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Abstract 

Macroalgae are the main primary producers of the temperate rocky shores 
providing a three-dimensional habitat, food and nursery grounds for many 
other species. During the past decades, the state of the coastal waters has 
deteriorated due to increasing human pressures, resulting in dramatic changes 
in coastal ecosystems, including macroalgal communities.  

To reverse the deterioration of the European seas, the EU has adopted the 
Water Framework Directive (WFD) and the Marine Strategy Framework 
Directive (MSFD), aiming at improved status of the coastal waters and the 
marine environment. Further, the Habitats Directive (HD) calls for the 
protection of important habitats and species (many of which are marine) and 
the Maritime Spatial Planning Directive for sustainability in the use of 
resources and human activities at sea and by the coasts. To efficiently protect 
important marine habitats and communities, we need knowledge on their 
spatial distribution. Ecological knowledge is also needed to assess the status 
of the marine areas by involving biological indicators, as required by the 
WFD and the MSFD; knowledge on how biota changes with human-induced 
pressures is essential, but to reliably assess change, we need also to know 
how biotic communities vary over natural environmental gradients. This is 
especially important in sea areas such as the Baltic Sea, where the natural 
environmental gradients create substantial differences in biota between areas. 

In this thesis, I studied the variation occurring in macroalgal communities 
across the environmental gradients of the northern Baltic Sea, including 
eutrophication induced changes. The aim was to produce knowledge to 
support the reliable use of macroalgae as indicators of ecological status of the 
marine areas and to test practical metrics that could potentially be used in 
status assessments. Further, the aim was to develop a methodology for 
mapping the HD Annex I habitat reefs, using the best available data on 
geology and bathymetry.  

The results showed that the large-scale variation in the macroalgal 
community composition of the northern Baltic Sea is largely driven by 
salinity and exposure. Exposure is important also on smaller spatial scales, 
affecting species occurrence, community structure and depth penetration of 
algae. Consequently, the natural variability complicates the use of macroalgae 
as indicators of human-induced changes. Of the studied indicators, the 
number of perennial algal species, the perennial cover, the fraction of annual 
algae, and the lower limit of occurrence of red and brown perennial algae 
showed potential as usable indicators of ecological status. However, the 
cumulated cover of algae, commonly used as an indicator in the fully marine 



environments, showed low responses to eutrophication in the area. Although 
the mere occurrence of perennial algae did not show clear indicator potential, 
a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was 
found between two areas with differing eutrophication history, the Bothnian 
Sea and the Archipelago Sea. The absence of Fucus from many potential sites 
in the outer Archipelago Sea is likely due to its inability to recover from its 
disappearance from the area 30-40 years ago, highlighting the importance of 
past events in macroalgal occurrence.  

The methodology presented for mapping the potential distribution and the 
ecological value of reefs showed, that relatively high accuracy in mapping can 
be achieved by combining existing available data, and the maps produced 
serve as valuable background information for more detailed surveys. Taken 
together, the results of the theses contribute significantly to the knowledge 
on macroalgal communities of the northern Baltic Sea that can be directly 
applied in various management contexts. 

Keywords: macroalgae, reefs, eutrophication, indicator, management, Baltic 
Sea   



Sammanfattning 

Makroalger är de främsta primärproducenterna längs tempererade 
klippstränder och de formar tredimensionella habitat samt utgör föda och 
förökningsområden för många andra arter. Under de senaste decennierna har 
människan genom sina aktiviteter försämrat tillståndet i kustvattnen, vilket 
också resulterat i stora förändringar i ekosystemen och i makroalgsamhällena. 

För att vända utvecklingen av det allt försämrade tillståndet i de marina 
havsområdena i Europa, har EU utfärdat Vattenramdirektivet (WFD) och 
Ramdirektivet om en marin strategi (MSFD), vars målsättningar är att 
förbättra tillståndet i de kustnära vattnen och i den marina miljön. Utöver 
dessa avser Habitatsdirektivet (HD) att skydda habitat och arter (av vilka 
många är marina) och Direktivet för marin områdesplanering att uppnå 
hållbart nyttjande av resurser och mänskliga aktiviteter i havet och längs 
kusten. För att kunna skydda viktiga marina habitat och samhällen behöver vi 
kunskap om deras rumsliga utbredning. Ekologisk kunskap behövs också för 
att värdera tillståndet i de marina områdena med hjälp av biologiska 
indikatorer, vilket krävs i både WFD och i MSFD; kunskap om hur biotiska 
samhällen förändras på grund av människans framfart är viktig, men för att 
tillförlitligt kunna utvärdera förändringar, måste vi också veta hur samhällen 
påverkas av naturliga miljögradienter. Det här är speciellt viktigt i sådana 
marina områden som Östersjön, där naturliga miljögradienter orsakar stora 
variationer mellan olika områdena. 

I den här avhandlingen, studerade jag hur miljögradienter påverkar 
variationen i makroalgsamhällen i norra Östersjön, och hur övergödning kan 
kopplas till förändringarna.  Målsättningen var att få fram mera kunskap som 
stöder nyttjandet av makroalger som indikatorer av det ekologiska tillståndet i 
marina områden samt att utveckla och testa praktiska indikatorer som kunde 
användas i tillståndsutvärderingar. Målsättningen var ytterligare att utveckla 
metoder för att kartlägga undervattensrev, upptagna i HD Bilaga I, genom att 
använda bästa tillgängliga data om geologi och vattendjup. 

Resultaten visade att variationer i struktur hos makroalgsamhällen i stor skala 
i norra Östersjön, mest beror på salinitet och exponering. Exponering är 
viktig också i mindre rumsliga skalor, och påverkar algernas förekomst, 
samhällestruktur och djuputbredning. Den naturliga variationen komplicerar 
däremot användning av makroalger som indikatorer av antropogena 
förändringar. Av de indikatorer som testades, visade det sig att förekomsten 
av antalet fleråriga algarter, täckningsgrad av fleråriga alger, fraktion av 
ettåriga algarter och djuputbredningsgränsen av fleråriga röd- och brunalger 
har potential att användas som indikatorer av det ekologiska tillståndet. 



