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team BAPS Åbo division, doubling the number of members of our proud society.
When thanking Jukka and Johan it is impossible not to mention mister Moretti
and everybody at Hotel Cepina, the site of summer permafrost 2012-2014, where
a large part of the ideas culminating in this thesis were hatched.

I would also like to thank everybody at the mathematics and statistics de-
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Abstract

The theme of this thesis is context-specific independence in graphical models.
Considering a system of stochastic variables it is often the case that the variables
are dependent of each other. This can, for instance, be seen by measuring the
covariance between a pair of variables. Using graphical models, it is possible to
visualize the dependence structure found in a set of stochastic variables. Using
ordinary graphical models, such as Markov networks, Bayesian networks, and
Gaussian graphical models, the type of dependencies that can be modeled is
limited to marginal and conditional (in)dependencies. The models introduced
in this thesis enable the graphical representation of context-specific independen-
cies, i.e. conditional independencies that hold only in a subset of the outcome
space of the conditioning variables.

In the articles included in this thesis, we introduce several types of graphi-
cal models that can represent context-specific independencies. Models for both
discrete variables and continuous variables are considered. A wide range of
properties are examined for the introduced models, including identifiability,
robustness, scoring, and optimization. In one article, a predictive classifier
which utilizes context-specific independence models is introduced. This classi-
fier clearly demonstrates the potential benefits of the introduced models. The
purpose of the material included in the thesis prior to the articles is to provide
the basic theory needed to understand the articles.

Sammanfattning

Temat för den här avhandlingen är kontextspecifikt oberoende i grafiska mod-
eller. För en mängd stokastiska variabler gäller det i regel att variablerna är
beroende av varandra. Graden av beroende kan t.ex. mätas med kovariansen
mellan tv̊a variabler. Med hjälp av grafiska modeller är det möjligt att visualis-
era beroendestrukturen för ett system av stokastiska variabler. Med hjälp av
traditionella grafiska modeller s̊asom Markov nätverk, Bayesianska nätverk och
Gaussiska grafiska modeller är det möjligt att visualisera marginellt och betingat
(o)beroende. De modeller som introduceras i denna avhandling möjliggör en
grafisk representation av kontextspecifikt oberoende, d.v.s. betingat oberoende
som endast h̊aller i en delmängd av de betingande variablernas utfallsrum.

I artiklarna som inkluderats i denna avhandling introduceras flera typer
av grafiska modeller som kan representera kontextspecifika oberoende. B̊ade
diskreta och kontinuerliga system behandlas. För dessa modeller undersöks
m̊anga egenskaper inklusive identifierbarhet, stabilitet, modelljämförelse och
optimering. I en artikel introduceras en prediktiv klassificerare som utnyttjar
kontextspecifikt oberoende i grafiska modeller. Denna klassificerare visar tydligt
hur användningen av kontextspecifika oberoende kan leda till förbättrade resul-
tat i praktiska tillämpningar. Målet med materialet som presenteras i avhan-
dlingen utöver artiklarna är att ge de grundkunskaper som behövs för att först̊a
inneh̊allet i artiklarna.
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1 Introduction

The main theme of this thesis is graphical models, and more specifically the
inclusion of context-specific independence in graphical models. While the main
results are presented in the included articles, Sections 2 - 6 are meant to provide
an introduction for the novice reader. While the theory presented here is far
from exhaustive, it will hopefully help the reader gain an insight into what is
achieved in this thesis, and provide some references to a more comprehensive
review of the key material. To start with, we give an introduction to some of
the fields pertaining to the thesis, and to the contributions made to these fields.

The study of graphical models has flourished in the last three decades with
the classic works of Darroch et al. (1980) and Lauritzen & Wermuth (1989)
paving the way. Due to their versatility, graphical models are used in a wide
range of applications. Traditional graphical models are, however, limited to
expressing only marginal and conditional (in)dependencies. This has prompted
the introduction of several new types of models that allow for more diverse de-
pendence structures, see for instance Corander (2003b), Eriksen (1999), Eriksen
(2005), Højsgaard (2003), Højsgaard (2004), Boutilier et al. (1996), or Koller &
Friedman (2009). The problem with many of the proposed ideas is that they
lack a simple graphical representation, one of the key features of graphical mod-
els. The models introduced in this thesis expand the set of available dependence
structures while retaining this feature.

While Gaussian graphical models constitute an important tool when per-
forming analysis on multivariate continuous systems (Atay-Kayis & Massam,
2005; Dempster, 1972; Giudici & Green, 1999; Lauritzen, 1996; Whittaker, 1990)
they are, in addition to the limitations inherited from traditional discrete graph-
ical models, also limited by the restrictions imposed by the multivariate Gaus-
sian distribution. Compared to discrete graphical models, far less attention has
been devoted to generalizing Gaussian graphical models. Introducing the ability
to model context-specific independencies in Gaussian graphical models results
in a class of models with fewer limitations and a more diverse set of available
dependence structures.

