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Abstract 

 

The development of cost efficient, selective and sustainable chemical processes for 

production of chiral building blocks is of great importance in synthetic and industrial 

organic chemistry. One way to reach these objectives is to carry out several reactions steps 

in one vessel at one time. Furthermore, when this kind of one-pot multi step reactions are 

catalyzed by heterogeneous chemo- and bio-catalysts, which can be separated from the 

reaction products by filtration, practical access to chiral small molecules for further 

utilization can be obtained.  

The initial reactions studied in this thesis are the two step dynamic kinetic resolution of 

rac-2-hydroxy-1-indanone and the regioselective hydrogenation of 1,2-indanedione. These 

reactions are then combined in a new heterogeneously catalyzed one-pot reaction sequence 

enabling simple recovery of the catalysts by filtration, facilitating simple reaction product 

isolation. Conclusively, the readily available 1,2-indanedione is by the presented one-pot 

sequence, utilizing heterogeneous enzyme and transition metal based catalysts, transferred 

with high regio- and stereoselectivity to a useful chiral vicinal hydroxyl ketone structure. 

Additional and complementary investigation of homogeneous half-sandwich 

ruthenium complexes for catalyzing the epimerization of chiral secondary alcohols of five 

natural products containing additional non-functionalized stereocenters was conducted. In 

principle, this kind of epimerization reactions of single stereocenters could be utilized for 

converting inexpensive starting materials, containing other stereogenic centers, into 

diastereomeric mixtures from which more valuable compounds can be isolated by 

traditional isolation techniques.  
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Sammanfattning 

 

Utvecklandet av kostnadseffektiva och miljövänliga framställningsprocesser med hög 

selektivitet för framställningen av eftertraktade optiskt rena föreningar är av högsta 

prioritet inom industriell och syntetisk organisk kemi. Målsättningen med den 

ifrågavarande forskningen är att tillgodose dessa förväntningar genom att överföra 

enskilda reaktioner i ett och samma kärl och således utveckla ny syntesmetodik, s.k. 

reaktionskaskader. När olika flerstegsreaktioner förverkligas i ett kärl genom att utnyttja 

heterogena eller immobiliserade kemiska och enzymatiska katalysatorer underlättas 

upparbetningen och katalysatorerna kan isoleras enkelt med filtrering.  

I det inledande skedet utvecklas en dynamisk kinetisk resolvering av rac-2-hydroxi-1-

indanon och en regionselektiv hydrering av 1,2-indandion. I följande steg sammanförs de 

separata reaktionerna till ett kärl och en ny heterogent katalyserad reaktionskaskad med 

enkel upparbetning och produktisolering ur reaktionsblandningen förverkligas. 

Sammanfattningsvis, det lättillgängliga utgångsmaterialet, 1,2-indandion, kan med hjälp av 

den utvecklade reaktionskaskaden omvandlas med hög regio- och enantioselektivitet till en 

eftertraktad optiskt ren vicinal hydroxiketon genom att använda immobiliserade eller 

heterogena enzymatiska och metallbaserade katalysatorer.  

En kompletterande studie av homogena rutenium baserade metallkomplex för att 

katalysera epimeriseringen av sekundära alkoholer har utförts för fem naturprodukter, alla 

innehållande ett flertal olika stereocentra. I princip kan denna typ av 

epimeriseringsreaktioner användas för att konvertera billiga och lätt tillgängliga 

utgångsmaterial till diastereomera blandningar från vilka dyrbara föreningar kan utvinnas 

med hjälp av traditionella isoleringsmetoder.  
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1. Introduction 

 

1.1 Background  

 

The title “father of modern chemistry” is associated with Antoine-Laurent de Lavoisier.1 

Later, other well-known “heavy weight” scientist, such as Friedrich Wöhler and Hermann 

Kolbe, initiated the field of organic chemistry. Synthetic organic chemistry is traditionally 

divided in two domains: 1) The development of new synthetic methods or reactions; and 2) 

The synthesis of new target molecules. This doctoral thesis discusses the development of 

new one-pot type reaction applications and methods.  

The modern industrialized society sets great expectations on products and applications, 

such as environmental impact and economic profitability. The total annual chemical sales 

of only the five biggest chemical enterprises exceeded $ 282 billion in 2013.2 The globalized 

chemical companies aim to produce both bulk and fine chemicals efficiently in a 

sustainable manner in order to meet the market demands. The awareness of 

environmentally benign processes and sustainability has been a hot topic for some decades 

already. The famous 12 principles of green chemistry were published in the early 1990s.3 

The need to develop new synthetic reactions and methods for advancing the best available 

techniques has nevertheless not diminished. Many researchers are actively developing and 

discovering new environmentally sustainable reactions and processes with reduced time, 

costs, amount of starting materials, amount waste produced, energy consumed (in the 

form of heat, pressure or vacuum) and increased safety.4  

From the industrial point of view, heterogeneously catalyzed processes are often 

preferred in large scale production due to potential recycling of the catalysts and generally 

more facile work-up of the reactions.5,6 Heterogeneously catalyzed processes may also 

enable the appealing possibility to transfer the processes into flow type of operation.7  
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1.2 Stereoisomerism and Enantiomers 

 

Isomerism represents in organic chemistry the different structural, chemical or physical 

properties molecules with the same empirical formula can have. Isomers are usually 

divided in two main subclasses, constitutional isomers and stereoisomers. Stereoisomers 

can then further be divided in diastereomers and enantiomers.  

Chiral molecules contain at least one of the three chirality elements: 1) Chirality centre; 

2) Chirality axis; 3) Chirality plane.8 Stereoisomers and enantiomers in organic chemistry 

originate often from the carbon atom based chiral centers with the three dimensional 

structure of the sp3-hybridized carbon atom, forming four bonds to four neighboring 

atoms. When all the four atoms, or groups of atoms, bonded to such an sp3-hybridized 

carbon centered structure are different, the structure can exist in two non-superimposable 

mirror images and becomes chiral (Figure 1). These kinds of mirror image structures are 

called enantiomers. Enantiomeric structures have identical physical and chemical 

properties in an achiral environment, with a few exceptions. Enantiomers rotate plane 

polarized light in different directions and some enantiomeric structures crystallize in 

separate crystals, i.e., conglomerates. For more complex molecules, which for example 

include more than one chiral center, one observed situation is that two isomeric structures 

are non-superimposable yet not mirror images. Such structures are named diastereomers. 

Diastereomers have different physical and chemical properties also in an achiral 

environment and can therefore be separated by traditional isolation techniques. 

The first researcher to separate the enantiomers of a racemic mixture was Louis Pasteur 

when he made the famous resolution experiments of the tartaric acid salts.9,10 The 

experiments have gained much interest and are regarded as cornerstones in the 

development of isolation techniques of chiral compounds.11,12 Pasteur was also the first to 

develop two other major methodological innovations, the classical resolution method 

using chiral reagents and the kinetic resolution (KR) using biocatalysis.11,13 One important 

observation to note is that although enantiomers do not have different properties in an 
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achiral environment, they do have different properties in a chiral environment. Hence, 

since all living organisms are constructed of chiral building blocks, the optical isomerism 

needs to be taken into consideration very carefully when stereoisomers are utilized in 

biological context. In 1992 the U.S. Food and Drug administration agency published the 

guidelines for development of stereoisomeric drugs.14 This guideline requires separate 

characterization data of enantiomeric structures for new drug candidates. FDA hereby 

established the importance of production of enantiopure compounds for use as drugs.  

 

C
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4
3

2 C
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4
3

2

mirror plane

H2NOCH2C COOH

H2N H

HOOC CH2CONH2

H NH2
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Figure 1. Mirror images of C-centered tetrahedral enantiomeric structures. 

 
 
 

1.3 Production of Chiral Compounds 

 

The three main methodologies typically utilized for the preparation of chiral compounds 

are based on: 1) Racemate resolution; 2) Chiral pool; and 3) Asymmetric synthesis (Figure 

2).15-17 One drawback with traditional resolution by formation of diastereomeric salts is the 

requirement of equimolar amounts of resolving agents. Moreover, although many 

impressive improvements have been made in asymmetric synthesis, KR has remained as a 

widely utilized and convenient tool for the production of enantiopure molecules. 
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Figure 2. Illustration of the three typical routes used for the production or isolation of chiral 
compounds. 

 
 

1.4 Catalysis 

 

In 1836 Jöns Jacob Berzelius, a Swedish chemist, discussed his insights concerning 

interesting chemical processes he had observed. He defined the phenomenon as catalysis.18  

“Accordingly, I shall designate it, thereby following a well known chemical 

etymology, the catalytic power of bodies; and the decomposition it produces I shall 

call catalysis ...”  

Later in the same paragraph it is indicated that a catalyst enables a reaction without being 

consumed itself. Berzelius addressed also the interesting phenomenon that catalysts can 

selectively enable certain reactions leaving other reactions uncatalyzed.  

Wilhelm Ostwald carried out thorough studies of catalytic reactions in late 19th century. 

He was awarded the Nobel Prize in chemistry year 1909 in recognition of his work on 

catalysis and for his investigations into the fundamental principles governing chemical 

equilibria and rates of reaction.  

Catalysts can be divided into two main types: 1) heterogeneous; and 2) homogeneous. 

In homogeneous catalysis all the reactants and catalysts are located in the same phase, 

quite often the liquid phase. Complementary to this, heterogeneous catalysis is considered 
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to be the situation where reactants and catalysts are not present in the same phase. 

Heterogeneous catalysis can be exemplified by the situation where the reactants and 

catalysts are located in a liquid and solid phase. Also other heterogeneous phase systems 

are in use, e.g. solid-gas and solid-liquid-gas.  

Characterization of heterogeneous catalysts often includes determination of surface 

area, metal particle size, oxidation state of the metal and acidity of the support. Also 

“turnover frequency” (TOF) is often used when catalyst efficiency in terms of reaction rate 

is characterized. TOF is defined as the number of reactant molecules converted per time 

per catalytic site and was originally introduced by M. Boudart in 1966.19 TOF is included in 

IUPAC’s gold book and recognized by scientists in the field of catalysis.20,21 Furthermore, 

“turnover number” (TON) is often used as a complement to TOF.21 In the field of 

heterogeneous and homogeneous catalytic applications TON number describes the 

maximum number of molecular reactions or conversions that can be made under defined 

reaction conditions divided by the number of catalytic sites until the decay of catalytic 

activity takes place. Notably, chemists working in the field of catalysis need to be careful 

and aware of the fact that in the field of biochemistry the term TON is still used with the 

same meaning as TOF.21  

Transition metals, typically Pd or Pt, are widely used as catalysts in the hydrogenation 

of ketones to secondary alcohols, for many structurally different starting materials.22,23 In a 

regioselective reaction, one functional group of the starting material is transformed while 

other analogous functional groups in different positions of the same molecule are left 

intact. Such differences in reaction rates between similar chemical functionalities resulting 

in regioselectivity may be a consequence of the chemical and structural nature of the 

substrate itself, or be controlled by structure of the catalyst used for the desired 

transformation.24-27 Under ideal conditions, hydrogenation of vicinal diketones may result 

in regioselective hydrogenation of only one of the carbonyl groups, thereby providing 

access to synthetically valuable α-hydroxy ketones (Scheme 1). 
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Scheme 1. Regioselective hydrogenation of 1,2-indanedione (1) yielding rac-2-hydroxy-1-

indanone (rac-2). 

 

1.4.1 Kinetic Resolution 

 

Evolution has developed and tuned protein structures to catalyze preferred reactions over a 

period of millions of years. This development has resulted in enzymes that enable 

impressive reactions, essential for life, with high selectivity under mild conditions. Bio-

catalysis and the quantitative treatment of biochemical kinetic resolution developed 

rapidly in the 1980s.12,28 Also, the utilization of enzyme catalysis in non-aqueous solvents 

enables most of the unit operations and synthetic organic methodologies chemists are 

familiar with.29,30 Furthermore, enzyme immobilization often enhances the enzyme’s 

performance, e.g. thermal stability and recycling properties.31 Kinetic resolution can be 

achieved by different methods, also non-enzymatic. In this work the focus is on enzyme 

catalyzed resolutions. 
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Scheme 2. A) The principle of enzyme catalyzed KR, and B) Representation of the empirical 
Kazlauskas rule. 
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In a KR one of the enantiomers in a racemic mixture reacts faster than the other one. 

Secondary alcohols can undergo KR utilizing the lipase catalyzed enantiospecific O-

acylation (Scheme 2A). Kazlauskas and co-workers have described lipases ability to 

catalyze enantiospecific reactions of racemic secondary alcohols based on the sizes of the 

substituents at the stereocenter of the reacting secondary alcohol. This rule is called the 

Kazlauskas rule (Scheme 2B).32 In an optimal case, the KR leaves the other enantiomer 

unreacted.32 Consequently, the conventional enzyme-mediated KR possesses a major 

disadvantage of a maximum yield of 50 % for one specific enantiomer structure.12  

The kinetic treatment of enzyme catalyzed reactions is most often done by applying 

Michaelis-Menten steady state conditions. The Michaelis-Menten constant is defined as 

1

21 )(

k

kk
Km

+
= −  (Scheme 3). When the reversible association (k1) and dissociation (k-1) 

between substrate and enzyme is much faster than the acylation reaction k2 (k2<<k-1), kr 

equals k2 (kr=k2) (Scheme 3). If the enzyme concentration is low enough and kr equals k2 

the rate equation of enzyme catalyzed reaction can be simplified to 

� =
��

��
��	
���
����������
.  

 

Enz. + Substrate
k1

k-1

Enz.-Substrate Enz.-Prod
k2

Enz. + Product 

Scheme 3. Enzyme catalyzed reaction kinetics using Michaelis-Menten steady-state 
conditions gives the constant Km. 