Däremot visade det sig att den kumulativa täckningsgraden av alger, som ofta 
används som indikator i helt marina miljöer, inte påverkades av eutrofiering i 
studieområdet. Trots att förekomsten av fleråriga alger inte påvisade tydlig 
potential som indikator, fanns en klar skillnad i förekomst av blåstång, Fucus 
vesiculosus, mellan två områden med olika eutrofieringsförlopp, Bottenhavet 
och Skärgårdshavet. Orsaken till att Fucus saknas på många potentiella ställen 
i yttre Skärgårdshavet kan bero på artens oförmåga att återhämta sig efter att 
den för 30-40 år sedan försvann från stora områden.  

Metoder som användes för att kartera den potentiella utbredningen 
och det ekologiska värdet av rev, visade att en relativt stor noggrannhet kan 
uppnås genom att kombinera tillgängliga existerande data. Producerade 
kartor kan användas som värdefull bakgrundsinformation för mera 
detaljerade undersökningar. Sammantaget bidrar avhandlingens resultat 
signifikant till kunskap om makroalgsamhällen in norra Östersjön som direkt 
kan tillämpas inom miljöförvaltningen. 

Nyckelord: makroalger, rev, eutrofiering, indikator, förvaltning, Östersjön 
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1. INTRODUCTION 

 

Coastal marine ecosystems host high biodiversity and comprise some of the 

most productive and valued ecosystems of the world (Constanza et al. 1997). 

Among important coastal ecosystems are marshes, mangroves, coral reefs, 

seagrass beds, and both inter-tidal and subtidal macroalgal communities, 

including kelp forests (Bertness et al. 2001). These ecosystems provide 

several essential ecosystem goods and services to human, such as storm 

buffering, nutrient cycling, food production and recreation (Constanza et al. 

1997).  

Despite the importance of coastal areas, both from the biodiversity 

conservation and ecosystem service perspective, the loss and degradation of 

coastal ecosystems has been fast, and the human pressures are ever 

increasing (Millenium Ecosystem Assessment, 2005). The human population 

is growing and is largely concentrated to the coastal areas, increasing direct 

uses of marine resources as well as different pollutants entering the marine 

system. The coastal zone is also a focus of transport, industrial development 

and tourism. According to Crain et al. (2009) the major human threats to the 

coastal marine ecosystems include habitat loss, overexploitation (fisheries), 

eutrophication and hypoxia, invasive species, altered sedimentation, 

pollution, climate change and ocean acidification, with the relative 

importance of each threat and their cumulative impact on the coastal 

ecosystems depending on the geographical region.   

Today, due to the multiple threats to the coastal ecosystems, multisector 

approaches, such as ecosystem-based management, including zoning of 

activities through spatial planning, are considered as the best approaches for 

protecting the coastal marine systems (Crain et al. 2009). However, in order 
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to fully apply ecosystem-based approach to management in the coastal areas, 

we need substantial knowledge on the coastal marine habitats, communities 

and species; on their spatial distribution, on their patterns of variation at 

different levels (from ecosystem level to genetic variation) and on their 

responses to different human pressures. 

This thesis aims at providing ecological knowledge on the distribution of 

the macroalgal communities of the northern Baltic Sea, their variation in 

community composition and structure across environmental gradients, and 

their responses to human-induced eutrophication - the kind of knowledge 

that is essential when moving towards the ecosystem-based management of 

the rocky coastal areas of the Baltic Sea. 

1.1. Macroalgae – a global perspective 

Macroalgae, also known as seaweeds, can be defined as multicellular algae 

forming a thallus, while microalgae are unicellular algae that form colonies 

(Snoeijs 1999). Macroalgae are found on rocky substrates and are distributed 

mainly across the temperate and polar oceans, but are also found in the 

tropics (Bolton 2010, Wulff et al. 2009). Macroalgae occur mainly in the 

inter-tidal and the shallow subtidal zones but have also been found in > 200 

m depth in the Bahamas (Littler et al. 1986).  

Macroalgae are the main primary producers of the rocky shores where 

they provide a three-dimensional habitat for a wide range of other species. 

The most conspicious algae are the kelps, large brown algae mainly of the 

order Laminariales that dominate the shallow rocky coasts of temperate 

oceans and form the largest biogenic structures found in the benthic marine 

systems (Dayton 1985, Steneck et al. 2002). The kelp forests and the 

associated biota represent some of the world’s most productive and dynamic 

ecosystems (Mann 1973). As habitat-forming species, or “ecosystem 
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engineers” macroalgae modify the environment (e.g. light, water flow, 

sediments) and resources available to other organisms (Bertness & Callaway 

1994). Due to their role as key components of coastal ecosystems, 

macroalgae are also important for humankind, providing several ecosystem 

services (Beaumont et al. 2008). These services include elevated secondary 

production, nutrient cycling, energy capture and flow, and coastal defense 

(storm protection, reduction of erosion) (Smale et al. 2013). Macroalgae also 

play a key role in maintenance of fish stocks, providing nursery grounds for 

many, also commercially exploited species (Tupper 2007, Smale et al. 2013). 

Furthermore, macroalgae are used in a variety of direct applications; as 

components of cosmetics, as food, as fertilizers in agriculture, or in industrial 

applications such as textiles, food and medicine (Smale et al. 2013).  

1.2. Factors affecting macroalgal distribution  

Temperate rocky intertidal communities have long been used as model 

systems in studying factors and ecological processes affecting biodiversity 

and community composition (Menge & Branch 2001), but less is known 

about the factors controlling rocky subtidal communities (Witman & Dayton 

2001). The intertidal rocky shores are characterized by distinct zonation of 

organisms (including macroalgae) that results from the interplay of both 

physical (Menge & Branch 2001) and biotic factors (Lubchenco 1980, Menge 

& Sutherland 1987, Taylor & Schiel 2010). Zonation is most conspicuous in 

the intertidal, but occurs also in the subtidal areas (Witman & Dayton 2001). 