Supervised classification is one of the most common tasks considered in ma-
chine learning and statistics (Bishop, 2007; Duda et al., 2000; Hastie et al.,
2009; Ripley, 1996). A widely used classifier, entitled the naive Bayes classifier,
assumes that the features used to perform the classification are conditionally
independent of each other given the class labels. This assumption, while re-
sulting in a simple classifier with many favorable properties, can in some cases
be an oversimplification. On the other hand, assuming that all features are
conditionally dependent results in a classifier that is impossible to train using
a reasonable size of test data observations. Using graphical models to deter-
mine the dependence structure among the features offers an improvement to
the naive Bayes classifier as it, in essence, filters out the most important pa-
rameters in a joint probability distribution. Using graphical models that can
represent context-specific independencies can further be used to improve the
classification accuracy.

Before the five articles included in the thesis are presented, some basic the-
ory concerning the material included in the articles is covered. In Section 2,
graphical models, both for the discrete and continuous setting, are discussed.
Section 3 reviews the concept of context-specific independence and how it is
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possible to incorporate such independencies in graphical models. Section 4 pro-
vides a short introduction to Markov chains and Markov chain Monte Carlo
methods. In Section 5 we consider the problem of classification. All of these
sections include examples in an attempt to facilitate the learning process. The
last section is a summary of the articles included in the thesis.
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2 Graphical models

2.1 Markov networks and Bayesian networks

Graphical models utilize graphs to visualize the dependence structure found in
a probability distribution over a set of stochastic variables. The graphs can be
directed or undirected with the difference being that directed graphs can, in
some cases, capture causality (Koski & Noble, 2009, p. 256) whereas undirected
graphs cannot. We will in this section present some basic ideas concerning
graphical models. For a more in-depth review of the theory concerning proba-
bilistic graphical models the reader is referred to Whittaker (1990), Lauritzen
(1996), Koski & Noble (2009), and Koller & Friedman (2009).

A graph, G = (∆, E), consists of a set of nodes denoted by ∆ and a set of
edges E. In an undirected graph the edges are defined by E ⊆ {∆ × ∆} and
{δ, γ} ∈ E ⇔ {γ, δ} ∈ E. In a directed graph the direction of the edges are of
significance, we therefore define the set of edges as E ⊆ (∆×∆) and (δ, γ) ∈ E
does not imply (γ, δ) ∈ E. A cycle in a directed graph is a sequence of nodes
(v1, v2, . . . , vn), such that v1 = vn and (vi, vi+1) ∈ E, for i = 1, 2, . . . , n − 1.
A directed graph containing no cycles is termed a directed acyclic graph. In a
graphical model each node δ ∈ ∆ is associated with a stochastic variable Xδ.
A graphical model consists of the pair (G,P∆), where P∆ is a joint distribution
over the variables X∆ such that P∆ fulfills a set of marginal and conditional
(in)dependencies induced by G. A graphical model where G is a directed acyclic
graph is called a Bayesian network, if G is undirected the model is called a
Markov network or Markov random field.

In an undirected graph two nodes γ and δ are said to be adjacent if {γ, δ} ∈
E, that is an edge exists between them. A path is a sequence of nodes such that
for each successive pair within the sequence the nodes are adjacent. A cycle
is a path that starts and ends with the same node. A chord in a cycle is an
edge between two non-consecutive nodes in the cycle. An undirected graph is
defined as chordal or decomposable if there exists no chordless cycle containing
four or more unique nodes (Koski & Noble, 2009). Two sets of nodes A and B
are said to be separated by a third set of nodes S if every path between a node
in A and a node in B contains at least one node in S. If there exists no path
between two sets of nodes A and B the two sets of variables XA and XB are
marginally independent, i.e. P (XA, XB) = P (XA)P (XB). Similarly, two sets
of random variables XA and XB are conditionally independent given a third set
of variables XS , P (XA, XB | XS) = P (XA | XS)P (XB | XS), if S separates A
and B in the undirected graph G.

Interpreting conditional (in)dependencies for directed graphs is slightly more
challenging and a method known as d-separation is used. A path in a directed
graph is defined in the same way as for an undirected graph with two nodes,
δ and γ, being defined as adjacent if (δ, γ) ∈ E or (γ, δ) ∈ E. Just as for
undirected graphs, two sets of variables XA and XB are marginally independent
if there exists no path between the nodes in A and the nodes in B. A node in a
path is categorized as a chain, fork or collider node as demonstrated in Figure
1. To determine whether or not two variables, Xδ and Xγ , are conditionally
dependent given a set of variables, XS , it is common to utilize the so called
“Bayes-ball”. If it is possible to pass “the ball” on a path from δ to γ then Xδ

and Xγ are dependent, if not δ and γ are d-separated and Xδ ⊥ Xγ |XS . When

3



Figure 1: Bayes-ball rules illustrate how information passes through different
types of connections in a directed graph.

considering d-separation chain nodes and fork nodes behave the same way, if
the node belongs to S the path is blocked and the ball cannot move through, if
the node does not belong to S the ball can pass through the node. A collider
node is the complete opposite, if it belongs to S the ball may pass through and
if it does not belong to S the path is blocked.

