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- LAB: LABoratory frame 

- LAPW: Linearized Augmented Plane Wave 

- LCAO: Linear Combination of Atomic Orbitals 

- LT: Low temperature 

- MAS: Magic Angle Spinning 

- MTA: Muffin-Tin Approximation 

- MTO: Muffin-Tin Orbital 

- MQ-MAS: Multiple Quantum Magic Angle Spinning 

- NCPP: Norm Conserving PseudoPotentials 
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- PBE: Perdew, Burke and Ernzerhof exchange-correlation functional 
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- T2: spin-spin relaxation time (transverse) 
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Solid-state NMR is a powerful method for the structural characterization of solid materials 

(number and relative multiplicities of crystallographic sites, environment, through space and  

through bond connectivities,...). 

The 
19

F nucleus, a I = 1/2 spin, presents a high sensitivity, 100% natural abundance and large 

chemical shift dispersion. Thus, 
19

F NMR provides valuable information on the local environment of 

fluorine atom. Since the installation of a solid-state NMR spectrometer in 1993 in Le Mans and 

owing to the longstanding collaboration with the "Oxydes et Fluorures" department, the 

development of 19F NMR as a characterization tool of amorphous and crystalline, inorganic and 

hybrid fluorides has become a red thread in the "Caractérisation structurale et dynamique par RMN 

du solide et Modélisation" (CRM) team research. During the past two decades, this issue has 

beneficiated from major methodological and instrumental advances in solid state NMR technique as 

well as advances in calculations of NMR parameters as explained below. 

Twenty years ago, the Magic Angle Spinning (MAS) technique was available up to 15 kHz, 

which allows averaging parts of the dipolar interaction and chemical shift anisotropy, both sources 

of NMR line broadening, and thus enhances spectral resolution. In numerous studies, the 

interpretation of 
19

F MAS NMR spectra was commonly based on the intuitive assumption that 

similar structural environments lead to similar 
19

F isotropic chemical shifts (δiso). By comparison with 

the 
19

F δiso values measured for well-known crystalline binary fluorides, the 
19

F resonances of 

crystalline or amorphous compounds can be assigned to different fluorine environments. In the case 

of sites with different multiplicities, the relative intensities of the corresponding resonances also 

provide additional constraints for the assignment.
1-12

 Looking for a more reliable assignment 

method, a semi-empirical model is then developed by B. Bureau
13

 during its Ph. D. thesis. In this 

model, the 
19

F δiso is calculated from structural data and several phenomenological parameters. 

Later on, advances in the MAS technique allow achieving higher spinning frequencies up to 35 

kHz, leading to more efficient averaging of strong dipolar interactions and chemical shift anisotropy. 

With such line-narrowing efficiency, isotropic NMR lines are more resolved and the study of complex 

multisite fluorides becomes easier. 
19

F NMR studies of barium and/or calcium and/or sodium 

fluoroaluminates were then undertaken. An assignment of the 
19

F NMR lines to the F sites was 

attempted, using the semi-empirical model previously defined and we then realized that its 

phenomenological parameters may need to be refined, depending on the family of compounds.
14-17

 

This model was nonetheless helpful for the characterization of F environments in disordered 

oxyfluoride compounds.
18- 20

 Simultaneously, and to avoid the use of such phenomenological 
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parameters, ab initio calculations of shielding tensors were carried out, using the Gauge Including 

Atomic Orbital (GIAO) method in the Gaussian code.
21,22

 This method is efficient on molecular 

systems but, in the case of crystalline compounds, they require non-trivial definitions of cluster to 

mimic the crystalline structure. Moreover, for these two approaches, uncertainties on calculation 

results were sometimes larger than the experimentally measured 
19

F δiso difference between two 

distinct resonances, preventing an unambiguous assignment of the 
19

F NMR resonances. 

SATRAS
23,24

 and MQ-MAS
25

 sequences were applied on 
23

Na and 
27

Al nuclei, allowing precise 

determination of their quadrupolar parameters even in multisite compounds.15,16,26-28 The Linearized 

Augmented Plane Wave (LAPW)
29

 approach, using the periodic boundary conditions, implemented 

within the WIEN2k code30 was used to predict Electric Field Gradient (EFG) tensors, and turns out to 

be really robust and accurate.
15,16,26,27,31

 This method was then applied as a complementary tool to 

the solid state NMR and powder diffraction techniques for refinement or determination of the 

crystalline structures of β-Ba3AlF9,
27

 β-CaAlF5
15 

and β-Pb2ZnF6.
32

 

New developments in hardware and pulse sequence design occurred and correlation NMR 

sequences, which provide information about spatial proximities or through-bond connectivities, 

became feasible in solid-state. CP-MAS HETCOR,33 J-HMQC34,35 and DQ-SQ36 have been used to 

probe heteronuclear (
19

F/
27

Al,
37 19

F/
207

Pb
32,38

) and homonuclear (
19

F/
19

F) proximities
32,37-40 

leading to 

partial or complete experimental assignments of F sites in several inorganic fluorides such as 

Pb5Ga3F19, β-Pb2ZnF6, β-BaAlF5, α-CaAlF5, Ba3Al2F12 and α-LaZr2F11. For β-BaAlF5, α-CaAlF5, Ba3Al2F12 

compounds,37,39 these experimental assignments differ from those previously established with the 

semi-empirical model,
14

 thus revealing the need for a more accurate method for calculation of 
19

F 

δiso values. The great potential in combining powder diffraction, multidimensional and multinuclear 

NMR to determine structures of crystalline compounds, and ab initio calculations to refine the 

atomic positions was illustrated on Pb5Ga3F19
38

 and β-Pb2ZnF6.
32

 Moreover, the multiple-quantum 

filtered J-resolved experiment
41

 has been proposed to accurately measure heteronuclear 
19

F-
207

Pb 

1
J-coupling constants, even though these couplings are not visible on high speed 19F 1D MAS spectra.  

Ulltrafast  MAS (up to 70 kHz) and ultrahigh field (up to 23.3 T) are now available allowing 

another substantial improvement of the resolution of 19F 1D and 2D NMR spectra and were applied 

on β-BaAlF5, α-CaAlF5
15

 and Ba3Al2F12,
38,39

 β-ZrF4 and CeF4
17

, α- and β-NaCaAlF6
16

 and α-LaZr2F11.
40

 

In 2001, the pioneering work of Pickard and Mauri gives rise to a major breakthrough in 

calculations of NMR parameters of crystalline systems using periodic boundary conditions, leading 

to the GIPAW42,43 approach. Implemented in the CASTEP44 code, it allows the calculation of shielding 
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and EFG tensors (PAW
45,46

 approach) and has widespread applications.
47,48

 More recently, Joyce et 

al.
49

 has extended the GIPAW approach for the calculation of J-coupling tensors.  

The calculation of NMR parameters (shielding, EFG and J-coupling tensors) from first-

principles may significantly enhance the utility of NMR. To test the accuracy and robustness of this 

PAW/GIPAW approach, we then plan to apply, on inorganic fluoride materials, high resolution solid 

state NMR methods for accurate determination of NMR parameters and experimental assignments 

when possible, and to compare them with the corresponding calculated parameters and 

assignments. This project, named RMN3MPL (Résonance Magnétique Nucléaire 

Multidimensionnelle et Modélisation des Matériaux en Pays de la Loire), was selected and has 

received financial support from the Région des Pays de la Loire. The first GIPAW calculations on 

inorganic fluorides have been published
50

 between the submission of the project and its beginning. 

It involves the Institut des Molécules et des Matériaux du Mans (IMMM, UMR CNRS 6283), the 

Institut des Matériaux Jean Rouxel (IMN, UMR CNRS 6502) of Nantes and the Conditions Extrêmes 

et Matériaux: Haute Température et Irradiation (CEMHTI, UPR CNRS 3079) of Orléans. This project 

was divided into two parts. A part was carried out by A. Sadoc (post doctoral position at IMN 

between 09/2009 and 08/2011) and was devoted to DFT calculations (application and development 

of GIPAW method), from crystallographic data, of NMR parameters (chemical shifts, quadrupolar 

parameters and J-couplings). This thesis work includes high resolution solid state NMR for precise 

measurement of NMR parameters, determination of correlation between the various nuclei of the 

material and assignment of NMR resonances to the crystallographic sites, calculations of EFG using 

WIEN2k and also calculations applying the PAW/GIPAW method after a training undertaken by A. 

Sadoc. 

The overview of the thesis is as follows.  

The first chapter of the thesis deals with the basic principles of NMR spectroscopy, the 

different solid state NMR interactions and the experimental techniques used to study the inorganic 

fluorides. The general ideas behind the PAW/GIPAW method and its applications are also discussed 

in this chapter.  

The second chapter focuses on establishing a correlation between experimental 
19

F δiso and 

calculated 
19

F isotropic shieldings (σiso) in binary fluorides with obvious assignment of the 
19

F NMR 

lines to the fluorine crystallographic sites, in order to predict the 
19

F δiso values with reliable 

accuracy. We have also determined and calculated the quadrupolar parameters for these binary 

fluorides which were unknown or not determined/calculated accurately. This chapter is made up of 
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two papers corresponding to the sections 2.2, on alkali, alkaline earth and rare earth fluorides
51

 and 

2.3, on column 13 metal fluorides.
52

 A third section deals with columns 11, 12 and 14 metal 

fluorides. Calculations presented in sections 2.2 and 2.3 were achieved by A. Sadoc. 

The third chapter is devoted to the study of binary fluorides with several fluorine 

crystallographic sites with one main objective: the assignment of their 
19

F NMR lines to their 

crystallographic sites. The studied binary fluorides are column 5 fluorides (TaF5 and NbF5, section 

3.2)
53

 and MF4 compounds (M = Zr, Hf (column 4), Ce and Th, section 3.3) with narrower chemical 

shift ranges, on which correlation experiments, based on through space 19F-19F dipolar coupling 

interaction, have been achieved. 

The fourth chapter is devoted to the study of ternary fluorides exhibiting large 19F-X 1
J-

coupling resolved on 1D MAS NMR spectra and phase transitions at temperatures close to room 

temperature. The structural analysis of NaAsF6 has been carried out by VT X-ray powder diffraction, 

multinuclear solid state NMR and DFT calculations (section 4.2 made up of one paper).
54

 The 

ongoing study of KPF6 is included in this chapter (section 4.3).  
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Chapter 1: Solid state nuclear magnetic 

resonance and first-principles calculation 
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1.1 Introduction 

This chapter describes the general principles of Nuclear Magnetic Resonance (NMR) 

spectroscopy in the first section. In the second section, the different interactions that are of 

importance in the solid-state are described and the corresponding Hamiltonians are given. In section 

3, the experimental techniques, such as magic-angle spinning (MAS) NMR, decoupling, Hahn echo, 

double quantum-single quantum (DQ-SQ) correlation experiment, and which are used in this 

manuscript are presented. In section 4, the main ideas underlying the linearized augmented plane 

wave (LAPW) and projector augmented wave/gauge including projector augmented wave 

(PAW/GIPAW) approaches within the density functional theory (DFT) are discussed. Conventions 

used for the tensor parameters are summarized at the end of this section. 

1.2 Basic of NMR spectroscopy  

NMR involves detailed manipulations of nuclear spins. In order to understand NMR 

spectroscopy, it is necessary to understand how nuclei, which have a nuclear spin angular 

momentum I and a magnetic moment µ, behave in a static magnetic field ��. The different steps, (1- 

behaviour of the nuclear spin system when placed in an external magnetic field, 2- irradiation of the 

sample through the application of a radio frequency (rf) pulse, and 3- detection of magnetization 

accompanying its return to the initial state when the rf pulse is removed) involved to obtain an NMR 

signal are also explained below. This section also includes the basic idea behind a two dimensional 

experiment. 

1.2.1 Nuclear spin and angular momentum 

An object has an angular momentum when it rotates about an axis. Spin, which is an intrinsic 

property of elementary particles, is a form of angular momentum. The overall nuclear spin results 

from a combination of all spin angular momentum contributions from its nucleons. It is quantized 

and the total spin quantum number can be any integer or half-integer. The magnitude P of total 

angular momentum of a nucleus having a spin is given by: 

� = 	ℏ��	� + 1�	
where I is the nuclear spin quantum number and ℏ = �� (h is Planck’s constant).  

The z component of the spin angular momentum is �� = �ℏ, where m is the magnetic or 

directional quantum number with values � = �, � − 1,… ,−� which gives a total of 	2� + 1� possible 
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values. In the absence of external field, each of these 	2� + 1�	states has the same energy: they are 

degenerate. 

1.2.2 Nucleus in a static magnetic field 

If a nucleus with spin angular momentum I is placed in a static strong magnetic field B0, then 

the magnetic moment µ and the spin angular momentum are proportional to each other according 

to � = �� where � is the magnetogyric ratio of the studied nucleus. Similar to the z component of 

spin angular momentum, the z component of nuclear magnetic moment is given by �� = ��ℏ.  

Placed in an external magnetic field ��, the magnetic moment of the spin precesses around 

the field. The frequency of the precession, ��, also known as the Larmor frequency, is expressed as �� = −���. The application of this magnetic field breaks the degeneracy as the 	2� + 1�	states 

have now slightly different energy levels � = −��ℏ��. This splitting is called the Zeeman effect. 

Some properties of nuclei studied by NMR in this manuscript are listed in Table 1. 

 

Table 1. Nuclear spin I, magnetogyric ratio � (107 rad T-1 s-1), 
natural abundance (%), quadrupolar moment Q1 (mbarn) and 

Larmor frequency at 7 T (MHz) for spin � = ��	and quadrupolar �� > ��  nuclei studied in the manuscript.  

Nucleus I �  
Natural 
abundance  

Q  
Larmor 
frequency  

19F 1/2 25.18 100 / 282.40 
23Na 3/2 7.08 100 104 79.39 
25Mg 5/2 -1.64 10 199.4 18.36 
75As 3/2 4.60 100 314 51.39 
71Ga 3/2 8.18 39.9 107 91.53 
115In 9/2 5.90 95.7 770 65.73 
207Pb 1/2 5.58 22.6 / 68.76 

 

1.2.3 Observation of NMR signal: a single pulse experiment 

In the absence of an external magnetic field, the directions of the spin angular momentum 

vectors, also called the spin polarization axes,
2
 are uniformly distributed, pointing in all possible 

directions in space. The total nuclear magnetic moment, M, obtained by summation of the 

individual contributions of the sample, is nearly equal to zero. When an external magnetic field ��	is 

applied, all the nuclear spins in the sample precess around the direction of the applied field. 

However, due to the thermal motion of the atomic environment, the spin polarization axes vary 
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slightly, thus breaking their initial isotropic distribution and a macroscopic nuclear magnetic 

moment M appears along the direction of ��, which is called the longitudinal magnetization. The 

build-up of this longitudinal magnetization is characterized by a relaxation time T1 also called spin-

lattice relaxation time. 

Since detection along the direction of the external field (by convention, the z-axis) is not 

feasible, therefore what is usually measured by NMR is the magnetization perpendicular to the field. 

This is made possible by rotating the longitudinal magnetization with the help of an rf pulse of 

appropriate frequency and duration. The resulting net magnetic moment, now perpendicular to ��	, 
is called transverse magnetization. When the rf pulse is switched off, the transverse magnetization 

starts to precess in the xy plane. In order to detect this precession, a wire coil is placed near the 

sample, with its axis aligned in the xy plane. The transverse magnetization precession induces an 

oscillating current in the coil, called Free Induction Decay (FID), which is recorded as a function of 

time. The decay of the transverse magnetization is due to two phenomena: the return of M along 

the z-axis, characterized by T1, and the loss of coherence between the nuclear spins, characterized 

by a relaxation time T2 called spin-spin relaxation time. 

1.2.4 Two-dimensional experiments 

The basic difference between the 2D and 1D NMR experiments is that in 1D experiment the 

signal is recorded as a function of a single time variable, whereas in 2D experiment it is recorded as 

a function of two time variables, t1 and t2. In general, these 2D experiments involve four steps, i.e. 

preparation, evolution, mixing and detection (Fig. 1). The preparation period involves the generation 

of magnetization through the application of a single or a series of rf pulses. This magnetization then 

evolves during t1, which corresponds to the evolution period. Then one or more pulses are applied 

during the mixing period, to obtain a transverse magnetization. The last step involves the detection 

of the signal during the t2 time. These four periods form a 2D pulse sequence.  

The pulse sequence is repeated many times, and the duration of the evolution period, t1 is 

stepwise incremented. For each value of t1, a separate FID is recorded as a function of t2. Thereby a 

range of FIDs is collected, forming a data set that is a function of the two time variables, t1 and t2. A 

double Fourier Transformation then converts the time signals to the corresponding frequency 

domains, F1 and F2. Finally, the 2D spectrum obtained is characterized by a contour plot with 

frequency axes labeled F1 and F2. 



 

Fig. 1. A general repre
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1.3.1. Chemical shift and chemical shift anisotropy 

In a sample, nuclei of atoms are surrounded by electrons. When an external magnetic field �� 

is applied, a local field is generated, due to the interaction between ��  and the electrons 

surrounding a nucleus, which shields this nucleus from ��. The effective magnetic field �,&& 

experienced by the nucleus is defined as �,&& = ��		1 − -�, 

with - the shielding tensor. Differences in shieldings arise, due to the differences in the electronic 

environments.  

The shielding tensor - is a second-rank tensor, which is described by a diagonal matrix when 

expressed in its principal axis system (PAS): 

- = .-// 0 00 -11 00 0 -��2,  

with |-�� − -456| ≥ |-// − -456| ≥ 8-11 − -4568. 
The isotropic shielding, σiso, is defined as the average of the diagonal elements of the shielding 

tensor: -456 = �9 :-// + -11 + -��; . Similarly the anisotropic part of the shielding and the 

asymmetry parameter are defined as: 

-<5= = 	-�� − -456� and ><5= = :?@@A?BB;?CDE . 

The Hamiltonian representing the shielding is given by !"'( = �	ℎ	�G�. -��I=J . ��, where -��I=J is 

the z-component of the shielding tensor in the laboratory (LAB) frame and is obtained by performing 

the appropriate set of rotations from the PAS to the LAB frame and this tensor element is given by, 

-��KLM =	-456 +	?NDO� P	3cos�U − 1� + η<5=	VWX�θ cos2Y�Z, 
with θ and Y the polar angles. 

In NMR experiments, the frequency of lines is measured relative to a reference and it is called 

chemical shift with respect to that reference. So, the shielding and chemical shift, expressed in ppm, 

are related by,  

[5=\]I, = ?^_`A?DOabc_�Aσ^_` ×	10d 	≈ 	 	-%,& − -5=\]I,�×	10d	. 

Therefore, the isotropic chemical shift is defined as [456 = �9 	[// + [11 + [��� , with the following 

convention of the principal components: |[�� − [456| ≥ |[// − [456| ≥ 8[11 − [4568. As for the 
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shielding tensor, an anisotropic parameter δ<5=, and an asymmetry parameter >fVg are given by the 

following equations: 

δ<5= = 	δ�� − δ456� and >fVg = :δ@@AδBB;
δCDE . 

The chemical shift interaction is sensitive to the electronic environment of nuclei and can 

provide valuable structural information, especially on the coordination number and nature of the 

first neighbors.  

1.3.2 Dipolar interaction 

The dipolar interaction results from the interaction of one nuclear spin with a magnetic field 

generated by another nuclear spin, and vice versa. This is a direct through space interaction which is 

dependent upon the γ of each nucleus and the inverse cube of the internuclear distance between 

the two spins. The heteronuclear dipolar coupling arises from an interaction between the nuclear 

magnetic moments of two different nuclear spins, I and S, and its secular part is given by,3	 !")),h,%6 = −i	3fjV�U − 1��G�kG� 

where i = �lmn� opoq%rqs ℏ and is called the dipolar coupling constant, rIS is the internuclear distance, �� 

is the permeability of free space, �t  and �( are the magnetogyric ratios of the I and S nuclei, 

respectively, and �G� and kG�	are the z-components of �G and kG, respectively. The θ angle describes the 

orientation of the internuclear vector with respect to the orientation of ��.  

A similar kind of coupling also exists between like spins called homonuclear dipolar coupling 

and the secular part for homonuclear dipolar coupling is given by,3  

!"))6\6 = −u′ 	3cos2θ−1�2 :3�G�kG� − �G · kG;  

with ix = �lmn� ory%zys ℏ, the dipolar coupling constant and �G · kG = 	 �G/kG/ + �G1kG1 + �G�kG�. 

Strong homo and hetero nuclear dipolar couplings give rise to large line broadening and this 

will lead to low resolution of the NMR spectrum. These interactions are usually strong and common 

in the case of abundant nuclei with large magnetogyric ratio, such as 1H or 19F. However, two 

possible ways are available to reduce or remove this dipolar interaction, one is to take advantage of 

the widely used MAS technique and the other is decoupling. Both the techniques are discussed in 

the next section. 
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1.3.3 Quadrupolar interaction 

Quadrupolar nuclei (� > ��) possess a nuclear quadrupole moment Q due to the non-spherical 

symmetry of the nuclear charge distribution. The interaction between Q and the electric field 

gradient (EFG) due to the non-cubic local symmetry is called quadrupolar interaction (QI). The EFG, 

defined as the second derivative of the electrostatic potential, is a second-rank tensor. In principal 

axis system, it is described by the following matrix: 

{ = |{}} 0 00 {~~ 00 0 {##� with the convention |{##| ≥ |{~~| ≥ |{}}|. 
As the tensor is traceless, only two of its three components need to be determined. In 

general, the largest component {## and the asymmetry parameter >* are used to characterize the 

QI. >* is defined by the following equation: 

>* =	���A	������  with 	1 ≥ >* ≥ 0. 

Two parameters are defined to characterize the magnitude of QI, the quadrupolar coupling 

constant, �* =	 ,���*  and the quadrupolar frequency, �* =	 9'��t		�tA�� =	 9,���*�t	�tA�� , with e the 

electron charge, h the Planck’s constant, Q the quadrupolar moment and I the nuclear spin of the 

nucleus. 

The total Hamiltonian for a quadrupolar nucleus can be expressed as the sum of the 

Hamiltonians for the Zeeman and quadrupolar interactions (without taking into consideration the 

interactions from dipolar coupling and chemical shielding anisotropy), !" = !"� +!"*.  

When the quadrupolar interaction is much smaller than the Zeeman interaction, then to a 

first order approximation, the frequency of the transition � ↔ �− 1 is given by: 

�\↔\A�	�� = �� − �n �*	2� − 1� × �3fjV�U − 1 + >	VWX�U	fjV2Y�, 
where θ and Y are the polar angles describing the orientation of the tensor PAS in the LAB frame. 

The central transition remains unaffected by the first order quadrupolar interaction.  

For quadrupolar nuclei having larger value of quadrupolar interaction, the first order 

approximation is no more sufficient to describe the spectrum and approximation to the second 

order has to be considered. In such cases, the frequency of the transition 
�� ↔ − �� is now given by:4 

�zy↔Azy
	�� = − �d�m �*� ��	� + 1� − 9n� ��	>, Y�fjVn� + �	>, Y�fjV�� + �	>, Y��, 
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where �	>, Y� = A��� + �n 	>	fjV2Y − 9� >�fjV�2Y , �	>, Y� = 	− 9�� − �y� − 2> cos 2Y + 9n >�fjV�2Y , 

and �	>, Y� = 	− 9� + �y9 − �n cos 2Y − 9� >�fjV�2Y. 

The second order quadrupolar interaction affects all the transitions, although it is dominant 

for the central transition and causes a shift of the central resonance. The effects of first and second 

order quadrupolar interactions on the energy levels are shown for a spin 3/2 nucleus in Fig. 2. 

 

Fig. 2: Schematic energy level diagram for spin I = 3/2 nucleus showing 
the effect of the (1) Zeeman, (2) first order and (3) second order 

quadrupolar interactions on the energy levels. The central transition is 
unaffected by the first order quadrupolar interaction, while all transitions 

are affected by the second order quadrupolar interaction 

 

1.3.4 J-coupling  

The scalar coupling or J-coupling is considered as a through bond interaction, arising from the 

interaction of nuclear spins through the chemical bonds. However, hydrogen-bond-mediated J-

couplings5,6 and a "through space" 19F-19F J-coupling7 have been observed. J-coupling results in 

splitting of the NMR resonances. The J-coupling is rarely observed on solid-state NMR spectra as it is 

very small in comparison to the other solid-state NMR interactions, i.e. dipolar coupling and 

quadrupolar interactions. However, it gives important structural information about interatomic 

connectivities. As the chemical bonds are the basis of the J-coupling interaction, therefore it is 

mainly observed in compounds having covalent bonds. The spin Hamiltonian for the J-coupling 

interaction between spins �� and �� is written as  
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	!"��+ = 2π	�G� . ��� . �G�	 
where ���  is the J-coupling tensor. In general this tensor contains isotropic and anisotropic 

components. The isotropic J-coupling is defined as	���456 = �9 :�//�� + �11�� + �����;. 

The value of the J-coupling depends mainly on the number and nature of bonds between the 

coupled nuclei, the magnetogyric ratios γ and the extent of overlapping of atomic orbitals. 

Compounds containing heavy atoms give rise to larger J-coupling values as the orbitals of these 

atoms present larger spatial expansion. J-coupling values between 19F and various nuclei are 

reported in the introduction of the chapter 4. 

1.3.4.1 J-coupling multiplet pattern between spin ½ nuclei 

The number of peaks observed and their intensity ratios in the J-coupling splitting pattern of 

the NMR spectra follow a binomial distribution. The number of peaks in a multiplet, Np, can be 

calculated using the rule �] = 2X� + 1, with X the number of equivalent neighboring nuclei and I 

the spin of the coupled nucleus. 

Fig. 3. Experimental (Exp.) and fitted (Fit.) 19F (left) and 31P (right) NMR spectra of KPF6, recorded at 
332 K (sample temperature) and at a spinning frequency of 30 kHz. 

 

The structure of the room temperature phase of KPF6 presents one F site, one P site and one 

Li site, and is built-up from isolated PF6 octahedra.8 The F atoms are then connected to one P atom, 

whereas each P atom is coordinated to six F atoms. According to the formula �] = 2X� + 1, the 19F 

and 31P isotropic lines, shown in fig. 3, are split into a doublet and a septet, respectively. The 31P-19F 

1
J-coupling values issued from the reconstruction of both the spectra (710 Hz and 700 Hz for the 19F 

and 31P spectrum reconstructions, respectively) are in agreement with previously determined values 

of 743 (±12) Hz9 and 747 Hz10 for this phase. 

A second case of J-coupling between two spin ½ nuclei, 19F and 207Pb, is discussed in chapter 2 

(see 2.4). The 19F nucleus is 100% abundant but 207Pb, the only lead isotope having non-zero nuclear 
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spin, has a natural abundance of 22.6 %. Therefore, for a F atom coordinated to � Pb atoms, several 

F(207Pb)n(Pb)x-n magnetically inequivalent environments are possible (where Pb represents lead 

nuclei with nuclear spin I = 0, X is the number of 207Pb isotopes and � the total number of lead 

atoms coordinated to a F one). Each of the magnetically inequivalent environments gives rise to a 

multiplet whose relative intensity is proportional to its probability of occurrence. The probabilities 

can be calculated using the following formula: 

� = 	1 − ��/A�. 	���. �/�,11 with �/� = /!�!	/A��! with A the natural abundance of 207Pb.  

Therefore the final multiplet observed on NMR spectra is the sum of all the possible 

multiplets. The details about the J-coupling values and intensities of the multiplets for α-PbF2 are 

given in the second chapter (2.4.1). 

1.3.4.2 J-coupling multiplet pattern between spin ½ and quadrupolar nuclei 

When J-coupling occurs between a spin ½ nucleus and a quadrupolar one, isotropic lines will 

be also split into multiplets. On the NMR spectra of the spin ½ nucleus, each isotropic line will show 

a multiplet of �] = 2Xk + 1 lines with S the spin of the quadrupolar nucleus. For X = 1, all peaks 

have the same intensity. The structure of α-NaAsF6 presents one F site, one As site and one Na site, 

and is built-up from isolated AsF6 octahedra.12 Thereby, the 19F NMR spectrum of α-NaAsF6, shown 

in fig. 4 (left), exhibits four lines of equal intensity, i.e. a 1:1:1:1 quartet, arising from the J-coupling 

between 19F and 75As (I = 3/2) (see the section 2 of chapter 4 for more detail).  

Fig. 4. Experimental (Exp.) and fitted (Fit.) 19F MAS Hahn echo spectra of α-NaAsF6 (left) at spinning 
frequency of 25 kHz and of β-KSbF6 phase (right) at spinning frequency of 30 kHz. 

 

The NMR spectra of the spin ½ nucleus become more complicated when the quadrupolar 

nucleus presents several magnetically active isotopes. Then, for each isotope, a 	2Xk + 1�-line 

multiplet will occur, with a relative intensity proportional to the natural abundance of the isotope. 

This case is illustrated on the 19F NMR spectrum of the room temperature phase of KSbF6, shown  

in fig. 4 (right). β-KSbF6 structure presents three F sites, and each F atom is connected to only one Sb 
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atom, so X = 1.13 The quadrupolar nucleus Sb has two magnetically active isotopes, 121Sb (I = 5/2,  

γ = 6.4435 x 107 rad.T-1.s-1) and 123Sb (I = 7/2, γ = 3.4892 x 107 rad.T-1.s-1) with natural abundances 

equal to 57.2 and 42.8 %, respectively. On the 19F NMR spectrum, we can observe one 8-lines and 

one 6-lines mutiplets, due to 121Sb-19F and 123Sb-19F J-couplings respectively. The reconstruction 

parameters are gathered in table 2. The experimental relative intensities (58.9 and 41.1 %) of the 

two multiplets are in good agreement with the natural abundances of the two isotopes (57.2 and 

42.8 %). Moreover, the ratio 
��A �	+A� ¡¢£¤¥¦z§zyz
��A �z§zys 	+A� ¡¢£¤¥¦ agrees well with the 

��	ozyz
��	zys o ratio (calculated equal 

to 1.835 and 1.847, respectively). The 121Sb-19F 

and 123Sb-19F J-coupling values are also in fine 

agreement with the values previously 

determined: 19F-123Sb =1018 (± 10) Hz9 and 19F-

121Sb = 1914 (± 20) Hz and 1820 (± 20) Hz.9,14 

The J-coupling pattern may also be 

affected by a strong residual dipolar coupling between spin ½ and quadrupolar nuclei. This arises 

when the second order quadrupolar effect is transferred to spin ½ nuclei through dipolar coupling 

and results in a complex J-coupling pattern with asymmetric multiplets, uneven spacing between the 

peaks and missing peaks in the splitting pattern. The effect of residual dipolar coupling on the NMR 

spectra of spin ½ nuclei can be taken into account by utilizing the first order perturbation theory 

when C*/	4k	2k − 1�� ≪ ν�(, with S and ��( the spin and Larmor frequency of the quadrupolar 

nucleus, respectively. The combined effects of J-coupling and residual dipolar coupling lead to a shift 

in the resonance frequencies of the peaks of the multiplet given by,15 

∆�\ = −�5	�456 + (	(®��A9\Dy(	�(A�� ∆ with ∆= ¯9)′'����mq° �	3fjV��) − 1� + >	VWX��)fjV2±)� 
where ∆�\ is the difference between the resonance frequency of a peak in the spin ½ multiplet and 

the isotropic frequency, ∆ is the residual dipolar shift, ²′ is the effective dipolar coupling constant 

which depends on the dipolar coupling constant and the J-coupling anisotropy, i.e. ²′ = ² − ∆+9 . It is 

assumed that the J-tensor is axially symmetric and it unique axis is directed along the bond vector. ±) and �) are the polar and azimuthal angles which describe the orientation of the dipolar vector 

with respect to the EFG tensor.  

Table 2. 19F δiso (ppm), multiplet, 121,123Sb-19F  
1
J-coupling (Hz) and relative intensities (%) used 
for reconstruction of β-KSbF6 NMR spectrum.  

δiso multiplet 1
J-coupling 

Relative 
intensity 

-125.3 6-lines 1890 58.9 
-125.3 8-lines 1030 41.1 
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A 19F-93Nb J-coupling splitting pattern 

affected by residual dipolar coupling is clearly 

visible on the 19F NMR spectrum shown in Fig. 5 

(see also 3.2). The F1 site of NbF5 is bonded to 

one neighbouring niobium atom16 and since 93Nb 

is a spin 9/2 nucleus, ten peaks of same 

intensities and evenly spaced should be observed 

on the corresponding 19F NMR spectrum. 

However due to the residual dipolar coupling, a 

distorted multiplet is obtained. The parameters used for the simulation are 19F-93Nb J = 350 Hz, ²′= 

4300 Hz, CQ = 115 MHz, ηQ = 0.2 and �) = 15˚. A more detailed discussion is given in the chapter 4 

(see 4.2). 

Up to this point, we have considered only how the spin ½ NMR spectra were affected by the  

J-coupling interaction. The NMR spectra of quadrupolar nuclei also present alteration of their shape, 

due to the J-coupling interaction. All transitions are affected, and each presents a splitting pattern. 

The number of lines in the J-coupling multiplets is given by �] = 2X� + 1, with X the number of 

equivalent neighboring nuclei and I the spin of the coupled nucleus, whereas their intensity ratios 

follow a binomial distribution.  

  

Fig. 6. Experimental (Exp.) and fitted (Fit.) 75As MAS Hahn echo NMR spectra of α-NaAsF6 (left) at  

35 °C and a spinning frequency of 20 kHz and of β-NaAsF6 (right) at 70 °C and a spinning frequency 
of 25 kHz. 

Fig. 6 gathers two 75As NMR spectra, affected by J-coupling, i.e. both exhibiting a septet 

characteristic of one 75As atom bound to six equivalent fluorine atoms. For the α-NaAsF6 phase, the 

central transition, presented fig.6 (left), is split in seven lines which are all affected by the 

quadrupolar second order broadening. On the opposite, in the β-NaAsF6 phase, the 75As nucleus is in 

 

Fig. 5. Experimental (black) and simulated (red) 
19F MAS NMR spectrum for F1 site of NbF5 at a 

spinning frequency of 32 kHz.  
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a cubic symmetry site, and thus experiences no quadrupolar interaction. In such a case, the 75As 

NMR spectrum shape (fig. 6, right) is similar to a spin ½ NMR one (Fig. 3, right). 

1.4 Basic Experimental Techniques  

This section provides details of the experimental techniques used to record high-resolution 

solid-state NMR spectra of the various nuclei of the studied inorganic fluorides. 

1.4.1 Magic Angle Spinning  

MAS17 is one of the routinely used techniques in the solid state NMR communities as this 

technique dramatically increases the resolution of the NMR resonances for solids by partially 

averaging the effect of anisotropic interactions mainly shielding anisotropy, dipolar coupling and 

quadrupolar interactions. This averaging takes place as these interactions contain the angular factor 	3fjV�U − 1�, where U is the angle between the principal z-axis of the corresponding interaction 

tensor and the applied magnetic field (Fig. 7). When the sample spins about an axis making an angle ± with ��, averaging of the orientation dependent interactions occurs and it is expressed by the 

equation, 

〈3fjV�U − 1〉 = 12 	3fjV�± − 1�	3fjV�� − 1� 

where β is the angle between 

the principal z-axis of the 

corresponding interaction 

tensor and the axis of 

rotation. When ± = 54.74˚, 

then 	3fjV�± − 1� = 0  and 

consequently the average, 〈3fjV�U − 1〉, is also equal to 

zero.  

The rate of MAS must 

be greater than or equal to 

the magnitude of the 

anisotropic interaction to 

 

Fig. 7. Rotor spinning about an axis at an angle ± with respect to 
the applied field. The chemical shielding tensor in the form of an 

ellipsoid and its principal z-axis are shown. 
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average it to zero, otherwise, a manifold of spinning sidebands, separated by the spinning frequency 

(νR), appears on the spectrum (Fig. 8). The isotropic peak which is not always the most intense one 

remains at the same frequency if the sample temperature is constant. 

 

Fig. 8. 207Pb static and MAS NMR spectra of Pb(NO3)2. 

1.4.2 Determination of quadrupolar parameters from MAS NMR 

spectrum of quadrupolar nuclei  

As already discussed, the quadrupolar interaction is described by two parameters, the 

quadrupolar coupling constant, CQ, and the asymmetry parameter, ηQ. Usually, what we determine 

from the simulation of the experimental NMR spectrum of quadrupolar nuclei are the quadrupolar 

frequency νQ and the asymmetry parameter ηQ. The width of the spectrum of quadrupolar nuclei 

having quadrupolar interaction is related to νQ, whereas the line shape is related to ηQ.  

In principle, MAS is capable of eliminating the first order quadrupolar interaction for 

quadrupolar nuclei. However the broadening due to the first order quadrupolar interaction is often 

very large in comparison to the possible spinning frequency. Therefore, the satellite transitions 

appear as an envelope of spinning sidebands separated by the spinning frequency. For low QI, the 

central transition, which is not affected by the first order quadrupolar interaction, may appear as a 
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shapeless line. On the other hand, in most cases, the magnitude of QI is very large, so the effects of 

second order have to be considered in addition to the effects of first order. The second order QI 

affects both the central and satellite transitions. MAS is not able to completely average out the 

second-order quadrupolar broadening as the second order quadrupolar interaction has a more 

complex angular dependence. 

 

Fig. 9. Evolution of 23Na (I = 3/2) MAS NMR spectra simulated with different 

values of νQ, ηQ = 0, spinning frequency of 25 kHz and line width of 100 Hz. 

 

 

Fig. 10. Evolution of 23Na (I = 3/2) MAS NMR spectra simulated with 

different values of ηQ and νQ = 600 kHz, spinning frequency of 25 kHz and 
line width of 100 Hz. 

In Fig. 9 and 10 are presented the evolutions of the shape of the spinning side band envelope 

for different values of CQ and ηQ for 23Na simulated spectra. For nuclei experiencing large QI, the 
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distribution of satellite transitions under MAS may lead to spinning sidebands of very weak 

intensity, as shown in fig. 9. However, in such cases the quadrupolar interactions can be determined 

from the simulation of the central transition. Fig. 11 shows the evolution of the central transition 

MAS NMR spectrum of a spin 3/2 nucleus with different values of ηQ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the quadrupolar frequencies are low, the central transition is often shapeless and the 

quadrupolar parameters can be determined from the line shape analysis, observed under MAS, of 

the satellite transitions (Fig. 9 and 10). This has been explained in detail by various authors.18-20 The 

main requirements for these kind of experiments are to have stable spinning frequency and perfect 

magic angle setting. These experiments are performed by applying non-selective pulse of short time 

duration for irradiating all the satellite transitions. When all crystallites of the powder sample 

behave in the same way, we are in the linear regime and the condition is  

�� + �� �	·] ≤	 ���, where ·] is the pulse length. 

 

 

Fig. 11. Evolution of 23Na central transition NMR spectra 

simulated with νQ = 700 kHz, and different values of ηQ, 
spinning frequency of 20 kHz and line width of 100 Hz. 
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1.4.3 Hahn echo 

When the FID decays rapidly with respect to the dead time of the spectrometer, Fourier 

Transformation leads to signal intensities which are strongly reduced and distorted baseline. This 

technical problem can be minimized in the NMR 

experiments based on Hahn echo pulse sequence :90º° − τ − 180¼° − τ − FID;  presented Fig. 12, 

where À is the echo-delay time. During Hahn echo 

sequence, the spin system is treated with an initial 

pulse and, after a delay, is subjected to another 

pulse (or pulse sequence) which causes the 

dephasing spin system to rephase (the refocusing pulse).21 In order to see the full Hahn echo FIDs, 

the data collection can be started immediately after 180˚ pulses. 

The Hahn echo sequence has been used to record all the 19F NMR spectra presented in the 

manuscript to avoid artifacts and distortion introduced during the first few microseconds of 

spectrometer dead time at the beginning of the FID. In order to perform Hahn echo experiments on 

spinning samples, echo delays should be synchronized with the rotor periods.  

1.4.4 Heteronuclear decoupling  

Higher spectral resolution means that a larger number of resonances will be resolved and thus 

leads to higher sensitivity. Among other techniques, heteronuclear decoupling is widely used in solid 

state NMR to achieve high resolution. High-power continuous wave (CW) decoupling is the simplest 

method and mostly used. As discussed by Melinda Duer,3 if high power decoupling is used under 

magic angle spinning, some factors need to be considered, i.e. decoupling amplitude and MAS 

frequency. If the decoupling amplitude and MAS frequency are similar, the two processes interfere. 

There should be no problem for moderate spinning frequencies (5-20 kHz) and high decoupling 

amplitudes (> 60 kHz). However a low power decoupling can be more efficient when the spinning 

frequency is very high. Several other techniques can be used for efficient heteronuclear decoupling, 

such as the two pulse phase modulation (TPPM)22, small phase incremental alternation (SPINAL),23  

X inverse-X (XiX)24 sequences. 

Fig. 13 shows the effect of the 207Pb decoupling on the 19F NMR spectra of ±-PbF2. Without 

207Pb decoupling, the 19F isotropic resonances are split into multiplets due to the 19F-207Pb J-coupling. 

Fig. 12. Hahn echo pulse sequence and the 
coherence pathways. 
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From the reconstruction of the 19F NMR spectrum recorded with 207Pb decoupling, we are able to 

determine precisely the δ456 values and the number of fluorine sites.  

 

Fig. 13. 
19F MAS NMR spectra of α-PbF2 recorded with (νR = 25kHz - top) and without  

 207Pb decoupling (νR = 30kHz - bottom) at a magnetic field of 7.0 T. 

1.4.5. 2D DQ-SQ correlation experiments 

The basic theme of DQ-SQ correlation experiment involves first the excitation of DQ 

coherence, which subsequently evolves during an incremented period t1. The DQ coherence is then 

converted into observable SQ coherence, which is detected in the acquisition period, t2. These 

experiments are used to correlate homonuclear spin ½ nuclei which are coupled through dipolar 

interaction. 

The investigation of dipolar coupling can provide information about spatial connectivity and 

local geometry since it depends on the inverse cube of the inter-nuclear distance. However in solid-

state MAS NMR experiments, the orientation dependent dipolar interactions are averaged out 

under fast MAS. Therefore to obtain structural information from MAS experiments, it is necessary to 

reintroduce the dipolar coupling through recoupling experiments. The homonuclear recoupling 

sequences that have been used so far are the ���� and Á���25,26 symmetry based schemes and the 

BAck to BAck (BABA)27 sequences. For slow spinning speeds (νR ≤ 15-20 kHz) Post-C7,28 �9�n,29 and Á14�d,30 sequences can be used as they require the rf pulse field strength to be proportional to 

spinning frequency. The BABA sequence is one of the most popular techniques for DQ homonuclear 
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dipolar recoupling under fast MAS but is not robust to CSA and to large chemical shift differences. In 

the case of 19F, such recoupling technique is challenging since 19F NMR spectra exhibits large 

dispersion of δ456 and large CSA values. An alternative sequence is the sandwiched pi pulse (SPIP)31 

sequence (Fig. 14). It is based on the super-cycled version of the symmetry-based Á2�� pulse 

sequence. It is compatible to fast MAS and shows higher robustness to offset and CSA than BABA. 

Recently the efficiency of SPIP DQ recoupling sequence has been evaluated for high resolution DQ-

SQ NMR and used to probe 19F-19F proximities in powdered fluoroaluminates.32  

Fig. 14. SPIP pulse sequence for DQ↔SQ excitation or reconversion. The 

SPIP sequence shown here consists of n-blocks of 2τR each belonging to Á2�� symmetry followed by n-blocks of 2τR each belonging to Á2�A� 
symmetry. 

 

1.4.6 Fit of the NMR spectra 

All the NMR spectra presented in this manuscript are fitted using Dmfit software33 except the 

19F NMR spectrum of NbF5 recorded without 93Nb decoupling which is fitted with Wsolids,34 allowing 

to determine independently the direct dipole-dipole coupling constant and the quadrupolar 

coupling constant. 

The 2D one pulse (TOP) procedure35 has been applied to the 115In MAS spectrum of InF3 (see 

2.3). It allows the reconstruction of the 2D TOP spectrum separating the different spinning 

sidebands by order and then the reconstruction of the sum spectrum corresponding to an ‘‘ideal 

infinite spinning rate’’ spectrum which can be modeled using the Dmfit program.33 

 

  



34 
 

1.5 First principle calculation of NMR parameters 

The efficiency of the combined application of solid-state NMR and quantum mechanical 

calculations for structural characterization is well-known. To complement the experimental work 

presented in this thesis, first-principles calculations of NMR parameters (shielding and EFG) have 

been carried out. Two codes, based on Density Functional Theory (DFT), were used that both take 

into account the periodicity of the crystalline structure through the implementation of periodic 

boundary conditions. The shielding tensors were calculated using the Gauge Including Projector 

Augmented Wave (GIPAW)36,37 approach implemented in the NMR-CASTEP code.38,39 Recently the 

two well-documented reviews by Charpentier40 and Bonhomme et al.41 demonstrated the extended 

applications of the calculation of NMR parameters using this GIPAW method. In comparison to the 

calculation of shielding, calculation of the EFG is rather simple as it depends on the ground state 

properties i.e. ground state charge density and wave function. The EFG tensors were obtained either 

with the PAW method42 from NMR-CASTEP or the Linearized Augmented Plane Wave (LAPW)43,44 

approach employed in the WIEN2k code.45 The ideas to describe the LAPW, PAW and GIPAW 

methods lie within the density functional theory. 

1.5.1 Basics of Density fuctional theory 

According to quantum mechanics the energy and the behavior of a collection of electrons and 

nuclei can be predicted by solving the Schrödinger equation for the system: !"Â = �Â 

where !" is the Hamiltonian operator for a molecular system consisting of M nuclei and N electrons 

in the absence of magnetic or electric fields. !" is a differential operator representing the total 

energy: 

!" = −12Ã∇4�
Å
4Æ� − 12Ã 1MÈ ∇L�

É
LÆ� −ÃÃ ÊLË4L

É
LÆ�

Å
4Æ� −ÃÃ 1Ë4�

Å
�Ì�

Å
4Æ� + Ã Ã ÊLÊMÁLM

É
MÌL

É
LÆ�  

Here, A and B run over the M nuclei while i and j denote the N electrons in the system. The first two 

terms describe the kinetic energy of the electrons and nuclei. The other three terms represent the 

attractive electrostatic interaction between the nuclei and the electrons and repulsive potential due 

to the electron-electron and nucleus-nucleus interactions. 

The first approximation used to simplify the above complicated equation is that the mass of 

the nuclei is much greater than the mass of the electrons and it is known as Born-Oppenheimer 
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approximation. However even this approximation does not allow to solve the Schrödinger equation, 

as the difficulty lies in the many-body nature of the interacting electrons. The Kohn-Sham 

formulation of density functional theory takes into consideration this difficulty. 

1.5.2 DFT and Kohn-Sham equations 

In DFT the central quantity is not the wave function but the electronic charge density  ρ(r). In 

Kohn–Sham formulation,  ρ(r) is treated as the fundamental variable and the many-body equation is 

transferred to a set of N equations involving single-particle wave functions.46 

Within the Kohn-Sham formalism, a set of non-interacting one-electron orbitals Â4	Ë� are 

defined allowing the computation of ρ	Ë� as, 

Í	Ë� = Ã|Â4	Ë�|�6<<
4  

where the summation occurs over the occupied orbitals. 

These orbitals are obtained from solving the Schrödinger-like Kohn-Sham equations, 

Î− ��∇� + {,&&	Ë�Ï Â	Ë� = ÐΨ	Ë� 
with {,&&	Ë� = {Ñ�ρ	Ë�� + {,/h	Ë� + {/<�Í	Ë��. {Ñ�ρ	Ë�� is the Hartree potential (electron–

electron repulsion), {,/h	Ë� is the external potential (electron–nuclei interactions) and {/<�Í	Ë�] is 

the so-called exchange-correlation (XC) potential.  

