
Jani Trygg

Functional Cellulose Microspheres For 
Pharmaceutical Applications 
 

Jani Tryg
g 

Functional C
ellulose M

icrosp
heres For Pharm

aceutical A
p

p
lications 

Åbo Akademis förlag | ISBN 978-952-12-3168-1

2015

Jani Trygg B5 Kansi VALISTETTY s17 Inver260 28 January 2015 8:36 AM

9 789521 231681

Laboratory of Fibre and Cellulose Technology 
Faculty of Science and Engineering 
Åbo Akademi University 

Turku / Åbo 2015



Jani Trygg
Born 1981, Turku, Finland.

He received M.Sc. in chemistry from University of Turku in 2008, 
started Ph.D. studies at Laboratory of Fibre and Cellulose Technology 
in Åbo Akademi in 2009 and had his Ph.D. dissertation in Åbo Akademi 
in 2015.

Åbo Akademis förlag
Tavastgatan 13, FI-20500 Åbo, Finland
Tfn +358 (0)2 215 3478
E-post: forlaget@abo.fi 

Försäljning och distribution:
Åbo Akademis bibliotek
Domkyrkogatan 2–4, FI-20500 Åbo, Finland
Tfn +358 (0)2 -215 4190
E-post:  publikationer@abo.fi 

”Education is what survives 
 when what has been learned 
  has been forgotten.”
-B.F. Skinner



Functional Cellulose Microspheres For
Pharmaceutical Applications

Jani Trygg

Laboratory of Fibre and Cellulose Technology

Faculty of Science and Engineering

Åbo Akademi University

Turku / Åbo 2015



Supervisor
Professor Pedro Fardim
Laboratory of Fibre and Cellulose Technology
Faculty of Science and Engineering
Åbo Akademi University, Finland

Opponent
Professor Patrick Navard
Ecole des Mines de Paris / CEMEF, France

Reviewers
Professor Patrick Navard
Ecole des Mines de Paris / CEMEF, France

Professor Ilkka Kilpeläinen
Laboratory of Organic Chemistry
Department of Chemistry, Faculty of Science
University of Helsinki, Finland

ISBN 978-952-12-3168-1
Suomen Yliopistopaino Oy, Juvenes Print, Turku 2015



Abstract
Jani Trygg

Functional Cellulose Microspheres for Pharmaceutical Applications

Doctor of Philosophy in Chemical Engineering Thesis

Åbo Akademi University, Faculty of Science and Engineering,

Laboratory of Fibre and Cellulose Technology, Turku 2015.

Keywords: Cellulose, pretreatment, viscosity, degree of polymerisation, disso-

lution, coagulation, regeneration, microsphere, bead, surface area, porosity,

functionalisation, oxidation, drug delivery, release profile

Dissolving cellulose is the first main step in preparing novel cellulosic materi-

als. Since cellulosic fibres cannot be easily dissolved in water-based solvents,

fibres were pretreated with ethanol-acid solution prior to the dissolution. Sol-

ubility and changes on the surface of the fibres were studied with microscopy

and capillary viscometry. After the treatment, the cellulose fibres were soluble

in alkaline urea-water solvent. The nature of this viscous solution was studied

rheologically.

Cellulose microspheres were prepared by extruding the alkaline cellulose so-

lution through the needle into an acidic medium. By altering the temperature

and acidity of the medium it was possible to adjust the specific surface area

and pore sizes of the microspheres. A typical skin-core structure was found in

all samples.

Microspheres were oxidised in order to introduce anionic carboxylic acid

groups (AGs). Anionic microspheres are more hydrophilic; their water-uptake

increased 25 times after oxidation and they could swell almost to their original

state (88%) after drying and shrinking. Swelling was studied in simulated

physiological environments, corresponding to stomach acid and intestines

(pH 1.2-7.4).

Oxidised microspheres were used as a drug carriers. They demonstrated a

high mass uniformity, which would enable their use for personalised dosing

among different patients, including children. The drug was solidified in

microspheres in amorphous form. This enhanced solubility and could be used

for more challenging drugs with poor solubility. The pores of the microspheres

also remained open after the drug was loaded and they were dried. Regardless

of the swelling, the drug was released at a constant rate in all environments.
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Tiivistelmä
Jani Trygg:
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(Muokatut selluloosahelmet farmaseuttisissa sovelluksissa)

Väitöskirja

Åbo Akademi, Luonnontieteiden ja tekniikan tiedekunta,

Kuitu- ja selluloosateknologian laboratorio, Turku 2015.

Avainsanat: Selluloosa, esikäsittely, viskositeetti, polymerisaatioaste, liuotus,

koagulointi, regenerointi, helmi, pinta-ala, huokoisuus, muokkaus, hapetus,

lääkeannostelu, vapautumisprofiili

Selluloosan liuotus on ensiaskel valmistettaessa uusia selluloosamateriaaleja.

Koska selluloosakuituja ei voi helposti liuottaa vesi-pohjaisiin liuottimiin,

kuidut esikäsiteltiin etanoli-hapolla ennen liuotusta. Muutoksia kuitujen pin-

tarakenteessa ja liukoisuudessa tutkittiin mikroskoopeilla ja kapillaarivisko-

metrilla. Käsittelyn jälkeen kuidut liukenivat emäksiseen urean vesiliuokseen.

Tämän liuoksen luonnetta tutkittiin reologisesti.

Selluloosahelmet valmistettiin pursuttamalla alkaalinen liuos pisaroittain

neulan läpi happamaan vesiliuokseen. Muuttamalla vesiliuoksen lämpöti-

laa ja happamuutta voitiin säädellä helmien ominaispinta-alaa ja huokosia.

Tyypillinen kuori-ydin -rakenne löydettiin kaikista näytteistä.

Helmiin lisättiin anionisia karboksyylihappo-ryhmiä hapettamalla. Anioniset

helmet olivat enemmän hydrofiilisiä; niiden vedenottokyky kasvoi 25 ker-

taiseksi hapetuksen jälkeen ja ne turposivat lähes alkuperäisiin mittoihin

(88%) kuivauksen aikana tapahtuneen kutistumisen jälkeen. Turpoamista

tutkittiin keinotekoisissa fysiologisissa ympäristöissä, jotka vastasivat vatsa-

happoa ja suolistoa (pH 1,2-7,4).

Hapetettuja selluloosahelmiä käytettiin lääkkeenkantajina. Ne osoittivat erit-

täin tasaista massajakaumaa, jota voitaisiin hyödyntää esimerkiksi henkilöko-

htaisessa lääkkeenannostelussa vaikka lapsipotilailla. Lääke oli kuivunut kide-

muodottomaksi helmen huokosiin, joka osaltaan edisti vapautumista. Tätä

voitaisin käyttää heikkoliukoisten lääkeaineiden kuljettamisessa elimistöön.

Huokoset pysyivät auki kun lääkkeillä ladatut helmet kuivattiin. Huolimatta

turpoamisnopeudesta, lääkeaine vapautui vakionopeudella jokaisessa tutki-

tussa ympäristössä avonaisten huokosten ansiosta.
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Sammanfattning
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tions (Funktionella cellulosapärlor för farmaceutiska tillämpningar)

Avhandling
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alisering, oxidering, läkemedelsdosering, profil av läkemedelsfrisättning

Upplösning av cellulosa är det första steget vid framställning av nya cellulosa-

material. Eftersom cellulosabaserade fibrer inte kan lätt upplösas i vatten-

baserade lösningsmedel, gjordes en förbehandling av fibrerna med en etanol-

syralösning före själva upplösningen. Förändringar i fibrernas ytstruktur och

upplösningsegenskaper studerades med mikroskop och kapillärviskometri.

Efter förbehandlingen löste sig fibrerna i alkalisk urea-vatten lösning. Denna

cellulosalösnings egenskaper karakteriserades reologiskt.

Cellulosapärlor framställdes genom att extrudera den alkaliska cellulosalös-

ningen genom en nål till en sur vattenlösning. Genom att ändra vattenlös-

ningens temperatur och surhetsgrad var det möjligt att skräddarsy cellulos-

apärlornas specifika ytarea och porstorlek. Alla prov visade sig ha en typisk

skinn-kärna struktur.

Cellulosapärlorna oxiderades för att införa anjoniska karboxylsyragrupper.

De anjoniska cellulosapärlorna visade en större hydrofilisitet; deras vattenup-

ptagningsförmåga ökade 25-falt efter oxideringen och de kunde nästan svälla

tillbaka till sin ursprungliga storlek (88%) efter föregående torkning och

krympning. Svällningen undersöktes i simulerade fysiologiska miljöer, vilka

motsvarade magsyra och tarmar (pH 1,2-7,4).

Oxiderade cellulosapärlor användes som läkemedelsbärare. De visade sig

ha en väldigt jämn massafördelning, vilket kunde utnyttjas till personliga

läkemedelsdoseringar för olika patienter, exempelvis till barn. Medicinen var

solidifierad inne i cellulosapärlorna i en amorf form, vilket delvis gynnade

läkemedlets frigivning och löslighet. Detta kunde användas till att trans-

portera svårlösliga läkemedel till kroppen. Cellulosapärlornas porer förblev

öppna efter att pärlorna fyllts med läkemedel och torkats. Oberoende av

svällningshastigheten frigjordes läkemedlet med en konstant hastighet i alla

de studerade miljöerna tack vare de öppna porerna.
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1 Introduction

Novel cellulosic shapes have gained increasing interest among researchers,

partly due to global trends to utilise renewable materials in areas which had

formerly used, for example, oil-based products. Another motivation includes

new markets and products which had not existed before but for which there

is a niche. In either case the preparation of an adaptable product requires

preliminary research at each phase of the product development.

Forming new shapes from cellulose requires the destruction of the intermolec-

ular network of the cellulose molecules. Dissolving cellulose either directly or

after chemical modification destroys the hydrogen bonds and separates the

molecules from each other, making it possible to “build up“ new shapes at this

level. Conventionally, cellulose has been dissolved using toxic materials such

as metal complexes or viscose process, but in the 1990’s novel water-based

solvents started to gain more attention due to environmental regulations

and academic research (Isogai and Atalla, 1998; Kamide et al., 1992). At the

beginning of the 2000s ionic liquids became more interesting due to their

ability to dissolve high amounts of cellulose (Swatloski et al., 2002). However,

the choice of the solvent is mainly influenced by the need for and possibilities

in a process, and of course the properties desired from the end product.

A new shape is formed by shaping the cellulose dope and either hindering

the effectiveness of the solvent, neutralising it, or converting soluble cellulose

derivatives back to insoluble cellulose. The shape itself can be considered a

functional property if it can be adjusted and utilised in an application.

Another possibility is to modify cellulose chemically by derivatisation, either

hetero- or homogeneously. Since the application defines the properties that

are required from the material, it is necessary to acknowledge these properties

at the very beginning of the process, for example short-chained cellulose

should be avoided if pulling a yarn for high-tensile strength applications

(Krässig and Kitchen, 1961; Woodings, C. and Textile Institute (Manchester,

England), 2001).

Different cellulosic shapes can be placed in two categories; native and ar-
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Chapter 1. Introduction

tificial (Figure 1.1). The properties of the material in both categories are

connected to the geometric form of the product and cellulose as a structural

polymer. In native shapes cellulose molecules are produced by biosynthesis;

a polymerisation of the glucose units to cellulose. The shape of the product,

starting from the orientation, packing, and length of the molecules, is deter-

mined by the biological needs. The most common native cellulosic shape

is that of a plant fibre. It commonly consists of three layers, that is the pri-

mary, secondary and tertiary cell wall layers (Jensen, 1977) and can thus be

considered to have a non-uniform morphology. Bacterial cellulose consists

of microfibrils like plant fibres, but fibrils are ribbon-like, much smaller and

initially more pure (Jonas and Farah, 1998).

Artificial cellulosic shapes are commonly formed via gelation of existing cellu-

lose molecules. Gelation is usually undertaken by slowly forming the hydro-

gen bond network so that the newly formed network covers the whole space

together with the liquid phase. This allows cellulose molecules to maximise

their space and surface area (Gavillon and Budtova, 2008). The liquid can

then be removed, for example by freeze-drying or critical point drying, to

avoid hornification and to maintain the morphology. Since these products

are often highly porous, they can be used, for instance, as an insulator. When

the targeted property is liquid adsorption, they are commonly referred to as

sponges. Additionally, cellulose is biocompatible (Miyamoto et al., 1989) and

can be used in wound dressings (scaffolds) or in drug delivery. Sometimes

they are called with prefix aero-, such as aerocellulose.

If the gelated shape is a spherical particle, it is commonly called a cellulose

bead or microsphere. They have a diameter greater than 10 µm, separating

them from nanomaterials, and cellulose is the main component giving the

structural properties (Gericke et al., 2013). Otherwise the attributes are mainly

the same as described above; high surface area, porosity, biocompatibility, and

so on. Their sphericity and dimensions can also be utilised in applications,

using, for example, their ability to flow.

The literature review of this doctoral thesis begins with an overview of cellu-

lose structure and sources. Different pretreatments are presented prior to the

dissolution of cellulosic fibres. The phenomena of regeneration and coagu-

lation is clarified in the context of the different solvent systems. The section

about controlled release systems leads the thesis to the challenges of design-

ing polymer matrices for drug delivery. Essential characterisation methods
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Figure 1.1: Cellulosic shapes. (Top) Native jute fibres and bacterial cellulose
(photograph and SEM image), (bottom) regenerated cellulose fibres and films
from viscose, and coagulated sponge and beads from NaOH/urea/water. Im-
age of bacterial cellulose from Chen et al. (2010) and of beads from Trygg et al.
(2014).
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for cellulosic shapes and pharmaceutical applications are introduced at the

end of the literature section of the thesis.