Although herbivory by sea-urchins is an important factor shaping macroalgal 

communities in the shallow subtidal (Paine & Vadas 1969), the subtidal 

zonation is considered to be more closely linked to physical factors than to 

biotic interactions (Witman & Dayton 2001). The key factors in controlling 

subtidal zonation are often related to depth, for example, light availability and 
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sedimentation are important in determining the lower limits of distribution 

for many algal species. Also, slope of the shore, temperature, water flow 

(currents) and upwelling are among important environmental factors 

influencing shallow subtidal communities of the fully marine environments 

(Witman & Dayton 2001). 

In the non-tidal Baltic Sea macroalgae occur permanently submerged 

(Wærn 1952). Traditionally macroalgal communities of the northern Baltic 

Sea are considered to be shaped mainly by abiotic factors (Kautsky & van der 

Maarel 1990) but an increasing number of studies have shown that also biotic 

interactions play an important role in modifying algal communities (Engkvist 

et al. 2000, Lotze et al. 2001, Korpinen et al. 2007, Eriksson et al. 2009). On 

the Baltic Sea scale, the most important environmental factor affecting the 

biota is the salinity gradient resulting from the limited inflow of fully saline 

waters through the narrow Danish straits and the large inflow of fresh water 

to the Baltic Sea from over 200 rivers (Segerstråle 1969). Due to low salinity, 

also macroalgal diversity in the northern Baltic Sea is lower in comparison to 

more marine environments; while 247 species of macroalgae with upright 

thalli (> 1mm) occur in the Kattegat area (salinity ~ 25 psu), only 30 species 

are found in the Bothnian Bay (salinity ~ 3 psu) (Nielsen et al. 1995, Snoeijs 

1999).  

On a more regional scale, macroalgal communities of the Baltic Sea are 

strongly shaped by wave exposure that affects species occurrence, but also 

vertical zonation patterns of algal communities (Kautsky & van der Maarel 

1990, Kiirikki 1996, Ruuskanen & Bäck 2000, Isaeus 2004, Eriksson & 

Bergström 2005). Exposure to waves is also connected to the strength of ice-

scouring that influences species composition of the shallow areas by scraping 

off perennial algae and creating free space for annual algae (Kiirikki 1996). 

The vertical zonation of algae in the Baltic Sea is mainly related to light 
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availability that is strongly linked to depth and turbidity of the waters 

(Kiirikki 1996, Eriksson & Bergström 2005). Also, sedimentation influences 

species distribution; especially in the sheltered areas where sediments 

accumulate, macroalgal species composition and their depth penetration may 

be highly affected by sedimentation (Eriksson & Johansson 2005).  

1.3. Macroalgal communities in a changing environment 

During the recent decades, macroalgal communities have undergone 

dramatic changes due to increasing anthropogenic pressures on the coastal 

areas. One of the major threats to macroalgal communities is the 

anthropogenic eutrophication of the coastal and estuarine areas (Cloern 

2001, Smith 2003, Worm & Lotze 2006). The eutrophication of coastal 

waters has led to an increase in fast-growing algae (phytoplankton, 

microphytobenthos and ephemeral algae) at the expense of slower-growing 

perennial macroalgae (Duarte 1995), thus changing the structure of 

macroalgal communities. Another global threat to macroalgal communities is 

overgrazing by invertebrate herbivores that is often linked to human-induced 

changes, for example to the outbreaks of sea-urchins due to intense fisheries 

directed to top predators (Steneck et al. 2002). Also, excessive harvesting due 

to increasing demands for kelp for human consumption, alginate production, 

aquaculture feed, and (potentially) biofuel, pose threats to many macroalgal 

communities world-wide (Smale et al. 2013). Furthermore, climate change is 

expected to have a multitude of effects on macroalgal communities ranging 

from physiological effects (e.g. on growth, reproduction and survival) to 

ecosystem level responses, such as changes in distribution, primary 

productivity, diversity, and resilience (reviewed in Harley et al. 2012).  

In the Baltic Sea region, anthropogenic eutrophication is currently 

considered as one of the most severe threats to the marine ecosystem 
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(Carstensen et al. 2013, HELCOM 2014). By definition, eutrophication is 

nutrient (mainly nitrogen and phosphorus) over-enrichment of a water body 

that results for instance from land clearing, excessive application of 

fertilizers, discharges of human waste and combustion of fossil fuels (Cloern 

2001). The nutrient over-enrichment enhances primary production, leading 

further to decreased light availability and increased sedimentation that 

influence the flora and fauna of the sea in a variety of ways. In the Baltic Sea, 

primary production is estimated to have more than doubled since the 1920-

1940s (Elmgren 1989), and an associated increase in phytoplankton 

production and ephemeral macroalgae have had severe consequences on 

macroalgal communities. As increasing nutrient levels give competitive 

advantage to fast-growing annual algae (Worm et al. 1999, Berger et al. 2003, 

Råberg et al. 2005), in many areas the composition of macroalgal 

communities has changed towards communities dominated by annual algae 

(Kangas et al. 1982, Hällfors et al. 1984, Vogt & Schramm 1991). Also the 

indirect effects of eutrophication, increased turbidity leading to decreased 

light levels and increased sedimentation, have deteriorated the recruitment 

and living conditions for perennial macroalgae (Eriksson & Johansson 2003, 

2005), leading for instance to decreased depth penetration of species 

(Kautsky et al. 1986, Eriksson et al. 1998, Rönnberg & Mathiesen 1998). The 

nutrient enrichment has also been shown to improve the quality of algae as 

food for grazers (Hemmi & Jormalainen 2002), enhancing their fitness, and 

thus potentially leading to intensive grazing of perennial macroalgae (Kangas 

et al. 1982, Hällfors 1985, Engkvist et al. 2000). Recently, it has also been 

shown that the absence of larger predatory fish (top-down control) together 

with nutrient enrichment (bottom-up effect) promote the development of 

filamentous algal blooms (Eriksson et al. 2009), thus the changes in 

macroalgal communities could partly be linked to depletion of fish stocks. 
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The climate scenarios for the ongoing century suggest increased water 

temperatures, reduced sea-ice cover and lower salinity for the Baltic Sea 

(BACC, 2008) that are likely to have significant impacts on the Baltic Sea 

ecosystem, both directly and indirectly, for example via increased 

phytoplankton concentrations and extended hypoxic areas (Suikkanen et al. 