The quantum mechanics focuses on the exchange-correlation potential as it is the only 

unknown term in the Kohn-Sham approach. Therefore one has to go for approximations, which is 

often a challenging task. For many properties, the use of generalized gradient approximations (GGA) 

provides good results. Although several GGAs have been proposed, the one defined by Perdew, 

Burke, and Ernzerhof (PBE)47 has been used for many solid-state NMR calculations. 

1.5.3 Solving the DFT equation, Basis sets and wave functions 

Nowadays several codes are available that can solve the DFT equation but they differ in the 

basis sets. The different basis sets used are linear combination of atomic orbitals (LCAO), Gaussian 

or Slater type orbitals (GTOs, STOs), plane wave (PW) basis sets with or without augmentations, 

muffin tin orbitals (MTOs). The wave functions, which represent the basis sets, can be nodeless 

pseudo-wave functions or all-electron wave functions.  
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1.5.3.1 The full-potential linearized augmented plane wave (LAPW) method 

One of the most accurate methods for solving the Kohn–Sham equations is the full-potential 

linearized augmented plane wave (FP-LAPW) method implemented in the WIEN2k code. The LAPW 

method is a procedure for solving the Kohn-Sham equations for the ground state density, total 

energy, and (Kohn-Sham) eigenvalues of a many-electron system by introducing a finite basis set. 

The LAPW method is fundamentally a modification of the original augmented plane wave method 

(APW).42 

In the LAPW method, the unit cell is partitioned into two 

different types of regions. One consists of non-overlapping 

atomic spheres centered on atoms (I), and the other one which 

consists of the remaining part is called interstitial region (II)  

(Fig. 15). In order to construct the basis functions the muffin tin 

approximation (MTA) is used and therefore in region (I) atomic-

like functions are used to describe the rapid changes of the wave 

function whereas plane waves are used in the remaining 

interstitial region. 

Inside the atomic sphere of radius R, the wave functions are linear combinations of spherical 

harmonics and are given by:  ∅ÓÔ = ∑ P�I\,�ÔÖI	Ë, �I� + �I\,�ÔÖIx	Ë, �I�ZI\ ×I\ , 

where	ÖI	Ë, �I� is the regular solution of the radial Schrödinger equation for energy �I and ÖIx	Ë, �I� 
is the energy derivative of ÖI at the same energy �I. A linear combination of these two functions 

constitutes the linearization of the radial function. The two coefficients �I\and �I\ are functions of Ø�	 and can be chosen such as this basis function matches (in value and slope) with the plane wave 

in the corresponding interstitial region. The ÖI	 and ÖIx are obtained by the integration of the radial 

Schrödinger equation on a radial mesh inside the sphere.  

Inside the interstitial region a plane wave expansion is used as a basis, 

∅ÓÔ = 	 1√� Ú4�Ô.%	
where Û� = Û + Ø�; Ø� are the reciprocal lattice vectors and k belongs to the first Brillouin zone. 

In a similar way the potential and charge density are expanded by linear combinations of 

spherical harmonics inside each atomic sphere and as a Fourier series in the interstitial region: 

Fig. 15. Partitioning of the unit 
cell into atomic spheres (I) and 

an interstitial region (II). 
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{	Ë� =
ÜÝÞ
Ýß Ã{KÉ	Ë�×KÉ	Ë�KÉ 	inside	sphere
Ã{�Ó Ú4�.% 													outside	sphere.é 

1.5.3.2. Gauge Including Projector Augmented Wave (GIPAW) method 

The ab-initio methods available for the calculation of shielding using Gaussian program48 suit 

best to systems containing isolated molecules or small cluster models. The method developed by 

Mauri, Pfrommer and Louie (MPL)49 for the first time allows the calculation of shielding using 

periodic boundary conditions in the plane wave pseudopotential formalism. This method allows 

performing calculations on truly infinite systems and is considered as the first step towards the 

development of GIPAW36,37 method introduced by Mauri and Pickard in 2001.36 It is an extension of 

PAW method and allows the calculation of all-electron response to a uniform magnetic field and 

also fulfills the gauge invariance requirement by introducing a large number of projectors.  

The GIPAW method, implemented in the PARATEC code,50 allowed performing calculation 

using only the norm-conserving pseudopotentials. In the NMR-CASTEP code, the efficiency of GIPAW 

method has been improved by introducing both the norm-conserving pseudopotential51 and the 

ultra-soft pseudopotential (USPP) developed by Vanderbilt.52 This pseudopotential approach based 

on the frozen core approximation assumes that the core electrons do not take part in chemical 

bonding. Therefore their contribution to the magnetic shielding is independent of the chemical 

environment and can be obtained from a simple calculation on a free atom. Thus the GIPAW 

method, which uses pseudopotentials and plane wave basis sets and performs calculations on 

infinite periodic systems, is considered as an effective method for modeling of NMR parameters in 

solids. For all shielding calculations presented in the manuscript, the core-valence interactions were 

described by USPP. 

There are latest developments in the GIPAW related to the calculation of the J-coupling 

tensor. However they are not yet available to the common-users. Few studies have been reported in 

the context of calculation of J-coupling for light elements.7,53-58  

1.5.4 Optimization of structures 

The dilemma in optimization, i.e. if optimization is required or not and if required whether to 

relax either only atomic positions (atomic position optimization – APO) or both atomic positions and 

unit cell parameters (full optimization – FO), remains from the beginning of ab initio calculations. 

The NMR parameters, especially the asymmetry ones, are very sensitive to the slight structural 
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modifications. In some cases a structure optimization (APO or FO) leads to a better agreement 

between the experimental and calculated NMR results. However to allow relaxation of some or all 

of the atomic positions or to perform full optimization prior to NMR parameters calculations 

depends entirely on the system. Clearly, if the error limits on experimental structures are large, then 

the relaxation can be justified. Still, calculations are carried out at zero K, and in some cases 

calculations with experimental structure may lead to better agreement with NMR data (normally 

obtained at 300 K).  

We have performed the NMR parameter calculations using several structural data sets such as 

the structures issued from experimental data (experimental structure – ES), from PBE47-DFT APO 

and FO. Nevertheless, it is well known that the GGA approximation with the PBE functional often 

overestimates interatomic bond lengths and consequently cell parameters and unit-cell 

volumes.12,59-72 In such cases, and to take into account this overestimation, the optimized lattice 

parameters are rescaled to the experimental volume but keeping atomic positions unchanged, 

leading to another structural data set (FO rescaled structure).  

1.5.5. Conventions used for calculations of NMR parameters 

The output of the first-principles calculation, absolute shielding tensor, σê, is defined as the 

ratio between a uniform external magnetic field, ��, and the induced magnetic field, �4�ë	Ë�. �4�ë	Ë� = −-ì	Ë�	��. 

The shielding tensor is described by three parameters, the isotropic shielding (-456�, the 

shielding anisotropy (-<5= ) and the asymmetry parameter ( ><5= ) defined respectively as 

-456	íí�� = �9 :-// + -11 + -��;,	-<5=	íí�� = -�� − -456 and ><5= = 	-11 − -//�/-<5=, with the 

principal components defined in the sequence |-�� − -456| ≥ |-// − -456| ≥ 8-11 − -4568 . 

Additionally, in NMR-CASTEP code, the shielding anisotropy -=�456  is defined as  

-=�456 = -�� − ?BB®?@@� = 9�-<5=.  

The chemical shift tensor is also described by three parameters, the isotropic chemical shift 

(δiso), the chemical shift anisotropy (δcsa) and the asymmetry parameter (ηcsa), determined 

experimentally, and defined as [456	íí�� = �9 	[// + [11 + [��� , [<5=	íí�� = [�� − [456 , 

><5= = 	[11 − [//�/[<5= , with the principal components defined in the sequence 

|[�� − [456| ≥ |[// − [456| ≥ 8[11 − [4568. 
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For nucleus having spin greater than ½, i.e. quadrupolar nuclei, the quadrupolar frequency �*, 

the quadrupolar coupling constant �* and the asymmetry parameter >* are related to the electric 

field gradient tensor components through the following equations: �* = 3	�* �2�	� − 1��⁄  with �* = Úï{�� ℎ⁄ , and >* = 	{// − {11� {��⁄ . The {44  are the eigenvalues of the EFG tensor with the 

convention |{��| ≥ 8{118 ≥ |{//|, e is the electronic charge, I the nuclear spin quantum number and 

h is Planck’s constant. 

My thesis work is mainly focused on the 19F shielding calculation of inorganic fluorides. To 

predict 19F [456  values, the calculated 19F -456  values have to be converted into the isotropic 

chemical shift scale. Theoretically, [456 ≈ -%,& − -456. Calculated 19F -456 values can be converted 

into ‘‘calculated’’ 19F [456 values once -%,& has been determined. Calculated 19F -456 values can also 

be converted into ‘‘calculated’’ 19F [456 values using the experimental absolute scale for fluorine. 

However to avoid these referencing problems and possible errors coming from the determination of 

the 19F -%,& value, ‘‘calculated’’ 19F [456 values can also be deduced (i) from the linear regression 

between calculated 19F -456  values and experimental 19F [456  values (which means that an 

assignment was already done) for the compounds under study or (ii) from a linear regression 

previously established on numerous compounds and this last approach seems to become the 

standard practice. 

Shielding calculations are carried out with the NMR-CASTEP code whereas EFG tensors are 

calculated with both the WIEN2k and NMR-CASTEP codes. 
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2.1 Introduction 

A correlation between the measured isotropic chemical shift δiso and the calculated isotropic 

chemical shielding σiso is required for δiso prediction. However two different correlations with 

significantly different slopes have been reported in the two first studies on this issue.1,2 We then 

decided to reconsider the definition of a calibration curve for inorganic fluorides. The studied 

compounds are binary fluorides: alkali, alkaline earth and rare earth (column 3) fluorides in the 

section 2.2, column 13 metal fluorides in the section 2.3 and columns 11, 12 and 14 metal fluorides 

in the section 2.4. 

Additionally, 25Mg, 139La, 27Al, 71Ga, 115In and 67Zn quadrupolar parameters are determined 

and/or their electric field gradients (EFG) are calculated in MgF2, LaF3, α-, β- and η-AlF3, GaF3, InF3 

and ZnF2. Indeed, due to the high sensitivity of these parameters to variations of the atomic 

positions around the studied nucleus, EFG calculations could represent a valuable tool to ascertain 

the precision of the experimental and geometry optimized structures. 
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2.2 Alkali, alkaline earth and rare earth fluorides  
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19F isotropic chemical shifts for alkali, alkaline earth and rare earth of column 3 basic fluorides

are measured and the corresponding isotropic chemical shieldings are calculated using the

GIPAW method. When using the PBE exchange–correlation functional for the treatment of the

cationic localized empty orbitals of Ca2+, Sc3+ (3d) and La3+ (4f), a correction is needed to

accurately calculate 19F chemical shieldings. We show that the correlation between experimental

isotropic chemical shifts and calculated isotropic chemical shieldings established for the studied

compounds allows us to predict 19F NMR spectra of crystalline compounds with a relatively

good accuracy. In addition, we experimentally determine the quadrupolar parameters of 25Mg in

MgF2 and calculate the electric field gradients of 25Mg in MgF2 and
139La in LaF3 using both

PAW and LAPW methods. The orientation of the EFG components in the crystallographic

frame, provided by DFT calculations, is analysed in terms of electron densities. It is shown that

consideration of the quadrupolar charge deformation is essential for the analysis of slightly

distorted environments or highly irregular polyhedra.

Introduction

During the last decade, the characterisation of the fluorine

environment in rigid solids by nuclear magnetic resonance

(NMR) spectroscopy has become easier with the increase in

routinely available magic angle spinning (MAS) frequency

which allows an efficient averaging of the chemical shift

anisotropy and dipolar interactions. As the 19F (I = 1/2)

isotropic chemical shift (diso) is very sensitive to the environ-

ment of the fluorine atom, MAS NMR is a powerful structural

tool for studying complex fluoride crystalline materials having

multiple crystallographic sites. In numerous studies, the inter-

pretation of 19FMAS NMR spectra is commonly based on the

intuitive assumption that similar structural environments lead

to similar 19F diso.
1–8 By comparison with the 19F diso values

measured for well-known binary fluorides, the 19F resonances

of a crystalline compound can be assigned to different fluorine

environments. In the case of fluorine sites with different multi-

plicities, the relative intensities of the corresponding resonances

also provide additional constraints for the assignment. None-

theless, complete unambiguous assignment of complex 19F

solid-state MAS NMR spectra often remains challenging. In

such cases, two-dimensional (2D) NMR correlation experi-

ments, which provide information about inter-atomic connec-

tivities, can be used for line assignment purposes. In inorganic

crystalline fluorides, various 2D heteronuclear correlation

MAS experiments (CP-MAS HETCOR,9 TEDOR-MQMAS,10

CP 3QMAS11 and J-HMQC12,13) have been applied to several

spin pairs (19F/27Al,14–17 19F/23Na,16,18–20 19F/31P14,21 and
19F/207Pb22–24) to probe heteronuclear spatial proximities. In

oxyfluoride25,26 and in fluoride materials,17,23,24,27 the fluorine–

fluorine proximities or through bond connectivities evidenced

through 2D 19F double-quantum single-quantum28 (DQ-SQ)
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MAS correlation experiments were also used to assign the 19F

resonances. However, in the case of distinct fluorine sites having

the same connectivity scheme and relatively similar inter-atomic

distances, these 2D correlation NMR methods do not allow a

straightforward assignment of the corresponding resonances.17,29

An alternative approach is to correlate experimental 19F diso
values to the ones calculated from structural data. A semi-

empirical model30–35 can be used for this purpose but this

requires the refinement of phenomenological parameters which

are usually valid for a specific family of compounds. First-

principles molecular calculations are very efficient on molecular

systems but, in the case of crystalline compounds, these

methods critically require the non trivial definition of cluster

size to mimic the crystalline structure.25,36–45 Moreover, for

these two approaches, uncertainties on calculation results are

sometimes larger than the experimentally measured 19F diso
difference between two distinct resonances, preventing an

unambiguous assignment of the 19F NMR resonances.

The more elegant approach for crystalline systems consists in

using the periodic boundary conditions. Two different methods

can be used for this purpose, the GIPAW (Gauge Including

Projector Augmented Wave) method introduced by Pickard

et al.46–48 that enables the calculation of the chemical shielding

tensor (s) and indirect spin–spin (J) coupling constant26,49–53

and the recently implemented ‘‘converse approach’’54 that was

demonstrated to be a very efficient alternative for the chemical

shielding tensor calculations.55 Two groups have recently pub-

lished GIPAW calculations on fluorides. From 19F isotropic

chemical shielding (siso) calculations for numerous compounds

including alkali and alkaline earth basic fluorides, Zheng

et al.56 proposed a calibration curve between calculated and

experimental 19F diso values. Griffin et al.26 have also calcu-

lated 19F siso values for several fluorides including some alkali

and alkaline earth fluorides and a rare earth fluoride, LaF3.

However, using the same exchange–correlation functional,

a significantly different calibration curve was obtained. The

origin of this difference is discussed later on and arises mostly

from the consideration of LaF3 in the correlation reported

by Griffin et al.26 One can also notice in the paper of Zheng

et al.56 some significant differences between experimental and

calculated diso values, especially for CaF2 (30 ppm).56

To further investigate these problems we decided to recon-

sider this crucial step for providing predictive results allowing

the assignment of 19F NMR resonances, i.e. the definition

of a calibration curve for inorganic fluorides. We have thus

calculated the 19F siso for alkali, alkaline earth and rare earth

(column 3) basic fluorides using the CASTEP code.57 To obtain

reliable experimental data and avoid any reference problem

(see below for more details), the experimental 19F diso values

for all the compounds under investigation have been measured

again using the same reference sample (CFCl3). In a first step,

the fluorine pseudopotential used for the calculation of 19F siso
has been validated. As it is classically done,55,58,59 a molecular

benchmark was used for comparing our GIPAW results to

all-electrons (AE) calculations. In a second step, the correlation

between the calculated 19F siso values for twelve binary crystal-

line compounds and experimental 19F diso values is investigated.

A critical problem that was already observed for Ca in oxides60

is evidenced in fluorides: The PBE-DFT (Perdew, Burke and

Ernzerhof-Density Functional Theory) method61 is deficient in

describing 3d and 4f localized empty orbitals when considering

NMR shielding calculations. To circumvent this problem the

Ca, Sc, and La pseudopotentials have been adapted using the

methodology described in ref. 60 and a reference calibration

curve is proposed. We then show that the correlation establi-

shed for the studied compounds fits nicely with the calculations

on other inorganic fluorides reported in ref. 26 and 56.

For two of the twelve studied compounds (MgF2 and LaF3),

the quadrupolar nuclei occupying the cationic site (i.e. 25Mg,

I = 5/2 and 139La, I = 7/2) are affected by the quadrupolar

interaction since the corresponding site symmetries lead to a

non-zero Electric Field Gradient (EFG). We have measured

the 25MgNMRparameters inMgF2which were unknown despite

two recent 25Mg NMR studies of numerous compounds62,63 and

the recently determined 139La NMR parameters in LaF3
64,65 are

also reported. The EFG tensors of 25Mg in MgF2 and 139La in

LaF3 calculated from the AE method and projector augmented-

wave (PAW) approach66,67 using the WIEN2K68,69 and CASTEP

codes,57 respectively, are compared to these experimental

values. Finally, the orientation of the EFG tensor components

in terms of site distortion and deformation of the electronic

density around the cationic positions is discussed.

Experimental and computational details

Solid state NMR

Experimental conditions used to record 19F solid-state MAS

NMR spectra are given as ESI.w The 25Mg MAS (7 kHz)

NMR spectra of MgF2 were recorded at two magnetic fields of

17.6 and 9.4 T using Avance 750 and 400 Bruker spectrometers

operating at Larmor frequencies of 45.92 and 24.49 MHz,

respectively. A Hahn echo pulse sequence with a 5.0 ms 901

pulse (nutation frequency of 50 kHz) was employed. The inter-

pulse delays were synchronized with the rotor period and
19F continuous wave decoupling was applied during signal

acquisition. The recycle delays were set to 5 s and 1.5 s at 17.6

and 9.4 T, respectively. The 25Mg chemical shift was referenced

relative to an aqueous 1 M solution of MgCl2. All the NMR

spectra were reconstructed using the DMFit software.70

Computational methods

The GIPAW method implemented in the CASTEP code is an

efficient and accurate method for determining NMR shielding

tensor in periodic systems. By combining a plane-wave basis

set and Ultrasoft Pseudopotential (USPP) a quite large number

of atoms can be considered using periodic boundary conditions.

However, the pseudopotential construction (mainly the GIPAW

projectors definition) should be realized with care in order to avoid

unphysical behaviour that could lead to misleading conclusions.

To test the validity of the GIPAW USPP used to calculate
19F siso, a molecular benchmark of eight experimentally well

characterized simple molecules is used (see Table 1). They were

chosen because they span a large range of 19F siso values (about

750 ppm). Two sets of calculations are performed using the PBE

functional, the first one using AE basis sets as implemented in

the Gaussian03 code71 and the second one using USPP and the

GIPAW method as implemented in the CASTEP 5.0 package.

48



This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 18539–18550 18541

For the AE calculations, the well known GIAO (gauge invariant

atomic orbitals)72,73 and IGAIM (individual gauges for atoms in

molecules)74,75 methods are used. AE calculations are performed

using four different types of basis sets from Dunning’s hierarchy76

with increasing accuracy, namely aug-cc-pCVDZ, aug-cc-pCVTZ,

aug-cc-pCVQZ and aug-pCV5Z taken from the ESML basis set

exchange library.77 The USPP are generated using the on the fly

generator (OTF_USPP) included in CASTEP and the following

parameters for the fluorine atoms: (i) rloc = rnloc = 1.4 a.u.,

(ii) raug = 1.0 a.u. and (ii) qc = 7.5 a.u.1/2. Two ultrasoft

projectors were used for the 2s and 2p nonlocal components.

An energy cut-off of 700 eV is used for the plane wave basis

set expansion. Prior to 19F chemical shielding calculations,

symmetry-constrained molecular geometry optimizations are

performed using the PBE61 functional (Table 1). The mole-

cular state is simulated in CASTEP using a box large enough

(1000 Å3) to avoid interactions between molecular images.

For the calculation of 19F siso on crystalline systems (CASTEP

code) twelve binary compounds are considered. Two structural

data sets are used, the experimental structures reported in the

literature (named IS in the following for initial structures) and

the structures obtained after PBE-DFT atomic position optimi-

zation (APO structures) when allowed by symmetry, which is

only the case for MgF2,
78 YF3

79 and LaF3.
80 Effectively, the

alkali fluorides (LiF,81 NaF,82 KF,83 RbF84 and CsF85) adopt

the NaCl structure type, three of the four studied alkaline earth

basic fluorides (CaF2,
86 SrF2

87 and BaF2
88) adopt the fluorite

structure type and ScF3 adopts a ReO3 type structure.
89,90 For

these nine compounds, the atomic coordinates are therefore

constrained by the local symmetry. To obtain converged 19F

siso values, a plane wave basis set energy cut-off of 700 eV is

necessary and a Monkhorst–Pack grid density approximately

equal to 0.04 Å�1 (corresponding to a k-point mesh of 8� 8� 8

for all structures except for YF3 (4� 4� 6) and LaF3 (4� 4� 4))

is enough. For the electronic loops, the PBE functional61 is used

for the exchange–correlation kernel. Total energies are converged

up to changes smaller than 2 � 10�5 eV. APO are obtained by

minimizing the residual forces on the atom up to |F|max below

20 meV Å�1, keeping symmetry constraints and fixing the cell

parameters to the experimentally determined values.

As previously proposed by Profeta et al.60 for the Ca2+ ion

(3d0), the local potentials of Sc3+ (3d0) and La3+ (4f0) USPP

are also artificially shifted higher in energy compared to the

default definition proposed by the Materials Studio package

(practical details are given as ESIw). This overcomes the deficiency

of the PBE functional which generates too much covalent

interaction between those empty states and the anionic p states.

To show the limit of the PBE-DFT functional to describe these

cations, calculations of the density of states (DOS) using hybrid

PBE0 functional91 are also performed for CaF2. Norm-conserving

pseudopotentials (NCPP) with a higher energy cut-off value

(1088 eV) have to be used, USPP being not yet supported with

hybrid functional.

EFG are calculated for 25Mg inMgF2 and
139La in LaF3 using

the PAW66 method implemented in CASTEP and the linearized

augmented plane wave (LAPW)69 method implemented in the

WIEN2K package. The same PBE functional is used to compare

calculated values of the EFG. The atomic sphere radii (RMT)

were set to 1.85 a.u. for Mg and F in MgF2 and to 2.41 and

2.13 a.u. for La and F, respectively, in LaF3. Core states are 1s for

Mg and F and from 1s to 4d for the La. The plane wave cut-off is

defined by RMTKMAX = 8. We use the same Monkhorst–Pack

scheme as for CASTEP (8 � 8 � 8 for MgF2 and 4 � 4 � 4 for

LaF3). Both sets of structures are used, the IS reported in the

literature and the APO structures obtained using the CASTEP

package.

Conventions

In this study, the calculated siso value is defined as:

siso = (sxx + syy + szz)/3,

sii being the principal components of the shielding tensor defined

in the sequence |szz � siso| Z |sxx � siso| Z |syy � siso|.

The isotropic chemical shift is defined as:

diso = �[siso � sref]

The quadrupolar coupling constant (CQ) and the asymmetry

parameter (ZQ) are defined as:

CQ = (eQVzz)/h,

ZQ = (Vxx � Vyy)/Vzz

Vii being the principal components of the EFG tensor defined

in the sequence |Vzz| Z |Vyy| Z |Vxx|.

The quadrupolar moments (Q) of 25Mg and 139La are taken

from ref. 92.

Results and discussion

NMR shielding calculation on molecular systems: USPP

validation

To validate the fluorine USPP used for the 19F siso GIPAW

calculations, the GIPAW results are faced to AE calculations

Table 1 Molecules used for pseudopotential tests. Geometries are obtained from PBE geometry optimization. Local point groups, space groups,
bond lengths and angles are reported. The space group is used for calculation with the periodic code

Molecule Local point group Space group Distances/Å Angles/1

CH3F Cs P31m C–F = 1.403 C–H = 1.099 F–C–H = 108.7
HF CNv P4mm H–F = 0.940
C6F6 D2h P6/mmm C–F = 1.343 C–C = 1.395 C–C–C = 120.0 F–C–C = 120.0
CH2F2 C2v Pmm2 C–F = 1.376 C–H = 1.100 H–C–H = 113.9 F–C–F = 108.5
CF4 Td P�4m3 C–F = 1.342 F–C–F = 109.5
CFCl3 Cs P31m C–F = 1.363 C–Cl = 1.769 Cl–C–Cl = 110.6 Cl–C–F = 108.3
NF3 C3v P31m N–F = 1.409 F–N–F = 101.7
F2 DNh P4/mmm F–F = 1.418
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for a molecular benchmark. To ensure the computation accu-

racy of AE methods, we first compare the 19F siso calculated

with GIAO and IGAIM methods and then 19F siso GIAO

calculation results are compared to the values issued from the

GIPAW method (Table 2). In this work we avoid direct com-

parison with experimental diso values which has been already

extensively discussed by Harding et al.93 For molecular systems

more sophisticated methods are required. This is out of the

scope of the present work.

The molecules used in our benchmark allow us to validate

our USPP on a large range of NMR shielding from a highly

shielded 19F atom (highly ionic C–F interaction on the CH3F

molecule) to a much unshielded 19F atom (covalent F–F

interaction on the F2 molecule). Between both GIAO and

IGAIM AE methods, we notice a convergence of the 19F siso
values when increasing the accuracy of the basis sets from

double zeta (aug-cc-pCVDZ) to quintuple zeta (aug-cc-pCV5Z),

the differences between the two methods becoming negligible for

the very large aug-cc-pCV5Z basis set. This ensures the validity

of these AE references to test the fluorine USPP.

As reported by Ceresoli et al.,55 the largest differences (from

10 to 15 ppm) between the AE methods and the USPP GIPAW

calculations are observed for molecules having a highly negative
19F siso value. The weak shielding due to the covalent N–F or

F–F interactions results in the contraction of the core orbitals.

In this case, the number of Gaussian functions needed to

correctly describe the atomic behaviour is a crucial parameter.93

This can be clearly seen in the evolution of the19F siso values

which still decrease by about 3.5 ppm for F2 but only 0.2 ppm

for CH3F when increasing the basis set from quadruple zeta

(aug-cc-pCVQZ) to quintuple zeta (aug-cc-pCV5Z). This would

suggest that the calculated siso value is not yet completely

converged with respect to the basis set size for the F2 molecule.

Such negative values for the shielding being not observed for

crystalline systems, one can consider that the description of the

core by GIPAW USPP is as good as the description by a very

large AE basis set. Probably GIPAW USPP calculations could

be improved for much unshielded fluorine atoms by allowing

core states relaxation (for the OTF_USPP generator) during the

self consistent electronic procedure but this was beyond the

scope of the present study.

Fig. 1 shows the correlation between the siso values obtained

with the all-electron GIAO method and the GIPAW method

using the USPP of the Material Studio package. The remark-

able agreement proves the correctness of the USPP fluorine

atoms for calculating 19F siso when using the PBE functional.

They will be used in the following for crystalline systems.

NMR shielding calculations on crystalline systems

To perform a reliable comparison between experimental and

DFT-GIPAW calculated 19F isotropic chemical shifts for

alkali, alkaline earth and rare earth of column 3 basic fluorides,

the consideration of accurate experimental values referenced

relative to the same standard is a crucial point. Unfortunately,

there are some discrepancies between the 19F diso values pre-

viously reported for these compounds.1,4–6,30,64,94–103 In addi-

tion, these values are referenced relative to different fluorine

standards (CFCl3, C6F6) and thus need to be expressed with

respect to CFCl3, the primary fluorine standard. Such a con-

version procedure was used in previous works26,56 (some experi-

mental values seem erroneously converted in the paper of

Zheng et al.56). In order to obtain reliable data for comparison

with calculations, we have therefore measured again the 19F diso
values for these fluorides with respect to CFCl3 (measured 19F

diso are given in Table 3 and the corresponding experimental 19F

NMR spectra are presented as ESIw). For the compounds

involving a single fluorine crystallographic site, 19F MAS

NMR spectra were recorded at 7.0 T with the MAS spinning

frequency ranging from 15 to 30 kHz. For compounds contain-

ing several distinct F sites (YF3 and LaF3), a higher magnetic

Table 2 19F siso values (ppm) using different AE basis sets, with
increasing accuracy, within the GIAO and IGAIM (in italic) methods.
The last column reports the results obtained using USPP within the
GIPAW method

Molecule

All-electron Pseudopotential

aug-cc-
pCVDZ

aug-cc-
pCVTZ

aug-cc-
pCVQZ

aug-cc-
pCV5Z USPP

CH3F 453.2 452.6 452.1 451.9 452.1
446.0 452.0 452.0 451.9

HF 405.2 401.2 400.5 400.1 398.8
401.6 401.3 400.5 400.1

C6F6 322.5 319.8 317.5 316.9 310.6
320.0 319.0 317.6 316.8

CH2F2 310.7 304.4 302.4 301.6 298.7
304.2 303.8 302.3 301.6

CF4 225.0 216.8 213.9 212.6 207.0
221.1 216.5 213.9 212.6

CFCl3 138.2 125.8 121.9 120.3 113.2
128.2 125.0 121.9 120.3

NF3 �36.7 �50.1 �56.2 �58.8 �73.5
�40.4 �50.3 �56.2 �58.7

F2 �257.1 �273.2 �282.5 �286.2 �296.3
�258.3 �273.6 �282.8 �286.3

Fig. 1 Calculated 19F siso values using the USPP GIPAW method

versus AE aug-cc-pCVDZ and aug-cc-pCV5Z basis sets with the

GIAO method, using the PBE functional and the same molecular

geometries (see Table 1 for details). The solid line represents the

calculated linear regression corresponding to the equation reported

on the graph for the aug-cc-pCV5Z basis set. The dotted line represents

the ideal expected correlation siso GIPAW = siso GIAO.
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field of 17.6 T and fast MAS spinning frequency (up to 65 kHz)

were employed to obtain very high resolution 19F MAS NMR

spectra. The assignments of the NMR lines are unambiguous

for the twelve studied compounds since they have only one

fluorine site78,81–90 or several fluorine sites with different multi-

plicities (2 for YF3
79 and 3 for LaF3

80). Some difficulties were

encountered with the determination of the 19F diso value of ScF3

due to local disorder related to its negative thermal expansion.104

Experimental results on this compound are discussed in the ESI.w

A second point that must be considered with attention is the

conversion of calculated 19F siso values into
19F diso values. In

the work of Zheng et al.,56 the calculated 19F siso values were

converted into 19F diso values with respect to C6F6 from the

calculated siso value of the C6F6 reference molecule, as pre-

viously done by Yates et al.105 Then, the experimentally

measured 19F diso value of C6F6 relative to CFCl3 is used to

deduce ‘‘calculated’’ 19F diso values relative to CFCl3. Unfor-

tunately, the experimental 19F diso value of C6F6 used in

ref. 56 and 105 are different and one can find in the literature

several different 19F diso values for C6F6 (relative to CFCl3).

Another approach would be to transform experimental diso
values into experimental siso values using the established experi-

mental absolute scale for fluorine (s(19F neat liq. CFCl3,

spherical, 300 K) = 188.7 ppm).106,107 To avoid these referen-

cing problems and possible errors coming from the calculation

of the 19F siso value of the isolated molecule chosen as reference,

we have directly deduced the ‘‘calculated’’ 19F diso values from

the linear regression between calculated 19F siso values and

experimental 19F diso values referenced to CFCl3.
58,59

The 19F DFT-GIPAW siso values for alkali, alkaline earth

and rare earth of column 3 basic fluorides calculated using the

USPP and computational parameters presented in previous

section and the corresponding measured 19F diso are given in

Table 3.

The linear correlation between experimental diso and calcu-

lated siso, from APO structures (see ESIw) when allowed by

symmetry, is shown Fig. 2. Except for the F3 site in LaF3, the

siso values calculated from IS and APO structures are very

similar. This is in agreement with slight optimization effects

on F–Mg, F–Y or F–La distances (see ESIw) and tends to

show that these three structures were precisely determined.

The slope of the linear regression (�0.70) is far below the

theoretically expected value of minus one. However, same kind

of deviations have been noted previously for other halogens

(Cl, Br and I)108–111 and other nuclei such as 29Si,112,113

31P,114,115 43Ca,116 or 93Nb117 and therefore does not seem to

be a specific problem associated with fluorine NMR para-

meters. Similar trends were also reported by Zheng et al.56

and by Griffin et al.,26 with slopes equal to �0.86 and �0.68,

respectively. This deviation from the theoretically expected

slope of minus one already reported for PBE-DFT calculations

implies establishing an empirical calibration curve to predict

calculated isotropic chemical shift values. Another striking

point is that the slope obtained here, which is relatively close

to that obtained by Griffin et al.,26 differs significantly from the

slope reported by Zheng et al.56 This difference arises mainly

from the consideration of the calculated siso values for LaF3,

ScF3 and CaF2, two of these compounds containing cations

(Ca2+ and La3+) already known to be inaccurately described

with PBE-DFT.60,118 In the work of Griffin et al., two of

these three compounds (CaF2 and LaF3) were considered while

only CaF2 was studied by Zheng et al. leading to a larger

absolute slope.

The deficiency of PBE-DFT in calculating the NMR shield-

ing of anions neighboured by Ca2+ cations has already been

reported by Profeta et al.60 They have shown that the PBE

Table 3 Experimental 19F diso values, 19F siso values calculated
using USPP within the GIPAW method for IS and APO structures,
and calculated diso values deduced from the linear regression
obtained for YF3, alkali and alkaline earth compounds without
CaF2 (diso/CFCl3 = �0.80(3) siso + 89(9))

Compounds

siso calc/ppm diso calc/ppm

diso exp/ppmIS APO IS APO

LiF 369.3 — �206 — �204.3(3)
NaF 395.8 — �228 — �224.2(2)
KF 268.1 — �125 — �133.3(2)
RbF 221.3 — �88 — �90.9(2)
CsF 136.3 — �20 — �11.2(2)
MgF2 362.7 362.7 �201 �201 �197.3(4)
CaF2 220.0 — �87 — �108.0(2)

246.2a — �108a —
SrF2 215.3 — �83 — �87.5(2)
BaF2 151.9 — �33 — �14.3(2)
ScF3 97.2 — 11 — �36(1)

156.0b — �36b —
YF3 (F1) 180.1 181.3 �55 �56 �68.1(2)
YF3 (F2) 170.8 170.0 �48 �47 �56.9(2)
LaF3 (F1) 93.7 91.8 14 15 �23.6(2)

133.6c 132.1c �18c �17c

LaF3 (F2) 39.1 38.7 58 58 25.3(2)
82.6c 82.3c 23c 23c

LaF3 (F3) 47.2 52.5 51 47 16.9(2)
89.3c 94.2c 18c 14c

a A shift of 1.81 eV was applied on the 3d orbitals. b A shift of 1.96 eV

was applied on the 3d orbitals. c A shift of 4.55 eV was applied on the

4f orbitals.

Fig. 2 Calculated 19F siso values using the PBE functional for

APO structures when allowed by symmetry versus experimentally

measured 19F diso values. The solid line represents the calculated linear

regression.
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functional leads to an inaccurate calculation of 17O siso in CaO

due to an overestimation of the Ca–O bond covalence. More

precisely, too much interaction is found by PBE between

the Ca(3d) and O(2p) states. To overcome this PBE-DFT

deficiency, the energy level of the 3d Ca orbitals was shifted

to higher energy without changing the position of the s and

p states in the Ca pseudopotential.60 This method has been

afterwards successfully applied on 43Ca NMR parameters

calculations.119,120 Following these works, we have applied

an empirical shift on the Ca(3d) orbitals for building the Ca

USPP. To determine the optimal 3d-shift a reference correla-

tion between diso and siso is needed and we have thus establi-

shed a new correlation presented in Fig. 3 by discarding CaF2,

ScF3 and LaF3.

It leads to:

diso/CFCl3 = �0.80(3) siso + 89(9) (1)

From this new linear regression (eqn (1)), the ideal 19F siso
value for the fluorine in CaF2 can be established (Fig. 3(a))

and further used to adjust the 3d-shift for the Ca(3d) orbitals.

An optimal shift of 1.81 eV is obtained (see Fig. 3(b)). This

value is significantly smaller than for CaO (3.2 eV).60 This

difference can be explained as (i) we used USPP whereas

Profeta et al. used NCPP60 and (ii) the degrees of covalency

of the Ca–O and Ca–F bonds are different. To ascertain this

empirical procedure, the density of states (DOS) obtained

using the PBE functional for the two different definitions of

the Ca USPP is compared with the DOS obtained using the

hybrid functional PBE0, which is expected to give a better

description of the covalency in the system (Fig. 4).

The effect of the shift applied on the 3d orbitals is clearly

observed in the conduction band: the energy of the band having

mostly a Ca(3d) character is increased and becomes closer to

the one obtained using the hybrid functional. The band gap

stays unchanged (mainly imposed by the position of Ca(4s)

states in the conduction band) and is calculated to 6.3 eV using

the PBE functional. As expected, the use of the hybrid functional

gives a higher band gap value (8.4 eV) which is closer to the

experimental one (11.8 eV).121

Since the calculated 19F siso of ScF3 also deviates signifi-

cantly from the linear regression established for YF3, alkali

and alkaline earth compounds excluding CaF2 (as evidenced

from Fig. 3(a)) and because the DOS calculation (not shown)

shows that the bottom of the conduction band has a strong 3d

character, it appears that a similar correction is also needed to

properly describe the 3d orbitals of the Sc atom when using

PBE functional. As done for Ca, we thus adjusted the corres-

ponding 3d-shift for the Sc USPP such that the calculated 19F

siso corresponds to the value determined from the experi-

mental diso using eqn (1). Fig. 3(c) shows that the effect of the

applied 3d-shift on the calculated siso value is more pronounced

for ScF3 than for CaF2. It should be noticed that the values of

the 3d-shift required for the Sc3+ ion in ScF3 (1.96 eV) and for

the Ca2+ ion in CaF2 (1.81 eV) are very close. This observation

gives some confidence about the relevance of this empirical

procedure to overcome the deficiency of the PBE functional in

describing cations with localized 3d empty states.

It is also known that standard GGA/DFT is not well suitable

to elements with localized 4f empty states. For example, a recent

theoretical investigation has shown that it is necessary to add an

on-site Hubbard correction (Ueff = 10.3 eV) on the 4f(La)

orbitals to properly describe their localizations and then their

energy positions, allowing the XPS/BIS and reflectance experi-

mental spectra of LaF3 to be properly simulated.118 In our case,

the very large deviation observed for LaF3 (Fig. 3(a)) shows

that the La3+ ion (4f0) has a similar symptomatic behaviour

as Ca2+ and Sc3+ ions. Therefore, we have applied the Profeta

et al.60 procedure to shift 4f orbitals. LaF3 having three fluorine

sites, the 4f-shift was determined by simultaneously minimizing

for the three sites the differences between the experimental 19F

diso and the diso values deduced from the calculated 19F siso
using eqn (1). The optimum value obtained following this

protocol (4.55 eV, Fig. 3(d)), is much higher than the one deter-

mined for the 3d orbitals of Ca2+ and Sc3+.

Fig. 3 (a) Experimental 19F diso (/CFCl3) values versus calculated siso values. The solid line represents the linear regression when considering all

compounds and the dashed line represents the linear regression when considering YF3 and alkali and alkaline earth compounds without CaF2. The

arrows represent the change in siso when applying a shift on the 3d orbitals of Ca and Sc and on the 4f orbitals of La. The panels on the right side

report the siso evolution with the applied shifts on the 3d orbitals of Ca (b) and Sc (c) and on the 4f orbitals of La (d).
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The validity of eqn (1), used to determine the 3d- and

4d-shifts required to calculate the 19F siso of compounds for

which the lowest energy states of the conduction bands have

strong 3d or 4d characters (i.e. CaF2, ScF3 and LaF3), is

illustrated in Fig. 5. In this plot, we have reported the 19F diso
values previously measured for several other inorganic fluorides

together with the corresponding 19F siso values calculated by

Zheng et al.56 and by Griffin et al.26 using the PBE-DFT

GIPAW method with the same fluorine USPP (see ESIw).

Great care was taken to consider only compounds for which
19F diso values were determined from high-resolution spectra

(i.e. recorded at relatively high magnetic fields using a MAS

spinning frequency larger than 10 kHz) and for which an

unambiguous assignment of the resonances is provided. These

compounds include ZnF2,
30 CdF2,

30 a-PbF2 (2 distinct F sites),122

HgF2,
102 a-AlF3,

123 GaF3,
30 InF3,

30 BaLiF3,
30 Na5Al3F14

20

(3 distinct F sites), b-BaAlF5
17 (10 distinct F sites) and

Ba3Al2F12
17,29 (8 distinct F sites). It should be mentioned that

the GIPAW calculations of the 19F isotropic shielding by

Griffin et al.26 and Zheng et al.56 were carried out using

slightly different computation parameters than those used in

this work. Griffin et al.26 used a cut-off energy of 680 eV and a

k-spacing of 0.04 Å�1, and a full geometry optimization

(variation of both the lattice parameters and internal atomic

coordinates) was performed prior to the siso calculations.

Zheng et al.56 employed much smaller cut-off energies of

300 eV for the optimizations of atomic positions and 550 eV

for the GIPAW calculations, which does not allow obtaining

fully converged 19F siso values (see Experimental section). Taking

these aspects into account, it is clearly observed in Fig. 5

that eqn (1) (diso/CFCl3 = �0.80(3) siso + 89(9)) fits perfectly

with these results obtained for other inorganic fluorides, the

linear regression obtained considering these 11 compounds

in addition to the 12 studied fluorides being diso/CFCl3 =

�0.79(1) siso + 90(3).

By applying eqn (1) to the calculated 19F siso values plotted

in Fig. 5 (except those of CaF2, ScF3 and LaF3 for which this

equation was used to adjust the 3d-and 4f-shifts), a RMS

deviation between experimental and ‘‘calculated’’ 19F diso of

7 ppm is obtained. This indicates that this equation can be

used to predict the 19F NMR spectra of crystalline compounds

from the PBE-DFT GIPAW calculation with a quite good

accuracy. More importantly, it should be pointed out that for

all of the compounds having multiple fluorine crystallographic

sites (2 sites in YF3, 3 sites in LaF3, 2 sites in a-PbF2, 10 sites in

b-BaAlF5 and 8 sites in Ba3Al2F12), the relative positions of

the calculated siso values (and the corresponding ‘‘calculated’’

diso values) are similar to the relative positions of the experi-

mental diso values, showing that such calculations allow an

unambiguous assignment of 19F resonances for compounds

having several fluorine sites with the same multiplicity.

Electric field gradient calculations

In the second part of this work, we compare the calculated

EFG tensor to the one experimentally determined using solid-

state NMR. According to the symmetry of the cationic sites in

the studied compounds, the EFG tensors of the quadrupolar

nuclei occupying cationic sites are expected to be different

from zero only for 25Mg in MgF2 and 139La in LaF3. The

quadrupolar parameters CQ and ZQ are directly related to the

principal components of the EFG tensor which originates from

the deformation of the electronic density around the nucleus.

Fig. 4 The DOS for CaF2 using (a) the PBE functional, (b) the PBE

functional with a 3d-shift of 1.81 eV for Ca and (c) the PBE0 hybrid

functional. The hatched area represents the partial density of states

projected on the 3d orbitals of the Ca element and the dashed area the

partial density of states projected on the 2p orbitals of the F element.

The experimental band gap is 11.8 eV.121

Fig. 5 Calculated 19F siso values using the PBE functional versus

experimentally measured 19F diso values. The circles represent the

values reported in Table 3. The triangles represent the values calcu-

lated by Griffin et al.26 for CdF2, HgF2, a-PbF2, a-AlF3 and

Na5Al3F14. The squares represent the values calculated by Zheng

et al.56 for ZnF2, GaF3, InF3, BaLiF3, b-BaAlF5 and Ba3Al2F12.

The values presented in this figure are reported as ESI.w The dashed

line corresponds to eqn (1) (diso/CFCl3 = �0.80(3) siso + 89(9)).

53



18546 Phys. Chem. Chem. Phys., 2011, 13, 18539–18550 This journal is c the Owner Societies 2011

Consequently,CQ and ZQ parameters are very sensitive to the site

symmetry and/or site distortion and provide additional structural

information. The quadrupolar parameters for 25Mg in MgF2

which adopts the rutile structure type (P42/mnm space group),78

are measured for the first time. These parameters and those of
139La in LaF3 determined by Ooms et al.65 and Lo et al.64 are

gathered in Table 4. The EFG tensor components calculated

with both CASTEP and WIEN2K codes for the IS and APO

structures of MgF2 and LaF3 are also reported in Table 4,

together with the quadrupolar parameters of 139La in LaF3

previously calculated by Ooms et al.65 using LAPW method.69

As shown in Fig. 6, the 25Mg MAS NMR spectra of MgF2

recorded at two different magnetic fields (9.4 and 17.6 T)

exhibit typical second order quadrupolar broadened line

shapes. Good fits of the two 25Mg experimental spectra can

be obtained taking into account only the second order quadrupolar

interaction indicating that the effect of the 25Mg chemical shift

anisotropy can be neglected even at 17.6 T. The 25Mg isotropic

chemical shift determined from the fits of experimental spectra

is �4 � 1 ppm. The calculated diso deduced from the isotropic

shielding siso calculated with CASTEP (564.6 ppm) using the

equations reported by Pallister et al.63 (diso = �0.933 siso +

528.04) and Cahill et al.62 (diso = �1.049 siso + 565.23) are

respectively equal to 1.4 and �0.6 ppm which are both in fine

agreement with the experimental value.

As reported in Table 4, there are slight discrepancies

between the measured Vii values and those calculated for

the experimental structure of MgF2 using the PAW USPP

(CASTEP) or LAPW AE (WIEN2K) methods, the calculated Vzz

and |Vxx| principal components of the EFG tensor being under-

estimated. As previously done for the 19F chemical shielding, the

principal components of the EFG tensors were also calculated

for the APO structure. The PBE-DFT optimisation of the fluorine

atomic position leads to slight modifications of the MgF6 octa-

hedron: the mean Mg–F distance remains the same (1.982 Å) but

the radial distortion increases and the angular distortion

decreases (see ESIw). For the APO structure, a better

agreement between experimental and calculated Vzz values is

obtained. Nevertheless, the Vxx and Vyy components calcu-

lated with the PAW USPP method are respectively larger and

smaller than the experimental values leading to a discrepancy

between the calculated and experimental asymmetry para-

meters (ZQ). In contrast, the Vii values (and thus CQ and ZQ
parameters) calculated using the LAPW AE method are in

very good agreement with the experimental ones.

As shown in Fig. 7(a) which depicts the orientation of the
25Mg EFG tensor (see ESIw for details), the Vii components

are along the intersections of the three mirror planes of the

Mg site (mmm symmetry) and, for the Mg atom located at

(0,0,0), Vzz and Vxx lie in the (a,b) plane while Vyy is along

the c crystallographic axis. In the MgF2 structure, the MgF6

octahedron is characterized by low radial and high angular

distortions (see ESIw). In such a situation, the largest compo-

nent of the EFG tensor (Vzz) is not expected to be oriented

along M–F bonds.124 Indeed, Vzz and Vyy are both oriented

between two Mg–F bonds in the plane presenting the angular

distortion while Vxx is oriented along the shortest Mg–F bond

perpendicular to this plane. It should also be noted that the

sign of the calculated Vii components is in agreement with the

angular distortion analysis model proposed by Body et al.,124

i.e. a positive/above 901 (negative/below 901) angular distor-

tion leads to a charge depletion (concentration) in the Vii

direction and then to a positive (negative) Vii value (Table 4).

