Peer Connection API.
More importantly, the session management is still under the control of We-
bRTC.org, who implements the signaling at least at the abstract level. This

113

Figure 9.4: Architecture of WebRTC including MOCSP client side.

component should be studied further while the implementation gets mature,
because this thesis proposes to give complete control of the signaling to the
Web developer. For the usage, MOCSP can benefit from the current We-
bRTC.org solution, but it is not mandatory.

The details of some components in Figure 9.4 are provided here:

1. Transport/Session: Some components of libjingle are re-used to develop
the session components, without requiring the XMPP/Jingle protocol.

RTP Stack - Real time protocol is used for media transport.

STUN/ICE - This component allows calling over a network that has STUN
and ICE mechanisms.

Session Management: This component intends to give a high level view of
signaling protocol, leaving the protocol implementation decision to appli-
cation developers.

2. Voice Engine: This component takes care of audio media chain, from
sound card to network interface. iSAC, iLBC, NetEQ for voice, acoustic
echo canceller (AEC), noise reduction (NR) are important sub-components
within this component. iSAC is a wideband and super wideband audio
codec for VoIP and streaming audio, using 16 KHz or 32 KHz sampling
frequency with an adaptive and variable bitrate of 12 to 52 kbps.

iLBC is a narrowband speech codec, defined by IETF RFC 3951 and
3952. It uses 8 kHz sampling frequency with a bitrate of 15.2 kbps for
20ms frames and 13.32 kbps for 30ms frames.

114

NetEQ: This component keeps latency as low as possible while maintaining
the highest voice quality. This means that reducing the effects of network
jitter and packet loss is made possible using a dynamic jitter buffer and
error concealment algorithm.

Removing the acoustic echo (resulting from voice being played out and
coming into the active microphone) is performed by a software based signal
processing component, AEC.

Another component that removes certain types of background noise usu-
ally associated with VoIP call is called NR.

3. Video Engine: Like voice engine, video engine considers the video part,
from camera to network and network to screen. The video codec is VP8
from the WebM project. VP8 is designed for low latency. In addition, the
other two sub-components are video jitter buffer and image enhancements.
Like NetEQ, video jitter buffer conceals the effects of jitter and packet loss.
Image enhancement removes video noise from the image capture by the
webcam.

The PeerConnection interface is well explained in [94] in terms of how it
should be developed. There are two classes - PeerConnection and PeerCon-
nectoinObserver - defined by WebRTC.org to implement the PeerConnection
interface. These details are very important for Web App developers including
MOCSP.

PeerConnectionObserver class is an abstract interface for a user defined ob-
server. Registering an observer class can be performed using RegisterOb-
server(). The details of PeerConnectionObserver class are as follows:

c l a s s PeerConnectionObserver {
pub l i c :

v i r t u a l void OnError () ;
v i r t u a l void OnSignalingMessage (const std : : s t r i n g& msg) ;
v i r t u a l void OnAddStream(const std : : s t r i n g& stream_id ,

i n t channel_id ,
bool v ideo) ;

v i r t u a l void OnRemoveStream(const std : : s t r i n g& stream_id ,
i n t channel_id ,
bool v ideo) ;

} ;

Information regarding the functions and their signatures can be found in [94].
Similarly, the detail of PeerConnection is as follows:

c l a s s PeerConnection {
pub l i c :

e x p l i c i t PeerConnection (const std : : s t r i n g& c o n f i g) ;
bool I n i t i a l i z e () ;
void Reg i s te rObserver (PeerConnectionObserver ∗ obse rver) ;
bool S igna l ingMessage (const std : : s t r i n g& msg) ;
bool AddStream (const std : : s t r i n g& stream_id , bool v ideo) ;

115

bool RemoveStream (const std : : s t r i n g& stream_id) ;
bool Connect () ;
void Close () ;
bool SetAudioDevice (const std : : s t r i n g& wave_in_device ,

const std : : s t r i n g& wave_out_device) ;
bool SetLocalVideoRenderer (c r i c k e t : : VideoRenderer ∗ r endere r) ;
bool SetVideoRenderer (const std : : s t r i n g& stream_id ,

c r i c k e t : : VideoRenderer ∗ r endere r) ;
bool SetVideoCapture (const std : : s t r i n g& cam_device) ;

} ;

The OnSignalingMessage function in the Peerconnection class and Signal-
ingMessage function in PeerConnection class are used to pass SDP messages
between peers. Now this implementation arrangement supports only the
offer/answer mechanism.

2. Ericsson Labs Solution: The solution is almost similar to WebRTC.org, but,
it depends on open source codecs such as for Voice, Speex and for video,
Theora, both are available in Ubuntu. The Ericsson modified WebKit library
allows to experiment the PeerConnection and MediaStream APIs [120]. The
relevant source code is available now at [121].

9.3.2 Web Server

In MOCSP, the rendez-vous function is performed in the Web server that may
host many MOCSP instances, so that it may expect many concurrent requests.
In order to handle concurrent requests, it is possible to develop web server
in two different ways, based on threads or events. In a threaded Web server
(e.g. Apache Web server), each request is handled by a unique thread. In
contrast, evented Web server has one event loop to manage concurrent multiple
requests. Therefore, evented Web server avoids CPU context switching and
massive execution stacks in memory. The list of terminology used in the event
and thread based systems is given in Table 9.2.

Events Threads
Event handlers Monitors
Events accepted by a handler Functions exported by a module
SendMessage / AwaitReply Procedure call, or fork/join
SendReply Return from procedure
Waiting for messages Waiting on condition variables

Table 9.2: Terminology list that is originally available as presented in [2]

The unique benefit of the method (i.e. thread or event) can be validated by
considering the load profile of a server, for example, how many threads can be
spawned before performance degrades. However, quantitative and qualitative
measure are influencing the decision. MOCSP can be developed based on an
evented architecture because the work being done is fundamentally evented:
upon receiving an input data from the client, the server processes and relays
the data. In contrast, the business logic implemented by web applications is

116

more naturally described in a synchronous style. The callbacks required by an
evented architecture become unwieldy in a complex application code.

Another consideration is memory coordination and consistency. Evented
servers executing in a single event loop do not need to worry about the correct-
ness and performance implications of maintaining consistently shared memory,
but this may be a problem for threaded servers. Threaded servers therefore at-
tempt to minimize the memory shared among threads. MOCSP gains benefits
from event based model since each client session does not share among them.
But fundamentally stateful servers like caches, and SIP proxy servers cannot
avoid this problem.

Thread-based Web server needs to depend on the underlying platform. [2]
argues that thread implementation is a major obstacle for the performance is-
sue, rather than threading paradigm. In this case, if one thread makes blocking
calls to external resources, other threads are prevented from using CPU. This
situation is in favour of considering evented architecture as relatively more ap-
pealing.

Based on the above mentioned arguments, event based architecture is the
right choice for the MOCSP system and I choose nodejs.org [122] for building
evented servers. Therefore, it is able to get optimal performance. Note that
the debate on the right server whether event based or thread based does not
conclude concretely.

Node.js

Here, this thesis explains about Node.js, from its internal architecture to appli-
cations developed using a Web server, a Websocket and a multi-processor node
modules. These applications are needed for the MOCSP deployment.

By design, Node.js - server side JavaScript environment- is a single threaded
platform, built on V8 JavaScript engine, for easily building fast, scalable net-
work application [122]. To allow a single thread to handle many concurrent
requests, Node.js uses an event-driven, non-blocking I/O model that makes it
lightweight and efficient, perfect for data-intensive real-time applications that
run across distributed devices. This makes it an excellent fit for the MOCSP
system. As of today, big industry players such as Microsoft, ebay, LinkedIn and
Yahoo! have included node.js into their applications because of its scalability
and performance.

The high level architecture of Node.js with all the components is shown in
Figure 9.5 [123]. Node.js depends on the libev event loop library [124], using
epoll or kqueue for the scalable event notification mechanism. To avoid CPU
time loss usually made by waiting for an input or an output response (database,
file system, web service, etc.), Node.js uses the full-featured asynchronous I/O
libeio library [125].

Conceptually, Ruby’s Event Machine or Python’s Twisted is similar to Node.js.
However, Node.js is considered as superior because node.js presents the event
loop as a language construct instead of as a library. This means that Node.js
does not use a blocking call to start the event-loop, for example start the event
loop through blocking call EventMachine::run(). In fact, Node.js simply enters
the event loop after executing the input script and makes the event loop exist
when there are no more callbacks to perform. This behaviour is like browser
javascript - the event loop is hidden from the user.

117

Figure 9.5: The high level architecture of Node.JS

There are three important achievements based on Node.js that are relevant
to the present research work:1) HTTP server, 2) Web socket implementation
and 3) multi processor concurrency.

I. HTTP server is well written in Node.js. It is an event infrastructure with
a HTTP parser from [126].

II. Web Socket implementation. There are a few web socket implementations
on node.js. The present researcher intends to use the websocket.io from
[127] for the MOCSP deployment. The web socket protocol is standardized
as RFC 6455, but websocket.io supports protocol version 13.

III. Multi processor concurrency is an important aspect in today’s computing.
In this case, what will happen to this single threaded Node.js? Will it scale
across a multi-processor? To be scalable, a new process can be created via
child_process.fork() and all these processes will be scheduled in parallel.
For load balancing the incoming connections across multiple processes,
cluster module is developed, available in [128].

In parallel, Yahoo investigates multi-core HTTP server with Node.js [129],
but focusing exists on scalability with computational complexity using Web
worker APIs.

118

9.3.3 Sample Code for the MOCSP system

To validate the concepts proposed in this thesis, the last two sub-sections (
Section 9.3.1 and 9.3.2) present possible directions for implementation. In this
sub section, the present researcher explains the development with the help of
source code. Initially, the developed source code for the server side is provided.
In this case, the source code is written in JavaScript and runs in the Node.js
environment. Later, code for the browser side is provided. Here it is a Hypertext
Markup Language (HTML) page.

The main JavaScript file, Index.js, executed in the server is shown below.
First, it is important to create a Web server and a Web socket server in order to
understand the HTTP and WebSocket protocol requests from clients. Interest-
ingly, it is possible to leverage the third party library for developing the MOCSP
source code. Therefore, no effort is given to develop the Web server and Web
socket from scratch. Two libraries, http and socket.io [127] (see the source code
focusing on require() function), are used for the MOCSP main server code.

The developed MOCSP server is listening on port 8081, able to distin-
guish the HTTP and Web socket connection. Initially, callee is logged into
the MOCSP server when making a request of index.html file. Similarly, caller
can log into the MOCSP server by making a request of callerindex.html. These
requests are severed in an asynchronous fashion. The CPU is not blocked dur-
ing the file reading, thanks to Node.js development. In order to understand this
remark, look at the source code starting with the fs.readfile() function.

This fs.readfile() function has two parameters, file name and callback func-
tion. The callback function performs the job for either success or failure.

Listing 9.1: Source of Index.js

var app = r e q u i r e (’ http ’) . c r e a t e S e r v e r (handler)
, i o = r e q u i r e (’ socke t . io ’) . l i s t e n (app)
, f s = r e q u i r e (’ f s ’) ;

var Url = r e q u i r e (" u r l ") ;

var hat = r e q u i r e (" hat ") ; // generate socketID

var count = 0 ;
var s o cke t s = [] ; //number o f s o cke t s .
var c a l l e e i d , c a l l e r i d

app . l i s t e n (8 0 8 1) ;

f unc t i on handler (req , r e s) {

var pathname = Url . parse (req . u r l) . pathname ;

conso l e . l og (" Path Name"+pathname) ;

119

var f i l e P a t h = ’ . ’+ pathname ;
conso l e . l og (" cur r ent path"+ f i l e P a t h) ;
i f (f i l e P a t h ==="./ i n d e x c a l l e r . html ")
{

f i l e P a t h = " . / i n d e x c a l l e r . html " ;
c on so l e . l og (" Current Path"+ f i l e P a t h) ;

}
e l s e

{
f i l e P a t h ="./ index . html " ;
c on so l e . l og (" Current Path"+ f i l e P a t h) ;

}

f s . r e ad F i l e (f i l ePa th ,
//__dirname + ’/ index . html ’ ,

f unc t i on (err , data) {
i f (e r r) {

r e s . writeHead (5 0 0) ;
r e turn r e s . end (’ Error l oad ing index . html ’) ;

}

r e s . writeHead (2 0 0) ;
r e s . end (data) ;

}) ;
}

i o . s o cke t s . on (’ connect ion ’ , f unc t i on (socket) {

socke t . emit (’ connected ’ , { msg : ’Welcome from server ’ }) ;

socke t . on (" g e t i d " , f unc t i on () {
var uuid = hat () ;
s o cke t s [uuid] = { id : uuid , socke t : socke t } ;

i f (count==0)
{

c a l l e e i d=uuid ;
conso l e . l og (" c a l l e e i d i s set >>" + c a l l e e i d) ;
count++;

} e l s e
{

c a l l e r i d=uuid ;
conso l e . l og (" c a l l e r i d i s set >>" + c a l l e r i d) ;
count++;

}
socke t . emit (’ get id ’ , { id : uuid }) ;

con so l e . l og (" Socket with id : " + uuid + " saved . ") ;
}) ;

120

socke t . on (" sendSigMsg " , f unc t i on (data) {
conso l e . l og (" S i gn a l i n g message r e c e i v e d . ") ;
c on so l e . l og (" S i gn a l i n g message r e c e i v e d : " + data . msg) ;

con so l e . l og (" Sending to Socket " + data . id)
conso l e . l og (" Sockets l ength . . . " + socke t s . l enght) ;

i f (c a l l e e i d==data . id)
// i f (s o cke t s [data . id]) {

s o cke t s [c a l l e r i d] . socke t . emit (" recvSigMsg " , { id : data . id , msgBody : data . msg }) ;
e l s e i f (c a l l e r i d==data . id)

s o cke t s [c a l l e e i d] . socke t . emit (" recvSigMsg " , { id : data . id , msgBody : data . msg }) ;

}) ;

socke t . on (’ d i sconnect ’ , f unc t i on (){
conso l e . l og (" User d i s connected . ") ;

}) ;

}) ;

The most important aspect is how a Web socket connection behaves dur-
ing the different phases - connection, sendSigMsg, recvSigMsg, and disconnect.
In the present researcher’s case, when each client gets connected, the server
provides each client an unique ID. A sendSigMsg event is called when a client
sends data to the server via the established Web socket connection. When data
is ready in the Web socket server side to client, recvSigMsg event is called to
send the data to client. These events and the related call back functions are
written in an asynchronous pattern. For example, look at the code starting with
socket.on("sendSigMsg", function(data)); function. Knowingly, the algorithm
of this thesis demands the server to send the data to client that does not itself
send those data. For instance, in Figure 5.3, MOCSP receives the oack(desc1)
message from the callee and sends another oack(desc1) to the caller.