2007, Meier et al. 2011). As the survival, growth and reproduction of 

macroalgae are known to vary with many climate related environmental 

variables, such as temperature (Lüning & Neushul 1978), salinity (Bergström 

& Kautsky 2005, Kostamo & Mäkinen 2006), and nutrient supply (Bergström 

et al. 2003a, Bergström & Kautsky 2005), the climate change is likely to have 

profound effects on the Baltic Sea macroalgal communities. For example, 

decreasing light levels reaching the seafloor due to increasing amounts of 

phytoplankton is likely to reduce the depth penetration and the distribution 

of macroalgae (Kautsky et al. 1986, Alexandridis et al 2012, Bergström et al. 

2013). Increasing amounts of phytoplankton also results in enhanced 

sedimentation causing the loss of suitable substrate as well as physical 

smothering of algae (Berger et al. 2003, Eriksson & Johansson 2003).  

Furthermore, in the Baltic Sea, many algal species have been shown to 

reproduce vegetatively in low salinities (Kostamo & Mäkinen 2006, 

Bergström et al. 2003b, Bergström et al. 2005), thus a climate change driven 

decrease in salinity may favor vegetative reproduction, having effects also on 

genetic diversity of algae (Johannesson et al. 2011). Also, temperature 

changes may affect algal reproduction, e.g. increased water temperatures in 

spring have been shown to accelerate receptacle growth of Fucus vesiculosus L., 

although the ecological consequences (e.g. on recruitment success) require 

further studies (Kraufvelin et al. 2012).   
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1.4. Macroalgae in the management context 

In the European Union, the management of the coastal waters is largely 

driven by the EU Directives; the Habitats Directive (Directive 92/43/EEC), 

the Water Framework Directive (Directive 2000/60/EC), the Marine 

Strategy Framework Directive (Directive 2008/56/EC) and the newly 

adopted Directive for Maritime Spatial Planning, although also regional 

conventions such as HELCOM (Baltic Marine Environment Protection 

Commission - Helsinki Commission) and OSPAR (Commission to protect 

the marine environment of the North-East Atlantic) play important roles in 

safeguarding the marine ecosystems from anthropogenic deterioration.  

The Habitats Directive is a nature conservation directive and it calls for 

the creation of a network of special areas of conservation (SACs), called the 

Natura 2000 network. Annex I of the Habitats Directive lists habitats that are 

important in biodiversity protection and should be maintained or restored at 

a favourable conservation status and protected within the Natura 2000 

network. The intertidal and subtidal macroalgal communities are included in 

Annex I habitat “reefs” that are defined as formations of hard compact 

biogenic or geogenic substrata, which arise from the sea floor in the 

sublittoral and littoral zone and may support a zonation of benthic 

communities of algae and animal species (European Commission 2007). The 

requirements set in the Habitats Directive to ensure the favourable 

conservation status of the listed habitats and to monitor changes in habitat 

distribution and conservation status every six years, call for knowledge on 1) 

the spatial distribution of the reefs and 2) ways to measure human-induced 

change in associated communities, both of which are currently largely lacking 

in many areas.   

Spatial knowledge on the habitat and species distribution is also essential 

in implementing the newly adopted Directive for Maritime Spatial Planning 
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(MSPD). The MSPD aims to establish a common European framework for 

maritime spatial planning and integrated coastal management, in order to 

ensure the sustainability of maritime and coastal activities and the use of 

resources at sea and in the coastal areas (ecosystem-based approach to 

management).  

Monitoring change in the coastal waters is also required by the Water 

Framework Directive (WFD) that is aimed at improving the water quality of 

rivers, lakes, groundwater and coastal waters throughout the EU. When 

adopted in 2000, the WFD changed the management of the European water 

bodies from the mere pollution control to ensuring ecosystem integrity as a 

whole (e.g. Hering et al 2010). According to the WFD the changes in 

ecological status should be assessed based on the responses of the biota 

instead of relying solely on monitoring changes in chemical or physical 

variables. Macroalgae together with aquatic macrophytes are listed in the 

WFD as one of the biological quality elements (BQEs) that should be 

evaluated when assessing the ecological status of the coastal waters. Due to 

this requirement, there is a need for macroalgal metrics that show clear 

responses to changes in water quality but are yet easily measurable. 

In addition to the WFD, also the EU Marine Strategy Framework 

Directive (MSFD) demands indicator-based assessments. The general aim of 

the MSFD is to protect the marine environment of the EU, also in the 

offshore areas, and to achieve good environmental status of the EU’s marine 

waters by 2020. According to the MSFD, the environmental status should be 

assessed using eleven qualitative descriptors. Parameters related to 

macroalgae are listed in the criteria for assessing the extent to which good 

environmental status is being achieved, in regards to the descriptor “human 

induced eutrophication” (European Commission 2010). In addition, the 

assessment of other descriptors, for example “biodiversity” and “seafloor 
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integrity” could involve macroalgae (Borja et al. 2010, European Commission 

2010). 

1.5. Macroalgae as indicators of ecological status 

By definition, an indicator is a sign that shows the condition or the state of 

something. More specifically, a biological indicator (or a bioindicator) can be 

a biological process, species or a community that is used to measure the 

quality of the environment and how it changes with time, usually related to 

anthropogenic pressures (Holt & Miller 2010). A good biological indicator 

should provide a measurable response to anthropogenic pressures but it 

should also be relatively abundant and common, it’s ecology and life-history 

well documented, and the changes occurring with human pressures should be 

easy and cheap to survey (Holt & Miller 2010).   