More detailed information about the origin of the EFG at the

nucleus is traditionally obtained from the charge density distri-

bution visualized on electron density difference Dr maps.124–126

Dr represents the difference between the crystalline electron

density and the superposition of electron densities from the

neutral atoms. The Dr maps for the plane containing the Vxx

component and four fluorine atoms with Mg–F distances of

1.975 (x2) and 1.986 Å (x2) and for the plane containing Vzz

and Vyy are shown in Fig. 7(c) and (d), respectively. The Vxx

component being rather small, the corresponding charge defor-

mation is not easily evidenced. On the other hand, in the Vzz/Vyy

plane (Fig. 7(d)), the expected depletion of charge in the Vzz

direction (i.e. between the two Mg–F bonds which form an angle

equal to 98.81) relative to the Vyy direction (i.e. between the two

Mg–F bonds which form an angle equal to 81.21) is clearly

observed. Isolines on the Dr map close to the nucleus are

effectively slightly compressed (elongated) along the Vzz (Vyy)

Table 4 Experimental Vii, CQ and ZQ, calculated Vii, CQ and ZQ using
CASTEP and WIEN2K for initial and APO structures. Since only the
absolute value of CQ can be determined from NMR experiments on
powdered samples, the sign of the experimental CQ is set to the sign of the
calculated CQ. The quadrupolar moment Q values are equal to 0.1994 �
10�28 m2 and 0.2000 � 10�28 m2 for 25Mg and 139La, respectivelya

Vzz/

1021 Vm�2
Vyy/

1021 Vm�2
Vxx/

1021 Vm�2 CQ/MHz ZQ

MgF2

Exp 0.728(6) �0.480(8) �0.248(8) 3.51(3) 0.32(2)
IS CASTEP 0.631 �0.434 �0.196 3.04 0.38

WIEN2K 0.637 �0.498 �0.139 3.06 0.56
APO CASTEP 0.655 �0.364 �0.291 3.16 0.11

WIEN2K 0.658 �0.431 �0.228 3.17 0.31
LaF3

Exp �3.29(1) 2.99(8) 0.30(8) �15.90(5)b 0.82(5)b

�3.309 2.994 0.314 �16.0c 0.81c

IS WIEN2K �3.311 2.831 0.480 �16.01b 0.71b

IS CASTEP �3.147 2.755 0.393 �15.22 0.75
WIEN2K �3.307 2.963 0.344 �15.99 0.79

APO CASTEP �3.722 3.432 0.290 �18.00 0.84
WIEN2K �3.947 3.678 0.269 �19.09 0.86

a From ref. 92. b From ref. 65. c From ref. 64.

Fig. 6 Experimental (dots) 25Mg MAS (7 kHz) Hahn echo NMR

spectra of MgF2 recorded at 9.4 (top) and 17.6 T (bottom) and their

best fits (lines).
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direction due to this depletion (increase) of the electronic density.

As mentioned above, the Dr maps are not well suitable to

establish a relationship between the EFG and the electronic

density asphericity near the nucleus when the distortion is small.

Another approach proposed by Schwarz et al.127 consists in

calculating the difference with respect to the ionic spherical

density. However, this approach requires the construction of

isolated ions (F�, Mg2+) which is not always straightforward.

For simplicity we only consider the non-spherical contribution of

the electronic density inside the Mg sphere (Fig. 7(b)). One can

observe that Vzz, which is positive, is oriented along the negative

part of this non spherical density. We also note that the asym-

metry of the positive part of the density which is less impor-

tant along the Vxx direction than along the Vyy direction is in

agreement with the lower absolute value of Vxx compared toVyy.

The trigonal structure of LaF3 (P-3c1 space group) contains

a single La crystallographic site (6f Wyckoff position).80

The La coordination polyhedron is made of 9 fluorine atoms

with La–F distances ranging from 2.417 to 2.636 Å and 2

additional fluorine atoms at a longer La–F distance of B3 Å

(see Fig. 8 and ESIw). The La site has a twofold symmetry

axis which lies along the La–F3 bond, parallel to the

crystallographic a-axis. As already reported,65 the 139La quad-

rupolar parameters calculated for the experimental structure

using the PAW USPP or LAPW AE methods are very close to

the measured CQ and ZQ values and the best agreement is

obtained for the LAPW AE method (see Table 4). In contrast,

some discrepancies between the Vii values calculated for the

APO structure and the experimental ones are observed, the

two computation methods leading to a notably overestimated

Vzz and Vyy components. These overestimations of the values

calculated after the geometry optimization step remain diffi-

cult to explain since the variation of the La environment,

which is difficult to analyze for this coordination polyhedron,

is small considering the La–F distances (see ESIw). It should be

pointed out that the initial structure of LaF3 was determined

with a very high accuracy (neutron diffraction on single crystal)80

and, in such a case, the weak variation of the structural para-

meters induced by the PBE-DFT geometry optimization leads to

less accurate calculated EFG values.

As shown in Fig. 8(a), Vyy is oriented along the twofold

symmetry axis (i.e. lies along the La–F3 bond). The complexity

of the La environment prevents predicting the relative orienta-

tion of the 139La EFG tensor components from simple

Fig. 7 (a) The orientation of the 25Mg EFG tensor components, calculated with WIEN2K on the APO structure, represented on the MgF6

octahedron. Mg–F bond lengths (Å) and F–Mg–F bond angles (1) are indicated. The norms of the eigenvectors are proportional to the eigenvalues

of the EFG tensor components (see Table 4). (b) The isosurface of the quadrupolar charge deformation considering only the |L| = 2 terms inside

the Mg sphere. A light colour is used for positive values and a dark colour for negative values. For graphical convenience the volume has been

increased by more than an order of magnitude. (c) A Dr map in the plane containing the Vxx component and four Mg–F bonds. (d) A Dr map in

the plane containing the Vzz and Vyy components. On these maps, solid and dashed lines represent respectively positive (from 0.002 to 0.065 e/a.u.3

with a step of 0.016 e/a.u.3) and negative (from �0.002 to �0.040 e/a.u.3 with a step of 0.004 e/a.u.3) values of the electronic density.
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coordination polyhedron geometry considerations,124 and to

go further in the analysis, electronic density differences were

calculated. In a first step, the spherical part of the charge

density is removed keeping all non-spherical terms in the LM

expansion (Fig. 8(b)). However, this does not allow finding a

correlation between the electronic density and the orientation

of the EFG eigenvalues. In a second step, only the |L| = 2

terms of the LM expansion are considered (Fig. 8(c)) and a

good correlation between the electronic density deformation

and the orientation of the EFG eigenvectors is then found.

A depletion of charge is observed along the twofold axis in

agreement with the positive value of Vyy. Along this direction,

the number of neighbouring fluorine atoms is rather small with

longer La–F bonds (La–F1 bond lengths equal to 2.638 Å and

3.003 Å). In contrast, an accumulation of charge is observed

along the Vzz direction, in agreement with the negative value of

Vzz. Along this direction, the number of neighbouring fluorine

atoms is larger with shorter La–F bonds (La–F1 bond lengths

equal to 2.458 and 2.488 Å and La–F2 bond lengths equal

to 2.417 Å) leading to stronger La–F interactions. Finally,

it should be noted that the depletion of charge in the Vyy

direction and the accumulation of charge in the Vzz direction

have similar amplitudes in agreement with similar absolute

values of these eigenvalues (ZQ value close to 1) and accord-

ingly, only a tiny deformation of the electronic density is

observed along the direction of Vxx (Fig. 8(c)).

Conclusion

We have investigated the relationship between experimental
19F diso and calculated 19F siso values from first-principles

calculations using the GIPAW method and the PBE functional,

for alkali, alkaline earth and rare earth of column 3 fluorides. On

this basis, we show that the PBE functional is unable to

reproduce the measured 19F diso value in CaF2 as it overestimates

the Ca–F covalence but this deficiency is corrected by applying a

shift on the 3d orbitals. We also evidence that the same type of

correction is required in the case of ScF3 and LaF3 for which

the bottom of the conduction band has a strong 3d and 4f

character, respectively, and we have determined the shifts of

the 3d(Sc) orbitals and 4d(La) orbitals needed to accurately

calculate the 19F shielding tensors of these compounds using

the PBE functional. Taking into account this deficiency of

the PBE functional, we propose a correlation between the

calculated 19F siso values and the experimental 19F diso values

that allows the prediction of 19F NMR spectra with a relatively

good accuracy. Nevertheless, our results highlight the need of

to compute the NMR shielding using improved exchange–

correlation functionals such as hybrid functionals. In this con-

text, the converse approach recently developed by Thonhauser

et al.54 seems to be a promising solution. In this work, we also

determined and calculated the quadrupolar parameters of 25Mg

in MgF2 and, from the analysis of charge distribution through

electron density maps, it is shown that the orientation of the

EFG components of 25Mg reflects the angular distortion of the

MgF6 octahedron. Finally, we have shown that the electronic

density deformation determined by considering only the |L| = 2

terms of the LM expansion gives a reliable picture of the EFG

tensors of 25Mg in MgF2 and
139La in LaF3.
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2005, 109, 10270–10278.
45 M. Gerken, P. Hazendonk, A. Iuga, J. Nieboer, M. Tramsek,

E. Goreshnik, B. Zemva, S. Zheng and J. Autschbach, Inorg. Chem.,
2007, 46, 6069–6077.

46 C. J. Pickard and F. Mauri, Phys. Rev. B: Condens. Matter, 2001,
63, 245101.

47 J. R. Yates, C. J. Pickard and F. Mauri, Phys. Rev. B: Condens.
Matter Mater. Phys., 2007, 76, 024401.

48 J. R. Yates and C. J. Pickard,Computations ofMagnetic Resonance
Parameters for Crystalline Systems: Principles, John Wiley:
Chichester, UK, 2008.

49 S. A. Joyce, J. R. Yates, C. J. Pickard and F. Mauri, J. Chem.
Phys., 2007, 127, 204107.

50 S. A. Joyce, J. R. Yates, C. J. Pickard and S. P. Brown, J. Am.
Chem. Soc., 2008, 130, 12663–12670.

51 I. Hung, A.-C. Uldry, J. Becker-Baldus, A. L. Webber, A. Wong,
M. E. Smith, S. A. Joyce, J. R. Yates, C. J. Pickard, R. Dupree
and S. P. Brown, J. Am. Chem. Soc., 2009, 131, 1820–1834.

52 J. R. Yates, Magn. Reson. Chem., 2010, 48, S23–S31.
53 C. Bonhomme, C. Gervais, C. Coelho, F. Pourpoint, T. Azaı̈s,

L. Bonhomme Coury, F. Babonneau, G. Jacob, M. Ferrari,
D. Canet, J. R. Yates, C. J. Pickard, S. A. Joyce, F. Mauri and
D. Massiot, Magn. Reson. Chem., 2010, 48, S86–S102.

54 T. Thonhauser, D. Ceresoli, A. A. Mostofi, N. Marzari, R. Resta
and D. Vanderbilt, J. Chem. Phys., 2009, 131, 101101.

55 D. Ceresoli, N. Marzari, M. G. Lopez and T. Thonhauser,
Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 81, 184424.

56 A. Zheng, S.-B. Liu and F. Deng, J. Phys. Chem. C, 2009, 113,
15018–15023.

57 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J.
Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220,
567–570.

58 L. Truflandier, M. Paris and F. Boucher, Phys. Rev. B: Condens.
Matter Mater. Phys., 2007, 76, 035102.

59 L. Truflandier, M. Paris, C. Payen and F. Boucher, J. Phys.
Chem. B, 2006, 110, 21403–21407.

60 M. Profeta, M. Benoit, F. Mauri and C. J. Pickard, J. Am. Chem.
Soc., 2004, 126, 12628–12635.

61 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996,
77, 3865–3868.

62 L. S. Cahill, J. V. Hanna, A.Wong, J. C. C. Freitas, J. R. Yates, R. K.
Harris and M. E. Smith, Chem.–Eur. J., 2009, 15, 9785–9798.

63 P. J. Pallister, I. L. Moudrakovski and J. A. Ripmeester, Phys.
Chem. Chem. Phys., 2009, 11, 11487–11500.

64 A. Y. H. Lo, V. Sudarsan, S. Sivakumar, F. van Veggel and
R. W. Schurko, J. Am. Chem. Soc., 2007, 129, 4687–4700.

65 K. J. Ooms, K. W. Feindel, M. J. Willans, R. E. Wasylishen,
J. V. Hanna, K. J. Pike and M. E. Smith, Solid State Nucl. Magn.
Reson., 2005, 28, 125–134.
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Experimental conditions used for 
19

F solid state NMR spectroscopy 

The 19F solid-state MAS NMR experiments were conducted on Avance 300 (magnetic field of 7.0 
T) and Avance 750 (magnetic field of 17.6 T) Bruker spectrometers operating at Larmor 
frequencies of 282.2 and 705.85 MHz, respectively, using 2.5 mm and 1.3 mm CPMAS 
probehead. All spectra were acquired using a Hahn echo sequence with an inter-pulse delay equal 
to one rotor period, except CaF2 and LaF3 for which a single pulse sequence was used. The 
recycle delays were set to 10 s for LiF, NaF, KF, RbF, CsF, MgF2, CaF2, SrF2, BaF2 and ScF3 and 
30 s for YF3 and LaF3. 

19F nutation frequencies ranging between 93 (2.5 mm prohead) and 195 
kHz (1.3 mm probehead) were used. The 19F chemical shifts were referenced to CFCl3 at 0 ppm. 
 
 
 
 

19F iso (ppm)

-350-300-250-200-150-100-50050

LiF

NaF

KF

RbF

CsF* *

* *

* *

* *

* *

 
 

Figure S1. 19F MAS NMR spectra of alkaline fluorides obtained at a magnetic field of 7.0 T using 
spinning frequencies of 30 kHz for LiF, 25 kHz for NaF and KF and 15 kHz for RbF and CsF. The 
arrows on the NMR spectra of LiF, RbF and CsF indicate unidentified impurities. The arrow on the 
spectrum of KF indicates an impurity identified as NaF. The asterisks indicate spinning sidebands. 
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Figure S2. 19F MAS NMR spectra of alkaline earth fluorides obtained at a magnetic field of 7.0 T 
using spinning frequencies of 25 kHz. The asterisks indicate spinning sidebands. 
 

Solid state NMR and PXRD study of ScF3 

ScF3 was recently studied by both 19F and 45Sc solid-state MAS NMR but the reported results1 appear 
to us somewhat surprising and the results obtained in our study were also not straightforward to 
interpret.  
Firstly, two different crystalline structures are reported for ScF3 at ambient temperature and pressure: a 
cubic one2,3 (ReO3 type, space group: Pm-3m) and a rhombohedral one4-6 (distorted ReO3 type, space 
group: R32). Lo et al. report that their ScF3 sample adopts a rhombohedral structure. However the 
small 2 range of their powder X-ray diffraction (PXRD) pattern1 does not allow confirming this 
assumption since both cubic and rhombohedral structures give very similar patterns, except for large 
2 values. The PXRD patterns recorded for our sample (Aldrich, 99.99%, lot number 04937HE) on 
the 2 ranges 20-125°, 117.7-119.3°, 139.5-142.5° and 146.1-149.5° are shown in Figure 3. These 
diagrams do not evidence any rhombohedral splitting (Table 1) indicating that ScF3 adopts a cubic 
structure at ambient temperature and pressure, in agreement with a recent study of the pronounced 
negative thermal expansion (NTE) of ScF3.

7 
Both cubic and rhombohedral structures of ScF3 contain a single Sc site and a single F site in the unit 
cell. Nevertheless, we were not able to reconstruct the 19F MAS NMR spectrum with a single 
resonance (Figure 2). A satisfying reconstruction is obtained with three lines having close iso values 
but significantly different chemical shift anisotropies (Table 2). Lo et al. report a iso value equal to 
-35.9 ppm,1 in good agreement with previously reported results,8 and a CSA equal to ca. 305 ppm. 
This large value is in agreement with the observed intense spinning sidebands (the 19F reconstructed 
spectrum is not presented). 
Moreover, Lo et al.1 estimated the 45Sc quadrupolar coupling constant to 1.3(2) MHz and they claimed 
that “this small value is consistent with the high spherical symmetry around 45Sc” whereas, as outlined 
by themselves, this nucleus has a moderately sized quadrupole moment (Q = - 0.22 x 10-28 m2).9 We 
have also recorded a 45Sc NMR spectrum of ScF3 (Figure 3). Assuming a cubic structure, in which the 
Sc atom occupy the site with m-3m symmetry (1a Whyckoff position), a quadrupolar coupling 
constant equal to zero is expected. As Lo et al.1, we observe a spinning sideband manifold, indicating 
quadrupolar frequency different from zero, and the shape of this spinning sideband manifolds likely 

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011

61



4 
 

indicates some disorder in the structure. This spectrum is consequently difficult to reconstruct with a 
single set of parameters and the quadrupolar frequency can only be roughly estimated to 20 kHz 
(CQ=280 kHz). Whereas the determined 45Sc iso value (-51.8 ppm) is very similar to the one 
determined by Lo et al. (-52 ppm), our quadrupolar coupling constant is significantly lower indicating 
less distorted Sc3+ sites. 
At first glance, these results which can only be explained by the presence of some structural disorder 
in ScF3 seem puzzling. Nevertheless, disorder was previously mentioned in ScF3 to explain its marked 
NTE.7 The assumed mechanism, i. e. rocking motion of essentially rigid ScF6

3- octahedra, is supported 
by the large transverse component of the anisotropic displacement parameters (ADPs) for the fluoride 
anions.7 ADPs may represent either atomic motion or static displacive disorder and static disorder was 
also invoked since it has been suggested for AlF3 above its rhomboedral-to-cubic phase transition (the 
Al-F-Al links are locally bent in the cubic phase).10,11 Both dynamic (depending on the motion 
frequency) and static disorders explain the non-zero quadrupolar frequency of 45Sc (Figure 3) and the 
several lines used for the reconstruction of the 19F NMR spectrum (Figure 2 and Table 2). 
Local structural disorder in ScF3 could also arise from incomplete fluorination leading to ScF3-2xOxx 
compounds and/or from occurrence of hydroxyl groups substituting fluoride ions into the network. 
Both these assumptions can be ruled out since the fluorinations of our sample, using either HF or F2 at 
600°C, do not lead to any changes on the NMR spectra. 
Since several lines are used for the reconstruction of the 19F NMR spectrum, 19F iso value for ScF3 can 
only be roughly determined and the uncertainty is higher than for the others studied compounds. We 
choose the chemical shift value at the peak maximum, i. e. -36 ppm. 
 
 
 

 

Figure S3. X-ray powder diffraction diagrams of ScF3. In (a), (b) and (c) are shown the (4,2,0), (4,2,2) 
and (4,3,3) reflections, respectively. These diagrams were recorded under air, at room temperature 
with a PANalytical X’pert PRO diffractometer equipped with a X’Celerator detector using 
monochromated CuK radiation ( = 1.54056 Å). Measurements were done with an interpolated step 
of 0.017°, in the 2 ranges 20-125°, (a) 117.7-119.3°, (b) 139.5-142.5° and (c) 146.1-149.5°, and total 
collecting times of 2 h 06 min, (a) 24 min, (b) 12 min and (c) 35 min. 
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Table S1. (h,k,l) reflections and corresponding 2 values (°) of ScF3 assuming Pm-3m3 (ICSD12 file 
number 36011) and R326 (ICSD12 file number 77071) space groups ( = 1.54056 Å). 
 

Pm-3m R32 

h k l 2 h k l 2 
0 2 4 118.373 0 2 4 117.725 
    -2 0 4 118.070 

2 2 4 140.376 2 2 4 139.010 

    -2 2 4 139.711 

    -2 -2 4 139.948 

0 3 4 147.565 0 3 4 146.189 

0 0 5 147.565 0 0 5 146.602 

    -3 0 4 147.019 
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Figure S4. Experimental (exp.) and reconstructed (cal.) 19F MAS NMR spectra of ScF3 obtained at a 
magnetic field of 7.0 T using a spinning frequency of 30 kHz. The three individual contributions to the 
reconstructed spectrum are shown below. The asterisks indicate spinning sidebands. 
 
 
Table S2. 

19F isotropic chemical shifts (iso, ppm), chemical shift anisotropies (aniso, ppm), asymmetry 
parameters (), line widths and relative intensities (%) determined from the reconstruction of the 19F 
NMR spectrum of ScF3. 

Line iso (±0.5) aniso (±10) (±0.05) Width (±0.5) Intensity (±0.5) 

1 -36.5 107 0 11.2 40.7 
2 -31.7 -279 0 12.7 38.0 
3 -30.8 -322 0.2 24.1 21.3 
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Frequency (kHz)

-80-60-40-20020406080

 

Figure S5. Experimental 45Sc SATRAS (SAtellite TRAnsition Spectroscopy13,14) MAS NMR 

spectrum of ScF3 recorded on a Bruker Avance 300 (7.0 T) spectrometer operating at a Larmor 

frequency of 72.906 MHz using a 2.5 mm probehead. The spinning frequency was 14 kHz. The 

quantitative excitation of all transitions15 was ensured by using a short pulse duration (1 μs) with low-

radio-frequency (RF) field strength (70 kHz). The recycle delay was set to 5 s. The 45Sc chemical shift 

was referenced to a 1 M Sc(NO3)3 aqueous solution. 

 
  

19F iso (ppm)
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*
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Figure S6. 19F experimental (exp.) and reconstructed (cal.) 19F MAS NMR spectra of YF3 recorded at 
a magnetic field of 17.6 T using a spinning frequency of 30 kHz. The two individual contributions to 
the reconstructed spectrum are shown below. The asterisks indicate spinning sidebands. 
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Table S3. 
19F isotropic chemical shifts (iso, ppm), chemical shift anisotropies (aniso, ppm), asymmetry 

parameters (), line widths (ppm), relative intensities (%) determined from the reconstruction of the 
19F NMR spectrum of YF3 and line assignment. 

Line iso (±0.2) aniso (±5) (±0.05) Width (±0.1) Intensity (±0.5) Assignment 

1 -56.9 -42.5 0.75 3.8 66.4 F2 
2 -68.1 -76.5 0.80 2.1 33.6 F1 

 

 

19F iso (ppm)

-200-150-100-50050100150200

Exp.

Cal.

** *
*

* **

 

Figure S7. 19F experimental (exp.) and reconstructed (cal.) MAS NMR spectra of LaF3 recorded at a 
magnetic field of 17.6 T using a spinning frequency of 65 kHz. The three individual contributions to 
the reconstructed spectra are shown below. The asterisks indicate spinning sidebands. 
 
Table S4. 

19F isotropic chemical shifts (iso, ppm), chemical shift anisotropies (aniso, ppm), asymmetry 
parameters (), line widths (ppm), relative intensities (%) determined from the reconstruction of the 
19F NMR spectrum of LaF3 and line assignment. 

Line iso (±0.2) aniso (±5) (±0.05) Width (±0.1) Intensity (±0.5) Assignment 

1 -23.6 -71 0.9 3.3 66.7 F1 
2 16.9 66 0.55 3.5 11.3 F3 
3 25.3 78 0.55 3.6 22.0 F2 
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Table S5. Parameters used to generate the OTF USPP pseudopotentials. Details on the string can be 
found on the Castep website (http://www.castep.org/) in the documentation section. 
Atom OTF USPP string 

F 2|1.4|16.537|18.375|20.212|20UU:21UU(qc=7.5)[] 

Li 1|1.2|11|13.2|15|10U:20UU(qc=5.5)[] 

Na 2|1.3|1.3|1.0|16|19|21|20UU:30UU:21U(qc=7)[] 

K 2|1.8|1.8|1.6|11|14.7|16.7|30U:40UU:31UU(qc=5.5)[] 

Rb 2|2.5|2.5|2.1|5.5|6.6|8.1|40U:50U+0U+0.125:41UU(qc=3.5)[] 

Cs 2|2.7|2.7|1.6|4.4|5.9|7.4|50U:60U+0U+0.125:51UU(qc=3.5)[] 

Mg 2|1.6|2|1.4|6|7|8|30NH:21U:31UU:32LGG(qc=4.5)[] 

Ca 
3|1.6|2|1.4|7.5|9.2|10.3|30U=-1.72:40U=-0.14: 
31U=-1.03U=+0.25:32U=+0U=+1[] 

Ca  
shift 1.81 eV 

3|1.6|2|1.4|7.5|9.2|10.3|30U=-1.72:40U=-0.14: 
31U=-1.03U=+0.25:32U=+0@+0.0665U=+1@+0.0665[] 

Sr 3|2|2|1.2|7.4|9.2|11|40U:50U:41UU:42UU[] 

Ba 2|3|2.9|2.2|6.4|8.1|9|50U:60UU:51U2.5U2.5(qc=3.5)[] 

Sc 
3|1.8|1.8|1.6|9.6|10.8|11.7|30U=-2.01:40U=-0.16: 
31U=-1.235U=+0.25:32U=-0.125U=+0.25[] 

Sc  
shift 1.96 eV 

3|1.8|1.8|1.6|9.6|10.8|11.7|30U=-2.01:40U=-0.16: 
31U=-1.235U=+0.25: 
32U=-0.125@0.0720U=+0.25@0.0720[] 

La 
2|2|2|1.4|8|12|13|50N:60NH:51UU:52LGG: 
43U1.6+0U1.6+0.1{5d0.9,4f0.1}(qc=6)[] 

La  
shift 4.55 eV 

2|2|2|1.4|8|12|13|50N:60NH:51UU:52LGG: 
43U1.6+0@0.1672U1.6+0.1@0.1672{5d0.9,4f0.1}(qc=6)[] 

Y 3|2|2|2|8.5|10|11.1|40U:50U:41UU:42UU[] 

 
Table S6. Fractional atomic coordinates from the initial (IS)16 and and PBE-DFT geometry-optimized 
(APO) structures for MgF2. 

Atom Site  x y z 

Mg 2a  0 0 0 

F 4f 
IS 0.3028 0.3028 0 

APO 0.3022 0.3022 0 
 

Table S7. Mg-F bond lengths and F-Mg-F bond angles deduced from the initial16 (IS) and PBE-DFT 
geometry-optimized (APO) structures for MgF2. 

Bond lengths/Å Bond angles/° 

IS APO IS APO 
1.979 1.975 81.04 81.22 
1.984 1.986 98.96 98.78 
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Table S8. Eigenvectors of the calculated 25Mg EFG tensor, after optimization, expressed in Cartesian 
coordinates for MgF2 at the (0,0,0) position. The definition of the Cartesian axis with respect to the 
lattice parameters is given below. 

Axis Vxx Vyy Vzz 

i 0.7071 0 -0.7071 
j 0.7071 0 0.7071 
k 0 1 0 

With 4.6213 0.0000 0.0000

0.0000 4.6213 0.0000

0.0000 0.0000 3.0159

a i

b j

c k

                          
 

and a = b = 4.6213 Å, c = 3.0159 Å ; α =  =  = 90° 

 

Table S9. Fractional atomic coordinates from the initial (IS)17 and PBE-DFT geometry-optimized 
(APO) structures for YF3. 

Atom Site  x y z 

Y 4c 
IS 0.3673 1/4 0.0591 

APO 0.3687 1/4 0.0604 

F1 4c 
IS 0.5227 1/4 0.5910 

APO 0.5231 1/4 0.5906 

F2 8d 
IS 0.1652 0.0643 0.3755 

APO 0.1655 0.0629 0.3775 
 

Table S10. Y-F bond lengths deduced from the initial17 (IS) and PBE-DFT geometry-optimized 
(APO) structures for YF3. 

Bond lengths/Å IS APO 
Y-F1 2.282 2.285 

 2.287 2.294 
 2.538 2.528 

Y-F2 2.281 (x2) 2.291 (x2) 
 2.299 (x2) 2.296 (x2) 
 2.310 (x2) 2.299 (x2) 

 

Table S11. Fractional atomic coordinates from the initial (IS)18 and PBE-DFT geometry-optimized 
(APO) structures for LaF3. 

Atom Site  x y z 

La 6f 
IS 0.6598 0 1/4 

APO 0.6578 0 1/4 

F1 12g 
IS 0.3659 0.0536 0.0813 

APO 0.3688 0.0584 0.0805 

F2 4d 
IS 1/3 2/3 0.1830 

APO 1/3 2/3 0.1825 
F3 2a  0 0 1/4 
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Table S12. La-F bond lengths deduced from the initial18 (IS) and PBE-DFT geometry-optimized 
(APO) structures for LaF3. 

Bond lengths/Å IS APO 
La-F1 2.458 (x2) 2.457 (x2) 

 2.489 (x2) 2.477 (x2) 
 2.638 (x2) 2.629 (x2) 
 3.003 (x2) 3.038 (x2) 

La-F2 2.417 (x2) 2.415 (x2) 
La-F3 2.444 2.458 

 

Table S13. Eigenvectors of the calculated 139La EFG tensor in LaF3 for IS, expressed in a Cartesian 

coordinate system (i, j, k) and along the crystallographic axis (a, b, c) for the La position at (0.6578, 0, 

1/4). The definition of the Cartesian axis with respect to the lattice parameters is given below. 

Axis Vxx Vyy Vzz 

i 0.2880 -0.8660 -0.4087 
j 0.4989 0.5 -0.7079 
k 0.8174 0 0.5761 
a 0.0466 -0.1391 -0.0654 
b 0.0933 0.0000 -0.1308 
c 0.1106 0.0000 0.0789 

With 6.2224 -3.5925 0

0 7.1850 0

0 0 7.3510

a i

b j

c k

                          
 

and a = b = 7.1850 Å, c= 7.3510 Å ; α =  = 90°,  = 120° 
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Table S14. Experimental 19F isotropic chemical shifts relative to CFCl3 and calculated 19F isotropic 
shieldings for the eleven compounds additionally considered in Figure 5. The “calculated” 19F 
isotropic chemical shifts according to δiso/CFCl3 = -0.80(3) σiso + 89(9) are also reported. 
 
 

Compounds Site σiso
calc. (ppm) δiso

calc. (ppm) δ iso
exp. (ppm) 

CdF2 F1 350.9a -192 -190.7c 

HgF2 F1 356.4a -196 -197.6d 

α-PbF2 F1 140.8a -24 -20.5e 

 F2 176.6a -52 -57.7e 

α-AlF3 F1 336.2a -180 -172.0f 

Na5Al3F14 F1 358.9a -198 -191.4g 

 F2 326.1a -172 -165.0g 

 F3 356.9a -197 -189.5g 

ZnF2 F1 363.0b -201 -200.7c 

GaF3 F1 314.0b -162 -167.2c 

InF3 F1 364.1b -202 -206.2c 

BaLiF3 F1 238.8b -102 -98.2c 

-BaAlF5 F1 307.4b -157 -154.6h 

 F2 287.9b -141 -138.9h 

 F3 268.5b -126 -121.3h 

 F4 254.9b -115 -109.2h 

 F5 302.4b -153 -148.8h 

 F6 277.5b -133 -127.5h 

 F7 293.3b -146 -140.8h 

 F8 245.4b -107 -99.0h 

 F9 271.7b -128 -124.5h 

 F10 297.0b -149 -144.6h 

Ba3Al2F12 F1 310.9b -160 -153.3h 

 F2 308.2b -158 -151.6h 

 F3 165.1b -43 -30.5h 

 F4 186.6b -60 -50.8h 

 F5 267.6b -125 -115.7h 

 F6 265.4b -123 -113.0h 

 F7 279.8b -135 -127.9h 

 F8 302.3b -153 -146.4h 
 
a Calculated values from reference [19]. 
b Calculated values from reference [20]. 
c Experimental values  from reference [21]. 
d Experimental values  from reference [22]. 
e Experimental values  from reference [23]. 
f Experimental values  from reference [24]. 
g Experimental values  from reference [25].  
h Experimental values  from reference [26]. 
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2.3 Column 13 metal fluorides 
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Abstract 

The relationship between the experimental 19F isotropic chemical shift and the 19F isotropic shielding 

calculated using the gauge including projector augmented-wave (GIPAW) method with PBE 

functional is investigated in the case of GaF3, InF3, TlF and several AlF3 polymorphs. It is shown that 

the linear correlation between experimental and DFT-PBE calculated values previously established on 

alkali, alkaline earth and rare earth of column 3 basic fluorides (A. Sadoc et al., Phys. Chem. Chem. 

Phys. 13 (2011) 18539-18550) remains valid in the case of column 13 metal fluorides, indicating that 

it allow predicting 19F solid state NMR spectra of a broad range of crystalline fluorides with a 

relatively good accuracy. For the isostructural α-AlF3, GaF3 and InF3 phases, PBE-DFT geometry 

optimization leads to noticeably overbended M-F-M bond angles and underestimated 27Al, 71Ga and 
115In calculated quadrupolar coupling constants. For the studied compounds, whose structures are built 

of corner shared MF6 octahedra, it is shown that the electric field gradient (EFG) tensor at the cationic 

sites is not related to distortions of the octahedral units, in contrast to what previously observed for 

isolated AlF6 octahedra in fluoroaluminates. 

 

Keywords 

First principle calculations, solid state NMR, crystalline fluorides  
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1. Introduction 

The GIPAW [1,2] (gauge including projector-augmented wave) method, which is based on the 

plane-wave pseudopotential formalism of the density functional theory (DFT), has been shown to 

allow efficient computation of the NMR shielding in a variety of compounds [3,4]. However, when 

using the Perdew-Burke-Ernzerhof (PBE) functional [5] in the generalized gradient approximation 

(GGA), the slope of the correlation between the GIPAW calculated isotropic shielding (σiso) values 

and measured isotropic chemical shifts (δiso) generally deviates from the expected ideal value of -1.0 

[4,6], in relation with the well-known band-gap problem [6]. In such a case, the definition of a 

calibration curve between calculated σiso and experimental δiso values is required to provide predictive 

results allowing the assignment of the NMR resonances from GIPAW computations. In the case of 19F, 

the relationship between calculated and experimental values has been previously considered and it was 

shown that a scaling factor on the GIPAW calculated values is required to reproduce experimental 

trends [7,8]. However, significantly different scaling factors were reported in these works [7,8]. 

Recently, we have shown that this discrepancy is related to an incorrect description of the cationic 

localized empty orbitals of Ca2+, Sc3+ (3d) and La3+ (4f) when using the PBE exchange–correlation 

functional and that a correction (i. e. a shift in energy) of the local potential of the corresponding ultra-

soft pseudopotential (USPP) is required for these elements to accurately calculate the 19F shielding [9]. 

On this basis, we have established a linear regression between experimental 19F δiso values and 

calculated 19F σiso values (δiso/CFCl3 = - 0.80(3) σiso + 89(9)) in the case of alkali, alkaline earth and 

rare earth of column 3 basic fluorides [9]. In this work, the validity of this relationship is investigated 

in the case of column 13 metal fluoride compounds (AlF3, GaF3, InF3 and TlF). For these compounds, 
19F δiso values have already been reported in the literature [10-17]. For GaF3 [16], InF3 [16] and TlF 

[17], these values were referenced using the secondary fluorine standard, C6F6, and thus need to be 

expressed with respect to CFCl3, the primary fluorine standard. Such conversion procedure used in 

previous works can lead to discrepancies because several different 19F δiso values for C6F6 are given in 

the literature. In this work, the 19F δiso of GaF3, InF3 and the low- and high-temperature phases of TlF 

were thus accurately measured relative to CFCl3 and compared to GIPAW calculations. GIPAW 

computations of the 19F shielding tensors were also performed for the α-, β- and η-AlF3 phases for 

whose suitable experimental data are available [10,12,14,15]. The experimental data obtained by 

König et al. [15] for κ- and θ-AlF3 samples exhibiting some local disorder were not considered here 

because, in such a case, the computation of NMR parameters would require establishing more 

complex structural models taking into account this local disorder. In the studied compounds, except 

for TlF (203,205Tl, nuclear spin I = 1/2) the cationic sites are occupied by quadrupolar nuclei (i.e. 27Al, I 

= 5/2; 69,71Ga, I = 3/2; 113,115In, I = 9/2) which are affected by the quadrupolar interaction since the 

corresponding site symmetries lead to a non-zero electric field gradient (EFG). The quadrupolar 

parameters of these cations were thus calculated using the PAW method [18,19] and compared to 
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experimental data from the literature for α-, β- and η-AlF3 [12,15,20] and to the values measured in 

this study for GaF3 and InF3. 

2. Experimental 

2.1. Samples 

The α-AlF3 and GaF3 samples were purchased from Cerac Inc. (lot numbers X20991 and 

X20393-1, respectively). The InF3 and TlF samples were purchased from Astron (lot number 121077) 

and Alfa Aesar (lot number K06T017), respectively. The purity of these samples was checked by X-

Ray Powder Diffraction. 

2.2. Solid State NMR 

19F solid-state Magic Angle Spinning (MAS) NMR experiments were performed on an Avance 

300 Bruker spectrometer operating at 7.0 T (19F Larmor frequency of 282.2 MHz), using a 2.5 mm 

CP-MAS probehead. The room temperature 19F MAS spectra of AlF3, GaF3 and InF3 were recorded at 

a spinning frequency of 30 kHz using a Hahn echo sequence with an inter-pulse delay equal to one 

rotor period. The 90° pulse lengths varied between 1.75 µs and 2 µs and the recycle delays were set to 

10 sec for AlF3 and GaF3 and to 5 sec for InF3. The VT 19F MAS spectra of TlF were acquired at 

spinning frequency of 25 kHz using a 90° pulse length of 2 µs and a recycle delay of 10 sec. The 

sample temperature was measured using the 207Pb δiso of Pb(NO3)2 as an internal NMR thermometer 

[21,22]. The estimated temperature gradient was about 10°C. Additional room-temperature 19F MAS 

NMR spectra of TlF with spinning frequencies varying from 25 to 60 kHz were recorded at a higher 

magnetic field of 20 T using an Avance 850 Bruker spectrometer (19F Larmor frequency of 800.1 

MHz) and a 1.3 mm triple resonance MAS probehead. The pulse duration was 0.5 µs corresponding to 

a flip angle of π/8 and the recycle delay was set to 10 sec. 

The 71Ga NMR experiments were also carried out on an Avance 300 Bruker spectrometer 

operating at 7.0 T (Larmor frequency of 91.53 MHz) using a 2.5 mm probehead. The 71Ga MAS 

spectrum of GaF3 was acquired at a spinning frequency of 25 kHz with a pulse duration of 1 µs, 

corresponding to a π/14 flip angle, and the recycle delay was set to 2 sec. 

The 115In solid-state MAS NMR experiments were conducted on a Avance 750 Bruker 

spectrometer operating at 17.6 T (115In Larmor frequency of 164.35 MHz) using a 2.5 mm CPMAS 

probehead. 115In MAS NMR spectra were recorded at spinning frequencies of 33 and 35 kHz using a 

short pulse duration of 0.25 µs corresponding to a π/16 flip angle. The recycle delay was set to 1 s. 
19F, 71Ga and 115In spectra are referenced to CFCl3, 1 M Ga(NO3)3 aqueous solution and 0.1 M 

In(NO3)3 aqueous solution, respectively. All solid-state NMR spectra were fitted by using the DMFit 

software [23]. 
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2.3. Computational methods 

Two structural data sets were used for the GIPAW [1,2] calculations performed with the NMR-

CASTEP [24] code: the experimental structures (named IS in the following for initial structures) and 

the structures obtained after PBE-DFT atomic position optimization (APO structures). 

To obtain converged 19F σiso values, a plane wave basis set energy cut-off of 700 eV was 

necessary and a Monkhorst-Pack grid density in the range 0.03 Å-1 - 0.04 Å-1 (corresponding to a k-

point mesh of 8 × 8 × 8 for α-AlF3 and InF3, 9 × 9 × 9 and 8 × 8 × 8 for GaF3, 5 × 3 × 5 for β-AlF3, 6 

× 6 × 6 for η-AlF3 and 7 × 7 × 4 and 4 × 5 × 5 for TlF-I and II, respectively) was enough. For the 

electronic loops, the PBE functional [5] was used for the exchange-correlation kernel. Atomic 

positions were optimized by minimizing the residual forces on all atoms below 10 meV.Å−1 using the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [25], keeping symmetry constraints and fixing 

the cell parameters to the experimentally determined values. 

The computations of the EFG tensors were performed for the same structural data sets using the 

PAW method [18,19] implemented in the NMR-CASTEP code [24]. The orientation of the EFG 

tensor eigenvectors in the crystal frame are given as supplementary data. 

2.4. Conventions 

In this study, the calculated σiso value is defined as σiso = (σxx + σyy + σzz)/3, σii being the 

principal components of the shielding tensor defined in the sequence | σzz - σiso | ≥ | σxx - σiso | ≥ | σyy - 

σiso |. The isotropic chemical shift is defined as δiso ≈ - [σiso - σref]. 

The quadrupolar frequency (νQ), the quadrupolar coupling constant (CQ) and the asymmetry 

parameter (ηQ) are defined as νQ = 3CQ/[2I(2I-1)], CQ = eQVzz / h and ηQ = (Vxx – Vyy) / Vzz, Vii being 

the principal components of the EFG tensor defined in the sequence |Vzz| ≥ |Vyy| ≥ |Vxx|, e being the 

electronic charge, I the nuclear spin quantum number and h being Planck’s constant.  

The quadrupolar moments (Q) of 27Al (146.6 mb), 71Ga (107 mb), 113In (759 mb) and 115In (770 

mb) are taken from ref. [26]. 

3. Results and discussion 

3.1. Solid-state NMR study 

The α-AlF3 thermodynamically stable perovskite-like phase adopts a rhombohedral [27] 

structure (VF3 structure type, Fig. 1) containing only one F and one Al sites. All other AlF3 phases are 

metastables and transform directly and irreversibly into α-AlF3 at various temperatures around 450-

650°C [15,28]. The structure of the catalytically active [29-31] β-AlF3 phase is closely related to the 

hexagonal tungsten bronze structure (HTB, Fig. 1) and contains four inequivalent F sites and two Al 

sites [32]. The η-phase adopts a cubic pyrochlore structure (Fig. 1) with a single F site and a single Al 

site. [28]. For α-AlF3, the measured 19F δiso (Fig. S1 in supplementary data) reported in Table 1 is in 
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very good agreement with earlier works [12,15]. The 19F δiso values previously determined for the β-

AlF3 [10] and θ-AlF3 [15] phases are also given in Table 1. The 27Al quadrupolar coupling parameters 

[12,15,20] of these three polymorphs are reported in Table 2. It should be noted that, for β-AlF3, the 

resonances corresponding to the four distinct F sites and to the two Al distinct sites of the structure 

were not resolved in 19F and 27Al MAS NMR spectra, respectively, and only single average 19F and 
27Al δiso values and 27Al quadrupolar parameters were reported [12].  

GaF3 is isostructural with α-AlF3 [33,34]. Its structure, which is made of corner-sharing GaF6 

octahedra, contains a single fluorine site and a single cationic site. In agreement with structural data, 

the 19F MAS NMR spectrum of GaF3 exhibits a single resonance with a 19F δiso of -171.3 ppm (Fig. S1 

in supplementary data). As well, the 71Ga MAS NMR spectrum, which shows a single narrow line 

associated the <1/2, -1/2> central transition (CT) and a spinning sideband manifold corresponding to 

the <±1/2, ±3/2> satellite transitions (ST) is consistent with the presence of a single Ga site in the 

structure (Fig. 2). The 71Ga δiso (-94.7 ppm) and quadrupolar coupling parameters (Table 2) have been 

determined from the simulation of the whole experimental spectrum (CT and ST spinning sideband 

manifold spanning over ~ 1 MHz, Fig. 2). The CQ value is in good agreement with the slightly 

different previously reported values [35,36]. The measured asymmetry parameter (ηQ = 0) is in 

agreement with the 3� symmetry of the Ga site. 

InF3 is also isostructural with α-AlF3 [37]. Accordingly, the 19F MAS NMR spectrum of InF3 

exhibits a single resonance located at δiso = -209.3 ppm (Fig. S1 in supplementary data). The two 

Indium isotopes, 115In and 113In, both have a 9/2 nuclear spin and exhibit similar Larmor frequencies 

(165.2 and 164.8 MHz at 17.6 T) and large nuclear quadrupole moments (770 and 759 mb, 

respectively [26]). However, the natural abundance of 115In (95.7%) is much larger than that of 113In 

(4.3%), and consequently, 115In has a much higher sensitivity. The 115In MAS NMR spectrum of InF3 

is shown in Fig. 3. In agreement with the structural data, this spectrum is characteristic of a single In 

site. It shows an intense peak corresponding to the CT and extended spinning sideband manifolds 

associated to the different ST. The CT peak and the (±1/2-±3/2) and (±5/2-±7/2) ST sidebands exhibit 

characteristic second-order quadupolar broadened lineshapes. The sidebands associated to the (±3/2-

±5/2) ST transitions, which are much less affected by second-order quadrupolar effects, show nearly 

Gaussian lineshapes while the (±7/2-±9/2) ST sidebands, which are much more strongly broadened, 

are not observed. The 115In δiso (-214 ppm) and quadrupolar coupling parameters (Table 2) were 

obtained from the simulations of the whole experimental MAS spectrum. The measured asymmetry 

parameter (ηQ = 0) is in agreement with the 3� symmetry of the In site. It should be noted that the 

resonance associated to the 113In CT transition also appears in the ST spinning sideband manifold of 

the 115In spectrum at about -2370 ppm (Fig. 3c). A quadrupolar coupling constant CQ = 20.45 MHz is 

determined for 113In, in good agreement with the value expected from the ratio between the 113In and 
115In nuclear quadrupolar moments. 
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 TlF exhibits an orthorhombic structure (TlF-II) at room temperature and adopts a tetragonal 

structure (TlF-I) above 82°C [38]. The structures of these two phases, both containing a single fluorine 

site and a single thallium site, can be derived from an idealized rocksalt-type arrangement with 

extensive distortions of the anion sublattice due to the presence of the 6s2 lone pair of the Tl+ cations. 

In both phases, the F- and Tl+ ions are surrounded by only five nearest neighbours (Tl+ and F-, 

respectively) forming square pyramids (Fig. 4) [38]. The 19F MAS NMR spectra of the TlF-II and TlF-

I phases, recorded in-situ at 53 and 100°C, are shown in Fig. 5. The 19F δiso measured for the low- and 

high-temperature phases are -19.5 and -16.7 ppm, respectively (Table 1). It should be noted that, in 

both spectra, the line width of the 19F resonance is unusually large. Experiments performed at a higher 

magnetic field of 20 T show that the line broadening in Hertz of the 19F resonance in TlF-II increases 

only very slightly (3.9 kHz at 7 T and 4.3 kHz at 20 T) with the magnetic field (corresponding to a 

narrowing in ppm). In addition, the linewidth was found constant when increasing the spinning 

frequency from 25 up to 60 kHz. These findings indicate that the line broadening is not related to a 

distribution of the 19F isotropic chemical shift nor dipolar coupling but originates from isotropic 
1
J(203,205Tl-19F) couplings. Indeed, the two Tl isotopes are well known to give rise to large J-coupling 

constants [39] due to their large gyromagnetic ratios (� ����� =15.54 107 rad.s-1.T-1, � ����	 =15.69 107 

rad.s-1.T-1 [40] and the large atomic number of Tl.  

3.2. Computation of the NMR parameters 

For the studied column-13 metal fluorides, the 19F shielding tensors and the quadrupolar 

parameters of the nucleus (I > 1/2) occupying the cationic site of the structure have been computed 

using the GIPAW [1,2] and PAW [18,19] methods, respectively.  