We conclude this section with a simple but classic example. Consider a lawn
equipped with an automatic sprinkler system. This lawn may be either wet or
dry, depending on if the sprinkler system is active and if it is raining. From this
scenario we can create a model consisting of three variables. The variable Lawn,
denoted by L, indicating whether or not the lawn is wet. The variable Sprinkler,
denoted by S, indicating whether or not the sprinkler system is active. And the
variable Rain, denoted by R, indicating whether or not it is raining. The graph
best suited to represent this system is the directed graph found in Figure 2a. As
the sprinkler system is totally automatic its status is completely independent
of whether it is raining or not. However, if we know whether or not the lawn
is wet knowing if the sprinklers are on or off will affect our confidence towards
whether or not it is raining.

Figure 2: Graphs used for modeling the lawn example.

Another, more plausible scenario, is that the sprinkler system is not fully
automatic. Given that it has been raining all day someone may decide that
turning on the sprinkler system is somewhat redundant. In this case whether or
not it is raining will have a direct effect on the sprinklers being turned on and a
more accurate directed graph to model the scenario would be the one found in
Figure 2b. This graph induces no conditional (in)dependencies and is therefore
equivalent to the undirected graph in Figure 2c.
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2.2 Gaussian graphical models

A Gaussian graphical model, just like a Markov network, consists of a pair
(G,P∆), where G is an undirected graph and P∆ is a probability distribution
satisfying the marginal and conditional independencies induced by G. The
difference being that X∆ is a set of continuous variables and P∆ is a multivariate
Gaussian distribution. The parameters of a multivariate Gaussian distribution
are the covariance matrix Σ and the mean vector µ. The density function can
be written as

fµ,Σ(x) = (2π)−d/2|K|1/2e−1/2(x−µ)TK(x−µ),

where K = Σ−1 is called the precision matrix and d is the number of variables
included in X∆.

Figure 3: Dependence structure of the four variables used in the Gaussian graph-
ical model example.

Marginal and conditional independencies can readily be seen from, and im-
posed on, a multivariate Gaussian distribution. Consider a system including
four variables with the dependence structure determined by the graph in Figure
3. We have a situation where X4 is marginally independent of all of the other
variables and X2 and X3 are conditionally independent given X1. Marginal
independencies are seen as zeros in the covariance matrix, if Xδ and Xγ are
marginally independent than the corresponding covariance σδγ = 0. For our
example this means that σ14 = σ24 = σ34 = 0. Similarly, conditional inde-
pendencies lead to zeros in the precision matrix, i.e. in our case k23 = 0. A
covariance matrix satisfying the restrictions induced by the graph in Figure 3
would therefore follow the design

Σ =


σ11 σ12 σ13 0
σ12 σ22 σ23 0
σ13 σ23 σ33 0
0 0 0 σ44

 , K =


k11 k12 k13 0
k12 k22 0 0
k13 0 k33 0
0 0 0 k44

 .
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3 Context-specific independence

Context-specific models have evolved independently in the statistical literature
and machine learning community. Here we give a short review of the basic the-
ory presented in Nyman et al. (2014a,b,c) and Pensar et al. (2014). For a more
in-depth review of the statistical literature the reader is referred to Corander
(2003b), Eriksen (1999, 2005), and Højsgaard (2003, 2004). For the develop-
ment of context-dependent Bayesian networks found in the machine learning
literature see Boutilier et al. (1996), Friedman & Goldszmidt (1996), and Koller
& Friedman (2009).

If Xδ is conditionally independent of Xγ given XS it holds for any outcome
of XS that

P (Xδ, Xγ | XS) = P (Xδ | XS)P (Xγ | XS).

A context-specific independence is a conditional independence that holds only
in a subset of the outcome space of the conditioning variables. For instance we
might have that

P (Xδ, Xγ | XS = 0) 6= P (Xδ | XS = 0)P (Xγ | XS = 0),

P (Xδ, Xγ | XS = 1) = P (Xδ | XS = 1)P (Xγ | XS = 1).

In this case Xδ and Xγ are conditionally independent given XS = 1 which
can be denoted as Xδ ⊥ Xγ |XS = 1. Using directed and undirected graphs
it is possible to visualize marginal and conditional (in)dependencies. However,
these models cannot display context-specific independencies. This acts as the
incentive for creating a new class of context-specific graphical models.

For undirected graphs the conditioning variables in a context-specific in-
dependence statement of Xδ and Xγ are the variables corresponding to the
nodes adjacent to both δ and γ (Nyman et al., 2014c). These nodes are
denoted by L{δ,γ}. A context-specific independence may then be written as
Xδ ⊥ Xγ |XL{δ,γ} = xL{δ,γ} , for some specific value xL{δ,γ} .

For directed graphs the parents of a node γ are defined as the set of nodes
Πγ , such that for each node δ ∈ Πγ it holds that (δ, γ) ∈ E (Pensar et al., 2014).
A context-specific independence may now occur between a variable Xγ and a
variable in XΠγ , say Xδ. The conditioning variables consist of the set XΠγ\δ,
resulting in a context-specific independence of the form Xδ ⊥ Xγ |XΠγ\δ =
xΠγ\δ, for some specific value xΠγ\δ.