 

The mathematical presentation of enzyme catalyzed KR reactions was further 

developed by Chen and co-workers by introducing the E-value.28,33 The E-value is defined 

in Equation 1. The E-value describes how enantioselective the enzyme catalyzed KR is, i.e. 

the kR/kS ratio (Scheme 2).  

Equations (2),(3) and (4) can be derived from (1), provided that the reaction kR is 

irreversible.34 Moreover, a reliable determination of the E-value, using Equations (2) and 

(3), should be made by plotting three, or several, data points in order to check the linearity 
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of the nominator/denominator values. For synthetic purpose the E-value should at least be 

20 in order to get a sufficiently high ee (enantiomeric excess) of the product. 

 

( )
( )

SmS

RmR

Kk

Kk
E

''

'

=     (1) 

( )( )[ ] ( )( )[ ]substratesubstrate eeceecE +−−−= 11ln11ln  (2) 

( )[ ] ( )[ ]productproduct eeceecE −−+−= 11ln11ln   (3) 

( )productsubstratesubstrate eeeeeec +=   (4) 

[ ] [ ]
[ ] [ ]SR

SR
ee

+

−
=     (5) 

 

 

1.4.2 Dynamic Kinetic Resolution 

 

Conventional enzyme-mediated KR limits the product enantiomer yield to 50%.12,35 By 

using a racemization catalyst, the slower reacting starting material enantiomer may, 

however, be converted to the faster reacting one and the theoretical yield of one single 

enantiomer reaction product approach 100% (Scheme 4). A sufficiently high racemization 

rate is required to retain the ee of the starting material at a low level, thus ensuring the 

continuous feed of the reacting enantiomer to the enzyme catalyst.36 An early Dynamic 

Kinetic Resolution (DKR) application was the hydrogenation of a 1,3-dione structure, 

reported by Noyori in 1989.37  

The shifting from a lipase catalyzed KR to DKR is most conveniently performed by 

adding a suitable racemization catalyst to the reaction mixture. It is anyhow important to 

remember that for a viable chemoenzymatic DKR process, the enzyme and the 

racemization catalyst should be mutually compatible when applied in the same reaction 

vessel.  
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Scheme 4. Dynamic Kinetic Resolution of a secondary alcohol.  

 

 

1.5 Racemization and Epimerization of Secondary Alcohols 

 

Racemization is, by definition, the production of a racemate from a chiral starting material 

in which one enantiomer is present in excess.8 When the racemization of a chiral 

secondary alcohol is achieved by an oxidation reduction sequence (Scheme 5) the 

intermediate is the planar, prochiral, sp2 hybridized carbonyl structure. The equilibrium 

between two stereoisomers of a chiral secondary alcohol can hence also be achieved by 

traditional, stoichiometric, chemical methods, e.g. Oppenauer oxidation and subsequent 

Meerwein-Ponndorf-Verley reduction.38,39  

An extensive review of catalytic racemization methods, including those for amines, is 

available.40 In general, the catalytic racemization can occur by four conceptually different 

reactions: 1) Acid/Base catalyzed; 2) Enzyme catalyzed;41 3) Radical induced;42 and, 4) 

Transition metal catalyzed.43  

 

R' R''

OH

R' R''

O

R' R''

OH-H2

-H2

+H2

+H2
 

Scheme 5. Racemization of a secondary alcohol via an oxidation reduction sequence (R’≠R’’). 
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Epimerization takes place by the configurational interconversion of one stereogenic 

center while leaving other stereocenters in the same molecule untouched. A secondary 

hydroxyl based stereocenter can principally interconvert selectively in the presence of a 

racemization catalyst although the molecule might possess several stereocenters. Some 

epimerization reactions have been reported for saccharides by homogeneous half-

sandwich ruthenium complexes,44 for terpenoids by heterogeneous and homogeneous 

catalyst systems45,46 and for steroid structures by homogeneous half-sandwich rhenium 

catalysts.46 This kind of single stereocenter equilibration in a chiral compound with 

multiple stereogenic centers can potentially be used for converting an inexpensive starting 

material into a diastereomeric mixture. A valuable compound from such a diastereomeric 

mixture can then be separated by traditional techniques provided that the equilibrium 

mixture contains a sufficient amount of the desired compound.  

 

1.5.1 Homogeneous Ru-based Racemization Catalysts 

 

Homogeneous catalysts often possess high activity and selectivity. Furthermore, the 

properties of homogeneous catalysts can often be developed and tailored for some specific 

reactions by chemically modifying the molecular structure of the catalyst itself. The 

modifications can enable some variation, e.g. electronic or steric, at the catalytically active 

center. 

Epimerization of secondary alcohols using transition metal complexes was reported in 

the early 1990s by Gladysz and co-workers using homogeneous Re complexes.46 Williams 

et al. also evaluated a set of different transition metal based catalysts (Ir, Rh and Ru) for 

racemization of secondary alcohol enantiomers.47 Notably, they also reported the first 

chemoenzymatic DKR reactions utilizing the combination of a homogeneous transition 

metal catalyst for racemization and lipase.47 

Since those first reports of Ru based racemization catalysts, much effort has been put 

on developing and screening different kinds of improved catalyst structures for secondary 

alcohol racemization.48 One quite much utilized catalyst is the Shvo catalyst.49 The Shvo 
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catalyst was successfully applied for in situ racemization of secondary alcohols in 1996 by 

Bäckvall and co-workers.50 One important improvement in Ru based racemization catalysis 

was the development of the Bäckvall catalyst (4) (Figure 3).51,52 Later Mavrynsky et al. have 

developed an analogue of the Bäckvall catalyst by replacing the phenyl substituents with 

benzyl groups (Figure 3).53 Catalyst 5 was found to be more easily dissolved than catalyst 4 

in conventional organic solvents, making the handling and operation using 5 more simple. 

Moreover, the synthesis of 5 is easier and cheaper compared to the synthesis of 4.  

Considerable effort has been made to study the catalytic racemization mechanisms.53-56 

The sec-alcohol racemization by homogeneous half-sandwich ruthenium catalysts has been 

shown to involve an oxidation-reduction (dehydrogenation-hydrogenation) sequence. 

Such racemization is initiated by β-hydride elimination of a sec-alcohol derived ruthenium 

alkoxide. The subsequent hydrogen transfer from ruthenium to a coordinated ketone takes 

place with equal probabilities from both enantiofaces of the C=O bond resulting in 

efficient configurational equilibration of the stereochemistry. 

 

RuR
R

R R

R

OC CO

Cl
R = Ph (4)
R = Bn (5)

 

Figure 3. The structure of Ru based racemization catalysts: (η5-pentaphenyl-
cyclopentadienyl)RuCl(CO)2 (4) and  (η5-pentabenzylcyclopentadienyl)RuCl(CO)2 (5). 

 

DKR of vicinal hydroxy ketones has recently been reported by Martín-Matute and co-

workers using a ruthenium complex formed from commercially available [Ru(p-

cymene)Cl2]2 and 1,4-bis(diphenylphosphino)butane.57 The DKRs were performed in one-

pot at room temperature (RT). The racemization at RT is fully compatible with an effective 

kinetic resolution catalyzed by a lipase from Pseudomonas stutzeri. The esterified products 

of the eleven structurally different vicinal hydroxy ketones studied were obtained in 73-

93% yield and 94-99% ee.57 
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Ideally, also epimerization processes can be made dynamic (similar to DKRs) in the 

presence of a suitable enzyme catalyst. This has been demonstrated by Bäckvall and co-

workers by epimerization of a non-anomeric stereogenic center in carbohydrates 

combined with an acylating enzyme.58 An esterified secondary alcohol with equatorial 

configuration was obtained in 83% yield using Candida antarctica lipase B (CALB) and 4 

starting from the corresponding axially configured starting material (4,6-O-benzylidene-D-

allal).  

 

1.5.2 Heterogeneous Racemization Catalysts 

 

Homogeneous transition metal catalysts are often expensive, require oxygen and moisture 

free reaction conditions and are difficult to separate and recycle. Heterogeneous catalysts, 

on the other hand, often allow advantages over their homogeneous counterparts, such as 

easy separation by filtration and the consequently easier recycling.5 Thus, several 

heterogeneous catalysts have been developed for racemization of secondary alcohols.59 

Examples of such heterogeneous catalysts include Brønsted acids60 and bases,61 Lewis and 

Brønsted acidic zeolites,62-64 as well as various heterogeneous metal species including 

VOSO4,65 Cu/Al2O3,66,67 and Ru(OH)3/Al2O3.68-72 Moreover, racemizations of primary 

amines have also been developed, typically based on Pd as the active catalyst.73-78 Notably, 

an early report on heterogeneous racemization catalysts is the Pd/C catalyzed racemization 

of primary amine enantiomer published in 1983 by Murahashi and co-workers.79 

Also immobilizations of homogeneous half-sandwich ruthenium catalysts have been 

described. Park and co-workers have immobilized the homogeneous [Ph4(η4-

C4CO)]Ru(CO)3 complex covalently on benzoyl chloride functionalized polystyrene. This 

covalently linked Ru-catalyst was successfully used in combination with CALB in DKR of 

secondary alcohols.80,81 Moreover, Bäckvall and co-workers coupled an analogue of the 

Bäckvall catalyst covalently to a phosphonate inhibitor which in turn was anchored to 

some of the active sites of immobilized CALB. This protocol resulted in an immobilized 

CALB catalyst containing both Ru-species catalyzing the racemization of the substrate as 

well as accessible active sites of the enzyme catalyzing the kinetic resolution.82   
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Heterogeneous Brønsted and Lewis acids can be considered as simple and robust 

racemization catalysts. Bornscheuer and co-workers have described the racemization of an 

enantiopure vicinal hydroxy ketone by using the Brønsted acidic Amberlyst 15 catalyst.60 

In their work, a racemization mechanism involving keto-enol tautomerization was 

proposed and the racemization was found to be solvent dependent (Scheme 6).60 Acidic 

zeolite materials are known to racemize unprotected secondary alcohols and have likewise 

been studied for the development of lipase catalyzed DKR processes.38,62-64  
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Scheme 6. Probable mechanism for a Brønsted acid catalyzed racemization of hydroxyl 
ketones.60 

 

Inexpensive and readily available heterogeneous transition metal based catalysts would 

be preferred, at least in principle, in the development of industrial applications of DKR. In 

this context it is interesting that Ravasio and co-workers have utilized an easily available 

and low-cost copper based catalyst (Cu/Al2O3) for racemization of secondary alcohols.66,67 

Furthermore, Ravasio and co-workers have reported the use of Cu/Al2O3 to catalyze 

hydrogenation reactions of low value mint oils in the production of (−)-menthol.83 

Heterogeneous Ru catalysts with different support materials have been developed for 

racemization of secondary alcohols. Ru(OH)3/Al2O3 has also been used to catalyze 

oxidation of secondary alcohols to ketones and reduction of ketones to secondary 

alcohols.69,84-87 Jacobs et al. reported in 2003 the use of Ru-hydroxyapatite for racemization 

of enantiopure secondary alcohols.68 The Ru-hydroxyapatite catalyst was prepared by using 

an ion-exchange procedure of the initial Ca-hydroxyapatite catalyst providing the Ru 

catalyst with a surface area of 115 m2/g Brunauer-Emmet-Teller (BET) method and Ru 

loading of 1.3 wt% (ICP).68 Relatively fast (20 h) racemizations of both benzylic and 

aliphatic secondary alcohols were demonstrated using 3 mol% of Ru in toluene at elevated 

temperature (80 °C). Nevertheless, the functional group tolerance was found to be limited 
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since the racemization was inhibited seriously by carboxylic acids, primary, secondary and 

aromatic amines and to a lesser degree by esters.  

Heterogeneous Ru based racemization catalysts were further developed by using 

alumina as the support material.69,72 Using Ru(OH)3/Al2O3 complete racemization of both 

aliphatic and benzylic secondary alcohols was accomplished in 8 h in toluene with 3.6 

mol% Ru at 70 °C.72 Furthermore, the racemization was found to be faster in nonpolar 

solvents than in polar ones.  

Mechanistic studies with Ru(OH)3/Al2O3 catalyst were performed by Yamaguchi et al. 

for three different hydrogen transfer reactions, namely racemization of secondary alcohols, 

reduction of carbonyl compounds to alcohols, and isomerization of allylic alcohols to  

ketones.69 The utilization of heterogeneous transition metal catalysts for the racemization 

of secondary alcohols is initiated with the adsorption of the chiral species to a metal 

surface followed by an oxidation reduction sequence. The proposed mechanism for the 

racemization of secondary alcohols using the Ru(OH)3/Al2O3 catalyst includes a β-hydride 

elimination to afford the corresponding carbonyl compound and the subsequent re-

addition of a hydride to the prochiral carbonyl carbon (Scheme 7).69 The mechanistic 

studies including the determination of kinetic isotope effects suggested that the rate 

determining step is Ru-H bond cleavage (hydride transfer). Notably, the proposed catalytic 

cycle for the heterogeneous Ru catalysts resembles the mechanism derived for 

homogeneous half-sandwich Ru based racemization catalysts widely utilized in DKR 

applications.54  

The heterogeneous Ru based racemization catalysts were also further developed by 

Mizuno and co-workers by screening TiO2 based support materials.70 The surface areas 

after grafting of Ru were determined for the two anatase and one rutile materials to be 298 

m2/g; 74 m2/g and 7 m2/g, respectively. The TOF of the three catalysts in racemization of 

(R)-1-phenylethanol were determined as 380 h-1, 120 h-1 and 3 h-1, respectively. 