3.2.1. PBE-DFT geometry optimization 

Since the agreement between experimental and calculated NMR parameters is generally 

improved after a DFT optimization of the structure geometry [3,4] computations were performed for 

both the experimental structures (IS) and the structures resulting from PBE-DFT atomic position 

optimization (APO). The 19F DFT-GIPAW σiso values and 27Al, 71Ga, 115In quadrupolar parameters 

calculated for the IS and APO structures of α-AlF3, β-AlF3, η-AlF3, GaF3, InF3, TlF-II and TlF-I are 

given in Tables 1 and 2. For all compounds, the atomic positions of the IS and APO structures are 

given as supplementary data. In the case of η-AlF3, the fluorine atomic coordinate (x, 1/8, 1/8) of the 

IS structure is not reported and was then deduced from the reported Al-F bond length and F-Al-F and 

Al-F-Al bond angles [28]. In the case of the α-, β- and η-AlF3, GaF3 and InF3 structures made of MF6 

octahedra (M = Al, Ga, In), the DFT-PBE geometry optimization leads to an increase of the M-F bond 

lengths (see supplementary data). These increases, which remain very weak for the AlF3 phases, are 

more significant for GaF3 and InF3 (from 1.892 Å to 1.913 Å or from 1.885 Å to 1.914 Å in GaF3, and 

from 2.054 Å to 2.096 Å in InF3). This trend could be expected since the PBE functional is well-
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known to overestimate interatomic bond lengths [19,41,42]. For the TlF-I and TlF-II structures build 

of TlF5 square pyramids, the geometry optimization step results in an increase of the shortest F-Tl 

bond lengths and a decrease of the longest F-Tl bond lengths leading to less distorted coordination 

polyhedra. 

While the PBE-DFT geometry optimization leads only to moderate decreases of the calculated 
19F σiso values (Table 1, from 0.5 to 17 ppm, depending on the increase of the M-F bond lengths) for 

the studied compounds, it results in significant changes of the calculated quadrupolar coupling 

parameters highlighting the strong sensitivity of the EFG tensor to small changes in the cationic local 

environment (Table 2). For the β- and η-AlF3 phases, an improved agreement between experimental 

and calculated 27Al quadrupolar parameters is observed for the APO structures. A different trend is 

observed for the α-AlF3, GaF3 and InF3 phases and, in contrast, the quadrupolar coupling constants of 
27Al, 71Ga and 115In calculated for the APO structures are significantly underestimated relative to the 

experimental values (Table 2). It has been already observed and discussed for α-AlF3 [43]. It should 

be noted that these three isostructural compounds undergo a first order phase transition from a 

rhombohedral structure (R3�c) to a cubic structure (ReO3 type, Pm3�m) at 448 °C, 807 °C and 373 °C, 

respectively [44]. The low-temperature rhombohedral structures of these compounds consist in zigzag 

chains of MF6 octahedra with M-F-M bond angles of 157.1° in α-AlF3 [27], 144.9° [33] or 146.8° [34] 

in GaF3 and 146.8° in InF3 [37] (see supplementary data), while the high temperature structures are 

made of linear chains with M-F-M bond angles equal to 180°. In these isostructural compounds, the 

M-F-M bond angles are known to vary significantly with the temperature and to increase continuously 

upon heating [12] up to 180° in the high-temperature cubic structures [44]. Due to these strong 

variations of the M-F-M bond angle as a function of the temperature, the APO structure which 

corresponds to the lowest energy structure at 0 K is expected to exhibit overbended M-F-M bond 

angle. It should be pointed out that the M-F-M angle overbending (M-F-M angle of 154.9° in α-AlF3, 

141.2° or 141.6° in GaF3 and 139.8° in InF3) is also amplified by the overestimation of the F-M 

distances with the PBE functional. Therefore, for these three compounds only the NMR parameters 

computed from the IS structures are considered in the following. 

3.2.2. Calculated 19F shielding 

As discussed above, the calculated 19F σiso values retained are those obtained from APO 

structures for β-AlF3, η-AlF3, TlF-II and TlF-I and from IS structures for α-AlF3, GaF3 and InF3. One 

can notice the very similar (differences smaller than one tenth of ppm) calculated σiso values for the 

four fluorine sites of β-AlF3 in good agreement with the observation of a single 19F resonance in MAS 

spectra [12]. The “calculated” 19F δiso values for all compounds were deduced from calculated σiso 

values by using the linear correlation previously established for alkali, alkaline earth and rare earth 

fluorides (δiso/CFCl3 = - 0.80 σiso + 89) [9], and successfully applied to RbLaF4 [45], NaAsF6 [46], and 

α-LaZr2F11 [47]. Overall, the agreement between the experimental and these ‘‘calculated’’ 19F δiso 
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values is good with a RMS deviation of 7 ppm, suggesting that this relationship is also valid in the 

case of column-13 metal fluorides. This is also clearly illustrated in Fig. 6 which shows the correlation 

between calculated 19F σiso and experimental 19F δiso values for the compounds under study and for 

alkali, alkaline earth and rare earth fluorides [9]. Indeed, both the slope and intercept of the linear 

regression, calculated considering all these values (δiso/CFCl3 = - 0.795(15) σiso + 89(4)) are very 

similar to those previously reported [9]. It should also be noted that very similar slopes of -0.83 

(between "calculated" and experimental δiso) and -0.78 have also been obtained for Ba5Al3F19 [48] and 

TaF5 [49], respectively. These findings therefore clearly confirm that the previously proposed 

relationship [9] could allow predicting 19F NMR spectra for a broad range of crystalline metal 

fluorides compounds with a relatively good accuracy. For completeness, it should be noted that 

Pedone et al. [50] obtain a slope of -0.963 on five compounds among which three contain Ca2+, by 

applying a larger shift of the local potential of the USPP of  Ca2+ and that a slope close to -1 has been 

obtained for NbF5 [49]. 

3.2.3. Calculated quadrupolar parameters and orientation of the electric field gradients 

As mentioned above, a nice agreement between experimental quadrupolar parameters and PAW 

[18,19] calculated values for the IS structures of α-AlF3 and InF3 is observed (Table 2), showing the 

accuracy of these crystalline structures. For GaF3, β-AlF3 and η-AlF3, more pronounced differences 

between experimental and calculated quadrupolar parameters are found. For GaF3, the best agreement 

is obtained for the IS structure reported by Roos et al. [34], while, for β-AlF3 and η-AlF3, the bets 

agreements are obtained after DFT-PBE geometry optimization which leads to slight variations of the 

bond lengths and bond angles (Table 2 and supplementary data). It should be noted that, for β-AlF3, 

the calculated 27Al quadrupolar parameters (and isotropic shieldings) of the two distinct Al sites of the 

structure are very similar, making difficult to resolve the two corresponding 27Al resonances in 

experimental MAS spectra, as reported by Chupas et al . [12].  

Since the nuclear spin interaction must conform to crystal symmetry [51] the 27Al, 71Ga and 
115In site symmetry (3�) in the isostructural α-AlF3 GaF3 and InF3 phases imposes the Vzz direction to be 

along the three-fold axis (parallel to the c-axis of the hexagonal cells) orthogonal to opposite faces 

(Fig. 7 and supplementary data) and the EFG tensor to be axially symmetric (Vxx = Vyy, i.e. ηQ = 0). In 

the same way, the 27Al site symmetry in η-AlF3 (3�
) enforces the Vzz direction of the axially 

symmetric EFG tensor to be along the three-fold axis ([111] direction of the cubic cell). In the case of 

the Al1 site of β-AlF3 (2 
⁄  site symmetry), Vzz is perpendicular to � and bisects adjacent Al1-F2 

bonds (Fig. 7) while Vyy, which is parallel to � and to the twofold axis, bisects adjacent Al1-F2 bonds. 

For the Al2 site (1� site symmetry), Vzz bisects adjacent F1-Al2 and F2-Al2 bonds.  

In several cases, correlations between the quadrupolar coupling constants (and thus the Vzz value 

of the EFG tensor) and structural parameters describing the distortion [52,53] of the coordination 



81 
 

polyhedron have been proposed [54]. For α-AlF3, GaF3, InF3 and η-AlF3, the M-F distances of the 

octahedron are the same (3� or 3�
 site symmetry) and there is no radial distortion of the coordination 

polyhedron. In such a case, the quadrupolar coupling constant cannot be related to the quadratic 

elongation [52] or longitudinal strain [53] parameters. Indeed, for fluoroaluminate compounds in 

which the AlF6 octahedra exhibit any or either small (that is the case of β-AlF3) radial distortions, it 

was previously shown [43] that (i) the magnitude of Vzz is small, (ii) the principal axis of the EFG 

tensor are not aligned along the Al-F bonds and (iii) the Vii values are correlated with the angular 

distortion parameters defined as � = 1 6⁄ ∑ �� − 90°
�
���  and � = 1 2⁄ ∑ �� − 90°

�
��� , where αi (°) are 

the six angles between two adjacent Al−F bonds involving fluorine atoms belonging to octahedron 

faces orthogonal to the Vii direction and βi (°) are the two angles between two adjacent Al-F bonds 

bisected by Vii. Accordingly, a negative (positive) angular distortion is expected to correspond to a 

charge concentration (depletion) in the Vii direction and then to a negative (positive) Vii value [43]. It 

should be noted that these correlations between α and β angular distortion parameters and Vii values 

were observed for fluoroaluminates containing only isolated AlF6 octahedra (non-bridging fluorine 

atoms). For the five compounds considered here, the MF6
3- octahedra are connected via corner-shared 

fluorine atoms and, in such a case, the comparison between angular distortion and quadrupolar 

coupling parameters calculated before and after DFT-PBE geometry optimization clearly indicates that 

these trends are no longer valid (see Fig. 7 and supplementary data). In the case of α-AlF3 and η-AlF3 

for example, the value of the parameter α is larger for the APO structure than for the IS structure while 

the magnitude of the calculated Vzz value is smaller for the APO structure than for the IS structure. As 

well, for the IS structures of α-AlF3 and GaF3 and the APO structure of η-AlF3 (where � is related to 

Vzz, see Fig. 7 and supplementary data) a positive Vzz value is expected according to the value of α 

(α > 0) while the calculated Vzz value is negative. The very small value of the angular distortion (α = 

0.02° for IS) was then wrongly invoked to explain the discrepancy observed for α-AlF3 [43]. These 

observations indicate that, in the studied compounds, the quadrupolar coupling parameters are not 

driven by the angular distortions of the MF6 octahedra and the EFG principal values seem more likely 

sensitive to the M-F-M bond angles. A similar trend has recently been observed for α-NaAsF6, where 

the EFG at the 23Na nucleus is not quantitatively sensitive to the angular distortion (F-Na-F angle) but 

sensitive to the Na-F-As angle, i.e., to the orientation of the AsF6 octahedra [46]. 

4. Conclusions 

The relationship between the experimental 19F δiso and the 19F σiso calculated using the GIPAW 

method with PBE functional has been investigated in the case of GaF3, InF3 TlF3 and several AlF3 

polymorphs. For this purpose, the 19F δiso of α-AlF3, GaF3, InF3 and of the low and high temperature 

phases of TlF have been accurately measured. We have shown that the linear correlation between 
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experimental 19F δiso and DFT-PBE calculated σiso previously established on alkali, alkaline earth and 

rare earth of column 3 basic fluorides remains valid is the case of column 13 metal fluorides, 

indicating that it allow predicting 19F NMR spectra of a broad range of crystalline fluorides with a 

relatively good accuracy. It was also observed that, for the isostructural α-AlF3, GaF3 and InF3 phases, 

PBE-DFT atomic position optimization leads to noticeably overbended M-F-M bond angles and that 

the 27Al, 71Ga and 115In quadrupolar coupling constants calculated using the PAW method for these 

optimized structures are significantly underestimated relative of experimental values. In these 

fluorides which contain corner shared MF6 octahedra, the EFG tensor at the cationic sites is not related 

to distortions of the octahedral units and the correlation between angular distortions and Vii values, 

previously established for fluoroaluminates containing isolated AlF6 octahedra with any or either small 

radial distortions, is not observed. In contrast, the EFG tensors seem more likely sensitive to M-F-M 

bond angles, as recently observed for the EFG at the 23Na nucleus in α-NaAsF6. 
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Fig. 1. Perspective views of the structures of α-, β- and η-AlF3. 

 

 

Fig. 2. Experimental and simulated 71Ga MAS (25 kHz) NMR (B0 = 7 T) spectra of GaF3. 

 

α-AlF3 β-AlF3 η-AlF3
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Fig. 3. (a) Experimental and simulated 115In MAS NMR spectrum of InF3 recorded at 17.6 T with a 

spinning frequency of 33 kHz. (b) Expansion of the center band region. (c) Expansion of a part of the 

ST spinning sideband manifold containing the 113In CT signal. 

 

 

Fig. 4. Perspective views of TlF-II (left) and TlF-I (right). The F- ions and the FTl5
4+ polyhedra are 

represented in green and the Tl+ ions and the TlF5
4- polyhedra are represented in grey. 
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Fig. 5. 19F VT MAS (25 kHz) spectra of TlF recorded at a temperature of 53°C (bottom) and 100°C 

(top). 

 

Fig. 6. Calculated 19F σiso values versus experimentally measured 19F δiso values. The black circles 

represent the compounds under study (values reported in Table 1). The red circles represent the 

compounds studied in ref. [9]. The dash line represents the linear regression calculated on all these 

values: δiso/CFCl3 = - 0.795(15) σiso + 89(4). 
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Fig. 7. Orientation of the principal components of the calculated 27Al EFG tensor in η-AlF3 (APO 

structure), 115In EFG tensor in InF3 (IS structure) and 27Al EFG tensor in β-AlF3 (APO structure). The 

vector lengths are proportional to the magnitude of the contributions. 
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Table 1  

Experimental 19F δiso values (uncertainties given in brackets when available), 19F σiso values calculated 

using USPP within the GIPAW method for IS and APO structures, and calculated 19F δiso values 

deduced from the linear regression δiso/CFCl3 = -0.80(3) σiso + 89(9) [9]. 

 

Compound 

σiso calc/ppma δiso calc/ppma 

δiso exp/ppm IS APO IS APO 

α-AlF3 335.2 334.6  -179 -179 -171.9(2) 

β-AlF3 (F1) 335.7 335.2  -180 -179 -172b 

β-AlF3 (F2) 335.7 335.2  -180 -179 -172b 

β-AlF3 (F3) 335.7 335.2  -180 -179 -172b 

β-AlF3 (F4) 335.7 335.2 -180 -179 -172b 

η-AlF3 334.3 333.8 -178 -178 -173.0c 

GaF3
d 310.3 300.4 -159 -151 -171.3(2) 

GaF3
e  313.8 300.9 -162 -152 -171.3(2) 

InF3 364.3 347.1 -202 -189 -209.3(2) 

TlF-II (53°C) 145.2 144.0 -27 -26 -19.5(2) 

TlF-I (100°C) 138.2 137.1 -22 -21 -16.7(2) 

a The calculated values in bold are those reported in Fig. 6 b From ref. [12]. c From ref. [15]. d 

Crystalline structure from ref. [33]. e Crystalline structure from ref. [34]. 
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Table 2 

Experimental Vii, CQ and ηQ, calculated Vii, CQ and ηQ using NMR-CASTEP for IS and APO 

structures. Since only the absolute value of CQ can be determined from NMR experiment on powdered 

samples, the sign of the experimental CQ is set to the sign of the calculated CQ. Uncertainties on 

experimental CQ values are given in brackets (when available). 

 

  Vzz/1021 V m2 Vyy/1021 V m2 Vxx/1021 V m2 CQ/MHz ηQ 

αααα-AlF3       

Exp.a  -0.0602 0.0301 0.0301 -0.213(0.027) 0 

IS  -0.0630 0.0315 0.0315 -0.223 0 

APO  -0.0211 0.0106 0.0106 -0.075 0 

ββββ-AlF3       

Exp.b  -0.226 0.203 0.023 -0.800(0.100) 0.8(0.1) 

IS 
Al1 

Al2  

-0.341 

-0.360 

0.276 

0.264 

0.065 

0.095 

-1.211 

-1.275 

0.62 

0.47 

APO 
Al1 

Al2 

-0.332 

-0.359 

0.210 

0.204 

0.121 

0.155 

-1.177 

-1.270 

0.27 

0.14 

ηηηη-AlF3       

Exp.c  -0.433 0.216 0.216 -1.533 0 

IS  -0.554 0.277 0.277 -1.964 0 

APO  -0.468 0.234 0.234 -1.660 0 

GaF3       

Exp.  -0.383 0.191 0.191 -0.990(30) 0 

ISd  -0.092 0.046 0.046 -0.239 0 

APOd  0.175 -0.088 -0.088 0.454 0 

ISe  -0.215 0.107 0.107 -0.556 0 

APOe  0.153 -0.077 -0.077 0.397 0 

InF3       

Exp.  -1.114 0.557 0.557 -20.74(8) 0 

IS  -1.083 0.542 0.542 -20.17 0 

APO  -0.154 0.077 0.077 -2.86 0 

a From ref. [20]. b From ref.[12]. c From ref. [15]. d IS from ref. [33]. e IS from ref. [34]. 
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Figure S1. 19F MAS (30 kHz) NMR spectra of α-AlF3, GaF3 and InF3. The asterisks indicate spinning 
sidebands. 
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Table S1. Initial fractional atomic coordinates [1] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for α-AlF3. 

Atom Site x y z x’ y’ z’ d 
Al 6b 0 0 0 0 0 0 0 
F 18e 0.4275 0 1/4 0.4204 0 1/4 0.035 

 

Table S2. Al-F bond length (Å), F-Al-F and Al-F-Al bond anglesa (°) from X-ray powder structure 
refinement and PBE-DFT geometry-optimization (in italic) for α-AlF3. 

Bond lengths Bond angles 

Al-F (x6) 1.797  1.804 F-Al-F (x6) 90.02 90.25 

   F-Al-F (x6) 89.98 89.75 

   Al-F-Al (x3) 157.05 154.87 
a F-Al-F bond angles between two opposite bonds are equal to 180° since the site symmetry of Al is 3�. 
 
 

Table S3. Initial fractional atomic coordinates [2] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for β-AlF3. 

Atom Site x y z x’ y’ z’ d 
Al1 4b 0 1/2 0 0 1/2 0 0 
Al2 8d 1/4 1/4 0 1/4 1/4 0 0 
F1 8f 0 0.2125 0.5257 0 0.2128 0.5322 0.047 
F2 16h 0.3161 0.1054 0.9800 0.3151 0.1050 0.9741 0.043 
F3 4c 0 0.5177 1/4 0 0.5226 1/4 0.059 
F4 8g 0.2297 0.2352 1/4 0.2240 0.2303 1/4 0.074 

 
Table S4. Al-F bond length (Å), F-Al-F and Al-F-Al bond anglesa (°) from X-ray powder structure 
refinement and PBE-DFT geometry-optimization (in italic) for β-AlF3. 

Bond lengths Bond angles 

Al1-F3 (x2) 1.7961 1.8040 F3-Al1-F2 (x4) 90.25 90.22 

Al1-F2 (x4) 1.8015 1.8068 F3-Al1-F2 (x4) 89.75 89.78 

Al2-F4 (x2) 1.7978 1.8081 F2-Al1-F2 (x2) 90.07 90.35 

Al2-F1 (x2) 1.7996 1.8040 F2-Al1-F2 (x2) 89.93 89.65 

Al2-F2 (x2) 1.8006 1.8073 F4-Al2-F1 (x2) 89.94 89.86 

Bond angles   F4-Al2-F1 (x2) 90.06 90.14 

Al2-F1-Al2 148.66 147.68 F4-Al2-F2 (x2) 90.19 90.01 

Al1-F2-Al2 148.27 146.95 F4-Al2-F2 (x2) 89.81 89.99 

Al1-F3-Al1 166.41 162.71 F1-Al2-F2 (x2) 90.24 90.66 

Al2-F4-Al2 165.52 161.07 F1-Al2-F2 (x2) 89.76 89.34 
a F-Al-F bond angles between two opposite bonds are equal to 180° since the site symmetries of Al1 
and Al2 are 2/m and 1�, respectively. 
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Table S5. Initial fractional atomic coordinates [3] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for η-AlF3. 

Atom Site x y z x’ y’ z’ d 
Al 16c 0 0 0 0 0 0 0 
F 48f 0.3121 1/8 1/8 0.3131 1/8 1/8 0.01 
 

Table S6. Al-F bond length (Å), F-Al-F and Al-F-Al bond anglesa (°) from X-ray powder structure 
refinement and PBE-DFT geometry-optimization (in italic) for η-AlF3. 

Bond lengths Bond angles 

Al-F (x6) 1.803 1.806 F-Al-F (x6) 89.84  90.24 

   F-Al-F (x6) 90.16  89.76 

   Al-F-Al (x3) 141.29  140.71 
a F-Al-F bond angles between two opposite bonds are equal to 180° since the site symmetry of Al is 
3�m. 
 
 

Table S7. Initial fractional atomic coordinates [4] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for GaF3. 

Atom Site x y z x’ y’ z’ d 
Ga 6b 0 0 0 0 0 0 0 
F 18e 0.0527 -0.2807 0.5833 0.0395 -0.2939 0.5833 0.051 

 
Table S8. Ga-F bond length (Å), F-Ga-F and Ga-F-Ga bond anglesa (°) from single crystal structure 
refinement and PBE-DFT geometry-optimization (in italic) for GaF3. 

Bond lengths Bond angles 

Ga-F (x6) 1.892 1.913 F-Ga-F (x6) 90.59 91.20 

   F-Ga-F (x6) 89.41 88.80 

   Ga-F-Ga (x3) 144.91 141.15 
a F-Ga-F bond angles between two opposite bonds are equal to 180° since the site symmetry of Ga is 
3�. 
 

 
Table S9. Initial fractional atomic coordinates [5] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for GaF3. 

Atom Site x y z x’ y’ z’ d 
Ga 6b 0 0 0 0 0 0 0 
F 18e 0.0591 -0.2742 0.0833 0.0410 -0.2923 0.0833 0.070 
 
Table S10. Ga-F bond length (Å), F-Ga-F and Ga-F-Ga bond anglesa (°) from single crystal structure 
refinement and PBE-DFT geometry-optimization (in italic) for GaF3. 

Bond lengths Bond angles 

Ga-F (x6) 1.885 1.914 F-Ga-F (x6) 90.34 91.15 

   F-Ga-F (x6) 89.66 88.85 

   Ga-F-Ga (x3) 146.78 141.57 
a F-Ga-F bond angles between two opposite bonds are equal to 180° since the site symmetry of Ga is 
3�. 
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Table S11. Initial fractional atomic coordinates [6] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for InF3. 

Atom Site x y z x’ y’ z’ d 
In 6b 0 0 0 0 0 0 0 
F 18e 0.6084 0 1/4 0.6331 0 1/4 0.133 

 
Table S12. In-F bond length (Å), F-In-F and In-F-In bond anglesa (°) from single crystal structure 
refinement and PBE-DFT geometry-optimization (in italic) for InF3. 

Bond lengths Bond angles 

In-F (x6) 2.054 2.096 F-In-F (x6) 90.60 89.44 

   F-In-F (x6) 89.40 90.56 

   In-F-In (x3) 146.82 139.82 
a F-In-F bond angles between two opposite bonds are equal to 180° since the site symmetry of In is 3�. 
 
 
Table S13. Initial fractional atomic coordinates [7] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for TlF-II. 

Atom Site x y z x’ y’ z’ d 
Tl 4d 0.2550 0.0096 1/4 0.2578 0.0110 1/4 0.019 
F 4d 0.8593 0.0628 1/4 0.8530 0.0614 1/4 0.039 
 
Table S14. Tl-F bond lengths (Å) from powder neutron structure refinement and PBE-DFT geometry-
optimization (in italic) for TlF-II. 

Bond lengths Bond lengths 

2.430 2.483 3.115 3.095 

2.549 2.559 3.695 3.639 

2.713 (x2) 2.707   
 
 
Table S15. Initial fractional atomic coordinates [7] (x, y, z), PBE-DFT geometry-optimized fractional 
atomic coordinates (x’, y’, z’) and corresponding atomic displacements d (Å) for TlF-I. 

Atom Site x y z x’ y’ z’ d 
Tl 2c 1/4 1/4 0.2539 1/4 1/4 0.2556 0.016 
F 2c 1/4 1/4 0.8574 1/4 1/4 0.8514 0.037 

 
Table S16. Tl-F bond lengths (Å) from powder neutron structure refinement and PBE-DFT geometry-
optimization (in italic) for TlF-I. 

Bond lengths 

2.428 (x1) 2.475 (x1) 

2.760 (x4) 2.754 (x4) 

3.695 (x1) 3.648 (x1) 
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Table S17. Eigenvectors of the calculated 27Al EFG tensor, expressed in the crystallographic axis, for IS 
and APO (in italic) α-AlF3. 

Axis VXX VYY VZZ VXX VYY VZZ 

a 0.1976 0.1256 0 -0.1905 0.1363 0 

b -0.0999 0.2340 0 -0.2133 -0.0968 0 

c 0 0 0.0804 0 0 0.0804 

 
Table S18. Eigenvectors of the calculated 27Al EFG tensors, expressed in the crystallographic axis, for 
IS and APO (in italic) β-AlF3. 

Site Axis VXX VYY VZZ VXX VYY VZZ 

Al1 a 0 -0.1443 0 0 -0.1443 0 

 b 0.0017 0 -0.0833 0.0061 0 -0.0831 

 c 0.1401 0 0.0028 0.1398 0 0.0102 

Al2 a 0.0101 0.0689 -0.1259 0.0360 -0.0515 -0.1299 

 b 0.0100 0.0720 0.0407 0.0451 -0.0599 0.0363 

 c 0.1388 -0.0195 0.0003 0.1125 0.0836 -0.0019 

 
Table S19. Eigenvectors of the calculated 27Al EFG tensor, expressed in the crystallographic axis, for IS 
and APO (in italic) η-AlF3. 

Axis VXX VYY VZZ VXX VYY VZZ 

a 0.0425 0.0734 -0.0600 0.0425 0.0734 -0.0600 

b -0.0848 0.0001 -0.0600 -0.0848 0.0001 -0.0600 

c 0.0424 -0.0735 -0.0600 0.0424 -0.0735 -0.0600 

 
Table S20. Eigenvectors of the calculated 71Ga EFG tensor, expressed in the crystallographic axis, for 
IS and APO (in italic) GaF3 (from ref. [4]). 

Axis VXX VYY VZZ VXX VYY VZZ 

a -0.0953 0.2103 0 0.0452 -0.2264 0 

b 0.1345 0.1876 0 -0.1734 -0.1523 0 

c 0 0 0.0771 0 0 0.0771 

 

Table S21. Eigenvectors of the calculated 71Ga EFG tensor, expressed in the crystallographic axis, for 
IS and APO (in italic) GaF3 (from ref. [5]). 

Axis VXX VYY VZZ VXX VYY VZZ 

a 0.2298 0.0167 0 0.0281 0.2287 0 

b 0.1293 -0.1907 0 0.2121 0.0900 0 

c 0 0 0.0770 0 0 0.0770 

 
Table S22. Eigenvectors of the calculated 115In EFG tensor, expressed in the crystallographic axis, for 
IS and APO (in italic) InF3. 

Axis VXX VYY VZZ VXX VYY VZZ 

a 0.2127 0.0182 0 0.0053 0.2134 0 

b 0.1221 -0.1751 0 -0.1821 0.1113 0 

c 0 0 0.0695 0 0 0.0695 
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Table S23. Compound, site, calculated EFG tensor Vii (1021 V/m2) and angular distortions α and β 
(deg) from IS and APO structures. 

Compound Site Structure Vii orthogonal to 
opposite faces 

α Vii bisector of two 
adjacent Al-F bonds 

β 

α-AlF3 Al1 IS Vzz = -0.0630 0.02 Vxx = Vyy = 0.0315 -0.02 
  APO Vzz = -0.0211 0.25 Vxx = Vyy = 0.0106 -0.25 
β-AlF3 Al1 IS   Vzz = -0.341; Vyy = 0.276 0.07; -0.07 
  APO   Vzz = -0.332; Vyy = 0.210 0.35; -0.35 
 Al2 IS   Vzz = -0.360 0.24 
  APO   Vzz = -0.359 0.66 
η-AlF3 Al1 IS Vzz = -0.554 -0.16 Vxx = Vyy = 0.277 0.16 
  APO Vzz = -0.468 0.24 Vxx = Vyy = 0.234 -0.24 
GaF3

4 Ga1 IS Vzz = -0.092 0.59 Vxx = Vyy = 0.046 -0.59 
  APO Vzz = 0.175 1.20 Vxx = Vyy = -0.088 -1.20 
GaF3

5 Ga1 IS Vzz = -0.215 0.34 Vxx = Vyy = 0.107 -0.34 
  APO Vzz = 0.153 1.15 Vxx = Vyy = -0.077 -1.15 
InF3 In1 IS Vzz = -1.083 -0.60 Vxx = Vyy = 0.542 0.60 
  APO Vzz = -0.154 0.56 Vxx = Vyy = -0.077 -0.56 
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2.4 Other binary fluorides (columns 11, 12 and 14 

metal fluorides) 

2.4.1 Structural features and solid state NMR study 

As the alkali fluorides, silver (column 11) (I) fluoride, AgF, adopts the sodium chloride (NaCl) 

structural type (ICSD3 file number 18008).4 The 19F δiso value of this compound has never been 

reported. Its 19F MAS NMR spectrum is presented in Fig. 1. The 19F δiso value is equal to -317.4 ppm.  

 

 

Fig. 1. 19F MAS NMR spectrum of AgF obtained at a magnetic field of 7.0 T using spinning frequency 
of 25 kHz. The asterisks indicate spinning sidebands. 

 

The three binary fluorides ZnF2, CdF2 and HgF2 (column 12) have also been studied. Among 

these fluorides, ZnF2
5 (ICSD3 file number 280605) adopts, as MgF2, the rutile (TiO2) structural type 

whereas CdF2
6 (ICSD3 file number 28731) and HgF2

7 (ICSD3 file number 33614) adopt the fluorite 

(CaF2) structural type. The 19F δiso values of ZnF2,8,9 CdF2
8-12 and HgF2,

8,12 have been measured 

previously referenced relative to C6F6. Then the 19F δiso values of CdF2 and HgF2 have been converted 

relative to CFCl3.
13,14 The 19F δiso values of this three compounds have been measured referenced 

relative to CFCl3 (Fig. 2, -204.5 ppm, -194.7 ppm and -199.5 ppm for ZnF2, CdF2 and HgF2, 

respectively) for the reasons given above (see 2.2 and 2.3). 
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Fig. 2. 19F MAS NMR spectra of ZnF2, CdF2 and HgF2 obtained at a magnetic field of 7.0 T using 
spinning frequencies of 30 kHz for ZnF2 and 25 kHz for CdF2 and HgF2. The asterisks indicate 

spinning sidebands. 

 

The two binary lead (column 14) II fluoride compounds, α- and β-PbF2, have been previously 

studied. The 19F δiso values of α-PbF2
9,15,16 and β-PbF2

9,10, 17 have been measured in the past 

referenced relative to C6F6 and more recently referenced relative to CFCl3. The lead fluoride 

compounds have further interest since the 19F-207Pb J-coupling is large enough to be resolved on a 

19F MAS NMR spectra as shown previously for α-15,16 and β-PbF2.17 Given the 22.6% 207Pb natural 

abundance, each fluorine site has several possible environments F(207Pb)x(Pb)n-x, that are 

magnetically inequivalent, where Pb represents the lead nuclei with no nuclear spin, and n is the 

number of these Pb atoms in the first fluorine coordination sphere with 0≤x≤n. Therefore, each 19F 

resonance is the sum of individual multiplets (for example, for n = 2, a singlet, a doublet, and a 

triplet) whose relative intensities are given by their probabilities for occurrence. 

β-PbF2
18 (ICSD3 file number 86738) adopts the fluorite (CaF2) structural type and then contains 

one F site located at the centre of a regular tetrahedron of Pb atoms. The 19F δiso value has been 

recently determined by C. Martineau during her thesis (-39.2 ppm).17 The (absolute) 207Pb-19F J-

coupling value in β-PbF2 has been determined on single crystal (2.15 kHz19) and on polycrystalline 

powder from 19F MAS NMR spectrum (2.60 kHz17). 
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α-PbF2
20 (ICSD3 file number 14324) adopts 

the PbCl2 structural type (Fig. 3) and has two 

fluorine sites with the same multiplicity. F1 is 

coordinated to four lead atoms and has F-Pb 

bond lengths that vary from 2.45 Å to 2.64 Å 

whereas the F2 site is coordinated to five lead 

atoms and has F-Pb bond lengths that vary from 

2.41 to 3.03 Å (Fig. 3, Table 1).  

The 19F MAS NMR spectra (Fig. 4) show two 

resonances at -19.7 and -57.1 ppm, in agreement 

with the previously determined 19F δiso values  

(-20.5 ppm and -57.7 ppm).15,16 The 19F NMR 

resonances were assigned to the crystallographic 

sites F1 and F2, respectively, on the basis of their different 207Pb-

19F J-coupling patterns, the 207Pb-19F J coupling being likely to be 

larger for 19F nuclei in site F1 (2.0 kHz) than for those in F2 

(individual peaks not resolved at a spinning frequency of 22.5 (or 

24.2?) kHz15), due to the shorter Pb-F1 internuclear distances.15,16 

This assignment - the first one which is not obvious in this 

chapter - is confirmed by the chemical shielding calculations (see 

2.4.2). As shown previously16 and on Fig. 4, the resolution 

increases with the spinning frequency. Nine peaks have been detected for the F2 site at 29 kHz but 

significant differences have been observed in the splittings between the first and second sets of 

satellite peaks of 0.75 and 0.50 kHz, respectively.16 We observe less significant differences; indeed, 

for both NMR resonances, due to various F-Pb bond lengths, the splittings between the peaks are 

not constant (Fig. 5 and Table 2), varying from 0.87 kHz and 1.0 Hz for F1 and from 0.51 kHz to 0.62 

kHz for F2 and leading to 207Pb-19F J coupling values equal to ~1.9 kHz and ~1.1 kHz for F1 and F2, 

respectively.  

As expected and previously outlined,15 the 207Pb-19F J-coupling is likely to be larger for 19F 

nuclei in site F1 than for those in F2, due to the shorter F1-Pb distances. Five and six magnetically 

inequivalent environments are possible for F1 and F2, respectively. For F1, they give rise to a singlet, 

doublet, triplet, quartet, and quintet for x = 0-4, respectively and for F2, they give rise, in addition, to 

 

Fig. 3. Perspective view of α-PbF2 showing the 
F1Pb4 and F2Pb5 polyhedra. 

Table 1. F-Pb and average F-Pb 
bond lengths in α-PbF2. 

F1 Pb 2x 2.447 
 Pb 1x 2.534 
 Pb 1x 2.641 
 〈�� − ��〉 2.517 

F2 Pb 1x 2.409 
 Pb 2x 2.688 
 Pb 2x 3.033 
 〈�� − ��〉 2.770 
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a sextet for x = 5. Given the natural abundance (A) for 207Pb, probabilities for the occurrence of each 

of these environments can be calculated using the formula 	 = �1 − �������
�  with  

��
� =

�!

�!�����!
. Probabilities (%) for the occurrence of each of these environments of 35.9, 41.9, 18.4, 

3.6, and 0.3, respectively, for F1 and of 27.8, 40.5, 23.7, 6.9, 1.0, and 0.1, respectively, for F2 are 

obtained. Thus, a nonet and an undectet, with relative intensities given in Table 1, are predicted for 

F1 and F2, respectively. The two outermost satellites of these multiplets have such small intensities 

(expected values equal to 0.02% and 0.002% for F1 and F2, respectively) that they are unlikely to be 

detected experimentally.  

 

The intensities of the inner seven peaks of the nonet for F1 and of the inner nine peaks of the 

undectet for F2 measured by deconvoluting each NMR resonance of the spectrum recorded at a 

spinning frequency of 30 kHz (Fig. 5 and Table 2) are in agreement with those previously 

determined15,16 but moderately close to those calculated. As previously explained,15,16 differences 

between the measured and calculated intensities may arise from small differences in J couplings for 

the different Pb-F bonds; this will result in asymmetrical peak shapes for the outer transitions and 

lead to errors in intensities obtained from the deconvolution of the resonances. 

 

 

Fig. 4. 19F MAS NMR spectra of α-PbF2 recorded at a magnetic field of 7.0 T using spinning 
frequencies of 25 kHz and 30 kHz. 
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Fig. 5. Experimental 19F MAS (30 kHz) NMR spectrum (blue) of α-PbF2 obtained at a magnetic field of 
7 T. The best fit of this spectrum is represented in red and the individual contributions to the fitted 

spectrum are shown below. The relative intensities of the multiplets are 47.5% and 52.5%. 

 

Table 2. Parameters used for the reconstruction of the 19F MAS NMR spectrum of α-PbF2: 
positions (δiso (ppm)) and relative intensities (%) of the central lines, positions (ppm) and 
relative intensities (%) of the satellites, splitting (Hz) between each central line and their 

satellite peaks and expected relative intensities. 

F1 position  -9.6 -13.0 -16.1 -19.7 -23.2 -26.3 -29.8  
I  1.2 7.7 15.0 50.1 15.6 8.6 1.7  
I expected 0.02 0.45 4.65 22.3 45.2 22.3 4.65 0.45 0.02 
splitting  2850 1873 1008  1007 1874 2860  

F2 δiso/ position -49.0 -51.1 -53.1 -54.9 -57.1 -59.3 -61.1 -63.1 -65.1 
 I 1.1 4.6 9.0 16.5 38.1 16.3 9.2 4.3 0.8 

I expected 0.1 0.9 6.2 22.9 40.0 22.9 6.2 0.9 0.1 
splitting 2289 1688 1130 618  616 1129 1687 2267 
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2.4.2 DFT calculations 

The 19F chemical shielding tensors of these fluorides have been calculated using the GIPAW 

method21,22 implemented in the CASTEP code.23,24 The calculations have been performed for 

experimental structures (named ES in the following) and, when allowed by symmetry, i.e. for ZnF2 

and α-PbF2, for atomic position optimized (APO) structures. The σiso values are reported in Table 3. 

The fractional atomic coordinates and bond lengths for ES and APO structures of ZnF2 and α-PbF2 

are gathered in Tables 4, 5, 6 and 7.  

 

Table 3. Experimental 19F δiso values, 19F σiso values calculated using the GIPAW 
method for the ES and, when allowed by symmetry, APO structures and 19F δiso 
values deduced from the linear correlation δiso/CFCl3 = -0.80(3) σiso + 89(9) (see 

2.2).25 The σiso values in bold are those represented in Fig. 6.  

Compound 
(site) 

σiso calc/ppm δiso calc/ppm 
δiso exp/ppm 

ES APO ES APO 

AgF 609.9  -398.9  -317.4 

ZnF2 352.6 352.6 -193.1 -193.1 -204.5 

CdF2 351.3  -192.0  -194.7 

HgF2 355.2  -195.1  -199.5 

β-PbF2 169.1  -46.3  -39.2 

α-PbF2 (F1) 140.2 139.1 -23.1 -22.3 -19.7 

α-PbF2 (F2) 181.0 179.3 -55.8 -54.4 -57.1 

 

Table 4. Initial fractional atomic coordinates (x, y, z),5 PBE-DFT geometry-optimized fractional 
atomic coordinates (x', y', z') and corresponding atomic displacements d (Å) for ZnF2. 

 Site x y z x' y' z' d 
Zn1 2a 0 0 0 0 0 0 0 
F1 4f 0.30350 0.30350 0 0.30269 0.30269 0 0.005 

 

Table 5. Initial fractional atomic coordinates (x, y, z),20 PBE-DFT geometry-optimized fractional 
atomic coordinates (x', y', z') and corresponding atomic displacements d (Å) for α-PbF2. 

 Site x y z x' y' z' d 
Pb1 4c 0.2527 1/4 0.1042 0.2554 1/4 0.1052 0.019 
F1 4c 0.8623 1/4 0.0631 0.8591 1/4 0.0665 0.033 

F2 4c 0.4662 1/4 0.8457 0.4743 1/4 0.8443 0.053 
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 The ES and APO 

structures of ZnF2 are very 

similar (Table 4) showing the 

accuracy of the former one. The 

average Zn-F bond lengths (Table 

6) are very similar and 

consequently the calculated 19F 

σiso values (Table 3) are equal (to the nearest 

tenth of ppm). As the shortest Zn-F bond length 

decreases whereas the longest Zn-F bond length 

increases, the radial distortion increase. On the 

other hand, the F-Zn-F bond angles, i.e. the 

angular distortion, are similar. Since we were not 

able to show from 67Zn EFG calculation the 

efficiency and the usefulness of the optimization 

for this compound (see below), we retain the 

initial structure.  

 The effect of the optimization is greater for α-PbF2 (Table 5). The shortest F-Pb bond lengths 

increase but the average F-Pb bond lengths remain similar (Table 7). As the longest F1-Pb bond 

length decreases, the F1Pb4 tetrahedron is less distorted, after optimization, from a radial point of 

view. From an angular point of view, the distortion of this tetrahedron is similar before and after 

optimization (Pb-F-Pb angles between 98.4° and 115.0° for ES and between 98.3° and 116.0° for APO 

structure). Both σiso values (Table 3) slightly decrease after optimization but in any case, the 

calculated σiso values (σiso (F1) < (σiso (F2)) confirm the earlier assignment based on 207Pb-19F J 

coupling values.15,16 We retain the APO structure even if it is not possible to show that the 

agreement after optimization of the structure geometry is better or worst.  

On can remark that for ZnF2, CdF2 and HgF2 the 19F σiso values are not in reverse order with 

respect to their, close, experimental 19F δiso values. Nevertheless, except for AgF, the agreement is 

nice between the experimental and the "calculated" 19F δiso values (Table 3) obtained by using the 

linear correlation, δiso/CFCl3 = - 0.80(3) σiso + 89(9).25 Even not efficient for AgF, for which a smaller 

slope absolute value would be necessary, this correlation is again ascertained.   

Table 6. Zn-F and average Zn-F bond lengths (Å) and F-Zn-F 
bond angles (°) different from 90° from experimental5 (ES) and 

PBE-DFT geometry-optimized (APO) structures of ZnF2. 

   Bond lengths Bond angles 

   ES APO ES APO 

Zn1 F1 2x 2.019 2.014 79.7 79.9 
  F1 4x 2.041 2.044 100.3 100.1 
  〈�� − �〉 2.033 2.034   

Table 7. F-Pb and average F-Pb bond lengths 
(Å) from experimental20 (ES) and PBE-DFT 

geometry-optimized (APO) structures of α-
PbF2. 

  ES APO 

F1 Pb1 2x 2.447 2.464 
 Pb1 1x 2.534 2.569 
 Pb1 1x 2.642 2.599 
  〈�� − ��〉 2.517 2.524 

F2 Pb1 1x 2.409 2.444 
 Pb1 2x 2.688 2.642 
 Pb1 2x 3.034 3.055 
  〈�� − ��〉 2.770 2.768 
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In Fig. 6, the calculated 19F σiso values are represented versus the experimental 19F δiso values 

for the compounds under study in this part of this chapter, for alkali, alkaline earth and rare earth 

fluorides25 (see 2.2) and for column 13 metal fluoride compounds (see 2.3). The slopes and the 

intercepts of the linear regressions, calculated on all these values (δiso/CFCl3 = - 0.805(13) σiso + 

91.0(3.5)), and previously reported25 (δiso/CFCl3 = - 0.80(3) σiso + 89(9)), are very similar. It confirms 

again that these correlations between experimental 19F δiso values and calculated 19F σiso values could 

allow predicting 19F NMR spectra of fluoride crystalline compounds containing these metallic atoms, 

with a relatively good accuracy. 

 

 

 

 

 

Fig. 6. Calculated 19F σiso values versus experimentally measured 19F δiso values. The red circles 
represent the alkali, alkaline and rare earth of column 3 fluorides (see 2.2),25 the black circles 

represent the column 13 metal fluorides, (see 2.3) and the green circles represent the compounds 
under study in this part of the chapter (values reported in Table 3). The dash line represents the 
linear regression calculated on all these values: δiso/CFCl3 = - 0.805(13) σiso + 91.0(3.5), R2 = 0.992. 
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The experimental and calculated, using the 

linearized augmented plane wave (LAPW) method26 

implemented in the WIEN97 code, 67Zn 

quadrupolar parameters of ZnF2 were previously 

reported by Bastow. 27  A nice agreement was 

obtained (Table 8). On the other hand, the 

agreement is poor with the values calculated, using 

the PAW method28,29 implemented in the CASTEP 

code,23,24 for initial and atomic position optimized 

structures (Table 8). We then used, as Bastow,27 the 

LAPW method, implemented in the WIEN2k code,26,30 

confirming the nice agreement (Table 8) and allowing to 

orientate the EFG tensor elements (Table 9, Fig. 7). The 

forces acting on all atoms being smaller than 1 mRy in the 

experimental structure, geometry optimization is not 

useful. ZnF2 and MgF2 being isostructural, the 25Mg (see 2.2) and 67Zn EFG orientation are similar. As 

shown in Fig. 7 which depicts the orientation of the 67Zn EFG tensor, the Vii components are along 

the intersections of the three mirror planes of the Zn site (mmm symmetry) and, for the Zn atom 

located at (0,0,0), VZZ and VXX lie in the (a,b) plane while VYY is along the c crystallographic axis. In the 

ZnF2 structure, the ZnF6 octahedron is characterized by low radial and high angular distortions (Table 

6). In such a situation, the largest component of the EFG tensor (VZZ) is not expected to be oriented 

along M-F bonds.31 Indeed, VZZ and VYY are both oriented between two Zn-F bonds in the plane 

presenting the angular distortion while VXX is oriented along the shortest Zn-F bond perpendicular to 

this plane. It should also be noted that the sign of the calculated Vii components is in agreement 

with the angular distortion analysis model proposed by Body et al.,31 i.e. a positive/above 90° 

(negative/below 90°) angular distortion leads to a charge depletion (concentration) in the Vii 

direction and then to a positive (negative) Vii value (Fig. 7). 

Table 8. Experimental and calculated 67Zn 
quadrupolar parameters, quadrupolar 

coupling constant CQ (MHz), VZZ (1021 V.m-2) 
and asymmetry parameter ηQ, in ZnF2. 

 CQ VZZ ηQ 

Exp.27 7.87 2.17 0.18 
Calc. LAPW27 8.30 2.29 0.13 
Calc. PAW ES 5.77 1.59 0.67 
Calc. PAW APO 6.05 1.67 0.92 
Calc. LAPW ES 7.41 2.04 0.16 

Table 9. Eigenvectors of the calculated 
67Zn EFG tensor, expressed in the 

crystallographic axis, for the 
experimental structure5 of ZnF2.  

Axis VXX VYY VZZ 

a 0.707 0 0.707 
b 0.707 0 -0.707 
c 0 1 0 
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2.4.3 Experimental section 

2.4.3.1 Solid state NMR 

The sample of AgF was purchased from Alfa Aesar (lot number J20Q110). The samples of CdF2 

and α-PbF2 were purchased from Cerac (lot numbers 36410-D-(1-4) and 135797-B-1B, respectively). 

ZnF2 is a lab-made (and/or purified) sample and the origin of the sample of HgF2 could not be found. 

All these samples are kept in a dry glove box under nitrogen atmosphere. Prior to use, the purity of 

these samples was checked by X-Ray Powder Diffraction. 

Solid-state NMR experiments were performed on an Avance 300 Bruker spectrometer 

operating at 7.0 T (19F Larmor frequency of 282.2 MHz), using a 2.5 mm CPMAS probehead. 19F one 

dimensional (1D) MAS NMR spectra were recorded using a Hahn echo sequence with an inter-pulse 

delay equals to one rotor period, with a recycle delay equal to 10 sec and using 90° pulse lengths of 

 

Fig. 7. Orientation of the 67Zn EFG tensor components, 
calculated with WIEN2k on the experimental structure,5 

represented on the ZnF6 octahedron. Zn–F bond lengths and  
F-Zn-F bond angles are indicated. The norms of the 

eigenvectors are proportional to the eigenvalues of the EFG 
tensor components: VZZ = 2.04 x 1021 V.m-2, VYY = -1.19 x 1021 

V.m-2, VXX = -0.86 x 1021 V.m-2. 

79.7°

100.3°



110 
 

2.2 µs, 1.5 µs, 1.5 µs, 1.5 µs and 2.7 µs for AgF, ZnF2, CdF2, HgF2 and α-PbF2, respectively. The 19F 1D 

MAS NMR spectrum of α-PbF2 was also acquired with 207Pb decoupling (nutation frequency of 50 

kHz). The 19F chemical shifts are referenced to CFCl3 at 0 ppm. The 19F 1D MAS NMR spectra were 

fitted using DMfit32 software. 