A context-specific independence is displayed in a graph by adding a label to
an edge, detailing for which outcomes the context-specific independence holds.
In order to further demonstrate the use of context-specific graphical models we
return to the example concerning the wet lawn.

Figure 4: Context-specific graphs modeling the lawn example.
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Initially, we again assume that the sprinkler system is fully automated, re-
calling that the “optimal model” in this scenario is the directed graph in Figure
2a. However, now we are also equipped to consider the occurrence of context-
specific independencies. Given that it is raining the lawn is highly likely to be
wet independent of whether or not the sprinkler system is active, and similarly
if the sprinklers are active the lawn is likely to be wet independent of whether
or not it is raining. If we use XR = 1 to denote that it is raining and XS = 1 to
denote that the sprinklers are active we get the context-specific independencies
XL ⊥ XS |XR = 1 and XL ⊥ XR|XS = 1. Using the graph in Figure 4a we can
incorporate these context-specific independencies in the graphical model.

Considering the scenario where the sprinkler system is only semi-automatic
a third context-specific independence becomes plausible. Given that the lawn
is dry (XL = 0) it is unlikely that is raining or that the sprinklers are active,
meaning that XR ⊥ XS |XL = 0. Using directed graphs these three context-
specific independences cannot be simultaneously represented and the graph in
Figure 4b could be used instead. Using an undirected graph all the context-
specific independencies can be displayed, as shown by the graph in Figure 4c.

Context-specific independencies can also be defined for continuous systems
as shown in Nyman et al. (2014b). In this case, context-specific independencies
are defined to hold not for a specific value but rather in an interval. We might,
for instance, have the case that Xδ ⊥ Xγ |Xω ∈ (0,∞).
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4 Using Markov chain Monte Carlo methods to
perform model optimization

4.1 Markov chains

In this section we will review the basic theory of Markov chains required for un-
derstanding Markov chain Monte Carlo methods. For a more in-depth analysis
of the subject the reader is referred to, for instance, Norris (1998). A Markov
chain is a sequence of stochastic variables X = X0, X1, X2, . . ., such that each
variable assumes its value from the state space E, and

P (Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X0 = i0) =

P (Xn+1 = in+1|Xn = in),

for all n = 1, 2, . . . and i0, i1, . . . , in+1 ∈ E. We will only consider cases where
the state space E is discrete, resulting in a discrete time Markov chain on a
discrete state space. If it holds for all n and states i, j ∈ E that

P (X1 = j|X0 = i) = P (Xn+1 = j|Xn = i) = Pij

the Markov chain is said to be time homogeneous or stationary. Pij is called
the transition probability from state i to j. The transition probabilities satisfy
the requirement ∑

j∈E
Pij = 1,

for all i ∈ E. The matrix P with the elements Pij , i, j ∈ E, is called the tran-
sition probability matrix and is said to be a stochastic matrix as each element
is larger than or equal to zero and the sum of each row equals one. A time ho-
mogeneous Markov chain is completely determined by its transition probability
matrix and its initial distribution, which determines the probabilities P (X0 = i),
for i ∈ E. Given P the probability P (Xm = j|X0 = i) can be calculated as
(Pm)ij .

A state j is said to be accessible from state i if there exists an integer n such
that P (Xn = j|X0 = i) > 0. A Markov chain is termed as irreducible given
that any state is accessible from any other state. If from some state i no other
states are accessible, i.e. P (X1 = i|X0 = i) = 1, i is said to be an absorbing
state. It follows directly from the definitions that no Markov chain containing
an absorbing state can be irreducible. A state i is termed aperiodic if there
exists an integer m such that P (Xn = i|X0 = i) > 0 for all integers n ≥ m.
A Markov chain is aperiodic if each state is aperiodic. A time homogeneous
Markov chain is reversible if there exists a distribution λ over the state space
such that λiPij = λjPji, for all i, j ∈ E.

A stationary distribution of a Markov chain is a row vector π such that π =
πP . For an irreducible and aperiodic Markov chain the stationary distribution
is unique. Given that the initial distribution equals the stationary distribution
the following property holds

P (X0 = i) = P (Xm = i) = πi, for every m and i ∈ E.

Given that the Markov chain is irreducible and aperiodic, even if the initial
distribution does not equal π, it holds that P (Xm = i) → πi as m → ∞. This
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is due to the fact that for the described Markov chain each row of Pm tends to
π as m tends to infinity, meaning that P (Xm = i|X0 = j)→ πi for all j ∈ E as
m→∞.

A wide range of interesting real life problems can be modeled using Markov
chains. The example that we shall consider next is an example of the so called
“Gambler’s ruin” problem. In a game you are given three dice, if you roll at
least one six you win one euro, if not you lose one euro. The probability with
which you lose one euro is q = (5/6)3 ≈ 0.58 and the probability with which
you win one euro is p = 1 − q ≈ 0.42. A man has three euros and decides to
play the game until he has doubled his money or until he is broke.