Ru(OH)3/TiO2 with anatase as the support (298 m2/g) exhibited the highest activity for 

racemization and was found to be approximately one order of magnitude faster than the 

corresponding Ru(OH)3/Al2O3 catalysts. The same catalyst was also shown to exhibit high 
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activity in transfer hydrogenation reactions when ten different ketones or aldehydes were 

reduced to the corresponding alcohols using 2-propanol as the hydrogen donor.70  
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Scheme 7. Racemization mechanism proposed for the Ru(OH)3/Al2O3 catalyst.69 (Scheme 
adopted from reference 64 with permission from the publisher. Copyright 2005 Wiley-VCH 

Verlag GmbH & Co. KGaA, Weinheim) 

 

 

1.6 Heterogeneously Catalyzed Dynamic Kinetic Resolution  

 

Acid and Base Catalysts Combined with Lipases 

For developing a viable chemoenzymatic DKR process, the enzyme and the 

racemization catalyst should be mutually compatible and preferably be applied in the same 

reaction vessel. Lipases are often highly enantiospecific and accept many structurally 

different secondary alcohols as substrates. The racemization step ensures the continuous 

feed of the reacting enantiomer to the immobilized enzyme catalyst. Furthermore, the 

product should be stable under the reaction conditions applied. 

In the stereoselective hydrogenation via DKR, described by Noyori and co-workers, the 

starting material, a 1,3-diketone, undergoes fast racemization by keto-enol tautomerism.37 

The DKR process, utilizing asymmetric transfer hydrogenation as the kinetic resolution 
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step, provided only one of the four possible diastereomers in 98% ee and 100% conversion. 

The substrate scope of this approach is, however, limited to configurationally labile 

compounds. 

An early report of enzymatic DKR was published in 1991 by Inagaki and co-workers 

combining a heterogeneous basic resin (Amberlite IRA-904) and a lipase for the 

production of cyanohydrin acetates (Scheme 8).61 Further examples on the use of a 

heterogeneous basic resin or benzyltrimethylammonium hydroxide functionalized silica 

together with immobilized lipases have been reported in DKR applications producing 

enantiomerically pure O-acyl cyanohydrins.88-90  

 

Ar H

O Amberlite IRA-904

CNHO
Ar CN

OH Lipase

Ac
Ar CN

OAc

 

Scheme 8. DKR in the synthesis of optically active cyanohydrin acetates. 

 

The strong acidic nature of both the Brønsted and Lewis acidic catalysts has often been 

concluded to be detrimental for the catalytic activity of lipases in one-pot applications. The 

physical separation of the acidic racemization catalyst and enzyme catalyst in two 

compartment reaction vessel has, therefore, often been a requirement for developing viable 

DKR processes.60,64 Bornscheuer et al. have described the racemization of a vicinal hydroxy 

ketone by using the Brønsted acidic Amberlyst 15 catalyst.60 The two-compartment DKR 

delivered the ester product with >91% ee at >91% conversion (Scheme 9, Figure 4). 
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Scheme 9 Dynamic kinetic resolution of 3-hydroxy-4-phenylbutan-2-one combining CALB 
and Amberlyst 15 catalysts.60 
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Figure 4. A two vessel set up for dynamic kinetic resolution combining CALB and Amberlyst 
15 catalysts.60 

 

Also Jacobs et al. have developed an interesting biphasic DKR.64 The kinetic resolution 

was conducted with the immobilized CALB placed in the organic phase by mounting a 

basket made of inox gauze on the shaft of the mechanical stirrer.64 Continuous 

racemization of the substrate was conducted by the zeolite catalyst located in the aqueous 

phase. The two phase reaction delivered yields up to 90% with >99% ee, using a large 

excess of the acyl donor (16 equivalents).64 

A successful heterogeneously catalyzed DKR of benzoin was recently reported by 

Ansorge-Schumacher and co-workers.91 The enantiospecific kinetic resolution was 

accomplished by using an immobilized lipase TL from Pseudomonas stutzeri. The 

racemization of (R)-benzoine was studied by incorporating different metals Zr and W in 

the meso-porous acidic silicate TUD-1. The best racemization result was achieved using Zr 

doped silicate (Si/Zr = 25) exhibiting full racemization of (R)-benzoine in 2 h and 4 h in 

toluene at 70 and 50 °C, respectively. The DKR of rac-benzoine in toluene at 50 °C gave 

after 20 h reaction time a yield >98% of the ester product in >98% ee at conversion >99%.91  

 

Transition Metal Catalysts Combined with Lipases 

The area of heterogeneously and homogeneously catalyzed DKR applications, 

combining transition metal and lipase catalysts, has been reviewed in literature by several 

authors.36,43,59,92-98 Reetz and Schimossek have, already in 1996, reported a heterogeneous 

DKR of rac-phenylethylamine combining Pd/C and lipase cataysts.75 The DKR provided 
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excellent ee values (99%) and moderate yields (75-77%) of the amide product after a long 

reaction time (8 days). 

The use of immobilized homogeneous half-sandwich ruthenium catalysts in DKR 

applications have been described by both the groups of Park and Bäckvall. Park and co-

workers have covalently immobilized a homogeneous Ru complex, [Ph4(η4-

C4CO)]Ru(CO)3, on benzoyl chloride functionalized polystyrene. This immobilized Ru 

catalyst was then used in combination with CALB for the synthesis of seven benzylic and 

three aliphatic sec-alcohols under air athmosphere.80 The DKR delivered the acylated 

products in 86-99% yield and 88-99% ee. The same catalyst combination was then further 

used in the asymmetric synthesis of rivastigmine, a compound with pharmaceutic 

importance, with the chemoenzymatic DKR as the key step (yield 96%, 99% ee) in the 

synthesis route.81  

Wieczorek et al. made an interesting immobilization of a Bäckvall catalyst analogue. 

The Ru complex was covalently coupled to a phosphonate inhibitor, which in turn was 

anchored to some of the active sites of immobilized CALB.82 Separate kinetic resolutions 

and racemizations were demonstrated using CALB and the catalyst material in question, 

but no DKR sequence was reported using this immobilized Bäckvall catalyst analogue.82  

Park et al. have recently immobilized both the Shvo catalyst and [RuCl2(pcymene)]2 on 

phosphotungstic acid modified γ-alumina (Augustine’s method).99 A viable DKR of a 

model substrate, 1-phenylethanol, was developed using the combination of the 

immobilized Shvo catalyst (2 mol%) and CALB. The ester product was obtained, after a 5 h 

reaction time, in up to 89% yield and >99% ee.99  

Although several heterogeneously catalyzed DKR processes have been reported, the 

combination of different types of catalyst materials, chemicals and solvent into a single 

reaction vessel often remains challenging. Only a few applications exist where 

Ru(OH)3/Al2O3 and lipase catalysts for DKR of sec-alcohols are combined.71,100 While the 

heterogeneous Ru catalyst may suffer from a diminished racemization rate in the presence 

of ester moieties, the catalyst appeared to be reasonably fast in the presence of ethyl acetate 

(EA), enabling a development of an efficient DKR processes.100  



 1. Introduction  

19 

 

 

 

1.7 Cascade Approach 

 

The production of chiral molecules for various purposes, e.g. pharmaceuticals, 

agrochemicals and other fine chemicals, is important in synthetic chemistry.101  Different 

cascade reaction sequences, involving various types of tandem or multi-component 

reactions, are of high interest providing several advantages over conventional multi-step 

synthetic methods.98,102-110 Sequential transformations are often atom-economical and 

avoid time-consuming protection/deprotection steps and isolation of intermediates. 

Kroutil and Rueping have proposed a classification of different sequential reaction 

applications based on: 1) Mode of operation; 2) Number of reaction steps; 3) Type of 

catalyst.111 Definitions and nomenclature of one-pot reactions are also discussed by Fogg 

and dos Santos.112 Furthermore, Tietze has defined a domino reaction as: 113 

 

”… a process involving two or more bond-forming transformations (usually C-C 

bonds) which take place under the same reaction conditions without adding 

additional reagents and catalysts, and in which the subsequent reactions result as 

a consequence of the functionality formed in the previous step.” 

 

For cascade reactions numerous reaction pathways are often possible simultaneously. 

These pathways can compete with the preferred reaction course by leading to undesired 

routes. Nevertheless, by careful selection of catalysts and reaction conditions, high levels of 

control can be achieved, promoting only a desired pathway, resulting in high selectivity for 

the overall transformation. Furthermore, it can be difficult to recycle catalyst material 

combinations in consecutive one-pot reactions. The overall reaction can be 

disadvantageously affected due to unfavorable catalyst-catalyst, catalyst-substrate or 

catalyst-product interactions. One approach to solve this kind of catalyst incompatibility 

issues is to co-immobilize the active catalyst materials on the same support material.  
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Heterogeneously catalyzed DKR processes have been developed by co-immobilizing 

both the racemization and kinetic resolution catalysts on the same carrier material. 

Bäckvall and co-workers have reported the immobilization of Pd nanoparticles and the 

subsequent co-immobilization of free CALB enzyme on the surface of a meso cellular foam 

(MCF), creating an artificial metalloenzyme used in the DKR of racemic primary 

amines.76,114 The dimensions of the free CALB enzyme (approx. 3 x 4 x 5 nm) and Pd 

nanoparticles (1-2 nm) appear suitable for grafting them on the MCF surface. After 

functionalization the pore size of the MCF was determined to be 26 nm (specific pore 

volume 1.65 cm3g-1, BET surface area 380 m2g-1).114 The typical size of the Pd clusters in the 

artificial metalloenzyme was found to be 1-2 nm (HAAF-STEM) and the Pd loading 4.8 

wt% (ICP). Efficiency of the co-immobilized catalyst material was demonstrated by the 

DKR of rac-1-phenylethylamine (0.60 mmol) using ethylmethoxy acetate (1.20 mmol) as 

the acyl donor in toluene (4Å molecular sieves) under hydrogen atmosphere (1 atm.). For 

comparison, the same DKR sequence was carried out with two separate MCF based 

catalysts, one with the supported Pd nanoparticles and the other with immobilized CALB. 

The results demonstrated that by co-immobilizing both catalysts on the same support, the 

reaction time could be shortened from 20 to 16 hours and simultaneously the reaction 

yield increased from 89% to 99%, retaining the 99% ee of the amide.76 Nevertheless, while 

the metalloenzyme catalyst delivers excellent efficiency, the recycling experiments showed 

enzyme inhibition to some degree already after the second recycling. Denaturation of the 

enzyme was found to be the major reason for the inhibition of the CALB enzyme. Leaching 

tests were conducted using ICPOES, concluding that less than 5% of the CALB had 

leached, which could not account for the deactivation observed.76  

Synthetic applications of other co-immobilized catalyst materials and metalloenzymes 

have also been reported recently, e.g.: 1) Intracellular monoamine oxidase with Pd bound 

to the cell membrane for deracemization of a cyclic amine structure;115 2) Aminopeptidase 

in combination with Pt for cleaving amide bonds and subsequent reduction of a nitro 

group to an amine;116 and, 3) Enzyme–metal (CALB–Pd) nanoparticle biohybrid catalyst 

utilized for DKR of rac-phenylethylamine.117 
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1.7.1 Combination of Hydrogenation and Dynamic Kinetic Resolution 

 

Heterogeneously catalyzed one-pot reaction sequences enable most often fast and 

convenient operation.  Heterogeneous transition metals, e.g. Pd or Pt, have been used 

extensively in catalytic hydrogenation reactions using H2 as the hydrogen source. Also, 

examples of heterogeneous catalytic systems for DKRs of secondary alcohols have been 

reported in the literature. Nevertheless, one-pot operations combining both a 

hydrogenation and a DKR are rare, although a few examples for selected ketoxime and 

ketone compounds have been described.83,100,118-124   

The first step in the production of chiral esters by chemo-enzymatic one-pot reaction 

involves a palladium catalyzed, non-stereoselective reduction of a ketone using H2 as the 

hydrogen source to yield a secondary alcohol. Hydrogenation is then subsequently 

combined with a two-step DKR including racemization and KR of the non-isolated alcohol 

intermediate utilizing both Ru and lipase catalysis.  

Murzin and co-workers have reported the hydrogenation of acetophenone using 

heterogeneous Pd or bimetallic PdZn catalysts combined with a lipase and ruthenium 

catalyzed DKR.100,121,122 Nevertheless, the reductive conditions applied by using H2 at 

ambient pressure and mild temperatures in combination with the alumina supported noble 

metal catalysts promoted the significant formation of ethylbenzene by-product (Scheme 

10). 
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Scheme 10. Formation of ethylbenze by-product in the one-pot combination of 
hydrogenation and DKR using acetophenone as starting material. 
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Similar hydrogenation and DKR cascade reaction has also been demonstrated for 

different benzylic ketoxime starting materials utilizing the heterogeneous Pd/C catalyst in 

combination with immobilized CALB and EA as the acyl donor.118 This synthetic 

methodology was further developed by replacing the Pd/C with Pd/AlO(OH) and EA with 

the activated acyl donor, ethyl methoxyacetate.123 With these improvements the products 

were obtained in 85-88% yield 94-98% ee.  

 

 

1.8 Objectives of this Thesis 

 

The key objective of this thesis was to combine immobilized enzyme and heterogeneous 

chemo-catalysts and the transformations they enable into new cascade type one-pot 

reaction sequences.  

The first objective was to combine racemization and kinetic resolution of a vicinal 

hydroxy ketone (rac-2) into a new, heterogeneously catalyzed, one-pot dynamic kinetic 

resolution (Scheme 11).  
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Scheme 11. DKR of a vicinal hydroxy ketone. 

 

The second goal was to develop a practical highly regioselective hydrogenation of 1,2-

indanedione (1) described in Scheme 12. The third objective was to combine the 

hydrogenation and DKR into a new heterogeneously catalyzed one-pot sequence to 

produce chiral (R)-2-acetoxy-1-indanone (R)-3 directly from 1 (Scheme 13).  
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Scheme 12. Regioselective hydrogenation of a 1,2-dione structure. 
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Scheme 13. One-pot combination of a regioselective hydrogenation and a DKR. 