2.4.3.2 DFT calculations 

DFT calculations of the 19F chemical shielding tensors, using the GIPAW method,21,22 and 67Zn 

EFG in ZnF2, using the projector augmented-wave (PAW) approach28,29 were performed with the 

NMR-CASTEP code23,24 implemented in the Materials Studio 5.0 environment, for the experimental 

structure (named ES above) and atomic position optimized (APO) structures, when allowed by 

symmetry. The PBE (Perdew, Burke and Ernzerhof) functional33 was used in the generalized gradient 

approximation (GGA) for the exchange-correlation energy, and the core-valence interactions were 

described by ultrasoft pseudopotentials (USPP) generated using the on the fly generator (OTF_USPP) 

included in CASTEP. The wave functions were expanded on a plane-wave basis set with a kinetic 

energy cutoff of 700 eV. The Brillouin zone was sampled using a Monkhorst-Pack grid spacing 

approximately equal to 0.04 Å-1 (corresponding to a k-point mesh of 5 × 5 × 5 for all structures 

except for ZnF2 (6 × 6 × 8) and α-PbF2 (4 × 7 × 4)). APO structures are obtained by minimizing the 

residual forces on the atom up to |F|max below 10 meV.Å-1, keeping symmetry constraints and fixing 

the cell parameters to the experimentally determined values. 

67Zn EFG in ZnF2 were also calculated using the LAPW method26 implemented in the WIEN2k 

code.26,30 The atomic sphere radii (RMT) were set to 1.90 and 1.70 a.u. for Zn and F, respectively. The 

core electron states were separated from the valence states by -7.0 Ry. Core states are from 1s to 3s 

for Zn and 1s for F. The plane wave cut-off is defined by RMTKMAX = 8. We use a Monkhorst-Pack grid 

approximatively equal to 0.05 Å-1 (corresponding to a k-point mesh of 4 × 4 × 6 ). Total energies are 

converged up to changes smaller than 1.4 × 10−3 eV. 

The quadrupolar moment used for the calculation of quadrupolar coupling constant, CQ, for 

67Zn is 0.150�15� × 10�����.34  
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2.5 Conclusion 

A correlation between 19F experimental isotropic chemical shifts and 19F calculated isotropic 

chemical shieldings, allowing to predict 19F NMR spectra of crystalline compounds with a relatively 

good accuracy, has been established on twelve binary fluorides containing twelve different metal 

atoms and further confirmed on eleven binary fluorides containing eight different metal atoms. This 

correlation was successfully applied to RbLaF4,35 NaAsF6
36 (see 4.2) and α-LaZr2F11.37 At this stage, 

the single atom which does not comply this correlation is Ag. 

Moreover, the studies gathered in this chapter enable to show that when using the PBE 

exchange–correlation functional for the treatment of the cationic localized empty orbitals of Ca2+, 

Sc3+
 (3d) and La3+

 (4f), a correction is needed to accurately calculate 19F chemical shieldings.  

In addition, we experimentally determine the quadrupolar parameters of 25Mg in MgF2, 
71Ga 

in GaF3 and 115In in InF3, and calculate the electric field gradients of 25Mg in MgF2, 
27Al in α-, β- and η-

AlF3, 
67Zn in ZnF2, 

71Ga in GaF3, 115In in InF3 and 139La in LaF3 using PAW and/or LAPW methods. The 

orientation of the EFG components in the crystallographic frame, provided by DFT calculations, have 

been analyzed in terms of electron densities for 25Mg in MgF2 and 139La in LaF3. The study of α-AlF3, 

GaF3 and InF3 highlights the care that must be taken when dealing with optimized structures. 
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Chapter 3: Assignment of 
19

F NMR lines of 

binary fluorides to crystallographic sites 

from GIPAW calculations. 

  



 

116 
 

  



 

117 
 

3.1 Introduction 

Up to this point, only binary fluorides with obvious assignment of the 19F NMR lines to the 

fluorine crystallographic sites were considered. Confident linear regressions have been established 

between calculated 19F σiso and experimental 19F δiso values. In this chapter binary fluorides with 

several fluorine crystallographic sites are studied with one main objective: the assignment of their 

19F NMR lines to their crystallographic sites. Such compounds provide opportunities to test the 

efficiency and reliability of the linear regressions determined in the previous chapter. To assign the 

19F resonances to the fluorine crystallographic sites, the NMR lines are ranked in decreasing order of 

experimental δiso values whereas F atoms are ranked in increasing order of calculated σiso values. Of 

course, the multiplicity of the F site must be consistent with the relative intensity of the NMR line it 

is assigned to. In compounds having F sites with different multiplicities, this point gives us a first 

indication of the σiso calculation reliability. When multiplicities and relative intensities are in the 

same sequence, linear regression can be established between the calculated 19F σiso and 

experimental 19F δiso values and compared to the previously established ones.  

Column 5 metal (Nb,Ta) fluorides study is reported in the section 3.2. No correlation 

experiments, which require long acquisition time, can be performed on these compounds due to 

their high hygroscopic nature. In the section 3.3, MF4 (M = Zr, Hf, Ce, Th) fluorides with narrower 

chemical shift ranges are studied. Correlation experiments, based on through space 19F-19F dipolar 

coupling interaction, have been carried out on two of these compounds, with the expectation that 

experimental assignments of the 19F NMR lines to the fluorine crystallographic sites can be achieved. 
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3.2 Column 5 metal (Nb, Ta) fluorides 
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a b s t r a c t

The 19F isotropic chemical shifts (δiso) of two isomorphic compounds, NbF5 and TaF5, which involve six
nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19F
MAS NMR spectra. In parallel, the corresponding 19F chemical shielding tensors have been calculated
using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M4F20]
units of NbF5 and TaF5 being held together by van der Waals interactions, the relevance of Grimme
corrections to the DFT optimization processes has been evaluated. However, the semi-empirical
dispersion correction term introduced by such a method does not show any significant improvement.
Nonetheless, a complete and convincing assignment of the 19F NMR lines of NbF5 and TaF5 is obtained,
ensured by the linearity between experimental 19F δiso values and calculated 19F isotropic chemical
shielding siso values. The effects of the geometry optimizations have been carefully analyzed, confirming
among other matters, the inaccuracy of the experimental structure of NbF5. The relationships between
the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the
terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the
length of the M–F bonds have been established. Additionally, for three of the 19F NMR lines of NbF5,
distorted multiplets, arising from 1J-coupling and residual dipolar coupling between the 19F and 93Nb
nuclei, were simulated yielding to values of 93Nb–19F 1J-coupling for the corresponding fluorine sites.

& 2013 Elsevier Inc. All rights reserved.

1. Introduction

Unambiguous assignment of complex 19F solid-state NMR
spectra of crystalline fluoride compounds having multiple crystal-
lographic sites or fluoride glasses often remains a challenging task.
In several studies [1–12], assignments of 19F NMR resonances to
environments were based on similarities to crystalline model com-
pounds (similar 19F isotropic chemical shifts (δiso) values intending
to indicate similar structural environments). Nowadays, high
resolution two-dimensional heteronuclear and homonuclear cor-
relation experiments can be used for helping in the assignment of
fluorine sites. The efficiency of these experiments to probe
interatomic spatial proximities and through bond connectivities
has been described in various studies [13–28]. An alternative
approach consists in the calculation of 19F isotropic chemical
shieldings (siso). These calculations have been first achieved in

various crystalline fluoride materials [29–35] using a semi-
empirical model, called superposition model [36]. Ab initio
approaches devoted to molecular systems have been used for
studying extended systems. In these cases, clusters of atoms were
build such that the central atom experiences an environment
similar to that in true extended solid, i.e., to mimic the crystalline
periodic structures [14,30,37–44]. Recent advances in the theore-
tical calculations of NMR parameters for extended solids lead to
the development of the Gauge Including Projector Augmented
Wave (GIPAW) method [45,46] which integrates explicitly the
periodic boundary conditions. This major breakthrough enables
consequently the calculations of NMR tensors in solids [47,48] and
was applied on inorganic fluorides for the calculation of 19F siso

values [19–23,27,49–53].
When interested in the prediction of δiso values, the calculated

19F siso values have to be converted into the isotropic chemical
shift scale. Assuming that the 19F sref can be obtained, the
calculated 19F siso values can be converted into “calculated” 19F
δiso values applying the relation δisoEsref–siso [14,19,42,49,54].
Calculated 19F siso values can also be converted into “calculated”
19F δiso values [29–41,43] using an experimental absolute scale for
fluorine [55,56]. To avoid these referencing problems and possible

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jssc

Journal of Solid State Chemistry

0022-4596/$ - see front matter & 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jssc.2013.09.001

n Corresponding author. Tel.: þ33 2 43 83 33 49; fax: þ33 2 43 83 35 06.
E-mail addresses: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr

(M. Biswal), monique.body@univ-lemans.fr (M. Body),
christophe.legein@univ-lemans.fr (C. Legein), Aymeric.Sadoc@cnrs-imn.fr
(A. Sadoc), Florent.Boucher@cnrs-imn.fr (F. Boucher).

Journal of Solid State Chemistry 207 (2013) 208–217

119

www.sciencedirect.com/science/journal/00224596
www.elsevier.com/locate/jssc
http://dx.doi.org/10.1016/j.jssc.2013.09.001
http://dx.doi.org/10.1016/j.jssc.2013.09.001
http://dx.doi.org/10.1016/j.jssc.2013.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jssc.2013.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jssc.2013.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jssc.2013.09.001&domain=pdf
mailto:Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr
mailto:Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr
mailto:monique.body@univ-lemans.fr
mailto:christophe.legein@univ-lemans.fr
mailto:Aymeric.Sadoc@cnrs-imn.fr
mailto:Aymeric.Sadoc@cnrs-imn.fr
mailto:Florent.Boucher@cnrs-imn.fr
http://dx.doi.org/10.1016/j.jssc.2013.09.001


errors coming from the calculation of the 19F sref value, “calcu-
lated” 19F δiso values can be deduced from the linear regression
established between calculated 19F siso values and experimental
19F δiso values for the compounds under study [20,21,23,50,51,53],
implying that an assignment was already done. This third
approach seems to become the standard practice [47,48]. Alter-
natively a linear regression previously established on various
compounds [50] can be used [22,27,52]. For many nuclei, devia-
tions from the theoretically expected slope of minus one have
been reported for GIPAW calculations [48] using GGA (generalized
gradient approximation) for the exchange and correlation poten-
tial. 19F is not an exception with a large dispersion of reported
slopes: �0.68 [20], �0.80 [50], 0.86 [49] and 0.83 [21], the last
two positive values being obtained when “calculated” and experi-
mental δiso are compared. Pedone et al. [53] were able to reach a
nearly ideal slope value of �0.963 but only on few compounds.

The two binary pentafluorides NbF5 and TaF5 are isomorphs
and consist of tetrameric structural units [M4F20] (M¼Nb,Ta), build
up of MF6 octahedra linked to each other by corners in a cis-
configuration. Both the compounds involve six fluorine sites, 2 sites
with multiplicity 4 and 4 sites with multiplicity 8 [57,58]. These
two compounds, known to be very hygroscopic, have not been yet
studied by solid state NMR. In the present work, we report for the
first time the one dimensional (1D) 19F magic angle spinning
(MAS) NMR spectra of NbF5 and TaF5, allowing us to determine
their experimental 19F δiso values. Due to the hygroscopic character
and reactivity (chemical attack of the caps of the rotors by NbF5) of
NbF5 and TaF5, we choose to avoid 19F–19F correlation experiments
since they require long acquisition time. Anyway, in these cases,
only fragmentary information could be obtained since some of the
fluorine atoms have similar environments and since at least two
19F NMR resonances overlap. Consequently, the only way to
complete the initial partial assignment, based on NMR line relative
intensities and 19F δiso and chemical shift anisotropy (δcsa) values,
was to perform calculations of the 19F chemical shielding tensors.
These DFT (density functional theory) computations have been
performed using the GIPAW [45,46] method implemented in the
NMR-CASTEP code [59,60]. Since the agreement between the
calculated and experimental NMR parameters is generally signifi-
cantly improved after a DFT structural optimization [16,21,23,31,
47–49,51,52,61], GIPAW calculations have been achieved on both
experimental and optimized structures. In NbF5 and TaF5, how-
ever, [M4F20] units are held together by van der Waals (vdW)
interactions and those dispersion forces are not described by most
of the exchange-correlation DFT functional used for the GIPAW
calculations. A recently proposed method to work around this
problem consists in adding a semi-empirical dispersion energy
term to the conventional Kohn–Sham DFT energy [62]. For this
purpose, structural optimizations were also done with the semi-
empirical DFT-D2 approach of Grimme as implemented in the
VASP package [63,64]. The semi-empirical parameters needed for
describing the three elements under study (F, Nb and Ta) were
taken from the work of Grimme [62].

In the present work, we show that GIPAW calculations enable a
complete and convincing assignment of the lines of the 19F NMR
spectra of NbF5 and TaF5. Moreover, the effects of the geometry
optimisations are carefully examined and the structural features
deeply discussed. Relations are also clearly established between
the fluorine chemical shifts and the nature of the fluorine atoms
(bridging or terminal), the position of the terminal ones (opposite
or perpendicular to the bridging ones), the fluorine Mulliken
charges or the ionicity and length of the M–F bonds. Additionally,
for three of the 19F NMR lines of NbF5, distorted multiplets, arising
from 1J-coupling and residual dipolar coupling between the
19F and 93Nb nuclei, were simulated yielding to values of 93Nb–19F
1J-coupling for the corresponding fluorine sites.

2. Materials and methods

The samples of TaF5 and NbF5 were purchased from Alfa Aesar
(lot numbers D20L30 and l11T005, respectively) and were kept in
a dry glove box under nitrogen atmosphere. As both compounds
are very hygroscopic, the rotors were filled inside the glove box to
avoid any hydration of the samples.

Solid-state NMR experiments were performed on an Avance
300 Bruker spectrometer operating at 7.0 T (19F Larmor frequency
of 282.2 MHz), using a 2.5 mm CPMAS probehead. 19F one dimen-
sional (1D) MAS NMR spectra were recorded using a Hahn echo
sequence with an inter-pulse delay equals to one rotor period. The
1D 19F MAS NMR spectra of TaF5 and NbF5 were acquired using 901
pulse lengths of 2.6 μs and 2.5 μs (corresponding to nutation
frequency of 96 kHz and 100 kHz), respectively. The recycle delay
was set to 10 s. Discrimination between isotropic peaks and
spinning sidebands was achieved by recording spectra at various
spinning frequencies up to 34 kHz. The 19F 1D MAS NMR spectrum of
NbF5 was also acquired with 93Nb decoupling. The influence of the
93Nb power level on the efficiency of the heteronuclear decoupling
has been checked in the nutation frequency range 10–357 kHz. High
power decoupling (357 kHz) is the most efficient.

The 19F chemical shifts are referenced to CFCl3 at 0 ppm. The 19F
1D MAS NMR spectra of TaF5 and NbF5 acquired with 93Nb
decoupling were fitted with DMfit [65] software, including spin-
ning sidebands, using four parameters, the isotropic chemical shift
(δiso), the chemical shift anisotropy (δcsa), the asymmetry para-
meter (ηcsa), and the Gaussian–Lorentzian shape factor. Recon-
structions of the J-multiplets observed on the 1D 19F MAS NMR
spectra of NbF5 acquired without 93Nb decoupling have been
achieved using WSolids1 [66] software which allows to determine
independently the direct dipole–dipole coupling constant and the
quadrupolar coupling constant. On the other hand, WSolids1 does
not allow to take into account the chemical shift anisotropy.

3. Calculation

The chemical shift tensor is described by three parameters, the
isotropic chemical shift (δiso), the chemical shift anisotropy (δcsa)
and the asymmetry parameter (ηcsa), determined experimentally,
and defined as δiso ðppmÞ ¼ ð1=3ÞðδxxþδyyþδzzÞ, δcsa ðppmÞ ¼

δzz�δiso, ηcsa ¼ ðδyy�δxxÞ=δcsa, with the principal components
defined in the sequence jδzz�δisojZ jδxx�δisojZ jδyy�δisoj.

The chemical shielding tensor is also described by three
parameters, the isotropic chemical shielding ðsisoÞ, the chemical
shielding anisotropy (scsa) and the asymmetry parameter (ηcsa)
defined as siso ðppmÞ ¼ ð1=3ÞðsxxþsyyþszzÞ, scsa ðppmÞ ¼ szz�siso
and ηcsa ¼ ðsyy�sxxÞ=scsa, with the principal components defined in
the sequence jszz�sisojZ jsxx�sisojZ jsyy�sisoj.

For nucleus having spin greater than 1/2, i.e. quadrupolar
nuclei, the quadrupolar frequency νQ, the quadrupolar coupling
constant CQ and the asymmetry parameter ηQ are related to the
electric field gradient (EFG) tensor components through the
following equations: νQ ¼ 3 CQ=½2IðI�1Þ� with CQ ¼ eQV zz=h, and
ηQ ¼ ðVxx�VyyÞ=V zz . The Vii are the eigenvalues of the EFG tensor
with the convention |Vzz|Z |Vyy|Z |Vxx|, e is the electronic charge,
I the nuclear spin quantum number and h is Planck's constant.

Ground state electronic structures of NbF5 and TaF5 were
obtained within the DFT formalism using the PBE-GGA [67]
approximation. The atomic position optimizations (APO) and full
geometry optimizations (FO, atomic positions and cell parameters)
were performed with the ab initio total energy and molecular
dynamics VASP program [63]. The projector augmented-
wave (PAW) [68,69] pseudopotentials used are the followings:
Ta_sv_GW (5s2 5p6 6s2 5d3), Nb_sv_GW (4s2 4p6 5s1 4d4),
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F_GW (2s2 2p5). The self-consistency on electronic density was
obtained with a 600 eV plane wave energy cut-off and a (4�4�6)
shifted Monkhorst–Pack k-point mesh (30 k-points in the irredu-
cible part of the Brillouin zone (IBZ)). Atomic positions were opti-
mized by minimizing the residual Hellmann–Feynman forces on the
atoms down to 0.02 eV/Å. Since van der Waals interactions are not
taken into account on standard DFT-GGA calculations, semi-empirical
vdW corrections of Grimme [62] called DFT-D2 were used. The
followings (C6, R0) atomic parameters were used for the Grimme
correction: Ta (81.24, 1.7721), Nb (24.67, 1.639), F(0.75, 1.287).

DFT calculations of the 19F chemical shielding tensors in NbF5
and TaF5, using the GIPAW method [45,46] and 93Nb EFG in NbF5,
using the PAW approach [68,69] were performed with the NMR-
CASTEP code [59,60] implemented in the Materials Studio
5.0 environment, for the experimental and geometry optimized
structures. The core-valence interactions were described by ultra-
soft pseudopotentials (USPP) [46]. The USPP were generated using
the on the fly generator (OTF_USPP) included in CASTEP. The wave
functions were expanded on a plane-wave basis set with a kinetic
energy cutoff of 700 eV. The Brillouin zone was sampled using a
Monkhorst–Pack grid spacing approximately equal to 0.04 Å�1

(corresponding to a k-point mesh of 4�4�6). These calculations
were done for the ES, APO, APO-vdW, FO and FO-vdW structures
of each compound.

The quadrupolar coupling constants of 93Nb in NbF5 were
calculated using the nuclear quadrupolar moment reported by
Pyykkö: Q (93Nb)¼�0.320(20)�10–28 m2 [70].

4. Results and discussion

TaF5 and NbF5 are isomorphs and crystallize in a monoclinic
cell (space group C2/m, a¼9.62 Å, b¼14.43 Å, c¼5.12 Å and
β¼96.11 for NbF5 [57] (ICSD [71] file no. 26647) and a¼

9.5462 Å, b¼14.3678 Å, c¼5.0174 Å and β¼97.0861 for TaF5 [58]
(ICSD [71] file no. 171155)). They consist of tetrameric structural
units, [M4F20], build up of MF6 octahedra linked to each other by
corners in a cis-configuration (Fig. 1). The structures of both
compounds contain six F crystallographic sites, two sites of multi-
plicity 4 and four sites of multiplicity 8. Fluorine atoms were
inappropriately renumbered in the ICSD file of TaF5; for consis-
tency with NbF5 [57], we adopt in the following the same
numbering as Brewer et al. [58] (see Supporting information).
F4 is then the bridging fluorine atom (Fb) for both compounds while
others are terminal fluorine atoms (Ft). The M–F–M angles are close

to 1801, giving nearly linear bridges and a square arrangement of
the MF6 octahedra (Fig. 1 and Supporting information).

4.1. 19F solid state NMR: Initial partial assignments

More or less resolved multiplets are observed on the 19F 1D
MAS NMR spectrum of NbF5 (Fig. 2). They arise from 1J-coupling
and residual dipolar coupling between the 19F and 93Nb nuclei as
shown by their disappearances on the 19F 1D MAS NMR spectrum
recorded with 93Nb decoupling. We will discuss these couplings in
Section 4.4.

Fig. 1. Perspective views of the tetrameric units of NbF5 (left) and TaF5 (right).

Fig. 2. 19F experimental MAS NMR spectra of NbF5 obtained at a magnetic field of
7 T and a spinning frequency of 32 kHz with (blue) and without (black) 93Nb
decoupling. The best fit of the spectrum recorded with 93Nb decoupling is
represented in red and the individual contributions to the fitted spectrum are
shown below. The stars indicate spinning sidebands, the dashed lines indicate the
positions of the isotropic resonances which are labeled and the arrow indicates an
unidentified impurity. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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For each compound, discrimination between the six expected
isotropic lines and spinning sidebands was achieved by recording
19F NMR spectra at various spinning frequencies. Both spectra
were fitted (Figs. 2 and 3, Tables 1 and 2) and the relative
intensities of the NMR resonances (including spinning sidebands)
are in agreement with the presence of two sites of multiplicity
4 and four sites of multiplicity 8 (expected relative intensities of
10% and 20%, respectively). However, the fitting of the spectrum of
the NbF5 compound, the more hygroscopic among the two, is not
entirely satisfactory and we cannot exclude the presence of
amorphous oxy-hydroxy-fluoride impurities in this sample, in
addition to the unidentified impurity indicated on Fig. 2. The
uncertainties on the δcsa and ηcsa values and consequently on the
relative intensities of the NMR lines are then larger for NbF5
compared to TaF5.

For both spectra, which are similar, according to their relative
intensities, lines 1, 3, 5 and 6 can be assigned to the four sites of
multiplicity 8 (F3–F6) and lines 2 and 4 to the two sites of
multiplicity 4 (F1 and F2). Furthermore, on each spectrum, the
NMR line 1, corresponding to a fluorine site of multiplicity 8, has
an isotropic chemical shift significantly lower than the five others.
It can be straightforwardly assigned to the fluorine site F4 because
for each compound F4 is the only Fb among the six F sites and has
the expected 8 multiplicity. This assignment is supported by
previous liquid 19F NMR studies on M2F11

� and MF6
� (M¼Nb, Ta)

species [72–76], showing that a Fb site has significantly lower
chemical shift than a Ft one. The

19F δiso values of Fb are in the
ranges from �42 ppm to �58 ppm for Nb2F11

� and from
�74 ppm to �81 ppm for Ta2F11

� . On the other hand, the
19F δiso values of Ft in Nb2F11

� are in the ranges 182–193 ppm and
144–160 ppm for the axial (opposite to the Fb) sites and equatorial
(perpendicular to the Fb) ones, respectively. The corresponding
ranges in Ta2F11

� are 115–124 ppm for the axial sites and 70–
72 ppm for the equatorial ones. ForMF6

� species that only contain
Ft, reported

19F δiso values are in the ranges 103–104 ppm and
38–40 ppm for NbF6

� and TaF6
� , respectively. This assignment is

also supported by the 19F δiso values in NbO2F and TaO2F (ReO3

type structure and only one anionic site partially occupied by

O and F) which only contain Fb: �52 ppm [77,78] and �72 ppm
[78], respectively. Moreover, the δcsa values of the NMR lines are
significantly larger for the Ft (Tables 1 and 2) in agreement with
more anisotropic environments for these fluorine atoms (Fig. 1).
This assignment (Tables 1 and 2), which is confirmed by the
GIPAW calculations (see below), is only inconsistent with the
surprising assignments of Köhler et al. [77] for NbOF3 and TaOF3.
Those structure have a SnF4 structural type with sheets of corner
sharing MX6 (X¼O, F) octahedra stacked via vdW interactions.
They gave the following assignment: the 19F NMR lines with the
lowest δiso (�10.4 ppm and �51.5 ppm) and δcsa values to the Ft
and the 19F NMR lines with the highest δiso (196.3 ppm and
124.2 ppm) and δcsa values to the Fb.

4.2. Structural features, effects of geometry optimisation

Geometry optimizations of NbF5 and TaF5 were performed with
the VASP package [63]. Two kinds of optimizations have been
done: either full optimizations (FO) by relaxing both atomic
positions and unit cell parameters or atomic position optimiza-
tions (APO) only while keeping the experimental unit cell para-
meters. In these compounds, vdW interactions are responsible for
the cohesion between [M4F20] units but those interactions are not
taken into account by DFT which is very problematic when DFT
structural optimizations are necessary. Thus, the performance of
the semi-empirical DFT-D2 correction of Grimme [62] was here
evaluated. When it is used in the optimization procedure, this is
explicitly mentioned: namely APO-vdW or FO-vdW. Experimental
[57,58], APO and APO-vdW fractional atomic coordinates are given
as Supporting information.

For the two compounds under study, the full geometry opti-
mizations lead to large deviations of the unit cell volumes with
respect to the experimental ones: a large expansion for FO (E10%)
and a large contraction for FO-vdW (E�10%). For NbF5 (TaF5),
the experimental unit cell volume increases from 706.72 Å3

Fig. 3. 19F experimental MAS NMR spectrum (blue) of TaF5 obtained at a magnetic
field of 7 T and a spinning frequency of 34 kHz. The best fit of this spectrum is
represented in red and the individual contributions to the fitted spectrum are
shown below. The stars indicate spinning sidebands and the dashed lines indicate
the positions of the isotropic resonances which are labeled. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1

Isotropic chemical shift (δiso, ppm), chemical shift anisotropy (δcsa, ppm), asymme-
try parameter of the CSA tensor (ηcsa) and relative intensity (%) of the 19F NMR
resonances in NbF5. The initial partial line assignments deduced from NMR line
relative intensities, 19F δiso and δcsa values and the final line assignments deduced
from siso calculations are given.

Line δiso

(70.5)
Intensity
(72)

δcsa

(730)
ηcsa

(70.2)
Initial
assignment

Final
assignment

1 �42.1 20.0 �110 0.9 F4 F4
2 192.9 11.5 �285 0.1 F1, F2 F2
3 214.8 20.0 �300 0 F3, F5, F6 F5
4 237.8 10.8 �310 0 F1, F2 F1
5 260.0 18.2 �290 0.3 F3, F5, F6 F6
6 268.1 19.5 �410 0.3 F3, F5, F6 F3

Table 2

Isotropic chemical shift (δiso, ppm), chemical shift anisotropy (δcsa, ppm), asymme-
try parameter of the CSA tensor (ηcsa) and relative intensity (%) of the 19F NMR
resonances in TaF5. The initial partial line assignments deduced from NMR line
relative intensities, 19F δiso and δcsa values and the final line assignments deduced
from siso calculations are given.

Line δiso

(70.5)
Intensity
(71)

δcsa

(720)
ηcsa

(70.1)
Initial
assignment

Final
assignment

1 �70.5 19.1 90 0.4 F4 F4
2 106.3 11.2 �277 0 F1, F2 F2
3 121.6 21.0 �277 0.1 F3, F5, F6 F5
4 135.8 9.6 �289 0.1 F1, F2 F1
5 166.9 19.3 �325 0.5 F3, F5, F6 F6
6 173.8 19.8 �350 0.5 F3, F5, F6 F3
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(682.92 Å3) to 777.92 Å3 (753.00 Å3) with FO and decreases to
659.34 Å3 (613.86 Å3) with FO-vdW. Nevertheless, the structural
features of the [M4F20] units are very similar whatever the used
optimization procedure (APO, APO-vdW, FO, or FO-vdW). Effec-
tively, the M–F bond lengths are very stable from one optimized
structure to another (1.935 År〈Nb1–F〉r1.939 Å, 1.936 År〈Nb2–F〉
r1.941 Å, 1.934 År〈Ta1–F〉r1.942 Å, and 1.935 År〈Ta2–F〉
r1.943 Å) with all the time the same ranking (M2–F3oM1–
F6oM2–F1oM1–F5oM2–F2oM1–F4oM2–F4). The APO and
APO-vdW distances are reported in Table 3 for NbF5 and Table 4
for TaF5. As mentioned above, semi-empirical DFT-D2 corrections
have the most noticeable effect on the fully optimized structures,
avoiding large increase of unit cell volumes (i.e. large increase of
distances between [M4F20] units) for FO structures, but leading to
unrealistic small unit cell volume for FO-vdW structures. As the
DFT-D2 approach overcorrects the problem of volume expansion
related to the bad description of the vdW interactions with DFT,
neither FO nor FO-vdW structures will be considered in the
following. The shortcomings of this approach are meaningless
for APO-vdW structures (for which the unit cell volumes are fixed)
since inside the [M4F20] units the M–F distances are enforced by
the strongest M–F covalent interactions.

Focussing now on the relaxation effects with respect to the
experimental structures (Tables 3 and 4), named ES in the
following, significant evolutions of the distances are observed on
the [M4F20] units, especially for the NbF5 compound. The TaF5
compound is effectively more weakly affected by the relaxation
with only a small increasing of all the Ta–F bond lengths (less than 3%).
The ordering of the Ta–F bond lengths is also maintained except a
slight inversion between Ta1–F4 and Ta2–F4. On the contrary, for
the NbF5 compound, the increase of the M–F bond lengths is more
pronounced (up to 6.5%) with large displacements of the fluorine
atoms (between 0.10 Å and 0.15 Å, see Tables S2 and S3 in

Supplementary material) and the ordering of the Nb–F bond
lengths is not maintained (only Nb1–F4 and Nb2–F4 bond lengths
are in the same order before and after atomic position optimiza-
tion). However, for both the compounds, the relaxation step leads
to a smaller dispersion of the M–F bond lengths in the MF6
octahedra and very comparable 〈M�F〉 bond lengths between
TaF5 and NbF5 (Tables 3 and 4). Those evolutions can reasonably
well be attributed to the intrinsic overestimation of interatomic
distances by the PBE-GGA [67] in the case of TaF5 but the lack of
accuracy of the experimental structural data has to be invoked in
the case of NbF5. Indeed, the structures of both the compounds
were determined by Edwards [57] on single crystals but the
structure of TaF5 has been re-evaluated, in 2006, by Brewer et al.
[58] who show that the initial crystallographic determination was
inaccurate. In particular, the 〈Ta–Ft〉 bond length is equal to 1.840 Å
(Table 4) and the Ta1–F4–Ta2 angle is equal to 172.91 [58] (see
Supplementary material) compared to 1.779 Å and 176.71 in the
initial work [57]. The re-evaluation of the structure of TaF5 then
led to larger Ta–Ft bond lengths, ranging now from 1.80 Å to 1.88 Å
(Table 4), in fine agreement with Ta–Ft bond lengths in (ClF2)(TaF6)
(1.82 Å and 1.88 Å) [79], Ag(TaF6)2 (from 1.82 Å to 1.87 Å) [80] and
Cd(BF4)(TaF6) (1.85 Å) [81]. The re-evaluation of the structure of
NbF5 remains to be done but the Nb–Ft bond lengths, ranging from
1.75 Å to 1.80 Å, are clearly too short compared to Nb–Ft bond
lengths in (ClF2)(NbF6) (1.85 Å and 1.86 Å) [79], (XeF5)(NbF6)
(1.84 Å and 1.85 Å) [82], NbSbF10 (from 1.79 Å to 1.83 Å) [83] and
SeNb2F14 (from 1.78 Å to 1.86 Å) [84].

The effects of optimization on F–M–F and M–Fb–M angles (see
Supplementary material) are small for TaF5. The angular distor-
tions α¼ ð1=12Þ∑n

i ¼ 1jαi�901j and β¼ ð1=3ÞΣn
i ¼ 1jβi�1801j, with

αi the twelve angles between two adjacent M–F bonds and βi the
three angles between two opposite M–F bonds, are only slightly
reduced (ES: α¼5.11 and 5.81, β¼10.21 and 10.71; APO-vdw:
α¼4.91 and 5.11, β¼10.11 and 10.61; APO: α¼4.81 and 5.31;
β¼9.91 and 10.91). For NbF5, the evolutions of those angles are
found to be more pronounced due to the inaccuracy of the
experimental structure (ES: α¼5.11 and 3.61, β¼9.11 and 7.61;
APO-vdw: α¼5.01 and 5.31, β¼9.91 and 10.71; APO: α¼5.11 and
5.41; β¼9.81 and 10.81). The value of the Nb1-F4-Nb2 angle
decreases from 176.71 for ES to 173.51 or 173.81 for the APO-vdW
or APO structures, respectively, and is now close to the equivalent
angle in TaF5. This is another evidence of the inaccuracy of the
experimental structure of NbF5.

Two distinct sets of M–Ft bond are observed in NbF5 and TaF5
(Fig. 1). The M–Ft bonds within the plane containing the M atoms and
their bridging F atoms, M2–F3 and M1–F6, could be termed as
equatorial while the M–Ft bonds perpendicular to this plane, M2–F1,
M2–F2 and M1–F5, could be termed as axial [58,85]. However, these
terms are potentially misleading in the context of this paper since
axial (equatorial) F are opposite (perpendicular) to the M–Fb bond in
M2F11

� units and perpendicular (opposite) to both M–Fb bond in
[M4F20] units. The terms opposite (M–Ft,opp) and perpendicular (M–Ft,
per) are then used to distinguish the M–Ft bonds in the following. The
M–Ft,opp (M2–F3 and M1–F6) bonds are shorter than the M–Ft,per
(M2–F1, M2–F2 and M1–F5) bonds, except for the ES of NbF5, in
relation with its inaccuracy. Shorter M–Ft,opp bonds also occur in RuF5
[85] which adopts a different structural type but contains similar
tetrameric [M4F20] units. The observed shortening of the trans set of
terminal M–F bond lengths is due to the contraction toward the M
atom of the electron clouds proximate to the M atom and in the same
plane as the M atom and its bridging F ligands. This trans electrostatic
effect is explained by the fact that the bridging F ligands are more
electron rich than their non-bridging counterparts [85]. This is a kind
of polarization mechanismwhere a more ionic and longer M–Fb bond
of the MF6 octahedron induces a more covalent and shorter M–Ft,opp
in the opposite direction (see Section 4.3).

Table 3

Nb–F and average (in italic) Nb–Ft and Nb–F bond lengths (Å) from ES, APO-vdW
and APO structures of NbF5.

ES APO-vdW APO

Nb1 F5 2x 1.778 1.873 1.871
F6 2x 1.803 1.847 1.846
F4 2x 2.064 2.090 2.091

〈Nb1–Ft〉 1.790 1.860 1.859

〈Nb1–F〉 1.882 1.937 1.936

Nb2 F1 1x 1.752 1.866 1.863
F3 2x 1.778 1.845 1.844
F2 1x 1.784 1.882 1.881
F4 2x 2.073 2.096 2.097

〈Nb2–Ft〉 1.773 1.859 1.858

〈Nb2–F〉 1.873 1.938 1.938

Table 4

Ta–F and average (in italic) Ta–Ft and Ta–F bond lengths (Å) from ES, APO-vdW and
APO structures for TaF5.

ES APO-vdW APO

Ta1 F6 2x 1.840 1.852 1.850
F5 2x 1.857 1.882 1.880
F4 2x 2.074 2.081 2.085

〈Ta1–Ft〉 1.848 1.867 1.865

〈Ta1–F〉 1.923 1.939 1.938

Ta2 F3 2x 1.797 1.850 1.847
F1 1x 1.852 1.878 1.873
F2 1x 1.879 1.900 1.888
F4 2x 2.058 2.084 2.090

〈Ta2–Ft〉 1.831 1.867 1.864

〈Ta2–F〉 1.907 1.939 1.939
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4.3. GIPAW calculations of the 19F chemical shielding tensors:

Complete and unique assignment and chemical bond analysis

In order to complete the initial partial assignments (see Section
4.1), the 19F chemical shielding tensors have been calculated using
the GIPAW method [45,46] implemented in the NMR-CASTEP code
[59,60]. As expected, the experimental and APO/APO-vdW struc-
tures provide dissimilar 19F siso values (Tables 5 and 6), especially
for NbF5 (up to 80 ppm), while 19F siso values calculated from APO
and APO-vdW structures are nearly identical (differences up to
4 ppm but most often lower than 1 ppm). This is in agreement
with the structural differences and similarities described pre-
viously (see Section 4.2). As already noted, the full optimized
structures are not considered in this part but the reader should be
aware that, due to the similarities of the [M4F20] units, the
19F chemical shielding tensors calculated from the FO and
FO-vdW structures are similar to those calculated from the APO
and APO-vdW structures.

To assign the 19F resonances to the fluorine crystallographic
sites, the NMR lines are ranked in increasing order of experimental
δiso values and F atoms are ranked in decreasing order of calculated
siso values. Except for the ES of NbF5, the fine agreement obtained
between the relative intensities of the NMR lines (2, 1, 2, 1, 2, 2) and
the multiplicities (8, 4, 8, 4, 8, 8) of the F atoms (Tables 1, 2, 5 and 6)
allow us to propose complete assignments. The inaccuracy of the
experimental structure of NbF5 leads to a disagreement between the
multiplicities (8, 4, 4, 8, 8, 8) of the F atoms (F4, F2, F1, F5, F3, F6) and
the relative intensities of the NMR lines. The achieved assignments
are not exactly identical for the experimental and atomic position
optimized structures since, for both compounds, F3 and F6 atoms,
which have the same multiplicity, are reversed in the sequence
of calculated siso values from ES (siso(F3)4siso(F6)) and APO or
APO-vdW (siso(F6)4siso(F3)) structures.

Except for the GIPAW calculations achieved with the experi-
mental structure of NbF5, very good linear correlations are
observed between the calculated 19F siso values and the experi-
mental 19F δiso values (Figs. 4 and 5). The coefficients of determi-
nation, R2, are better for APO and APO-vdW structures than for the
experimental ones, even for TaF5. As the linearity between

Table 5

Experimental (exp.) 19F δiso (ppm), δcsa (ppm) and ηcsa and calculated (calc.) 19F siso

(ppm), δiso (ppm), scsa (ppm) and ηcsa from the ES, APO and APO-vdw structures of
NbF5. The calculated 19F δiso values were deduced from the relationships
δiso¼�1.107 sisoþ158.6, δiso¼�1.028 sisoþ100.4 and δiso¼�1.027 sisoþ100.3 for
the ES, APO and APO-vdw structures, respectively.

F site siso δiso δcsa/scsa ηcsa

F1 exp. 237.8 �310 0.0
calc. ES �49.7 213.6 321.3 0.11
calc. APO �131.5 235.6 382.4 0.01
calc. APO-vdW �129.7 233.5 383.7 0.03

F2 exp. 192.9 �285 0.1
calc. ES �35.4 197.8 332.7 0.10
calc. APO �89.7 192.6 349.9 0.00
calc. APO-vdW �90.2 192.9 350.6 0.03

F3 exp. 268.1 �410 0.3
calc. ES �94.2 262.9a 338.6a 0.62a

calc. APO �163.9 268.9 409.8 0.35
calc. APO-vdW �165.1 269.9 410.3 0.36

F4 exp. �42.1 �110 0.9
calc. ES 180.2 �40.9 �119.2 0.79
calc. APO 138.4 �41.9 �130.3 0.96
calc. APO-vdW 138.2 �41.6 129.3 0.97

F5 exp. 214.8 �300 0.0
calc. ES �64.0 229.4 338.6 0.10
calc. APO �111.3 214.8 369.8 0.04
calc. APO-vdW �111.2 214.5 370.9 0.03

F6 exp. 260.0 �290 0.3
calc. ES �99.6 268.9a 348.1a 0.58a

calc. APO �156.8 261.6 400.4 0.37
calc. APO-vdW �158.1 262.7 401.5 0.38

a For the ES structure, the assignment of F3 and F6 fluorine atoms to the NMR
lines L6 and L5 must be reversed.

Fig. 4. Calculated 19F siso values versus experimental 19F δiso values for NbF5. The
green circles, the black diamonds and the red plus represent the calculated values
from ES, APO-vdW and APO structures, respectively. The dash green line, the solid
black line and the dash red line represent the linear regressions when considering
the calculated values from ES, APO-vdW and APO structures, respectively. Their
equations are given in green, black and red, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 6

Experimental (exp.) 19F δiso (ppm), δcsa (ppm) and ηcsa and calculated (calc.) 19F siso

(ppm), δiso (ppm), scsa (ppm) and ηcsa from the ES, APO and APO-vdw structures of
TaF5. The calculated 19F δiso values were deduced from the relationships
δiso¼�0.803 sisoþ101.6, δiso¼�0.777 sisoþ86.2 and δiso¼�0.778 sisoþ86.0 for
the ES, APO and APO-vdw structures, respectively.

F site siso δiso δcsa/scsa ηcsa

F1 exp. 135.8 �289 0.1
calc. ES �43.4 136.5 273.6 0.01
calc. APO �62.9 135.1 298.2 0.05
calc. APO-vdW �58.8 131.7 297.7 0.03

F2 exp. 106.3 �277 0
calc. ES 10.1 93.5 235.6 0.03
calc. APO �22.5 103.7 266.5 0.08
calc. APO-vdW �23.1 104.0 267.2 0.04

F3 exp. 173.8 �350 0.5
calc. ES �86.2 170.8a 323.3a 0.26a

calc. APO �115.0 175.5 347.5 0.35
calc. APO-vdW �115.9 176.2 347.7 0.36

F4 exp. �70.5 90 0.4
calc. ES 210.5 �67.4 �74.5 0.25
calc. APO 199.8 �69.0 �84.7 0.39
calc. APO-vdW 198.9 �68.7 �82.7 0.44

F5 exp. 121.6 �277 0.1
calc. ES �31.4 126.8 276.0 0.07
calc. APO �41.7 118.6 286.4 0.08
calc. APO-vdW �43.6 119.9 287.6 0.07

F6 exp. 166.9 �325 0.5
calc. ES �89.5 173.5a 321.5a 0.44a

calc. APO �107.8 169.9 337.4 0.40
calc. APO-vdW �109.3 171.0 339.3 0.39

a For the ES structure, the assignment of F3 and F6 fluorine atoms to the NMR
lines L6 and L5 must be reversed.
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experimental 19F δiso values and calculated 19F siso values ensures
spectral assignments, we retain the assignments achieved from
the atomic position optimized structures. The “calculated” 19F δiso
values (Tables 5 and 6) are obtained by using, for each structure,
the linear regression established between GIPAW calculated
19F siso values and experimental 19F δiso values. The agreement
between experimental and “calculated” 19F δiso values is, obviously,
very good. The slopes obtained from APO and APO-vdW structures
of NbF5 (Fig. 4) are close to �1, i.e., the theoretical expected value,
whereas those obtained from APO and APO-vdW structures of TaF5
(Fig. 5) are equal to �0.777 and �0.778. The linear regression
obtained for TaF5 is however very close to the one established on
numerous binary fluoride compounds (δiso¼�0.80(3) sisoþ89(9))
[50], correlation which has been successfully applied for predic-
tion of 19F δiso values of various compounds such as RbLaF4 [22],
α-LaZr2F11 [27] and NaAsF6 [52]. Thus, for TaF5, this more general
linear regression can also be used to predict the “calculated” δiso
values with a good accuracy. Nevertheless, this study unfortu-
nately shows that this linear regression cannot be systematically
used and confirms the difficulty to predict “calculated” δiso values
from PBE-DFT calculations since excellent but dissimilar correla-
tions are established for each compound.

In the previous section, the M–Ft bonds have been discrimi-
nated as opposite (M–Ft,opp, F3 and F6) and perpendicular (M–Ft,per,
F1, F2 and F5) to M–Fb bonds. The 19F δiso values of the Ft,opp are
larger than the 19F δiso values of the Ft,per. This is in agreement with
larger 19F δiso values for the axial Ft (opposite to Fb) in the Nb2F11

�

and Ta2F11
� anions (see Section 4.1) [72–76]. Then in [M4F20] units

and M2F11
� anions, the Ft atoms opposite to the M–Fb bonds have

weaker shieldings. This is supported by the absolute values of the
fluorine Mulliken charges which are in the sequence Fb4Ft,perZ
Ft,opp and the M–F bond overlap populations which are in the
sequence M–FboM–Ft,perrM–Ft,opp, in NbF5 and TaF5, for experi-
mental and atomic position optimized structures (see Supplemen-
tary material). Except for the experimental structure of NbF5, the
M–Ft bonds opposite to the M–Fb bonds are shorter than the M–Ft
bonds perpendicular to the M–Fb bonds in the [M4F20] units (Tables 3
and 4). This is also the case in the M2F11

� anions (Nb–Fb¼2.092–
2.103 Å, Nb–Ft,opp¼1.862–1.875 Å, Nb–Ft,per¼1.895–1.898 Å [86];
Ta–Fb¼2.066 Å, Ta–Ft,opp¼1.855 Å, Ta–Ft,per¼1.877 Å [87]). Moreover,

for NbF5 and TaF5, good linear correlations are observed between the
experimental 19F δiso values (or the calculated 19F siso values) of Ft
atoms and the optimized Ft–M bond lengths (see Supplementary
material). But the 19F δiso values (or the

19F siso values) of Ft atoms and
Ft–M bond lengths both result from their positions compared to the
more ionic and longer Fb–M bonds, the Ft atoms in opposite position
being less negatively charged and then less shielded. The calculation
done on the experimental structure of NbF5 shows unambiguously
that the Ft–M bond lengths is a consequence since, for this structure,
the shortest bond lengths do not correspond to the Nb–Ft,opp bonds
whereas the lowest 19F siso values are observed to the Ft,opp atoms (F3
and F6, Tables 3 and 5).

For APO and APO-vdW structures of TaF5, the experimental δcsa
values and the calculated scsa values (Table 6) are, as expected,
in inverse order. These values not only allow, as outlined in
Section 4.1, to differentiate the Fb and the Ft atoms but also, to
differentiate the Ft,opp atoms and the Ft,per atoms. Moreover, a nice
agreement is obtained between the experimental δcsa absolute
values and the calculated scsa values (Table 6). Such agreement
obtained without applying any scaling factor, whereas the slope of
the linear regression determined from the calculated 19F siso values
and the experimental 19F δiso values deviates from �1, is some-
what surprising. The agreement between experimental and calcu-
lated ηcsa values is satisfactory, considering the lower accuracy of
the experimental values and the difficulty to accurately reproduce
this parameter due to its intrinsic definition. Owing to inaccurate
experimental values (see Section 4.1), the agreement between the
experimental δcsa absolute values and the calculated scsa values is
not so good for NbF5 (Table 5). Nonetheless, the calculated scsa

values seem to be overestimated and a scaling factor around �0.8
would be necessary to reproduce the experimental δcsa values
whereas the slope of the linear regression determined from the
calculated 19F siso values and the experimental 19F δiso values is
found close to �1. One can note that for F4, due to similar
jszz�sisoj and jsxx�sisoj values, the sign of scsa is not the same for
APO and APO-vdW structures and is then uncertain (Table 5).