In the prototyping work, there are two different html files, Index.html and
Indexcaller.html, for callee and caller. To experience the real time communica-
tion, these files should run in Ericsson made web browser that is available in
[120]. The source code of index.html is provided below.

Index.html is the main interface for a caller who hosts his/her MOCSP
instance. This html page performs signaling and media functionality. This
means that signaling channel via Web Server and peer-to-peer connection for
media should be set up between caller and callee.

Listing 9.2: Source of Index.html

<html>
<s c r i p t s r c ="/ socke t . i o / socket . i o . j s "></s c r i p t >
<s c r i p t >

121

var socke t = i o . connect (’ http : / / 1 7 2 . 2 5 . 7 1 . 2 1 4 : 8 0 8 1 ’) ;
var s i g n a l i n g I d ,

Peer= n u l l ;

socke t . on (’ connected ’ , f unc t i on (data) {

chatHis tory . va lue += "From s e r v e r : " + data . msg + "\n " ;
socke t . emit (’ get id ’ , { }) ;

}) ;

socke t . on (’ get id ’ , f unc t i on (data){
chatHis tory . va lue += " Received id : " + data . id + "\n " ;
s i g n a l i n g I d=data . id ;
chatHis tory . va lue+="Assigned id " + s i g n a l i n g I d ;

}) ;

socke t . on (’ recvSigMsg ’ , f unc t i on (data){

i f (data . msgBody==="OPEN")
{

var r=conf i rm (" Wil l you ready to accept the s e s s i o n ? ")
i f (r==true)
{

var msgoack="OACK" ;
socke t . emit (’ sendSigMsg ’ , { id : s i g n a l i n g I d , msg : msgoack }) ;

Peer = new webkitPeerConnection ("NONE" , sendSigMsg) ;
con so l e . l og ("OACK send ! ") ;

Peer . onaddstream= rece iveVideoStream ;

} e l s e
{

var msgnotopen="NOTOPEN" ;
socke t . emit (’ sendSigMsg ’ , { id : s i g n a l i n g I d , msg : msgnotopen }) ;
}

} e l s e
{

conso l e . l og (" Peer p r o c e s s i n g remote message ! ") ;
c on so l e . l og (" Message body here <<<");
con so l e . l og (data . msgBody) ;

// chatHis tory . va lue += "msg from s e r v e r : " + data . id +" i n t e r c o n n e c t i o n s "+ data . msgBody + "\n " ;

122

i f (Peer != n u l l)
Peer . p roce s sS igna l ingMessage (data . msgBody) ;

}
}) ;

f unc t i on sendSigMsg (msg) {
// conso l e . l og (" S i gn a l i n g . sendSigMsg>>>: " + msg) ;
socke t . emit (’ sendSigMsg ’ , { id : s i g n a l i n g I d , msg : msg }) ;

}

func t i on startChat () {
// a l e r t (" Euraka . . ") ;
chatHis tory . va lue += "ME: " + chatMessage . va lue + "\n " ;
chatHis tory . va lue+="ID check ing " + s i g n a l i n g I d ;
socke t . emit (’ sendSigMsg ’ , { id : s i g n a l i n g I d , msg : chatMessage . va lue }) ;
chatMessage . va lue = " " ;

}

window . onload = func t i on () {
// content = document . getElementById (’ content ’) ;

// chatHis tory = document . getElementById (’ chatHistory ’) ;
// chatMessage = document . getElementById (’ chatMessage ’) ;

s e l fV i ew = document . getElementById (’ se l fView ’) ;
peerView = document . getElementById (’ peerView ’) ;
addButton = document . getElementById (’ addButton ’) ;
removeButton = document . getElementById (’ removeButton ’) ;

removeButton . d i s ab l ed = true ;
}

/∗ −−−

∗ Voice & video
∗ −−− ∗/

var s e l fV i ew ;
var peerView ;

var addButton ;

func t i on r eque s tSe l fV ideo () {
conso l e . l og (" r eque s tSe l fV ideo ") ;

nav igator . webkitGetUserMedia (’ audio , video ’ , f unc t i on (stream) {
conso l e . l og (" got s e l f stream ") ;

123

s e l fV i ew . s r c = webkitURL . createObjectURL (stream) ;
i f (Peer != n u l l)
{

conso l e . l og (" ready ") ;
Peer . addStream (stream) ;

}

}) ;
addButton . d i s ab l ed = true ;
removeButton . d i s ab l ed = f a l s e ;

}

func t i on rece iveVideoStream (e) {
conso l e . l og (" onaddstream event : rece iveVideoStream ") ;
peerView . s r c = webkitURL . createObjectURL (e . stream) ;

}

func t i on s topSe l fV ideo () {
s e l fV i ew . s r c = 0 ;
addButton . d i s ab l ed = f a l s e ;
removeButton . d i s ab l ed = true ;
t ry {

Peer . removeStream () ;
} catch (e r r) { conso l e . l og (e r r) ; }

}

</s c r i p t >

<body>
<div id="chat">

<form id="chatForm " ac t i on =" j a v a s c r i p t : s tartChat () ; " >
Text chat
<input id="chatMessage " type=" text " s i z e ="40">
<input type="submit " va lue="submit">

</form>
<texta r ea id=" chatHis tory " readonly c o l s ="80" rows="50"></ textarea >

</div>

<form id="videoForm">
<div id=" v ideos "></div>

<tab l e a l i g n=center >
<tr><td>S e l f View</td><td>Peer View</td></tr>
<tr he ight ="240">

<td width="320">

<video id=" se l fV i ew "

124

width ="320" he ight ="240" autoplay cont ro l s >
</video>

</td>
<td width="320">

<video id="peerView "
width ="320" he ight ="240" autoplay cont ro l s >

</video>

</td>
</tr>
<tr><td>

<input id="addButton "
type="button "
value="My Camera "
o n c l i c k =" r eque s tSe l fV ideo () ; " >

<input id="removeButton "
type="button "
value="Remote Camera "
o n c l i c k =" s topSe l fV ideo () ; " >

</td>
<td>
</td>

</tr>
</table >

</form>

</body>
</html>

To explain the Index.html source, the source code is divided into two parts:
HTML body part and JavaScript part. In the HTML body part, there is a new
tag called video as follows.

<video id=" se l fV i ew " width ="320" he ight ="240" autoplay cont ro l s >
</video>

There are two video tags representing self video view and remote peer video
view. This video tag should be supported by the browser vendors such as Mozilla
and Google Chrome. There are two buttons with onclick functions – one is to
show self view and the other is to stop the display of the remote view. Other
tags are understandable to HTML programmers.

A more important logic is embedded in the form of JavaScript. This logic
has three parts: Web socket connection, signaling message processing (including
sending and receiving) and media connection.

To enable Web Socket connections at the browser, web socket library from
[127] is included into the source code as shown below:

<s c r i p t s r c ="/ socke t . i o / socket . i o . j s "></s c r i p t >

125

Once web socket connection is established, the three events - connected,
getid, and recvSigMsg are triggered. Generally, connected and getid events are
triggered once, but recvSigMsg is triggered many times within a single cycle.
The callback function for the recvSigMsg event processes all incoming messages
(typically signaling messages) from the Web server.

According to call flow in the MOCSP system (see Figure 5.3), callee receives
the OPEN message once caller clicks on the hyperlink provided by callee. If
callee accepts the new session, callee will send the OACK message. When callee
sends the OACK message, Peer object is created with the new webkitPeerCon-
nection ("NONE" , sendSigMsg) function . sendSigMsg is a call back function
to process the SDP messages from the other peer. Otherwise, callee will send
the NOTOPEN message. Socket.emit() function is used to send the signaling
messages from the browser to Web server.

For the media display and transport, three functions are important. They
are requestSelfVideo(), receiveVideoStream() and stopSelfVideo(). When the re-
questSelfVideo() function is called, browser will start the media capture and dis-
play at own video display. At the same time, video data will be linked to the Peer
object in order to send them to the remote peer via the Peer.Stream(stream)
function. Two functions - navigator.webkitGetUserMedia() and webkitURL.createObjectURL
(stream) should be supported by the browser vendors.

To display the remote peer video, the receiveVideoStream(e) function will
be triggered. Once triggered, browser receives the media and displays at the
remote peer display.

The source code of indexcaller.html is almost similar to Index.html except
for a few modifications, reflecting a unique behaviour at the caller side.

The prototype needs to rely on the Web browser, modified version of the
WebKit library on Ubuntu system [121] and does not consider the NAT/Firewall
issue because it is performed within the local area network. At this point, SDP
messages are passed to the Peer objects without any modification at the web
server. Codecs that are available in Ubuntu are used in this experimentation.
For voice, Speex is used. And, Theora is used for video.

9.3.4 Summary

The prototype work is being carried out now based on Node.js and Ericsson
developed Webkit browser. In addition, this thesis keeps a close watch on the
recent development of WebRTC at W3C and IETF. However, there are two
different ways to describe the media endpoints. The next section presents them
in detail.

9.4 SDP Offer/Answer vs Media Description

In communication services, description of media endpoint and negotiation on
parameters between endpoints is the core part of the communication services.
Importantly, negotiation generally needs to agree on codec between endpoints
before those endpoints send/receive media. This aspect is vehemently discussed
by the SIP community. However, there is another way to present the media
endpoint as presented in [62], called media based negotiation. The early imple-
mentation of WebRTC at the Web Browser side considers only SIP negotiation

126

mechanism. This thesis intends to argue for the implementation of both these
features, so end users (Web App developer or MOCSP app developer) gain
benefits from their appropriate usages.

This section has three subsections, namely Session Description Protocol
(SDP), offer/answer mechanism and Media based Negotiation. SDP is a for-
mat, accepted by the SIP community, for describing media endpoints that are
involved in a session. The offer/answer mechanism is used for the negotiation
between media endpoints. Alternatively, Media based Negotiation can be used
for the negotiation.

9.4.1 Session Description Protocol

Caller and callee in communication services negotiate parameters during the
session initiation and mid-call. This aspect globally gives emphasis on the need
for interoperability. Therefore, the SIP community intends to specify a common
format for describing the multimedia communication sessions. This format is
known as Session Description Protocol (SDP). The current specification of SDP
is available as RFC 4566 [15] that obsoletes the initial version of SDP published
in April,1998.

SDP is used in the negotiation especially in the offer/answer mechanism
that is included in the following subsection. Before explaining the mechanism,
important information regarding the SDP is provided here. SDP has a set of
properties and parameters for each media types and format and is designed to be
extensible to support the new media types and format. For example, VP8 video
is a new media type and IETF now considers proposing a new RTP Payload
Format for VP8 Video as discussed in [130].

Each end point in a session with the help of SDP is represented by a series
of fields, one per line. The form of each field is as follows.

<character>=<value>

Where <character> is a single case-significant character and value is the
structured text whose format depends upon attribute type.

An SDP message has three main sections, detailing the session, timing, and
media descriptions. The important information are either the type of media
(video, audio, etc.), the transport protocol (RTP/UDP/IP, H.320, etc.), or the
format of the media (H.261 video, MPEG video, etc.). Each message may
contain multiple timing and media descriptions. All names are unique within
the session, time, or media. =* indicates values as optional and each field must
appear in the order shown below.

Se s s i on d e s c r i p t i o n (name and purpose)
v= (pro to co l v e r s i on)
o= (o r i g i n a t o r and s e s s i o n i d e n t i f i e r)
s= (s e s s i o n name)
i=∗ (s e s s i o n in fo rmat ion)
u=∗ (URI o f d e s c r i p t i o n)
e=∗ (emai l address)
p=∗ (phone number)
c=∗ (connect ion information—not r equ i r ed i f inc luded in a l l media)

127

b=∗ (ze ro or more bandwidth in fo rmat ion l i n e s)
One or more time d e s c r i p t i o n s (" t=" and " r=" l i n e s ; s e e below)
z=∗ (time zone adjustments)
k=∗ (encrypt ion key)
a=∗ (ze ro or more s e s s i o n a t t r i b u t e l i n e s)
Zero or more media d e s c r i p t i o n s

Time d e s c r i p t i o n
t= (time the s e s s i o n i s a c t i v e)
r=∗ (ze ro or more repeat t imes)

Media d e s c r i p t i o n (in fo rmat ion needed to r e c e i v e those media (addresses ,
ports , formats , e t c .)

) , i f p re sent
m= (media name and t ranspor t address)
i=∗ (media t i t l e)
c=∗ (connect ion information—optional i f inc luded at

s e s s i o n l e v e l)
b=∗ (ze ro or more bandwidth in fo rmat ion l i n e s)
k=∗ (encrypt ion key)
a=∗ (ze ro or more media a t t r i b u t e l i n e s)

SDP can be used along with different applications (e.g. multicast applica-
tion), but this thesis is interested to consider it along with SIP. All the available
parameters are presented here, but more details can be found in [15]. However,
to be concrete, a sample message shown in [15] is included below to explain how
it is used in the implementation.

v=0
o=jdoe 2890844526 2890842807 IN IP4 1 0 . 4 7 . 1 6 . 5
s=SDP Seminar
i=A Seminar on the s e s s i o n d e s c r i p t i o n pro to co l
u=http ://www. example . com/ seminars /sdp . pdf
e=j . doe@example . com (Jane Doe)
c=IN IP4 224 . 2 . 17 . 12/127
t =2873397496 2873404696
a=recvon ly
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 99
a=rtpmap :99 h263 −1998/90000

IETF proposed changes in order to accommodate VP8 video media as fol-
lows:

m=video 49170 RTP/AVPF 98
a=rtpmap :98 VP8/90000
a=fmtp :98 ve r s i on=0

128

The address and port, to which the data is sent, is decided by the media
and transport protocol. Media attribute (a=* parameter) is also important,
having "session-level" attributes, "media-level" attributes, or both. Session-level
attributes convey information relevant globally and media-level attributes are
information specific to individual media.

Two different forms of attribute fields are as follows:

a=<attribute>

a=<attribute>:<value>

For example, a=recvonly, a=rtpmap:96 L8/8000, or a=orient:landscape.

The following four attributes are important to understand the difference
between SDP offer/answer and media description:

1 a=recvonly: This information can be either session-level or media-level, but
it informs that it behaves in the receive mode.

2 a=sendrecv: The endpoint behaves in the send and receive mode. "sendrecv"
SHOULD be assumed as the default for communication sessions unless they
("sendonly", "recvonly", "inactive") are mentioned explicitly.

3 a=send-only: If the endpoint decides to behave like in send only mode, send
only attribute is included in to the SDP message. It is logically equal where
two media descriptions may be used – one sendonly and one recvonly.

4 a=inactive: This attribute can be either session level or media level, but puts
the users on hold- no media is transported.

Another information in the SDP message is media description: m=<media>
<port> <proto> <fmt> ...

Since each session has a number of media sessions, each media session is
indicated with an "m" field.