In order to calculate the probability the man has of obtaining six euros we
use a Markov chain to model the problem. The state space is chosen to be
E = {0, 1, 2, 3, 4, 5, 6}, i.e. the amount of euros that the man might have at one
point. As he initially has three euros the initial distribution is (0, 0, 0, 1, 0, 0, 0).
The transition probability matrix is

P =



1 0 0 0 0 0 0
q 0 p 0 0 0 0
0 q 0 p 0 0 0
0 0 q 0 p 0 0
0 0 0 q 0 p 0
0 0 0 0 q 0 p
0 0 0 0 0 0 1


.

From P we can see that states 0 and 6 are absorbing states. This is a logi-
cal result as these states translate to the man being broke or satisfied with his
winnings and stops playing, respectively. The existence of the absorbing states
means that the Markov chain is not irreducible. The Markov chain is not aperi-
odic either as for all non-absorbing states it holds that a return to the starting
state can only occur after an even number of steps. The chain is, however,
reversible. This can be seen by setting λ = (a, 0, 0, 0, 0, 0, b), with a+ b = 1.

To solve the given problem we start by defining N = min{n : Xn =
0 or Xn = 6} and ωi = P (XN = 6|X0 = i). We are interested in finding
ω3 = P (XN = 6|X0 = 3). Given the rules of the game we can deduce that
ω0 = 0, ω6 = 1, and if 1 ≤ i ≤ 5 then ωi = qωi−1 + pωi+1. By solving the
resulting equation system we get that

ω3 =
p3 − 3p4q + 2p5q2

1− 6pq + 11p2q2 − 6p3q3
= 0.27840 . . .

Clearly, equation systems of this kind lead to rather arduous solutions even
for small and simple problems like this one. Fortunately, Markov chains are
often easy to model in a computer, using multiple simulations of a problem an
approximation of the sought after probability, or other property, can often be
found.

4.2 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are mainly used for two types of
problems (MacKay, 2003). Firstly, to draw samples from a probability distri-
bution where direct sampling is not possible but the density function can easily
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be evaluated at any point. And secondly, to estimate expectations of functions
under such a distribution.

One commonly used MCMC method is the Metropolis-Hastings method.
By f(x) we denote the density function of the distribution from which we wish
to draw a random sample. To start with, a random number x0, for which
f(x0) > 0, is selected as the starting state for a Markov chain. At time t+ 1 a
candidate state x∗ is generated using a proposal mechanism, Q(x∗|xt) denotes
the probability (or density) with which x∗ is selected as the candidate state
given that xt is the current state. With probability

min

(
1,

f(x∗)Q(xt | x∗)
f(xt)Q(x∗ | xt)

)
(1)

x∗ is accepted as the next state and we set xt+1 = x∗, otherwise we set xt+1 = xt.
As an example we consider the problem where we want to draw a sample

from the standardized normal distribution. The starting state is set to x0 = 0
and the proposal mechanism used is defined by x∗ = xt + y, where y is drawn
randomly from the uniform distribution with endpoints −2 and 2. This might,
for instance, result in x∗ = 0.42 which would be accepted with the probability

min

(
1,

f(x∗)Q(x0 | x∗)
f(x0)Q(x∗ | x0)

)
=
f(0.42)

f(0)
≈ 0.916.

In other words, it is highly likely that the candidate state would be accepted
resulting in x1 = 0.42. Continuing the Markov chain in this fashion might
result in the vector (0, 0.42, 0.42, −0.15, −0.95, . . .). Although consecutive
elements in this vector are not independent of each other selecting, for instance,
every 20:th element will result in a sample that is effectively drawn from the
standardized normal distribution. This is due to the fact that the stationary
distribution of the considered reversible Markov chain equals f(x). This can
be visualized by considering a histogram plotted alongside f(x) as is done in
Figure 5. Figure 5a-d shows the histogram resulting from 100, 1000, 10000, and
1000000 samples, respectively.

Figure 5: Histogram resulting from considering every 20:th element generated
by the Metropolis-Hastings method plotted alongside f(x).
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The use of MCMC methods becomes interesting when studying graphical
models and you want to find the optimal model given a dataset X. To be able
to do this a score function, like the one found in for instance Nyman et al.
(2014c), for a given graph is required. The score function usually contains the
probability P (X|G) where G is a graph in the considered model space G. The
optimal graph is the graph that optimizes the posterior probability

P (G | X) =
P (X | G) P (G)∑
G∈G P (X | G) P (G)

,

where P (G) is a prior distribution over G. If every aspect of the posterior dis-
tribution were known, it would be possible to immediately identify the optimal
model, unfortunately, even the seemingly simple task of direct sampling from
this distribution is intractable. Therefore, the use of an MCMC method be-
comes a viable option as the density function can be evaluated as f(G) = P (G |
X) ∝ P (X | G) P (G).