4.4. 93Nb quadrupolar parameters and 93Nb–19F 1J-coupling in NbF5

The calculated 93Nb quadrupolar parameters in NbF5 for ES,
APO and APO-vdW structures, are gathered in Table 7. The
agreement is satisfying between calculated values from APO or
APO-vdW structures and previously determined values from
nuclear quadrupole resonance by Fuggle et al. [88] (CQ¼
115.8 MHz, ηQ¼0.13 and CQ¼114.3 MHz, ηQ¼0.17) and by Segel
[89] (CQ¼115.5 MHz, ηQ¼0.13 and CQ¼114.1 MHz, ηQ¼0.17). This
confirms the inaccuracy of the experimental structure and the
efficiency of the atomic position optimizations. The closeness of
the CQ and ηQ values determined and calculated for both the sites
prevents any assignment.

The distorted multiplet patterns observed for lines 2 (F2), 3 (F5)
and 4 (F1) in the 19F NMR spectrum of NbF5 recorded without
decoupling indicates the occurrence of 1J-coupling between 93Nb
and 19F (Figs. 2 and 6). Since F2, F5 and F1 atoms are bonded to one
neighbouring niobium atom and since 93Nb is a spin 9/2 nucleus,
10 peaks should be observed. The peaks are not so numerous

Fig. 5. Calculated 19F siso values versus experimental 19F δiso values for TaF5. The
green circles, the black diamonds and the red plus represent the calculated values
from ES, APO-vdW and APO structures, respectively. The dash green line, the solid
black line and the dash red line represent the linear regressions when considering
the calculated values from ES, APO-vdW and APO structures, respectively. Their
equations are given in green, black and red, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 7

Calculated CQ (MHz) and ηQ values from the ES, APO and APO-vdw structures of
NbF5.

ES APO APO-vdW

Nb1 CQ 174.1 103.0 102.6
ηQ 0.29 0.17 0.18

Nb2 CQ 193.4 101.6 102.0
ηQ 0.12 0.19 0.24
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and not evenly spaced, due to effective dipolar coupling which
induces shifts and broadening. In the present case where
CQ=ð4Sð2S�1ÞÞ5ν0S (ν0S being the Larmor frequency of the quad-
rupolar nucleus S), the frequency shifts of the multiplet compo-
nents can be calculated using the first order perturbation
treatment [90] implemented in Wsolids1 software [66]. The
effective dipolar coupling constant, D′, depends on the dipolar
coupling constant D and on the J-coupling anisotropy, ΔJ, accord-
ing to D′¼D�ΔJ=3 and assuming axially symmetric J-tensor with
its unique axis directed along the bond vector, i.e., collinear with
the dipolar tensor. The parameters used for the reconstructions of
the multiplets (Fig. 6) are gathered in Table 8. The J-coupling
anisotropy and the azimuthal angle of the dipolar vector with
respect to the EFG tensor, αD, have no observable effects on the 19F

spectra. The ηQ values are difficult to determine precisely, having
slight effect on the 19F spectra. These values have then been fixed
equal to 0.2, close to the determined and calculated ones (Table 7).
The 93Nb CQ values, 105 MHz for Nb1 bonded to F5 and 115 MHz
for Nb2 bonded to F1 and F2 (Fig. 1), are in good agreement with
the calculated and previously determined values (Table 7). The
effective dipolar coupling constants D′ are, since DbΔJ=3 , of the
same magnitude as the dipolar coupling constants D calculated
from the following formula D¼ ðμ0γI γs ℏ=8π

2Þr�3
IS , with γI and γS

the gyromagnetic ratios of the I and S nuclei, respectively, and rIS
the distances between these nuclei; using the Nb–F bond lengths
from APO structures, the D values range from 4100 to 4300 Hz. The
experimental 93Nb–19F 1J-coupling values (Table 8) are similar to
reported values, for terminal fluorine atoms, from solution NMR
experiments on NbF5.2(CH3)2SO (335 Hz, five-coordinated Nb)
[91] and NbF6

� (from 305 Hz to 345 Hz, six-coordinated Nb)
[73–75,92,93] as well as from solid state NMR experiments on
Cdpy4NbOF5 (362 Hz, six-coordinated Nb) [94] and [pyH]2
Cdpy4(NbOF5)2] (350 Hz, six-coordinated Nb) [94]. The experi-
mental 93Nb–19F 1J-coupling values are also similar to reported
values for non-bridging fluorine atoms bonded to six-coordinated
niobium atoms in CsNbF6 (344 Hz) [95]. As expected, they are
larger than the reported value in K2NbF7 (204 Hz) [96] where Nb is
in a heptacoordinate (capped trigonal prism) arrangement.

For the lines 5 and 6 of the 19F NMR spectrum of NbF5 recorded
without decoupling (Fig. 2), assigned to Ft,opp atoms, the multiplets
are not sufficiently resolved, due to their overlapping, to enable
confident reconstruction. For the line 1, assigned to Fb (F4), the
occurrence of 1J-coupling between 93Nb and 19F, results in an
asymmetric line shape but no resolved multiplet. The 1J-coupling
between the Fb and Nb atoms must be smaller, resulting from the
longer Nb–Fb bond in comparison to the Nb–Ft bonds.

5. Conclusions

The 19F δiso values in NbF5 and TaF5 are determined from the
reconstruction of 1D 19F MAS NMR spectra. An initial partial
assignment is achieved, based on NMR line relative intensities
and δiso values previously determined in several compounds
containing also bridging and terminal fluorine atoms bonded to
Nb and Ta atoms.

The atomic position optimizations and full geometry optimiza-
tions were performed using the VASP package [63] with and
without vdW corrections (i.e. with and without using the semi-
empirical DFT-D2 approach [62]). Even if the structural features of
the [M4F20] units are similar for all the optimized structures, the
structures obtained after full geometry optimizations result in
unrealistic unit cell volumes and are not further discussed. The
shortcomings of this approach are meaningless for APO-vdW
structures since inside the [M4F20] units the M–F distances are
enforced by the strongest M–F covalent interactions.

The 19F chemical shielding tensors have been calculated using
the GIPAW method [45,46] implemented in the NMR-CASTEP code
[59,60]. The experimental and atomic position optimized struc-
tures provide dissimilar 19F siso values, especially for NbF5, while
19F siso values calculated from APO and APO-vdW structures are
nearly identical. The fine agreement obtained, from APO and APO-
vdW structures, between the relative intensities of the NMR lines
ranked in increasing order of experimental δiso values and the
multiplicities of the F atoms ranked in decreasing order of
calculated siso values allows us to propose complete assignments
of the 19F resonances to the fluorine crystallographic sites. Very
good linear correlations are observed between the experimental
19F δiso values and the calculated 19F siso values, ensuring that the
spectral assignments are done convincingly. The slopes obtained

Fig. 6. Experimental (black) and simulated (red) 19F NMR lines 2, 3 and 4 of NbF5
(magnetic field of 7 T, spinning frequency of 32 kHz, recorded without 93Nb
decoupling) showing 19F–93Nb J-coupling for the three fluorine sites F2, F5 and
F1, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 8

Simulation results of the 19F NMR line 2, 3 and 4 of NbF5:
19F–93Nb 1J-coupling (Hz),

dipolar/quadrupolar cross term D′ (Hz), 19F δiso (ppm), 93Nb CQ (MHz) and ηQ, and
polar angle β

D (1) of the dipolar tensor in the principal axes system of the EFG
tensor.

Line (F site) 1J (75) D′ (7100) δiso (70.5) CQ (75) ηQ (70.2) β
D (75)

2 (F2) 350 4400 189.8 115 0.2 15
3 (F5) 355 4100 212.0 105 0.2 5
4 (F1) 350 4300 234.8 115 0.2 15
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from APO and APO-vdW structures are close to of �1 for NbF5,
i.e., the theoretical expected value, and �0.78 for TaF5, a slope similar
to those of the linear regression established on numerous binary
fluoride compounds [50] and successfully applied [22,27,52] since
then. This study unfortunately confirms the difficulty to predict
calculated δiso values from PBE-DFT calculations since excellent but
dissimilar correlations are established for each compound.

The absolute values of the fluorine Mulliken charges are in the
sequence Fb4Ft,perZFt,opp and the M–F bond populations are in
the sequence M–FboM–Ft,perrM–Ft,opp. Consequently, the M–Ft
bonds opposite to the M–Fb bonds are shorter than the M–Ft bonds
perpendicular to the M–Fb bonds and the Ft atoms opposite to the
M–Fb bonds have larger 19F δiso values, i.e., weaker shieldings. The
19F δiso values (or the 19F siso values) of Ft atoms and Ft–M bond
lengths then result from their positions compared to the more
ionic and longer Fb–M bonds.

The calculated 93Nb quadrupolar parameters for APO and APO-
vdW structures of NbF5 are in agreement with previously deter-
mined values [88,89] but the closeness of the CQ and ηQ values
determined and calculated for both the sites prevents any assign-
ment. For three lines of the 19F NMR spectrum of NbF5 recorded
without decoupling, the effective dipolar coupling constant, the
93Nb–19F 1J-coupling and the 93Nb CQ values have been deter-
mined. The 93Nb–19F 1J-coupling values are similar to previously
reported values for non-bridging fluorine atoms bonded to six-
coordinated niobium atoms and the 93Nb CQ values are in good
agreement with the calculated and previously determined values.

To conclude, this study shows the strong potential of GIPAW
calculations for assignment of 19F NMR spectra of crystalline
fluoride compounds having multiple crystallographic sites but
also for their structural and electronic characterizations.
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Table S1. Experimental fractional atomic coordinates (x, y, z) for NbF5 [1]. 

 
site x y z 

Nb1 4g 0 0.201 0 

Nb2 4i 0.260 0 0.743 

F1 4i 0.148 0 0.450 

F2 4i 0.345 0 0.070 

F3 8j 0.360 0.092 0.627 

F4 8j 0.125 0.098 0.871 

F5 8j 0.108 0.184 0.300 

F6 8j 0.118 0.282 0.871 

 

Table S2. APO-vdW fractional atomic coordinates (x’, y’, z’) and corresponding atomic displacements 
d’(Å) for NbF5. 

 
site x' y' z' d’ 

Nb1 4g 0 0.20411 0 0.045 

Nb2 4i 0.26088 0 0.73935 0.021 

F1 4i 0.13308 0 0.43851 0.149 

F2 4i 0.34160 0 0.09070 0.114 

F3 8j 0.36907 0.09674 0.63983 0.124 

F4 8j 0.12279 0.09641 0.87689 0.045 

F5 8j 0.10684 0.18605 0.32370 0.127 

F6 8j 0.12086 0.28851 0.87404 0.099 

 

Table S3. APO fractional atomic coordinates (x”, y”, z”) and corresponding atomic displacements d”(Å) 
for NbF5. 

 
site x” y" z" d" 

Nb1 4g 0 0.20356 0 0.037 

Nb2 4i 0.26151 0 0.73707 0.035 

F1 4i 0.13242 0 0.43882 0.155 

F2 4i 0.34134 0 0.08874 0.106 

F3 8j 0.36958 0.09628 0.63506 0.115 

F4 8j 0.12336 0.09638 0.87490 0.036 

F5 8j 0.10829 0.18476 0.32137 0.110 

F6 8j 0.11897 0.28831 0.87040 0.092 

 

 

 

 

130



3 
 

Table S4. Experimental fractional atomic coordinates (x, y, z) for TaF5 [2]. 

 
site x y z 

Ta1 4h 0 0.20237 1/2 

Ta2 4i 0.25891 0 0.24359 

F1 4i 0.1299 0 -0.064 

F2 4i 0.3372 0 0.606 

F3 8j 0.3636 0.0955 0.148 

F4 8j 0.1210 0.0945 0.3761 

F5 8j 0.1098 0.1844 0.828 

F6 8j 0.1209 0.2864 0.372 

 

Table S5. APO-vdW fractional atomic coordinates (x’, y’, z’) and corresponding atomic displacements 
d’(Å) for TaF5. 

 
site x' y' z' d’ 

Ta1 4h 0 0.20441 0.5 0.029 

Ta2 4i 0.26021 0 0.24135 0.018 

F1 4i 0.13061 0 -0.07229 0.043 

F2 4i 0.34434 0 0.60262 0.072 

F3 8j 0.3697 0.09736 0.14285 0.072 

F4 8j 0.12137 0.90442 0.37869 0.020 

F5 8j 0.10985 0.18677 0.83424 0.046 

F6 8j 0.12179 0.28954 0.37382 0.047 

 

Table S6. APO fractional atomic coordinates (x”, y”, z”) and corresponding atomic displacements d”(Å) 
for TaF5. 

 
site x” y" z" d" 

Ta1 4h 0 0.20467 0.5 0.033 

Ta2 4i 0.26177 0 0.24202 0.029 

F1 4i 0.13114 0 -0.06881 0.028 

F2 4i 0.34398 0 0.60403 0.067 

F3 8j 0.37109 0.09707 0.14231 0.083 

F4 8j 0.12225 0.09604 0.37832 0.027 

F5 8j 0.11134 0.18728 0.83223 0.048 

F6 8j 0.1202 0.2897 0.36954 0.049 
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Table S7. F-Nb-F and Nb-F-Nb angles (˚) from ES [1], APO-vdW and APO structures for NbF5. 

 
ES APO-vdW APO 

F4-Nb1-F4 87.9 83.9 84.6 

F6-Nb1-F6 99.2 97.5 97.0 

F6-Nb1-F4 86.5 89.3 89.2 

F5-Nb1-F6 94.2 95.4 95.9 

F5-Nb1-F6 96.1 95.1 95.1 

F5-Nb1-F4 82.5 83.6 83.2 

F5-Nb1-F4 86.0 84.5 84.5 

F5-Nb1-F5 164.1 164.0 163.3 

F6-Nb1-F4 174.3 173.2 173.7 

F4-Nb2-F4 86.0 83.2 83.1 

F3-Nb2-F3 96.6 98.3 97.8 

F3-Nb2-F4 88.6 89.2 89.5 

F1-Nb2-F3 91.1 96.5 96.6 

F2-Nb2-F3 95.9 94.4 94.9 

F1-Nb2-F4 85.5 83.8 83.4 

F2-Nb2-F4 86.8 83.7 83.5 

F1-Nb2-F2 169.4 163.3 162.4 

F3-Nb2-F4 173.9 172.3 172.6 

Nb1-F4-Nb2 176.7 173.5 173.8 

 

 

  

132



5 
 

Table S8. F-Ta-F and Ta-F-Ta angles (˚) from ES [2], APO-vdW and APO structures of TaF5. 

 
ES APO-vdW APO 

F6-Ta1-F6 98.0 97.3 97.4 

F6-Ta1-F5 95.2 95.1 95.4 

F6-Ta1-F5 95.3 95.1 94.7 

F5-Ta1-F4 84.5 84.7 85.2 

F6-Ta1-F4 89.4 90.0 89.8 

F5-Ta1-F4 83.5 83.7 83.4 

F4-Ta1-F4 83.3 82.6 83.1 

F5-Ta1-F5 164.0 164.5 164.7 

F6-Ta1-F4 172.6 172.6 172.7 

F3-Ta2-F3 99.5 98.3 98.0 

F3-Ta2-F1 96.4 96.4 96.6 

F3-Ta2-F2 95.2 94.0 94.5 

F3-Ta2-F4 88.9 89.6 89.7 

F1-Ta2-F4 83.3 84.1 83.5 

F2-Ta2-F4 83.2 84.0 83.8 

F4-Ta2-F4 82.6 82.4 82.6 

F1-Ta2-F2 162.0 164.1 163.0 

F3-Ta2-F4 171.5 172.0 172.2 

Ta2-F4-Ta1 172.9 172.5 172.8 
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Table S9. 
19F σiso (ppm), F Mulliken charge (e), Nb-F bond population (e) and Nb-F bond length (Å) from 

ES of NbF5. 

F σiso charge Nb-F bond population Nb-F bond length 

F3 -94.2 -0.39 0.32 1.778 

F6 -99.6 -0.41 0.33 1.803 

F1 -49.7 -0.41 0.27 1.752 

F5 -64.0 -0.41 0.29 1.778 

F2 -35.4 -0.43 0.29 1.783 

F4 180.2 -0.51 
0.19 2.064 

0.19 2.073 

 

Table S10. 
19F σiso (ppm), F Mulliken charge (e), Nb-F bond population (e) and Nb-F bond length (Å) from 

APO structure of NbF5. 

 
σiso charge Nb-F bond population Nb-F bond length 

F3 -163.9 -0.39 0.36 1.844 

F6 -156.8 -0.4 0.36 1.846 

F1 -131.5 -0.42 0.34 1.863 

F5 -111.3 -0.42 0.34 1.871 

F2 -89.7 -0.43 0.36 1.881 

F4 138.4 -0.5 
0.2 2.091 

0.2 2.097 

 

Table S11. 
19F σiso (ppm), F Mulliken charge (e), Nb-F bond population (e) and Nb-F bond length (Å) from 

APO-vdW structure of NbF5. 

 
σiso charge Nb-F bond population Nb-F bond length 

F3 -165.1 -0.39 0.36 1.845 

F6 -158.1 -0.4 0.36 1.847 

F1 -129.7 -0.42 0.34 1.866 

F5 -111.2 -0.42 0.35 1.873 

F2 -90.2 -0.43 0.36 1.882 

F4 138.2 -0.49 
0.2 2.090 

0.2 2.096 
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Table S12. 
19F σiso (ppm), F Mulliken charge (e), Ta-F bond population (e) and Ta-F bond length (Å) from 

ES of TaF5. 

 
σiso charge Ta-F bond population Ta-F bond length 

F3 -86.2 -0.33 0.59 1.797 

F6 -89.5 -0.36 0.57 1.840 

F1 -43.4 -0.39 0.53 1.852 

F5 -31.4 -0.39 0.53 1.857 

F2 10.1 -0.41 0.53 1.879 

F4 210.5 -0.46 
0.27 2.058 

0.28 2.074 

 

Table S13. 
19F σiso (ppm), F Mulliken charge (e), Ta-F bond population (e) and Ta-F bond length (Å) from 

APO structure of TaF5. 

 σiso charge Ta-F bond population Ta-F bond length 

F3 -115.0 -0.35 0.57 1.847 

F6 -107.8 -0.36 0.56 1.850 

F1 -62.9 -0.39 0.52 1.873 

F5 -41.7 -0.39 0.52 1.880 

F2 -22.5 -0.4 0.53 1.888 

F4 199.8 -0.47 
0.28 2.085 

0.27 2.090 

 

Table S14. 
19F σiso (ppm), F Mulliken charge (e), Ta-F bond population (e) and Ta-F bond length (Å) from 

APO-vdW structure of TaF5. 

 σiso charge Ta-F bond population Ta-F bond length 

F3 -115.9 -0.35 0.57 1.850 

F6 -109.3 -0.36 0.56 1.852 

F1 -58.8 -0.39 0.52 1.878 

F5 -43.6 -0.39 0.52 1.882 

F2 -23.1 -0.4 0.53 1.890 

F4 198.9 -0.46 
0.28 2.081 

0.27 2.084 
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Figure 1. Optimized Ft-Nb bond lengths versus experimental 19F δiso values for NbF5. The black and white 

circles represent the Ft-Nb bond lengths from APO-vdW and APO structures, respectively. The solid and 

dash black lines represent the linear regressions when considering the Ft-Nb bond lengths from APO-

vdW (a = -1879(208) ppm.Å-1, b= 3735(387) ppm, R
2 = 0.965) and APO (a = -1923(158) ppm.Å-1, b = 

3814(294) ppm, R2 = 0.980) structures, respectively. 
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Figure 2. Optimized Ft-Ta bond lengths versus experimental 19F δiso values for TaF5. The black and white 

circles represent the Ft-Ta bond lengths from APO-vdW and APO structures, respectively. The solid and 

dash black lines represent the linear regressions when considering the Ft-Ta bond lengths from APO-vdW 

(a = -1565(130) ppm.Å-1, b = 3068(244) ppm, R2 = 0.980) and APO (a = -1603(74) ppm.Å-1, b = 3134(138) 

ppm, R2 = 0.994) structures, respectively.  
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3.3 MF4 fluorides 

In the previous part (3.2), confident assignments from GIPAW1,2 calculations were achieved 

for column 5 metal (Nb, Ta) fluorides. However, the isotropic chemical shift ranges observed on the 

19F spectra for the five non bridging fluorine atoms are equal to 75 ppm (NbF5) and 68 (TaF5). The 

question that arises now is to determine whether this method is still accurate when the chemical 

shift ranges are narrower.  

3.3.1 Structural features and solid state NMR study 

 In this part is then presented 

the study of four MF4 fluorides, two 

from column 4, i.e. β-ZrF4
3 (ICSD4 file 

number 1652895) and HfF4
6 (ICSD4 file 

number 66008), one lanthanide 

fluoride, CeF4
7  (ICSD4 file number 

89621), and one actinide fluoride, 

ThF4
6 (ICSD4 file number 66009). These 

four compounds adopt the same 

structure (space group 15, C2/c, Fig. 1) 

but the structure of β-ZrF4 was not 

described in the same setting (I2/c3,5) 

than the three others (C2/c,6,7 

standard setting). In addition, in the 

ICSD4 file number 

165289, the value of the 

β angle (94°28')3,5 is not 

correctly reported 

(94.28°). The data are 

then erroneous in this ICSD4 file. Moreover, β-ZrF4 does not present the same atomic number 

ordering as HfF4, CeF4 and ThF4. Then we have changed the setting (a=11.82 Å, b=9.93 Å, c=7.73 Å, 

β=126.2°, atomic positions are given below) and renumbered both the F and Zr atoms of the β-ZrF4 

structure to keep the same setting and atomic number ordering and thus facilitate comparison 

 

Fig. 1. Perspective view of ThF4
6 structure showing ThF8

4- 
square Archimedean antiprisms. 

Table 1. Renumbering and multiplicity of atoms in β-ZrF4 structure. 

ICSD n°165289 Zr1 Zr2 F1 F2 F3 F4 F5 F6 F7 
this study Zr2 Zr1 F4 F1 F6 F5 F7 F2 F3 

multiplicity 4e 8f 4d 4e 8f 8f 8f 8f 8f 
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between the four compounds (Table 1). These compounds contain seven inequivalent 

crystallographic fluorine sites, two (F1 and F4) with multiplicity of 4 and the remaining five with 

multiplicity of 8. Their structures consist of a three dimensional network of corner-sharing MF8
4- 

square Archimedean antiprism (Fig. 1). Each fluorine atom is coordinated by two metal atoms.  

For β-ZrF4 and CeF4, the experimental 19F δiso values and an assignment of the 19F NMR 

resonances to the fluorine sites, using the semi-empirical superposition model,8 have been reported 

previously.5 The 91Zr δiso and quadrupolar parameters of β-ZrF4 have been also determined 

previously.9 Bessada et al.10 have reported the 19F MAS NMR spectrum of ThF4, recorded at 9.4 T, 

and discussed about its isotropic resonance range (from 53 ppm to 101 ppm) but no precise 19F δiso 

values were given. We then record the 19F NMR spectra of ThF4 (at 7 T) and HfF4 (at 19.9 T) and, for 

the first time, determine precisely the 19F δiso values for both these compounds. Discrimination 

between isotropic lines and spinning sidebands was achieved by recording 19F spectra at several 

spinning frequencies. Since ThF4 and HfF4 structures present seven inequivalent crystallographic 

sites (1 4d, 1 4e and 5 8f sites), seven lines among which two lines with relative intensity equal to 8.3 

% and five lines with relative intensity equal to 16.7 % are expected in the 19F NMR spectra.  

The experimental 19F NMR spectrum of HfF4 is shown in Fig. 2. Its reconstruction was achieved 

using the seven expected lines and relative intensities; the corresponding parameters are gathered 

in Table 2. An initial partial assignment is done, based on the relative intensities. Lines 2 and 6, with 

respective relative intensities of 8.6 and 10.4 %, are assigned to the multiplicity 4 F sites.  

Table 2. Isotropic chemical shifts (δiso, ppm), chemical shift anisotropy (δcsa, 
ppm), asymmetry parameter of the CSA tensor (ηcsa) and relative intensities (%) 
of the 19F NMR resonances in HfF4. The initial partial assignments are deduced 

from NMR line relative intensities. 

Line δiso (±0.5) Intensity (±2) δcsa (±30) ηcsa (±0.2) Initial assignment 

1 -7.0 17.5 -170 0.4 F2, F3, F5, F6, F7 
2 -9.2 8.6 -175 0.65 F1, F4 
3 -10.9 15.5 -150 0.8 F2, F3, F5, F6, F7 
4 -18.0 15.5 -160 0.5 F2, F3, F5, F6, F7 
5 -21.9 14.9 -155 0.7 F2, F3, F5, F6, F7 
6 -26.0 10.4 -150 0.6 F1, F4 
7 -28.1 17.1 -150 0.6 F2, F3, F5, F6, F7 
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Fig. 2. Experimental (black) and reconstructed (red) 19F MAS (65 kHz) NMR spectra of HfF4 recorded 
at a magnetic field of 19.9 T. Braces indicate spinning sidebands whereas arrows indicate 
unidentified impurities. The inset shows the numbered isotropic lines and their individual 

reconstructions. 

 

The experimental 19F NMR spectrum of ThF4 is presented in Fig. 3 and was fitted with only six 

NMR lines. The parameters used for this reconstruction are gathered in Table 3. As for HfF4, an initial 

partial assignment was carried out based on these relative intensities. Lines 1 and 5, with respective 

relative intensities of 7.2 and 8.8 %, are assigned to the multiplicity 4 F sites. The relative intensity of 

line 3 is equal to 33.6 %, which corresponds to twice the expected relative intensity for one 8f F site. 

Therefore, this line is assigned to two of the five 8f F sites. 
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Fig. 3. Experimental (black) and reconstructed (red) 19F MAS (30 kHz) NMR spectra of ThF4 recorded 
at a magnetic field of 7 T. Braces indicate spinning sidebands whereas arrows indicate unidentified 

impurities. The inset shows the numbered isotropic lines and their individual reconstructions. 

 

Table 3. Isotropic chemical shift (δiso, ppm), chemical shift anisotropy (δcsa, ppm), 
asymmetry parameter of the CSA tensor (ηcsa) and relative intensity (%) of the 
19F NMR resonances in ThF4. The initial partial assignments are deduced from 

NMR line relative intensities. 

Line δiso (±0.5) Intensity (±2) δcsa (±30) ηcsa (±0.2) Initial assignment 

1 102.5 8.8 -360 0.35 F1, F4 
2 94.3 16.9 -300 0.2 F2, F3, F5, F6, F7 
3 84.5 33.6 -290 0.3 F2, F3, F5, F6, F7 
4 75.2 16.7 -290 0.3 F2, F3, F5, F6, F7 
5 68.9 7.2 -285 0.1 F1, F4 
6 63.1 16.9 -280 0.2 F2, F3, F5, F6, F7 
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The δiso ranges being small for the four compounds (20 to 40 ppm depending on the MF4 

compound), to obtain a reliable assignment is a real challenge. Thus, correlation experiments, based 

on through space 19F-19F dipolar coupling interaction, were planned, at high magnetic field at 

CEMHTI (Fédération TGIR RMN Très Hauts Champs - FR3050 CNRS), in order to probe the F-F 

proximities in β-ZrF4, HfF4 and CeF4. Unfortunately, it was not possible to perform correlation 

experiments for CeF4, the relaxation time T2 being too short. Since thorium is radioactive (α 

radiation), experiments on ThF4 are planned by F. Fayon at the Institute for Transuranium Elements 

(ITU, Karlsruhe).  

In the obtained 2D spectra, spatial proximities between inequivalent F sites are revealed by 

off-diagonal cross-correlation peaks, while proximities between equivalent F sites give rise to 

diagonal autocorrelation peaks. It has been shown that the correlation peak amplitudes globally 

decrease with increasing 19F-19F distances11,12 and that, in the best cases (no overlapping), most of 

19F-19F proximities shorter than 4.5 Å are revealed by correlation peaks in the DQ-SQ spectrum.12 

Then, from the F-F bond lengths, we can estimate the intensities of both the autocorrelation and 

cross-correlation peaks.  

β-ZrF4 and HfF4 
19F DQ-

SQ spectra are presented in 

Fig. 4 and 5, respectively. The 

expected intensities for 

autocorrelation and cross-

correlation peaks are deduced 

from the F-F distances, using 

the experimental structures 

(Tables 4 and 5, respectively). 

The seven isotropic NMR lines, ranging within ~20 ppm, overlap and as many 19F nuclei correlate, 

the 19F DQ-SQ spectra present a lack of resolution. Two strong autocorrelation peaks are expected 

for F2 and F5 but only the 19F DQ-SQ spectrum of HfF4 presents clearly a strong autocorrelation peak 

for line 5. This NMR line is then assigned to F2 or F5. Unfortunately, the lack of resolution prevents 

from additional confident assignment. For ThF4, the seven isotropic lines range within ~40 ppm, 

twice the δiso range observed on the β-ZrF4 and HfF4 
19F spectra. We may then expect to get a better 

resolution for the 19F DQ-SQ spectra. 

Table 4. Expected intensities of autocorrelation and cross-correlation 
peaks on β-ZrF4 

19F DQ-SQ experiment. 

F sites Autocorrelation peak Cross-correlation peaks 

F1 weak: d(F1-F1) = 4.327 Å 
with all F sites 
weak with F5: d(F1-F5) = 4.010 Å 

F2 strong with all F sites 
F3 weak: d(F3-F3) = 3.892 Å with all F sites 
F4 none: d(F4-F4) = 4.785 Å with all F sites 

F5 strong 
with all F sites 
weak with F1: d(F1-F5) = 4.010 Å 

F6 weak: d(F6-F6) = 4.016 Å with all F sites 
F7 weak: d(F7-F7) = 3.899 Å with all F sites 
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Fig. 4. 2D 19F DQ-SQ MAS (32 kHz) NMR correlation spectrum of β-ZrF4. The long 
dashed line indicates the diagonal of the spectrum on which autocorrelation peaks 
appear. The projection of the 2D spectrum onto the 19F SQ dimension is shown on 

top of the figure. Short dashed lines indicate the positions of the isotropic NMR 
lines which are numbered. 
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Fig. 5. 2D 19F DQ-SQ MAS (65 kHz) NMR correlation spectrum of HfF4. The long 
dashed line indicates the diagonal of the spectrum on which autocorrelation peaks 
appear. The projection of the 2D spectrum onto the 19F SQ dimension is shown on 

top of the figure. Short dashed lines indicate the positions of the isotropic NMR 
lines which are numbered. 
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Table 5. Expected intensities of autocorrelation and cross-correlation 
peaks on HfF4 

19F DQ-SQ experiment. 

F sites Autocorrelation peak Cross-correlation peaks 

F1 weak: d(F1-F1) = 4.240 Å 
with all F sites 
weak with F5: d(F1-F5) = 3.914 Å 

F2 strong with all F sites 
F3 weak: d(F3-F3) = 3.956 Å with all F sites 
F4 none: d(F4-F4) = 4.748 Å with all F sites 

F5 strong 
with all F sites 
weak with F1: d(F1-F5) = 3.914 Å 

F6 weak: d(F6-F6) = 3.968 Å with all F sites 
F7 weak: d(F7-F7) = 3.858 Å with all F sites 

 

3.3.2 DFT calculations 

In order to achieve an unambiguous assignment of the MF4 compounds, 19F chemical shielding 

(σ) calculations were performed using the GIPAW1,2 method, implemented in the CASTEP code.13,14 

For the four compounds, calculations are performed on both the experimental structure (ES) and 

atomic position optimized (APO) structure. Additionally, the 91Zr quadrupolar parameters were 

calculated using the projector augmented wave (PAW) method15,16 implemented in CASTEP,13,14 and 

using the linearized augmented plane wave (LAPW) method17 implemented in WIEN2k,17,18 from the 

ES and the structures geometry optimized with CASTEP and WIEN2k, respectively. 

Atomic fractional coordinates of ES and APO structures, and the corresponding atomic 

displacements d are given in Tables 6, 7, 8, 9 and 10 for β-ZrF4 (with CASTEP), β-ZrF4 (with WIEN2k), 

HfF4, CeF4 and ThF4, respectively. As usually observed,19-22 the positions of the heavy atoms do not 

vary much after geometry optimization, while the lighter F atoms show larger atomic displacements. 

For β-ZrF4, CeF4 and ThF4, the maximum d values for F atoms are equal to 0.101, 0.100 and 0.096 Å, 

respectively. Geometry optimization has a greater effect for HfF4, as three F atoms present higher d 

values (0.200, 0.113, and 0.108 Å).  

The M-F bond lengths and average M-F bond lengths (〈� − �〉) for ES and APO structures are 

compared in Tables 11, 12, 13 and 14 for β-ZrF4, HfF4, CeF4 and ThF4, respectively. The 

〈� − �〉 increase slightly for HfF4 and CeF4 (+0.01 Å) and very slightly for ThF4 (+0.003Å). Among the 

four compounds, β-ZrF4 is the single one for which the 〈�1 − �〉 and 〈�2 − �〉 calculated from the 

ES differ significantly and the geometry optimizations result, as expected, in closer 〈� − �〉 bond 

lengths. 
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 Table 6. ES3 (x, y, z) and CASTEP APO (x’, y’, z’) fractional atomic coordinates and 
corresponding atomic displacements d (Å) for β-ZrF4.  

 site x y z x' y' z' d 

Zr1 8f 0.7056 0.0711 0.8334 0.7051 0.0717 0.8325 0.010 

Zr2 4e 0 0.7852 1/4 0 0.7869 1/4 0.017 

F1 4e 0 0.402 1/4 0 0.3919 1/4 0.101 

F2 8f 0.621 0.875 0.783 0.6188 0.8788 0.7837 0.046 

F3 8f 0.622 0.654 0.650 0.6225 0.6536 0.6486 0.013 

F4 4d 1/4 3/4 0 1/4 3/4 0 0 

F5 8f 0.885 0.941 0.046 0.8837 0.9479 0.0460 0.070 

F6 8f 0.889 0.711 0.929 0.8902 0.70919 0.9236 0.048 

F7 8f 0.788 0.474 0.892 0.7882 0.4702 0.8934 0.040 

 

Table 7. ES3 (x, y, z) and WIEN2k APO (x’, y’, z’) fractional atomic coordinates and 
corresponding atomic displacements d (Å) for β-ZrF4.  

 site x y z x' y' z' d 

Zr1 8f 0.7056 0.0711 0.8334 0.7048 0.0713 0.8316 0.014 

Zr2 4e 0 0.7852 1/4 0 0.7864 1/4 0.012 

F1 4e 0 0.402 1/4 0 0.3934 1/4 0.085 

F2 8f 0.621 0.875 0.783 0.6184 0.8789 0.7816 0.051 

F3 8f 0.622 0.654 0.650 0.6228 0.6526 0.6495 0.017 

F4 4d 1/4 3/4 0 1/4 3/4 0 0 

F5 8f 0.885 0.941 0.046 0.8822 0.9456 0.0442 0.058 

F6 8f 0.889 0.711 0.929 0.8907 0.7073 0.9255 0.050 

F7 8f 0.788 0.474 0.892 0.7880 0.4706 0.8945 0.039 

 

Table 8. ES7 (x, y, z) and APO (x’, y’, z’) fractional atomic coordinates and corresponding 
atomic displacements d (Å) for HfF4.  

 site x y z x' y' z' d 

Hf1 8f 0.2058 0.4287 0.3342 0.2042 0.4276 0.3308 0.029 

Hf2 4e 0 0.7857 1/4 0 0.7888 1/4 0.030 

F1 4e 1/2 0.9066 1/4 1/2 0.8863 1/4 0.200 

F2 8f 0.1178 0.6188 0.2818 0.1182 0.6209 0.2809 0.022 

F3 8f 0.1269 0.8443 0.1580 0.1219 0.8452 0.1453 0.113 

F4 4d 1/4 3/4 0 1/4 3/4 0 0 

F5 8f 0.8823 0.9475 0.0461 0.8859 0.9532 0.0472 0.071 

F6 8f 0.8857 0.7047 0.9287 0.8876 0.7147 0.9236 0.108 

F7 8f 0.2112 0.5279 0.1044 0.2118 0.5319 0.1053 0.040 
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Table 9. ES6 (x, y, z) and APO (x’, y’, z’) fractional atomic coordinates and corresponding atomic 
displacements d (Å) for CeF4. 

 site x y z x' y' z' d 

Ce1 8f 0.20458 0.42819 0.33140 0.20428 0.42718 0.32967 0.017 

Ce2 4e 0 0.78665 1/4 0 0.78937 1/4 0.029 

F1 4e 0 0.39630 1/4 0 0.39275 1/4 0.038 

F2 8f 0.88149 0.62068 0.21774 0.88095 0.62157 0.21616 0.017 

F3 8f 0.37545 0.34651 0.34651 0.37985 0.34611 0.35668 0.100 

F4 4d 1/4 3/4 0 1/4 3/4 0 0 

F5 8f 0.88022 0.94650 0.04392 0.88375 0.95064 0.04779 0.070 

F6 8f 0.10934 0.29393 0.0713 0.11281 0.28930 0.07584 0.076 

F7 8f 0.21075 0.52943 0.10382 0.21345 0.53107 0.10733 0.048 

 

Table 10. ES6 (x, y, z) and APO (x’, y’, z’) fractional atomic coordinates and corresponding 
atomic displacements d (Å) for ThF4.  

 site x y z x' y' z' d 

Th1 8f 0.2041 0.4282 0.3309 0.2053 0.4280 0.3326 0.018 

Th2 4e 0 0.7869 1/4 0 0.7863 1/4 0.006 

F1 4e 0 0.3996 1/4 0 0.3961 1/4 0.039 

F2 8f 0.1172 0.6196 0.2800 0.1182 0.6199 0.2819 0.021 

F3 8f 0.1274 0.8460 0.1579 0.1230 0.8472 0.1497 0.092 

F4 4d 1/4 3/4 0 1/4 3/4 0 0 

F5 8f 0.8799 0.9482 0.0442 0.8803 0.9462 0.0447 0.023 

F6 8f 0.8910 0.7052 0.9334 0.8905 0.7060 0.9297 0.033 

F7 8f 0.2104 0.5279 0.1018 0.2125 0.5299 0.1058 0.049 
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Table 11. Zr-F and average (in italic) Zr-F lengths (Å) from ES3 and 
APO structures of β-ZrF4. 

   ES APO CASTEP APO WIEN2k 
Zr1 F1 1x 2.132 2.143 2.140 

 F2 1x 2.118 2.096 2.092 

 F3 1x 2.131 2.118 2.117 

 F4 1x 2.072 2.070 2.075 

 F5 1x 2.180 2.140 2.142 

 F6 1x 2.148 2.102 2.097 

 
F7 

1x 
1x 

2.032 
2.127 

2.057 
2.115 

2.059 
2.109 

  〈	
1 − �〉 2.117 2.105 2.104 

Zr2 F2 2x 2.052 2.078 2.076 

 F3 2x 2.088 2.099 2.100 

 F5 2x 2.048 2.091 2.086 

 F6 2x 2.139 2.186 2.179 

  〈	
2 − �〉 2.082 2.113 2.110 

 

 

  

Table 12. Hf-F and average (in italic) Hf-F 
lengths (Å) from ES7 and APO structure of 

HfF4. 
   ES APO 
Hf1 F1 1x 2.110 2.130 

 F2 1x 2.063 2.085 

 F3 1x 2.099 2.101 

 F4 1x 2.051 2.052 

 F5 1x 2.108 2.122 

 F6 1x 2.091 2.107 

 
F7 

1x 
1x 

2.043 
2.071 

2.052 
2.084 

  〈��1 − �〉 2.080 2.092 

Hf2 F2 2x 2.070 2.082 

 F3 2x 2.068 2.083 

 F5 2x 2.084 2.092 

 F6 2x 2.139 2.146 

  〈��2 − �〉 2.090 2.101 

Table 13. Ce-F and average (in italic) Ce-F 
lengths (Å) from ES6 and APO structure of 

CeF4. 
   ES APO 
Ce1 F1 1x 2.271 2.277 

 F2 1x 2.237 2.254 

 F3 1x 2.254 2.257 

 F4 1x 2.213 2.210 

 F5 1x 2.269 2.284 

 F6 1x 2.240 2.234 

 F7 
1x 
1x 

2.200 
2.241 

2.200 
2.261 

  〈�1 − �〉 2.241 2.247 

Ce2 F2 2x 2.222 2.238 

 F3 2x 2.228 2.234 

 F5 2x 2.238 2.229 

 F6 2x 2.304 2.323 

  〈�2 − �〉 2.248 2.256 
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To assign the 19F resonances to the fluorine 

crystallographic sites, the NMR lines are ranked in 

decreasing order of experimental δiso values 

whereas F atoms are ranked in increasing order of 

calculated σiso values. 

 For β-ZrF4, the 19F σiso values calculated with 

the ES and APO structure are compared to the 

experimental data5 in Table 15. For the ES, the F 

site multiplicities (8:4:8:8:8:4:8) and the 

experimental relative intensities (2:1:2:2:2:1:2) are 

in the same sequence. However, the coefficient of 

determination of the linear correlation issued from 

this assignment is not satisfactory (Fig. 6) and the 

calculated σiso range (34 ppm) 

is large compared to the 

experimental δiso range (21 

ppm). On the contrary, the F 

site multiplicities 

(4:8:8:8:8:8:4) issued from 

APO are no more in the same 

sequence with the 

experimental relative 

intensities but the σiso range is 

reduced to 17 ppm and closer 

to the δiso range. With respect 

to the site multiplicities and 

relative intensities, L1 to L7 

can be tentatively assigned to 

F7, F4, F2, F3, F5, F1 and F6, respectively, leading to a better R2 coefficient (Fig. 6, Table 16). The 19F 

δiso values are then calculated by using the linear regression determined from calculated 19F σiso and 

experimental 19F δiso values (Table 16).  

 

Table 14. Th-F and average (in italic) Th-F 
lengths (Å) from ES6 and APO structure of 

ThF4. 

   ES APO 
Th1 F1 1x 2.344 2.359 

 F2 1x 2.328 2.335 

 F3 1x 2.330 2.334 

 F4 1x 2.312 2.305 

 F5 1x 2.350 2.357 

 F6 1x 2.349 2.342 

 F7 
1x 
1x 

2.292 
2.317 

2.293 
2.326 

  〈�ℎ1 − �〉 2.328 2.331 

Th2 F2 2x 2.324 2.319 

 F3 2x 2.316 2.323 

 F5 2x 2.345 2.330 

 F6 2x 2.367 2.385 

  〈�ℎ2 − �〉 2.338 2.339 

 

Fig. 6. Calculated 19F σiso values from ES (black diamond) and APO 
structure (red +) versus experimental 19F δiso values for β-ZrF4. The 
dashed black and red lines represent the linear regressions whose 

equations are given on the graph. 
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Table 15. Experimental isotropic chemical shift (δiso, ppm) and relative intensity (I, 
%) of the 19F NMR resonances in β-ZrF4, fluorine site, 19F σiso (ppm) from ES and APO 

structure of β-ZrF4. 

Exp. 5 ES   APO 
Line δiso (±0.5) I (±2) F σiso multiplicity F σiso multiplicity 

1 30.6 16.2 F7 49.5 8 F4 60.6 4 
2 28.7 8.1 F4 59.4 4 F7 61.8 8 
3 26.7 17.3 F2 68.3 8 F2 65.5 8 
4 19.6 16 F5 73.5 8 F3 68.5 8 
5 15.8 17 F3 73.9 8 F5 70.4 8 
6 10.4 8.3 F1 75.3 4 F6 77.1 8 
7 9.5 17.1 F6 83.1 8 F1 77.3 4 

 

 Due to the small δiso range, and the 

large uncertainties of the slopes of the 

linear regression, these assignments cannot 

be considered as confident. Moreover, the 

slopes of the linear regressions are very 

different from each other. This may be 

partly explained by the small δiso range. 

Anyway, for both ES and APO structure, the 

σiso values of F1 and F4 (multiplicity 4) on 

the one hand and the σiso values of F7 and 

F6 (multiplicity 8) on the other hand are in 

the bottom end and in the top end of the 

range. The assignments of L1 to F7, L2 to 

F4, L6 to F1 and L7 to F6 can then certainly 

be considered as confident.  

As for NbF5 (see 3.2), the calculated chemical shielding anisotropy σcsa values seem to be 

overestimated and a scaling factor around -0.8 would be necessary to reproduce the experimental 

chemical shift anisotropy δcsa values (Table 16). The agreement between experimental and 

calculated ηcsa values is satisfactory, considering the low accuracy of the experimental values and 

the difficulty to accurately reproduce this parameter. 

 

 

Table 16. Experimental5 (exp.) 19F δiso (ppm), δcsa 
(ppm) and ηcsa and calculated (calc.) 19F σiso (ppm), δiso 
(ppm), σcsa (ppm) and ηcsa from the APO structure of 

ZrF4. The calculated 19F δiso values were deduced from 
the relationship δiso = -1.27 σiso + 107.2. 

F site  σiso δiso δcsa/σcsa ηcsa 

F1 exp.  10.4 -160 0.3 
 calc. 77.3 9.0 208.4 0.24 
F2 exp.  26.7 -170 0.55 
 calc. 65.5 24.0 199.9 0.67 
F3 exp.  19.6 -170 0.4 
 calc. 68.5 20.2 210.8 0.51 
F4 exp.  28.7 -180 0.55 
 calc. 60.6 30.2 252.0 0.50 
F5 exp.  15.8 -165 0.4 
 calc. 70.4 17.8 211.5 0.50 
F6 exp.  9.5 -175 0.3 
 calc. 77.1 9.3 203.2 0.40 
F7 exp.  30.6 -170 0.45 
 calc.  61.8 28.7 201.3 0.62 
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Table 17. 
91Zr experimental δiso (ppm), CQ (MHz) and ηQ values, 

calculated σiso (ppm), CQ (MHz) and ηQ values with CASTEP (PAW) 
and calculated CQ (MHz) and ηQ values with WIEN2k (LAPW), from 

the ES and the APO structure of β-ZrF4. 

  
Exp. 9 

PAW  LAPW  

  ES APO ES APO 

Zr1 
CQ 34.7(2) -36.4 -32.1 -38.8 -34.4 
ηQ 0.33(1) 0.42 0.20 0.42 0.30 

δiso/σiso -360(25) 2137 2138   

Zr2 
CQ 30.0(5) -27.7 -34.3 -29.2 -34.8 
ηQ 1.00(5) 0.66 0.40 0.68 0.46 

δiso/σiso -280(80) 2133 2129   

 

The two zirconium sites having multiplicities of 4 and 8, the assignment is straightforward, 

based on the NMR line relative intensities.9 Calculated CQ and ηQ values are compared to the 

experimental data9 in Table 17. For both sites, the best agreement is obtained with quadrupolar 

parameters calculated with WIEN2k, from the APO structure for the Zr1 site and from the ES for the 

Zr2 site. The 91Zr experimental δiso and calculated σiso values are in the good sequence (δiso (Zr1) < δiso 

(Zr2) and σiso (Zr1) > σiso (Zr2)) for ES and APO structure. Nevertheless, the uncertainties on the δiso 

values are large and the differences between δiso values (80 ppm) and σiso values (4 and 9 ppm for ES 

and APO structure, respectively) are very dissimilar. 

For HfF4, the 19F σiso values calculated from the ES and the APO structure are compared with 

the experimental 19F δiso and relative intensities in Table 18. For both the ES and APO structure, the F 

site multiplicities ((8:8:8:4:8:4:8) and (4:8:8:8:8:8:4), respectively) are not in agreement with the 

experimental relative intensities (2:1:2:2:2:1:2). As done for the APO structure of β-ZrF4, with 

respect to the site multiplicities and relative intensities, L1 to L7 can be tentatively assigned to F7, 

F4, F3, F2, F5, F1 and F6, respectively, but the coefficient of determination, R2, of the linear 

correlation between the 19F experimental δiso and calculated σiso values (not shown), is not 

satisfactory (R2= 0.857). Nevertheless, for both ES and APO structure, the σiso values of F1 and F4 

(multiplicity 4) are calculated in the same order and the σiso values of F7 and F6 (multiplicity 8) are in 

the bottom end and in the top end of the range. L1, L2, L6 and L7 can then tentatively be assigned to 

F7, F4, F1 and F6, respectively. 