In the experimental section a complete preparation route is presented for

functional cellulose microspheres. It presents the challenges to dissolving

cellulose in water-based solvents and proposes an efficient pretreatment

method to enhance solubility (Paper I). The physicochemical modification

of microspheres is studied in order to understand the role of the coagulation

environment and its utilisation for the final product (Paper II). This study

was further expanded to be a complete study of drug delivery (Supporting

Publication 3). Microspheres were chemically modified, their properties were

characterised (Paper III) and their use in drug delivery was studied in detail

(Paper IV). A review (Paper V) of potential applications is given in the end of

the experimental section, based on the results presented in earlier papers and

on observations during the studies.

1.1 Cellulose sources and structures

Approximately 1.5×1012 tons of cellulose biomass is produced on Earth each

year (Klemm et al., 2005). Biosynthesis routes to cellulose formation are

found in prokaryotes (Ross et al., 1991; Zogaj et al., 2001) and eukaryotes,

such as animals (tunicates), various algae, fungi, and plants (Brown, 1985).

Among cellulose producing bacteria, cyanobacteria has existed for more

than 2.8 billion years (Nobles et al., 2001). Endosymbiotic transfer of the

cellulose synthases has been proposed as occurring from cyanobacteria to

plants. Speculation about the early purpose of cellulose vary from high UV

radiation shielding of the early Earth to enhanced motility in organisms. As far

as we know, nowadays cellulose mostly acts as a structural polymer providing

strength and support for plants.

Cellulose is composed of 1→4 linked β-D-glucose units, each unit rotated

180◦ compared to the previous unit. It is a linear polymer which forms strong

hydrogen bonding network via three hydroxyl groups (-OH) on its C2, C3 and

C6 carbons. The orientation of these hydroxyl groups and the placement

of the cellulose chains compared to neighbouring chains defines the crystal

structure (allomorph) of the cellulose (Figure 1.2). Cellulose I is the most com-

mon allomorph with two suballomorphic forms, triclinic Iα and monoclinic

Iβ unit cells (Zugenmaier, 2001). The former is mainly produced by algea and
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bacteria and the latter by plants. Since the main source of artificial cellulosic

products is dissolving pulp, which is made from wood biomass, cellulose Iβ is

most used cellulose suballomorph. In this thesis, terms “cellulosic pulp”, “cel-

lulosic fibre”, and “cellulose” exclusively refer to a material which is extracted

from wood biomass.

Figure 1.2: Representation of (A) cellulose Iβ and (B) cellulose II crystal struc-
tures on (A1,B1) a-b plane and (A2, B2) molecules in lattice planes 100 and
010, respectively. Figure from Zugenmaier (2001).

Both suballomorphs are described as thermodynamically less stable than

cellulose II. Paradoxically, cellulose I is clearly more common in nature (so-

called native cellulose) and cellulose II is seldom produced in small quantities,

such as by Acetobacter Xylinum (Roberts et al., 1989). Cellulose II (generally

in the literature as regenerated cellulose) is often produced from cellulose I by

mercerization (treatment with aqueous sodium hydroxide) or after dissolution

and coagulation. Other crystal structures, such as cellulose III and IV with

their suballomorphs are even more rare in nature (Brown Jr et al., 1996),

but can be artificially converted to cellulose III by ammonia treatment, and

further to cellulose IV by heat treatment in glycerol (Zugenmaier, 2001).
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1.2 Pretreatment of cellulosic pulp prior to dissolution

Cellulose is insoluble in most common solvents due to a strong inter- and in-

tramolecular hydrogen bonding network (Klemm et al., 1998). If the cellulose

molecules are long, the network is more dense and the solubility lower (Qi

et al., 2008). Evolution has also developed wood fibres to be resistant against

physical and chemical impacts, yielding fibres with three layers that provide

resistivity against physical stress (Niklas, 1992) and its own chemical toxins

in order to protect it from microorganisms and chemical attacks (Scheffer,

1966).

Pretreatments aim to break the original shape and/or composition of a pulp

fibre (Mosier et al., 2005). Unwanted components in cellulosic pulp, such

as hemicelluloses and lignin, can interfere with the dissolution process or

chemical modification. The accessibility of the reagents into the fibre in both

cases is essential for the successful processing and even distribution of the

functional groups (Moigne et al., 2010).

Pretreatments can be roughly categorised into three classes: physical, chem-

ical, and biological (Table 1.1). In physical methods, such as ball milling,

mechanical energy is used to reduce the crystallinity and open the fibre (Tassi-

nari et al., 1980). These are often very energy demanding methods, however

(Kumar et al., 2009). Physicochemical methods, such as steam explosion and

hot water treatment, are more cost effective (McMillan, 1994; Weil et al., 1997).

They degrade hemicelluloses and disrupt lignin structures. As a downside,

their byproducts might inhibit biological methods which are often used in

biomass conversions (Palmqvist and Hahn-Hägerdal, 2000). Ammonia and

CO2 fibre explosions do not produce these inhibitory byproducts and they do

open the fibre, but they are not effective against lignin and hemicelluloses

(Kumar et al., 2009). Due to their low cost they are used as a preliminary

method before enzymatic treatment (Yang and Wyman, 2006).

Biological (enzymatic) methods are targeted against certain components.

Enzymes from biological origins are usually pH and temperature sensitive

and other components may interfere with efficiency (Schilling et al., 2009).

Chemical methods on the other hand are less specific but they are more

available and more versatile (Adel et al., 2010; Kumar et al., 2009; Mosier

et al., 2005). From a dissolution point of view, both methods, biological and

chemical, aim at degradation of cellulose molecules to enhance solubility.
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Table 1.1: Rough classes of the pretreatment methods of the biomass and
their effects.

Class Example method Description Ref #
Physical Refining Fibrillates and reduces crystallinity. 1

Milling Reduces crystallinity. 2

Physico-
chemical

Heating Solubilisation of hemicelluloses
and partially lignin.

3

Liquid hot water Like heating but more effective. 4
Steam explosion Rapid depressurisation of water

opens the fibre.
5

Chemical Ozonolysis Selective degradation of lignin, no
effect on cellulose or hemicellu-
lose.

6

Acid hydrolysis Hydrolyses hemicelluloses and cel-
lulose.

7

Alkaline hydrolysis Removes hemicelluloses and swells
the fibre.

8

Oxidative delignifi-
cation

Like alkaline hydrolysis with oxida-
tive component. Lignin degrada-
tion.

9

Organosolv Acid hydrolysis in organic solvent. 10

Biological Enzymatic Yeast, fungi, moulds and bacteria
based enzymes. Specific targets.

11

References: 1.Jonoobi et al. (2009), 2.Tassinari et al. (1980), 3.Hendriks and
Zeeman (2009); Mosier et al. (2005), 4.Weil et al. (1997), 5.Li et al. (2009),
6.Quesada et al. (1999), 7.Lu et al. (2007), 8.Carrillo et al. (2005), 9.Kim and
Holtzapple (2006), 10.Kumar et al. (2009), 11.Schilling et al. (2009).

1.3 Cellulose dissolution, regeneration, and coagulation

In order to dissolve cellulosic fibres, the solvent should penetrate the cell

wall layers and disrupt the hydrogen bonding network to such an extent

that cellulose molecules (and other components) no longer interact with

each other. The affinity to the solvent has to be stronger than that which the

dissolving components have for each other. If the solvent is efficient enough,

dissolution proceeds via the fragmenting mechanism directly destroying all

the layers of the fibre when in contact. This is usually the case with, for

example, metal complexes and ionic liquids. Weaker solvents usually dissolve

chemically less resistant layers first, the secondary and tertiary cell walls,
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while the more resistant primary cell wall remains intact. This causes osmotic

pressure inside the fibre, which can be seen as a “ballooning” phenomenon.

This mechanism usually leaves undissolved fragments in the solution, as so-

called ’collars’ between the balloons (Cuissinat and Navard, 2006a,b, 2008).

The hydrogen bonding network can be disrupted in two ways. In direct disso-

lution the network is broken by the presence of disruptors, electron donors

and acceptors, and complexing molecules (Figure 1.3, right-side, purple and

green routes). These do not react chemically with hydroxyl groups of cellulose

but block their ability to form hydrogen bonds with other hydroxyl groups. In

derivatisation a reagent reacts chemically with hydroxyl groups and removes

the possibility of hydrogen bonding. This intermediate may be either sta-

bile and possible to isolate, or labile and needs to be processed immediately

(Figure 1.3, left-side, yellow routes).

According to the definition of coagulation, a substance changes to a gel

or thickened curdlike state from liquid through a change in environment

(McGraw-Hill, 2003; Merriam-Webster, 2014). Cellulose derivatives can be

regenerated back to cellulose by cleaving the functional group away and gener-

ating the hydroxyl groups (Figure 1.3, left route, pink box). After the cleavage,

newly formed hydroxyl groups can form hydrogen bond networks, causing

molecules to aggregate (pre-nucleation sites (Nichols et al., 2002)) and hence

to coagulate. Some materials, such as cellulose acetate, can be dissolved in

organic solvents (Klemm et al., 1998) and coagulate before regeneration by

exchanging the solvent for water.

In the case of the direct solvents coagulation occurs directly when the solvent

is either neutralised, diluted beyond the effective concentration or otherwise

invalidated, for example by changing the temperature. The coagulation box

in Figure 1.3 shows the hydrogen bonds of the 020 plane for the “up” chains,

according to Kolpak and Blackwell (1976).

1.3.1 Derivatisation and dissolution

The most common cellulose derivative is cellulose xanthate (Klemm et al.,

2005). It is prepared by activating cellulose with alkali and treating it with

carbon disulphide CS2. The xanthate group is thermally labile and cannot be

isolated. After derivatisation cellulose xanthate is directly dissolved in alkali,

when it becomes a viscose solution. After the shaping, the xanthate group
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can be cleaved away with sulphuric acid or by thermal treatment, resulting

regenerated cellulose.

Similarly, cellulose carbamate is formed when alkali-activated cellulose is

in contact with molten urea (T>130 ◦C) (Loth et al., 2003). However, this

intermediate is stabile and can be isolated. Cellulose carbamate is soluble in

aqueous sodium hydroxide and can be regenerated with acid.

Another commonly used stabile derivative is cellulose acetate (Klemm et al.,

1998). It can be isolated and is sold commercially with a wide range of degrees

of substitution. It is soluble in organic solvents and thus polar solvents such

as water can be used for coagulation. However, this does not cleave the acetyl

group away and additional saponification is required if pure cellulose struc-

ture is desired. This opens the possibility of regeneration after the coagulation,

as demonstrated by the long regeneration area in Figure 1.3.

1.3.2 Direct dissolution

Some conventional solvents dissolve cellulose directly without changing the

chemistry of the hydroxyl groups. Most common non-derivatising solvent is

used in the Lyocell process; N-methylmorpholine N-monohydrate (NMMO)

(Fink et al., 2001). Since the solvent is very sensitive to moisture, water can

be used to hinder its solvent abilities and to coagulate the cellulosic shapes.

Another way to precipitate cellulose from an NMMO-solution is to let it cool

to 20-40 ◦C from dispersion temperature >85 ◦C, so that crystallites are formed

(Biganska et al., 2002). Unfortunately NMMO-solvent is also labile around

impurities, so cellulose-blends with other polymers or additives cannot be

prepared homogeneously (Konkin et al., 2008; Rosenau et al., 2001) and a

solvent system requires stabilizers.

N,N-dimethylacetamide with lithium chloride (DMAc/LiCl) is more com-

monly used for homogeneous cellulose modifications (Heinze et al., 2006;

Liebert, 2010). Water or acetone can be used as a non-solvent, although it is ex-

pensive and its recyclability is challenging. Other challenges with DMAc/LiCl

include its high viscosity even with low amounts of cellulose (Kaster et al.,

1993; McCormick et al., 1985). This makes it difficult to use in industrial

processes, but it is well suited to academic research.

Ionic liquids (ILs) have gained a lot of interest since the beginning of new
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Millenium (Gericke et al., 2012). They are defined as a group of organic salts

which have a melting point below 100 ◦C. They can directly dissolve high

amounts of cellulose, even 10-20%, but they can still, nevertheless, be used

as a medium for dissolution and homogeneous derivatisation (Heinze et al.,

2005; Kosan et al., 2008; Swatloski et al., 2002). Majority of ILs have dialkylim-

idazolium cations and various anions, e.g. 1-butyl-3-methylimidazolium

chloride and acetate (BMIMCl and BMIMAc). Many of them, however, cannot

dissolve cellulose (Gericke et al., 2012). Besides the advantages to efficiently

dissolve cellulose, ILs have many unsolved issues; their properties can be

drastically changed if there are even small amounts of impurities present,

viscosity can increase even at low cellulose concentrations so that the solution

is not suitable for processing, recyclability is still questionable, they can be

difficult to purify, and some of them are chemically labile. However, research

on novel ILs continues and many of these issues can be solved (e.g. King et al.

(2011)).

Conventional water-based solvents are usually heavy metal salts and hydrox-

ides. They form meta-stabile complexes with hydroxyl groups of cellulose

and provide good solutions with relatively low viscosities. However, environ-

mental restrictions strongly restrain their use on a commercial scale. Their

use is still common for some standard measurements, such as the use of

cupriethylene diamine for the measurement of the limiting viscosity number

of pulp (standard ISO 5351).