Due to the requirements arising originally from the WFD and later from 

the MSFD, substantial work in developing suitable biological indicators for 

assessing the status of the marine areas has been carried out and is still 

ongoing in the European countries (operational methods collated in Birk et 

al. 2010). The work is challenged not only by varying environmental 

conditions across the European marine areas, but also by anthropogenic 

pressures that vary from nutrient over-enrichment to other pollutants (Roose 

et al. 2011, Sales et al. 2011).  Currently most of the indicators developed for 

macroalgae rely on the relative abundance of opportunistic species and the 

late-successional species assuming an increase in the occurrence and/or 

abundance of the opportunistic fast-growing species with increasing 

pollution/human pressure (Orfanidis et al. 2001, Wells et al. 2007, Juanes et 

al. 2008, Neto et al. 2012, Carstensen et al. 2014). The indicators in use 

include ratios of late-successionals or perennials to opportunistics or annuals, 

proportions of selected taxa (e.g. Chlorophyta or/and Rhodophyta) or the 
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total number of species, as well as indices such as the EEI used in Greece 

(Orfanidis et al. 2001), the CFR index used in the Spanish northeastern 

Atlantic coast (Juanes et al. 2008, Guinda et al. 2008) and the MarMAT index 

used in Portugal (Neto et al. 2012), including many of the above mentioned 

metrics. Also the depth distribution of selected perennial macroalgae is used 

as an indicator of ecological status in some countries, for example in Finland 

(Birk et al. 2010). As comparability of assessment methodologies and used 

metrics over regional scales is required by the WFD, regional co-operation in 

indicator development is needed (Moy et al. 2010, Anonymous 2012a, 

HELCOM 2013). Currently in the Baltic Sea region, where eutrophication is 

the most severe anthropogenic pressure affecting macroalgal communities, 

the macroalgal metrics and methodologies used in monitoring vary between 

the countries (Birk et al. 2010, Moy et al. 2010) and indicator development is 

still ongoing (e.g. Moy et al. 2010, Anonymous 2012a, Blomqvist et al. 2012, 

HELCOM 2013). 

1.6. Aims of the thesis  

Despite the importance of macroalgal communities from both ecological and 

management perspective, the scientific knowledge on factors affecting the 

occurrence and distribution of a variety of macroalgal species in the northern 

Baltic Sea is still scarce. Furthermore, quantitative information on 

eutrophication related changes in macroalgal communities is also largely 

lacking. These gaps in knowledge constrain the use of macroalgal 

communities in assessing the status of the coastal areas in a scientifically 

sound manner, as required by the EU Directives. 

This thesis aims at providing scientific knowledge on factors affecting 

macroalgal distribution and community composition in the northern Baltic 

Sea to support their use in managing rocky coastal areas. In addition, the aim 
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is to develop practical tools to make reliable distribution maps of habitats 

hosting macroalgae, and test metrics that could potentially be used in 

measuring change occurring in macroalgal communities due to 

eutrophication.  

More specifically, the aims were 

1) to study the importance of different environmental factors (both 

natural and eutrophication related) on macroalgal communities, on 

species occurrence and the lower limit of species occurrence (I),  

2) to study the occurrence and depth distribution of the key habitat-

forming species, Fucus vesiculosus L. in two adjacent sea areas with 

similar prerequisites for Fucus growth but with different 

eutrophication history (II),  

3) to test the functionality of simple macroalgal metrics, i.e. the 

cumulated algal cover, the cover of perennial algae, the number of 

perennial algal species and the fraction of annual species as indicators 

of ecological status of the marine areas by studying their spatial 

variation and quantifying their responses to eutrophication related 

factors (III), and  

4) to develop a methodology for mapping the distribution reefs (as 

defined in Annex I of the Habitats Directive) using the best available 

data, and to produce a rough estimate on their ecological value by 

modelling the distribution of the key component species (IV). 
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2. MATERIALS AND METHODS 

2.1 Study area 

All studies included in the thesis were conducted in the Finnish coastal area, 

northern Baltic Sea. Study I covered the whole Finnish coast, except for the 

Bothnian Bay and Åland islands, studies II and III were focused on the 

Archipelago Sea and the southeastern Bothnian Sea, and study IV covered 

only the Archipelago Sea (Figure 1). 

 
Figure 1. The study areas of the papers included in the thesis, referred to in 
their roman numerals. 
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The northern Baltic Sea is characterized by a strong salinity gradient, with 

salinity decreasing towards the Bothnian Bay and the eastern Gulf of Finland. 

Due to the north-south orientation of the Baltic Sea, there is also a distinct 

gradient in temperature, especially in the winter, with ice covering the 

northern parts (Håkansson et al. 1996).  The Finnish coastal area is also 

characterized by archipelagos, the largest being the Archipelago Sea, in the 

southwestern Finland where the Gulf of Bothnia and the Gulf of Finland 

meet. The archipelagos act as transition zones, creating inshore-offshore 

gradients in wave exposure and salinity (both decreasing towards the 

mainland) adding to the environmental variation created by the Baltic-wide 

gradients. The exposed outer archipelagos are rocky while the innermost 

more sheltered areas have mainly finer sediments with near-shore reed 

(Phragmites australis (Cav.) Trin. ex Steud.) vegetation. In addition, the 

archipelago areas between the southwest Finland and Sweden and in the 

Quark constitute shallower sill areas that separate different sub-basin of the 

Baltic Sea, limiting the water exchange between the sub-basins (Håkansson et 

al. 1996).  

There are also clear differences in the eutrophication status between the 

different parts of the study area; The Gulf of Finland is the most eutrophied 

sea area in the northern Baltic Sea (HELCOM 2014), whereas the Gulf of 

Bothnia is less influenced by the effects of eutrophication (Lundberg et al. 

2005, 2009, HELCOM 2014), as the vast archipelago at the mouth of the 

Gulf of Bothnia inhibits the nutrient rich deep-waters of the Baltic Proper 

from entering the Bothnian Sea (Pitkänen 2004). The Gulf of Bothnia is also 

less affected by other anthropogenic effects in comparison to the Gulf of 

Finland and the Archipelago Sea (Korpinen et al. 2012). Furthermore, along 

the whole coast, the water quality decreases from the outer to inner 
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archipelagos due to discharge from rivers and land run-off (Lundberg et al. 

2009). 