Corander et al. (2006) and later Corander et al. (2008) showed that the
process of learning the optimal graph can be made more effective by removing
the factor concerning Q in the acceptance probability (1), resulting in a new
acceptance probability

min

(
1,

f(x∗)

f(xt)

)
.

Unfortunately, this leads to the Markov chain being non-reversible, and con-
sequently, the stationary distribution not equaling the posterior distribution
P (G | X). However, if the focus of the problem lies in finding the model opti-
mizing the posterior distribution this is not a fatal flaw. In addition, Corander
et al. (2008) proved, under rather weak conditions, that the posterior probability
of a graph can be consistently estimated using

P̂t(G | X) =
P (X | G)P (G)∑

G′∈Gt P (X | G′)P (G′)
,

where Gt is the set of graphs that has been visited by the Markov chain at time
t.

11



5 Classification

Classifying an element based on a set of observable features (variables) as be-
longing to a specific class among a set of predetermined classes, known as su-
pervised classification, is one of the most common tasks considered in machine
learning and statistics (Bishop, 2007; Duda et al., 2000; Hastie et al., 2009; Rip-
ley, 1996). As a result, there exists a wide range of different classifiers. In this
section we will consider the difference between two classifiers, the naive Bayes
classifier which assumes that the features are independent given the class label
and a classifier which models the dependence structure of the features using a
graphical model (Nyman et al., 2014d).

An example of a classification problem, considered in Nyman et al. (2014d),
is that given the answers that a candidate in the Finnish parliament elections
of 2011 gave in a questionnaire, decide which party the candidate belongs to.
A widely used method is the naive Bayes classifier which assumes that all the
answers to the questions given by a candidate are independent of each other
given that the candidate’s party is known. This leads to a simple model that
is easy to work with and time-efficient. While the naive Bayes classifier has
been shown to work well in practice, in some cases it can be oversimplified.
For instance, a candidates opinion on gun control issues may correlate with his
opinion on government spending, a correlation that the naive Bayes model does
not take into account. In such a case using a graphical model to determine
the dependence structure among the features for each class may increase the
prediction accuracy.

Again, to illuminate the problem of classification we turn to the example
with the variables rain (R) and sprinkler system (S). Given the outcomes of
these two variables the problem is to determine the probability that the sprinkler
system is fully automated, with the alternative being that the system is semi-
automated. The notation R = 0 means that it is not raining and R = 1 that it
is raining, similarly S = 0 means that the sprinklers are not active and S = 1
that they are active. For the new variable A we have that A = 0 means that
the system is semi-automated and A = 1 that it is fully automated.

In a classification problem, we have two sets of data, the training data and
the test data. For the test data we know which class each observation belongs to,
in our case whether A = 0 or A = 1. Using the training data, the parameters
used in the selected model are tuned, for the sake of simplicity we use the
maximum likelihood estimate of the parameters. For the test data the value of
A is unknown. We generate data using the conditional distributions

P (R = 1) = 0.5,

P (A = 1) = 0.5,

P (S = 1|R = 1, A = 0) = 0.2,

P (S = 1|R = 0, A = 0) = 0.5,

P (S = 1|R = 0, A = 1) = 0.5,

P (S = 1|R = 1, A = 1) = 0.5,

resulting in the joint distribution listed in Table 1.
Using the naive Bayes classifier it is assumed that R ⊥ S|A, however, using

a graphical model to determine the dependence structure we can have the more
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R S A P (R,S,A) R S A P (R,S,A)
0 0 0 0.125 1 0 0 0.2
0 0 1 0.125 1 0 1 0.125
0 1 0 0.125 1 1 0 0.05
0 1 1 0.125 1 1 1 0.125

Table 1: Joint distribution used in the classification example.

accurate representation R ⊥ S|A = 1 and R 6⊥ S|A = 0. Given the training data
we can approximate the distribution in Table 1, for sake of simplicity we assume
that the size of the training data is extremely large and that the distribution can
be perfectly recreated. Classification of the observations in the training data
can be performed by calculating

P (A = a|R = r, S = s) =
P (A = a,R = r, S = s)

P (R = r, S = s)

=
P (R = r, S = s|A = a)P (A = a)∑
a′ P (R = r, S = s|A = a′)P (A = a′)

.

Using the naive Bayes method

P (R = r, S = s|A = a)

is calculated as
P (R = r|A = a) P (S = s|A = a).

Using the graphical model we consider the joint distribution of R and S given
A = 0. The two methods lead to small differences in the probabilities with
which an observation is assigned to the two classes, as shown in Table 2. Using

R S P (A = 1|R,S) - NB P (A = 1|R,S) - GM
0 0 0.4348 0.5
0 1 0.5882 0.5
1 0 0.4348 0.3846
1 1 0.5882 0.7142

Table 2: Probabilities with which A = 1 given R and S according to the naive
Bayes classifier (NB) and the graphical model classifier (GM).

these probabilities when assigning an observation in the test data to a class
results in the naive Bayes classifier having a success rate of 51.2% compared to
52.6% for the graphical model classifier.
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6 Summaries and discussion of Articles I-V

6.1 Article I: Stratified graphical models - context-specific
independence in graphical models

The original manuscript written about stratified graphical models included
much of what would later become Article I and Article III. The decision to
split the material into two separate articles was made at the realization that
the subject was simply too extensive to consider in a single article. Article II
was conceived at roughly the same time as Article I with the difference being
that Article I focuses on context-specific independence in undirected graphs and
Article II on context-specific independence in directed acyclic graphs.