Novel water-based solvents fulfill requirements in the areas of the environ-

mental, health and safety (EHS) (Capello et al., 2007). In practice, these

solvents are aqueous NaOH solutions with or without additives. Sodium hy-

droxide can dissolve cellulosic fibres with a low degree of polymerisation at

low temperatures (Isogai and Atalla, 1998), although the solution is more a

suspension than a true solution (Roy et al., 2003). To enhance solubility and

delay the gelation time, additives such as urea (Cai and Zhang, 2005; Qi et al.,

2008), thiourea (Jin et al., 2007), and zinc oxide (Liu et al., 2011), are added in

solvent. Where sodium hydroxide swells and eventually dissolves cellulose,

zinc and urea hydrates prevent the re-association of cellulose molecules and

thus stabilise solutions.
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1.4 Controlled release systems

New drug delivery systems have enabled new forms of therapies due to novel

innovations, such as binding drugs to proteins for more targeted delivery

and different release patterns (pulsating and continuous) (Langer, 1990). The

advantages of a controlled delivery system becomes clear when the drug has

a narrow therapeutic window, low dosage does not have the desired affect on

a patient and high dosage is toxic.

Generally polymer-based matrices and coatings are used for controlled re-

lease effect (Vervaet et al., 1995). Depending on the physical or chemical

properties of the polymer matrix, systems can be divided into three categories

(Langer, 1993; Leong and Langer, 1988):

1. Diffusion controlled, non-degradating matrix.

2. Diffusion controlled, swelling matrix.

3. Erosion controlled, degradating matrix.

A drug can be coated with polymer, so that it diffuses through the polymer

layer (Figure 1.4A). These are often called reservoir systems (Arifin et al., 2006).

If the drug is evenly distributed, for example by dissolving and trapping the

drug inside the matrix, or by dispersion, it is called a matrix system (Figure

1.4B). In the case of degradating matrices the drug is firmly bound to the

matrix and is only released when the degradation occurs (Figure 1.4C). When

simplified, degradation can happen via two routes; if the polymer chemically

goes through a cleavage or scission, or in the case of erosion where it loses

monomers or oligomers via a physical or chemical reaction. The erosion can

occur only on the surface or through the entire bulk at the same time (Arifin

et al., 2006). Cleavage of the drug from the polymer is one special type of this

definition (Figure 1.4D).

Swelling systems (Figure 1.4E) usually utilise hydrophilic polymers, such as

hydroxypropylmethyl cellulose (HPMC), poly(hydroxyethyl methacrylate)

(HEMA) and poly(vinyl alcohol) (PVA), to enhance the swellability and solubil-

ity of poorly soluble substances (Arifin et al., 2006). At the outer-most region

of the matrix, on the diffusion layer, the polymer also dissolves due to low

concentration and weak entanglement, however, losses are small compared

to surface erosion and do not play a role in the release rate of the drug.
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1.4. Controlled release systems

Figure 1.4: Different release mechanisms. (A) Diffusion through reservoir
coated with polymer matrix, (B) drug uniformly distributed in matrix, (C)
polymer degrades and releases the embedded drug, (D) contact with reagent
or solvent in environment releases the linked drug from matrix, (E) polymer
swells and allows drug to move outwards, (F) drug released only through
porous holes, (G) drug is pushed out though the laser-drilled hole by osmotic
pressure, and (H) release is activated e.g. by magnetic field squeezing the
drug-containing pores. Figure from Langer (1990).
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Figure 1.5: Image analysis of microspheres with Fiji software (Schindelin,
2008). Figure from Gericke et al. (2013).

Systems utilising osmotic pressure (Figure 1.4G) are a special type of diffusion

controlled release system. Some systems are harder to categorise into one of

the three types. Complex systems can often utilise properties from all three

categories. In Figures 1.4F and H, osmotic pressure or external force may

open the pores (partially degradating matrix), and diffusion occurs after they

open in an otherwise stable matrix.

1.5 Characterisation of cellulosic shapes

Physical dimensions The physical dimensions and shape of the aerocel-

luloses and sponges are usually irrelevant in academic research, since their

functionalities arise from internal properties. Spheres on the other hand use

their size and shape as part of the functionality; loading capacity (see “Poros-

ity and pore size distribution” section below), flowability, packing density,

etc.

Spheres with a diameter of millimetres can be analysed simply by image

analysis (Figure 1.5). Image analysis can be used, for swelling studies, for

example, and as a complementary technique to determine total porosity

(Trygg et al., 2013). A small bias may originate from the tail-formation and

ellipse fitting of big spheres. Tails are formed when the highly viscose solution

leaves the tip of the syringe and contacts the coagulation medium before

minimising the surface energy, maintaining its tear-shape. Tails distort the fit

to ellipse, prolonging the values of major axes. This is observed as a decrease

in circularity values.

14



1.5. Characterisation of cellulosic shapes

Smaller spheres of 10-1000 µm can primarily be analysed by sieving, although

the results lack detailed information about the shape of the distribution

(Rosenberg et al., 2007). Another option is to dry the beads, either under

critical point drying, with liquid nitrogen or freeze-drying, and study the size

and morphology with FESEM. Drying at ambient temperature, freezing and

solvent exchange changes the size and possibly also the shape , however (Pin-

now et al., 2008). This technique would give only indirect information about

the original dimensions, but it also provides information about morphology

and thus it is used rather regularly (e.g. Du et al. (2010); Trygg et al. (2013); Xia

et al. (2008). Particle size analysers use laser light diffraction to measure the

distributions of small particles in suspensions and provide a useful and rapid

way to analyse the dimensions of micrometre sized particles (Thümmler et al.,

2011).

Porosity and pore size distribution In the case of cellulosic shapes pre-

pared by coagulation, it is likely that traditional models of pore shapes do not

apply. Since the coagulation proceeds via gelation, the real pore structure

is continuous matrix with channels of different widths. Thus the expression

“pore size distribution” would be more precise if expressed as a total volume

of channels of certain width in cellulose matrix. Some channels are narrower

and thus some spaces are not accessible to all probe molecules, creating a

combination of channels which can be called a pore.

The quality of the cellulose solution, the solvent and anti- or non-solvent

all affect the coagulation mechanism and rate, which eventually determines

the pore size distribution (Gavillon and Budtova, 2008; Trygg et al., 2013).

Probably the biggest parameter affecting on the distribution and total porosity

is the cellulose concentration in the solution; a defined space is filled with a

certain amount of solids.

Total porosity can usually be measured at the same time as pore size dis-

tribution. In the simplest case one could compare the weights of wet and

dried samples, and using a density of ∼1.5 g cm−3 (Ettenauer et al., 2011) for

cellulose it is possible to calculate the volume water occupied before drying

(Xia et al., 2007). This does not, however, indicate the volume of accessible

pores (Stone and Scallan, 1967, 1968).

Mercury intrusion or nitrogen adsorption techniques can be used as comple-
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mentary tools for pore size distribution measurements; mercury intrusion

measures pores from 3 nm to 200 µm and nitrogen adsorption from 0.3 to

300 nm (Westermarck, 2000). A disadvantage is that both measurements

require a completely dried sample, which means critical point drying. Pres-

sure is also applied to fill the pores against the surface tension of the filling

material which can compress the closed pores and destroy the matrix during

the measurement, yielding a higher volume of small and medium pores.

Pore size distribution can be measured in wet state, for example with small

angle X-ray scattering (SAXS), which measures different electron densities

between the pore wall and the water phase (Pinnow et al., 2008; Thünemann

et al., 2011). This will also measure the closed pores. The solute exclu-

sion technique with dextrans or polyethylene glycol (PEG) macromolecules

measures only accessible pores for macromolecules of certain sizes (Figure

1.6)(Grznárová et al., 2005; Stone and Scallan, 1967, 1968). The concentration

of macromolecules is measured before and after introducing the sample to

the solution. If the water in pore is accessible to the macromolecule, it dilutes

the solution. From the differences it is possible to compute the inaccessible

and accessible volume fractions and relate them to the total volume. The

total accessible pore volume can be estimated by extrapolating the size of the

macromolecule to infinity. For dextrans the range is 1-56 nm and for PEGs

0.7-5.7 nm.

Closed

Inaccessible

Accessible

Figure 1.6: Illustration of accessible, closed and inaccessible pores by probe
molecules. Adapted from Stone and Scallan (1968).
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1.5. Characterisation of cellulosic shapes

Specific Surface Area Specific Surface Area (SSA) becomes increasingly im-

portant if the cellulose shape is chemically modified heterogeneously after

the solidification or sample is used in any application which is based on

surface interactions, such as support in solid state synthesis, immobilisa-

tion or chromatographic separations with functional groups (Gericke et al.,

2013). Whereas the surface area of the native cellulosic fibre varies between

55 and 168 m2g−1 (Budd and Herrington, 1989) for dried and never-dried

pulps, coagulated shapes can often have area over 200 and even as high as

450 m2g−1 (Trygg et al., 2013). In regenerated fibre it is necessary to arrange

the molecules in tight order for required elongation and strength, but in gela-

tion the molecules fill up the given space. This maximises the porosity and

area. However, after drying the surface area of the coagulated shapes can

diminish to below 1 m2g−1 due to a greater tendency to hornify (Trygg et al.,

2013).

The techniques mentioned in the previous paragraph can often be used to

measure the specific surface area as well. However, if the surface area is

computed from the pore size distributions, rough assumptions and simpli-

fications have to be made for the geometry of the pores (Stone and Scallan,

1968), which is contradictory to pore formation in gel-based shapes. If any dry

technique, such as nitrogen adsorption or mercury intrusion is used, critical

point drying may change the surface area (Svensson et al., 2013). This makes

the techniques less comparable but they are often the only realistic option

available.

Water retention value Water uptake and the ability to hold it are proba-

bly the most important properties of absorbent materials. Often standards

SCAN-C 62:00 or DIN 53814 are used to measure the water retention value of

chemical pulp fibres and textiles, respectively. They compare the mass of the

wet sample to the mass of the oven dry sample. In SCAN-C 62:00 for example,

the wet sample is centrifuged at 3000 G for 15 minutes to remove the surplus

water. This method is mainly for pulp fibres, so for other sample types the

method can be modified. Larger shapes such as sponges and spheres may be

influenced by their own weight, and larger pore entrance allows water to leak

out during centrifuging and thus the results might be distorted (Trygg et al.,

2014).
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Strength The strength of the cellulose matrix arises from the thickness of

the pore walls. The thickness is again a result of coagulation kinetics and the

amount of material available, that is the relationship between the anti- or non-

solvent and solvent, and concentration of cellulose. Shape becomes stronger

if a greater amount of cellulose occupies the volume, and simultaneously it

decreases the volume of the pores and their size (Sescousse et al., 2011a). The

formation of a thick supportive matrix can be jeopardized by blending other

polymers in a cellulose solution which does not contribute to the matrix as

intensively as cellulose, or by chemically modifying the hydroxyl groups.

Mechanical strength is usually measured by deformation under force and

in practise this means stress-strain curves while compressing the sample.

Together with the other results this provides information about the shape

and its formation (Sescousse et al., 2011a). The bulk density can also be

deducted from the mechanical characteristics (Pekala et al., 1990). In the case

of wet samples, small spheres, and weaker shapes, applying centrifugal force

and measuring the deformation by image analysis has also been proposed

(Gericke et al., 2013), but this method has not been published in the literature

yet.

Composition and functional groups Cellulose itself can be used as a func-

tional material; it is biocompatible, it has three hydroxyl groups per repeating

unit, and it forms an adjustable open-pore matrix and surface area. Other

properties, such as flowability and total pore volume, can also be utilised.

Many application, however, require ionic or hydrophobic interactions, for

example. If the sample is functionalised for these purposes by blending with

other polymers, composition becomes relevant and should be correlated

to the other analysis methods mentioned above. The strength of the cellu-

lose/polymer mixtures should also be ensured since the gel-matrix may not

be supportive enough to maintain the shape (Wu et al., 2010; Zheng et al.,

2002). For example, different polymer compositions can be analysed after acid

hydrolysis or methanolysis using high performance layer chromatography or

mass spectrometer-gas chromatography.

In the case of functional groups, such as anionic groups, titration methods

are often applied. Either in conductive or potentiometric mode, titration

provides direct information about the quantity of accessible groups and in

latter mode possibly also the pKa values of the acidic and basic groups. Other
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1.5. Characterisation of cellulosic shapes

methods for anionic groups are, for example, methylene blue and polyelec-

trolyte adsorptions (Fardim and Holmbom, 2003; Fardim et al., 2002). In the

case of coagulated cellulosic shapes such as spheres and sponges, diffusion

time would be too long to apply any direct or rapid method. Indirect titration

and long equilibrium times must be used (Ettenauer et al., 2011; Trygg et al.,

2014).

The distribution of such groups can be further located by labelling them with

fluorescent dyes and using a confocal fluorescent microscope (Trygg et al.,

2014), or by labelling anionic groups with methylene blue and locating the dye

with ToF-SIMS. With methylene blue sorption it is also possible to measure

the quantitative amounts of functional groups using isotherms.

Morphology Morphological study by FESEM is probably the most common

technique in scientific publications. It provides visual information about the

sample, its porosity, and morphological features (Du et al., 2010). Differences

in coagulation mechanism, kinetics, and surfaces can also be observed in

micrographs. The interface of gas and liquid, and later gelated solid surface

was observed when a gas-forming agent was used inside the coagulating

cellulose droplet (Figure 1.7). The distribution of different particles, such as

inorganic metals, which cannot be fully blended in cellulose matrix can also

be seen in cross-sections (Xia et al., 2007).

1.5.1 Characterisations for pharmaceutical applications

Powder flow Cellulose spheres utilise their shape as a part of their function-

ality. In pharmaceutical sciences the most common methods for measuring

the properties of powders and spheres are angle of repose, compressability,

flow rate through an orifice and shear cell (Chapter “1174. Powder Flow” in

USP 29–NF 24, page 3017). All these methods measure the flow properties

of a sample with or without external force. Additionally they provide infor-

mation about shear-stress and friction, but these methods are all very much

dependent on the apparatus used.