<media> is the media type – "audio","video", "text", "application", and "mes-
sage", although this list can be extended in the future, this work only considers
"audio", "video", and "text".

<port> is the transport port to which the media stream is sent. <proto>
is the transport protocol. The following transport protocols are defined in the
standard.

1. UDP: denotes an unspecified protocol running over UDP.

2. RTP/AVP: denotes RTP used under the RTP Profile for Audio and Video
Conferences with Minimal Control running over UDP.

3. RTP/SAVP: denotes the Secure Real-time Transport Protocol running over
UDP.

<fmt> is a media format description.

129

9.4.2 Offer/Answer Mechanism

RFC 3264 - The Session Description Protocol (SDP) offer/answer presents a
mechanism for two endpoints to reach a common view of a multimedia session
between participants [131]. This simple mechanism proposes that one partici-
pant offers the other participant a description of the desired session from their
perspective, and the other participant answers with the desired session from
their perspective. SIP uses the offer/answer mechanism that can also be used
with other protocols.

In a simple offer/answer model based on SDP, one participant (either caller
or callee), called the offerer, in the session generates an SDP message that
constitutes the offer - the set of media streams and codecs the offerer wishes to
use, along with the IP addresses and ports the offerer would like to use to receive
the media. In return, the other participant, called the answerer, generates an
answer, which is an SDP message that responds to the offer provided by the
offerer. The answer has a matching media stream for each stream in the offer,
indicating whether the stream is accepted or not, along with the codecs that
will be used and the IP addresses and ports that the answerer wants to use to
receive media. After the initial offer/answer exchange, negotiations can take
place in order to update the session.

The offer and answer are sent via SIP methods such as SIP INVITE, UP-
DATE, 200 OK, etc. More importantly, an SDP message used in the offer/an-
swer model must contain exactly one session description and the offer/answer
exchange is atomic. The session returns to the state prior to the offer if the
answer is rejected.

Direction attribute is also important because it is linked with SDP and
negotiations. For example, if the offerer wants to only send media on a stream
to its peer, it must mark the stream as sendonly with the "a=sendonly" attribute.
In this case, the port number and IP address in the answer indicate where the
answerer would like to receive the media stream. Similarly, three other direction
attributes ("a=inactive" , "a=sendrecv", "a=recvonly") are used to send the
preferences of the participants.

SDP and offer/answer mechanism consider the port number and IP address
of RTP endpoints. RTP is end-to-end real time media transport protocol. Re-
lying on UDP, RTP adds timestamps (for synchronization), sequence numbers
(for packet loss and reordering detection) and payload format headers in each
packet, in addition to encoded media data in the payload.

There is another protocol called RTP Control Protocol (RTCP)[14]. RTCP
monitors RTP transmission statistics and quality of service (QoS) and helps
synchronization of multiple streams. RTCP works together with RTP. The port
number assignment at the sender and receiver side is straightforward. RTP
uses even port number at both sides and the associated RTCP communication
chooses the next higher odd port number. In addition, usage of RTCP does
not depend on the direction attributes. In this analysis, the need of RTCP is
overlooked, hence, the impact of RTCP on SDP and offer/answer mechanism is
not provided. These details are available in RFC 3264 [131].

Besides the port number and IP address, media formats for each media
stream are important information that is conveyed in SDP. All media descrip-
tions should include "a=rtpmap" mappings from RTP payload types to encod-
ings for each type of RTP streams. Essentially, the preference order is used to

130

organize the different media formats - the highest goes first. Receiver of the
offer should select the format with the highest preference that is acceptable to
the receiver.

The offerer is prepared to receive media immediately after the offerer has
sent the offer (assume that offer has recvonly streams). In the case of RTP,
offerer may receive media before the answer arrives. In the case of sendonly
streams in the offer, media will not be sent until the answer (consists of needed
address and port) arrives.

The caller and callee need a complete view of the session that is made by
the agreement on parameters between them. After the initial offer and answer
mechanism, it is possible to modify characteristics of the session (nearly all
aspects) at any point by either participant. In this case, new offer may be
similar to previous offer or different. If there is a new offer with the new SDP,
some constraints are placed on construction. Modifying the session can be either
adding a new session, removing a media stream, modifying a media stream,
or putting media stream on hold. Here the description of each part that is
responsible for modifying a session is provided.

1. Adding a Media Stream: There are two ways to inform the answerer that
the offerer will add new media streams. The first one is to add new media
descriptions below the existing one. And the second is to disable the media
stream port to zero. In response, answerer can reject or accept by replac-
ing an appropriately structured media description in the answer. Similarly,
answerer can also add a media stream.

2. Removing a Media Stream: General rule to remove existing media streams
is to create a new SDP with the port numbers of those streams set to zero.
The all attributes present previously may be omitted in the new SDP that
may list just a single media format. In response, answerer marks the port of
the media stream set to zero. Similarly, answerer follows the same procedure
like offerer (omit all attributes and a single media format).

Removing a media stream implies that media is no longer sent and will be
discarded if received. In fact, the resources associated with these media
streams are released.

3. Modifying a Media Stream: It is possible to change all parameters of the
session. Therefore, details of the modification can be classified into four
groups as follows:

I. Modifying Port, Address, or Transport: To modify the port number
of a media stream, offerer creates a new media description, with the
port number in the m line different from the corresponding stream in
the previous SDP. In this case, only port number is changed and the
others remain unchanged. On the implementation, offerer is prepared to
receive media on the old and new port until answer reaches. This kind
of arrangement is made to avoid loss of media during this transition.
It is critical that answerer should send the media to the new port if
answerer accepts the request. If rejected, offerer should be ready to
receive it on the old port. Similarly, answerer is also able to change its
port number.

131

Like port changes, IP address and transport changes also follow the
same procedure, except that connection line is updated for the IP ad-
dress modification.

II. Changing the Set of Media Formats: A set of media formats with the
"m=" line is changed (new format introduced or the format removed)
during the session. Like in the port changes, as soon as answerer sends
its answer, the answerer starts sending the media using any formats
in the offer that were also present in the answer and should use the
most preferred format in the offer that was also listed in the answer. In
contrast to changes in the set of media formats, changes in ports may
require changes in resource reservation or rekeying of security protocols.
The drawback is that the answerer can not change the media format on
their own unless the offerer starts to do so.

III. Changing Media Types: As opposed to adding a new stream, the media
type (audio, video, etc.) for a stream may be changed. It means that
the same logical data is being conveyed, but just in a different media
format. Similar to the other changes (e.g. Port), the answerer should
start sending the new media type and formats as soon as he/she receives
the offer. This means that the offerer will be prepared to receive media
with both the old and new types until the answer is received, and media
with the new type is received and reaches the top of the playout buffer.

IV. Changing Attributes: This allows to change any other attributes in a
media description using an offer/answer method.

4. Putting a Unicast Media Stream on Hold: It allows one party to request the
other party not to send media stream. This job can be explained easily with
the help of directionality attributes. If the current stream is sendrecv, it is
placed on hold by marking it as sendonly. Similarly, if the current stream is
recvonly, it is placed on hold by marking it inactive.

Demonstration with Offer/Answer Exchange

In this sub-section 9.4.2, the negotiation mechanism is explained with the basic
elements. To make understandable, an example is provided here. Assume that
Alice, caller, provides initially an offer to Bob, callee. In the offer, Alice wishes
to communicate using a bidirectional audio stream and two bidirectional video
streams, using H.261 (payload type 31) and MPEG (payload type 32). The offer
looks like this:

v=0
o=a l i c e 2890844526 2890844526 IN IP4 host . anywhere . com
s=
c=IN IP4 host . anywhere . com
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap : 0 PCMU/8000
m=video 51372 RTP/AVP 31
a=rtpmap :31 H261/90000
m=video 53000 RTP/AVP 32

132

a=rtpmap :32 MPV/90000

Important details of the above offer are connection IP address of host.anywhere.com,
port for receiving audio 49170, and port for receiving video at 51372 and 53000.

Bob wishes to receive or send the second video stream (i.e. m=video 53000
RTP/AVP 32),not in the first video. Therefore, Bob sends an answer like below:

v=0
o=bob 2890844730 2890844730 IN IP4 host . example . com
s=
c=IN IP4 host . example . com
t=0 0
m=audio 49920 RTP/AVP 0
a=rtpmap : 0 PCMU/8000
m=video 0 RTP/AVP 31
m=video 53000 RTP/AVP 32
a=rtpmap :32 MPV/90000

More important details are the connection IP address of Bob, host.example.com,
audio port of Bob, 49920 and video port of Bob, 53000. Essentially, both sides
should use the same codec for sending and receiving the media. This feature is
technically not necessary, but it places more constrains on the implementation.
Based on this reasoning, the following sub-section includes one alternative for
the offer/answer mechanism.

9.4.3 Media based Negotiation

Chapter 4 includes a descriptive model of IP Media service, detailing different
aspects such as abstract architecture, and protocol description. The main idea
is on new signaling protocol based on different media (e.g. video or audio). The
complete detail of this signaling protocol is provided in Chapter 4. However,
the significance of the protocol is provided here in order to support within
the PeerConnection class (See Section 9.3.1) in the Web Browser. Currently,
PeerConnection implementation intends to support the SDP based negotiation.

In media based negotiation, media channels are opened, closed, and modified
only by their end points. Based on this basic idea, media based negotiation
differs in three points: 1) basic synchronization, 2) codec choice, and 3) tunnel
within a signaling path.

Basic synchronization roots from HTTP that is based on the request and
response transaction model. It means that a client sends a request and then only
server sends back a response. HTTP design influences the design of SIP. This
synchronization is useful when a transport protocol is unreliable, for example
UDP. If the SIP messages travel over UDP, the transactional model is used to
recover the lost messages.

At the core of SIP, the INVITE/OK/ACK transaction is used to open and
modify the media channel. Based on INVITE from an endpoint, the other end-
point accepts the request with the success message, OK method. In response,
the initiator acknowledges with the ACK method. This INVITE/OK/ACK
transaction carries offer and answer messages between endpoints. Once an IN-
VITE message is initiated by one endpoint, until it finishes with the ACK mes-
sage, the other endpoint can not initiate an INVITE method. This means that

133

an overlap is not possible in the same signaling path. If the overlap takes place,
which is called a race condition, both INVITE methods will fail. Then, both
should wait for a randomly chosen time and retry.

This bottleneck (developing a protocol from the basic INVITE/OK/ACK
transaction) demands to design an idempotent protocol from the transaction
nature. The media based negotiation can send new describe or select signals at
any time (See Section 4.2, 4.3 and [62]) once the media channel is opened. This
media based negotiation gains the benefit of reliability from TCP. As mentioned
earlier, modification of media channel in one direction will be independent of
modification of other direction media flow. In addition, the overall protocol is
not constrained in terms of programming complexity and performance, because,
describe and select signals have update information without changing the fun-
damental state compared to the INVITE/OK/ACK transaction. Therefore, it
can be described as idempotent.

Codec choice in the media based negotiation is different from SIP. In a SIP, an
INVITE method has a set of codecs that the offerer can handle. The answerer
chooses one codec. The SIP based negotiation takes a toll on performance.
The media based negotiation decouples codec choice in the two directions. In
each direction, one end point sends unilaterally a set of possible choices in a
descriptor and the other end chooses one in a selector. It is guaranteed that
once an end point has received a selector, it knows exactly which codec it is
expected to interpret. In this unilateral nature, both endpoints send descriptors
and selectors concurrently.

The last difference is media bundling. In the media based negotiation, every
tunnel within a signaling path controls one media channel, to be completely
independent of every other tunnel. This is not the case in SIP in which SIP
signal for controlling media considers all media channels. This media bundling
in SIP makes it more difficult to program intermediary entities. Additionally,
media bundling increases the probability of race conditions, causing significant
performance penalty. This means that a transaction to control a video channel
contends with a transaction to control an audio channel on the same signaling
path.

This thesis intends to defend that this aspect is also included into the Peer-
Connection class in the Web Browsers, because media based negotiation is sig-
nificantly better than the SIP. In any manner, the SIP is a dominant protocol,
widely used in operator and service provider networks. Therefore, these two
- offer and answer negotiation mechanism based on SDP and media based ne-
gotiation - should be considered to be included into the Web browsers. Web
application developers choose the right method based on needs. Another aspect
could be Interoperability. It explains what will happen if both approaches are
separately supported in two endpoints? This kind of situation is not considered
at this point. However, it is possible to propose a gateway solution in order to
address this problem.

9.5 Conclusion

This chapter considers two different use cases in order to validate the new system
- MOCSP. The solution for Call Transfer with consultation hold does not gain
the same result or is slightly complex than SIP solution. Essentially, MOCSP

134

does not naturally consider the interactions between the network boxes.
Moreover, IP mobility will not be used for comparing the difference between

the SIP and newly proposed MOCSP system, because session continuity can
be achieved by sending new session description information. If TCP migrate
complaint Web server and Web browser are deployed in their respective places,
session continuity can be enabled at any stage. However, TCP migrate deploy-
ment is not mandatory for session continuity. The idea used in SIP can be
exploited for IP mobility and session continuity in the MOCSP system.

In fact, MOCSP is a good candidate for the communication system, sup-
porting the existing services. However, MOCSP requires a mechanism for inter-
actions between network boxes. This will enable to propose new services based
on MOCSP.

Additionally, in order to perform the prototype work, the recent develop-
ments at standard bodies and open source contributions are discussed. Finally,
this thesis views two different negotiation mechanisms - offer and answer nego-
tiation mechanism based on SDP and media based negotiation, because both
should be included in to the Web browsers in order to support real time com-
munication services natively.

135

Part III

Conclusion

136

Chapter 10

Conclusion

Shifting from the paradigm of a single creator to many creators with communi-
cation services is an important goal. This paradigm shift has taken place in the
Web platform by releasing the creative power of the people. However, this goal
is not addressed with communication services by the research community.

The goal of empowering the users with communication services has many
technical challenges. I present three aspects:

I. providing openness and flexibility of the communication infrastructure to
end users.

II. reducing the complexity behind the development of network-based session
services.

III. improving the scalability of the signaling layer in the communication in-
frastructure.

The main contribution of this thesis is a proposal of the MOCSP concept
and system for inter-personal communications. In MOCSP, users (callees) get
control over the signaling protocol and can design services based on their needs.
Callees create communication hyperlinks that are shared with callers for estab-
lishing the sessions. Clients for the callers are downloaded when callers click
on the given communication hyperlinks. Therefore, it is very easy to change
the semantic of the signaling protocol in order to meet the changing needs.
This freedom on communication services (i.e. without waiting for any func-
tions from any body) allows the users to innovate with communication services.
The MOCSP concept supports diversity while managing the complexity of the
communication services.

Two different services are considered to explain the importance of network-
based, session-based services and how system development is simplified for them.
The two use-cases represent two different requirements: service logic executed
during the call establishment and mid-call, and cooperation of network call
control and endpoints.