 

Also an additional and complementary investigation of homogeneous half-sandwich 

ruthenium catalyzed epimerization reactions of secondary alcohols, containing additional 

non-functionalized stereo-centers, was planned and made.  

The results of this work are discussed in the following summary and in detail in the 

appended original publications II-V. During the course of this thesis a pedagogical text on 

CALB catalyzed KR of rac-1-phenylethanol, aimed at undergraduate laboratory teaching, 

was also produced and is appended as complementary material (publication VI).   
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2. Experimental 

 

2.1 Materials 

 

Chemicals 

The chemicals were purchased from commercial sources and were used without further 

purification unless mentioned otherwise. The starting materials for the KR, racemization 

and DKR reactions were fully characterized with 1D 1H and 13C NMR spectroscopy using 

also 2D COSY, HSQC, and HMBC techniques. 

The starting materials and reference compounds, 1,2-indanedione (1), rac-2-hydroxy-

1-indanone (rac-2), rac-1-hydroxy-2-indanone, (S)-2-hydroxy-1-indanone [(S)-2], (S)-2-

Acetoxy-1-indanone [(S)-3] were synthesized following known or slightly modified  

literature methods (Figure 5).125-129   

 

1 rac-2 (S)-2

O

O

O O

OH OH

(S)-3

O

OAc

(R)-2

O

OH  

Figure 5. Structures of the compounds 1, rac-2, (R)-2, (S)-2 and (S)-3. 

 

Enzymes 

The commercially available immobilized lipases were used as delivered. The 

commercially available lyophilized lipases were immobilization on celite [10% (w/w) in the 

presence of sucrose 5% (w/w)] unless mentioned otherwise.130 The commercially 

immobilized lipases CALB (Novozym 435) and lipozyme RM IM (from Rhizomucor 

miehei) were obtained from Novo Nordisk. The lyophilized CALB was obtained from 

Codexis and lyophilized Candida antarctica lipase A (CALA) was the product of Roche. 

The immobilized PS-CII and PS-D and lyophilized lipases PS SD (from Burkholderia 

cepacia) and AK (from Pseudomonas fluorescens) were purchased from Amano. 
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Cu/Al2O3  

The heterogeneous copper catalyst was prepared starting from an aqueous ammonia 

and Cu(NO3)2 solution according to known literature procedure.67 The alumina was added 

to the solution, the mixture was diluted and stirred. After filtration the filter cake was 

washed with water, dried overnight and calcined at 370 °C (3 h). The oxidized catalyst was 

obtained as a brown powder. Prior to each reaction the copper catalyst was reduced in situ 

at 270 °C for 30 min under flowing hydrogen.  

 

Ru(OH)3/Al2O3  

The ruthenium catalyst was prepared according to the known literature procedure.69,70 

The calcined Al2O3 powder was applied in an aqueous solution of RuCl3, the pH was 

adjusted to 13.2 with NaOH and the resulting slurry was stirred for 24 h. The solid was 

then filtered off, washed with a large amount of water, and dried in vacuum to yield a dark 

powder.  

 

Bn5CpRu(CO)2Cl and Ph5CpRu(CO)2Cl 

Catalysts 4 and 5 were prepared by co-author Denys Mavrynsky, or under his 

supervision, as described in the literature with spectroscopic data identical to those 

reported previously (Figure 6).131,132  

 

RuBn
Bn

Bn Bn

Bn

OC CO

ClRuPh
Ph

Ph Ph

Ph

OC CO

Cl

4 5

 

Figure 6. Structures of the half sandwich Ru complexes 4 and 5.  
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Catalyst characterization 

The solid Ru-catalyst samples for high resolution transmission electron spectroscopy 

(HRTEM) analyses were prepared from a suspension of ethanol. More than 100 particles 

were included for each sample when determining the metal particle diameters in the 

HRTEM images (in one or more pictures). The HRTEM measurements were performed 

with LEO 912 Omega, voltage 120 kV. 

Temperature programmed reduction (TPR) of the Ru(OH)3/Al2O3 catalyst was 

performed with an Auto Chem Micromeritics Auto-Chem 2900 apparatus by using the 

following temperature program: 10 °C/min to 400 °C.  

The metal dispersion of the hydrogenation catalysts were determined using the 

Micromeritics apparatus by applying CO pulse chemisorption method. The Pd dispersion 

was calculated assuming an adsorption stoichiometry of 1/1 for CO/Pd.133 

X-ray photoelectron spectroscopy (XPS) was conducted with Kartos Axis Ultra electron 

spectrometer equipped with a delay line detector. The binding energy scale was referenced 

to the C 1s first line of aliphatic carbon, set at 285.0 eV. The obtained spectra were 

processed with the Kratos software. 

The ruthenium loading of the catalyst was determined by using an inductively coupled 

plasma optical emission spectrometer (ICP–OES; PerkinElmer, Optima 5300 DV) working 

at λ=240.272 nm. The ICP sample (16 mg) was applied in a teflon bomb together with aqua 

regia (2.5 mL) and HF (0.5 mL). The sample was digested in a microwave oven (Anton 

Paar, Multiwave 3000) and diluted to 100 mL with deionized water (18 MΩ) prior to 

analysis. 

The specific surface area of the Pd/Al2O3 catalyst was measured by nitrogen 

physisorption using an automatic physisorption apparatus (Sorptomatic 1900, Carlo Erba 

Instruments). BET method was used for calculation of the surface area. The catalyst was 

degassed prior to the surface area measurement in vacuum at 150 °C. 

The quantitative determination of Brønsted and Lewis acid sites of the catalyst support 

material was performed by using infrared spectroscopy (ATI Mattson FTIR) with pyridine 

as a probe molecule. The catalyst was pressed into thin wafers and evacuated at 450 °C for 
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60 min. The adsorption of pyridine was carried out at 100 °C for 30 min and desorption at 

200 °C and spectra were recorded at 100 °C. The quantification of the adsorbed pyridine 

was based on the molar extinction coefficient for pyridine.134 

 

 

2.2 Reaction Set Up 

 

2.2.1 Heterogeneous Hydrogenation Reactions  

 

The separate hydrogenation reactions of compounds 1, 6 and 7 (Figure 7) under 

atmospheric pressure were conducted in a five-necked 100 mL round-bottom flask 

equipped with a mechanical stirrer (gas tight adaptor), gas inlet (7 µm gas disperser 

merged in the solvent), in situ thermocouple, funnel (with degassing capability), rubber 

septa and condenser further connected to an oil bubbler for gas outlet. The catalysts used 

were Pd/Al2O3 (Aldrich; 5 wt% Pd), Pt/Al2O3 (Johnson–Matthey type 123; 5 wt% Pt) and 

Pt/Al2O3 (Johnson–Matthey type 5R94; 5 wt% Pt). The hydrogenation reactions were 

performed at 40 °C (oil bath) using hydrogen gas (Linde Gas–AGA, 99.999 %) under 

atmospheric pressure. The catalysts were pretreated under H2 flow for 2 hours at elevated 

temperatures (250 °C for Pd and 400 °C for Pt) in order to ensure that all active metal is in 

metallic form. 

O

O

O

O

6 7

 

Figure 7. Structures of the compounds 6 and 7. 

 

For the hydrogenation of 1 (1.2 mmol,175 mg) both the starting material and the 

internal standard were dissolved in EA (60 mL) and deoxygenated by bubbling with H2 (15 

min) in the funnel directly connected to the hydrogenation vessel. The reaction was started 

by introducing the solution into the reaction vessel containing the activated catalyst. The 



 2. Experimental  

28 

 

hydrogen flow rate during the reaction was 25–35 mL/min. Efficient stirring (500 rpm), 

small catalyst particle size (<63 µm) and metal loadings between 1 and 3 mol% were used 

for obtaining experimental data in the kinetic regime. For isolation of the product, the 

catalyst was removed by filtration through Celite. For collecting and recycling the catalyst 

material, the crude separation and washing were performed by removing the liquid phase 

from the top of the reaction vessel. The small-sized catalyst particles were allowed to 

sediment overnight in a tube shaped vessel after which the liquid was removed by using a 

syringe and needle. The catalyst particles could thereafter be transferred back to the 

reactor. Direct filtration of the catalyst was found unfeasible due to the fine powder-like 

character of the catalyst material sticking to all filter materials investigated. 

 

2.2.2 Kinetic Resolution 

 

The lipase (5–20 mg/mL) screenings of rac-2 (0.02M) in organic solvents (2 mL) were 

carried out using a 4mL vial at RT. The reaction components were placed in the vials 

equipped with caps and the reactions were mixed using a linear shaker (170 rpm). Samples 

(0.1 mL) for the analyses were taken by filtering off the enzyme with 0.45 µm syringe 

filters. 

 

2.2.3 Racemization Reactions  

 

The racemization of the enantiopure (S)-2 (0.01M) was conducted in three different 

reaction setups at 2–60 mL scale and DKR was performed on a 10 mL scale. The small scale 

(2 mL) reactions were performed by mixing with a linear shaker (170 rpm). For the 

transition metal-based racemizations, methyl tert-butyl ether (MTBE) or toluene (both 

HPLC grade) were deoxygenated by redistillation under Ar or by bubbling Ar through a 7 

µm gas disperser merged in the solvent. The inert atmosphere was applied initially after 3 

vacuum purge cycles with the solid catalyst material present in the Schlenk tube. Reactions 

in round bottom flask were stirred with a mechanical blade at 430 rpm and Schlenk tube 

reactions with a magnet at 750–1000 rpm. If the reaction was performed at elevated 
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temperatures, conventional oil bath was utilized for heating. Samples were filtered through 

a 0.2 µm syringe filter prior to derivatization and analysis. 

 

2.2.4 Dynamic Kinetic Resolution Experiments 

 

The DKRs were carried out under argon atmosphere using 10 mL (0.1 mmol rac-2) or 35 

mL (3.5 mmol rac-2) solvent. The glassware used was oven dried and cooled in desiccator 

prior to use. For the larger scale reaction the rac-2 (517 mg, 3.5 mmol) was placed in a 

deoxygenized (3 vacuum-argon cycles) 100 mL flask and dissolved in dry MTBE (35 mL). 

Trifluoroethyl butyrate (2113 µL, 14 mmol) and pentadecane (387 µL, 1.4 mmol) were 

added in the MTBE. The solid catalysts lipase AK (Pseudomonas fluorescens lipase) on 

celite (1756 mg), Ru(OH)3/Al2O3 (990 mg), and dry 4 Å molecule sieves (170 mg) were 

placed in a Schlenk tube that was deoxygenated with several vacuum-argon cycles. Prior to 

reaction the tube was merged in an oil bath (41 °C). The reaction was started by adding the 

solution of the heterogeneous catalysts in the Schlenk tube. The reaction was stirred with a 

mechanical blade at 500 rpm. The sampling was conducted with a needle through gas tight 

septa. After the 5 h 10 min reaction, the catalysts were filtered using 0.2 µm syringe filters.  

 

2.2.5 One-pot Reaction Application 

 

The one-pot cascade type reactions were conducted in the same reaction vessel as the 

heterogeneous hydrogenation reactions and similar operation with the following minor 

modifications (see section 2.2.1). After Pd-catalyst pretreatment, the reaction vessel was 

cooled down and the degassed (three vacuum-argon cycles) mixture containing the 

Ru(OH)3/Al2O3, lipase AK and 4 Å molecular sieves were introduced to the one-pot 

reaction vessel under Ar flow.  
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2.3 Homogeneous Ru-catalyzed Reactions 

 

2.3.1 Epimerization Reactions 

 

All glassware used in the epimerization reactions was oven dried and cooled in a desiccator 

over phosphorous pentoxide prior to use. Potassium tert-butoxide (tert-BuOK) was 

sublimated in vacuum prior to use. Tetrahydrofuran (THF) was distilled directly from 

sodium/benzophenone ketyl under argon. The chiral alcohols (−)-menthol, (−)-isopulegol, 

(+)-borneol, (+)-fenchol and (−)-cholesterol were all obtained from commercial sources. 

Of the starting materials, (−)-menthol was recrystallized from chloroform and (+)-borneol 

was predried over 4Å molecular sieves in stock solution (THF) for >24 h prior touse, (−)-

isopulegol was redistilled under dry conditions (under Ar) and stored in a glovebox.  

In a typical epimerization experiment, 20 µmol catalyst was dissolved in THF (2 mL) 

and transferred to a Schlenk tube. A magnetic stirring bar and 0.25 M solution of tert-

BuOK in THF (100 µL, 25 µmol) were added. Activation time for the catalyst was >20 min, 

during which the tube was closed with a stopper and removed from the glovebox. Next, 2 

mL of a 0.50 M stock solution of the starting material (1 mmol) was added to the Schlenk 

tube. The reaction mixture was stirred at 23 °C and samples were taken either through a 

rubber septa or counter gas flow using a degassed syringe and needle. Samples of the 

reactions were filtered through a small pad of silica in order to quench the reaction after 

which the sample was diluted and directly analyzed. 

 

 

2.4 Analysis 

 

Thin layer chromatography (TLC) analyses were performed by using silica gel F254 

precoated aluminum sheets visualized with UV and sprayed with 25% H2SO4 in methanol 

prior to heating. Column chromatography was performed by using Merck silica gel 60 

(0.040–0.063 mm). The heterogeneously catalyzed reactions were monitored by samples 
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from the reactor filtered using a syringe filter and diluted using the same solvent as in the 

reaction after which 1 µL of the solution was injected to the gas chromatograph. The main 

GC apparatus used was Agilent Technologies 6850 GC equipped with a Varian CP-7502 

column (25.0 m x 250 µm x 0.25 µm), He as the carrier gas and FID detector. The NMR 

spectra were recorded by using a Bruker Avance 600 MHz spectrometer equipped with a 

BBI-5 mm-Zgrad-ATM probe operating at 600.13 MHz for 1H and 150.92 MHz for 13C. 1H 

NMR spectra of (R)-1-oxoindan-2-yl butanoate was analyzed by using PERCH NMR 

software, with starting values and spectral parameters obtained from the NMR technique 

used.135,136 The HRMS were recorded by using Bruker Micro Q-TOF with electrospray 

ionization (ESI) operated in positive mode. Melting points were determined in open 

capillars. The enantiomeric purity of the products was determined by chiral GC using a 

VARIAN, CP-Chirasil-Dex CB (25 m x 0.25 mm x 0.25 µm). The GC samples were diluted 

with the same solvent prior to analysis to reach low enough concentration (<1mg/ml). If 

applicable, the derivatization was done by 1 drop of acetic or propionic anhydride and 1 

drop of pyridine containing 1% (w/w) of DMAP.  