Angle of repose relates to the interparticulate friction between particles and

resistance to movement, but it is not considered an intrinsic property of the

solid. Powder is piled into a cone shape and the width of the base and the
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CO2/cellulose so-
lution interface

Cut bulk

Figure 1.7: Interfaces of CO2 and cellulose solution during the coagulation
of cellulose microsphere. Sphere cut with blade, water exchanged to ace-
tone and liquid CO2 and then critical point dried prior to FESEM imaging.
Magnifications 19× and 250×. Unpublished results.

height are measured from the pile. The angle is calculated from equation

t an(α) = hei g ht

0.5×base
. (1.1)

Figure 1.8: Angle of repose of dry cellu-
lose beads.

The classification by Carr defines

angles between 25-30◦ as excellent,

and angles above 50◦ as poor, and

rarely acceptable in pharmaceutical

processes (Carr, 1965).

The compressibility index and Haus-

ner ratio are indirect measurements

of bulk density, but they are also

often related to moisture, size and

shape, the surface area, and cohe-

siveness of the materials. They are

both measured from the relation-

ships of bulk volume to the tapped
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1.5. Characterisation of cellulosic shapes

volume. As angles of repose, they are

not intrinsic properties of the mate-

rial and are very dependent on the method used.

Flow through an orifice is used in free-flowing materials to measure the mass

that flows in a defined time through an orifice. Flow rate is also often used.

Since pulsating patterns and a decrease of the flow rate have been observed

when containers empty, continuous monitoring is necessary.

Figure 1.9: Old annular shear cell ap-
paratus. Figure from Carr and Walker
(1968).

Shear cell methods can measure sev-

eral different parameters, such as

shear stress-strain relationship, the

angle of internal friction, yield and

tensile strengths, and various flow

factors. Powder is placed inside the

apparatus, where one plane (or disc)

is moving and other one is stationary.

This generates a measurable stress

on the sample.

Cell viability assay becomes in-

creasingly important if the cellulose

matrix is modified; Pure cellulose is

biocompatible but derivatives might

not be (Miyamoto et al., 1989). Ae-

rocellulose and sponges are often used as wound dressing materials and

scaffolds for new healing tissue (Lagus et al., 2013). Novel shapes must pass

the test, since skin has to be able to heal but not to grow into the cellulose

matrix, unless the matrix is simultaneously degrading.

21





2 Experimental

Dissolving pulp (Cellulose 2100 plus) from Domsjö Fabriken (Sweden) was

used in this work. The pulp is a mixture of spruce and pine (60%/40%) and

contains 93% α-cellulose and 0.6% lignin (Domsjö, 2007). The intrinsic vistos-

ity of the pulp was 530±30 cm3 g−1, measured according to SCAN-CM15:99. In

Papers II-IV and Supportive Article 3 the pulp was pretreated with HyCellSolv-

pretreatment for 2 h at 75 ◦C. The method is described in Paper I.

Paper II describes the preparation and modification of the cellulose micro-

spheres (beads) using the physicochemical method. Paper III mainly focuses

on the oxidation of the prepared spheres and the changes in their proper-

ties due to oxidation. Paper IV studies in detail the behaviour of anionic

microspheres and their use in drug delivery.

2.1 Paper I: HyCellSolv-pretreatment and the solubility

of the pulp

2.1.1 HyCellSolv-pretreatment

100 cm3 of technical ethanol (92.5w%) and 4 cm3 of 37w% hydrochloric acid

(Merck KGaA) was preheated to 25-75 ◦C and 4.0 g of dissolving pulp was

immersed in it for 0.25-5 h. After the treatment the mixture was poured into

900 cm3 of cold distilled water, filtered and washed until pH was neutral,

and left in 1 dm3 of distilled water overnight to ensure the ethanol-acid had

exchanged to water. The next day the pH was confirmed to be neutral and the

pulp was filtered and dried in an oven at 60 ◦C overnight.

2.1.2 Changes in fibre surface morphology

The morphological changes in the surface of the fibres and the opening of

the fibre cell walls in the reference and pretreated pulps (2 h at 25 and 75 ◦C)

were examined using Leo Gemini 1530 FE-SEM with an In-Lens detector after

coating with carbon in a Temcarb TB500 sputter coater (Emscope Laboratory,
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Ashford, UK). An optimum accelerating voltage was 2.70 kV and magnifica-

tions were 5,000 and 50,000×.

2.1.3 Degree of polymerisation

Intrinsic viscosities were measured according to ISO/FDIS 5351:2009 standard

and average degrees of polymerisation were calculated from the values (Im-

mergut et al., 1953). Oven-dry samples were freeze-dried and weighed before

dissolution in 1.0 M cupriethylene diamine solution (CED). The temperature

of the capillary was 26.0 ± 0.1 ◦C.

2.1.4 Dissolution mechanism

Optical microscopy (Wild M20 coupled to a Nikon Coolpix 990 digital camera)

was used to study the dissolution mechanism of the reference and pretreated

pulps at various temperatures and times. 0.2 M CED was used to simulate

weak solvent and slow dissolution. 0.2w% cellulose solutions were made

using 7% NaOH-12% urea-water as a solvent and pretreated pulps after 2 h

at 25, 45, 55 and 65 ◦C. The types of undissolved fragments were recognised

from the solutions.

2.1.5 Solubility of cellulose in 7% NaOH-12% urea-water

The nature of the cellulose-7% NaOH-12% urea-water solutions was evaluated

rheometrically. 0-5% cellulose (pretreated 2 h at 75 ◦C) was slurred in 7%

NaOH-12% urea-water so that the fibers were swollen. The mixture was

cooled to -10 ◦C and stirred until a clear solution was obtained, usually less

than 20 minutes. An Anton Paar Physica MCR 300 rotational rheometer with

DG 26.7 double-gap cylinder was used to measure the dynamic viscosities at

10, 15, 20, and 25 ◦C and the apparent activation energies Ea of viscous flow

were calculated using Arrhenius equation (Roy et al., 2003). Shear rates of 10,

100 and 1,000 s−1 were used to study the state of the solution under different

shear conditions.

Paper II: 4-6% cellulose was dissolved in 7% NaOH-12% urea-water as de-

scribed above. Storage and loss moduli (G’ and G”) were measured at 20 and

25 ◦C with the same rheometer to define the gelation point of the solutions.
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2.2 Paper II: Physicochemical design of the microspheres

2.2.1 Preparation of the physicochemically designed microspheres

Cellulose was dissolved as described in Section 2.1.5 with final concentrations

of 3-7%. The solution was extruded through the Eppendorf 5 cm3 syringe tip

into the coagulation bath. The conditions were adjusted according to Table

2.1.

Table 2.1: Cellulose microspheres prepared under different conditions.

ccel l ul ose T cH NO3 ccel l ul ose T cH NO3 ccel l ul ose T cH NO3

(%) (◦C) (M) (%) (◦C) (M) (%) (◦C) (M)
4 25 2 5 25 0.5 5 5 2
5 25 2 5 25 2 5 25 2
6 25 2 5 25 4 5 50 2

5 25 6 5 5 ∗

5 25 8 5 25 ∗

5 25 10 5 50 ∗
∗ 10% NaCl was used instead of HNO3

2.2.2 Dimensional attributes and morphological features

Physical dimensions, size distributions, and the shape of the never-dried

microspheres were studied by analysing photographic images with Fiji image

processing software (Schindelin, 2008). 20-100 microspheres were used in

each analysis. Weight was measured before and after drying in an oven at

105 ◦C to determine the total porosity using equation

Por osi t y = VH2O

VH2O +Vcel l ul ose
(2.1)

where VH2O is calculated from the mass differences of the wet and dry beads,

and Vcel l ul ose from the dry mass of the beads divided by the density 1.5 g cm−3.

The effect of the coagulation conditions (Table 2.1) on morphology was stud-

ied using a Leo Gemini 1530 FE-SEM with In-Lens detector. Never-dried

microspheres were cut prior to acetone exchange and CO2 critical point dry-

ing. Dried spheres were carbon coated before imaging with a Temcarb TB500
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sputter coater (Emscope Laboratories, Ashfold, UK).

2.2.3 Intrinsic properties: pore size distribution and specific sur-
face area

Pore size distribution of microspheres coagulated in 0.5, 2, and 6 M nitric

acid at 25 ◦C and 10% NaCl solution at 5, 25, and 50 ◦C were measured using

modified solute exclusion technique (Stone and Scallan, 1967, 1968). Approx-

imately 4.0 g of never-dried microspheres in water (total weight 5.0 g) were

introduced to precisely 5 g of 6% dextran solutions of five different molar

masses, ranging from 6k to 2M g mol−1 (Table 2.2). After few hours of gentle

shaking, the concentrations were measured using a Perkin-Elmer 241 Po-

larimeter with Na-lamp radiation source (589 nm). The inaccessible volume

for each dextran was calculated using the equation

Inaccessi ble w ater = mw ater+bead s−mdr y bead s+msol ute−
msol ute × csol ute,0

csol ute, f

(2.2)

where mwater+beads is the total weight, mdrybeads is the weight after drying

at 105 ◦C overnight, msolute the weight of the 6% dextran solution, csolute,0

and csolute,f are the initial and final concentrations of the dextran solutions.

Results were fitted to the logistic model using Origin Software (2002) and

the saturation point was computed. Finally, the results were transformed to

frequencies using equation

F r equenc y = Tot al accesi bl e w ater − i naccessi ble w ater

Tot al accessi bl e w ater
. (2.3)

Table 2.2: Molar masses and diameters of dextrans in solution.

Molecule Molar mass (g mol−1) Size (Å)
Dextrans 6k 39

40k 91
100k 139
500k 290

2000k 560
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2.3. Paper III: Chemical functionalisation of the microspheres

Nitrogen adsorption isotherms were measured at 77 K after CO2 critical point

drying (Section 2.2.2) using TriStar 3000 gas sorption apparatus (Micromerit-

ics, Norcross, USA). Specific surface areas were determined from the adsorp-

tion isotherms using the equation by Brunauer et al. (1938).

2.3 Paper III: Chemical functionalisation of the micro-

spheres

Cellulose microspheres were prepared as described in Section 2.2.1 using 2 M

nitric acid at 25 ◦C and 5% cellulose solution. The needle used in this work

was 50 mm long with a 0.8 mm diameter.

2.3.1 Anelli’s oxidation

Microspheres were oxidised using a modified Annelli’s oxidation (Anelli et al.,

1987; Zhao et al., 1999). They were immersed in 50 mM NaH2PO4 phos-

phate buffer overnight prior to oxidation. TEMPO/NaClO/NaClO2 oxidation

medium was prepared with molar ratios 0.1/10/1, according to Hirota et al.

(2009) in the same phosphate buffer. The medium was preheated to 20-80 ◦C

and microspheres were immersed in for 2, 5, 24, and 48 h. pH was followed

regularly. The ratio of the primary oxidant sodium chlorite NaClO2 to anhy-

droglucose unit (AGU) of cellulose was 1.2. After oxidation, the microspheres

were washed thoroughly under running tap water overnight and several times

with distilled water. Oxidised microspheres were stored in distilled water in a

never-dried state for further use.

Spectroscopic characterisation of the air-dried (2 days at 22.5 ◦C, 50% humid-

ity) reference and oxidised microspheres was performed with a Nicolet iS 50

FTIR spectrometer with Raman module (Thermo Scientific). FTIR spectra

were recorded using Tungsten-Halogen source and DLaTGS-KBr detector-

splitter set-up with 4.00 cm−1 resolution and 64 scans. In Raman measure-

ments a gold plate was used as a sample holder in order to strenghten the

signal. A diode laser (P=0.5 W, λ=1064 nm) was the source and detector was

an InGaAs with CaF2 splitter. Resolution was 8.00 cm−1 and the number of

scans 1024.
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Figure 2.1: Oxidation-reduction cycle of reagents in cellulose-
TEMPO/NaClO/NaClO2 system. Figure from Hirota et al. (2009).

2.3.2 Porosity and pore size distribution

A solute exclusion technique was used (Section 2.2.3) to measure the changes

in pore size distribution and accessible pore volumes when oxidation tem-

perature was altered in 48 h oxidations. Total porosity was calculated using

Equation 2.1 by weighing the samples before and after oven drying at 105 ◦C

for three hours, as described in Section 2.2.2.
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2.3.3 Distribution and quantity of the anionic groups

The distribution of the anionic groups was verified with cationic fluorescent

dye, DMS. Oxidised microspheres were cut half, immersed in 15 µM DMS-

solution overnight and next day washed for 4 h with tap water and distilled

water to ensure the removal of unbound dye from the pores (Conn, 1953;

Lonkar and Kale, 2011). The distribution was studied using a Leica TCS SP5

Confocal Microscope (Germany).

The quantitative number of anionic groups in oxidised microspheres was

determined with potentiometric back titration. Due to the long diffusion time

(≥30 min) direct titration was not possible. Microspheres were protonated

by immersing them in hydrochloric acid solution overnight. The next day

the concentration of the acid was titrated. The solution was alkalised and

microspheres deprotonated by adding a known amount of sodium hydroxide.

The next day the excess of alkali was titrated, and consumption of alkali by

the anionic groups in microspheres was computed from the differences with

the equation

n(−COOH) = (n(N aOH)−n(OH−))−n(H+) (2.4)

where n(-COOH) is the total number of anionic groups (mainly carboxylic

acids), n(NaOH) is the added sodium hydroxide to neutralise the supernatant

and to deprotonate the carboxylic acids, n(OH−) is the back titrated amount

of hydroxide after the NaOH addition, and n(H+) is the back titrated amount

of acid in the initial solution after the protonation (Figure 2.2).