The shallow sublittoral (ca. 0-1 m depth) of the northern Baltic Sea rocky 

shores, is dominated by ephemeral green and brown algae e.g. Cladophora 

glomerata (L.) Kütz. and Ulva intestinalis (L.) Link (e.g. Kiirikki 1996, Kiirikki & 

Lehvo 1997). A key habitat-forming species is the perennial brown algae 

Fucus vesiculosus L. that forms a belt below the ephemerals (Kiirikki 1996, 

Bäck & Ruuskanen 2000, Eriksson & Bergström 2005). Occurring among the 

Fucus belt, but mainly below it, a variety of red algae, e.g. Polysiphonia fucoides 

(Hudson) Greville, Rhodomela confervoides (Hudson) P.C.Silva, and Furcellaria 

lumbricalis (Hudson) are important habitat builders (Eriksson et al. 1998, 

Eriksson & Bergström 2005). The deepest growing alga is often the brown 

alga Sphacelaria arctica (Harvey) that can be found down to 20 m depth 

(Eriksson et al. 1998, Eriksson & Bergström 2005)  

 

2.2. Data 

2.2.1. Biological data 

This thesis is mainly based on data gathered during the Finnish Inventory 

Programme for the Underwater Marine Environment (VELMU, 

www.ymparisto.fi/velmu), started in 2004. VELMU is a joint effort of eight 

ministries and several research and administrative institutions and is led by 

the Ministry of the Environment. These new data provide a unique 

opportunity to study the distribution patterns and environmental 

requirements of species and communities at different spatial scales. In 

addition to VELMU survey data, the data in paper I were complemented 

with data from underwater vegetation surveys presented in a variety of 

reports (see I for details).  
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During VELMU, data on vegetation have been collected using drop-

video, SCUBA-diving transects and ROV (Remotely Operated Vehicle). 

Papers I and III are solely, based on SCUBA-transect data while, paper II is 

based on drop-video data and paper IV includes data gathered using all three 

techniques (although mainly drop-video and SCUBA-transect data).  

The survey methods followed mainly the guidelines given for VELMU 

surveys (Anonymous 2012b). The drop-video surveys were conducted using 

a hand-held drop-video maneuvered from a boat that recorded 

approximately 15-20 m2 of the bottom. Both grid-based sampling design (100 

m interval) and stratified random design (stratified by depth and wave 

exposure) were used as sampling designs, depending on the area. At each site, 

coordinates and depth to nearest 0.1 m were recorded. The video records 

were later analyzed for substratum and species coverage (%) of macroscopic 

vegetation and epibenthic macrofauna. On SCUBA-transects, the cover (%) 

of macroscopic vegetation and epibenthic macrofauna, the cover of different 

bottom substrata (%) and depth (m) were recorded at 1 m depth intervals, at 

10 m intervals or when there was a notable change in the community 

composition, depending mainly on the slope of the shore. At a survey point, 

the recorded area varied between 1m2 to 4m2, depending on survey. In all 

methods, the coverage of species and substratum were recorded on a scale 

from 1-100%. On the contrary to the recommendations given in VELMU 

survey guidelines (Anonymous 2012b), in the data used in this thesis, the 

vegetation cover was always recorded as the cover across the whole recorded 

area, not per substratum. The overall vegetation cover may have exceeded 

100%, if algae or other vegetation occurred in layers.  

2.2.2. Environmental data  

The environmental variables that were used as predictors of macroalgal 

occurrence patterns include depth, slope, exposure, percentage of hard 
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bottom, salinity, Secchi depth, total nitrogen and total phosphorus 

concentrations (Table 1), of which the three last variables are closely linked 

to eutrophication. Furthermore, geological data from the Archipelago Sea 

were used in predicting the occurrence of the Habitats Directive Annex I 

habitat reefs (IV). 

Depth values were mainly obtained from vegetation survey data, but for 

mapping geomorphic features of the seafloor and for species distribution 

modelling carried out in paper IV, a bathymetric model was produced using 

several data sources (see paper IV for details). Slope was calculated using 

depth and distance to the shoreline (paper I) or obtained from a slope grid 

derived from the bathymetric model (paper IV). Wave exposure values were 

extracted from a wave exposure index grid covering the Finnish territorial 

waters, calculated using the Simplified Wave Model (SWM) (Isaeus, 2004). 

The percentage of hard bottom used as a predictor in paper IV was obtained 

from the survey data. To create a continuous map of hard bottom percentage 

for species distribution modelling (paper IV), a random forest model 

(Breiman 2001, Cutler et al. 2007) was created using depth (from the field 

data), wave exposure (from the exposure model), bottom curvature (derived 

from the depth model) and distance to nearest rocky shore (rocky shores 

derived from CORINE Land Cover, Finnish Environment Institute, 2009) as 

predictor variables (see paper IV for details). 

The data on Secchi depth (m), salinity (psu), total phosphorus and total 

nitrogen concentrations (µg L-1) were obtained from the national water 

quality database Hertta (https://wwwp2.ymparisto.fi/scripts/oiva.asp), 

maintained at the Finnish Environment Institute. As the vegetation surveys 

covered large areas and often the sampling sites for water quality monitoring 

were relatively far from the surveyed sites, spatial interpolations of 

environmental variables were done using different interpolation techniques in 
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ArcGIS (9.2 or 10.1) (see papers I and III for more details). Furthermore, 

continuous maps of environmental predictors were needed in paper IV, 

where spatial predictions on the distribution of macroalgal species were 

done. The water quality values for the vegetation survey sites were obtained 

from the spatial interpolations. The interpolations were based on the average 

of summer measurements from 0-10 m depth, and the timespan of the 

measurements used varied depending on the purpose of the study (see papers 

I, III and IV for details). The summer values were used due to higher spatial 

coverage of water quality sampling stations in comparison to winter, and 

because also the vegetation surveys were carried out in the summer. On the 

contrary to other studies, in paper II only one intensive water quality 

monitoring site per sub-area was used to obtain the water quality values, but 

a comparison was made to spatial interpolations created in a national 

mapping project FINMARINET (Tolvanen 2013). 
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Table 1. The environmental variables which effects on macroalgal 
occurrence patterns were studied in this thesis. 
Variable Paper Data source 