 

 

2.5 Quantum Mechanical Calculations 

 

The following computational set up was used for quantum mechanical calculations, also 

presented in publication IV. The TURBOMOLE program package137,138 version 6.1 was 

utilized for determining the optimized structure of compound 1. The calculations were 

performed by applying density functional theory139 with the B3LYP hybrid exchange-

correlation functional140-142 in combination with the MARI-J approximation143-145 and the 

TZVP basis set146 for all atoms, as implemented in the TURBOMOLE program package. 

For determining the charge delocalization in the chemical structure 1, the GAMESS 

software was applied using the Hartree–Fock (HF) theory with the basis set 6-31G*147-149 

obtaining corresponding electrostatic potential fit (ESP) charges. 
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2.6 Student Experiment 

 

The laboratory experiments for educational purposes were made in 4 mL vials equipped 

with a small magnetic stirring bar and cap. The amount of CALB used was 10 mg, MTBE 

1.7 mL, rac-1-phenylethanol 121 µL (1 mmol) and isopropenyl acetate 220 µL (2 mmol). 

Sampling was done after 30, 60 and 180 min and the diluted samples were analyzed by GC 

equipped with a chiral column. The students calculated the conversions, ee values for the 

starting material and the product for all samples and the E-value of the reaction using the 

given equations. 
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3 Results and Discussion 

 
 

3.1 Development of a Heterogeneously Catalyzed Dynamic Kinetic 

Resolution 

 

A DKR can be developed by combining a kinetic resolution with racemization of the 

starting material. To succeed with a one-pot DKR process the reaction conditions should 

not negatively influence the activity, selectivity, or stability of the catalysts involved. The 

development of the DKR of rac-2 was made by first screening the conditions of the KR and 

racemization in separate steps before the two individual reactions were combined.  

 

3.1.1 Kinetic Resolution  

 

To develop a highly enantioselective kinetic resolution of rac-2, variations in type of lipase, 

solvent, residual water content and different acyl donors were studied.  

Eight different lipases (CALA, CALB [Novo 435], CALB [lyophilized], lipase PS-CII, 

lipase PS-D, lipozyme RM-IM, lipase PS-SD and lipase AK) were screened in order to 

elucidate the potential of some lipases that were not included in the related earlier work of 

Saha–Möller and co-workers.35 The focus of the present work was the utilization of 

immobilized enzymes in contrast to the free, not-immobilized, lipases used previously. In 

accordance with the earlier results, lipase AK adsorbed on Celite exhibited the highest 

performance.35  O-acylation of rac-2 by using vinyl butyrate in diisopropyl ether (DIPE) 

with lipase AK on celite provided (R)-3 in 91% ee at 25% conversion (Table 1, entry 1).  

In accordance with similar O-acylations,150 apparent hydrolysis of the product, (R)-1-

oxo-indan-2-yl-butanoate, back to the starting material was observed becoming more 

evident with increasing conversion and reaction time (Table 1, entries 1 and 2). 



 3 Results and Discussion  

34 

 

 

Table 1. Variations of solvent and reaction time for O-acylation of rac-2 (0.02 M) with vinyl 
butyrate (0.04 M). 

Entry Solvent time[h] 
ee [%] 

substrate 
ee [%] 

product 
Conversion 

[%]a 

1 DIPE 1b 31b 91b 25b 
2 DIPE 24b 35b 55b 38b 
3 DPIE, dryc 2 10 95 9 
4 DPIE, dryc 24 50 94 35 
5 DPIE, dryd 24 50 92 35 
6 MTBE, dryc 24 52 91 36 
7 DEE, dryc 24 22 88 20 
8 Toluene, dryc 168 16 93 15 
9 THF, dryc 144 21 90 19 

10 Acetone, dryc 144 9 95 9 
a calculated from ee values; b loading of lipase AK catalyst= 20 mgmL-1; c dried with 4 Å molecular 
sieves; d dried with CaH2. 

 

 

For minimizing the influence of water originating from the immobilized enzyme on 

product hydrolysis, the enzyme loading was decreased from 20 mg/mL to 5 mg/mL. 

Likewise, all solvents were dried by using either 4 Å molecular sieves or CaH2. As shown in 

Table 1, better results were obtained under dry conditions (Table 1, entries 2, 4, 5). Both 

DIPE and MTBE proved to be the good solvents for the KR of rac-2. MTBE was selected as 

the solvent for further experiments due to problems with solubility of rac-2 in DIPE, 

especially at concentrations >0.02 M. 

The E-value, expressing the enantioselectivity of the KR, becomes distorted because of 

the facile hydrolysis of the acylated product and is thus labeled E*. Further, E* is defined 

only in the beginning of the reaction at which time the influence of the product hydrolysis 

on enantioselectivity can be considered negligible. 

The influence of four different acyl donors in the lipase AK catalyzed O-acylation of 

rac-2 was studied. For all acyl donors used (vinyl butyrate, vinyl acetate, 2,2,2-

trifluoroethyl butyrate and isopropenyl acetate), moderate enantioselectivities (E*=20–30) 

were observed. Reactions with the vinyl esters gave higher conversions (36% and 45%) in 
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comparison with 2,2,2-trifluoroethyl butyrate (18%) and isopropenyl acetate (6%). Vinyl 

acetate provided, in some cases, higher enantioselectivities, but was replaced with vinyl 

butyrate to suppress the product hydrolysis.  

Conclusively, lipase AK (5 mg/mL) as the catalyst using vinyl butyrate (2 equivalents) 

as the acyl donor and dry MTBE (4 Å molecular sieves) as the solvent, was the best 

combination for the resolution of rac-2 (0.02M). Under these conditions, acceptable ee 

values (91%, E*=34) of the product (R)-1-oxoindan-2-yl butanoate were obtained without 

any significant side reactions at 36% conversion after 24 h.  

 

3.1.2 Heterogeneously Catalyzed Racemization of (S)-2-Hydroxy-1-indanone 

 

In the present work the aim was to explore structurally simple heterogeneous racemization 

catalysts. The most apparent groups of potential catalysts were: 1) Brønsted or Lewis acids 

and bases; and 2) Transition metal catalysts. 

The racemization of (S)-2 (Scheme 14) was investigated by using one weak and three 

strong acidic resins (Amberlyst CG50, Dowex 508, Amberlyst 15, Smopex101) as well as 

five basic homogeneous or heterogeneous catalysts (Amberlite IRA 904, Duolite A-340, 

Proton sponge, 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), Phosphazene base P4-tBu 

solution). The basic catalysts and weak carboxylic acid-based ion exchangers studied did 

not give satisfactory racemization.  Nevertheless, by using strong, sulfonic acid based ion 

exchange based catalysts Amberlyst 15 and Smopex 101, reasonable racemization of the 

substrate (S)-2 was achieved within 24 h. These observations are in line with the results of 

the earlier literature report.60 
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Scheme 14. Catalytic racemization of (S)-2 to rac-2.  
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However, the use of strong sulfonic acid based catalyst included two main drawbacks. 

The first disadvantage was the inactivation of the lipases by Amberlyst 15, which was also 

reported earlier by Ödman et al.60 The second, slightly surprising drawback, was the 

formation of 2-tert-butanoxy-1-indanone by-product in the presence of the MTBE solvent. 

More precisely, the cleavage of the tert-butanoyl-O bond in MTBE by strong Brønsted 

acids. The subsequent attack on the formed carbocation by the slightly nucleophilic OH 

group of 2-hydroxy-1-indanone then forms 2-tert-butanoyl-1-indanone and methanol 

(Scheme 15). The analytical data of the isolated 2-tert-butanoyl-1-indanone are consistent 

with those previously published.151  

 

+ H+

MTBE

O

OH

O

OH + C MeOH+

- H+

O

O+MeOH

 

Scheme 15. Acid catalyzed formation of 2-tert-butanoyl-1-indanone in MTBE. 

 

To avoid byproduct formation due to the solvent participation in the racemization 

experiments, the solvent was switched from MTBE to toluene. Pentadecane was used as an 

internal standard for comparing the relative concentrations of the components in the 

experiments. When studying the racemization reactions, a decrease in substrate/standard 

ratio with increasing catalyst concentration was observed. The data obtained suggest a 

process competing with racemization. Possible explanations could be dimerization of 2-

hydroxy-1-indanone and/or substrate interference with the acidic functionalities of the 

catalyst. 

It is known that also Lewis acidic materials, e.g. Zeolites and VOSO4, catalyze the 

racemization of secondary alcohols.65 Thus, attempts to racemize (S)-2 with acidic 

mordenite (H-mor), ZSM 5, H-beta and VOSO4 were made. The reaction conditions used 

were similar to those employed with Brønsted acidic catalysts. Racemization of (S)-2 (0.02 
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M) at 40 °C using EA as the solvent in the presence of 0.02 M VOSO4 proved unsuccessful. 

Conclusively, only modest racemization of (S)-2 was observed using the Lewis acidic 

zeolites, possibly due to the substantially lower acid site concentration as compared to 

Amberlyst 15 and Smopex101. 

Heterogeneous Cu-catalyst has also been reported to racemize secondary alcohols.66 

Characterization of the Cu/Al2O3 catalyst displayed low concentrations of Brønsted and 

Lewis acidic sites, 7 µmol/g and 156 µmol/g, respectively. The BET specific surface area of 

the support was 300 m2/g and the metal dispersion of Cu was, according to CO-pulse-

chemisorption, close to 8 %. The trial racemization reactions of (S)-2 using the Cu/Al2O3 

seemed promising. Further racemization studies with 0.5 molar equivalents of (S)-3 to 

mimic the DKR reaction product revealed a strong inhibition of the Cu-catalyst activity 

(Figure 8). The strong inhibition of the racemization may be due to coordination of the 

oxygen rich ester moiety in (S)-3 to the active copper sites. Accordingly, further efforts to 

utilize a copper-based racemization catalyst for DKR were not pursued. 

 

 

Figure 8. Racemization of (S)-2 (0.010 M) with 0.40 mg/ml Cu/Al2O3 catalyst in toluene at 70 

°C. The first reaction (■) performed with only (S)-2 and catalyst. The second reaction (▲) was 

carried out analogously except for the addition of (S)-2-acetoxy-1-indanone (0.0050 M) after 
60 min. The (●) describes the ee of (S)-2-acetoxy-1-indanone in the second reaction. 
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There are some reports in literature of secondary alcohol racemization using 

Ru(OH)3/Al2O3 catalyst.68-71 In this work the racemization of the vicinal hydroxyl ketone, 

(S)-2, a structurally more interesting molecule, catalyzed by Ru(OH)3/Al2O3 was studied. 

The heterogeneous Ru-catalyst prepared was characterized by means of HRTEM 

(particle size distribution), TPR (reduction temperature), and XPS (oxidation state). Based 

on ICP–OES results, the heterogeneous Ru(OH)3/Al2O3 catalyst contained a 1.9% (w/w) 

metal loading. The mean particle size based on HRTEM was 1.3±0.4 nm. The sizes of 

species involved in the reactions are displayed in Figure 10. The TPR of the catalyst 

confirmed that no reduction took place at temperatures below 70 °C in H2 atmosphere and 

the maxima for the H2 uptake at 137, 244, and 338 °C (Figure 4A). The XPS data displayed 

binding energy peaks at 463.5 and 485.7 eV defining the oxidation state of the ruthenium 

species to +III (Figure 9B).  

 

 

Figure 9. A) TPR of Ru(OH)3/Al2O3 and B) XPS spectra of Ru(OH)3/Al2O3 in the Ru 3p 
region.  
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Figure 10. Display of the sizes (at different scales) for compound 2, CALB and Ru metal 
particle on the Ru(OH)3/Al2O3 catalyst.  

 

To study the racemization reactions the ee values of (S)-2 were plotted against the 

normalized time [(time)∙(concentration of catalyst)]. When the racemization reactions are 

performed in the kinetic regime without external mass transfer limitations, with different 

concentrations of catalyst the normalized time data points should overlap. This was, 

however, not the case for (S)-2 when 0.5 molar equivalents of 3 was present (Figure 11). 

The racemization rate accelerated more than expected when the catalyst concentration was 

increased. The poisoning at the lower Ru catalyst concentration, seemed to be a result of 

the higher [compound 3]:[Ru catalyst] ratio. Compound 3, including the polar ester 

moiety, was probably more readily coordinating to the active sites on the Ru catalyst than 

(S)-2, thus inhibiting the racemization of (S)-2. 
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Figure 11. Racemization of (S)-2 (0.01 M) under argon in the presence of 2-acetoxy-1-
indanone (0.005 M) in MTBE at 25 °C. Two separate reactions were performed with different 
concentrations of Ru(OH)3/Al2O3, (■) 0.55 mg ml−1 and (○) 1.67 mg ml−1. 

 

However, complete racemization of (S)-2 (0.01M) was observed in 5 h using 1.67 

mg/mL-1 of the Ru(OH)3/Al2O3 in the presence of 0.5 molar equivalents of (S)-3. When 

comparing the practical operation of the copper and ruthenium on alumina, the obvious 

advantage with the latter is that no reduction is required prior to its use, making the 

racemization over ruthenium simple to operate and thus viable for use in the context of 

DKR.  