2.4 Paper IV: Drug delivery with functionalised micro-

spheres

The oxidised cellulose microspheres prepared in Paper III were used in this

work. In Paper IV oxidised cellulose microspheres (beads) were labelled

as OCBs, the number indicating the oxidation temperature and 0 the non-

oxidised reference microspheres. Oxidation temperatures were 20, 40, and

60 ◦C and time was 48 h.
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H+ H+ OH− OH−

COOH

COOH

COOH

COO
−

COO
−

COO
−

+n(NaOH)

n(-COOH)+n(H+) = n(NaOH)-n(OH−)

Figure 2.2: Determination of anionic groups (-COOH) from solids using the
back titration method. The excess of acid (H+) was measured by titration,
then microspheres were deprotonated by adding NaOH and finally the excess
of alkali (OH−) was back titrated.

2.4.1 Drug loading and uniformity of the mass

ACBs were immersed in 20 mg cm−3 aqueous solution of Ranitidine hydrochlo-

ride (Ran.HCl) so that 2 microspheres were in 1 cm3 of the drug solution. Ves-

sels were gently shaken overnight. On the next day the loaded microspheres

were surface dried by rolling them on glass plate until surplus solution was

removed from the surface and then they were kept at constant temperature

and humidity (22.5 ◦C, 50%) for at least 48 h.

Uniformity of the mass was studied by weighing the dried empty and loaded

microspheres. The number of microspheres was increased by 5 between the

weighings until the total count was 50. Linear correlation between the weight

and the quantity was computed and the average weights were calculated from

the slopes. The amount of the drug in the loaded microspheres was estimated

from the differences in slopes.

2.4.2 Solid state analysis: ATR/FTIR and DSC

Dry ranitidine HCl loaded ACBs were analysed with ATR/FTIR and Raman

spectroscopy (Nicolet iS 50 FTIR spectrometer with Raman module, Thermo

Scientific; for details see Section 2.3.1) in order to characterise the polymor-

phic form of the incorporated drug and interactions between the anionic

surface of the oxidised microspheres and cationic drug. In raman measure-

ments samples were placed on a gold plate to obtain better signal/noise ratio.

Thermal analysis of 8-9 mg of empty and ∼11 mg Ranitidine HCl loaded ACBs
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was performed with DSC Q2000 (TA Instruments). Samples were placed in

Tzero low-mass pans with lids and heated from 20 to 300 ◦C with 10 ◦C min−1

under 50 cm3 min−1 flowing nitrogen.

2.4.3 Swelling behaviour of the microspheres

Empty and Ranitidine HCl loaded ACBs were dried at constant temperature

and humidity (22.5 ◦C, 50%) for at least 48 h. Samples were then immersed in

buffer solutions with pH values of 1.2, 3.6, and 7.4, corresponding to various

environments in the human gastro-intestinal track. Swelling of the micro-

spheres was monitored by imaging every hour for the first 5 hours, and finally

after 24 hours. Images were analysed with Fiji imaging software (Schindelin,

2008) by fitting binary images to ellipses and measuring the length of the

minor axes.

2.4.4 Release profiles

Release profiles were determined at pH 1.2, 3.6, and 7.4 in Sotax AT7 smart

dissolution tester (SOTAX, Switzerland) according to the USP paddle method

(United States Pharmacopeia, 35th Ed.). Five drug loaded beads were sunk in

500 cm3 of buffer solution at 37 ◦C and concentrations were measured using

a Perkin-Elmer Lambda 25 UV/Vis spectrometer (Germany) and computed

from calibration curves. Experiments were done in triplicate.

Release profiles were fitted to the model of exponential decay from 5 to

120 minutes with Qtiplot (2011). Y-offsets and e-folding times, that is the

maximum released amount after infinite time and the time when approxi-

mately 63% of the total amount of the drug is released, were measured and

compared with different bead types in various pH environments.

The effect of swelling on the release kinetics was studied by fitting the curves

in two models: Baker-Lonsdale’s model (Equation 2.5) for non-swelling mono-

lithic spheres (Baker and Lonsdale, 1974) and Ritger-Peppa’s model for swelling

spheres (Equation 2.6, n=0.43) (Ritger and Peppas, 1987), where Mt and M∞
are released amounts of drug at time t and infinite time, and k is the release
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constant.

3

2

(
1−

[
1− Mt

M∞

] 2
3

)
− Mt

M∞
= kt (2.5)

Mt

M∞
= kt 0.43 (2.6)
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3 Results and discussion

3.1 Paper I: Pretreatment and dissolution of cellulosic

fibres

In HyCellSolv-pretreatment dissolving pulp was immersed in preheated 25-

75 ◦C ethanol-acid -solution for 0.25-5 h. After the treatment pulp was thor-

oughly washed and dried in an oven at 60 ◦C overnight. The aim was to

enhance the solubility of the cellulose in 7% NaOH-12% urea-water solvent

system and characterise the significant changes in the properties of the pulp.

3.1.1 Morphological changes and degree of polymerisation: Influ-
ence on dissolution mechanism

Microfibrils in primary cell wall (P) do not have any specific orientation.

This lack of orientation in microfibrils was observed in FE-SEM images of

untreated dissolving pulp (Figure 3.1 A, B). Pulp treated with HyCellSolv for

2 h at 25 ◦C also showed disoriented microfibrils, but the surface was clearly

damaged and the thin P-layer was not so clearly visible anymore (Figure 3.1,

C, D). The secondary cell wall S1 is thinner than P, however, and could not be

located with confidence (Jensen, 1977). After 2 h of HyCellSolv-treatment at

75 ◦C some remnants of the P-layer could be observed, but the orientation of

the microfibrils mainly indicated that the outermost layer was secondary cell

wall S2 (Figure 3.1, E, F).

Changes in the fibre wall after the HyCellSolv-pretreatment affected the dis-

solution mechanism of the pulp fibres in dilute solvent (Figure 3.2, optical

images). At low temperatures (25-45 ◦C) and short treatment times a bal-

looning phenomenon was observed. This is explained in the literature as the

presence of primary wall P and some parts of the secondary walls (Jensen,

1977; Navard et al., 2008). At higher treatment temperatures and longer times,

for example 3 h at 55 ◦C ballooning was no longer so distinct, even though

regions for possible balloons could be observed. After 5 h at 55 ◦C ballooning

could no longer be observed. This was due to a ruptured P-layer and possibly
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Figure 3.1: SEM-images of reference (A,B) and pulp treated with HyCellSolv
for 2 h at 25 (C,D) and 75 ◦C (E,F). Magnifications are 5,000 in the top row and
50,000× in the bottom.

part of the S1 as well.

Figure 3.2: Viscosity average degree of polymerisation (DPν) of HyCellSolv-
pretreated dissolving pulp at various temperatures and times. Optical images
demonstrate the behaviour of the fibres in 0.2 M CED after corresponding
pretreatment conditions.
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It should be noted that temperature alone did not eliminate the ballooning.

HyCellSolv-pretreatment even at 75 ◦C for 15 minutes caused slight balloon-

ing, although fragmenting was also observed (Figure 3.2). Since the presence

of P-layer after 15 minutes at 75 ◦C in HyCellSolv was more clear than, for

example, after 5 h at 55 ◦C, it is reasonable to conclude that rupture of the

P-layer is not directly connected to the degree of polymerisation. Accord-

ing to the factory specifications (Domsjö, 2007) pulp has a lignin content of

0.6%. It could be speculated that the high lignin content of the thin P-layer

requires more time to dissolve in HyCellSolv-solution than cellulose degrades

in whole fibre. The content of hemicelluloses did not change notably during

the pretreatment (Paper I).

After 15 minutes at 75 ◦C the average viscosity degree of polymerisation DPν

had decreased to 261, which was 34% of the initial (760). Slight ballooning,

the presense of the P-layer, was observed at this stage. After 2 h of pretreat-

ment at that temperature DPν was 174 (23% from the initial) and dissolution

proceeded clearly via fragmenting mechanism.

HyCellSolv-pulp was dissolved in NaOH-urea-water solvent (consistency

0.2%) after various pretreatment times. In microscope balloons or indicators

of the ballooning phase during the dissolution were observed when pretreat-

ment temperature was below 65 ◦C (Figure 3.3, A-C), however, clear solutions

were gained when the pretreatment temperature was higher than 65 ◦C (Fig-

ure 3.3, D).

Figure 3.3: 0.2% HyCellSolv-pretreated pulp in 7% NaOH-12% urea-water.
Pretreatment time 2 h and temperatures (A) 25, (B) 45, (C) 55, and (D) 65 ◦C.
Scale bars are 100 µm.

It can be concluded that HyCellSolv-pretreatment at higher temperatures

disrupted the primary cell wall and severely decreased the degree of poly-

merisation of cellulose. The lack of P-layer caused the fibres to dissolve via

fragmenting mechanism instead of ballooning, yielding clear solutions with-
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out “collars” (Figure 3.3, C) or other undissolved fragments. DPν on the other

hand did not play a significant role in the dissolution mechanism (e.g. in

Figure 3.2 15 minutes at 75 ◦C or 3 h at 55 ◦C).

3.1.2 Nature of the 0-5% cellulose-7% NaOH-12% urea-water solu-
tions

HyCellSolv-pulp (2 h at 75 ◦C) was dissolved in 7% NaOH-12% urea-water

solvent system at -10 ◦C after dispersion and swelling at room temperature.

Concentrations of cellulose were 0.2-5%, in order to study the nature of the

solution.

At low concentrations the cellulose solutions behaved like Newtonian solu-

tions, but at higher concentrations shear thinning was observed (Figure 3.4,

left). The viscosity increased with increasing cellulose concentration and tem-

perature. Since the viscosity of the solution is temperature dependent, it was

possible to use the Arrhenius equation to calculate the apparent activation

energies Ea for the viscous flow at extrapolated zero-shear rate and shear rates

10, 100, 1000 s−1. Viscosities were plotted to Arrhenius plots and Ea values

were computed from the slopes (Figure 3.4, right).

Figure 3.4: (Left) Viscosity of 0-5% HyCellSolv-cellulose in 7% NaOH-12%
urea-water at 10-25 ◦C as a function of shear rate. (Right) Apparent activation
energies Ea of viscous flow on shear rates 0, 10, 100 and 1000 s−1.

At shear rates 0, 10, and 100 s−1 activation energies increase until the cellu-

lose concentration exceeds 3%, then they decrease rapidly. This indicates

the formation of the aggregates, or at least less resistant flow. Polymeric so-

lutions should increase the resistivity to the flow with increasing polymer

concentration. Addition of cellulose to the solution did not increase resistivity
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to the flow, so the interactions between the polymer molecules were more

prominent than with the solution. In this case, the addition of the cellulose

decreased the activation energies rapidly, indicating strong aggregation and a

decrease in interactions between the polymer and the solvent.

At high shear rate (1000 s−1) activation energy increases slightly until 4%

and remains constant at 5%. If the solution is a so-called “true solution”,

the activation energy should increase, however, activation energies did not

decrease as at other shear rates. This is due to high shear, where the movement

of the molecules inhibits the formation of the stable aggregates.

Cellulose is often dissolved in aqueous alkali solvents at reduced temperatures.

One explanation for this is the formation of inclusion complexes, which

inhibit the coagulation of the molecules (Lue et al., 2007; Qin et al., 2013).

Collapse of the inclusion complexes occurs at elevated temperatures and

gelation, the formation of the hydrogen bonding network begins. When the

network is strong enough, the storage modulus takes over and the solution

becomes more gel-like than a viscous solution.

4-6% cellulose solutions were heated to 20 and 25 ◦C and storage (G’) and

loss (G”) moduli were measured as a function of time (Figure 3.5). At 25 ◦C

4% cellulose solution gelated after 28 minutes and the 5% solution 5 minutes

earlier. The 6% cellulose solution had already gelated after 8 minutes when

temperature was 25 ◦C. When the 6% solution was studied at 20 ◦C, gelation

took 33 minutes, clearly longer than even a 4% cellulose solution. This sup-

ports the results of Qin et al. (2013) that at higher temperatures inclusion

complexes are fully destroyed and cellulose molecules are exposed to the

formation of hydrogen bonds with each other.

It should also be noted that at the concentrations used in gelation studies, only

a 4% cellulose solution could have been near a “true solution” state. Others

already contained some H-bonded cellulose molecules, however, the fact that

6% gelated 25 minutes later when the temperature was lowered below the

degradation point of the inclusion complexes indicates that these aggregates

were surrounded by NaOH-urea-hydrates and could not coagulate.
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Figure 3.5: Storage and loss moduli of 4-6% cellulose-7% NaOH-12% urea-
water solutions. Cross-sections of the moduli indicate the gelation points.

3.2 Paper II: Physicochemical design of microspheres

3-7% cellulose-7% NaOH-12% urea-water solution was prepared from HyCellSolv-

pulp (pretreatment 2 h at 75 ◦C) and the solution was extruded drop-wise

through a syringe (Eppendorf 5 cm3) into the conditioned antisolvent (Table

2.1). The aim of the study was to demonstrate the effect of the coagulation

conditions on the properties of the microspheres. A 3% cellulose solution

could not form stable microspheres due to a lack of the building material.

Moreover, the 7% solution was too viscous to form droplets and formed a

continuous flow instead.

3.2.1 Size, shape, and weight of microspheres

The size of a microsphere is defined by the size of the droplet detaching from

the needle through which it is extruded. Shape, on the other hand, can be

influenced by several factors. Depending on the cellulose concentration in

the dope, during the detachment from the needle the droplet stretches and

forms a tail. Higher cellulose concentration causes more stretching (tailing).

Another factor affecting the shape is the impact with the antisolvent. If the

needle is too far from the surface, the surface tension of the antisolvent causes

an impact which flattens the droplet (Sescousse et al., 2011b). Conversely, if

the needle is too close to the surface, the droplet may attach to it after passing

through the surface. Since the droplet is still denser than the antisolvent, it

tends to fall to the bottom. Attachment on the surface and gravity together
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stretches the coagulating droplet and forms a tear-shaped microsphere.