Depth (m) I-IV •VELMU survey data (I-IV) 
Slope (degrees) I, IV •VELMU survey data, calculated using depth 

and distance to the shoreline (I),  
•Bathymetric model (IV) 

Hard bottom percentage 
(%) 

IV VELMU survey data  

Geological data IV Data owned and analyzed by the Geological 
Survey of Finland 

Exposure (SWM index) I, III, IV Exposure model calculated using SWM 
(Isaeus 2004) 

Secchi depth (m) I-IV •Spatial interpolations  based on national 
water quality monitoring data (I, III, IV) 
•Two intensive monitoring stations (II) 

Total nitrogen 
concentration (µg L-1) 

I-IV •Spatial interpolations based on national 
water quality monitoring data (I, III, IV) 
•Two intensive monitoring stations (II) 

Total phosphorus 
concentration (µg L-1) 

I-IV •Spatial interpolations  based on national 
water quality monitoring data (I, III, IV) 
•Two intensive monitoring stations (II) 

Chlorophyll a (µg L-1) II Two intensive monitoring stations 
 

2.3. Data analysis 

The relationships between environmental predictors and different macroalgal 

variables were studied mainly using different regression techniques; logistic 

regression to study the effects of environmental variables on species 

presence/absence (paper I) and multiple linear regression to study the 

relationships between the environmental variables and the lower limit of 

occurrence (paper I) as well as between the environmental variables and the 

four macroalgal metrics studied in paper III. In all cases, the test 

assumptions for normality and homogeneity of residual variances were 

tested. The analyses were carried out using R (R Development Core Team, 

2012) or IBM SPSS Statistics 19.  
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A multivariate ordination technique Canonical Correspondence analysis 

(CCA) was used to study the effects of environmental variables on 

macroalgal community structure (Paper I), using CANOCO 4.5 (ter Braak & 

Smilauer, 2002). Furthermore, different correlation analyses were carried out, 

mainly to investigate the relationships between different environmental 

variables (papers I-IV). 

In paper IV, various analyses were carried out in Geographic Information 

System (GIS) to map the occurrence of reefs. ArcGIS extension Benthic 

Terrain Modeller (BTM) was used to identify features arising from the 

surrounding seafloor and the substratum of the features was identified with 

overlay analyses. Furthermore, to obtain an estimate of the ecological value 

of the reefs, the distribution of four key species occurring on reefs was 

modelled using Maxent, a methodology and software for species distribution 

modelling (Phillips et al. 2006).  

 

3. MAIN FINDINGS OF THE THESIS 

3.1. Community composition and the occurrence of 

perennial macroalgae  

Macroalgal community composition differed between the five study areas 

from the Quark to the eastern Gulf of Finland (paper I). The canonical 

correspondence analysis revealed that, on the whole Finnish coastline -scale, 

the differences in community composition were mainly related to salinity and 

exposure, although also eutrophication related factors played a role.  

Salinity and exposure had significant effects on the occurrence of most of 

the perennial species (paper I). The effects of exposure were always positive, 

while the effects of salinity varied between species. Eutrophied conditions 
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(high nitrogen concentrations and low Secchi depth) had no negative effects 

on the occurrence (presence/absence) of perennial macroalgal species. 

Instead, some species (Sphacelaria arctica and Polysiphonia fucoides) seemed to be 

somewhat tolerant to turbid waters and others (Fucus spp., Pseudolithoderma 

spp., Furcellaria lumbricalis, Cladophora rupestris) to higher nutrient 

concentrations (paper I).  Although paper I showed that Fucus spp. is 

relatively tolerant to high nutrient concentrations, in paper II we found that 

Fucus vesiculosus occurred much more frequently in the outer parts the 

Bothnian Sea than in the more eutrophied outer Archipelago Sea. (In paper I 

Fucus was referred to at genus level, because in the Quark, it may have been 

Fucus radicans L. Kautsky & L. Bergström).  

Exposure had strong effects also on the number of perennial species, with 

more species occurring at higher exposures (paper III). In addition, the 

effects of increasing phosphorus concentration on the species number were 

negative in the exposed areas, but had only weak (positive) effects in the 

more sheltered areas. When comparing the number of perennial species in 

the areas in good status in respect to areas in bad status (only exposed sites 

included), the species number was significantly higher in the areas in good 

status. 

When modelling the distribution of perennial brown and red algae (Fucus 

vesiculosus, Furcellaria lumbricalis and Coccotylus truncatus / Phyllophora 

pseudoceranoides) and the blue mussel Mytilus edulis L. in the Archipelago Sea 

(paper IV), depth and percentage of hard bottom were the most important 

factors in explaining algal distribution patterns. Also exposure and Secchi 

depth were important, Secchi depth especially for the deeper occurring red 

algae. Concentrations of nitrogen and phosphorus had only minor effects on 

the distribution patterns of the modelled algae in the area.  
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3.2. Depth penetration of macroalgae  

Secchi depth was important in determining the lower limit of occurrence of 

brown and red algal species; increasing Secchi depth had exclusively positive 

effects on their depth penetration (paper I). However, Secchi depth was 

rarely the only factor causing variation in the lower limit of occurrence as 

also exposure, salinity and slope of the shore had significant effects. In paper 

II we also found a clear difference in depth penetration of Fucus vesiculosus in 

the Archipelago Sea respective the Bothnian Sea, as Fucus grew clearly deeper 

in the less eutrophied Bothnian Sea.  

3.3. Macroalgal cover  

When testing the effects of environmental variation on the cumulated algal 

cover, the perennial cover and the fraction of annual species, the cover of 

perennial algae and the fraction of annual species responded to increase in 

nutrients in a way consistent with other marine areas. Thus, they showed 

potential as functioning indicators of ecological status (paper III). However, 

the effects were clear only in the shallow zones (3-5m) of exposed areas. Also 

the cover of perennial Fucus vesiculosus was higher in the outer Bothnian Sea, 

than in the more eutrophied outer Archipelago Sea (paper II). The 

cumulated algal cover (all species included except for crustose algae) showed 

no indicator potential due to low responses to phosphorus concentrations 

and Secchi depth. Additionally, the highest values for cumulated algal cover 

were reached due to high coverage of opportunistic annual algae. The 

cumulated algal cover, the perennial cover, and the fraction of annuals 

showed also high stochastic variation in the Bothnian Sea and in the 

Archipelago Sea. High temporal variation was also found over a ten-year 

period in the Archipelago Sea (paper III). The variation in the fraction of 

annuals across environmental gradients was also tested on a larger scale 
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(paper I), revealing even higher stochasticity, as the variables included in the 

regression model (salinity, slope, exposure, total nitrogen concentration and 

Secchi depth) explained only little variation occurring in the fraction of 

annuals along the Finnish coastline. 