 

3.1.3 Dynamic Kinetic Resolution of rac-2 Using Heterogeneous Catalysts 

 

One of the objectives of this thesis was to develop a one-pot DKR of rac-2. The KR and 

racemization studies showed that best DKR results could be achieved by combining the 

heterogeneous Ru(OH)3/Al2O3 racemization catalyst with the immobilized lipase AK. 

When the KR was transformed into DKR the vinyl butyrate acyl donor was changed to 

trifluoroethyl butyrate to suppress possible coordination of the acyl donor to the 

ruthenium catalyst. The change of the acyl donor made it also possible to carry out the 

DKR under hydrogen atmosphere if needed. In addition, the amount of acyl donor was 
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increased from 2 to 4 molar equivalents. Furthermore, possibility for the product 

hydrolysis was decreased by addition of 4 Å molecular sieves to the reaction mixture. 

When shifting from KR to DKR the conversion increased from 35 to 90 % while only 

marginally affecting the enantioselectivity 91-93% in KR versus 91-92% in DKR. The 

reaction was successfully scaled up using 0.5 g of substrate (0.1 mole/L) obtaining initial ee 

(91%) similar to those observed under lower substrate concentration. With longer reaction 

times, however, a slightly lower ee (86%) was obtained. After 5 h the conversion reached 

was similar to earlier values (85%). In the larger scale experiments, there was nevertheless a 

decrease in racemization activity resulting in higher ee of the starting material after 5 h (ee 

of (S)-2=40%) when compared to that observed under more diluted reaction conditions (ee 

of (S)-2=30 %). 

Conclusively, although the racemization rate in the heterogeneously catalyzed DKR 

reactions is slightly inhibited by the esters present, the use of rac-2-hydroxy-1-indanone as 

the starting material provided the acylated product in 90% conversions and up to 92% ee of 

the acylated product (Scheme 16). 

 

Ru(OH)3/Al2O3

Lipase AK/celite

acyl donor
90% conversion

up to 92% ee

O

OH

O

O

O

rac-2

 

Scheme 16. DKR of rac-2 using lipase AK/Celite and Ru(OH)3/Al2O3. 

 

The presence of compound 1 in low concentrations during the DKR experiments was 

confirmed by the GC and GCMS results. The formation of 1 should nevertheless be 

avoidable under reductive reaction conditions. Notably, Busygin et al. have reported the 

regioselective hydrogenation of 1 over Pt/Al2O3 catalyst to yield 2-hydroxy-1-indanone.152  

Preliminary study on the kinetics indicates that the initial rate of the (S)-1 racemization 

in the absence of acylation, using 0.5 molar equivalents of 2-acetoxy-1-indanone, is in the 

region of 0.08 mmol/(gcat min). On the other hand the initial rate of the enzyme-catalyzed 

acylation of rac-1 reaches 0.09 mmol/(gcat min). Generally, in DKR, the racemization rate 
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should be higher than the rate of enzyme catalyzed acylation. However, in the reactions 

performed here, these rates were sufficiently similar to enable DKR. To produce a more 

efficient DKR, a higher racemization rate would be desirable. Kinetics of Ru(OH)3/Al2O3 

for racemization in DKR applications have been studied more carefully earlier for 1-

phenylethanol by Kirilin et al.100  

The gram scale DKR reaction was carried out in a similar but bigger schlenk vessel. The 

reaction solution was concentrated under vacuum and the product, (R)-1-oxoindan-2-yl 

butanoate, was purified twice by column chromatography using diethyl 

ether/hexane/MTBE 1:4:1 as the eluent and finally using the following gradient diethyl 

ether/hexane 0:1 �1:2. The product was received as a colorless oil [439 mg; 2.09 mmol; 

yield 60 %; ee=86%;  ��
��=-39.7 cm3g-1dm-1 (c=0.010 g/cm in CHCl3)]. The isolated yield 

was lower than expected most likely as a result of the repeated column chromatography 

purifications and the formation of 1,2-indanedione by-product. 

 

 

3.2 Regioselective Hydrogenation of 1,2-Indanedione 

 

The utilization of 1 as a starting material for further synthetic applications is attractive due 

to the fact that it is easy to prepare and readily available. This is probably in part due to its 

minor use as a forensic fingerprint reagent.153,154  

The initial hydrogenation experiments were made by using MTBE as solvent. However, 

when using 1 as starting material, MTBE was not sufficiently efficient as a solvent for 

reliable and practical operation. By switching the solvent to EA better reproducibility and 

more reliable results were obtained.  

The hydrogenation studies were continued by hydrogenation experiments using three 

different catalyst concentrations, 1.0, 2.0 and 3.0 mol% Pd for determining the initial 

reaction rates. For this purpose the samples were withdrawn in the beginning of the 

reaction when the concentration of the starting material decreased linearly. Subsequently, 

when the calculated initial rates were plotted against the catalyst concentration, a linear 
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correlation was obtained confirming that the reaction proceeds without external 

(gas/liquid) mass transfer limitations. 

The performances of both Pd and Pt catalysts were investigated in the hydrogenation of 

compound 1 (Pt/Al2O3 (type123), Pt/Al2O3 (type 5R94) and Pd/Al2O3). With both Pd and 

Pt catalysts 1 was converted to rac-2 in high selectivity (99 %) at up to 50 % conversion. 

While with increasing conversion the selectivity decreased, acceptable selectivities (92–94 

%) were obtained with Pd/Al2O3 at 75–80 % conversion (Figure 12). 

 

 

Figure 12. Kinetics of the hydrogenation of 1 using Pt/Al2O3 type 123 ■, Pt/Al2O3 type 5R94 
▲, Pd/Al2O3 ● displayed as a function of (a) concentration of 1, and (b) concentration of 
rac-2. 

 

 

3.2.1 Deactivation of the Catalysts 

 

The hydrogenation reaction was found to be very selective and all catalysts active during 

the initial stages of the reaction. After prolonged reaction time, the reaction rate declined. 

Retardation of the reaction rate was evident from analysis of the shapes of the reaction 

concentration profiles (Figure 12).  

The observed inhibition of the reaction was assumed to be a consequence of catalyst 

deactivation. Performances of the Pd and Pt catalysts studied were similar, indicating that 

the deactivation is not caused by the catalyst material. Potential origins of the deactivation 

may include coking, metal leaching or strong poisoning by either impurities or reaction 

products. 
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Analysis of the BET specific surface area, thermogravimetric analysis and FTIR were 

made in order to determine if the origin of the deactivation would be coking. Nevertheless, 

no clear evidence clarifying the observed catalyst deactivation was found. In further 

analysis the elemental composition of the spent and deactivated Pd catalyst was 

investigated using scanning electron microscope – energy dispersive X-ray analysis (SEM–

EDXA). The spent catalyst surface was found to contain 0.44 wt% sulfur and 0.16 wt% 

sodium. As it is generally known that these elements, especially sulfur, are often 

responsible for metal based catalyst poisoning the slow reaction rate observed at prolonged 

reaction times could, at least in part be attributed to sulfur deposited on the catalyst 

surface. Such deposition and poisoning could principally originate from the gas, solvent, 

catalyst or substrate of which the gas and the solvent can be ruled out based on the 

suppliers’ quality assurance. Thus, the only source of sulfur contamination is the substrate, 

1,2-indanedione.  

Some attempts for elimination of the possible sulfur contamination in 1 were made. 

Initially, 1 was dissolved in acetone and the possible sulfur contamination removed by use 

of active carbon followed by recrystallization of 1 from acetone. This procedure did not, 

however, improve the results of the hydrogenation reaction. 

The following attempt was modification of the synthetic procedure for preparation of 

1. The synthesis was modified by replacing the concentrated sulfuric acid used for 

hydrolysis of the 2-oxime-1-indanone precursor with concentrated HCl. The potential 

hazard in the use of HCl in turn is the possible formation of a toxic and carcinogenic by-

product, bis(chloromethyl) ether, discussed earlier by Gupta and Marathe.126 The 

hydrogenation of 1, synthesized without the use of sulfuric acid, exhibited an apparent 

slightly increased reaction rate and conversion compared to the earlier experiments using 1 

prepared by using the sulfuric acid based literature method. By using the improved 

synthesis of the starting material the average TOF value during 0-10 min increased slightly 

from 0.21 to 0.22 s-1 and the conversion at 120 min from 75–80 to 84 %. Furthermore, the 

spent Pd/Al2O3 catalyst was analyzed after the hydrogenation by same SEM–EXDA 

method verifying that no sulfur or chlorine was present on the catalyst surface when 1 was 
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prepared using HCl. Conclusively, these results suggest that the Pd catalyst in the 

hydrogenation of 1 could potentially be poisoned by sulfur originating from the 

concentrated H2SO4 used in the synthetic preparation of 1. In addition, if the probable 

sulfur contamination originating from the sulfuric acid would sustain its acidity it could 

cause some leaching of Al from the Al2O3 structure creating additional porosity. This could 

in principle also account for the increase in the specific surface area of the Pd/Al2O3 

catalyst analyzed before and after the hydrogenation reactions. 

 

3.2.2 Selectivity 

 

When comparing the Pd and Pt catalysts, the reactions over the Pd/Al2O3 catalyst gave 

after 120 min slightly higher conversions with selectivities similar to those observed for the 

two Pt catalysts (Table 2). The observed conversion of 1 over the Pt catalysts studied 

correlated with the metal dispersions of the catalyst materials so that the Pt catalyst with 

the somewhat higher metal dispersion also exhibited slightly higher conversion values. Due 

to the better overall performance and lower pretreatment temperature required, the 

Pd/Al2O3 catalyst was then selected for further studies. 

 

Table 2. Conversion of 1 and selectivity towards rac-2 using Pd and Pt catalysts. 

Entry Catalysta 
Pretreatment 
temperature 

under H2 flow 

Conversion 
of 1b 

Selectivity 
for rac-2 

1 Pd/Al2O3 250 84 92 

2 
Pt/ Al2O3 
(type94) 

400 68 93 

3 
Pt/ Al2O3 
(type123) 

400 57(61)c 96 

a 2 mol%; b At 120 min determined by GC; c Verified by NMR analysis 

 

During the first 30 min of the hydrogenation reaction, the formation rate of 

indanediols was much lower (0.57 µmol/min) compared to the formation of rac-2 (24 

µmol/min). In reactions with prolonged reaction time, the conversion of 1 exceeded 80 % 
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after 2 h and the concentration of rac-2 started to decrease while the concentration of the 

isomeric indanediols increased from 1 mmol/L (2 h) to 10 mmol/L (18 h). To obtain a high 

yield of rac-2 and low formation of indanediols, the reaction time of 120 min was found 

optimal with 2 mol% Pd, corresponding to 84 % conversion of 1 (Figure 13). 

 

 

Figure 13. Concentration profile of 1 ○, rac-2 □ and indanediols ∆ during the hydrogenation 

reaction of 1 (1.2 mol) using 2 mol% Pd in EA (60  mL).  

 

Only negligible amounts of the regioisomeric byproduct rac-1-hydroxy-2-indanone 

were detected in the hydrogenation of 1 to rac-2. Similar high regioisomeric selectivity 

towards rac-2 has been reported earlier by Chiang et al. in a study of the kinetics and 

mechanism of acid catalyzed hydrolysis of the two related diazo compounds 1-diazo-2-

indanone and 2-diazo-1-indanone (Scheme 17).129 Chang et al. found the hydrolysis of 2-

diazo-1-indanone, yielding rac-2, to be considerably faster than the hydrolysis of the 

corresponding regioisomer. The difference in the reactivity of the two diazo compounds 

was suggested to be a result of electron delocalization to the aromatic moiety when the 

diazo group is adjacent to an aromatic ring, decreasing the basic character of the diazo 

carbon in position 1.129  
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Scheme 17. Acid catalyzed hydrolysis of the regioisomeric diazoindanones.129  

 

The high regioselectivity in the hydrogenation of 1 yielding rac-2 is likely a result from 

the large reactivity difference between the two keto groups. This explanation is supported 

by the similar selectivities of both Pd and Pt catalysts towards rac-2 in the hydrogenation 

of 1. The adjacent aromatic ring remarkably decreases the reactivity of the carbonyl group 

in position 1. 

 Notably, the observed regioselectivity in the hydrogenation of 1,2-indanedione is 

reversed as compared to the regioselectivity in the heterogeneously catalyzed 

hydrogenation of the structurally more flexible analogue, 1-phenyl-1,2-propanedione.155-157 

For 1-phenyl-1,2-propanedione, the regioselectivity towards ketone moiety adjacent to the 

aromatic ring has been explained by the interactions between the substrate and the metal 

surface. Thus, while structurally related, the two substrates 1-phenyl-1,2-propanedione 

and 1,2-indanedione appear to exhibit different adsorption behavior on the catalyst surface 

thus resulting in opposite regioselectivities in hydrogenation reactions. 

In order to verify that the hydrogenation reaction fully proceeds under heterogeneously 

catalyzed conditions without leaching of Pd to the liquid phase, ICP–OES analysis was 

used. According to the analysis, the amount of dissolved Pd is below the detection limit (2 

ppm) thus indicating that the actual concentration of dissolved metal is likely to be even 

lower and does not influence the overall catalytic activity. 
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3.2.3 Product Isolations and in situ Derivatization 

 

The primary objective of the hydrogenation of 1 was to develop a practical process for 

obtaining rac-2 in high conversion and selectivity in sufficiently high isolated yield. Based 

on the conversion and selectivity, the expected yield should have been in the 70–77 % 

range. After filtration of the catalyst, removal of the solvent and chromatographic 

purification, the isolated yield of rac-2 remained at 45 %. In order to improve the isolated 

yield, an in situ derivatization of the hydroxyl group in rac-2 to the corresponding ester 

was attempted (Scheme 18). Disappointingly, only marginal improvement of the isolated 

yield to 48 % was obtained. Such high losses of isolated yield are evidently due to the small 

scale of operation investigated here.  