The size of the cellulose microspheres increased when the 5% cellulose solu-

tion was coagulated in 2 M nitric acid and 10% NaCl solution at increasing

temperature (Figure 3.6A, Table 3.1). The same trend was observed with

increasing acid concentration (Figure 3.6B). Faster coagulation kinetics un-

der these conditions caused the skin layer to solidify immediately after the

contact with antisolvent and maintain the initial dimensions of the droplet.

As the coagulation kinetics slowed down by decreasing temperature or acid

concentration, the interior parts of the droplet had more time to pack more

closely and the ongoing coagulation inside of the microsphere pulled the

outer layers closer and caused slight shrinking.

Table 3.1: Gaussian parameters of normalised size distribution values from
images of cellulose microspheres prepared under different conditions

Preparation conditions Gaussian parameters
ccel l ul ose T cH NO3 Peak FWHM a

(%) (◦C) (M) (mm)
4 25 2 2.92 0.16
5 25 2 2.97 0.16
6 25 2 2.99 0.20

5 25 0.5 2.71 0.32
5 25 2 2.97 0.16
5 25 4 2.67 0.60
5 25 6 3.02 0.58
5 25 8 3.05 0.27
5 25 10 3.31 0.41

5 5 2 2.41 0.37
5 25 2 2.70 0.24
5 50 2 2.85 0.21

5 5 b 2.79 0.32
5 25 b 2.76 0.24
5 50 b 3.20 0.14

a Full width at half maximum
b 10% NaCl was used instead of HNO3

Circularity, i.e. 4π×area/perimeter2, was found to be unaffected by the in-

creased acid concentration, but the increased temperature yielded slightly
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Figure 3.6: The effect of (A) temperature, (B) acid concentration and (C)
cellulose concentration on volume (MN), weight (HO), circularity (◦ •) and
porosity (■ä). Constant parameters are given above the figures.

more spherical particles. The surface tension of the acid increases with the

concentration (Weissenborn and Pugh, 1996). This accelerated the formation

of the skin layer and droplets maintained their shape after the first contact

with the acid. When the temperature of the antisolvent was increased from 5

to 50 ◦C, the surface tension decreased by 10% (Vargaftik et al., 1983). A lower

surface tension assisted the droplet in passing through the surface boundary

without attaching to it and tail-formation was minimised.

The weight of the microspheres closely followed the volume. Porosity again

follows these two values closely, since it is calculated from the amount of

water in certain volume. When the cellulose concentration was increased

(Figure 3.6C), more solid material occupied the same volume. A slight increase

was observed in volume and weight (density of the cellulose is ∼1.5 g cm−3).

This caused the porosity to decrease rapidly.

3.2.2 Morphology of the cross-sections and surfaces of the micro-
spheres

Slow coagulation in milder acid formed more coarse surfaces than fast co-

agulation in concentrated acid (Figure 3.7). Fast coagulation inhibited the
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formation of bigger agglomerates, and fibrils can be seen on the surface of the

microspheres coagulated in 2-10 M nitric acid solution. Faster coagulation

also yielded smaller fibrils (Figure 3.7B-D).

Figure 3.7: FE-SEM images of the surface of the microspheres. 5% cellu-
lose solution coagulated in (A) 0.5, (B) 2, (C) 6 and (D) 10 M HNO3 at 25 ◦C.
Magnification is 10,000×.

Similar changes were observed in interior parts of the cross-sections (Figure

3.8). When coagulation was slower the size of the agglomerated fibrils was

greater. Since the concentration changes of the antisolvent are not so severe

inside the microspheres, the presence of the agglomerates was observed in

microspheres coagulated in 2 M nitric acid. However, 6 M HNO3 did not

produce agglomerates any more and only fibril-like shapes were seen in cross-

section images (Figure 3.8C).

The thickness of the skin layer was noted to increase when more concentrated

acid was used for coagulation (Figure 3.9). In 0.5 M HNO3 skin layer was

hardly detectable, whereas in microspheres coagulated in 2-6 M HNO3 it was

∼3-6 µm thick. The coagulation mechanism was observed to change when

10 M acid was used; instead of simultaneous solidification (sol-gel transition)
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Figure 3.8: FE-SEM images of the interior of cross-sections of the micro-
spheres. 5% cellulose solution coagulated in (A) 0.5, (B) 2, (C) 6 and (D) 10 M
HNO3 at 25 ◦C. Magnification is 10,000×.
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from the surface towards the interior, several nucleation centres were formed

on the surface of the droplet immediately after the contact with acid. Locally

this formed “plates” which could even be ∼50 µm thick, but the plates would

not cover whole microsphere as continuous layer. The whole sphere was

labile and they could not handle physical pressure or stress as well as spheres

coagulated from milder acid environments.

Figure 3.9: FE-SEM images of the edge of the cross-sections of the micro-
spheres. 5% cellulose solution coagulated in (A) 0.5, (B) 2, (C) 6 and (D) 10 M
HNO3 at 25 ◦C. Magnification is 250×.

The surfaces of the microspheres prepared from 4 and 6% solutions and

coagulated in 2 M HNO3 at 25 ◦C were very similar to those prepared from

5% solution in same antisolvent (Figure 3.10). A skin-core structure was

also observed in cross-sections on the edge. In microspheres prepared from

6% solution thicker structures were seen under the surface compared to

microspheres prepared from 4% and 5% solutions. The pores were smaller

in images showing the interior, and conversely in microspheres from the

4% solution pores were bigger. This observation is in agreement with the

total porosity values (Figure 3.6, C) which decreased over a few per cent with

increasing cellulose concentration in solution. This was explained by the
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addition of solid material into a constant volume.

Figure 3.10: FE-SEM images of the surface, edge and interior of the CPD
cellulose microspheres coagulated in 2 M HNO3 at 25 ◦C. Magnifications are
1,000 (edge) and 10,000× (surface and interior).

3.2.3 Intrinsic properties

Pore size distribution

Pores of the cellulose microspheres were probed using dextrans of various mo-

lar masses (Table 2.2). The amount of inaccessible water was computed from

the concentration differences (Equation 2.2; Figure 3.11, left) and converted

to frequencies for each dextran (Equation 2.3; Figure 3.11, right).

The total accessible water (the saturation point) for all the samples varied

between 91% and 92% (Figure 3.11, left). This is clearly lower than reported in

Figure 3.6. The difference results from the closed pores and limited range of

dextran probes; the smallest dextran used in this study can access the pore

with an entrance of 36 Å, which then excludes all the micropores (<20 Å) and

even some of the small mesopores (Westermarck, 2000).

When the acid concentration of the antisolvent was increased, coagulation

kinetics increased and macropores (≥560 Å) were favoured over mesopores

(39-290 Å; Figure 3.11, right:top). Slower coagulation gave cellulose molecules

more time to arrange themselves to fill the whole space (sol-gel transition),

which also maximised the specific surface area (Figure 3.12, B). The sum of
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the mesopores (0.5 M 0.669; 2 M 0.649; 6 M 0.598) follows a nearly linear trend

and is inversely proportional to the frequencies of the macropores (0.276,

0.289, 0.348).

When the microspheres were coagulated in 2 M acid but at different tempera-

tures, kinetics did not explain the variations in pore size distributions (Figure

3.11, right:bottom). Similar trends as with macropores in this measurement

were, however, observed in total porosity values (Figure 3.6, A:bottom, solid

squares). Coagulation at 25 ◦C produced microspheres with the lowest poros-

ity and amount of macropores. Since the volume (Figure 3.6, A, top, open

triangles) was almost the same at 5 and 25 ◦C coagulated microspheres, the

higher amount of mesopores and lower amount of macropores resulted from

the faster movement of the cellulose molecules at higher temperature, and

thus more even spreading across the constant volume. However, the sol-gel

process did not take over due to the elevated temperature (note the gelation

point, Figure 3.5) but was still a result of the neutralisation.

At 50 ◦C, however, coagulation was so rapid that the skin layer solidified faster

than at lower temperatures and generated microspheres with higher volume

(Figure 3.6, A, top, open triangles) and higher frequency of macropores (Figure

3.11, right: bottom). It should be noted that surface area decreased with

increasing temperature (Figure 3.12, A), so generally the same explanation

as for the increase of the acid concentration applies here; fast coagulation

packed the cellulose molecules more tightly to clusters, creating bigger pores

and less coverage over the space. It could be assumed that the sol-gel process

played a bigger role at 50 ◦C than neutralisation of the solvent by antisolvent.

Specific surface area

As observed in the subsection “Pore size distribution”, the amount of small

mesopores increased when coagulation kinetics was slower (Figure 3.11, right:

top). The specific surface area (SSA) increased when microspheres were

coagulated at lower temperatures or in lower concentrations of acid (Figure

3.12, A and B), however, coagulation in 10% NaCl solution did not produce

slightly lower SSA compared to HNO3 even though coagulation kinetics was

notably slower. The trend was very similar in both, anti- and non-solvents.

The increase in SSA when 8 and 10 M HNO3 was used could be explained by

a competing coagulation mechanism, as pointed out in Section 3.2.2 (Mor-
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Figure 3.11: (Left) Inaccessible water, saturation point and frequencies of
the pores of the microspheres coagulated from 5% cellulose solution in 2 M
HNO3 at 25 ◦C. (Right-top) Computed pore size distributions from the solute
exclusion measurements for microspheres coagulated in 0.5-6 M HNO3 at
25 ◦C and (right-bottom) 2 M HNO3 at 5-50 ◦C.

phology of the cross-sections and surfaces of the microspheres). Decreased

mechanical stability was observed while handling the microspheres. This

also indicates that the supportive thicker pore walls did not have time to form

and thus the microspheres became weaker than the ones prepared in lower

acid concentrations. A high acid concentration probably resulted in smaller

precipitates in the matrix and degraded some of the supportive structures.

When the cellulose concentration was decreased in the initial cellulose solu-

tion to 4%, a clear decline was observed in SSA compared to the microspheres

prepared from 5% and 6% solutions (Figure (3.12, C). Assuming that the sur-

face area in the microspheres produced from 5% solution was already just

about maximised, less material in apparently the same volume (Figure 3.6,

C: open triangles) undoubtedly yields less SSA. In the same manner it could

be concluded that the addition of the material (6% solution) cannot increase

already maximised SSA; further additions of cellulose would not only cause

more aggregated molecules in solution (Section 3.1.2) but also less porosity

(Figure 3.6, C). However, higher cellulose concentration yielded continuous

stream of the solution through the needle and microspheres could not be

produced. Conversely, less than 4% cellulose in the solution could not form

solid and mechanically stabile spheres in antisolvent.
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Figure 3.12: The effect of (A) temperature, (B) acid concentration, and (C)
cellulose concentration on specific surface area of the critical point dried
cellulose microspheres. General conditions for coagulation were: 5% cellulose
solution coagulated in 2 M HNO3 at 25 ◦C.

3.3 Paper III: Chemical modification of microspheres

Cellulose microspheres were prepared by dropping 5% cellulose-7% NaOH-

12% urea-water solution into 2 M HNO3 at 25 ◦C through the needle and

oxidised with a modified Anelli’s reaction. The aim of this work was to study

the structural changes in microspheres after heterogeneous modification.

Paper III also introduced the swelling properties of the oxidised microspheres

and their application as drug carriers, but these are presented with more

detail in Section 3.4 Paper IV: Drug delivery.

3.3.1 Oxidation mechanism and the amount of generated anionic
groups

Microspheres were oxidised with a TEMPO/NaClO/NaClO2 system (TEMPO-

mediated oxidation) in phosphate buffer. Sodium chlorite NaClO2 acted as

a primary oxidant converting aldehydes into carboxylic acids at C6 position

in cellulose (Hirota et al., 2009). There was an excess of NaClO2 compared

to AGU with a ratio of 1.2, which is in theory enough to convert all the C6

hydroxyl groups to carboxylic acid but in practise higher amounts of chlorite

should be used to gain even water-soluble conversion yields (Hirota et al.,

2009).

Oxidation in a TEMPO/NaClO/NaClO2 system produces hydrogen ions (Iso-

gai et al., 2011), however, an increase in pH values was observed during the
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reaction when the reaction temperature was set to 60 and 80 ◦C (Figure 3.13).

At 60 ◦C an increase occurred after 24 h but at 80 ◦C it occurred after 5 h. It

is known that N-oxoammonium salt degrades under acidic conditions into

TEMPOH, oxoammonium radical, and open ring carbocation at elevated

temperatures (Ma et al., 2011; Sen and Golubev, 2009) (Figure 3.14B). Gen-

eration of additional TEMPOH to oxoammonium cation leads to increased

consumption of hypochlorite and the production of hydroxide ions (Figure

3.14A). Primary alcohols are not oxidised to aldehydes since oxoammonium

cations are degradating, hydrogen ions are not produced and the solution

alkalises.

Figure 3.13: (A) Oxidation of primary alcohols to aldehyde by oxoammonium
and TEMPOH intermediates in NaClO-water solution. (B) Degradation of
oxoammonium salt at high temperature. Images adapted from Isogai et al.
(2011) and Ma et al. (2011).

The total number of anionic groups which are protonated and deprotonated

between pH values 2 and 11 were determined by back-titration method (Fig-

ure 3.15). At 60 ◦C oxoammonium ion degraded after 24 h, but it produced

the highest amount of carboxylic acid groups in cellulose microspheres. At

80 ◦C yield was notably lower, probably due to a too high degradation rate at

the beginning of the reaction and non-specific oxidation by hypohalous acid

(de Nooy et al., 1995).