 

 

 



 

153 
 

Table 18. Experimental isotropic chemical shift (δiso, ppm) and relative intensity (%) of 
the 19F NMR resonances in HfF4, fluorine site, 19F σiso (ppm) from ES and APO structure 

of HfF4. 

Exp. ES   APO   
Line δiso (±0.5) I (±2) F σiso multiplicity F σiso multiplicity 
1 -7.0 17.5 F2 106.6 8 F4 105.0 4 
2 -9.2 8.6 F7 107.9 8 F7 107.4 8 
3 -10.9 15.5 F3 120.6 8 F3 110.5 8 
4 -18.0 15.5 F4 121.4 4 F2 113.9 8 
5 -21. 9 14.9 F5 125.9 8 F5 114.3 8 
6 -26.0 10.4 F1 128.2 4 F6 122.3 8 
7 -28.1 17.1 F6 128.3 8 F1 126.3 4 

 

 

Table 20. Experimental isotropic chemical shift (δiso, ppm) and relative intensity (%) of 
the 19F NMR resonances in ThF4, fluorine site, 19F σiso (ppm) from ES and APO structure 

of ThF4. 

 Exp.  ES   APO   
Line δiso (±0.5) I (±2) F σiso multiplicity F σiso multiplicity 

1 102.5 8.8 F7 -15.8 8 F4 -21.6 4 
2 94.3 16.9 F4 -15.3 4 F7 -15.5 8 
3 84.5 33.6 F2 -6.7 8 F2 -7.3 8 
4   F3 -5.8 8 F3 -3.6 8 
5 75.2 16.7 F1 5.9 4 F5 3.7 8 
6 68.9 7.2 F5 8.3 8 F1 9.5 4 
7 63.1 16.9 F6 17.4 8 F6 17.3 8 
 

 

 

 

Table 19. Experimental5 isotropic chemical shift (δiso, ppm) and relative intensity (%) of 
the 19F NMR resonances in CeF4, fluorine site, 19F σiso (ppm) from ES and APO structure 

of CeF4. 

Exp. ES   APO   
Line δiso (±0.5) I (±2) F σiso multiplicity F σiso multiplicity 

1 235.0 16.7 F2 -553.7 8 F2 -553.4 8 
2 228.6 11.2 F1 -517.8 4 F4 -539.8 4 
3 221.8 16.9 F4 -514.5 4 F1 -520.7 4 
4 220.3 15.5 F7 -510.4 8 F5 -512.5 8 
5 210.4 15.2 F3 -488.2 8 F7 -510.9 8 
6 199.5 16.3 F5 -486.7 8 F3 -510.2 8 
7 196.2 8.2 F6 -463.1 8 F6 -475.5 8 
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In Table 19, the 19F σiso values calculated from the ES and APO structure of CeF4 are compared 

with the experimental data.5 As for HfF4, whatever the structure, the F site multiplicities 

(8:4:4:8:8:8:8) are not in agreement with the experimental relative intensities (2:1:2:2:2:2:1). 

Moreover, it is not possible to assign F1 and F4, as their σiso values are not in the bottom end and in 

the top end of the range and are not ranked in the same order for ES and APO structure. 

Furthermore, the 19F σiso ranges (90 and 78 ppm, for ES and APO structure, respectively) are two 

times larger than the 19F δiso ranges (39 ppm). These results are really unsatisfactory.   

For ThF4, the 19F σiso 

values calculated from the 

ES and APO structure are 

compared with the 

experimental 19F δiso and 

relative intensities in Table 

20. The relative intensities of 

the NMR lines (1:2:2:2:2:1:2) 

and the multiplicities of the F 

atoms (4:8:8:8:8:4:8) are in 

agreement only for the APO 

structure. A nice linear 

correlation is observed 

between the experimental 

δiso and the APO 19F σiso 

values (Fig. 7). The 19F δiso values are then calculated by using the linear regression determined from 

calculated 19F σiso and experimental 19F δiso values (Table 21). As the linearity between experimental 

19F δiso values and calculated 19F σiso values ensures that the spectral assignments are done without 

any ambiguity, the assignments achieved from the APO structure are retained for ThF4. Experiments 

at higher field may allow discrimination of the isotropic lines of F2 and F3, which will improve the R2 

coefficient of the linear regression. As for NbF5 (see 3.2), the slope of the linear regression between 

calculated 19F σiso values and experimental 19F δiso values obtained from ThF4 APO structure (δiso = -

1.01(5) σiso + 79.3(6)) is close to -1, i.e., the theoretical expected value, and far from the slopes of the 

linear regressions established previously (see chapter 2). The 19F NMR resonances of the impurities 

at the same chemical shift as the first right set of spinning sidebands (Fig. 3) are a hindrance to a 

 

Fig. 7. Calculated 19F σiso values versus experimental 19F δiso values 
for ThF4. The dashed black line represents the linear regression 

whose equation is given on the graph. 
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precise determination of the chemical shift anisotropy. Nevertheless, as for NbF5 (see 3.2) and β-

ZrF4, the calculated chemical shielding anisotropy σcsa values seem to be overestimated and a scaling 

factor around -0.8 would be necessary to reproduce the experimental chemical shift anisotropy δcsa 

values (Table 21) whereas the slope of the linear regression determined from the calculated σiso 

values and the experimental δiso values is found close to -1. The agreement between experimental 

and calculated ηcsa values is satisfactory, considering the low accuracy of the experimental values 

and the difficulty to accurately reproduce this parameter. 

 

  
Table 21. Experimental (exp.) 19F δiso (ppm), δcsa (ppm) 

and ηcsa and calculated (calc.) 19F σiso (ppm), δiso 
(ppm), σcsa (ppm) and ηcsa from the APO structure of 

ThF4. The calculated 19F δiso values were deduced 
from the relationship δiso = -1.01 σiso + 79.3. 

F site  σiso δiso δcsa/σcsa ηcsa 

F1 exp.  68.9 -285 0.1 
 calc. 9.5 69.7 357.4 0.01 
F2 exp.  84.5 -290 0.3 
 calc. -7.3 86.7 351.4 0.28 
F3 exp.  84.5 -290 0.3 
 calc. -3.6 82.9 371.7 0.19 
F4 exp.  102.5 -360 0.35 
 calc. -21.6 101.0 401.1 0.28 
F5 exp.  75.2 -290 0.2 
 calc. 3.7 75.6 359.7 0.24 
F6 exp.  63.1 -280 0.2 
 calc. 17.3 61.9 350.3 0.16 
F7 exp.  94.3 -300 0.2 
 calc.  -15.5 95.0 366.5 0.19 
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3.3.3 Experimental section 

β-ZrF4 was obtained from Ultra Fluor, Air products and chemicals (lot number 10921-PG78A). 

HfF4 and ThF4 were obtained from BDH-Limited supplier (lot numbers 581532F and 68104, 

respectively). All these samples are kept in a dry glove box under nitrogen atmosphere. CeF4 

samples were prepared by fluorination of highly divided CeO2 with F2 gas at T = 400-500 °C.5 

3.3.3.1 
19

F solid state NMR 

β-ZrF4 2D homonuclear DQ-SQ MAS 19F NMR correlation spectra were recorded on an Avance 

750 Bruker spectrometer operating at 17.6 T (19F Larmor frequency of 705.85 MHz), using a CPMAS 

2.5 mm probehead. These spectra were collected at 32 kHz, using the sandwiched PI pulses (SPIP)23 

pulse sequence, which allows efficient broad-band homonuclear DQ recoupling in inorganic 

fluorides.12,24 19F nutation frequencies of 225 kHz for the π pulse and of 280 kHz for the spin lock 

were used and the DQ excitation and reconversion times were set to 16 rotor periods 

(corresponding to ~500 µs). A total of 40 rotor-synchronized t1 increments with 32 transients 

(recycle delay of 60 s) each were accumulated. Phase-sensitive detection in the indirect dimension 

was obtained using the States method.25 The 2D DQ-SQ MAS spectra were converted in a SQ-SQ 

correlation representation by a shearing transformation.26,27 

HfF4 1D and 2D 19F MAS NMR spectra were recorded on an Avance 850 spectrometer 

operating at 19.9T (19F Larmor frequency of 800.04 MHz), using an ultrafast CPMAS 1.3 mm 

probehead. 1D spectra were acquired using a Hahn echo sequence with an inter-pulse delay equal 

to one rotor period. A 1.5 µs 90° pulse was used, corresponding to a 19F nutation frequency of 170 

kHz. The recycle delay was set to 10 s to ensure no saturation. The same SPIP23 pulse sequence was 

used to collect the DQ-SQ MAS 19F NMR correlation spectrum at 65 kHz. 19F nutation frequency of 

160 kHz for the π pulse was used, but no spin lock power was needed. The DQ excitation and 

reconversion times were set to 8 rotor periods (corresponding to ~123 µs). A total of 34 rotor-

synchronized t1 increments with 2176 transients (recycle delay of 3s) each were accumulated.  

For ThF4, 
19F Hahn echo MAS NMR spectra were recorded on an Avance 300 Bruker 

spectrometer operating at 19F Larmor frequency of 282.2 MHz and using a 2.5mm CPMAS 

probehead. A 2.0 µs 90° pulse was used, corresponding to a 19F nutation frequency of 125 kHz. The 

recycle delay was set to 10 s to ensure no saturation. 

The 19F chemical shifts are referenced to CFCl3 at 0 ppm. All solid state NMR spectra were 

fitted using DMfit28 software. 
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3.3.3.2 DFT Calculations 

DFT calculations of the 19F chemical shielding tensors, using the GIPAW method,1,2 and 91Zr 

EFG in ZrF4, using the projector augmented-wave (PAW) approach15,16 were performed with the 

NMR-CASTEP code13,14 implemented in the Materials Studio 5.0 environment, for the experimental 

structure (named ES above) and atomic position optimized (APO) structures. The PBE (Perdew, 

Burke and Ernzerhof) functional29 was used in the generalized gradient approximation (GGA) for the 

exchange-correlation energy, and the core-valence interactions were described by ultrasoft 

pseudopotentials (USPP) generated using the on the fly generator (OTF_USPP) included in CASTEP. 

The wave functions were expanded on a plane-wave basis set with a kinetic energy cutoff of 700 eV. 

The Brillouin zone was sampled using a Monkhorst-Pack grid spacing approximately equal to 0.04 Å-1 

(corresponding to a k-point mesh of 4 x 4 x 4). APO structures were obtained by minimizing 

(Fletcher-Goldfarb-Shanno (BFGS) method)30 the residual forces on the atom up to |F|max below 10 

meV.Å-1, keeping symmetry constraints and fixing the cell parameters to the experimentally 

determined values. 

91Zr EFG in ZrF4 were also calculated using the LAPW method17 implemented in the WIEN2k 

code.17,18 The atomic sphere radii (RMT) were set to 2.00 and 1.70 a.u. for Zr and F, respectively. The 

core electron states were separated from the valence states by -6.0 Ry. Core states are from 1s to 3d 

for Zr and 1s for F. The plane wave cut-off is defined by RMTKMAX = 8. We use the same Monkhorst-

Pack grid spacing as with CASTEP. Total energies are converged up to changes smaller than 1.4 × 10−3 

eV. APO structure was obtained by minimizing the residual forces acting on the atoms up to |�|��� 

below 0.05 eV.Å-1 

The 91Zr quadrupolar moment used for the calculation of quadrupolar coupling constant, CQ, is 

−0.176(3) × 10��� �.31 
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3.3.4 Conclusion 

The challenging study of these MF4 compounds containing seven fluorine crystallographic 

sites and characterized by small or very small 19F chemical shift ranges shows limits of both the 

correlation experiments, based on through space 19F-19F dipolar coupling interaction, and GIPAW1,2 

methods for the assignment of the 19F NMR resonances to the fluorine crystallographic sites. Due to 

the small chemical shift ranges (7 19F isotropic NMR lines within a 21 ppm range for β-ZrF4 and HfF4), 

correlation spectra are not sufficiently resolved. Unfortunately, whereas the chemical shift range is 

larger for CeF4 (39 ppm) the relaxation time T2 is too short to perform correlation experiments. The 

chemical shift range is also larger for ThF4 (39 ppm) and we are hopeful that correlation experiments 

could ensure the assignments done from GIPAW calculations. Indeed, from GIPAW calculations, only 

one complete and confident assignment is obtained, from the APO structure of ThF4. For β-ZrF4, a 

complete assignment is proposed but only a partial assignment of four of the seven NMR 

resonances can be considered as confident. For HfF4 and CeF4, no agreement between the 

experimental relative intensities of the NMR lines and the F site multiplicity sequences was 

obtained.  
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3.4 Conclusion 

These studies of inorganic fluorides containing several fluorine crystallographic sites, NbF5 and 

TaF5 (3.2) on the one hand and β-ZrF4, HfF4, CeF4 and ThF4 (3.3) on the other hand, show that 

complete and unambiguous assignment of the 19F NMR lines from GIPAW1,2 calculations are 

achievable if the ratio δiso range/number of resonances is not too small.  

Limits of experimental assignment from DQ-SQ correlation spectra are also observed with  

β-ZrF4 and HfF4. No confident assignment could be established as some isotropic lines overlap 

inducing lack of resolution in the correlation peaks.  

For NbF5, TaF5 and ThF4, a fine agreement is obtained, from APO structures, between the 

relative intensities of the NMR lines ranked in increasing order of experimental δiso values and the 

multiplicities of the F atoms ranked in decreasing order of calculated σiso values. Complete 

assignments of the 19F resonances to the fluorine crystallographic sites are carried out and excellent 

linear correlations are observed between the experimental 19F δiso and calculated 19F σiso values. 

However, for NbF5 and ThF4, the slopes of the linear regressions are nearly equal to -1, when it is 

equal to -0.79 forTaF5. This highlights the fact that, even if the exceptions are few (Ag (see 2.4), Nb 

and Th), the linear regression established in the chapter 2 is not universal.   
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4.1 Introduction 

One of the purposes of the RMN3PL project was to calculate 19F-X 1
J-couplings using the first-

principles method presented by Joyce et al. 1  Indeed, in inorganic fluorides, some large 

heteronuclear 19F-X 1
J-couplings are resolved on 1D solid-state NMR spectra. This is the case for the 

31P-19F 1
J-coupling in Ag2PO3F,2 K2PO3F, β-Na2PO3F, BaPO3F, K2P2O5F2,

3 Hg2PO3F,4 NaPF6 and KPF6,
5 the 

69,71Ga-19F 1
J-coupling in (NH4)3GaF6,

6  the 75As-19F 1
J-coupling in KAsF6,

7  [Mg(XeF2)4][AsF6]2, 

[Ca(XeF2)2,5][AsF6]2, [Ba(XeF2)3][AsF6]2 and [Ba(XeF2)5][AsF6]2,
8 the 93Nb-19F 1

J-coupling in K2NbF7,
9 

Cdpy4NbOF5, [pyH]2[Cdpy4(NbOF5)2] (py = C5H5N)10 and CsNbF6,
11 the 115In-19F 1

J-coupling in β-

(NH4)3InF6,
12,13 the 119Sn-19F 1

J-coupling in K2SnF6.H2O,14 the 121,123Sb-19F 1
J-coupling in KSbF6,

7 the 

129Xe-19F 1
J-coupling in XeF2,

15  [Mg(XeF2)4][AsF6]2, [Ca(XeF2)2,5][AsF6]2, [Ba(XeF2)3][AsF6]2 and 

[Ba(XeF2)5][AsF6]2,
8 the 207Pb-19F 1

J-coupling in α-16,17 (see 2.4) and β-PbF2
12,18 and the 209Bi-19F 1

J-

coupling in α-KBiF6.
19 Moreover, 207Pb-19F 1

J-couplings have been measured in Pb5Ga3F19
20 and β-

Pb2ZnF6
21 thanks to the multiple-quantum filtered J-resolved experiment22 and 19F-139La 1

J-couplings 

have been determined in RbLaF4 thanks to heteronuclear DQ-filtered J-resolved experiment.23 The 

reported results for solids2-23 or for molecules or ions (liquid state NMR)24-54 show that the reduced 

19F-X 1
J-coupling constants, �(��� − �) =


��(�����)

(��
��� ��)

, allowing to remove the nuclear dependence 

of the coupling by factoring out the gyromagnetic ratios of the spin coupled nuclei,55 increase with X 

atomic number in rows and columns of the periodic table.24 Then this coupling increases with the 

size of the electronic cloud of X and with the covalent character of the F-X bond.  

Except for 207Pb-19F and 19F-139La, the 19F-X 1
J-couplings are observed only for compounds 

containing isolated X(O)Fn ions. We then decided to study such compounds, KPF6 (see 4.3) and 

NaAsF6
56  (see 4.2), considering that precise structural determination remained to achieve. 

Unfortunately, 75As-19F 1
J-coupling calculations are not feasible at the moment; since the publication 

of the first results,1 calculations of J-couplings remain only possible between light elements (Z < 

20).1,57-62 A. Sadoc achieved 31P-19F 1
J-coupling calculations, in collaboration with J. R. Yates, 

Department of Materials, University of Oxford, but not on the low temperature (LT) phases of KPF6 

(see 4.3) since we have encountered difficulties in determining their precise structures. 
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ABSTRACT: We report the phase transition between the α-
and β-phases of NaAsF6 monitored by DTA, variable
temperature 19F solid-state NMR and temperature controlled
X-ray powder diffraction (XRPD) as well as their crystalline
structures determined from XRPD data. The structural type of
β-NaAsF6 has been determined thanks to 19F and 75As solid-
state NMR experiments. 19F, 23Na, and 75As NMR parameters,
including 19F−75As 1J coupling, have been measured for both
phases. The 19F, 23Na, and 75As solid-state NMR investigations
are in full agreement with both crystalline structures from a qualitative point of view. Chemical shielding tensors have been
calculated from the gauge including projector augmented wave approach. The electric field gradient tensors of 23Na and 75As
have been calculated in α-NaAsF6 from the all-electrons method and the projector augmented-wave approach. Two difficulties
were encountered: the libration of the rigid and regular AsF6

− anions in the β-phase, highlighted by the atomic anisotropic
displacement parameters for F, which leads to erroneous shortened As−F bond length, and the overestimation of the As−F bond
length with the PBE functional used in the density functional theory calculations. We show that both difficulties can be overcome
by full optimization and rescaling of the cell parameters of the crystalline structures. Additionally, a linear correlation is observed
between experimental 23Na δiso values and calculated 23Na σiso values from previously reported data and from our own
measurements and calculations.

1. INTRODUCTION

Over the years, solid-state nuclear magnetic resonance (NMR)
spectroscopy has become an important tool for structural
investigation of materials, giving a local insight into nucleus
surrounding that is complementary to the structural informa-
tion provided by diffraction techniques. As compared with
other NMR interactions, the J coupling, which is characteristic
of the chemical bond, has received far less attention because it
is usually so small in magnitude that it is masked by the line-
widths. Nevertheless, the scalar (isotropic) part of J coupling,
which is not averaged by magic angle spinning (MAS), can be
evidenced in many systems and exploited to characterize the
extended coordination sphere. In inorganic fluorides, some
large heteronuclear 19F−X 1J couplings are resolved on 1D
solid-state NMR spectra. This is the case for the 19F−75As 1J
coupling in KAsF6,

1 [Mg(XeF2)4][AsF6]2, [Ca(XeF2)2.5]-
[AsF6]2, [Ba(XeF2)3][AsF6]2, and [Ba(XeF2)5][AsF6]2,

2 which
contain isolated AsF6

5− ions.
In the past decade, the Gauge Including Projector

Augmented Wave (GIPAW) approach3,4 has been used to
compute chemical shielding and electric field gradient (EFG)

tensors using periodic boundary conditions. More recent work
has enabled the calculation of J-coupling between light
elements (Z < 20).5−11 Developments are in progress to
extend this approach to heavy elements.8 In this context, as
compounds with well characterized crystalline structures and
known J values will be required, our attention was focused on
the fluoride compound NaAsF6.
Recently, Zhang et al.12 have shown that the complex

between NaAsF6 salt and polyethylene oxide (PEO) exhibits at
25 °C an alkali ionic conductivity higher than the one of the
LiAsF6 analogue.

13 However, little is known about this sodium
hexafluoroarsenate. NaAsF6 displays a structural phase
transition, reported at 37 °C, from a low temperature
rhombohedral α form (PDF14 file 00-051-1767), adopting the
LiSbF6 structural type (space group R3 ̅),15,16 to a high
temperature cubic β form (PDF file 00-051-1768, space
group Fm3 ̅m). The cell parameters were determined for α-15
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and β-NaAsF6 (PDF14 file 00-051-1768), but no atomic
coordinates were reported for both polymorphs. In the present
article, the thorough structural analysis carried out on this
compound by solid-state NMR, X-ray powder diffraction
(XRPD), and density functional theory (DFT) calculations is
reported.
At first, the phase transition was investigated by differential

thermal analysis (DTA), variable temperature (VT) 19F solid-
state NMR, and temperature controlled XRPD. The refine-
ments of the crystal structures of α and β forms were
performed from X-ray diffraction data. For the β-phase, solid-
state NMR, which reveals the number of nonequivalent
crystallographic sites for each nucleus and provides information
about the local symmetry of these sites, supplies decisive
information in the selection of a structural model. Moreover,
19F, 23Na, and 75As NMR parameters have been determined and
calculated for both phases. Chemical shielding tensors have
been calculated from the GIPAW approach3,4 using the
CASTEP code.17 The nonrelativistic version of the GIPAW
Hamiltonian was sufficient, being only concerned by shielding
tensors of light elements (19F and 23Na). EFG tensors of 23Na
and 75As have been calculated in α-NaAsF6 from the all-
electrons (AE) method and the projector augmented-wave
(PAW) approach18,19 using the WIEN2k20,21 and CASTEP17

codes, respectively. Considering the low accuracy of atomic
positions of light elements from XRPD data and the high
sensitivity of DFT calculations to the structural data set,
structure optimizations, by minimization of the forces acting on
the nuclei, are usually necessary. The coupling of XRPD with a
precise determination of quadrupolar NMR parameters and ab
initio calculations of these NMR parameters has proven to be a
reliable way to improve atomic coordinate accuracy.22−32

Concerning NaAsF6, two difficulties are encountered: the
libration of the AsF6

− anions in the β-phase leading to short
As−F bond length and the overestimation of the As−F bond
length in relation with the functional used in the DFT
calculations. These difficulties can be overcome by full
optimization and rescaling of the cell parameters of the
crystalline structures.

2. EXPERIMENTAL SECTION

2.1. Sample. The NaAsF6 sample was purchased from
Sigma-Aldrich (lot number 223719). Prior to use, the phase
purity of the as-received powder was checked by XRPD at RT.
In addition to the diffraction lines of a major α-NaAsF6 phase
(PDF14 file 00-051-1767), an unknown impurity was
evidenced. Since fluorides are well-known to be hygroscopic,
an attempt to dehydrate the sample was carried out. Pure α-
NaAsF6 powder was finally obtained by heating at 190 °C for 9
h under vacuum the as-received sample, thus confirming that it
was partially hydrated. All characterizations reported hereafter
were therefore performed on freshly dehydrated powder.
2.2. Thermal Analysis. DTA was performed on a 102 mg

dehydrated powder sample of NaAsF6 with a TGA/DTA Q600
SDT TA Instruments apparatus (Pt crucibles, α-Al2O3 as a
reference) under nitrogen flow (100 mL/min) in the room
temperature (RT) 68 °C range (heating/cooling rate of 1 °C/
min).
2.3. Solid-State NMR Experiments. NMR experiments

were performed on a Bruker Avance 300 (7 T) spectrometer
operating at Larmor frequencies of 282.4, 79.39, and 51.39
MHz for 19F, 23Na, and 75As, respectively. A 19F optimized 2.5
mm CP-MAS probe head was used to perform all the

experiments, except the 23Na and 75As experiments with 19F
decoupling on β-NaAsF6, which were achieved with a 4 mm
CP-MAS probe. 19F, 23Na, and 75As chemical shifts are
referenced to CFCl3, 1 M NaCl aqueous solution, and 0.05
M NaAsF6 acetonitrile solution, respectively.
The VT (from 40 to 70 °C, at increasing and decreasing

temperature) 19F MAS Hahn echo spectra were acquired using
a 2.75 μs 90° pulse and an interpulse delay synchronized with
the rotor period. The recycle delays were set to 5 s, and 32
transients were accumulated. No change in NMR spectrum was
noted ∼30 min after changing the temperature, thus indicating
that the temperature of the sample is stable.
The 23Na MAS spectrum of the α-phase was acquired at a

spinning frequency of 20 kHz. The recycle delay was set to 1 s.
The linear regime was ensured by using short pulse duration (1
μs) at a radio frequency (RF) field strength of 62 kHz. For the
β-phase, a 23Na MAS Hahn echo spectrum was acquired with
19F continuous wave decoupling (nutation frequency of 58
kHz), at a spinning frequency of 5 kHz, using a pulse duration
equal to 12 μs (RF field strength equal to 21 kHz). For both
the spectra, the recycle delay was set to 5 s.
The 75As MAS Hahn echo spectra were recorded, without

and with 19F continuous wave decoupling (nutation frequency
of 40 kHz and 58 kHz for the α- and β-phase, respectively), at
spinning frequency of 20 kHz for the α-phase and at spinning
frequencies of 5 kHz and 25 kHz for the β-phase. The 75As
experiments were performed using, for the α-phase, a 6 μs pulse
(RF field strength equal to 40 kHz), and for the β-phase, a 10
μs pulse (RF field strength equal to 25 kHz) and a 14 μs pulse
(RF field strength equal to 18 kHz) at spinning frequencies of
25 kHz and 5 kHz, respectively. For all the 75As spectra, the
recycle delay was set to 5 s.
The temperature of the sample was calibrated for the 2.5 mm

and 4 mm probes, at the same spinning frequencies as in the
19F, 23Na, and 75As experiments, using the 207Pb isotropic
chemical shift of Pb(NO3)2.

33,34 The temperature gradient over
the dimension of the rotor was estimated by these experiments,
about 1 °C for the 4 mm probe at 5 kHz and 10 °C for the 2.5
mm probe at 25 kHz. All solid-state NMR spectra were fitted
by using the DMFit software.35

2.4. X-ray Powder Diffraction. Temperature-controlled
X-ray diffractograms were collected under flowing nitrogen at 1
°C intervals between 30 and 82 °C (heating rate of 1 °C/min)
using a PANalytical θ/θ Bragg−Brentano X’pert MPD PRO
diffractometer (CuKα1+2 radiations) equipped with the
X’Celerator multielements detector and a HTK 1200 Anton
Paar furnace attachment using an Al2O3 sample holder cup. To
determine the transition temperatures of NaAsF6 upon heating
and cooling, patterns were recorded in the [15−35°] scattering
angle range with a 0.0167° step for 15 min at each temperature
(with a prior temperature stabilization for 15 min). The crystal
structures of α- and β-NaAsF6 have been refined with the
Fullprof program36 by the Rietveld method37 from high
resolution diffractograms collected during 7 h in the [15−
130°] scattering angle range with a 0.0167° step at room
temperature and 74 °C, respectively.
Note that a temperature calibration of the HTK 1200 Anton

Paar furnace was carried out using the structural phase
transitions of VO2 (metal to insulator transition), Bi4V2O11

(α → β and β → γ), and of Ba2In2O5 (brownmillerite to
perovskite transition).38

2.5. Theoretical Calculations. The isotropic chemical
shielding is defined as σiso = (σxx + σyy + σzz)/3, σii being the
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principal components of the shielding tensor defined in the
sequence |σzz − σiso| ≥ |σxx − σiso| ≥ |σyy − σiso|. The isotropic
chemical shift is defined as δiso ≈ −[σiso − σref].
Several structural data sets were used for the calculations

with the CASTEP17 code: the experimental structures
determined from XRPD data (named IS in the following for
initial structures), the structures obtained after PBE (Perdew,
Burke, and Ernzerhof)39−DFT atomic position optimization
(APO structures), and the structures obtained after full
geometry optimization (FO structure, variation of both the
lattice parameters and atomic coordinates). Nevertheless, it is
well-known that the GGA (generalized gradient approxima-
tion) with the PBE functional overestimates interatomic bond
lengths and consequently cell parameters and unit-cell
volumes.40−53 In the present case, the overestimation was
well above the classically admitted values and to take this effect
into account, the optimized lattice parameters were rescaled to
the experimental volume but keeping atomic positions
unchanged, leading to a fourth structural data set (FO rescaled
structures). To obtain converged σ values, a plane wave basis
set energy cutoff of 700 eV was necessary using an ultrasoft
pseudopotential and a Monkhorst−Pack grid density approx-
imately equal to 0.04 Å−1 (corresponding to a k-point mesh of
6 × 6 × 6 for the primitive cells of the α- and β-phases) was
enough. For the electronic loops, the PBE functional39 was
used for the exchange-correlation potential. Geometries were
converged for total energy changes smaller than 1 × 10−6 eV,
minimizing the residual forces on the atom up to 10 meV·Å−1,
with a displacement convergence parameter of 5 × 10−4 Å and
a stress convergence parameter of 2 × 10−2 GPa.
The EFG at a nucleus arises from the distribution of charges

about it in space. For the nucleus having spin greater than 1/2,
i.e., quadrupolar nuclei, the quadrupolar frequency νQ, the
quadrupolar coupling constant CQ, and the asymmetry
parameter ηQ are related to the EFG tensor components
through the following equations: νQ = 3CQ/2I(2I − 1) with CQ

= eQVzz/h, and, ηQ = (Vxx − Vyy)/Vzz. The Vii are the
eigenvalues of the EFG tensor with the convention |Vzz| ≥ |Vyy|

≥ |Vxx|, e is the electronic charge, I the nuclear spin quantum
number, and h Planck’s constant. The corresponding
quadrupolar frequencies were calculated using the nuclear
quadrupolar moments reported by Pykko:54 Q(23Na) = 0.104 ×
10−28 m2 and Q(75As) = 0.314 × 10−28 m2.
EFG tensors were calculated for 23Na and 75As in both

phases using the PAW approach implemented in CASTEP17

and also the linearized augmented plane wave (LAPW) method
implemented in the WIEN2k20,21 package. For consistency with
the results obtained using the PAW method, the same PBE
functional was used in WIEN2k. The atomic sphere radii (RMT)
were set to 1.80 au and 1.82 au for Na and As and 1.30 au and
1.20 au for F in the α- and β-phases, respectively. The plane
wave cutoff was defined by RMTKMAX = 8. We use the same
Monkhorst−Pack scheme as for CASTEP. Two sets of
structures were used, the initial one and the WIEN2k APO
structure, obtained by minimizing the residual forces on the
atom up to 2 mRy/au (50 meV·Å−1).

3. RESULTS AND DISCUSSION

3.1. Phase Transition Monitored by DTA, Temper-
ature-Controlled XRPD, and VT 19F NMR. 3.1.1. DTA and
Temperature-Controlled XRPD. The DTA curve (Figure 1) of
NaAsF6 exhibits one endothermic peak on heating up and one
exothermic event on cooling down with a hysteresis of 16 °C. It

indicates that a reversible transformation takes place in NaAsF6
that we have ascribed from temperature-controlled XRPD
(Figure 2) to the first order α → β structural transition since
the diffraction diagrams at temperature higher than 61 °C on
heating up and higher than 42 °C on cooling down are in
agreement with the PDF14 file 00-051-1768 displayed for the β-
NaAsF6 phase. The starting temperature Tonset and the
temperature at the signal maximum that corresponds to a
conversion rate of 50% are reported for the α → β and β → α
transformations in Figure 1 and Table 1. On the temperature
controlled XRPD patterns (Figure 2), one can observe that,
with increasing temperature, the phase transition α → β starts
at 49 °C and ends at 61 °C (it is difficult to distinguish the α-
phase for higher temperatures), and with decreasing temper-
ature, the β → α phase transition starts at 42 °C (it is difficult
to distinguish the α-phase for higher temperatures) and ends at
35 °C. More precisely, the fraction of α-NaAsF6 at any
temperature upon heating and cooling was calculated from the
ratio between the integrated intensity55 of the (101) Bragg
reflection (2θ ≈ 20.2°) at this temperature and at room
temperature. Then, the starting temperature Tonset and the
temperature that corresponds to a conversion rate of 50% have
been also deduced from the XRPD data (Figure 2c) and are
reported, for the α→ β and β→ α transformations, in Table 1.

3.1.2. VT 19F NMR. The phase transition was also studied by
VT 19F NMR (Figure 3). α-NaAsF6 being isostructural with
LiSbF6,

56 it contains one F and one As crystallographic sites
and each F atom is neighbored by n = 1 As atom. Thereby, the
19F NMR spectrum of α-NaAsF6 recorded at 45 °C exhibits
four lines of equal intensities, i.e., a 1:1:1:1 quartet, arising from
the J-coupling between 19F and 75As (2nI + 1 lines with n = 1
and I = 3/2). The VT 19F NMR spectra confirm the occurrence
of a hysterisis and show that both α- and β-phases exist
simultaneously on a temperature range approximately equal to
20 °C. With increasing temperature, the phase transition starts
at ∼50 °C and ends at ∼70 °C, whereas with decreasing
temperature, the phase transition starts at ∼51 °C, and the β-
phase still exists at 41 °C. The 19F NMR spectrum of β-NaAsF6
recorded at 70 °C exhibits also four lines of equal intensities.

Figure 1. DTA curve of NaAsF6 recorded, under nitrogen flow (100
mL/min), from 22 to 68 °C (in red) and from 68 to 29 °C (in blue),
with heating/cooling rate of 1 °C/min. The starting temperatures
Tonset and the temperatures at the signal maxima that correspond to a
conversion rate of 50% are indicated.
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Then β-NaAsF6 also contains one F and one As crystallo-
graphic site and each F atom is neighbored by n = 1 As atom.
A fine agreement is observed between the transition

temperatures determined from DTA, temperature-controlled
XRPD and VT 19F NMR experiments (Table 1). Apart from
the Tonset on cooling down determined by VT 19F NMR, the
slight differences in temperature are of the same order of
magnitude than the uncertainties on temperature. Inhomoge-
neous temperature of the sample due to temperature gradient
(see experimental section) could be invoked to explain this
discrepancy. The single transition temperature reported in the
PDF14 files 00-051-1767 and 00-051-1768, i.e., 37 °C, is
actually the temperature of the β → α transition.
The fits (not shown) of the 19F MAS NMR spectra of α- and

β-NaAsF6 (Figure 3) lead to similar δiso and 19F−75As 1J-
coupling values (Table 2) for both phases, indicating similar
As−F and Na−F bond lengths in α- and β-NaAsF6. The
19F−75As 1J-coupling values in α- and β-NaAsF6 are also similar
to the previously reported ones in KAsF6 (905 Hz),1

[Mg(XeF2)4][AsF6]2 (920 Hz),2 [Ca(XeF2)2.5][AsF6]2 (930
Hz),2 [Ba(XeF2)3][AsF6]2 (946 Hz),2 and [Ba(XeF2)5][AsF6]2
(950 Hz).2

J-couplings would normally be difficult to observe in the 19F
MAS NMR spectra due to line broadening caused by the large
fluorine homonuclear dipolar couplings. The 19F MAS NMR
spectra of α- and β-NaAsF6 indicate fluorine motion since they
exhibit sharp lines (∼150 Hz), well-resolved quadruplets with
constant spacing between the peaks, and small spinning
sidebands (δaniso ≈ 50 ppm). Actually, 19F−X 1J couplings are
resolved on 1D solid-state NMR spectra in several compounds,
containing isolated XFn anions, where intranionic fluorine
motions have been evidenced: 19F−75As in KAsF6,

1 31P−19F in
NaPF6 and KPF6,

57 69,71Ga−19F in (NH4)3GaF6,
58 93Nb−19F in

K2NbF7,
59 115In−19F in (NH4)3InF6,

60 121,123Sb−19F in

Figure 2. Temperature-controlled XRPD patterns ([18−25°] 2θ range) of NaAsF6 recorded with increasing (a) and decreasing temperature (b).
The diagrams corresponding to α-, β-, and mixture of α- and β-NaAsF6 are represented in red, blue, and black, respectively. Temperatures at which
the transition starts and ends upon heating or on cooling are indicated. Temperature dependence of the fraction of α-NaAsF6 (c) upon heating (solid
circle) and cooling (open circle). The temperatures that correspond to a conversion rate of 50% are indicated.

Table 1. Transition Temperatures (°C) (Starting
Temperature (Tonset) and Temperature at the Signal
Maximum Corresponding to a Conversion Rate of 50%
(Tmax)) Determined by DTA, Temperature-Controlled
XRPD, and VT 19F NMR on Heating Up (α → β) and on
Cooling Down (β → α)

α → β β → α

Tonset Tmax Tonset Tmax

DTA 50 52 38 36

XRPD 49 54 42 41
19F NMR ∼50 ∼54 ∼51 ∼41

Figure 3. VT MAS (25 kHz) 19F NMR spectra of NaAsF6 on heating,
from 45 to 70 °C, and on cooling, from 70 to 41 °C. The spectra
corresponding to α-, β-, and a mixture of α- and β-NaAsF6 are
represented in red, blue, and black, respectively.

Table 2. Experimental 1J 19F−75As (Hz), 19F Experimental Isotropic Chemical Shifts (δiso,exp, ppm), Calculated Isotropic
Chemical Shieldings (σiso,cal, ppm), and Shifts (δiso,cal, ppm) from Initial Structure (IS) and after Atomic Position Optimization
(APO Structures), Full Geometry Optimization (FO structures), and Full Geometry Optimization with Rescaling of the Cell
Parameters (FO Rescaled Structures) in α-NaAsF6 and β-NaAsF6

σiso,cal δiso,cal

1J δiso,exp IS APO FO FO rescaled IS APO FO FO rescaled

α-NaAsF6 910 (±5) −78.5 (±0.2) 221.8 155.5 156.0 209.3 −88 −35 −36 −78

β-NaAsF6 910 (±5) −79.5 (±0.2) 277.8 174.1 160.6 233.2 −133 −50 −39 −98
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KSbF6,
1,57 and 209Bi−19F in KBiF6.

61 The width of the 19F
NMR line does not evolve between the α- and β-phases or with
temperature for each phase. In this small range of temperature,
the motion of fluorine atoms cannot be probed by powder VT
19F MAS NMR since the line width is much smaller than the
inverse of the correlation time τc for the motion. In α- and β-
NaAsF6, the fluorine motions partially average 19F−19F
homonuclear (and lower 19F−23Na and 19F−75As heteronu-
clear) dipolar interactions and 19F chemical shift anisotropy.
3.2. Crystal Structure Refinements. 3.2.1. α-NaAsF6 at

Room Temperature. XRPD diagram of the α-NaAsF6 phase
recorded at RT was satisfactorily fitted by the Le Bail method in
an hexagonal cell with the space group R3 ̅ (no. 148) reported
for LiSbF6.

56 The cell parameters are in good agreement with
those previously reported.15 Therefore, the atomic positions of
LiSbF6 were used as starting structural model for the Rietveld

refinement, replacing Li and Sb atoms by Na and As atoms,
respectively. Unit cell parameters, atomic coordinates of
fluorine atom and atomic isotropic displacement parameters
(IDPs) of all atoms were refined together, thus leading to
satisfactory reliability factors: Rwp = 9.3%, RBragg = 2.8%, and
Rexp = 3.3%. The refined parameters of the hexagonal cell are a
= 5.3375(5) Å and c = 13.9645(12) Å. Figure 4 shows the
observed, calculated, and difference diffraction patterns of α-
NaAsF6 at RT. Atomic positions and IDPs, bond valence
values,62 and structural features are gathered in Tables 3 and 4.

3.2.2. β-NaAsF6 at 74 °C. A full-profile pattern matching of
the XRPD diagram of the β-phase recorded at 74 °C leads to a
perfect agreement with the data displayed in the PDF14 file 00-
051-1768 confirming the Fm3 ̅m space group. The crystal
structure types of AIMVF6 compounds have been classified into
six main groups:16 the LiSbF6 type (rhomboedral, space group

Figure 4. Calculated (a), observed (b), and difference (d) diffraction patterns of α-NaAsF6 at RT (left) and β-NaAsF6 at 74 °C (right). Vertical
markers give Bragg peak positions (c).

Table 3. Site Symmetry, Atomic Coordinates (x, y, z), IDPs (Uiso, Å
2) or ADPs (Uxx, Å

2), and Calculated Bond Valence Deduced
from Rietveld Refinements for α- and β-NaAsF6 (Space Groups R3 ̅ (no. 148) and Fm3̅m (no. 225), Respectively)

sym. x y z Uiso U11 U22 U33 bond valence

α-NaAsF6
F 1 0.0402(8) 0.2763(9) 0.0713(4) 0.053(3) 0.99(3)

As 3 ̅ 0 0 0 0.035(1) 4.8(1)

Na 3 ̅ 0 0 1/2 0.042(3) 1.11(3)

β-NaAsF6
F 4mm 0.2068(6) 0 0 0.060(3) 0.156(4) 0.156(4) 1.17(3)

As m3 ̅m 0 0 0 0.040(1) 5.91(6)

Na m3 ̅m 1/2 1/2 1/2 0.051(2) 1.10(1)

Table 4. As−F and Na−F Bond Lengths (Å) for α- and β-NaAsF6 and F−Na−F, F−As−F, and Na−F−As Angles (deg) for α-
NaAsF6 from Initial Structure (IS) and after Atomic Position Optimization (APO Structures) using Wien2k and CASTEP and
Full Geometry Optimization (FO Structures) and Full Geometry Optimization with Rescaling of the Cell Parameters (FO
Rescaled Structures) using CASTEP

Wien2k CASTEP

bond lengths and angles IS APO APO FO FO rescaled

α-NaAsF6 As−F 1.702(5) 1.764 1.763 1.766 1.715

Na−F 2.303(4) 2.315 2.324 2.360 2.292

β-NaAsF6 As−F 1.626(5) 1.752 1.750 1.764 1.690

Na−F 2.305(5) 2.178 2.181 2.338 2.240

α-NaAsF6 F−Na−F 90.10(16), 89.90(16) 91.10, 88.90 91.31, 88.69 90.11, 89.89 90.11, 89.89

F−As−F 90.77(23), 89.23(23) 90.10, 89.90 90.08, 89.92 90.02, 89.98 90.02, 89.98

Na−F−As 148.9(3) 142.0 141.4 148.5 148.5
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R3̅), the NaSbF6 type (cubic, space group Fm3̅m), structures of
cubic APF6 and AAsF6 with orientational disorder of the M

VF6
−

anions (AgPF6 and CsPF6 types, space group Fm3 ̅m), the
tetragonal KSbF6 (T) types and similar structures, the AgSbF6
type and similar structures (cubic, space group Ia3 ̅), and, finally,
the KOsF6 type (rhombohedral, space group R3̅). Three of
these structural types adopt the cubic Fm3̅m space group:
NaSbF6, AgPF6, and CsPF6. In the AgPF6 structure, the fluorine
atoms reside on two distinct crystallographic sites (special
positions 24e and 48h), both sites having an occupancy factor
of 1/3.63 This leads to two sets of regular PF6

− octahedra
oriented in a different way and differing in P−F bond length.
Assuming that β-NaAsF6 isotypic with AgPF6 would then imply
two 19F resonances, two 75As resonances, and two different
19F−75As 1J coupling constants. In the CsPF6 structure,

63 the
fluorine atoms partially occupy a single crystallographic site
(special position 96k of the space group Fm3 ̅m with an
occupancy ratio of 1/4). This description of the orientational
disorder of the MVF6

− anions induces a large number of
differently oriented and distorted MVF6

− octahedra. Con-
sequently, the NaSbF6 structural type, which contains a single
fully occupied F crystallographic site and regular SbF6

−

octahedra, remains the only one that is consistent with the
solid-state NMR study of β-NaAsF6 showing a single isotropic
19F NMR line and, as shown below, 75As quadrupolar
parameters equal to zero indicating regular AsF6

− octahedra.
Therefore, the crystal structure of β-NaAsF6 has been refined

from XRPD pattern by the Rietveld method using the cubic
structure of NaSbF6

64 as a starting structural model. The atomic
IDPs of all the atoms were refined. This led to satisfactory
reliability factors but quite large atomic IDP for F (Uiso = 0.110
Å2), compared to Na and As atoms or to F atom in α-NaAsF6
(Table 3). The analysis of Fourier difference maps around the
fluorine sites give evidence for anisotropic electronic density
deformation (ellipsoidal shape). It confirms that the structures
of AgPF6 (two F crystallographic sites) and CsPF6 (F atoms on
a special position (96k) with an occupancy ratio of 1/4) were
effectively irrelevant. Subsequently, a second refinement

including atomic anisotropic displacement parameters (ADPs)
for fluorine atom leads to better reliability factors: Rwp = 7.8%,
RBragg = 1.9%, and Rexp = 3.2% (Figure 4). The refined cell
parameter is a = 7.8608(2) Å. Atomic positions, atomic IDPs
(required by site symmetry) for Na and As atoms and ADPs for
F atoms, and bond valence values62 are gathered in Table 3, and
the structural features are gathered in Table 4.

3.3. Crystal Structure Descriptions, AsF6
− Anion

Libration, and Phase Transition. 3.3.1. Crystal Structure
of α-NaAsF6. The structure of α-NaAsF6 (Figure 5) consists of
pseudo NaCl-type (6,6)-coordination arrangement of hexa-
fluoroarsenate and sodium ions. The Na+ ion is then 6-fold
coordinated by fluorine ions from six hexafluoroarsenate
groups. This structure could also be described as a distorted
derivative of the ReO3 structure since it consists of layers of
AsF6

− and NaF6
5− octahedra alternating along the hexagonal c-

axis of the structure. Because of the 3 ̅ local symmetry the AsF6
−

and NaF6
5− octahedra present only angular distortions that are

small in magnitude for both polyhedrons (Table 4). The As−F
bond length (Table 4) is shorter than the sum of the ionic radii
([6]AsV + [2]F− = 1.745 Å)65 but similar to As−F bond lengths
previously reported in crystalline structures containing such
AsVF6

− groups, for instance, in LiAsF6 (1.743 Å),66 KAsF6
(1.720 or 1.712 Å),67,68 RbAsF6 (1.713 Å),69 CsAsF6 (1.714
Å),69 AgAsF6 (1.660 and 1.689 Å),70 InAsF6 (1.709 Å),71 and
TlAsF6 (1.721 Å).71 The Na−F distance (Table 4) is in good
agreement with the sum of the ionic radii ([6]Na+ + [2]F− =
2.305 Å).65 The value of the Na−F−As angle (Table 4), which
characterizes the relative orientation of the AsF6

− and NaF6
5−

octahedra, indicates that the Na−F−As chain is not straight,
but bent (Figure 5). Actually, the AsF6

− and NaF6
5− octahedra

of two successive layers are tilted at ω = 21.6° from one to the
other around the 3-fold axis of the structure.