The solutions for the network-based, session-based services depend on a sin-
gle entity called network box. The main logic is placed in the network box based
on the sessions. This approach is validated by two different use cases : user mo-
bility and partial session transfer and retrieval. In the user mobility use case that

137

Properties IMS (pre-defined) P2P SIP MOCSP
Scalability Well (need proper

capacity planning)
Well Well

Complexity SIP routing config-
uration

Arrangement of the
overlay.

Only Web hosting
of the MOCSP in-
stance

Needed computing resources Higher than
MOCSP

Allocating re-
sources for message
overhead (propor-
tion to O(log(N)))

Resources for host-
ing network boxes
and resources used
in DNS

Session setup latency Higher than
MOCSP

Olog(N) Average three hops
(network box and
two hops in DNS)

Table 10.1: Comparison of different signaling architectures based on the pro-
posed scalability evaluation framework. Here, N is the number of super-nodes
in a P2P overlay

needs network-initiated session transfer, the network box performs as a forking
proxy, a B2BUA and a registration server. This means that the network box
behaves as a media orchestrator. This model can be used for another use case
called missed call situation. Compared with the SIP based solution, MOCSP
based user mobility solution can save the computing processing power at least
by removing six SIP message parsing and processing overhead per session in a
SIP proxy.

For PSTR, this single media orchestrator - the network box - is responsible
for partial session transfer and retrieval across multiple devices. This architec-
ture facilitates network-initiated and user-initiated partial session transfer and
retrieval at the caller and callee sides. It means that any number of transfer
and retrieval can be performed by a network box and (or) users within a single
session. In addition, the complexity for developing this solution is reduced in
two ways: 1) via a single media orchestrator at the network box and by 2) a
signaling protocol design. I separate the signaling protocol into media control
and auxiliary protocol based on the software engineering approach - ’separa-
tion of concern’. Since the MOCSP solution is based on the Web, an end user
(callee/caller) can transfer and retrieve the partial session by the drag-and-drop
of widgets in their Web browser. This widget-based approach will also increase
the user’s experience.

This thesis analyzes the scalability of a signaling architecture for inter-
personal communication services based on four criteria: the level of scalability,
level of complexity, the amount of computing resources needed and the session
setup latency. Table 10.1 lists the comparison of three different signaling ar-
chitectures based on four aspects. This preliminary analysis shows clearly that
the MOCSP based architecture can outperform the other two existing archi-
tectures, IMS and P2P SIP. By taking advantage of parallelism, the MOCSP
based architecture scales without adding complexity. More importantly, the
number of calls does not influence the session setup time, relying on the right
capacity planning. In a nutshell, this approach can manage any number of calls
(supporting state-ful network based session services (e.g. user mobility)) while

138

increasing resources without compromising the average response time.

139

Chapter 11

Future Work

This chapter discusses future work into four sections: 1) prototype and further
validation, 2) methodology for scalability validation, 3) contribution to standard
bodies and 4) possible extensions.

11.1 Prototype and Further Validation

The conceptual framework for answering the listed research problems has been
established in this thesis with analytical results. However, it is possible to
extend by prototyping the solutions listed in the contribution part. This section
presents all the relevant prototyping work except scalability validation to be
done in future. The scalability validation is given separately in Section 11.2

Prototyping the MOCSP system as proposed in Chapter 5 is a major step.
This has two impacts on validation. The first is to validate the communication
services between two browsers where signaling protocol, media components and
asynchronous communication between Web browser and Web server work to-
gether without inducing problems. The second impact is to encourage users to
use the MOCSP system. Over time, it is possible to check how users benefit
from this model by analyzing it with questions like: 1) How many new session-
based services have been developed based on their needs? 2) Has openness and
flexibility been useful to end users? This will be very effective validation.

The second validation will be prototyping the user mobility solution. This
prototyping helps to verify the integration of context information, forking proxy
and network-initiated session transfer. Moreover, latency during the soft handoff
will be measured for user acceptance.

The third prototyping is to validate three aspects with PSTR: 1) Valida-
tion of the PSTR at the callee and caller sides regardless of the originator -
network-initiated and user-initiated. 2) Validation by measuring latency dur-
ing the transfer and retrieval in different settings (e.g. Web browsers behind
firewalls/proxies). 3) Validation to formalize the behaviour of the network box,
caller and callee boxes when they send messages (e.g. IsSplit() and Split())
with the same intention. All these three validations can be performed on the
developed prototype. In parallel, an evaluation of protocol design (separation
of media control protocol and auxiliary protocol) can be performed with the
help of formal verification - model checking languages (e.g. Promela language,

140

Alloy [132]) and model checkers (e.g. SPIN [133], Alloy Analyzer). It is possible
to have an automated method for the verification of temporal safety properties
of concurrent and distributed systems in model checking. This model checking
evaluation indicates possible consistencies/inconsistencies with constraints and
goals of the proposed design.

11.2 Scalability Validation

This section details a methodology to validate the scalability aspect of MOCSP
against the other communication systems based on the established framework.
The proposed scalability evaluation framework consists of four parameters: scal-
ability limit, complexity level, needed computing resources, and session setup
latency.

Scalability depends on dimensioning of the system in advance with an antic-
ipated performance. This turns out that anticipation of expected performance
should be satisfied. In the MOCSP case, dimensioning of a system has to take
into account two factors: performance of Web server (including hardware archi-
tecture and software systems) and frequency of call requests.

In MOCSP, each MOCSP instance is unique and does not depend on other
MOCSP instances. However, allocating the number of MOCSP instances to a
particular computing system (hardware, OS and Web server) depends on the
anticipated performance. It means that if a particular computing system has x
MOCSP instances, x calls should be made concurrently. This core aspect (allo-
cating the number of MOCSP instances and the number of simultaneous calls,
and session setup latency) should be validated through an experimentation.

[134] evaluates the performance of SIP proxy in different configurations (such
as state-less vs. stateful proxying, using TCP rather than UDP, or including
MD5-based authentication). Throughput (i.e. calls per second) and response
time are measured against the different configurations in IBM BladeCenter with
Red Hat Enterprise Linux and Gigabit Ethernet connectivity.

To provide a similar environment for both experimentations (IMS/SIP or
MOCSP), this thesis will choose the same hardware (e.g. two Intel Clovertown
quad-core chip) and OS (prefer Ubuntu) for both experimentations. Initially,
the experimentation indicated in [134] will be carried out with two configurations
(stateful UDP No auth and stateful TCP No Auth). In these two configurations,
proxy behaves as stateful and no authentication support, but it will support two
different transport protocols (UDP and TCP).

Later, on the same hardware and OS, an experiment based on MOCSP will
be performed. To be informative, I provide the relevant lab setup and configura-
tions both at the server side and client side. Then, there is a discussion on what
parameters should be measured. Based on these parameters, the question how
analysis can be performed in order to make a concrete conclusion is explained.

11.2.1 Experimentation Setup

• Figure 11.1 shows the experimentation setup that will be used to evaluate
the scalability.

• Server side hardware and OS:

141

Figure 11.1: Lab experimentation setup. Each thick line shows the TCP con-
nection to be used for sending (as well as receiving) the signaling messages.
Each connection indicates each client connection to the MOCSP instance.

– Hardware and OS configuration for server: each hardware and OS
performs differently. This thesis prefers to use two Intel Clover-
town quad-core chips, and each core is with 2.2 GHz and exploits
instruction-level parallelism techniques. This hardware setup is used
in [83] to measure the throughput (calls per second) on the UDP
protocol stack and multi-process (MP) programming model.

– This experimentation will use the Ubuntu operating system with a
Linux 2.6.18 kernel on Intel Clovertown.

– It is possible to modify the Linux kernel default sysctl settings [135]
and TCP options. Initially, default values will be used. If needed,
relevant changes will be made as performed in [136].

– A target Web server will be developed using Node.js. Each MOCSP
instance is uniquely deployed in Node.js based Web server and is
named as siva.mocsp.com, paul.mocsp.com, noel.mocsp.com, etc. See
Section 9.3.2 for more detail of Web server development.

– In the multi-core platform, there are two different configurations pos-
sible for Node.js. First, a single instance of node (a single thread)
will be running in the two Intel Clovertown quad-core chips. An-
other arrangement is to add the cluster module [128] into Node.js in
order to take advantage of multi-core systems. The cluster module
launches a cluster of node processes to handle the load (number of

142

requests). The two different setups mentioned above are considered
in this experimentation.

– Regarding the domain name setting, this thesis should register for the
mocsp.com domain and deploy the name server for the mocsp.com
domain. This name server responds to all DNS queries from clients.

– The virtual DNS resolution is activated in the Web server. It means
that a single physical machine hosts many MOCSP instances. Re-
quests to each MOCSP instance are forwarded based on host infor-
mation given in the HTTP header.

– To obtain OS statistics and functional profiling results, oprofile [137]
is used in the server side

• Client Side:

– This thesis will develop a new load generator called MOCSPp that is
similar to SIPp [138]. The load generator is deployed in both sides –
One is at the callee side and the other one is at the caller side. The
caller side load generator produces (and receives) messages as shown
in Figure 5.3. Likewise, the callee side load generator produces (and
receives) as shown in Figure 5.3. This load generator creates many
client instances in a single machine. Therefore, it is easy to make
the experiment. MOCSPp will initially support the basic session
establishment (as shown in Figure 5.3) and will only support one
transport protocol (TCP).

– Two load generators (one for callee and the other for caller) will be
deployed in two different machines running on Ubuntu OS.

– The message flow is the same as shown in Figure 5.3. Here the
basic session setup is considered. In terms of features, this session
setup is equivalent to INVITE-200-OK in SIP. The effect arising from
registration (indicated as a REGISTER message in the call flow in
Figure 5.3) is not considered.

• DNS arrangement and network configuration

– In order to reflect a real situation, two DNS servers are deployed in
the experimentation setup. The caller sends a DNS query to the local
name server (shown in Figure 11.1) for the DNS name resolution.
Once it received a response from the name server for the mocsp.com
domain, the local name server responds to callers. Similarly, each
callee also performs the DNS operation in order to reach the MOCSP
web server.

– All the servers are deployed within the experimentation network and
connected by an Ethernet switch.

• Measurements

– Based on the implementation setup, two parameters, number of calls
per second (throughput) and session setup time, are measured during
the experimentation. Additionally, when the number of calls per sec-
ond keeps increasing, what will happen to the session setup latency?

143

The throughput is measured when CPU is reaching 90 percent of its
level.

– Throughput is referred to the number of completed calls per second.

– Session setup latency is defined as time between when the caller clicks
on the communication hyperlink (CLICK as shown in Figure 5.3) and
when a select(sel2) message is received. This delay is perceived by
the user who is initiating a call. There are some less interesting
parameters such as call duration and termination (i.e., close).

– The impact of DNS will be analyzed for the session setup latency and
scalability.

– For each metric (throughput and latency), 5 runs are performed to
find the value. Each run lasts for 120 seconds after a 5 second warm-
up time. Finally, the cumulative distribution function (CDF) of re-
sponse times for various load levels will be drawn to illustrate how
response time varies with load, particularly at 95th and higher per-
centiles.

– In this experimentation, a threshold value for throughput will be fixed
when session setup latency starts increasing dramatically. Therefore,
the anticipated performance will be satisfied.

• Analysis:

– The first comparison is between the IMS and MOCSP to find out
that which setup supports (peak throughput) a higher number of
calls per second?.

– Based on the results (number of MOCSP instances deployed in a
single Web server), it is possible to extrapolate the needed computing
resources when the number of MOCSP instances is given. This way,
it is easy to find the number of Web servers (including hardware)
to be deployed that is equivalent to the given number of MOCSP
instances divided by proven number of MOCSP instances in that
hardware and software setup.

– The final conclusion on the scalability aspect will be made by con-
sidering and analyzing the two different experimentations.

– In fact, performance can be increased when some possible changes
are made in OS, Web server and transport protocols. For example,
applications are executed directly in a hardware box without using
an operating system in bare computing [82]. Therefore, it is possible
to eliminate overhead in the OS. There are other possible changes
in OS as shown in [136]. These changes are to modify the Linux
kernel default sysctl settings [7] and TCP options. Similar to [134],
SIP proxy server is benchmarked in a multi-core platform [83]. The
relevant experimentations based on the above mentioned different
configurations will be made in the future.

144

11.3 Contribution to Standard Bodies

This thesis can feed its contributions into two standard bodies: 1) Real-
Time communication in the Web Browser platform at IETF and W3C and
2) signaling and media transfer mechanism among networked devices in
homes, offices, and elsewhere by UPnP.

From the concept, architecture and use cases, I argue that MOCSP pro-
motes Web and communication services convergence. This paradigm adds
communication related resources (i.e. user session identified by URI) into
a remarkable information space of the Web that grows across languages,
cultures, and media [5]. Recently, IETF has created one working group
called Real-Time Communication in WEB (RTC-Web). The main desire
is to standardize the basis for voice/video communication so that multi-
media session can be established between any two compatible browsers.
In the mean time, at W3C , the Web Real-Time Communications Work-
ing Group, part of the Ubiquitous Web Applications Activity, is to define
client-side APIs to enable Real-Time Communications in Web browsers.

Even though these activities are in the early stage, this thesis provides a
list of activities that is in the scope of MOCSP requirements. At IETF,
RTC-Web defines the multimedia capabilities for web-browsers that re-
quire necessary protocols such as RTP, STUN, ICE, and an understanding
of SDP (RFC 4566). Besides, the much debated topic is whether signaling
protocol should be defined as part of RTC-Web or not. MOCSP defends
that designing a proper signaling protocol is the role of developer (in the
present research, each end user). Hence, this thesis argues against defining
the signaling protocol as part of RTC-Web.

At last, MOCSP implementation can provide some requirements or can
benefit from the established standards. The vision of IETF and W3C is
to enable innovation on top of the basic components. MOCSP will be a
pioneer based on this vision and will be complemented by IETF and W3C
activities.

UPnP Forum standardizes network devices in a home and office environ-
ment. It establishes standard Device Control Protocols (DCPs) across
multi-vendors. In fact, the present researcher proposes a naming scheme
and the protocol stack for a media device (media source and sink) for
supporting the PSTR in Chapter 7. For ubiquitous usage, it is important
to standardize the naming scheme and the protocol stack at the UPnP
Forum. This activity is planned to be performed in future.

11.4 Possible Extensions

A few works are to be performed in order to obtain a complete commu-
nication system. However, I identify three activities that are essential
extensions for the MOCSP system.

First of all, a Web server receives different amounts of calls at a time
and each call has different holding time. This call rate variation brings
about many challenges that need to be solved in order to use computing

145

resources effectively. Since the call rate varies, there is a higher possi-
bility that computing resources are under-utilized. The two parameters
- scaling increment and scaling efficiency in [72] - are the two important
properties of an underlying computing infrastructure. This means that
these two parameters are not associated with communication systems es-
pecially in the MOCSP system, but provided by the underlying computing
infrastructure.