The ideas presented in Articles I-III are based on the work done in Corander
(2003b). In that article labeled graphical models, which allow for the graphi-
cal representation of context-specific independencies, are introduced. Article I
introduces the concept of stratified graphical models, which also allow for the
graphical representation of context-specific independencies. Different proper-
ties are investigated for stratified graphical models and the term decomposable
stratified graph is introduced. Decomposable stratified graphs are subject to
fairly strong restriction with one of the advantages being that the induced de-
pendence structure between the variables is easy to interpret. However, the
main reason for introducing decomposable stratified graphs is that for these
graphs the marginal likelihood of a dataset can be analytically calculated. The
main contribution of this article is the introduction of a formula, based on sim-
ilar works in Cooper & Herskovits (1992), Friedman & Goldszmidt (1996) and
Chickering et al. (1997), for calculating the marginal likelihood of a dataset
given a decomposable stratified graph.

A non-reversible MCMC approach (Corander et al., 2008, 2006) is used to
identify the optimal decomposable stratified graph given a dataset. In this
search a non-uniform prior is applied over the model space to penalize dense
graphs as such graphs have the advantage of a wider range of parameter restric-
tion compared to sparse graphs. The introduced theory is applied to a range
of synthetic and real datasets with the result showing that context-specific in-
dependencies occur naturally in data. Using the examples, further experiments
are conducted to deduce the robustness of the inferred models. As one could
expect, as the model space grows much more quickly for stratified graphs than
for ordinary undirected graphs, results show that model inference is more chal-
lenging for stratified graphs and larger datasets are required in order to obtain
reliable results.

6.2 Article II: Labeled directed acyclic graphs: a gener-
alization of context-specific independence in directed
graphical models

This article introduces context-specific independencies to directed acyclic graphs
using labeled directed acyclic graphs. Although some features are the same for
stratified graphical models and labeled directed acyclic graphs, the dependence
structures that can be represented vary somewhat, just as is the case for Markov
networks and Bayesian networks. One such difference is that the set of condi-
tioning variables used in a context-specific independence statement are defined
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differently for the two model classes.
A formula, very similar to the one used in Article I, is introduced to calcu-

late the marginal likelihood of a dataset given a labeled directed acyclic graph.
Model optimization is performed to identify the optimal dependence structure
for a dataset. The optimization process utilizes a non-reversible MCMC method
(Corander et al., 2008, 2006) combined with a greedy hill climbing method, see
for instance Heckerman et al. (1995). The non-reversible MCMC method uses a
Markov chain with the state space constituted by the set of all directed acyclic
graphs. Given a directed acyclic graph the greedy hill climbing method is used
to identify the optimal set of context-specific independencies applicable to that
graph.

The problem of model identifiability is considered in the article. This prob-
lem concerns labeled directed acyclic graphs that have different appearances
while inducing identical parameter restrictions. Of course, model identifiability
is also an issue with ordinary directed graphs as we recall that chain nodes and
fork nodes are identical in terms of the marginal and conditional dependencies
that they induce. One reason why model identifiability is important is that
when performing model inference two graphs that might have significant dif-
ferences in appearance may result in equal marginal likelihoods due to the fact
that their induced dependence structures are identical.

The article also introduces a novel non-uniform prior over the model space.
Just like the prior used in Article I, this prior penalizes excessive use of labels,
encouraging the optimization process to express the dependence structure pri-
marily using the graph and secondarily using labels. To deduce the effect of the
prior distribution experiments are performed under priors of varying strength
for a range of sample sizes.

6.3 Article III: Context-specific independence in graphi-
cal log-linear models

As previously mentioned this article and Article I were at first intended to be
part of the same manuscript as they cover roughly the same subject, stratified
graphical models. The article starts by covering the basic properties of stratified
graphical models that were introduced in Article I. However, as the name of the
article suggests, the emphasis is then moved to graphical log-linear models (Lau-
ritzen, 1996; Whittaker, 1990) and the restrictions imposed by context-specific
independencies to the log-linear parameterization. A number of theorems con-
cerning the properties of stratified graphs and the log-linear parameterization
is presented. Perhaps the most interesting of these theorems shows that some
stratified graphs induce non-hierarchical models, a class of models that Whit-
taker (1990) deemed as “. . . not necessarily uninteresting; it is just that the
focus of interest is something other than independence”.