 

Scheme 18. i) Hydrogenation of 1 yielding rac-2, ii) Hydrogenation of 1 combined with in 
situ derivatization to 2-acetoxy-1-indanone. 

 

In order to further develop and apply the regioselective hydrogenation of vicinal 

diketones to other potential structures, preliminary hydrogenation studies by using 1,2-

naphthoquinone (6) and 9,10-phenanthrenequinone (7) as the starting materials were 

made. The hydrogenations of compounds 6 and 7 were initially carried out under similar 

reaction and pretreatment conditions as used for compound 1. While investigating the 

hydrogenation of 6, it became evident that the conditions used for 1 were not applicable 

for this compound. In the GC analysis, no product was observed although during the 

hydrogenation reaction a recognizable color change from bright yellow, distinctive for 

diones, to colorless was observed. The disappearance of the product was then discovered to 

be a result from back-oxidation of the product to starting material in air atmosphere prior 
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to analysis. Apparently, the reduction-oxidation equilibrium shifts rapidly towards the 

oxidized form upon exposure to air after venting of the hydrogenation reactor. In order to 

avoid the re-oxidation an in situ derivatization by acylation was applied. This was 

envisioned also to enable easier separation and to increase the isolated yield. This sequence 

provided for the two different starting materials the corresponding diacetates 8 and 9 in 

isolated yields of 85% and 78%, respectively (Schemes 19 and 20). The isolated diacetate 

products are likely formed by rearrangement of the hydroxy ketones by proton transfer 

and subsequent aromatization. 

Notably, because of the symmetric structure of 7 the hydrogenation cannot proceed in 

a regioselective manner. Nevertheless, the successful in situ derivatizations of the reaction 

products indicate that the envisioned conceptually related one-pot hydrogenation and 

esterification sequences should be feasible. 

 

 

Scheme 19. Hydrogenation (a) and subsequent esterification (b) of 6 to 8 with H2 (1 atm.) 
and Pd/Al2O3 as catalyst. 
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Scheme 20. Hydrogenation (a) and subsequent esterification (b) of compound 7 to 9 with H2 
(1 atm.) and Pd/Al2O3 as catalyst. 

 

 

 

3.3. Development of a New One-pot Reaction Cascade 

 

The primary aim of this thesis was to combine the regioselective hydrogenation of 1 with 

DKR of rac-2 thus providing, if successful, a rapid access to (R)-3 from 1,2-indanedione 

directly.  

 

3.3.1 Antiaromatic Character of 1,2-Indanedione  

 

Quantum mechanical calculations were carried out in order to elucidate the potentially 

antiaromatic character of compound 1 to clarify if some eventual incompatibilities could 

emerge with the catalysts or reaction conditions used.  

By definition antiaromatic compounds contain 4n (n ≠ 0) π-electrons in a cyclic and 

planar or nearly planar system consisting of alternating single and double bonds.20 Three 

additional characteristics possessed by antiaromatic compounds are: 1) Decreased 

thermodynamic stability; 2) Tendency to alternation of bond lengths; and 3) Small energy 

gap between the highest occupied (HOMO) and the lowest unoccupied molecular orbitals 

(LUMO).20 Tyutyulkov and coworkers have earlier performed quantum chemical 

calculations for the enolic anion form of 1, with results supporting the antiaromatic 
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character of the anionic structure with Jahn–Teller distortion and spectroscopic data 

supporting the proposal of a small band gap between the HOMO–LUMO.158 Furthermore, 

compound 1 and the related reactive radical structures have been studied using electron 

spin resonance by other investigators.159-161  

As the tendency to alternation of bond lengths is one of the characteristics possessed by 

antiaromatic compounds, the bond lengths of 1 were evaluated here using quantum 

mechanical calculations. The calculations performed clearly indicate the unmodified 

structure of 1 to be less antiaromatic compared to its enolic counterpart with the calculated 

bond lengths of 1 not significantly differing from the expected ones, also not indicating 

any significant Jahn–Teller distortions (Figure 14). 

 

Figure 14. The interatomic distances (in Ångström) for the 1,2-indanedione obtained from 
the quantum mechanical calculations. 

 

 As the benzylic charge delocalization likely results in different atomic charges on the 

carbonyl groups in position 1 and 2, and could influence the chemical behavior of 1, the 

atomic charges were calculated. While the difference between the atomic charges of the 

two carbonyl carbons is moderate (C-1 +0.45; C-2 +0.56), the results obtained support the 

earlier suggested property of delocalization of the benzylic C=O double bond to the 

aromatic region and thus resulting in the relatively higher reactivity of the carbonyl group 

in position 2.129  

Conclusively, in order to fully explain the behavior of 1 in the heterogeneously 

catalyzed hydrogenation reactions, more thorough calculations would be needed, 

including calculations of the different adsorption modes of the substrate to the different 
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catalyst surfaces. As indicated by the results obtained herein, the non-ionized form of 1 

shows only one antiaromatic feature, namely the small band gap between the HOMO and 

LUMO, −0.246 Eh and −0.110 Eh, respectively. 

 

3.3.2 One-pot Reaction Combining Hydrogenation and Dynamic Kinetic Resolution  

 

The minor formation of compound 1, an undesired by-product, was observed during the 

development of the DKR. As shown, by selecting suitable reaction conditions it is possible 

to achieve a regioselective catalytic hydrogenation of compound 1 producing rac-2. The 

one-pot combination of the regioselective hydrogenation of 1 and DKR of rac-2 would 

produce a beneficial and efficient reaction sequence.  

The initial one-pot experiments combining the hydrogenation and DKR were 

conducted by switching the reaction atmosphere from hydrogen gas to argon during the 

reaction. This was also made in a conceptually similar and related one-pot type reaction 

sequence reported by Bäckvall and co-workers.119 In the first one-pot experiments 

performed, the gas feed was therefore changed from hydrogen to argon after two hours of 

reaction. When comparing the reactions where the atmosphere was changed from H2 to Ar 

with those reactions where only H2 was used, it was evident that the introduction of argon 

did not enhance the outcome of the one-pot reaction sequence. Therefore further one-pot 

experiments were conducted using only hydrogen gas.  

For selecting a suitable solvent for the one-pot reactions both MTBE and EA were 

considered. The MTBE required a long time to dissolve 1 at the desired concentrations and 

at higher concentrations resulted even in slightly hazy solutions, also observed earlier in 

the development of the regioselective hydrogenation. For this reason EA was chosen as the 

solvent for further one-pot experiments.  

In the one-pot sequence reactions where EA was used as solvent and trifluoroethyl 

butyrate as acyl donor, not surprisingly, both the acetate and butanoate products were 

observed in a 1.7:1 ratio. In previous lipase catalyzed esterification reactions, Park and co-

workers have reported the use of EA in a dual role, both as an acetyl donor and a 
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solvent.77,162 Generally, when the solvent also acts as the acetyl donor, the overwhelming 

molar excess of solvent compared to the molar amount of substrate drives the reaction 

equilibrium heavily to the right. In the one-pot sequence reactions investigated here, the 

use of EA as both the solvent and acetyl donor also proved feasible at first, retaining the 

high product ee (>90% after 21 h) value throughout the whole reaction (Table 3, entry 2). 

An activated acetyl donor was needed for increasing the conversion and yield. By carrying 

out one-pot reactions with increasing amounts of activated acyl donor, trifluoroethyl 

acetate, the yield consequently increased as expected (Table 3, entries 3–5). 

 

Table 3. One-pot sequence combining hydrogenation and DKR producing 
(R)-3 from 1 (1.2 mmol) over Pd/Al2O3 (2.0 mol%) using a 21 h reaction time. 

Entry Solvent Acyl donora 
(equivalents) 

Yieldb [%] eeb,c 

1 MTBE 8 (3.7) 52 28 
2 EA - 34 90 
3 EA 9 (1) 33 91 
4 EA 9 (2.5) 40 86 
5 EA 9 (4) 51 86 

a Equivalents acyl donor related to the amount starting material; b Based on GC analysis; c ee = 
100∙([R-3]-[S-3])/([R-3]+[S-3]); d Added in portions. 

 

To further study how the reaction properties influence the outcome of the one-pot 

reaction sequence, reactions with different enzyme amounts (93, 130, and 163 mg) were 

performed. Changes in the enzyme amount were expected to influence the reaction rate of 

the KR part of the one-pot sequence (Figure 15). Consequently, the change in the 

acetylation rate was assumed to influence the (R)-2:(S)-2 ratio. The rate by which the 

acetylated end product was formed (kA) was, nevertheless, influenced only slightly by the 

variation of the enzyme amount (Scheme 21). Subsequently, the concentrations of the 

components in the three separate one-pot reactions are similar. One example of the kinetic 

curves obtained from a one-pot process is shown in Figure 16. Conclusively, these results 

demonstrate that the enzyme catalyzed KR in the one-pot sequence is not the rate limiting 

step. 
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Figure 15. Concentration of 2-Acetoxy-1-indanone for one-pot reactions using ■ 93 mg, ○ 
130 mg and ▲ 163 mg of lipase AK together with 51.6–51.9 mg Pd/Al2O3, 89.5–90.1 mg 

Ru(OH)3/Al2O3 and 4 equivalents (550 μL) of the acetyl donor at 40 °C. 

 

 

Figure 16. Concentration profiles of  compound 1 ▼,  compound 2 ■ and  compound 3 ○  for 

a one-pot reaction using 51.6 mg Pd/Al2O3, 89.5 mg Ru(OH)3/Al2O3, 130 mg lipase AK and 4 
equivalents (550 μL) of activated acetyl donor at 40 °C. 
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Scheme 21. One-pot reaction sequence including: i) hydrogenation of 1; ii) racemization of 
(S)-2 and (R)-2; iii) acylation of the (R)-2 with acyl donor forming (R)-3. 

 

The limiting step in the one-pot reaction appears to be, at least partially, the 

hydrogenation of compound 1 to rac-2. This was somewhat unexpected, as a long reaction 

time (20 h) in the hydrogenation reaction, without combining it with the DKR process, 

resulted in high (>85%) conversion of 1 (See section 3.2).  Conversion above 85% in turn 

resulted in significantly decreased selectivity (less than 40%) due to the consecutive 

hydrogenation of rac-2 to diols. During the development of the one-pot reaction sequence 

described here, the 2 mol% loading of Pd was considered to be sufficiently high for 

obtaining satisfactory reaction rates while avoiding the diol formation from 

overhydrogenation. Avoiding the consecutive hydrogenation to diols is particularly 

essential in the one-pot approach, when the lipase catalyzed acetylation of the isomeric 

alcohols would result in undesired mixtures of acetylated products. 

Additionally, also the racemization rate (rRS2) appears to be lower than expected under 

the applied one-pot reaction conditions resulting in increased ee of the 2-hydroxy-1-

indanone (section 3.1.2). Particularly the esterified product appears to inhibit the 

Ru(OH)3/Al2O3 racemization catalyst as shown in Figure 17, where ee of the intermediate 

compound 2 versus the concentration of the 2-acetoxy-1-indanone end product exhibits 

linear dependence. Moreover, variations in the amount of lipaseAK catalyst applied does 

not seem to influence the racemization rate (Figure 17).  
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Figure 17. Enantiomeric excess (ee = 100·([(R)-3]-[(S)-3])/([(R)-3] + [(S)-3])) of 2-hydroxy-

1-indanone versus concentration of 2-acetoxy-1-indanone in one-pot reactions using ■ 93 

mg, ○  130 mg and ▼   163 mg lipase AK. 

 

Hence, in order to improve the conversion and yield and to decrease the influence of 

the acyl donor on the racemization catalyst activity, the acetyl donor was added in five 

portions during the first two hours of the reaction, providing the end product in 51% yield 

(according to GC). The stepwise addition of the acyl donor also further enhanced the 

efficiency of the racemization catalyst to some degree. Despite of this, the intermediate 

product 2 in the one-pot sequence did not remain fully racemic throughout the reaction. 

Thus, after the modifications mentioned the one-pot reaction sequence provided 

acceptable yields and high ee values of the product (R)-3.  

Overall, the combination of the regioselective hydrogenation of 1 yielding rac-2 with 

the subsequent DKR producing (R)-3 enables an efficient reaction operation without the 

need for separation of the intermediate hydrogenation product. Furthermore, the reductive 

reaction conditions employed here enhance the efficiency of the DKR of rac-2, eliminating 

the formation of the oxidized DKR byproduct reported previously. 
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3.3.3 Kinetic Modelling of the One-pot Reaction Sequence 

 

For better understanding the cascade reaction network and for elucidateing eventual 

inhibition of catalysts, kinetic modelling of the one–pot process was performed. The 

kinetic modelling was performed of those three reactions where the amount of enzyme 

catalyst was varied.  

The following rate equations were used in the kinetic modelling: 
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In equation (1) kh is a lumped constant containing also the hydrogen concentration. 

Further, in equation (1) C1 and K1 denote concentrations of compound 1 and its 

adsorption coefficient on Pt. KAD denotes the adsorption of the acyl donor to the Pd 

surface. KAD was added to the model due to a possible blocking of the catalyst active sites 

on the surface, thereby decreasing the catalyst activity. The enzymatic reactions r(R2→R3) and 

r(S2→S3) were assumed to proceed by a sequential bisubstrate mechanism. Finally, for the 

racemization reactions, adsorptions of (R)-2 and (S)-2 were considered to be inferior to the 

much stronger adsorption of the acyl donor. In eqn (6)–(10) ρRu, ρPd and ρEn correspond to 
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the bulk densities of ruthenium, palladium and lipase, respectively. The generation rates 

for the compounds can be written the following way: 
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The kinetic modelling was performed for all reaction rates in the three reactions where 

enzyme amount was varied. For the parameter estimation, a set of differential equations 

describing the changes in the concentration profiles of the reagents and products with time 

was solved by means of ModEst software.163 Using Levenberg–Marquardt simplex method, 

the target function, which was defined as incompliance between the experimental and 

calculated values of concentrations was used to solve the system. The sum of the residual 

squares between the model and the experimental data was minimized. The quality of the fit 

and accuracy of the model description was defined by the degree of explanation R2; which 

reflects comparison between the residuals given by the model to the residuals of the 

simplest model one may think of, i.e., the average value of all the data points. 