To address the under-utilized problem, this thesis proposes to exploit the
elasticity and cloud computing concept. Initially, the idea is to estimate
the right size of computing resources/network boxes in a single Web server
that can sustain a pre-defined number of calls per second (i.e. call rate).
Then, based on the variation of call rate, excessive computing resources
(i.e. unused computing resources) will be given to resource-hungry-cloud
applications. For achieving this goal, there are two candidate solutions
using hypervisor and container based operating system [139].

Hypervisor provides high isolation whereas container based operating sys-
tem supports high efficiency. However, solutions mentioned in the previous
paragraphs do not answer the question of scaling increment and scaling
efficiency. Essentially, this proposed work should be performed with dy-
namic resource allocation across virtual machines or processes. This ex-
tension is primarily important for the MOCSP system, in order to solve
the under-utilization problem. The work on the understanding of over-
head and benefits of introducing virtualization is planned to be performed
in the future.

Next, MOCSP will help the (Web-) developer users to build their own
applications. It is important to know how to reach all kinds of end users
who can develop their own communication services easily. One technique
might be defining the protocol agnostic primitives. Another aspect is
to improve the ability of end-user programmers who develop error free
software. Hence, this work will need a further exploration of End user
software engineering/End user programming [140]. This research may
provide tools and techniques for end users to become programmers.

Finally, defining a security framework for the MOCSP system is an essen-
tial activity. In the existing systems, e.g. IMS, identification of a caller
and a callee is not at the same level as in the MOCSP. This means that
the identification of a callee is important and identification of a caller is
not important based on the communication hyperlink concept. This situ-
ation may change as callee wishes to know who the caller is? The existing
security mechanisms for the Web, for example OpenID [141] and OAUTH
[142] can be extended to support the MOCSP system. Moreover, security
problems at the infrastructure level - at the Web browser and at the Web
server should be considered in parallel. For an instance, the security threat
with the WebSockets is widely discussed by the research community [143].
The possible solutions for this kind of threat will effect the current im-
plementation of the MOCSP system. The other possible security threats
may be associated with DNS rebinding and cross-origin resource binding.
This security work will be performed in the future.

146

Bibliography

[1] “Webrtc 1.0: Real-time communication between browsers.”
http://dev.w3.org/2011/webrtc/editor/webrtc.html.

[2] R. von Behren, J. Condit, and E. Brewer, “Why events are a bad idea
(for high-concurrency servers),” in Proceedings of the 9th conference
on Hot Topics in Operating Systems - Volume 9, (Berkeley, CA,
USA), pp. 4–4, USENIX Association, 2003.

[3] T. O’Reilly and J. Battelle, ““web squared: Web 2.0 five years on.”
http://www.web2summit.com/web2009/public/schedule/detail/10194.

[4] R. Guha, “Toward the intelligent web systems,” in Computational
Intelligence, Communication Systems and Networks, 2009. CICSYN
’09. First International Conference on, pp. 459 –463, july 2009.

[5] “Architecture of the world wide web.”
http://www.w3.org/TR/2004/REC-webarch-20041215/.

[6] Alcatel-Lucent., “Immersive communications.” http://www.alcatel-
lucent.com/immersive-communications/.

[7] 3GPP, “Ip multimedia subsystem (ims);stage 2 (release 10),” in TS
23.228 V10.3.1 (2011-01).

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peter-
son, R. Sparks, M. Handley, and E. Schooler, “Sip: Session initiation
protocol.” IETF RFC 3261, June 2002.

[9] P. SIP, “http://www.p2psip.org/,”

[10] S. Ludwig, J. Beda, P. Saint-Andre, R. McQueen,
S. Egan, and J. Hildebrand, “Xep-0166: Jingle.”
http://xmpp.org/extensions/xep-0166.html.

[11] W. Chou, L. Li, and F. Liu, “Wip: Web service initiation protocol
for multimedia and voice communication over ip,” in Web Services,
2006. ICWS ’06. International Conference on, pp. 515 –522, 2006.

[12] M. J. Arif, S. Karunasekera, and S. Kulkarni, “Sovoip: middleware
for universal voip connectivity,” in Proceedings of the 2007 ACM/I-
FIP/USENIX international conference on Middleware companion,
MC ’07, (New York, NY, USA), pp. 23:1–23:6, ACM, 2007.

[13] M. Boussard, P. Jabaud, O. Le Berre, F. Poussiere, and P. Lab-
rogere, “Communication hyperlinks: Call me my way,” in Intelli-
gence in Next Generation Networks, 2009. ICIN 2009. 13th Inter-
national Conference on, pp. 1 –5, 2009.

147

[14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time applications.” IETF RFC 3550.

[15] M. Handley, V. Jacobson, and C. Perkins, “Sdp: Session description
protocol.” IETF RFC 4566, July 2006.

[16] “Programmableweb.” http://www.programmableweb.com/telephony,
2011.

[17] “Parlay x 3.0 specifications.” http://docbox.etsi.org//TISPAN/Open/OSA/ParlayX30.html.

[18] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo, “Best
current practices for third party call control (3pcc) in the session
initiation protocol (sip),.” IETF RFC 3725, April 2004.

[19] R. M. Arlein, D. R. Dams, R. B. Hull, J. Letourneau, and K. S.
Namjoshi, “Telco meets the web: Programming shared-experience
services,” Bell Labs Technical Journal, vol. 14, no. 3, pp. 167–185,
2009.

[20] E. Cheung and P. Zave, “Principles, systems and applications of ip
telecommunications. services and security for next generation net-
works,” ch. Generalized Third-Party Call Control in SIP Networks,
pp. 45–68, Berlin, Heidelberg: Springer-Verlag, 2008.

[21] H. Jiang, A. Iyengar, E. Nahum, W. Segmuller, A. Tantawi, and
C. Wright, “Load balancing for sip server clusters,” in INFOCOM
2009, IEEE, pp. 2286 –2294, april 2009.

[22] V. Hilt and I. Widjaja, “Controlling overload in networks of sip
servers,” in Network Protocols, 2008. ICNP 2008. IEEE Interna-
tional Conference on, pp. 83 –93, oct. 2008.

[23] J. Rosenberg, “The session initiation protocol (sip) update method.”
IETF RFC 3311, September 2002.

[24] J. Rosenberg and H. Schulzrinne, “Reliability of provisional re-
sponses in the session initiation protocol (sip).” IETF RFC 3262,
June 2002.

[25] A. B. Roach, “Session initiation protocol (sip)-specific event notifi-
cation.” IETF RFC 3265, June 2002.

[26] A. Niemi, “Session initiation protocol (sip) extension for event state
publication.” IETF RFC 3903, October 2002.

[27] R. Sparks, “The session initiation protocol (sip) refer method.” IETF
RFC 3515, April 2003.

[28] J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle, “Session
initiation protocol (sip) extension for instant messaging.” IETF RFC
3428.

[29] C. Holmberg, E. Burger, and H. Kaplan, “Session initiation pro-
tocol (sip) info method and package framework.” IETF RFC 6086,
January 2011.

[30] 3GPP, “Overview of 3gpp release 5 - summary of all release 5 fea-
tures,” tech. rep., 3GPP - ETSI Mobile Competence Centre, 2003.

148

[31] 3GPP, “Ts 24.228: Signaling flows for the ip
multimedia call control based on sip and sdp.”
http://www.3gpp.org/ftp/tsg_sa/wg3_security/TSGS3_19_London/Docs/PDF/S3-
010340.pdf, July 2001.

[32] 3GPP, “Ts 24.229 ip multimedia call control proto-
col based on session initiation protocol (sip) and ses-
sion description protocol (sdp); stage 3 (release 9).”
http://www.quintillion.co.jp/3GPP/Specs/24229-940.pdf, June
2010.

[33]

[34] N. Banerjee and K. Dasgupta, “Telecom mashups: enabling web 2.0
for telecom services,” in Proceedings of the 2nd international confer-
ence on Ubiquitous information management and communication,
ICUIMC ’08, (New York, NY, USA), pp. 146–150, ACM, 2008.

[35] “Jsr 289: Sip servlet v1.1.” http://www.jcp.org/en/jsr/detail?id=289.

[36] D. Lozano, L. Galindo, and L. Garcia, “Wims 2.0: Converging ims
and web 2.0. designing rest apis for the exposure of session-based
ims capabilities,” in Next Generation Mobile Applications, Services
and Technologies, 2008. NGMAST ’08. The Second International
Conference on, pp. 18 –24, sept. 2008.

[37] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming inter-
net telephony services,” Network, IEEE, vol. 13, pp. 42 –49, may/jun
1999.

[38] L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix, and L. Reveillere,
“Language technology for internet-telephony service creation,” in
Communications, 2006. ICC ’06. IEEE International Conference
on, vol. 4, pp. 1795 –1800, june 2006.

[39] X. Wu and H. Schulzrinne, “Programmable end system services us-
ing sip,” in Communications, 2003. ICC ’03. IEEE International
Conference on, vol. 2, pp. 789 – 793 vol.2, may 2003.

[40] W. Jouve, N. Palix, C. Consel, and P. Kadionik, “Principles, sys-
tems and applications of ip telecommunications. services and secu-
rity for next generation networks,” ch. A SIP-Based Programming
Framework for Advanced Telephony Applications, pp. 1–20, Berlin,
Heidelberg: Springer-Verlag, 2008.

[41] F. Latry, J. Mercadal, and C. Consel, “Staging telephony service cre-
ation: a language approach,” in Proceedings of the 1st international
conference on Principles, systems and applications of IP telecommu-
nications, IPTComm ’07, (New York, NY, USA), pp. 99–110, ACM,
2007.

[42] P. Zave, “Principles, systems and applications of ip telecommunica-
tions. services and security for next generation networks,” ch. Un-
derstanding SIP through Model-Checking, pp. 256–279, Berlin, Hei-
delberg: Springer-Verlag, 2008.

[43] J. Peterson, C. Jennings, and S. R., “Change process for the session
initiation protocol (sip) and the real-time applications and infras-
tructure area.” IETF RFC 5727, March 2010.

149

[44] P. Zave, “Modularity in distributed feature composition,” in Soft-
ware Requirements and Design: The Work of, 2009.

[45] M. Jackson and P. Zave, “Distributed feature composition: a virtual
architecture for telecommunications services,” Software Engineering,
IEEE Transactions on, vol. 24, pp. 831 –847, oct 1998.

[46] M. Kolberg and E. H. Magill, “Managing feature interactions be-
tween distributed sip call control services,” Comput. Netw., vol. 51,
pp. 536–557, February 2007.

[47] X. Wu, J. Buford, K. Dhara, V. Krishnaswamy, and M. Kolberg,
“Feature interactions between internet services and telecommunica-
tion services,” in Proceedings of the 3rd International Conference
on Principles, Systems and Applications of IP Telecommunications,
IPTComm ’09, (New York, NY, USA), pp. 10:1–10:12, ACM, 2009.

[48] P. Zave, “Mid-call, multi-party, and multi-device telecommunication
features and their interactions,” tech. rep., Principles, Systems and
Applications of IP Telecommunications, August 2011.

[49] H. Schulzrinne, “Personal mobility for multimedia services in the in-
ternet,” in Proceedings of the European Workshop on Interactive Dis-
tributed Multimedia Systems and Services, (London, UK), pp. 143–
161, Springer-Verlag, 1996.

[50] J. A. Tuijn and D. Bijwaard, “Spanning a multimedia session across
multiple devices,” vol. 12, (New York, NY, USA), pp. 179–193, John
Wiley & Sons, Inc., February 2008.

[51] T.-P. Wang and K. Chiu, “An efficient scheme for supporting per-
sonal mobility in sip-based voip services,” IEICE Transactions,
vol. 89-B, no. 10, pp. 2706–2714, 2006.

[52] T.-P. Wang and H.-Y. Lee, “User location management for personal
mobility in sip-based voip services,” in Communications and Net-
working in China, 2008. ChinaCom 2008. Third International Con-
ference on, pp. 910 –914, aug. 2008.

[53] P.-h. Chang and T.-P. Wang, “Supporting personal mobility with
integrated rfid in voip systems,” in Proceedings of the 2009 Interna-
tional Conference on New Trends in Information and Service Sci-
ence, (Washington, DC, USA), pp. 1353–1359, IEEE Computer So-
ciety, 2009.

[54] B. Moltchanov, M. Knappmeyer, C. Licciardi, and N. Baker,
“Context-aware content sharing and casting,” in 12th ICIN, (Bor-
deaux, France), October 2008.

[55] M. Barachi, A. Kadiwal, R. Glitho, F. Khendek, and R. Dssouli,
“The design and implementation of architectural components for
the integration of the ip multimedia subsystem and wireless sensor
networks,” Communications Magazine, IEEE, vol. 48, pp. 42 –50,
april 2010.

[56] C. Jacob, H. Pfeffer, D. Linner, S. Steglich, L. Yan, and M. Qifeng,
“Automatic routing of semantic sip messages in ims,” in Internet
Multimedia Services Architecture and Applications, 2008. IMSAA
2008. 2nd International Conference on, pp. 1 –6, dec. 2008.

150

[57] T. Tang, Z. Mi, and R. Peng, “Adaptive service provisioning through
context-aware sip proxy,” Networking and Services, International
conference on, vol. 0, pp. 277–281, 2008.

[58] J. Rosenberg, “Obtaining and using globally routable user agent uris
(gruus) in the session initiation protocol (sip).” IETF RFC 5627,
October 2009.

[59] V. A. Balasubramaniyan, A. Acharya, M. Ahamad, M. Srivatsa,
I. Dacosta, and C. P. Wright, “Servartuka: Dynamic distribution
of state to improve sip server scalability,” Distributed Computing
Systems, International Conference on, vol. 0, pp. 562–572, 2008.

[60] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer, “Session
initiation protocol (sip) session mobility.” IETF RFC 5631, October
2009.

[61] S. Shanmugalingam, N. Crespi, and P. Labrogere, “My own com-
munication service provider,” in Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT), 2010 International
Congress on, pp. 260 –266, oct. 2010.

[62] P. Zave and E. Cheung, “Compositional control of ip media,” Pro-
ceedings of the 2006 ACM CoNEXT conference, pp. 18:1–18:12,
2006.

[63] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer, “The
virtual device: Expanding wireless communication services through
service discovery and session mobility,” in In Proceedings of the
IEEE International Conference on Wireless and Mobile Computing,
Networking, and Communications (Montreal, Aug. 22–24). IEEE
Communications Society, pp. 73–81, 2005.

[64] M. Hasebe, J. Koshiko, Y. Suzuki, T. Yoshikawa, and P. Kyzivat,
“Example call flows of race conditions in the session initiation pro-
tocol (sip).” IETF RFC 5407, December 2008.