3.3.2. Crystal Structure of β-NaAsF6, AsF6
− Anion

Libration, and Phase Transition. β-NaAsF6 (Figure 5) adopts
the NaSbF6 type structure, which has the highest symmetry of
the AMF6 structures. This type is not widespread and was only
found for the sodium hexafluorometallates of transition metals

Figure 5. Structural view of α-NaAsF6 (left) and β-NaAsF6 (right). Thermal ellipsoids at 50% probability of Na+ (orange), As5+ (blue), and F−

(green) atoms are drawn. Thermal ellipsoids are drawn for atoms at 50% probability level. The AsF6
− anions and NaF6

5− octahedra are represented
in blue and orange, respectively.
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with limited ionic radii of 0.72−0.78 Å, with the exception of
NaPF6

63 in spite of the small size of the phosphorus atom.16 β-
NaAsF6 is then the second exception with an ionic radii of 0.60
Å for [6]AsV. β-NaAsF6 contains a NaCl type arrangement of
the Na+ cations and AsF6

− anions and could also be described
as an A deficient double perovskite (A2BB′O6) structure with
regular AsF6

− and NaF6
5− octahedra. Contrary to what is

observed in the RT α-phase, the 1:1 cation ordering in the β-
phase occurs along the three crystallographic axes of the
structure. No more tilting of the octahedra is observed, the
Na−F−As chain being straight and the Na−F−As angle being
equal to 180°. While the Na−F distance in the α- and β-phases
(Table 4) are similar, the As−F bond length in the latter is
shorter than those observed in the former and in previously
reported crystalline structures (see section 3.3.1). The As−F
bond length in β-NaAsF6 is then undoubtedly erroneous as
shown by the similar δiso and 19F−75As 1J-coupling values
(Table 2), indicating similar As−F and Na−F bond lengths in
α- and β-NaAsF6. Moreover, bond valence calculations (Table
3) confirm that the average As−F bond length is not correctly
determined, being much too short. Looking at the fluorine site
(Table 3), large atomic ADPs may represent either atomic
motion or possible static displacive disorder. The first
assumption is retained since the 19F MAS NMR spectrum
(Figure 3) of β-NaAsF6 shows a well-resolved quadruplet of
sharp NMR lines and then indicates fluorine motion (see
section 3.1.2). The second assumption is excluded since this
spectrum does not show any signs of static disorder for the
fluorine atoms, i.e., δiso distribution. In addition, from 75As
solid-state NMR, the AsF6

− octahedra are found to be regular
ones (see below). Consequently, the unusual atomic ADPs for
F originate from an orientational disorder of these rigid and
regular octahedra and support the assumption of AsF6

− anions
libration. Actually, it cannot be excluded from the NMR results
that F motions are not correlated, i.e., individual As−F bonds
could be librating independently, but this is less chemically
plausible. One can notice that fluorine atoms are located on the
4-fold symmetry axes of the AsF6

− octahedron (4mm point
group) with a higher local symmetry on the arsenic site (m3 ̅m
point group). Consequently, the atomic displacement param-
eter is isotropic in nature for the arsenic atom, while the oblate
spheroid of thermal vibration for fluorine atom is oriented in a
plane orthogonal to the 4-fold symmetry axes (Figure 5). When
fluorine atoms are moving away, orthogonally from the 4-fold
axes, an elongation of the As−F bond necessarily takes place
(Figure 6). Thus, the average As−F bond length reduction is
only apparent, the real one being effectively longer and the
Na−F−As angle being smaller than 180°.
In α-NaAsF6, the libration of the AsF6

− octahedra does not
affect the tilting of the AsF6

− and NaF6
5− octahedra, the system

maintaining a distortion from cubic symmetry to rhombohedral
R3̅ symmetry. The libration of the AsF6

− octahedra increases
with temperature and a fluctuation induced first-order phase
transition takes place; the phase now appears cubic on average,
although a snapshot of the structure would reveal bent As−F−
Na bonds.
3.4. 23Na and 75As Solid-State NMR Study. 3.4.1. 23Na

Solid-State NMR Study. A 23Na MAS NMR spectrum has been
recorded for α-NaAsF6 (Figure 7). For β-NaAsF6, the

23Na site
having a cubic symmetry, the quadrupolar parameters are equal
to zero. Consequently, the effect of the 23Na−19F heteronuclear
dipolar interaction is no more negligible, especially at low MAS
frequency. Then, a 23Na MAS Hahn echo spectrum has been

acquired with 19F decoupling in order to reduce (by a factor 3)
the line broadening (Figure 7). The fit of these experimental
spectra allows the determination of the 23Na NMR parameters.
The δiso values are equal to −16.6 ppm and −18.0 ppm in α-
and β-NaAsF6, respectively. For α-NaAsF6 (Table 5), the small
value of νQ is in agreement with the slightly distorted NaF6

5−

octahedron, and the ηQ value equal to zero is in agreement with
the 23Na site symmetry (3 ̅). The correlation time for the
fluorine motion in α-NaAsF6 is not sufficiently short for
averaging the 23Na quadrupolar interaction for which a nice
agreement is obtained between experimental and calculated
(see section 3.5.2) quadrupolar frequencies. The 23Na NMR
spectrum of the β-phase is fitted using quadrupolar parameters
equal to zero in agreement with the high symmetry of the
sodium site (m3 ̅m). Nutation frequency measurements confirm
that the quadrupolar frequency is negligible.

3.4.2. 75As Solid-State NMR Study. 75As MAS Hahn echo
spectra have been recorded, with and without 19F decoupling,
for the α- and the β-phases (Figure 8). As the nuclear spin of
19F is I = 1/2 and as each arsenic atom is bounded to n = 6
equivalent fluorine atoms, due to the J-coupling between 19F
and 75As, the 75As signal is split into seven (2nI + 1) lines, i.e., a
septet, with intensity ratios 1:6:15:20:15:6:1, on the 75As
spectra recorded without 19F decoupling. The fits of these
spectra allowed us to determine the 75As NMR parameters in α-
and β-NaAsF6 (Figure 8, Table 5). The 19F−75As 1J-coupling
values, 900 (±20) Hz and 900 (±10) Hz for α- and β-NaAsF6,
respectively, determined from the 75As spectra recorded
without 19F decoupling are in agreement with the J-coupling
values determined from 19F NMR. The δiso values are equal to
−11.2 ppm and −12.9 ppm in α- and β-NaAsF6, respectively.
For α-NaAsF6, the asymmetry parameter is equal to zero in
agreement with the 75As site symmetry (3 ̅). The 75As
quadrupolar interaction is also not averaged by the fluorine
motion in α-NaAsF6. The

75As NMR spectra of the β-phase
confirm that the AsF6

− octahedron is regular (site symmetry
m3 ̅m) since quadrupolar parameters are equal to zero. As
previously outlined, this result, combined with the single 19F
NMR line, allowed us to assume that β-NaAsF6 adopts the
NaSbF6 type.

3.5. Ab Initio Calculations. 3.5.1. 19F Isotropic Chemical
Shielding. The 19F σiso values (Table 2) were calculated using
the CASTEP code. The need for a significant scaling factor
between σiso values and δiso values has been observed in GIPAW

Figure 6. Representation of an AsF4 plane of an AsF6
− anion and a Na

atom. The circles represent the atoms. The star indicates the average
position of the F atom.
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studies of 19F.10,72,73 The 19F δiso values were estimated by using
the reliable linear correlation δiso (ppm) = −0.80(3)σiso +
89(9).73 In a first step, the σiso values were calculated from
crystalline structures determined by XRPD (named initial
structure (IS) in the following). The agreement between
experimental and calculated 19F δiso values is acceptable for the
IS of α-NaAsF6 but not for the IS of β-NaAsF6. This is not
surprising for the β-phase since the As−F bond length is too
short, the chemical shift (shielding) being strongly correlated to
the first neighbor bond lengths.
In a second step, the atomic positions were optimized (APO

structures) but those two structures lead to bad agreements
(Table 2). Table 4 gathers the As−F and Na−F bond lengths
for both phases, before and after structure optimizations.
Looking at the α-phase, the As−F bond length is overestimated
by about 3.5% that is greater than the classical overestimation
observed with the PBE functional.40−53 This optimized As−F
bond length (1.76 Å) is effectively significantly longer than the
average As−F bond length (1.71 Å) found for the previously
reported structures (see section 3.3.1). This leads to a chemical
shift much too small in absolute value (−35 ppm) compared to
the experimental one (−78.5 ppm). On the β-phase, the
deviation compared to IS is larger (7.6%) due to the fact that
the experimental As−F bond length (1.63 Å), which results

from the structural disorder discussed previously, is erroneous.
The Na−F bond length slightly increases in the APO structure
of α-NaAsF6 but decreases dramatically in the APO structure of
β-NaAsF6 since the sum of the Na−F and As−F bond lengths,
which is equal to a/2, and the Na−F−As angle, which is equal
to 180°, are fixed. In the APO structure of α-NaAsF6, the Na−
F−As angle decreases noticeably (Table 4) allowing both Na−
F and As−F bond lengths to increase.
In a third step, full geometry optimizations were achieved

(FO structures), but it also leads to unsatisfactory agreements
concerning the 19F δiso values for both phases (Table 2). The
reasons are the same as those explained above, i.e., too long
As−F bond lengths. Compared to initial structures, both the
As−F and Na−F bond lengths are now increased. In α-NaAsF6,
the Na−F−As angle does not evolve significantly (148.5°)
indicating that its decrease in the APO structure is caused by
the overestimation of the As−F bond length. The cell
parameters and unit-cell volumes are especially overestimated
for both phases: 3.3%, 2.2%, and 9.1% for a, c, and volume,
respectively, in FO α-NaAsF6 and 4.4% and 13.7% for a and
volume, respectively, in FO β-NaAsF6 (see Supporting
Information). Indeed, GGA-PBE usually overestimates the
bond lengths by 1−2% and the equilibrium volumes by 3−6%.
Finally, as already done to take this effect into

account,42,43,46,47,50,51,53 the optimized lattice parameters were
rescaled to the experimental volume but keeping atomic
positions unchanged (FO rescaled structures). A perfect
agreement between experimental and calculated 19F δiso values
is then obtained for α-NaAsF6. Now, both As−F and Na−F
bond lengths seem reasonable in the FO rescaled structure of
α-NaAsF6. However, the Na−F bond length seems quite short
in the FO rescaled structure of β-NaAsF6, but this structure
presents the most realistic set of bond lengths and leads to the
best agreement between experimental and calculated 19F δiso
values.

3.5.2. 23Na and 75As Quadrupolar Parameters. The
quadrupolar parameters were calculated for 23Na and 75As, in
both the phases, using the CASTEP and WIEN2k codes. Only
the IS and APO structures were considered for the latter. As
expected, they are found equal to zero in the β-phase. The
calculated quadrupolar frequencies are reported for α-NaAsF6
in the Table 5. A good agreement with the experimental

Figure 7. Experimental (Exp.) and fitted (Fit.) 23Na MAS (20 kHz) NMR spectra of α-NaAsF6 at 35 °C (left) and 23Na MAS (5 kHz) Hahn echo
spectra of β-NaAsF6 at 70 °C (right).

Table 5. 23Na and 75As Experimental and Calculated νQ
a

(kHz) from Initial Structure (IS) and after Atomic Position
Optimization (APO Structures) using CASTEP and Wien2k
and after Full Geometry Optimization (FO structure) and
Full Geometry Optimization with Rescaling of the Cell
Parameters (FO Rescaled Structures) using CASTEP in α-
NaAsF6

b

Wien2k CASTEP

exptl IS APO IS APO FO
FO

rescaled
23Na −106(5) −105 −17 −122 −11 −97 −94
75As −410(10) −2061 −372 −1483 −413 −401 −387

aSince only the absolute value of νQ can be determined from NMR
experiments on powdered samples, the sign of the experimental νQ is
set to the sign of the calculated νQ.

bExperimental and calculated ηQ
values are all equal to zero.
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quadrupolar frequencies is obtained for 23Na with the IS, FO,
and FO rescaled structures and for 75As considering the APO,
FO, and FO rescaled ones. Because of the symmetry of the
23Na and 75As sites (3 ̅), Vxx = Vyy, and the Vzz directions lie
along the 3-fold axis, parallel to the c-axis (Figure 9). In such

cases, the angular distortion is measured through one parameter
defined as α = 1/6∑i = 1

6 αi − 90° where αi are the six angles
between two adjacent M−F bonds involving fluorine atoms
belonging to octahedron faces orthogonal to the Vii direction.

29

A negative (positive) angular distortion is expected to
correspond to a charge concentration (depletion) in the Vzz

direction and then to a negative (positive) Vzz value. For α-
NaAsF6, all the quadrupolar frequencies, i.e., Vzz values, are
negative (Table 5), whereas the six angles between two
adjacent M−F bonds involving fluorine atoms belonging to
octahedron faces orthogonal to the Vzz direction are lower than
90° for both nuclei before optimization but higher than 90°
after optimization (see Supporting Information). For 75As, the
disagreement is probably due to the very small value of the
angular distortion after optimization (Table 4), which makes
the expectation questionable. Moreover, considering absolute
values, angular distortion (Table 4) and quadrupolar frequency
(Table 5) both decrease after optimization, and the agreement
is fine whatever the considered optimized structure. However,
the EFG at the 23Na nucleus is not quantitatively sensitive to
the angular distortion (F−Na−F angle) of the NaF6

5−

octahedra since the largest (smallest) angular distortions
correspond to the smallest (largest) νQ values (Tables 4 and
5). Indeed, the EFG at the 23Na nucleus is sensitive to the Na−
F−As angle, i.e., to the orientation of the AsF6

− units (the Na
and As atoms are both located on special positions, and
consequently, the Na−As distances and As−Na−As angles
remain the same as long as the cell parameters do not evolve).
As shown by these calculations, the relative orientation of the
AsF6

− units and the Na+ ion is properly described in the IS and
FO structures. This proves again that the increase of the As−F
bond lengths in the APO structures, leading to the Na−F−As
angle decrease, is not realistic. In conclusion, the 19F σiso and
23Na and 75As EFG calculations show that the best description
of the structures of the α- and β-phases are obtained from the
FO rescaled structures.

3.5.3. 23Na Isotropic Chemical Shielding. The 23Na σiso
values calculated for α- and β-NaAsF6 (Table 6) show that the
23Na σiso values globally increase with the Na−F bond length
(Table 4). 23Na σiso calculations have been reported in sodium

Figure 8. Experimental (Exp.) and fitted (Fit.) 75As MAS Hahn echo NMR spectra of α-NaAsF6 (a,b) at 35 °C and a spinning frequency of 20 kHz
and of β-NaAsF6 (c,d) at 70 °C and a spinning frequency of 25 kHz (c) and 5 kHz (d), recorded without (a,c) and with 19F decoupling (b,d).

Figure 9. Orientation of the calculated 23Na and 75As EFG tensors in
the FO rescaled structure of α-NaAsF6. The vector lengths are
proportional to the magnitude of the contributions.
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silicate43 (Table 6) and in sodium phosphate.53 In the first
study,43 the calculations were achieved on FO rescaled
structures. A linear regression, with the constraint of unity
slope, is reported between calculated 23Na σiso values and
experimental 23Na δiso values

74,75 (δiso (ppm) = −σiso + 549.83),
whereas a linear regression without constraint would have led
to an absolute value of the slope smaller than unity (δiso (ppm)
= −0.764σiso + 424). In the second study,53 one of the sites of
the NaH2PO4 compound was adopted as internal reference for
the prediction of the 23Na δiso values from the 23Na σiso values,
and unfortunately, the calculated 23Na σiso values are not
reported. A linear regression, between experimental 23Na δiso
values and calculated 23Na σiso values reported in Table 6, is
shown in Figure 10: δiso (ppm) = −0.811(13)σiso + 449(7). For
α- and β-NaAsF6, we decided to use the calculated 23Na σiso
values obtained from the initial structures since both the Na−F
bond lengths seem correct only for this set of structures, but for
the α-phase, the data obtained from the FO rescaled structure
could also have been used. The agreement obtained for the
linear correlation is remarkable. More data points are certainly
required to ascertain this linear correlation before using it, but
this result is promising for the prediction of 23Na δiso values.

4. CONCLUSIONS

The fluctuation-induced first-order phase transition occurring
between the α- and β-phases of NaAsF6 has been monitored by
DTA, VT 19F solid-state NMR, and temperature-controlled
XRPD. The crystalline structures of α- and β-NaAsF6 have been
determined from XRPD data. The structural type of β-NaAsF6
has been unambiguously determined thanks to 19F and 75As
solid-state NMR experiments. The 19F, 23Na, and 75As solid-
state NMR investigations are in full agreement with both
crystalline structures from a qualitative point of view (number
and symmetry of the crystallographic sites). Nevertheless, the
refinement of the structure of the β-phase leads to a shorter
As−F bond length, whereas 19F δiso and 19F−75As J-coupling
values are similar in both phases indicating similar As−F bond
lengths. This erroneous short As−F bond length is due to
AsF6

− anion libration in agreement with the 19F and 75As solid-

state NMR study and the atomic ADPs for F indicating a
disorder of the orientation of the regular AsF6

− octahedra.
This incorrect As−F bond length in β-NaAsF6 prevents

precise calculation of the 19F δiso value from the experimental
structure. Moreover, an overestimation of the As−F bond
lengths by the PBE functional, leading to unusual cell
parameter expansions, prevents precise calculations of the 19F
δiso values in α- and β-NaAsF6 after PBE-DFT atomic position
and full optimizations. Rescaling the cell parameters allows
overcoming this difficulty and leads to a better agreement
between experimental and calculated 19F δiso values in α- and β-
NaAsF6. The overestimation of the As−F bond lengths by the
PBE functional leads, in APO structures of α-NaAsF6, to
erroneous Na−F−As angle values while the EFG at the 23Na
nucleus is sensitive to this angle, i.e., to the orientation of the
AsF6

− units. Then, the 23Na quadrupolar frequency is not
correctly reproduced with APO structures of α-NaAsF6. The
75As EFG is sensitive to the angular distortion of the AsF6

−

octahedra, which is too large in the initial structure. After
optimization, angular distortion decreases, and the agreement
between experimental and calculated 75As quadrupolar
frequency is fine whatever the considered optimized structure.
The best compromises between 19F σiso and

23Na and 75As EFG
calculations are then obtained from the FO rescaled structures.
This work illustrates the great potential in combining XRPD,

multinuclear NMR, and DFT calculations to determine
structures and to refine the atomic positions of crystalline
compounds, even for β-NaAsF6 in which AsF6

− anions libration
occurs.
Additionally, from previously reported data43 and from our

own measurements and calculations, a linear correlation is
observed between experimental 23Na δiso values and calculated
23Na σiso values.

Table 6. 23Na Experimental Isotropic Chemical Shifts
(δiso,exp, ppm) and Calculated Isotropic Chemical Shieldings
(σiso,cal, ppm), from Full Geometry Optimization with
Rescaling of the Cell Parameters (FO Rescaled Structures),
in Na2SiO3 and α- and β-Na2Si2O5, and from Initial
Structure (IS), after Atomic Position Optimization (APO
Structures), after Full Geometry Optimization (FO
structure), and Full Geometry Optimization with Rescaling
of the Cell Parameters (FO Rescaled Structures) using
CASTEP in α-NaAsF6 and β-NaAsF6

σiso,cal

δiso,exp IS APO FO
FO

rescaled

α-NaAsF6 −16.6(0.5) 572.95 573.91 579.65 571.64

β-NaAsF6 −18.0(0.5) 576.39 562.77 582.54 569.58

Na2SiO3 22.1(0.5)a 525.71c

α-Na2Si2O5 16.9(1.0)b 532.49c

β-Na2Si2O5:
Na1

15.6(1.5)b 534.87c

β-Na2Si2O5:
Na2

9.4(1.5)b 542.25c

aFrom ref 75. bFrom ref 74. cFrom ref 43.

Figure 10. Calculated 23Na σiso values for FO rescaled structures of
Na2SiO3, α- and β-Na2Si2O5,

43 and IS structures of α- and β-NaAsF6
versus experimental 23Na δiso values. The dashed line represents the
calculated linear regression whose equation is given.
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4.3 KPF6 

4.3.1 Introduction 

Hexafluorophosphates (V) of univalent metals M(I)P(V)F6 (M = Li, Na, K, Cs, Ag, In, Tl), except 

LiPF6
63 which has a rhomboedral lattice (space group n°148, �3�, LiSbF6 type64), have cubic lattices 

(space group n°225, ��3	��) at room temperature (RT). The array of cations and anions is rock salt 

type, variation of the structure arising from the orientations of PF6
- anions. Only NaPF6 structure65 

appears to be ordered. PF6
- anions in other compounds demonstrate different kinds of orientational 

disordering, i.e. threefold in AgPF6
65,66 (two F sites, both with occupancy equal to 1/3), fourfold 

orientational disordering in KPF6,
65 CsPF6,

65 and TlPF6
67 (1 F site with occupancy equal to 1/4) and 

eightfold orientational disordering in InPF6
67 (1 F site with occupancy equal to 1/8). These 

differences represent just a distinction in formal description of disordered anion. 

The 31P-19F 1
J-coupling values range, in 

hexafluorophosphates and fluorophosphates, from ~720 

Hz to ~1070 Hz (Table 1). Two slightly different 31P-19F 1
J-

coupling values have been reported for KPF6.
5,68 

Numerous studies (single crystal and powder X-Ray 

diffraction, DSC, vibrational spectroscopy, 

NMR,...) 69 , 70 , 71 , 72 , 73 , 74 , 75  have been devoted to the 

polymorphism of KPF6. An ordered rhombohedral phase 

occurs at high pressure75 (phase IV, KOsF6 structure type64). The results, in particular those obtained 

at lower temperatures are, however, to a high degree inconsistent. The structures proposed for the 

RT and the LT phases and the values of the corresponding transition temperatures vary significantly 

between the various groups of authors. The value of the temperature of the cubic-non cubic 

transition varies from about 0 °C to about -25 °C. Several authors have produced evidence for a 

second phase transition at lower temperatures, others mention coexisting phases or point out 

effects of the thermal history or presume that the conditions of sample preparation, the sample 

purity or whether it is very dry (i.e. pumped at 10-4 Pa for 24 hours) or still slightly damp following 

purification influence the structural behavior of KPF6. According to Huber et al.
74 which investigated 

KPF6 by X-ray powder diffraction, calorimetry and Brillouin spectroscopy, three crystallographic 

phases occur: the RT cubic (I) phase (space group n°225, Fm3�m) and two LT monoclinic phases: 

Table 1. 31P-19F 1J-coupling values (Hz) 

NaPF6 724 (± 12)5 
KPF6 743 (± 12)5 or 74768 
K2PO3F  -830 (±60)3 

β-Na2PO3F -790 (±60)3 

BaPO3F -810 (±60)3 

K2P2O5F2 P1: -784 (±50)  
P2: -800 (±50)3 

Hg2PO3F -10724 
Ag2PO3F -1045(± 20)2 
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phase II, space group n°15, setting A2/n, a = 9.582 Å, b = 5.390 Å, c = 18.131 Å, β = 101.037°, and 

phase III, space group n°15, setting C2/n, a = 9.423 Å, b = 4.9058 Å, c = 9.466 Å and β = 103.35° (both 

from powder diffraction with synchrotron radiation).73 From DSC measurements on single crystal, 

the phase transition I-II occurs at -17 °C on cooling and at -13 °C on heating, whereas the phase 

transition II-III occurs between -45 °C and -65 °C on cooling and at -22 °C on heating. LT 

rhombohedral phases have been reported below -25 °C and in the temperature ranges [-18 °C, 7 °C] 

and [-33 °C, 2 °C] in the PDF76 files 00-007-0317,69 00-052-1827 (space group n°148, R3�) and 00-052-

1828 (space group n°148, R3�), respectively. Another monoclinic phase has also been reported, 

occurring below -33 °C (space group n°14, P21/c), in the PDF76 file 00-052-1829. Although the cell 

parameters are reported for all the different phases exhibited by KPF6, the atomic co-ordinates are 

reported only for the RT65 and the high pressure phases.75 Since atomic co-ordinates are required for 

the calculation of NMR parameters, we planned to determine precisely the crystalline structure, 

expected to be less symmetric and ordered, of the first LT phase of KPF6.  

4.3.2. Differential scanning calorimetry, temperature controlled X-Ray 

powder diffraction and variable temperature solid-state NMR study. 

The study of KPF6 by differential scanning calorimetry (DSC) shows the occurrence of two 

phase transitions (Fig. 1, left), one at -14 °C on cooling (phase I → phase II) and -12 °C on heating 

(phase II → phase I) and one at -48 °C on cooling (phase II → phase III) and at -19 °C on heating 

(phase III → phase II), in agreement with Huber et al.
74 Nevertheless, a careful examination of this 

curve reveals a small peak, on cooling only, at ~ -10 °C. Further DSC experiments (Fig. 1, right) were 

then achieved at a lower heating/cooling rate, in the range RT to -12 °C, in order to avoid the phase 

I→ phase II transition, showing that a reversible phase transition occurs at ~-10 °C. Whereas on 

heating the phase II seems to transform directly in phase I, on cooling, an intermediate phase can be 

detected between -10 °C and -14 °C. 

Temperature controlled X-Ray powder diffraction (XRPD) diagrams recorded under partial 

vacuum (∼100 mbar) confirm the occurrence, on cooling, of three phases and consequently the 

occurrence of two phase transitions in the RT to -20 °C range (Fig. 2). Moreover these diagrams 

allow confirming the occurrence of an intermediate phase, mainly evidenced by the splitting of the 

[222] (2θ = 40°) and [224] (2θ = 58°, Fig. 3) Bragg reflections of the cubic phase. Moreover, these 

diagrams indicate that, on heating, phase II does not transform directly in phase I. As on cooling, the 

intermediate phase occurs on a small range of temperature (Fig. 2 and Fig. 3). The temperatures of 
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transition being closer on heating, the transition phase II → intermediate phase certainly hides the 

transition intermediate phase → phase I on DSC curves and only one transition is detected in the RT 

to -20 °C range. 

  

Fig. 1. DSC curves of KPF6 recorded from 40 °C to -100 °C and from -100 °C to 400 °C (heating/cooling 
rate of 5 °C/min, left) and from RT to -12 °C and from -12 °C to RT (heating/cooling rate of  

0.2 °C/min, right). The temperature at the signal maxima are indicated. 

 
 

Fig. 2. Temperature controlled XRPD diagrams ([16−64°] 2θ range) of KPF6 recorded on cooling 
from RT to -20 °C (left) and on heating from -20 °C to RT (right).  
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Fig. 3. Temperature controlled XRPD diagrams ([56.5−59.5°] 2θ range) of KPF6 recorded on cooling 
from RT to -20 °C (left) and on heating from -20 °C to RT (right). 

 

High resolution XRPD diagrams have been recorded at -13 °C and -20 °C. Using the Fullprof 

program,77 full profile pattern matching of the diagram recorded at -20 °C allows confirming the 

space group (A2/n) of the phase II and determining its cell parameters (a = 9.5866 Å, b = 5.394 Å, c = 

18.1411 Å and β = 101.05° at -20 °C, Fig. 4) which are in fine agreement with those determined by 

Fitch et al.
73 Full profile pattern matching of the diagram recorded at -13 °C allows determining the 

space group and the cell parameters of this phase which is rhombohedral (space group R3�, 

hexagonal cell: a = 5.481 Å and c = 13.489 Å, Fig. 5) and which seems to adopt the LiSbF6 type.64  

  

Fig. 4. Profile pattern matching diagram of the 
phase II of KPF6. The diagram shows calculated 
(red), observed (black), and difference (green) 

diffraction patterns. Vertical markers give Bragg 
peak positions. Rwp = 11.9 %, Rexp = 4.9 % and 

RBragg = 9.8 %. 

Fig. 5. Profile pattern matching diagram of the 
rhombohedral phase of KPF6. The diagram shows 
calculated (red), observed (black), and difference 

(green) diffraction patterns. Vertical markers 
give Bragg peak positions. Rwp = 9.0 %, 

 Rexp = 3.9 % and RBragg = 8.4 %. 
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Temperature controlled XRPD experiments were previously conducted under high vacuum, in 

Nantes by F. Boucher. In such conditions, the transition phase I - phase II starts, on cooling, at nearly 

the same temperature but spreads on a larger range of temperature. A XRPD diagram of a pure 

phase II similar to the one recorded on partial vacuum at -20 °C (Fig. 4) is obtained only at -120 °C. It 

confirms the influence of the experimental conditions on the phase transition temperature of KPF6. 

Attempts to determine atomic 

positions of these two LT phases of 

KPF6 have so far been unsuccessful. 

We assume it is due to the libration of 

PF6
- anions.  

The 19F and 31P spectra (Fig. 6 

and Fig. 7) recorded at RT confirm the 

presence of 1 F site and 1 P site in the 

phase I of KPF6. As the RT structure of 

KPF6 contains one F and one P site 

and as each fluorine atom is linked to 

one P (I = ½) atom, due to the 1
J-

coupling between 19F and 31P, two 

lines with equal intensities, i.e. a 

doublet, is observed on the 19F NMR 

spectrum (Fig. 6). As the nuclear spin 

of 19F is I = 1/2 and as each 

phosphorous atom is linked to 6 

equivalent fluorine atoms, due to the 

J-coupling between 19F and 31P, a 

septet is observed on the 31P 

spectrum of the RT phase recorded 

without 19F decoupling (Fig. 7). 

 

 

Fig. 6. Experimental (Exp.) and fitted (Fit.) 19F MAS NMR spectra 
of KPF6 recorded without 31P decoupling at 60 °C (top, νR = 30 
kHz) and at -25 °C (bottom, νR = 25 kHz). The double arrows 

represent the 31P-19F 1
J-couplings.  

 

Fig. 7. Experimental (Exp.) and fitted (Fit.) 31P MAS  (νR = 30 kHz) 
NMR spectra of KPF6 at 60 °C recorded without (bottom) and 

with 19F decoupling (top). The double arrow represents the 31P-
19F 1

J-coupling. 
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The phase transitions 

were also studied by 19F and 31P 

variable temperature (VT) NMR. 

The VT 19F solid state NMR 

spectra (Fig. 8) of KPF6 were 

recorded from RT to -25 °C with 

decreasing temperature and 

thereafter with increasing 

temperature. They confirm the 

occurrence of, at least, one 

phase transition in this 

temperature range. Moreover, 

the spectra recorded below  

-15 °C showing four lines (two 

doublets), the phase II of KPF6 

contains two F sites of same 

multiplicity. Due to the gradient 

of temperature of the sample 

inside the rotor (~10 °C, see 

4.3.3.2) it seems impossible to 

observe the spectrum of the 

pure rhombohedral phase and 

the three phases may coexist 

between -7 °C and -15 °C. The 

31P NMR spectra of the phase II 

of KPF6 (at -21 °C) recorded with 

and without decoupling (Fig. 9) 

show that this phase contains 

also 2 P sites of same 

multiplicity.  

The 19F and 31P δiso values and the 19F -31P 1
J-coupling values determined from the 

reconstruction of their respective spectra are gathered in Table 2. The 19F -31P 1
J-coupling values are 

 

Fig. 8. VT 19F MAS  (νR = 25 kHz, except at 60 °C, 30 kHz) NMR 
spectra of KPF6 recorded from RT to -25 °C and from -25 °C to  

-5 °C. The spectra corresponding to RT, phase II and a mixture of 
phases of KPF6 are represented in blue, red, and black 

respectively. 

 

Fig. 9. Experimental and fitted 31P MAS (νR = 25 kHz) NMR 
spectra of KPF6 with (top) and without 19F decoupling (bottom) at 

-21 °C. The double arrows represent the 31P-19F 1
J-couplings. 
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slightly smaller than those 

previously reported5,68 (Table 2) 

but in fine agreement with values 

obtained for PF6
- anions from 

liquid state NMR (~710 Hz).78-80 

 

 

4.3.3 Experimental section 

KPF6 was obtained from Janssen Chimica (lot number 003220). Prior to use, the purity of this 

sample was checked by XRPD. 

4.3.3.1 DSC and temperature controlled XRPD 

The data collections have been performed by Pierrick Durand at the X-ray diffraction facility of 

the Institute Jean Barriol of Université de Lorraine, 

http://www.crystallography.fr/crm2/fr/services/servicecommun/index.php. 

The XRPD experiments were performed using a Panalytical X’Pert Pro diffractometer 

equipped with a Cu tube, a Ge(111) incident-beam monochromator (λ=1.5406 Å) and an X’Celerator 

detector. Temperature-controlled diffractograms were collected with an Oxford cryostat (Oxford 

cryosystems Phenix) from 20 °C to -20 °C (under reduced vacuum (~ 100 mbar), increments of 5 °C 

or 1 °C, temperature stabilization of 5 min). Data collection was carried out in the scattering angle 

range 2θ = 3-70° with a 0.0167° step for 65 min. High resolution XRPD diagrams were recorded at -

20 °C, in the scattering angle range 2θ = 8-85° with a 0.0084° step for 4 h and at -13 °C, in the 

scattering angle range 2θ = 15-100° with a 0.0084° step for 18 h. 

DSC were performed using a Mettler Toledo DSC1 equipped with a HSS8 sensor under 

nitrogen flow, with an aluminum crucible (40 µL) at various heating/cooling rates. 

4.3.3.2 
19

F and 
31

P VT solid state NMR 

NMR experiments were performed on a Bruker Avance 300 (7 T) spectrometer operating at 

Larmor frequencies of 282.4 and 121.5 MHz for 19F and 31P, respectively. A 19F optimized 2.5 mm CP-

MAS probe head was used to perform all the experiments. 19F and 31P chemical shifts are referenced 

to CFCl3 and 85% H3PO4 solution, respectively. The RT and VT 19F MAS Hahn echo spectra were 

acquired using a 2.7 μs 90° pulse and an interpulse delay synchronized with the rotor period. The 

recycle delays were set to 10 s and 5 s, respectively. The RT and VT 31P MAS Hahn echo spectra were 

Table 2. 19F and 31P δiso values (ppm) and 19F-31P 1J-coupling values 
(Hz) determined from the reconstruction of 19F and 31P NMR spectra 

of phase I and II of KPF6. 

 Phase I (RT) Phase II 
 

δiso (±0.5) 
1
J-coupling (±10) δiso (±0.5) 

1
J-coupling (±10) 

19F -73.9 710 -73.9 
-74.9 

710 
710 

31P  -144.5 700 -145.3  
-146.0 

700 
700 
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acquired using a 6 μs 90° pulse and an interpulse delay synchronized with the rotor period. The 

recycle delays were set to 5 s. 

The temperature of the sample was calibrated for the 2.5 mm NMR probe at 25 kHz using the 

207Pb isotropic chemical shift of Pb(NO3)2.81,82 The temperature gradient over the dimension of the 

rotor was estimated, by these experiments, at about 10 °C. 

All solid state NMR spectra were fitted using DMfit83 software. 

4.3.4 Conclusion 

DSC and temperature controlled XRPD experiments give evidence for three successive phase 

transitions from RT to -100 °C: Phase I → Rhombohedral → Phase II → Phase III. The number of F 

and P sites in phase II have been determined from VT 19F and 31P NMR experiments. Unfortunately, 

attempts to determine atomic positions of the rhombohedral and phase II have so far been 

unsuccessful.  
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4.4 Conclusion 

Many inorganic fluorides with large heteronuclear 19F-X 1
J-couplings contain isolated X(O)Fn 

ions prone to libration and adopt consequently either disordered high symmetry structures or 

ordered lower symmetry structures depending on the temperature. The studies of NaAsF6 and KPF6 

provide us the opportunity to follow phase transitions by VT MAS NMR as well as by temperature-

controlled XRPD and DSC or DTA.  

For both the RT and HT phases of NaAsF6, structures have been refined and the 19F, 23Na and 

75As NMR parameters determined. The HT phase presents a libration of the AsF6
- anions, leading to 

large anisotropic displacement parameter for the fluorine atom and unusual short F-As distances. 

For this phase, the best agreement between experimental and calculated NMR results is reached 

using the FO-rescaled structure. The calculations done on NaAsF6 highlight the overestimation of the 

bond length with the PBE84 functional used in the density functional theory calculations and the 

attention that must be paid to optimization. 

Hexafluorophosphates and fluorophosphates would be perfect candidates for 1
J-coupling 

calculations if orientational disordering were not occurring in these compounds. We have shown 

that KPF6 presents three successive phase transitions from RT to -100 °C. The RT structure presents 

one K site, one P and one F site, with unfortunately, partial site occupancy for this last atom which 

prevents from ab initio calculation. From the 19F and 31P NMR spectra of phase II, two F sites and two 

P sites have been identified. 39K NMR by revealing whether there is one or two sites of potassium, 

would be a plus for the structural refinement. Attempts to determine atomic positions of the 

rhombohedral and phase II will be resumed expecting that they are ordered. 
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The work presented in this thesis describes the application of GIPAW method to inorganic 

fluoride materials. 

It has been shown that, when using the PBE
1
 exchange-correlation functional for the 

treatment of the cationic localized empty orbitals of Ca
2+

, Sc
3+

(3d) and La
3+

(4f), a correction of the 

ultra-soft pseudopotential (USPP) is needed to accurately calculate 
19

F shieldings. A correlation has 

then been established on alkali, alkaline earth and rare earth fluorides
2
 and further improved on 

column 13 metal fluorides
3
 and on columns 11, 12 and 14 metal fluorides. It allows predicting 

19
F 

NMR spectra of crystalline compounds with a relatively good accuracy. Indeed, it has been 

successfully applied on to RbLaF4,
4
 NaAsF6

5
 and α-LaZr2F11,

6
 and a similar correlation has been 

obtained for TaF5. The last correlation established on twenty four binary fluorides containing twenty 

different metal atoms admits few exceptions (Nb, Ag and Th). In addition, we experimentally 

determine the quadrupolar parameters of 
25

Mg in MgF2, 
71

Ga in GaF3 and 
115

In in InF3, and calculate 

the EFG of 
25

Mg in MgF2, 
27

Al in α-, β- and η-AlF3, 
67

Zn in ZnF2, 
69

Ga in GaF3, 
115

In in InF3 and 
139

La in 

LaF3 using PAW and/or LAPW methods.  

Calculations were achieved on experimental and APO structures (when allowed by symmetry) 

and the effects of optimization were carefully examined. APO structures are retained except when 

the agreement between experimental and calculated EFG is better with the experimental one. The 

study of α-AlF3, GaF3 and InF3 confirms the care that must be taken when dealing with optimized 

structures. The orientations of the EFG components in the crystallographic frame, provided by DFT 

calculations, have been given for all quadrupolar nuclei and analyzed in terms of electron densities 

for 
25

Mg in MgF2 and
 139

La in LaF3. 

We have then studied binary fluorides having multiple crystallographic sites with the aim to 

assign the 
19

F NMR resonances to their fluorine crystallographic sites. The studied binary fluorides 

are column 5 fluorides (TaF5 and NbF5
7
) and MF4 compounds (M = Zr, Hf (column 4), Ce and Th). 

Complete and unambiguous assignment of the 
19

F NMR lines from GIPAW calculations are achieved 

for TaF5 and NbF5, ensured by the linearity between experimental 
19

F δiso values and calculated 
19

F 

σiso values. The study of the MF4 compounds containing seven fluorine crystallographic sites and 

characterized by small or very small 
19

F chemical shift ranges was particularly challenging. Moreover 

19
F-

19
F correlation experiments were performed only for β-ZrF4 and HfF4 having the smallest 

chemical shift ranges (~20 ppm). No confident assignment could be established as some isotropic 

lines overlap inducing lack of resolution in the correlation peaks. From GIPAW calculations, only one 

complete and confident assignment is obtained, from the APO structure of ThF4. The 
19

F chemical 
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shift range being two times larger compared to β-ZrF4 and HfF4, a better resolved 
19

F DQ-SQ 

correlation spectrum is expected and could ascertain this assignment. 

Finally, two ternary fluorides, NaAsF6 and KPF6, exhibiting large 
19

F-X 
1
J-coupling resolved on 

1D MAS NMR spectra and phase transitions at temperatures close to room temperature have been 

investigated by DTA or DSC, temperature controlled X-ray powder diffraction (XRPD) and variable 

temperature solid-state NMR. The crystalline structures of α-and β-NaAsF6 have been determined 

from XRPD data and thus 
19

F, 
23

Na and 
75

As NMR parameters have been calculated.
5
 Two difficulties 

were encountered: the libration of the rigid and regular AsF6
-
 anions in the β-phase, highlighted by 

the atomic anisotropic displacement parameters for F, which leads to erroneous shortened As-F 

bond length, and the overestimation of the As-F bond length with the PBE functional used in the 

density functional theory calculations. We show that both difficulties can be overcome by full 

optimization and rescaling of the cell parameters of the crystalline structures. 

KPF6 adopts an orientationally disordered high symmetry structure at room temperature 

(phase I) and presents phase transitions when cooled. The structure of the monoclinic phase (phase 

II) is expected to be ordered, so 
31

P-
19

F 
1
J-coupling calculations could be carried out. Two F sites and 

two P sites have been identified from NMR spectra of this phase. Unfortunately, attempts to 

determine the atomic positions remain unsuccessful. The structural determinations of this phase 

and the rhombohedral one, whose occurrence has been evidenced between phases I and II, are still 

in progress. 

The work described above has demonstrated the potential of GIPAW calculations for the 

prediction of NMR parameters of inorganic fluorides. However, the agreement between calculated 

and experimental EFG is most often better when calculations are carried out using the WIEN2k code. 

For these parameters, we will still use both codes. The GIPAW method will be used for calculations 

of NMR parameters on the numerous compounds we study in collaboration with our colleagues 

from the department of Oxydes et Fluorures, from ICMCB (Pessac), from PECSA (Paris) or from ICCF 

(Clermont-Ferrand). Application of this method to inorganic oxifluorides is promising as solid state 

NMR experiments combined with GIPAW calculations are powerful tools to characterize the F/O 

ordering in such compounds. The use of super-cells is required if F and O are distributed on the 

same anionic site. For instance, calculations are in progress on nanostructured fluorinated anatase 

with cationic vacancies (Ti1-x�xF4xO2-4x).  

Finally, some limitations have been encountered. They are certainly partly due to the fact we 

study fluorides compounds with numerous different metal atoms. A particular attention was paid to 
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the fluorine USPP and GIPAW results using PBE-DFT were faced to GIAO ones using all-electrons 

basis sets for a benchmark of molecules. The perfect agreement proves the correctness of the 

fluorine USPP.
2
 However, most of the metal atom studied in this manuscript have not been so 

extensively studied preventing the refinement of their pseudopotentials. Clearly in the future, USPP 

evaluation needs to be extended to nuclei that have not been as well studied, giving the ability to 

perform calculations on any system with confidence.
8
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Annex 1: parameters used to generate the on-the-fly 

ultrasoft pseudopotentials 
In Table 1 are gathered the parameters used to generate the on-the-fly (OTF) ultrasoft 

pseudopotentials used in the manuscript, except the OTF USPP used in section 2.2, which are given 

in the ESI of the paper. Details on the string can be found on the Castep website 

(http://www.castep.org/) in the documentation section. 

Table 1. Parameters used to generate the OTF USPP pseudopotentials.  

Atom OTF USPP string 

Ag 1|2.2|2.3|1.6|9|11|12|50U=-0.185U=+0.4:42U=-0.3U=+0[] 

Al 2|2|3.675|5.512|7.717|30UU:31UU:32LGG[] 

As 2|1.6|1.6|0.9|6|7.3|9.9|40U=-0.54U=+0.5:41U=-0.195U=+0.25[] 

Cd 1|2.2|2.2|1.6|8.7|9.6|10.7|50U+0U+0.1:42UU(qc=5,q0=4)[] 

Ce 2|2.1|2|1.3|8|11|13|50U:60U:51UU:52L:43UU(qc=6)[] 

Ga 3|2|2|1.5|9.9|11|12.4|40U=-0.335U=+0.25:41U=-0.1U=+0.25:32U=-0.715U=+0.25[] 

Hf 1|2.4|2.4|1.2|6.6|8.5|11.3|60U=-0.195U=+1.75:52U=-0.105U=+0[] 

Hg 1|2.2|2.2|1.7|11.8|13.6|15.3|60UU:61P:52UU[] 

In 3|2.3|2.3|1.6|9|10.5|12|50UU:51UU:42UU[] 

Na 2|1.3|1.3|1|11.8|13.6|15.3|20U=-2.07:30U=-0.105:21U=-1.06U=+0.25[] 

Nb 3|2.2|2.2|1|7.7|8.8|10|40U=-2.145:50U=-0.145:41U=-1.27U=+0.25:42U=-0.1U=+0[] 

Pb 3|2.4|2.35|1.6|9.2|12.9|16.5|60UU:61UU:52UU[] 

Ta 1|2.4|2.4|1.2|7|8.8|10|60U=-0.2U=+1.75:52U=-0.14U=+0[] 

Th 2|2.0|2.0|1.6|6|12|13|60U:70U:61:53:62P(qc=6)[] 

Tl 3|2.4|2.4|1.9|8.5|9.6|11|60UU:61U+0U+0.5:52UU(qc=4.5)[] 

Zn 3|2|2|1|10.8|11.5|12.5|40UU:41UU:32UU(qc=6)[] 

Zr 
3|2.1|2.1|1.05|8.5|10|11.4|40U=-2.005:50U=-0.17:41U=-1.195U=+0.1:42U=-

0.135U=+0.25[] 
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Determination and first principles calculations, using the PAW/GIPAW 
method, of NMR parameters in inorganic fluorides 
 

Résumé 
 
Cette thèse porte sur la détermination et la 
modélisation, par la méthode PAW/GIPAW (Gauge 
Including Projector Augmented Waves), de paramètres 
RMN de fluorures inorganiques. 
Dans la première partie, une corrélation entre valeurs 
expérimentales de déplacements chimiques isotropes 

(δiso) de 
19

F et de constantes d'écran isotropes (σiso) de 
19

F calculées de fluorures binaires, dont les attributions 
sont triviales, est établie. Elle permet de prédire les 
spectres RMN de 

19
F avec une bonne précision. Les 

paramètres quadripolaires de ces fluorures sont aussi 
déterminés et calculés. 
Dans la seconde partie, la linéarité entre valeurs 

expérimentales de δiso de 
19

F et  valeurs calculées de 

σiso de 
19

F permet une attribution non ambigüe des raies 
RMN de 

19
F de NbF5 et TaF5. Par contre, pour trois des 

quatre composés MF4 étudiés (β-ZrF4, HfF4, CeF4, 

ThF4), caractérisés par des gammes de valeurs de δiso

de 
19

F plus petites, les corrélations médiocres entre 

valeurs de δiso et de σiso de 
19

F ne le permettent pas. 
Enfin, NaAsF6 et KPF6 qui présentent des valeurs 
élevées de couplage 

1
J 

19
F-X et des transitions de 

phase à des températures proches de l'ambiante sont 
étudiés par DTA ou DSC et diffraction des rayons X sur 
poudre et RMN du solide multinucléaire à température 

variable. Les structures de α- et β-NaAsF6 sont 
déterminées. KPF6 adopte une structure de haute 
symétrie désordonnée à température ambiante mais les 
tentatives de détermination des positions atomiques des 
deux premières phases basse température sont restées 
vaines. 
Ce travail souligne les potentialités et quelques limites 
de cette méthode ainsi que l'attention qui doit être 
prêtée aux effets des optimisations. 
 
Mots clés 
RMN du solide, Calculs DFT, Fluorures 
inorganiques 

Abstract 
 
This thesis focuses on the determination and the 
modeling, by the PAW/GIPAW (Gauge Including 
Projector Augmented Waves) method, of NMR 
parameters in inorganic fluorides.  
In the first part, a correlation between experimental 

19
F 

isotropic chemical shift (δiso) and calculated 
19

F isotropic 

shieldings (σiso) of binary fluorides with obvious 
assignments is established that allows to predict 

19
F

NMR spectra with a good accuracy. The quadrupolar 
parameters of these fluorides are also determined and 
calculated. 
In the second part, a complete and unambiguous 
assignment of the 

19
F NMR lines of NbF5 and TaF5 is 

obtained, ensured by the linearity between experimental 
19

F δiso values and calculated 
19

F σiso values. On the 

other hand, for the studied MF4 (β-ZrF4, HfF4, CeF4, 

ThF4) compounds, characterized by smaller 
19

F δiso

ranges, except for ThF4, the poor correlations between 

experimental 
19

F δiso and calculated 
19

F σiso values 
prevent us to propose an assignment of the 

19
F NMR 

lines. 
In the last part, NaAsF6 and KPF6, exhibiting large 

19
F-X 

1
J-coupling and phase transitions at temperatures close 

to room temperature (RT) are investigated by DTA or 
DSC and variable temperature X-ray powder diffraction 

and multinuclear solid-state NMR. The structures of α-

and β-NaAsF6 are determined. KPF6 adopts a 
disordered high symmetry structure at RT. 
Unfortunately, attempts to determine the atomic 
positions of the two first low temperature phases remain 
unsuccessful. 
This work highlights the potentialities and some 
limitations of this method as well as the care that must 
be taken when dealing with optimized structures. 
 
Key Words 
Solid State NMR, DFT calculations, Inorganic 
Fluorides 
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