At 40 ◦C the decrease in pH value is the most notable (Figure 3.13). This

indicates fast oxidation of cellulose and degradation of N-oxoammonium

ions. Zhao et al. (1999) optimised the reaction temperature to 35 ◦C to reduce

the chlorination in Anelli’s reaction (Anelli et al., 1987).
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Figure 3.14: (A) Oxidation of primary alcohols to aldehyde by oxoammonium
and TEMPOH intermediates in NaClO-water solution. (B) Degradation of
oxoammonium salt at high temperature. Images adapted from Isogai et al.
(2011) and Ma et al. (2011).

Figure 3.15: Total anionic groups in oxidised cellulose microspheres after
2-48 h of oxidation at 20-80 ◦C. Degree of substitution (DS) values correspond
to the values after 48 h of oxidation.

3.3.2 Spectroscopic qualification and the distribution of anionic
groups

Spectra of oxidised and reference microspheres were assigned according to

the literature (Larkin, 2011) (Figure 3.16). Polymorphic type cellulose II was

confirmed with Raman vibration at 1463 cm−1 (Schenzel and Fischer, 2001).

Vibrations at the transition region around 1266 cm−1 were also perceived only

for cellulose II but were not characterised exactly. Vibrations at 894 (FTIR)

and 898 cm−1 (Raman) were assigned for δHCC and δHCO angle bendings

around C(6) atom, semi-circle stretchings. This band is broader in cellulose I
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and has multiple peaks due to different molecular conformation (Schenzel

and Fischer, 2001).

Figure 3.16: (Top) FTIR and (bottom) Raman spectra of reference and at 60 ◦C
oxidised cellulose microsphere (OCB; oxidised cellulose bead).

The differences between reference and oxidised microspheres is the most

profound at the region where R-COO vibrations are found; at 1400-1600 cm−1

in FTIR and 1400-1650 cm−1 in Raman spectra (Figure 3.17). The intensity of

the R-COO vibrations increased almost linearly with oxidation temperature

(Figure 3.17, insets), as long as the reference was excluded. Since intensities

correlated well with the measured amount of total anionic groups (Figure

3.15) FTIR/Raman could be used for preliminary quantitative determination

of AGs, as long as good internal standard is available. The phase stretching

of R-COO in the FTIR spectra at 1416 cm−1 (Figure 3.17, left, open square)

especially correlated with coefficient R2=0.9995 without any lateral shift of the

peak. Peak at 1594 cm−1 shifted when oxidation temperature was increased

from 20 to 60 ◦C (∆ν=5.3 cm−1), probably due to underlying H2O vibrations

at 1640 cm−1. The intensity of Raman peak at 1611 cm−1 was too low for

precise quantitative analysis and 1413 cm−1 had a correlation of R2=0.89 due

to overlapping vibrations from CH2 deformation (Figure 3.17, right).

Never-dried cross-sectioned microspheres were immersed in 15 µM DMS
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Figure 3.17: (Left) FTIR and (right) Raman spectra at specific regions for R-
COO vibrations. Insets are showing the relative intensities of indicated peaks
of microspheres oxidised at 0 (reference) and 20-60 ◦C.

solution overnight in order to label the anionic groups. Samples were washed

thoroughly with tap water and distilled water to ensure that fluorescent dye

would be bound only by strong ionic interactions and the excess would be

washed away from the pores.

The distribution of fluorescent dye was observed with a confocal microscope

(Figure 3.18). The slightly anionic surface of pure cellulose microspheres

bound some of the dye, but a clear difference to the oxidised microsphere

was confirmed with the same parameters of the excitation laser and detector.

In both samples anionic groups, the bound DMS giving the response signal,

were evenly distributed. A confocal microscope also revealed some of the

morphological features in stack images (Figure 3.18, right).

3.3.3 Structural changes

Cellulose forms agglomerates during the coagulation. Bigger and more dense

shapes are formed if the coagulation process is slow (Section 3.2.2 and Figure

3.19A,B). After oxidation in TEMPO/NaClO/NaClO2 for 2 and 48 h at 80 and

60 ◦C, respectively, dense agglomerates were found to be more open and

cloudy (Figure 3.19C-F). Intensive oxidation breaks the hydrogen bonding

network by converting C(6) hydroxyl groups into carboxylic acids and at

higher temperatures it may also degrade cellulose chains (de Nooy et al., 1995)

and open the matrix, widening the pore entrances and cavities.
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Figure 3.18: Confocal micrograms of cross-sections of (left) pure and (right)
48 h at 60 ◦C oxidised cellulose microsphere labelled with fluorescent cationic
dye DMS. Images are 1.55×1.55 mm.

Figure 3.19: Micrograms of cross-sectioned CO2 critical point dried (A, B)
reference, (C, D) 2 h at 80 ◦C and (E, F) 48 h at 60 ◦C oxidised microspheres.
White ovals highlight some of the agglomerates. Magnifications are 1,000 in
the top row and 10,000× in the bottom.

Dextran molecules with various molar masses (Table 2.2) were used in a solute

exclusion technique to probe the pores. Macropores (diameter ≥560 Å) had

the highest frequency of all measured pores sizes (Figure 3.20). After oxidation

for 48 h at 20-60 ◦C the relative amount of macropores decreased linearly

(R2=0.96) with increasing temperature. Contrary to the macropores, the sum
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of the frequencies of small mesopores (39-139 Å) increased linearly (R2=0.98).

Since the total porosities were all between 94-95% regardless of the oxidation

temperature (Paper III, supplementary material) and the amount of accessible

water for dextrans increased steadily from 82.28% to 84.37% in reference and

oxidised microspheres at 20-60 ◦C, respectively, it is reasonable to hypothesise

that small pores (small meso- and micropores) became wider and closed pores

were opened during the oxidation. This enlarged the accessible volume for

dextrans but did not change the total porosity.

Figure 3.20: Pore size distribution of cellulose microspheres before and after
oxidation in TEMPO/NaClO/NaClO2 system for 48 h at 20-60 ◦C.

3.4 Paper IV: Drug delivery

Cellulose microspheres were prepared and oxidised as described in Papers

II and III. The microspheres were assigned as ACB0-60, where 0 stands for

reference cellulose beads and 20-60 anionic cellulose beads oxidised for 48 h

at 20-60 ◦C. The aim of this work was to study the mass uniformity of the

loaded drugs and the effect of the anionic charge on the loading and release

profiles of cationic model drugs. To better understand the release mechanism,

the behaviour of the dried microspheres was studied in physiological pH

environments.

3.4.1 Uniformity of mass and drug content

The weight of microspheres is mainly defined by the volume of droplets and

the cellulose content in solution. Since the cellulose content does not very
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within the batch, the only variable is the volume. A droplet detaches from the

tip of the needle when the viscosity of the solution cannot hold the growing

weight of the droplet any longer. Since the viscosity does not notably change

if the temperature of the solution does not drastically vary (Figures 3.4 and

3.5), the volume of the droplet is in a large extent constant.

The benefit of the immersion method over, for example, the dispersion

method is that the loading degree can be adjusted by controlling the con-

centration of the solution and it will be the same for the whole batch. In the

dispersion technique microspheres were loaded in 20 mg cm−3 Ranitidine

HCl solution overnight and dried at constant temperature and humidity for

two days. The mass of the batch of loaded and placebo ACBs was weighed by

adding 5 microspheres until the total count was 50. Correlation coefficient

R2 for linear fit was over 0.999 in all measurements (Figure 3.21), indicating a

very even volume and loading capacity.

Figure 3.21: Uniformity of masses of loaded and placebo microspheres.

The amount of ranitidine hydrochloride was calculated from the differences

in the slopes of the linear correlations (Table 3.2). The amount of drug in-

creased in the microspheres when the oxidation temperature was increased.

However, the high mass of placebo ACB60 was due to bound water (see Sec-

tion 3.4.2) and thus the seemingly lower amount of drug than for example

ACB40. Released amounts confirm that the actual drug content is higher than

measured with gravimetric comparison (see Figure 3.26).

Even if the exact mass of loaded drug in microsphere cannot be determined

by gravimetric methods alone due to odd amounts of bound water, high

linear correlations demonstrate the uniformity of the microspheres and their
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Table 3.2: Weights of placebo and loaded microspheres, amount of Ranitidine
HCl per one microsphere and loading degrees. Calculated from the slopes of
linear correlations.

Weight / mg Ran.HCl / mg Loading / %
Placebo Loaded

ACB0 4.33±0.01 5.46±0.01 1.13±0.01 20.7
ACB20 5.43±0.04 6.61±0.04 1.18±0.07 17.8
ACB40 5.09±0.02 6.86±0.06 1.77±0.08 25.8
ACB60 5.34±0.03 6.83±0.05 1.49±0.07 21.8

loading.

3.4.2 Solid state analysis

DSC measurements were performed after drying the ranitidine hydrochloride

loaded and placebo microspheres at constant temperature and humidity

for two days. Increased hydrophilicity of the placebo ACBs was observed as

endothermic dehydration peaked at 200-225 ◦C (Figure 3.22). Dehydration

began at lower temperatures as the peak area, the amount of bound water,

increased in the microsphere. After the dehydration microspheres started to

depolymerise 10-20 ◦C later (Dahiya and Rana, 2004).

Figure 3.22: DSC of ACBs. Heating rate 10 ◦C min−1 and nitrogen flow
50 cm3 min−1.

Crystalline ranitidine hydrochloride has a melting point of 147 ◦C and it goes

through exothermic decomposition instantly after the melting (Perpetuo et al.,
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2013). The melting point was not observed when ranitidine hydrochloride

was incorporated in the ACBs, indicating that it was solidified in amorphous

form (Figure 3.23).

The changes in the intensities of the dehydration peaks are minimal compared

to those of the placebo microspheres, indicating at least partial replacement

of the bound water by the drug in loaded microspheres (Figure 3.23). Simulta-

neously with the incorporation of the drug, the stability of the microspheres

decreased so that oxidised ACBs seemed to dehydrate already at 185 and ACB0

at 200 ◦C.

Figure 3.23: DSC of pure ranitidine hydrochloride and loaded ACBs. Heating
rate 10 ◦C min−1 and nitrogen flow 50 cm3 min−1.

The crystal structure of the ranitidine hydrochloride was recognised as poly-

morph II by the characteristic region in the Raman spectra around 3000 cm−1

(Figure 3.24, inset) and the peak at 1185 cm−1 (Chieng et al., 2009). When

ranitidine hydrochloride was incorporated in ACB60 and ACB0, the peak at

1555 cm−1 widened and shifted to 1552 cm−1 and the peak at 1185 cm−1

disappeared (Figure 3.24, ACB0 not shown). This is due to the amorphous

form of the drug.

There were no changes in FT-IR spectra of oxidised ACBs when drug was

incorporated (Figure not shown). The phase stretching of R-COO group at the

region 1400-1650 cm−1 (Figure 3.17) in loaded ACBs did not change, indicating

the lack of interaction between the cationic drug and the microspheres.

56



3.4. Paper IV: Drug delivery

Figure 3.24: Raman spectra of Ranitidine HCl and ACB60 with and without
incorporated drug. Inset: specific region 2750-3200 cm−1. Symbols are char-
acteristics for the polymorph II of Ranitidine HCl.

3.4.3 Swelling behaviour of placebo and loaded microspheres

Never-dried ACB0-20 had a diameter of 4.2 ± 0.2 and ACB40-60 4.3 ± 0.2 mm

whether they were loaded with ranitidine hydrochloride or not. After drying

the drug loaded microspheres were slightly bigger than the placebo ones;

1.8 ± 0.2 and 1.7 ± 0.2 mm, respectively (Trygg et al., 2014).

ACB0 swell very little in any tested pH environment (Table 3.3). After 24 h

in buffer solutions ACB0 swelled to almost 50% from the initial never-dried

diameter. Swelling at pH 1.2 was noted to be slightly higher than pH environ-

ments 3.6 and 7.4, regardless of whether the microsphere was loaded with

drug or not.

Oxidised ACBs were approximately the same size after drying as ACB0, but

the swelling behaviour at all tested environments was more intense. Even at

pH 1.2, which is clearly below the pKa of carboxylic groups, the microspheres

swelled more than ACB0. Microspheres swelled up to 88% from the initial

state when the oxidation temperature was increased to 40 ◦C. After oxidation

at 60 ◦C the diameter of the drug loaded microsphere reached almost 90%.

Swelling mechanism was influenced by the drug loading in oxidised ABCs

(Figure 3.25). For example, ACB60 without incorporated drug (Figure 3.25,

open square) swelled during the first hour at pH 3.6 and 7.4 to the same point

as ACB0 with drug, but instead of levelling-off ACB60 increased the swelling

rate and the swelling continued for two hours before the rate decreased.
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Table 3.3: Swelling of ACB0 and oxidised ACBs after 24 h at pH values 1.2,
3.6, and 7.4. Values are percentages from the diameter of corresponding
never-dried CBs.

Placebo Loaded
Dry 1.2 3.6 7.4 Dry 1.2 3.6 7.4

ACB0 41.2 49.8 48.5 48.4 47.5 54.6 52.7 49.5
ACB20 41.4 52.7 59.5 72.8 47.3 57.3 63.2 78.0
ACB40 40.3 51.0 60.6 84.2 48.4 58.4 66.5 88.3
ACB60 41.5 50.0 64.8 88.0 47.7 55.9 64.2 89.7

After the wetting stage, water infusion, ACBs could increase their diameters

throughout the sphere without causing any tension. ACB0 swelled during the

first hour in all pH environments to its maximum value with and without the

drug, as did the oxidised ACBs at pH 1.2.

A wetting stage was not observed when oxidised ACBs were loaded with drug

and immersed in pH 3.6 and 7.4 environments (Figure 3.25, solid square).