[65] M.-X. Chen, C.-J. Peng, and R.-H. Hwang, “Ssip: Split a sip session
over multiple devices,” vol. 29, (Amsterdam, The Netherlands, The
Netherlands), pp. 531–545, Elsevier Science Publishers B. V., July
2007.

[66] M.-X. Chen and F.-J. Wang, “Session integration service over mul-
tiple devices,” International Journal of Communication Systems,
vol. 23, no. 5, pp. 673–690, 2010.

[67] R. Sparks, “The session initiation protocol (sip) referred-by mecha-
nism.” IETF RFC 3892, September 2004.

[68] “Upnp.” www.upnp.org.

[69] A. Vilei, G. Convertino, and F. Crudo, “A new upnp architecture for
distributed video voice over ip,” in Proceedings of the 5th interna-
tional conference on Mobile and ubiquitous multimedia, MUM ’06,
(New York, NY, USA), ACM, 2006.

[70] J. Dean, “Challenges in building large-scale information retrieval
systems: invited talk,” in Proceedings of the Second ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’09,
(New York, NY, USA), pp. 1–1, ACM, 2009.

151

[71] A. B. Bondi, “Characteristics of scalability and their impact on per-
formance,” in Proceedings of the 2nd international workshop on Soft-
ware and performance, WOSP ’00, (New York, NY, USA), pp. 195–
203, ACM, 2000.

[72] J. Y. Kim, G. W. Bond, E. Cheung, T. M. Smith, and
H. Schulzrinne, “An evaluation framework for highly available and
scalable sip server clusters,” in Proceedings of the 5th International
Conference on Principles, Systems and Applications of IP Telecom-
munications, IPTcomm ’11, (New York, NY, USA), pp. 1:1–1:10,
ACM, 2011.

[73] K. Ono and H. Schulzrinne, “Principles, systems and applications
of ip telecommunications. services and security for next generation
networks,” ch. One Server Per City: Using TCP for Very Large SIP
Servers, pp. 133–148, Berlin, Heidelberg: Springer-Verlag, 2008.

[74] “Fowler/noll/vo (fnv) hash.” http://isthe.com/chongo/tech/comp/fnv/.

[75] “Moving average.” http://en.wikipedia.org/wiki/Moving_average.

[76] G. Kambourakis, D. Geneiatakis, T. Dagiuklas, C. Lambrinoudakis,
and S. Gritzalis, “Towards effective sip load balancing: the snocer
approach,” in 3rd Annual VoIP Security Workshop, (Berlin, Ger-
many), June 2006.

[77] Y. Hong, C. Huang, and J. Yan, “Modeling and simulation of sip
tandem server with finite buffer,” vol. 21, (New York, NY, USA),
pp. 11:1–11:27, ACM, February 2011.

[78] C. Shen and H. Schulzrinne, “On tcp-based sip server overload con-
trol,” in Principles, Systems and Applications of IP Telecommuni-
cations, IPTComm ’10, (New York, NY, USA), pp. 71–83, ACM,
2010.

[79] A. Dutta, C. Makaya, S. Das, D. Chee, J. Lin, S. Komorita,
T. Chiba, H. Yokot, and H. Schulzrinne, “Self organizing ip mul-
timedia subsystem,” in Proceedings of the 3rd IEEE international
conference on Internet multimedia services architecture and applica-
tions, IMSAA’09, (Piscataway, NJ, USA), pp. 118–123, IEEE Press,
2009.

[80] J. Zou, W. Xue, Z. Liang, Y. Zhao, B. Yang, and L. Shao, “Sip
parsing offload: Design and performance,” in Global Telecommuni-
cations Conference, 2007. GLOBECOM ’07. IEEE, pp. 2774 –2779,
nov. 2007.

[81] J. Janak, “Sip proxy server effectiveness,” master thesis, Department
of Computer Science, Czech Technical University, Prague, Czech,
May 2003.

[82] A. Alexander, A. Wijesinha, and R. Karne, “A study of bare pc sip
server performance,” Systems and Networks Communications (IC-
SNC), 2010 Fifth International Conference on, pp. 392 –397, aug.
2010.

[83] Z. Jia, Z. Liang, and Y. Dai, “Scalability evaluation and optimization
of multi-core sip proxy server,” Parallel Processing, 2008. ICPP ’08.
37th International Conference on, pp. 43 –50, sept. 2008.

152

[84] J. Maenpaa and G. Camarillo, “Analysis of delays in a peer-to-peer
session initiation protocol overlay network,” in Consumer Communi-
cations and Networking Conference (CCNC), 2010 7th IEEE, pp. 1
–6, jan. 2010.

[85] C.-M. Cheng, S.-L. Tsao, and J.-C. Chou, “Unstructured peer-to-
peer session initiation protocol for mobile environment,” in Per-
sonal, Indoor and Mobile Radio Communications, 2007. PIMRC
2007. IEEE 18th International Symposium on, pp. 1 –5, sept. 2007.

[86] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communica-
tions, SIGCOMM ’01, (New York, NY, USA), pp. 149–160, ACM,
2001.

[87] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and proto-
cols for computer communications, SIGCOMM ’01, (New York, NY,
USA), pp. 161–172, ACM, 2001.

[88] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems,” in
IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), pp. 329–350, Nov. 2001.

[89] K. Singh and H. Schulzrinn, “Peer-to-peer internet telephony using
sip,” Tech. Rep. CUCS-044-04, Department of Computer Science,
Columbia University, New York, NY, Oct 2004.

[90] “Cio update: Post-mortem on the skype outage.”
http://blogs.skype.com/en/2010/12/cio_update.html.

[91] P. Saint-Andre, “Streaming xml with jabber/xmpp,” vol. 9, pp. 82
– 89, sept.-oct. 2005.

[92] M. Podgoreanu, P. Chitescu, and P. Saint-Andre, “Xep-0251: Jingle
session transfer,” 10 2009.

[93] W3C, “http://www.w3.org/2002/ws/.”

[94] “Webrtc.” http://www.webrtc.org/reference.

[95] S. Arbanowski, S. van der Meer, S. Steglich, and R. Popescu-Zeletin,
“The human communication space: Towards i-centric communica-
tions,” Personal Ubiquitous Comput., vol. 5, pp. 34–37, January
2001.

[96] S. Arbanowski, P. Ballon, K. David, O. Droegehorn, H. Eertink,
W. Kellerer, H. van Kranenburg, K. Raatikainen, and R. Popescu-
Zeletin, “I-centric communications: personalization, ambient aware-
ness, and adaptability for future mobile services,” Communications
Magazine, IEEE, vol. 42, pp. 63 – 69, sept. 2004.

[97] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol – http/1.1.” RFC
2616, June 1999.

153

[98] I. Fette and A. Melnikov, “The web socket protocol.”
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-
11, June 2011.

[99] “The web socket api.” http://dev.w3.org/html5/websockets/.

[100] “Why web 2.0 will end your privacy.” http://www.bit-
tech.net/columns/2006/06/03/web_2_privacy/.

[101] “A privacy manifesto for the web 2.0 era.”
http://gigaom.com/2008/01/08/a-privacy-manifesto-for-the-web-
20-era/.

[102] R. Copeland, “Network intelligence - facilitate operators win in mo-
bile broadband era,” in Intelligence in Next Generation Networks,
2009. ICIN 2009. 13th International Conference on, pp. 1 –6, oct.
2009.

[103] G. W. Bond, T. M. Smith, E. Cheung, and P. Zave, “Specification
and evaluation of transparent behavior for sip back-to-back user
agents,” in Principles, Systems and Applications of IP Telecommu-
nications, IPTComm ’10, (New York, NY, USA), pp. 48–58, ACM,
2010.

[104] E. Cheung and T. Smith, “Getting sip endpoints and network call
control to work well together,” Principles, Systems and Applications
of IP Telecommunications, August 2011.

[105] “Context casting (c-cast).” http://www.ict-ccast.eu/.

[106] C. A. L. Boris Moltchano, Michael Knappmeye and N. Baker,
“Context-aware content sharing and casting,” in In: ICIN 2008,,
(Bordeaux, France), 2008.

[107] A. Al-Hezmi, T. Magedanz, J. A Jaen Pallares, and C. A Riede,
“Evolving the convergence of telecommunication and tv services over
ngn,” in International Journal of Digital Multimedia Broadcasting,
p. 11, 2008.

[108] P. Mockapetris, “Domain names - concepts and facilities.” IETF
RFC 1034, November 1987.

[109] “Dns resource records.” http://www.zytrax.com/books/dns/ch8/.

[110] P. Mockapetris, “Domain names—implementation and specifica-
tion.” IETF RFC 1035, Nov 1987.

[111] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “Dns performance
and the effectiveness of caching,” IEEE/ACM Trans. Netw., vol. 10,
pp. 589–603, Oct. 2002.

[112] “How to disable client-side dns caching in windows xp and windows
server 2003.” http://support.microsoft.com/kb/318803.

[113] R. Cox, A. Muthitacharoen, and R. Morris, “Serving dns using a
peer-to-peer lookup service,” in Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems, IPTPS ’01, (London,
UK, UK), pp. 155–165, Springer-Verlag, 2002.

[114] “Specweb2005.” http://www.spec.org/web2005/.

154

[115] C. MacCarthaigh, “Scaling httpd 2.x to 50,000 concurrent down-
loads.” In ApacheCOn EU„ June 2006.

[116] RedHat, “Specweb2005 benchmark using red hat enterprise linux
5.2 on a hp proliant dl580 g5, v1.1,” February 2009.

[117] S. Foley and W. MacAdams, “Trust management of xmpp federa-
tion,” in Integrated Network Management (IM), 2011 IFIP/IEEE
International Symposium on, pp. 1192 –1195, may 2011.

[118] R. Sparks, A. Johnston, and D. Petrie, “Session initiation protocol
(sip) call control - transfer.” IETF RFC5589, June 2009.

[119] A. C. Snoeren and H. Balakrishnan, “An end-to-end approach to
host mobility,” in Proceedings of the 6th annual international con-
ference on Mobile computing and networking, MobiCom ’00, (New
York, NY, USA), pp. 155–166, ACM, 2000.

[120] “Ericsson labs.” https://labs.ericsson.com/apis/web-real-time-
communication/.

[121] “Update on webkit contribution.”
https://labs.ericsson.com/developer-community/blog/update-
webkit-contributions.

[122] “Nodejs.” http://nodejs.org/.

[123] http://blog.zenika.com/index.php?post/2011/04/10/NodeJS.

[124] “Libev.” http://software.schmorp.de/pkg/libev.html.

[125] “Libeio.” http://software.schmorp.de/pkg/libeio.html.

[126] “Http paraser.” https://github.com/joyent/http-
parser/tree/master.

[127] “Websocket.io.” https://github.com/LearnBoost/websocket.io.

[128] “Cluster.” http://learnboost.github.com/cluster/.

[129] “Multi-core http server with nodejs.”
http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/.

[130] P. Westin, H. Lundin, M. Glover, J. Uberti, and F. Galligan,
“Proposal for the ietf on "rtp payload format for vp8 video"
draft-westin-payload-vp8-02.” http://tools.ietf.org/html/draft-
westin-payload-vp8-02.

[131] J. Rosenberg and H. Schulzrinne, “An offer/answer model with the
session description protocol (sdp).” IETF RFC 3264, June 2002.

[132] “Alloy modelling language.” http://alloy.mit.edu/community/.

[133] “Spin.” http://spinroot.com/spin/whatispin.html.

[134] E. M. Nahum, J. Tracey, and C. P. Wright, “Evaluating sip server
performance,” SIGMETRICS Perform. Eval. Rev., vol. 35, pp. 349–
350, June 2007.

[135] “Linux kernel. linux ip sysctl documentation..”
http://www.kernel.org/doc/Documentation/networking/ip-
sysctl.txt.

155

[136] B. Veal and A. Foong, “Performance scalability of a multi-core web
server,” in Proceedings of the 3rd ACM/IEEE Symposium on Ar-
chitecture for networking and communications systems, ANCS ’07,
(New York, NY, USA), pp. 57–66, ACM, 2007.

[137] “Oprofile.” http://oprofile.sourceforge.net/news/.

[138] “Sipp.” http://sipp.sourceforge.net/.

[139] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, EuroSys ’07, (New York, NY, USA), pp. 275–287, ACM, 2007.

[140] M. Burnett, C. Cook, and G. Rothermel, “End-user software engi-
neering,” Commun. ACM, vol. 47, pp. 53–58, September 2004.

[141] “Openid.” http://openid.net/.

[142] “Openauth.” http://oauth.net/.

[143] L.-S. Huang, E. Chen, A. Barth, E. Rescorla, and C. Jackson, “Talk-
ing to yourself for fun and profit,” In H. J. Wang, editor, Proceedings
of W2SP, May 2011.

156

Appendix A

French Summary

A.1 Motivation

Le Web a changé la façon dont les gens exécutent les activités quotidi-
ennes et a évolué rapidement (par exemple le Web 2.0, HTML5) depuis
l’invention du Web en 1989, par Sir Tim Berners Lee. Une des raisons de ce
succès est que "Le Web adopte des technologies relativement simples avec
une évolutivité suffisante, l’efficacité et l’utilité "; deux autres facteurs qui
contribuent également à la réussite du Web sont les suivants: son ouver-
ture et sa flexibilité. L’ensemble de ces facteurs servent comme un moyen
clé pour la haute participation des usagers à la création d’applications.
En conséquence, le Web ouvre la voie à des applications innovantes dans
l’ère d’Internet où les utilisateurs finaux deviennent producteurs et con-
sommateurs de contenus et de services.

Différents services de communication de la distribution du courrier de
lettres à la téléphonie, voix / vidéo sur IP (Internet Protocol), e-mail,
forums de discussion Internet, des conférences vidéo / audio, et immersive
communication ont évolué au fil du temps. Comme les autres services
de communication, la voix / vidéo sur IP est un besoin essentiel des per-
sonnes. Par exemple, autour du premier trimestre de 2011, le nombre
d’utilisateurs de Skype connectés a atteint 30 millions - 30 millions de
personnes sont en ligne en même temps. En outre, il existe un besoin
urgent - la fourniture de services de communication pour les personnes
dans la planète, car les abonnements de téléphonie mobile et le nombre
de personnes connectées à l’Internet chez eux ne cessent d’augmenter de
jours en jours. Environ deux milliards de personnes se sont connectées
à l’Internet dans le premier trimestre de 2011. Comme nous sommes de
plus en plus connectés à Internet, nous faisons tous partie d’un monde en
réseau.