In Article I, we introduced decomposable stratified graphs to enable the
calculation of the marginal likelihood of a dataset. Here we use an alternative
method for model scoring, the Bayesian information criterion (Schwarz, 1978).
This score function requires that the maximum likelihood estimate of the model
parameters can be calculated given any model in the model space. A method
is used where the maximum likelihood estimate, attained without imposing any
restrictions, is cyclically projected to fulfill one parameter restriction at a time
until the process converges. Using this method it is shown that the desired
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probability distribution can be attained while removing most of the restrictions
imposed by decomposable stratified graphs. The method of cyclical projection
is based on the general works of Csiszár (1975) and Csiszár & Matús̆ (2003), and
Corander (2003a) and Rudas (1998) who used the same method for non-chordal
undirected graphs.

Model optimization, using the Bayesian information criterion to approxi-
mate the marginal likelihood, is performed on some of the same datasets as in
Article I. While the results are similar it is clear that removing the restrictions
introduced for decomposable stratified graphs further increases the model space
and differences between the inferred models do exist.

6.4 Article IV: Stratified Gaussian graphical models

The aim of this article is to translate stratified graphical models to the continu-
ous setting, creating a new model class termed as stratified Gaussian graphical
models. The obvious approach is to apply context-specific independencies to
Gaussian graphical models, which constitute the preferred class of models when
analyzing continuous multivariate systems, see for instance Dempster (1972),
Giudici & Green (1999), and Atay-Kayis & Massam (2005). This is a novel ap-
proach as context-specific independencies have previously not been considered
for Gaussian graphical models.

The article begins by reviewing the basic concepts of Gaussian graphical
models and discrete stratified graphical models. Next, context-specific indepen-
dencies are introduced for continuous variables. While most of the properties
found for stratified graphical models are also valid in the continuous setting, due
to the restrictive nature of the multivariate Gaussian distribution some features
are a bit more complicated to deal with. One such feature concerns interpret-
ing the dependence structure in the presence of multiple context-specific inde-
pendencies. The introduced algorithm used for this purpose involves imposing
the restrictions of a decomposable stratified graph, transforming all included
context-specific independencies to the discrete setting, where the dependence
structure can be readily determined, and then transforming back to the con-
tinuous setting. The result is a partitioning of the joint outcome space of the
included variables, such that each part is associated with its own dependence
structure in the form of an undirected graph.

Given that the dependence structure induced by the inclusion of context-
specific independencies can be readily determined, a family of probability den-
sity functions, using the same parameters as a multivariate Gaussian distribu-
tion, can be found for each continuous stratified graph. It is proved in the article
that the density functions belong to the curved exponential family. This is of
relevance as Haughton (1988) showed that for density functions belonging to
the curved exponential family model selection using the Bayesian information
criterion (Schwarz, 1978) produces consistent results.

One of the datasets considered in the article contains the marks received
by students in different areas of mathematics. The dataset has been analyzed
by numerous different sources (Edwards, 2000; Mardia et al., 1979; Whittaker,
1990) with the general consensus regarding the marginal and conditional de-
pendencies matching the ones identified in this article. However, using the
introduced theory of stratified Gaussian graphical models, evidence supporting
the inclusion of a context-specific independence between two of the variables is

16



discovered.

6.5 Article V: Marginal and simultaneous classification
using stratified graphical models

The concept of this article is to use the theory from Article I to construct a
predictive classifier. The considered classifier is a supervised classifier as it is
assumed that the total number of classes is known before any data is regarded.
As the posterior distribution of the class labels is attained via first modeling the
joint distribution of the class labels and variables conditional on the training
data, rather than directly modeling the posterior distribution of the class labels,
the classifier is termed a generative classifier.

When creating the classifier we operate under the assumption that the de-
pendence structure among the variables varies from class to class, contrary to
the dependence structure being identical for each class or the variables being
independent given the class label. In some cases, it is possible that the different
dependence structures are known beforehand, but a more realistic scenario is
that the dependence structure needs to be learned using the available training
data. The question, whether or not it is better to consider the variables depen-
dent of each other or not, has received substantial attention over the years. For
instance, Friedman et al. (1997) concluded that modeling the dependence struc-
ture using Bayesian networks did not improve the performance of the classifier
compared to naive Bayes classifiers which considers the variables as indepen-
dent of each other. However, Madden (2009) later concluded that the results
by Friedman et al. (1997) where due to use of maximum likelihood estimation
of the parameters and that smoothing the estimated parameters with a prior
could in some cases result in a greatly improved classification accuracy.

Two separate types of classifiers are considered, a marginal classifier and
a simultaneous classifier (Corander et al., 2013). For the marginal classifier,
all observations in the test data are treated separately, i.e. assigned to a class
independently of the other observations in the test data. For the simultaneous
classifier, all observations in the test data are considered simultaneously, mean-
ing that assigning one observation to a certain class will affect the probability
of assigning any other observation to that class.

Simultaneous and marginal classifiers are implemented using both ordinary
undirected graphs and decomposable stratified graphs to encode the dependence
structure. Experiments using synthetic data show the vast potential that the
considered classifiers have of improving classification accuracy compared to,
for instance, the naive Bayes classifier. Experiments on real datasets confirm
that the introduced classifiers clearly outperform the out-of-the-box classifiers
to which they are compared.
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