Slow down after one hour could not be observed, but instead swelling rate in-

creasing immediately from immersion in the buffers until levelling-off 1.5-2 h

from the beginning. The incorporated drug acted as a filler and pores stayed

open. Wetting the pores occurred as fast as highly soluble drug dissolved

away.

Figure 3.25: Swelling of the ACB0 and ACB60 with and without ranitidine
hydrochloride at pH 7.4. The height of the ordinate indicates the average
diameter of the never-dried microsphere.
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3.4.4 Release profiles: A comparison of non-swelling and swelling
models

Release profiles were fitted to the model of exponential decay between 5-

120 minutes and analysed. The total amount of the loaded drug was taken

from the maximum y-offset value at any used pH for each ACB (Figure 3.26).

This value was used to relate the release profiles (Figure 3.28). At pH 7.4 ACB60

released less drugs than it did at pH 1.2 (Figure 3.26). Swelling at this pH is

notably higher than, for example, at pH 3.6 (Table 3.3) and since the solu-

bility of the ranitidine hydrochloride increases at elevated pH environment

(Mirmehrabi et al., 2004), it is possible that some ionic interactions between

anionic cellulose and cationic drug inhibited the complete release.

Figure 3.26: Released amount of ranitidine hydrochloride per one ACB at
different pH environment.

At pH 1.2 ranitidine hydrochloride and ACBs were in protonated form, so the

e-folding release times were short (Figure 3.27). Since the cellulose matrix did

not swell at this pH, diffusion of the solubilised drug took place through the

hornified channels. The increase in times of ACB40-60 could be explained by

higher loading capacity and more intense hornification due to higher porosity

and water content in never-dried microspheres.

At pH 3.6 release times were increased because the pH was near the pKa of

ranitidine hydrochloride and oxidised ACBs, so both were partially in ionic

form. The swelling at this pH was higher than at pH 1.2 for oxidised ACBs,

but still clearly lower than at pH 7.4 (Table 3.3). The drug and the matrix are

in ionic form at pH 7.4 and this decreased the release times, however, the

solubility of the ranitidine hydrochloride increases at elevated pH.

59



Chapter 3. Results and discussion

Figure 3.27: Release times (e-fold) of ranitidine hydrochloride from ACBs at
various pH environments.

Release profiles were nearly independent of the oxidation temperature and

the pH of the environment (Figure 3.28). Fit to the model of exponential decay

was high (R2 ≥0.998) and the similarity of the curves indicates that the pores

were already so open in dried microspheres that the highly soluble drug could

dissolve without additional opening of the oxidised cellulose matrix.

Figure 3.28: Cumulative drug release rates of ranitidine hydrochloride from
ACBs at pH 7.4.

Fit to the models of swelling and static spheres

Baker-Lonsdale model Equation 2.5 is valid for dispersed drug systems

(Baker and Lonsdale, 1974). This was used since the drug was incorporated

in microspheres by filling the pores with drug solution and then entrapping

them by drying at room temperature. The loading mechanism for dissolved
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Table 3.4: Release constants and correlation coefficients of fits to Baker-
Lonsdale’s and Ritger-Peppas’s models at linear region 5-30 min.

Sample pH Baker-Lonsdale Ritger-Peppas, n=0.43
k∗ R2 k∗ R2

ACB0 1.2 6.1±0.2 0.9983 15.5±1.2 0.9794
3.6 4.6±0.2 0.9977 15.3±0.4 0.9984
7.4 5.7±0.1 0.9996 17.5±0.7 0.9941

ACB20 1.2 4.5±0.1 0.9995 1.8±0.3 0.9445
3.6 3.3±0.1 0.9999 11.5±0.1 0.9998
7.4 5.4±0.1 0.9995 17.5±0.3 0.9991

ACB40 1.2 4.7±0.2 0.9926 1.8±0.3 0.9313
3.6 4.5±0.1 0.9994 14.9±0.2 0.9994
7.4 5.0±0.2 0.9934 16.7±0.5 0.9974

ACB60 1.2 5.9±0.1 0.9989 2.3±0.3 0.9428
3.6 3.3±0.1 0.9998 11.4±0.1 0.9998
7.4 4.2±0.2 0.9914 14.7±0.6 0.9948

∗ ×10−3

drug systems would require sorption on to the surface.

Release profiles were fitted to the model of non-swelling monolithic spheres

(Equation 2.5). The model fits with high correlation at a linear region of

5-30 minutes early time release profile. Any significant relation was not

observed between swellability and correlation coefficients (Table 3.4). Baker

and Lonsdale (1974) stated that the higher loading of the dispersed drug yields

to lower release at a given time. This was seen at pH 7.4 but not at lower pH

values (Table 3.4). The lowest release constants were computed for pH 3.6

environment, which is consistent with fits to the exponential decay model

(Figure 3.27).

Ritger-Peppas’s model A model for swelling spheres (Equation 2.6, n=0.43)

was compared with a non-swelling model. The correlation coefficient of

the swelling model by Ritger-Peppas (1987) was poor at pH 1.2 for all the

ACBs (R2 ≤0.97), as expected since the microspheres did not swell (Table 3.3).
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However, correlations were higher for ACB0 at other pH values even though

ACB0 did not swell at these environments either.

As well as the similar or poorer correlation coefficients compared to the non-

swelling mode by Baker and Lonsdale, release constants at oH values 3.6

and 7.4 were not consistent with observations; higher release constants of

ACB20-60 at pH 7.4 indicate notably faster release than at pH 3.6, which was

not confirmed by the model of exponential decay nor observations. Release

profiles were almost independent of the microsphere type and pH of the

environment.

Ritger-Peppas’s model for swelling spheres did not give realistic results, and

some relatively high correlations were even gained. Spheres wee swelling in

physiological pH 3.6-7.4 but since the drug maintains the open pores during

the drying of the microspheres, a highly soluble drug dissolves and diffuses

through the open pores before swelling affects the release kinetics.

3.5 Paper V: Discussion. Potential applications

Cellulose is a nontoxic compound which is approved in pharmaceutical and

food applications in Europe under code E460. Many of its derivatives, such

as methyl, ethyl, hydroxypropyl, hydroxypropylmethyl, methylethyl and car-

boxymethyl cellulose (MC, EC, HPC, HPMC, MEC, CMC) are approved under

codes E461-466 and used as a thickening agents and stabilisers in food prod-

ucts and disintegrants in pharmaceuticals. Due to structural properties of the

backbone and the versatility of its various derivatives, cellulose is widely used

in applications. This section is an overview of the possible ways that cellulose

microspheres can be utilised in applications.

3.5.1 Chromatographic columns

Their spherical shape allows the dense packing of the cellulose microspheres

in columns. With a narrow size distribution — ideally the ratio of radii ∼0.41

and above — it is possible to achieve ∼0.74 packing density. They also have

smaller flow resistance than powders and more mechanical strength against

deformations than, for example, cross-linked dextrans (Kaster et al., 1993).

Due to the high and adjustable porosity of the cellulose microspheres they can
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be used in size-exclusion chromatography (Oliveira and Glasser, 1996). SEC

requires that the interactions between the stationary phase and separating

molecules are minimised, so that separation would only occur according to

the hydrodynamic radii of the components. Interactions between hydroxyl

groups of the cellulose and separating molecules could be minimised by

silylation of the cellulose (Xiong et al., 2005).

In affinity chromatography the separation is created by delaying or binding

some molecules by adsorption in the stationary phase while others are elueted

first. Affinity chromatography can be specific, if, for example, dye-ligands

are used for specific binding sites (Figure 3.29). Unspecific affinity is based

on ionic or hydrophobic/-philic interactions. For example, higher affinity of

multivalent heavy metal cations towards anionic groups of oxidised cellulose

beads (Hirota et al., 2009) could be used in water purification. In the case of

total binding, the adsorbed molecules can be released afterwards by adjusting

the pH or salt concentration (Sakata et al., 2006), or introducing the more

fitting competing free counterparts.

Figure 3.29: Affinity chromatographic techniques. Specific ligand-dye (a)
and unspecific ion exchange (b), hydrophobic (c) and hydrophobic charge
induction chromatographies.
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3.5.2 Anchoring and immobilisation

Functionalised cellulose microspheres can be used as a solid-state supports.

Their closed structure can protect often complex and perhaps expensive

enzymes and proteins from contaminations, and undesired reactions with

laboratory glassware, making it possible to collect and re-use the enzyme.

They also provide an isolated space where the reactions can occur in higher

yields (Guillier et al., 2000). Anchoring the reagent to the solid-state support

can assist the reaction to the intermediate state (Figure 3.30) and cleaving off

the final product simultaneously regenerates the solid support (De Luca et al.,

2003).

Figure 3.30: Synthesis of pyrazoles and isoxazoles using cellulose beads as a
solid-state support for anchoring the reagent. Adapted from De Luca et al.
(2003).

Immobilisation is used when the bound component has a specific property,

such as a value or a way to interact with the environment. To separate it from

the derivatisation, immobilised component could also perform and exist with-

out the substrate, the cellulose microsphere, but the immobilisation enhances

its property to act in the desired manner. Weber et al. (2005) demonstrated

four times higher binding capacities of tumour necrosis factor-α when the an-

tibodies were not randomly oriented but immobilised in a certain orientation

on the cellulose microsphere (Figure 3.31).

3.5.3 Drug delivery

Uniform distribution of drugs in carrier capsules, pellets or tablets is crucial

for several reasons; the release profile has to be steady or at least predictable,

dosing repeatable, and high or low local release dosages avoidable. Cellulose

microspheres, prepared by dissolution and coagulation via gelation phase,

have uniform internal structure and shape. When the drug is loaded in the
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Figure 3.31: Preparation of (a) cellulose microsphere surface functionalised
with aligned (his)-tagged antibody, (b) SEM image of microspheres and (c)
schematic presentation of two-circuit system for blood plasma purification.
Adapted from Weber et al. (2005).

microsphere using the dissolution method (microsphere immersed in drug

solution, loading driven by diffusion) an equilibrium state is achieved and

distribution is even.

As we demonstrated in Paper IV, due to the dense gel-matrix inside the micro-

spheres the drug is in an amorphous form after drying. This could enhance

the solubility of poorly soluble drugs. Adding anionic charge might create the

better solubility of these drugs by offering less attractive moiety for the ionic

counterpart. Prazosin hydrochloride is a poorly soluble drug (25 mg dm3 at

pH 6.8) but when it was coupled to anionic cellulose phosphate it dissolved

rapidly in buffer solution (Figure 3.32).

Enteric administration of APIs (active pharmaceutical ingredients) can be eas-

ily carried out with millimetre-sized microspheres. Designing the matrix (see

Section 1.4 Controlled release systems) so that the APIs are released in certain

part of the gastrointestinal track at a certain rate defines other components

and/or derivatives of the microsphere. Matrices could have, for example,

higher amounts of swelling agents, so that in certain environments the struc-

ture would disintegrate due to too extensive swelling and/or dissolution. This

could be initiated by a change in pH, temperature or even magnetic field

(Figure 1.4). Binary systems could be utilised in microspheres by derivatising

only the surface with hydrophobic groups and physically creating a small

holes in this layer (Figure 1.4G).
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Figure 3.32: a) Schematic illustration of anionic cellulose microsphere and
anionic prazosin; b) Prazosin release into the buffer solution from cellulose
phosphate (-•-), carboxymethyl (ethanol dried, -■-), and carboxymethyl
microspheres (water dried, -N-) and powder tablet (-�-) and pure prazosin
hydrochloride (-×-). Adapted from Volkert et al. (2009).
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The challenge of dissolving cellulose in water-based solvent was met with a

new type of pretreatment. Pulp was immersed in ethanol-acid solution for

different times and temperatures, and the solubility of the cellulosic fibre was

studied. Clear solutions were gained without undissolved fragments, even

though solutions with higher concentrations were not so-called true solutions

and formed aggregates between cellulose molecules.

The effect of coagulation kinetics and cellulose concentration on the prop-

erties of cellulose microspheres was studied after the dissolution. Highly

alkaline cellulose dope was extruded through a syringe into an acid of dif-

ferent concentrations and temperatures. Variations in coagulation kinetics

produced microspheres with different pore size distributions and specific

surface areas, whereas total porosity remained high in all samples. Variations

in measured properties had no effect, for example, on the release profiles of

the various active pharmaceutical ingredients, but the solubility of each drug

was the dominant parameter.

Microspheres were oxidised with the well-known Anelli’s oxidation system

with modifications, commonly known as TEMPO-mediated oxidation. This

introduced a high anionic charge on microspheres with even distribution.

Oxidised microspheres demonstrated enhanced water-retention, swelling

at higher pH environments, and porosity. The opening of the small micro-

and mesopores made it possible to load more than twice as much drug in

microspheres than in non-oxidised microspheres. Drug release profiles of

the highly soluble model drug were still noted to be very similar regardless

of the oxidation level or the pH of the environment, indicating an open pore

network of the drug loaded dry microsphere.

Further analysis showed that the swelling of the anionic microspheres at

any pH does not play a role in release profiles. Fit to the model of non-

swelling spheres (Baker-Lonsdale) was clearly better and was in agreement

with observations than the fit to the model of swelling spheres (Ritger-Peppas).

Solid-state analysis revealed that the model drug, ranitidine hydrochloride,
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was in amorphous form after loading in microspheres. This is one of the

challenges in the pharmaceutical industry; crystallisation of poorly soluble

drugs and their rapid release. Amorphicity of the drugs and the high swelling

capability of the oxidised microspheres could be utilised in the delivery of

these pharmaceutical ingredients.

Another clear benefit of microspheres is their even mass distribution and

easy loading. Since the droplet formation of cellulose dope is very even, each

sphere contains an exact amount of cellulose and volume. Loading degree is

constant since all the spheres are loaded in the same drug solution of known

concentration. Due to the large size of spheres, the personalised dosing of

drugs would be simple.
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