La Voix / vidéo sur système de communication IP est basé sur la célèbre
architecture en couches constituée d’une couche de signalisation et une
couche de support. Le protocole de signalisation est utilisé pour créer,
modifier et terminer des sessions médias entre les participants. Les sys-
tèmes de communication existants peuvent être construits soit par IP Mul-

157

timedia Subsystem (IMS) basée sur Session Initiation Protocol (SIP) ,
Peer-to-Peer (P2P) SIP, XMPP / Jingle (comme GTalk) , Web Service
Initiation Protocol (WIP) based Service oriented communication (SOC),
Service oriented VoIP (SOVoIP) , or Web personal communication sys-
tems.

En règle générale, les systèmes de communication adoptent une approche
bottom-up pour fournir des services de communication de masse pour les
utilisateurs sans beaucoup de personnalisation, servant ainsi d’intermédiaires
entre appelés et appelants. L’appelé est le récepteur des appels et l’appelant
est à l’origine des appels.

Toutefois, deux systèmes de communication largement utilisés sont IMS et
SIP P2P, où SIP est utilisé comme protocole de signalisation. L’architecture
IMS divise la couche de signalisation en deux couches: une couche de con-
trôle de service et une couche de service. La couche de contrôle de service
a beaucoup d’entités fonctionnelles entre l’appelant et l’appelé. Sauf les
agents utilisateurs, toutes les autres entités fonctionnelles sont contrôlées
par l’opérateur. Cela signifie que l’opérateur doit déployer les nœuds
fonctionnels requis. Les nœuds effectuent en majorité des fonctions de
rendez-vous pour des messages de signalisation d’une session. De même,
les services tels que la présence sont déployés dans la couche de service,
en s’appuyant sur la couche de contrôle de service commun. Les objectifs
importants de spécifications IMS sont de réduire CAPEX et OPEX du
fournisseur, de favoriser la convergence telecom et Internet et de raccour-
cir le temps de mise sur le marché de nouveaux services. Plus important
encore, la pensée de l’innovation de l’utilisateur final est sous-estimée dans
la conception initiale des systèmes de communication IMS.

Beaucoup de recherches ont été consacrées au développement de nœuds
fonctionnels et des protocoles (SIP, Real-Time Transport Protocol (RTP),
Session Description Protocol (SDP)) pour l’architecture IMS. Un travail
prolongé telles que la fourniture de la fonction clic-to-dial pour les util-
isateurs Web est effectuée dans le but d’attirer les contributions des util-
isateurs finaux. Cependant, ces approches ne guident pas l’innovation de
l’utilisateur final. Par exemple, selon " ProgrammableWeb ", il ya environ
200 mashups qui sont des services de communication liés à 5100 mashups.
Un mashups est un service en combinant les services existants. Le prin-
cipal facteur derrière ce peu de mashups de services de communication,
c’est que ces systèmes de communication ne pouvaient pas répondre à
divers besoins des utilisateurs finaux. Cela déclenche une autre question
que l’infrastructure contrôlée du prestataire de services devrait changer de
middleware pour les chercheurs et les geeks à une réalité au jour le jour
pour des milliards de personnes.

A.2 Enoncé du problème

La question de recherche globale de cette thèse tente de répondre est la
suivante:

158

"Comment faire pour permettre aux utilisateurs de contribuer / développer
différents services de communications basée sur les mashups? Ou Quand
les utilisateurs pourront bénéficier de la liberté (ou sans la permission)
d’innover dans des services de communication? "

Cette thèse considère que les utilisateurs ne sont pas naïfs sur les infor-
mations et les technologies de la communication. Afin d’être en mesure
de répondre à la problématique de la recherche, j’ai défini un ensemble de
questions de recherche importantes qui traitent le problème en détail.

I. L’infrastructure de communication existante, IMS, ne possède pas
assez d’ouverture et de flexibilité pour attirer des tiers ou des utilisa-
teurs finaux pour développer des applications basées sur les services
de communication.

Je définis l’ouverture et la flexibilité comme suit: 1) l’ouverture sig-
nifie que des utilisateurs développent leurs applications ou mettre en
œuvre leurs nouvelles idées (pour les nouveaux services) avec moins
de fiabilité. 2) la flexibilité signifie que les applications développées
peuvent être facilement modifiées.

Les principales caractéristiques des services de communication sont la
session / le contrôle des appels, le routage entre l’appelant et l’appelé,
et la gestion d’état. Tout en définissant le protocole de contrôler
les fonctionnalités, le fournisseur de services (SP) d’abord offre un
contrôle d’appel Application Programming Interface (API) afin d’
autoriser aux développeurs tiers.

Les fonctionnalités liées aux communication de services qui sont main-
tenant définies par SP sont données aux utilisateurs finaux par les
API. Ces fonctionnalités / API sont sous la forme de SIP API ou API
HTTP ParlayX défini. L’interface IMS Service Control (ISC) est SIP
API, standardisé pour les développeurs ou tiers. Par conséquent, des
services basés sur Third Party Call Control (3PCC) peuvent être
mis au point. Cependant, le développement des services est lourd
pour les développeurs en raison de la complexité du protocole SIP et
l’architecture. Beaucoup de recherches ont été menées pour cacher la
complexité de l’infrastructure de l’opérateur contrôlé en fournissant
des abstractions ou des API. Un haut niveau d’abstraction est défini
par le groupe Parlay (par exemple Réseau IMS) pour les développeurs
Web. Par exemple, les applications click-to-cadran est basée sur
3PCC. Basé sur une application clic-to-dial, un utilisateur dans le
site Web peut lancer et terminer une session. Cela signifie que ces
API fournissent des fonctionnalités limitées. Ces approches ne ren-
contrent pas des besoins de l’utilisateur final (c.-à-pas beaucoup dif-
férents services composés sur la base de cette API).

Essentiellement, la plupart de ces API (par exemple les types de
données de session) sont au niveau de la recherche et ne sont pas
déployés dans le réseau pour une utilisation utilisateur final parce
qu’ils sont l’injection de la complexité dans la plate-forme. Le niveau
de complexité est également associée à la granularité de API. En

159

outre, le troisième les utilisateurs du parti ou à la fin dépendent
fortement de la prestataire de service particulier.

En outre, le modèle de conception du système de communication
est semblable au one-size-fits-all modèle où chaque session doit se
comporter de façon similaire. Le noyau les aspects du protocole de
signalisation sont définies par les normes. Les changements (Pour de
nouvelles fonctionnalités) dans le protocole de contrôle doivent être
analysés avec plus de soins. Jusqu’à changements ajouter dans les
lieux potentiels, ces nouvelles fonctionnalités ne seront pas activées.
Par exemple, si un client n’a pas la fonction et établit une session,
cette nouvelle fonctionnalité ne sera pas activée. En règle générale,
les changements pour les fonctions prennent beaucoup de temps à sa
dérouler pendant la normalisation et le déploiement.

En fournissant l’ouverture et la flexibilité suffisante pour les utilisa-
teurs finaux, ces utilisateurs obtiendront le contrôle sur la couche de
signalisation. Cette liberté encourage les utilisateurs finaux à com-
poser de nouveaux services basés sur leurs besoins.

II. Basé sur le réseau, la session des services sont très difficiles à dévelop-
per dans le l’infrastructure existante. Le réseau basé, basée sur la
session d’interfonctionnement des services avec une session ou sont
exécutées dans une session. Par exemple dans l’appel Renvoi sur oc-
cupation, si l’appelé est occupé, l’appel sera transmis à la prédéfinie
destination par l’appelé. Ce service est exécuté uniquement lors des
établissements d’appel. Beaucoup d’efforts ont été consacrés à com-
poser ces services. Ce genre de problème est dénommé métrages
d’interactions. Cependant, il ya un cas particulier où le service doit
être exécuté au cours des établissements d’appels et/ou au milieu des
appels. Une telle situation n’est pas considérée par la communauté
des chercheurs.

En outre, l’élaboration d’une solution basée sur le protocole SIP et
l’architecture IMS apporte une plus grande complexité et nécessite
une connaissance profonde des interdépendance des noeuds fonction-
nels dans le réseau IMS. En outre, basés sur le réseau liée à la session
services nécessitent la coopération de contrôle des appels du réseau
et les points de terminaison, par exemple, le transfert partiel session
et de recherche (PSTR). En PSTR, la logique de service devrait être
déployée dans des points de l’Application Server SIP (AS) et de fin de
support network initiés et initiée par l’utilisateur PSTR. Dans le SIP
ou les spécifications IMS, ce type dont la coopération est négligée.
Au lieu de cela, le fait de placer la logique indépendamment dans
le contrôle des appels du réseau et les points de terminaison est en-
couragée. Ce déploiement n’est pas efficace dans l’architecture IMS,
car indépendamment déployé la logique des services dans les points
intermédiaires et de fin ne peut pas être facilement coordonnée.

En outre, cette PSTR crée une complexité de déploiement. L’utilisateur
et le réseau des approches latérales ont besoin de déployer le mécan-
isme 3PCC, respectivement. Cela signifie que pour PSTR au côté de
l’utilisateur, deux instances de 3PCC doivent être exécutées. Pour
la PSTR par le côté réseau, une instance de 3PCC doit être exécutés

160

dans le SIP AS. Par conséquent, cette séparation de déploiement
ajoute à la complexité dans le développement d’une solution.

Au-delà, Eric et al mettant l’accent sur la composition de multiples
basées sur SIP 3PCC contrôleurs. Si plusieurs contrôleurs basés sur
SIP sont dans une voie de signalisation, comment le système se com-
porter? Leur recherche est dans le sens d’avoir de nombreux con-
trôleurs d’appels dans la voie de signalisation.Cet aspect n’est pas
considéré comme dans cette thèse.

PSTR permet aux utilisateurs mobiles de transférer et de récupérer
en partie à des médias des dispositifs qui sont situés dans leur voisi-
nage. De même, les services qui peuvent être déployé dans le réseau
enrichissent l’expérience utilisateur.

III. L’infrastructure de signalisation tels que IMS et P2PSIP devient com-
plexe quand un taux d’appel élevé est connu.

La couche de signalisation dans IMS a de nombreuses entités fonc-
tionnelles telles que Proxy-Call Session Control Function (P-CSCF),
service (S-) CSCF et AS. Deux aspects énumérés ci-dessous devraient
être pris en compte lorsqu’un taux d’appel élevé est connu. Première-
ment, la capacité d’un nœud qui mettent en œuvre les fonctions, PC-
SCF, S-CSCF, etc est finie, par conséquent, il devient saturé à un
moment donné. Deuxièmement, le protocole de signalisation est un
protocole basé sur l’état contrairement à Hyper Text Transfer Proto-
col (HTTP). Ces états sont conservés dans ces entités fonctionnelles.
Par conséquent, les messages entre l’appelant et l’appelé doivent être
compatibles. Cela signifie dans une session tous les messages doivent
suivre le même chemin. Les deux aspects ci-dessus énumérés en-
travent une solution efficace pour l’évolutivité du problème. Une
solution possible consiste à accueillir un équilibreur de charge au sein
de la couche de signalisation comme une entité fonctionnelle supplé-
mentaire.

H.Jiang et al proposent un équilibreur de charge plus fine qui a une
connaissance de la SIP tout comme différentes opérations dans le
coût SIP et le traitement des transactions différentes. Cette solution
permet de plus en plus de l’évolutivité du service de la couche de
contrôle en transmettant le trafic de procurations sur la base de la
capacité. Toutefois, cette équilibreur de charge tombe de manière
récursive sur le problème de évolutivité. En outre, aucun travail n’a
été signalé sur la façon de résoudre le problème de l’évolutivité quand
un grand nombre d’utilisateurs sont connectés à des services (Logique
de service, par exemple dans SIP AS) dans la couche de service.

Lorsque vous utilisez load-balancers, le prestataire de services devrait
être conscients de la congestion. Cela signifie que chaque nœud ne
doit pas être surchargé pendant le taux d’appel élevé. En cas de
surcharge dans un ou plusieurs nœuds physiques, il devrait y avoir
un effondrement de débit dans le réseau IMS / SIP. En outre, la
surcharge du réseau ne sera pas récupérer facilement. Contrôle de
surcharge dans un réseau des serveurs SIP est un sujet largement
débattu dans la recherche et la norme des organisations (par exem-
ple l’IETF). Les solutions existantes pour éviter la congestion sont

161

inefficaces et complexes, des ressources informatiques exigeants pour
la congestion algorithme d’évitement.

Ce niveau plus élevé de complexité qui est injecté par l’équilibreur
de charge et le mécanisme d’évitement de la congestion exige des
ressources informatiques supplémentaires et ajoute de la latence à la
configuration de la session. Cette utilisation inefficace des ressources
de l’informatique sape également les efforts écologique d’informatique.

A.3 La solution proposée

Basé sur la revue de la littérature, il est établi que la couche de signalisa-
tion middleware est partagée par tous les utilisateurs et est commandée
par un opérateur. Toutefois, des solutions pour les problèmes de recherche
de cette thèse sont complexes et demandent des coûts élevés pour garantir
l’interopérabilité (dans l’IMS). Par conséquent, cette thèse se propose de
prendre une nouvelle approche pour résoudre les problèmes de recherche à
travers une nouvelle conception. La nouvelle approche est nommée " My
Own Communication Service Provider" (MOCSP) et est traduit par un
fournisseur personnelle de communication. La partie principale de la solu-
tion réside dans le concept MOCSP et la spécification du système MOCSP
dans la plate-forme Web.

Tout d’abord, on présente les concepts de base et le système de MOCSP.
Ensuite, il est démontré comment établir une session de communication
dans le système MOCSP. Après, une analyse sur la l’ouverture de la flex-
ibilité du système est exposé. Le système MOCSP permet le développe-
ment de services orientés réseau ou orientés session. Effectivement, une
solution pour les deux cas d’utilisation différents - la mobilité d’utilisateur
et le transfert de la session partielle et récupération (PSTR) est présentée.
Enfin, l’aspect de montée en charge pour la couche signalisation est défini
et discuté sur la base du système MOCSP.

A.3.1 MOCSP: concept et système

MOCSP est un concept qui permet aux utilisateurs finaux de créer (et
disposer) par eux-mêmes leurs plates-formes pour les services de commu-
nication. Ce concept vise à fournir tous les éléments de base des services
de communication pour les utilisateurs finaux. Pour les services de com-
munication, les utilisateurs finaux ont besoin d’un contrôle sur les couches
de signalisation et de média. Cette thèse présente les mécanismes qui per-
mettent aux utilisateurs finaux de contrôler complètement la couche de
signalisation afin de concevoir les services innovants dont ils ont besoin.

Je propose une approche top-down (de haut en bas) basée sur le Web pour
la réalisation du concept MOCSP. L’architecture MOCSP suit le principe
de la séparation de la couche de signalisation et celle des média afin de
proposer une architecture flexible. Sur la base de ce principe, je propose
une architecture de haut niveau du système MOCSP comme le montre la
figure 5.2, constitué de plan de contrôle et le plan média.