Preliminary calculations demonstrated that the description of the hydrogenation 

reaction is mediocre due to strong catalyst deactivation, which could not be sufficiently 

well described assuming only adsorption of the acyl donor on Pd surface acting as a 

catalyst poison. In previous work,120 where also hydrogenation and chemoenzymatic DKR 

were combined in a one-pot fashion, the hydrogenation of acetophenone on palladium was 

found to undergo strong deactivation, similar to the current case where palladium is 

inhibited in the hydrogenation of compound 1. For the sake of modelling, an empirical 

time dependent function for the catalyst activity was proposed.120 Since a physical meaning 

in such dependence is unclear, a more mechanistically based assumption was used.  
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The expression for hydrogenation was modified to the following form (12): 

 

deactPd

ADAD

hh
q

CKCK

CKk
r ρ

++
=

11

11)(

1
  (12) 
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where C1 is the concentration of 1, C0
1 is the initial concentration of the substrate 1, C1,∞ is 

the concentration at infinite time, which was also considered as an adjustable parameter in 

the data fitting. The deactivation function has been used in earlier work164 to explain the 

activity profile in the hydrogenation reactions and is based on the assumption that a 

decline in catalyst activity is proportional to the amount of product formed. Calculations 

made with eqations (2)–(5) and (7) allowed further simplifications neglecting adsorption 

terms in denominators of all rate expressions. The final expressions for the reaction rates 

used are the following: 
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The calculations gave the estimated values of the parameters as well as the relative 

standard errors (in %) which are presented in Table 4. To demonstrate how well the kinetic 

model matches the experimental data the result for one reaction is displayed in Figure 18.  

 

Table 4. Estimated parameter values and the corresponding relative standard error.  

Parameter Value Relative standard error [%] 

��
�    [h-1] 3.22 8.1 

���
�   [h-1] 2.09·10-3 7.0 

����
�  [h-1] 2.56·10-2 17.2 

���
�   [h-1] 3.52·10-5 50.9 

��,!
�  [mol L-1] 6.37·10-3 2.5 

 

 

Figure 18. Comparison of the experimental data and the prediction from the kinetic model 
for the reactants and product in the one-pot reaction where 163 mg lipase AK was used. Solid 

lines represent the estimated data and circles the experimental data. The degree of 
explanation is 92.94%.  

 

Conclusively a new, simple to operate one-pot reaction sequence was developed here 

provideing the valuable building block (R)-2-acetoxy-1-indanone in 86–92% ee using a 20 

h reaction time enabling simple recovery of the catalysts by filtration facilitating easy 

product isolation. The yield obtained in this one-pot synthesis is in the same range as with 



 3 Results and Discussion  

61 

 

the traditional sequential reactions approach but the time and effort used, at least in lab 

scale, is decreased.  

 
 

3.4. Selective Epimerization of Secondary Alcohols 

 

Also the potential extension of sec-alcohol racemization catalyzed by homogeneous half-

sandwich ruthenium complexes to the epimerization of sec-alcohol natural products 

containing additional non-functionalized chiral carbon atoms was studied in this work. In 

such cases, only the sec-alcohol stereocenter is expected to interconvert, making the 

epimerization processes essentially analogous to racemization.  

The test epimerizations of (−)-menthol [(R)-10] and (−)-isopulegol [(R)-11] were 

performed using the two homogeneous ruthenium catalysts 4 and 5. Further reactions 

using three other structurally different natural products, (+)-borneol [(S)-12], (+)-fenchol 

[(R)-13] and (−)-cholesterol [(S)-14] were epimerized using catalyst 5. All starting 

materials used in the epimerization study are interesting because of their biological activity 

or various uses in fine chemicals and pharma industries. 

The configurational inversion of the secondary alcohol based stereocenter in the readily 

available natural products (−)-menthol and (−)-isopulegol under mild reaction conditions 

and low catalyst loadings (2 mol%) provides ideally rapid catalytic access to the rare 

diastereomeric terpenoids. In the initial epimerization of (−)-menthol and (−)-isopulegol 

using 5 as the catalyst, diastereomeric mixtures of (R)-10:(S)-10 and (R)-11:(S)-11 were 

obtained within a few hours in 3:1 and 6:1 ratios, respectively. These first experiments were 

carried out at ambient temperature in a glove box ensuring high quality of inert (water and 

oxygen free) reaction conditions. When comparing the catalysts 4 and 5 for epimerization, 

the former was found to be less efficient, providing with both starting materials (R)-10 and 

(R)-11 diastereomeric mixtures of (R)-10:(S)-10 and (R)-11:(S)-11 in 89/11 and 93/7 

ratios, respectively, after 23 h (Table 5, entries 2 and 4). Furthermore, the longer reaction 

times with catalyst 4 for starting materials (R)-10 and (R)-11 resulted in cloudy reaction 
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mixtures, likely due to the poor overall solubility of catalyst 4 in common organic solvents 

as compared to 5. Thus, for further experiments, catalyst 5 was selected, providing in all 

cases fast and selective epimerizations.  

 

Table 5. Epimerization reactions of the naturally occurring chiral alcohols 3–7 in the 
presence of ruthenium catalyst 1 or 2 (2 mol%) and tert-BuOK (2.5 mol%) in THF at 23 ◦C. 

Entry Catalyst Starting material Epimeric structure Diastereomer 
ratio 

1 4 

OH

(R)-10

 
OH

(S)-10

 

 
(R)-10/(S)-10 

75/25a 

2 5 (R)-10/(S)-10 
89/11a 

 

3 4 

OH

(R)-11

 
OH

(S)-11

 

(R)-11/(S)-11 
84/16a 

4 5 (R)-11/(S)-11 
93/7a 

5 4 

H

OH

(S)-12

 
OH

H

(R)-12

 (S)-12/(R)-12 
71/29b 

6 4 

H

OH

(R)-13

 OH

H

(S)-13

 
(R)-13/(S)-13 

82/18b 

 

7 4   
(S)-14/(R)-14 

78/22b 

aReaction time 23 h; bReaction time 21 h; cCatalyst loading 7 mol%. 

 

For demonstration of the proof-of-concept, the more expensive, minor diastereomers 

were then separated and purified by conventional column chromatography in 40–80% 

yields, based on their concentrations in the reaction mixtures. Isolation of the products 

was performed by column chromatography using CH2Cl2-hexane mixture as the eluent. 

HO

H

H

H

H

(S)-14

HO

H

H

H

H

(R)-14
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The isolated yields of reaction products (+)-neomenthol [(S)-10] and (+)-neoisopulegol 

[(S)-11] were 32 mg and 10 mg, respectively. 
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4. Concluding Discussion 

 

4.1 Summary and Conclusions 

 

The kinetic resolution of rac-2, using immobilized lipase AK in MTBE, yields (R)-3 in 91% 

ee at 36% conversion. During the screening of reaction conditions and catalysts, 

observations of a hydrolysis of the esterified resolution product back to the starting 

material were made. This undesired hydrolysis was minimized by the use of dry reaction 

conditions. The best activity and selectivity for racemization of (S)-2, using a 

heterogeneous catalyst, was obtained with Ru(OH)3/Al2O3. Practically complete 

racemization of (S)-2 (0.01 M) was observed in 5 h by using 1.67 mg/mL of the supported 

ruthenium catalysts in the presence of 0.5 molar equivalents of (S)-2-acetoxy-1-indanone. 

Small scale DKR experiments with rac-1 (0.01 M) were performed providing 85–90% 

conversions and 90–92% ee values enabling a scale up to 0.5 g and 0.1M. The utilization of 

heterogeneous catalysts in one-pot DKR facilitates the operation by enabling the 

separation of the catalysts by filtration. It was shown that after careful screening of the 

reaction parameters, a practical DKR producing (R)-3 with promising enantioselectivity 

and by utilization of heterogeneous catalysts can be developed. 

Highly regioselective hydrogenation of compound 1 producing rac-2 was also 

investigated. Three different heterogeneous Pd and Pt catalysts and two different solvents 

were evaluated. Five consecutive experiments were also carried out for studying the 

performance of Pd/Al2O3. The removal of sulfur contamination responsible for the 

inhibition was investigated and the yield of hydrogenation could be slightly improved by 

replacing the H2SO4 used in the synthetic preparation of 1 with HCl. Hydrogenation of 1 

(0.02 M) in EA under atmospheric pressure of H2 produced, according to GC-analysis, rac-

2 in 77 % yield using 120 min reaction time and 2 mol% of Pd/Al2O3. 

Overall, the combination of the Pd catalyzed regioselective hydrogenation of 1 yielding 

rac-2 with the subsequent lipase AK and Ru catalyzed DKR producing (R)-3 enables an 
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efficient reaction operation without the need for separation of the intermediate 

hydrogenation product. Furthermore, the reductive reaction conditions employed here 

enhance the efficiency of the DKR of rac-2. A new, simple to operate one-pot reaction 

sequence provides the valuable building block (R)-3 in moderate enantiopurity (86–92%) 

in a reasonable reaction time (20 h). In contrast to a multi-step reaction approach in 

separate reactors, the one-pot, heterogeneously catalyzed reaction sequence ideally enables 

simple recovery of the catalysts by filtration facilitating product isolation.  

Overall, the readily available 1,2-indanedione can be transferred to a useful chiral 

building block with high regioselectivity and moderate stereoselectivity using economically 

viable heterogeneous catalysts in a practical catalytic operation. 

Also the extension of secondary alcohol racemization catalyzed by homogeneous half-

sandwich ruthenium complexes to the epimerization of natural products including 

additional non-functionalized stereo-centers was developed. The use of catalyst 5 enables 

the epimerization of the sec-alcohols (−)-menthol, (−)-isopulegol, (+)-borneol, (+)-fenchol 

and (−)-cholesterol under mild reaction conditions. The catalytic epimerization provides 

rapid access to mixtures of the less abundant diastereoisomers (+)-neomenthol, (+)-

neoisopulegol, isoborneol, β-fenchol and epicholesterol with the parent diastereomers in 

ratios ranging from 1:4.9 to 1:2.4 (epimer:parent). The more expensive, minor 

diastereomers can then be separated and purified by conventional separation techniques in 

good yields.  

One of the objectives of this PhD thesis was to develop heterogeneous reactions with 

simple operation. Homogeneous transition metal catalyzed catalytic transformations 

require often oxygen and moisture free reaction conditions. The heterogeneously catalyzed 

KR and DKR are sometimes more easy to operate and do not require time consuming 

preparations of dry solvents or protective atmosphere. To demonstrate this, a 

heterogeneously catalyzed KR experiment for educational purpose for undergraduate 

students was developed and implemented. This experiment can be made by the students 

themselves using the guidelines given without any need of specialized training.  
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The new heterogeneously catalyzed one-pot reactions studied here, combining 

individual reaction steps into sequences, potentially enhance the efficiencies of overall 

chemical processes by reducing costs, time and labor efforts. These and similar concepts 

can, at least in theory, be used for enhancing the sustainability and effectiveness of various 

synthetic manufacturing processes in the future. 

 

 

4.2 Future Perspectives 

 

Deeper understanding of all phenomena related to various catalytic reactions combined in 

one-pot reactions will in the future require cross-disciplinary knowledge. The different 

fields involved in such cascade type operations include synthetic chemistry, computer 

simulations, reactor design, reaction and protein engineering as well as industrial and large 

scale production aspects. For example, different epimerizations can principally be 

combined with enzyme catalyzed stereoselective reactions. This type of combinations 

enable dynamic kinetic asymmetric transformations, thus obtaining stereoselective 

transformations of diastereomeric structures possibly yielding rare, expensive or otherwise 

desired stereoisomeric structures.  

The field of bio-catalysis is also undergoing a rapid development. Using different 

protein engineering techniques available naturally existing protein end enzyme structures 

can be modified and reproduced. These kinds of target-oriented randomized protein 

engineering methods are known as directed evolution. Thus, enzyme catalyst structures 

can be designed for a specific substrate or target molecule, enhancing the selectivity or 

reaction rate by modifying the catalytically active center. The development of protein 

engineering methods allows dramatic improvements in enzyme and bio-catalysis. This 

enables bio-catalysis to become an increasingly important tool in organic synthesis. 

Moreover, applications using flow chemistry are receiving significant and increasing 

attention from both the academia and industry. Different reactions that are difficult to 

separate spatially in batch reactors can be effectively implemented using flow reactors by 
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applying compartmentalization, i.e., separating different types of catalysts in the reactor 

space. Further, the application of small scale flow reactors, microreactors, in the laboratory 

can sometimes offer considerable advantages over batch reactors. The advantages are 

nevertheless dependent on the type of chemical transformations and reactor designs 

available. Different flow reactors become particularly important when reaction times are 

fast and the heat and mass transport limitations become critical. Also a reduced contact in 

flow mode when handling hazardous reactants, products or waste can produce safer 

synthesis.  

The merge of different disciplines such as synthetic organic chemistry, material 

technology and chemical reaction engineering will certainly provide sustainable 

production of chemicals required by the modern society. A fruitful combination of 

individual reactions with suitable catalysts constructing multistep cascade type one-pot 

reaction applications will have several advantages compared to traditional isolated single 

step synthesis.  
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