162

Le plan de contrôle est instancié MOCSP comme une application Web et
est déployée dans un serveur Web, enrichi par des hyperliens de commu-
nication. L’appelant et l’appelé sont dans deux navigateurs Web connecté
au serveur Web MOCSP. Les messages de signalisation circulent entre
l’appelant et l’appelé via le serveur Web.

Pour les flux médias, je propose un streaming point-à-point entre l’appelant
et l’appelé. Cela signifie que la vidéo et l’audio est transporté séparément
par Real-Time Transport Protocol (RTP). Les codecs vidéo et audio ne
rentrent pas dans le champ d’application de cette thèse. En outre, le
serveur média est proposé (entité en option) dans le but de transcodage
si les deux appelant et l’appelé ont des codecs différents.

A.3.2 Le flux d’appels

Le but principal de la session de contrôle est de contrôler le flux des médias,
y compris la négociation de codec entre l’appelant et l’appelé. Toutefois,
MOCSP ne définit pas un protocole de signalisation par défaut parce que
les utilisateurs définissent leur propre protocole et extensions en fonction
de leurs propres besoins. Cette section se propose de montrer comment
la session de communication est rendue possible entre les deux naviga-
teurs. Ce cas d’utilisation génère deux exigences. L’un est la définition du
protocole de signalisation et l’autre est de savoir comment permettre les
communications asynchrones entre le navigateur Web et le serveur Web.

Pour la communication asynchrone entre le navigateur Web et serveur
Web, le système MOCSP dépend de la technologie WebSocket ; il va aug-
menter l’efficacité de programmation et réduire le temps de latence pour
les appels établis dans l’environnement Web. J’emploie WebSocket pour
connecter l’appelé et le serveur Web MOCSP, et l’appelant et le serveur
Web MOCSP. Le serveur Web MOCSP identifie l’appelé et l’appelant sur
la base des connexions WebSocket établies.

Le flux d’appels pour une session utilisateur/une session de contrôle est
proposé dans la figure 5.3. Le principal but du flux d’appel est de réduire
la latence pour l’établissement de l’appel. Le protocole de signalisation
décrit le contrôle du point de terminaison médias en utilisant les messages
open/oack/desc/sel/close/ackclose.

A.3.3 L’ouverture et flexibilité

Le système MOCSP peut être modélisé comme le montre la figure 5.4.
Comme au moins deux intervenants sont impliqués dans une session,
l’appelé reçoit un plus grand contrôle dans le système MOCSP. Cette
modèle offre une plate-forme individuelle (la fusion de la couche de service
et la couche de contrôle de session dans IMS).

Avec les services de communication, si un utilisateur veut concevoir un
nouveau service, il a besoin du contrôle du protocole de signalisation.
Dans le système MOCSP, les utilisateurs finaux ont une accessibilité com-
plète dans protocole de signalisation. Pour certains services, les utilisa-
teurs conçoivent un protocole de signalisation adéquat, indépendamment

163

de tour fournisseur. Le système et le protocole existants (par exemple IMS
/ SIP) ne supportent pas des changements aisément sauf pour des carac-
téristiques importantes en raison de problèmes de sécurité, de complexité
et d’interopérabilité. Le processus de changement pour le protocole SIP est
expliqué dans la RFC 5727. Cependant, les changements peuvent être faits
rapidement pour les séquences de messages du protocole de signalisation
dans le système MOCSP. La flexibilité obtenue peut être expliquée plus
en détail comme suit: Quand un service est développé, toute la logique de
service réside dans le serveur Web. Les clients sont stockés dans le serveur
Web et sont livrés aux appelants et aux appelés à la demande. Cela sig-
nifie qu’un appelé obtient son client sur son inscription et les appelants
téléchargent leurs clients en cliquant sur un lien hypertexte qui est fourni
par l’appelé. Si des modifications sont apportées, qui devrait avoir un
impact important dans le côté du client. Cela peut être effectué facile-
ment en un seul endroit. L’intelligence des services est placée dans le côté
de l’appelant, côté de l’appelé et le serveur Web MOCSP. Conceptuelle-
ment mettre plus d’intelligence dans le réseau (MOCSP Web Server) est
la considération principale de la conception.

A.3.4 La mobilité utilisateur

La solution pour le cas d’utilisation considérant la mobilité des utilisateurs
est développée sur la base du système MOCSP. Cette solution simplifie
le développement, parce que notre solution permet de réduire les nœuds
d’interdépendance entre l’appelant et l’appelé en un seul nœud qui est
appelé "Network box" (la boîte de réseau). Fondamentalement, cette thèse
agrège deux fonctionnalités existantes (qui sont complémentaires) en une
seule fonction.

La solution peut être décrite sur la base d’un modèle abstrait. L’idée prin-
cipale est de proposer un modèle descriptif qui devrait être indépendant de
l’architecture. Par conséquent, les ingénieurs ont la liberté de mettre en
œuvre une plate-forme particulière. Dans ce cas, un modèle descriptif est
de considérer une seule entité qui sera responsable de la gestion des médias
au sein d’une session pour le cas d’utilisation la mobilité des utilisateurs.
Un modèle descriptif général pour la mobilité des utilisateurs est illustré
dans la figure 6.1, en s’appuyant sur le modèle descriptif utilisé pour iden-
tifier le comportement correcte des médias par les serveurs d’applications.
Le modèle descriptif proposé se compose de trois composants: Caller Box,
Callee Box and Network Box (resp. composant appelant, composant de
l’appelé et la boite réseau).

Bien que ce modèle soit intuitif, il est important d’indiquer comment notre
modèle gère une session. Pour le cas d’utilisation la mobilité des utilisa-
teurs, la gestion de session est principalement déléguée à la ”Network box”
qui est un intermédiaire entre l’appelant et l’appelé. Dans une équivalente
avec la terminologie SIP, la ”Network box” est amenée à agir comme "Reg-
ister", "B2BUA" et "forking proxy". L’approche basée sur la ”Network
box” réduit le traitement des messages indésirables dans chaque session et
la complexité de la coordination fonctionnelle.

164

La ”Network box” est une entité responsable dans le serveur Web MOCSP.
Ce modèle descriptif est facile à déployer dans le système MOCSP sans
faire face à beaucoup de problèmes d’ingénierie.

A.3.5 Partial session transfer and retrieval

La solution pour le cas d’utilisation du transfert de session partielle et de
récupération est exposée en se basant sur le système MOCSP. Le nœud
central peut accomplir les objectifs des utilisateurs (l’appelant et l’appelé)
telles que le transfert et la récupération des médias partiels. Cette solution
permet n’importe quel nombre de transfert de session et la récupération
des côtés de l’appelé et de l’appelant de manière efficace quel que soit les
initiateurs.

La solution consiste en l’architecture et le protocole de contrôle, et les
diagrammes de flux d’appels pour le transfert/récupération de sessions
initiées à partir du réseau ou par l’utilisateur. Dans ce résumé, je vous
présente l’architecture de ce cas d’utilisation.

L’architecture proposée, montrée dans la figure 7.1, dispose d’une ”net-
work box” et ”Caller Box”, ”Callee Box” (boîte du réseau, boite appelan-
t/appelé). ”Caller Box” et ”Callee Box” sont des points finaux pour les
appelants et les appelés. Les ”medium device” peuvent envoyer et/ou re-
cevoir le média (audio / vidéo) et sont disponibles à proximité de l’appelé
et l’appelant lors d’une session. Ces ”medium device” peuvent être divisés
en ”medium source” et ”medium sink”. La figure 7.1 ne montre pas le
”medium device”, mais montrent le ”medium source” et le ”medium sink”.
Une ”network box” coordonne les flux médias à travers les ”Caller Box”
et ”Callee Box”, et ”medium device” selon les demandes des utilisateurs
ou de sa compréhension du contexte de l’appelé et l’appelant.

Sur la base de cette architecture, je conçois un protocole adéquat qui peut
être utilisé pour le transfert/récupération de sessions initiées à partir du
réseau ou par l’utilisateur.

Dans la solution, la ”network box”, se comportant en mode gestion, prend
en charge les besoins de transfert/récupération de sessions initiées à partir
du réseau ou par l’utilisateur. Le principal avantage de cette solution est
sa simplicité en tirant profit de la souplesse et l’accessibilité du système
MOCSP (l’unique " orchestrateur ") et de la séparation des problématiques
dans le protocole de signalisation.

A.3.6 La montée en charge

L’évaluation du système de MOCSP par rapport à la montée en charge se
fait en fonction de quatre paramètres : les limites de la montée en charge,
le niveau de complexité, les ressources de calcul nécessaires et la latence
de l’établissement de la session.

I. Une montée en charge linéaire : Par défaut, chaque instance MOCSP
est séparée et les besoin individuels de ressources augmentent linéaire-
ment avec le nombre des ”network box” et le nombre d’appels reçue.

165

Par conséquent, il est facile d’adopter une approche de montée en
charge verticale. Ceci signifie que le nombre d’instances MOCSP qui
peuvent être ajoutés est limité par la capacité d’un serveur physique.
Sur la base de cette approche, le système global est évolutive (monte
en charge). De plus, les ressources de calcul nécessaires pour une ses-
sion de communication ne varieront pas lorsque le taux d’appel varie.
Cela signifie que les ressources doivent monter en charge linéairement
avec le nombre de ”network box” déployé et le nombre de appels
reçus.

II. Complexité: L’architecture MOCSP est claire et simple. Les util-
isateurs qui mettent en œuvre les systèmes MOCSP n’ont besoin
ni de mettre en œuvre des techniques d’équilibrage de charge et ni
de se préoccuper de l’aspect de routage définies dans le protocole
SIP et les réseaux overlay P2P. Une session est établie entre deux
utilisateurs, basés sur des connexions TCP. Les messages nécessaire
pour une session sont envoyés dans les deux sens entre deux naviga-
teurs par l’intermédiaire de la ”network box”. Enfin, le fournisseur de
services devrait envisager correctement le déploiement des ”network
box” dans un serveur unique.

III. Ressources de calcul nécessaires: Selon nos calculs, le système com-
plet a besoin d’environ 240, 000 serveurs Web afin de supporter 6 mil-
liards de personnes qui utilisent des systèmes MOCSP. Dans ce cas,
3 milliards de personnes peuvent appeler l’autre 3 milliards de per-
sonnes. Dans ce calcul, les ressources informatiques nécessaires pour
la couche médias ne sont pas prises en considération. Même si il est
possible de calculer les ressources informatiques nécessaires pour les
systèmes MOCSP, il n’est pas possible de comparer quantitativement
avec un autre système de communication existant. Analytiquement,
je démontre que MOCSP requière le minimum de ressources. Pour
une session, une ”network box” se compose de deux connexions TCP.
De plus, la ”network box” doit gérer la session et effectuer la gestion
d’état pour l’appelant et l’appelé. Dans le système MOCSP, une seule
entité est comprise entre appelant et l’appelé; une ”network box” a
besoin de ressources informatiques que pour la gestion d’état. Cela
signifie que notre approche élimine des services de recherche inutiles
qui se trouvent dans de nombreux nœuds intermédiaires. Par con-
séquent, le besoin de ressources informatiques est moindre que IMS
et SIP P2P.

IV. La latence de l’établissement de la session: De toute évidence, le
temps de latence de l’établissement de la session peut être rendue in-
dépendant du nombre des appels effectués dans le système MOCSP.
Ceci est possible grâce à la montée en charge linéaire et l’unicité de
l’entité (c.-à-d O(1)) entre l’appelant et l’appelé. Enfin, cette évalua-
tion montre que le système basé sur MOCSP est une solution simple
pour un taux d’appel élevé par rapport aux systèmes de communica-
tion existants.

166

A.4 Conclusion

Passer du paradigme d’un seul créateur à plusieurs créateurs avec des services
de communication est un but important. Ce changement de paradigme a été
rendu possible avec une plate-forme Web en aidant le pouvoir et la puissance
créative des gens/utilisateurs. Cependant, ce but n’est pas adressé avec des
services de communication par la communauté de recherche.

La contribution principale de cette thèse est une proposition du concept
MOCSP ainsi qu’un système pour communications interpersonnelles. Dans
MOCSP, les utilisateurs/les appelants peuvent contrôler leur appel à travers
un protocole de signalisation et peuvent concevoir leurs besoins. Le concept
MOCSP supporte la diversité en gérant la complexité des services de communi-
cation.

Deux services différents permettent d’expliquer l’importance de la session de
service de la base de réseau (network-based) et comment le développement de
système est simplifié pour deux cas d’utilisation. Les deux scénarios représentent
deux exigences différentes : le service logique exécutée pendant l’établissement
d’appel et le milieu d’appel et la coopération du contrôle d’appel réseau et du
fin d’appel.

Les solutions pour les services de session à base de réseau dépendent d’une
seule entité appelée ’Network box’. La logique principale est placée dans cette
network box basée sur les sessions. Cette approche est validée par deux scénarios
d’utilisation : mobilité utilisateur et partial session transfer/retrieval (PSTR).

Comparé à la solution SIP, la solution utilisateur basé sur MOCSP peut
économiser la puissance de traitement de calcul au moins de six messages dans
un contexte de session en SIP proxy. L’architecture PSTR facilite le transfert de
session partiel amorcé par le réseau et amorcé l’utilisateur ainsi que la récupéra-
tion coté interlocuteur et appelant. Cela signifie que n’importe quel numéro de
transfert peut être exécutée par la network box et (ou) des utilisateurs dans une
seule session.

La complexité pour développer cette solution est réduite de deux façons : 1)
Via un orchestrateur médiatique à la ’Network box’ et par 2) un protocole de
signalisation. Je sépare le protocole de signalisation dans le contrôle médiatique
et le protocole auxiliaire basé sur l’approche de génie logiciel - ’ séparation de
préoccupation” (separation of concern)..

Cette thèse a analysé l’évolutivité d’une architecture de signalisation pour
des services de communications interpersonnelles basées sur quatre critères - le
niveau d’évolutivité,le niveau de complexité, le besoin des ressources informa-
tiques nécessaires de calcul et l’installation de session de latence (session setup
latency). L’architecture basée sur MOCSP surpasse deux autres architectures
existantes IMS et P2P SIP.

En profitant du parallélisme, l’architecture MOCSP échelles linéairement
sans ajout de complexité. Puisque le niveau de complexité de MOCSP est O
(1), les ressources nécessaire de calcul et la latence d’installation de session sont
moins importantes que les besoins de signalisation de l’architecture dans l’IMS
et de SIP P2P.

Plus important encore, le nombre d’appels n’a pas d’influence sur le temps de
configuration de session. En un mot, cette approche permet de gérerle nombre
d’appels (soutenir l’état-Ful services réseau basés sur des sessions (la mobilité
utilisateur, par exemple).), tandis que l’augmentation des ressources de façon

167

linéaire, sans mettre en péril le temps de réponse moyen.

168