3.4. Distribution of Habitats Directive Annex I habitat reefs 

and their ecological value 

In paper IV, a methodology for mapping the potential distribution of the 

Annex I habitat reefs was developed, using the best, but limited, data 

available on bathymetry and geology. In addition to identifying the physical 

reef structures, a rough estimate of their ecological value was obtained by 

modelling the distribution of four key species occurring on reefs and adding 

their occurrence information to the physical reef structures, with higher 

species number indicating higher ecological value. The resulting maps on the 

potential distribution of reefs are presented in Figure 2. In ground-truthing, 

55 out of 68 potential reefs were confirmed to be reefs. However, as the 

substratum often degraded into gravel and sand in the deeper parts of the 

identified elevations, the actual reefs were often smaller than the modelled 

reefs.  
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Figure 2. The potential distribution of Annex I habitat reefs in the 
Archipelago Sea classified according to depth (a) and the number of 
modelled species occurring on a reef (b) (paper IV). The species modelled 
were Fucus vesiculosus, Furcellaria lumbricalis, Coccotylus truncates / Phyllophora 

pseudoceranoides, and the blue mussel Mytilus edulis. 
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4. DISCUSSION 

 

With the long tradition in algal research in the northern Baltic Sea (e.g. 

Kjellman 1890, Wærn 1952), the general, large scale patterns of species 

distribution are known (Nielsen et al. 1995, Snoeijs 1999). Although there are 

many descriptive studies on algal occurrence patterns in the Baltic Sea (in 

Finland e.g. Häyrén 1950a, b, Andersson 1955, Ravanko 1968, Luther et al. 

1975, Hällfors 1976, Keskitalo & Ilus 1987, Pogreboff & Rönnberg 1987, 

Bergström & Bergström 1999, Lehvo & Bäck 2000), only few studies have 

focused on the effects of environmental variation on species distribution 

(Wallentinus 1976, Kiirikki 1996, Eriksson et al. 1998, Eriksson & Bergström 

2005, Nyström Sandman 2011, Nyström Sandman et al. 2013) and 

community composition (Kautsky & van der Maarel 1990). Also 

eutrophication related changes in algal communities have received a lot of 

attention, but the main focus has been on the habitat-forming Fucus vesiculosus 

(e.g. Kangas et al. 1982, Kautsky et al. 1986, Berger et al. 2004 and references 

therein). Some studies have considered also other species, or the algal 

community as a whole (Wallentinus 1979, Eriksson et al. 1998, Rönnberg & 

Mathiesen 1998, Eriksson & Johansson 2005, Krause-Jensen et al. 2007a, b). 

In addition, many experimental studies have been carried out to examine the 

effects of eutrophication on algal communities (e.g. Worm et al. 1999, Worm 

& Lotze 2006, Korpinen & Jormalainen 2008). 

The use of macroalgae as tools in the management of marine areas, as 

required by the EU Directives, calls for concrete, science-based knowledge 

on spatial distribution patterns and quantified information on human-

induced changes in macroalgal communities. The large amount of data on 

species occurrence, gathered during the national mapping program VELMU 

and covering varying environmental conditions across the Finnish marine 
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area, enabled the investigation of macroalgal occurrence patterns in relation 

to environmental variation, on scales that has not been possible before. The 

work has been carried out with the aim of achieving valuable background 

knowledge on macroalgal communities and practical tools that could be used 

when aiming towards the ecosystem-based management of the rocky coastal 

areas. The results and their usability in the management context are discussed 

in the following sections. 

4.1. Macroalgae as indicators of ecological status 

Despite the variety of indicators and indexes developed for assessing the 

status of macroalgal communities (Orfanidis et al. 2001, Wells et al. 2007, 

Juanes et al. 2008, Neto et al. 2012, Carstensen et al. 2014), there are very 

little studies quantifying the links between the different macroalgal metrics 

used as indicators (or included in the indexes) and different human pressures 

(studies related to eutrophication reviewed in Krause-Jensen et al. 2008), or 

revealing their variation in space and in time (Krause-Jensen et al. 2007a, b). 

In the northern Baltic Sea, where eutrophication is the most important 

anthropogenic factor influencing the status of macroalgal communities, the 

effects of eutrophication on macroalgal metrics, that are used as indicators of 

ecological status elsewhere, remain largely untested.  

In this thesis, I tested the usability of 1) the occurrence of perennial 

species (papers I, II), 2) the number of perennial species (paper III), 3) the 

lower limit of species occurrence (paper I) 4) the cumulated algal cover 

(paper III), 5) the cover of perennial species (paper III) and 6) the fraction 

of annuals (papers I, III) as indicators of ecological/environmental status in 

the northern Baltic Sea by studying their responses to eutrophication related 

factors as well as their variation across natural environmental gradients. The 

metrics studied are in use as indicators of ecological status (Birk et al. 2010), 
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or have been considered as potential indicators in the northern Baltic Sea or 

in other parts of the Baltic Sea region (Anonymous 2012a, Blomqvist et al. 

2012, Carstensen et al. 2014). 

4.1.1. The occurrence of perennial species 

Eutrophication affects species composition in macroalgal communities 

(Duarte 1995) leading to the general idea that the species occurrence could 

act as an indicator of the status of the marine areas. Similar idea has been 

applied by classifying species into sensitive vs. tolerant species (Blomqvist et 

al. 2012), sometimes called Ecological Status Groups (ESGs) (Orfanidis et al. 

2003, Wells et al. 2007). As filamentous annual species generally benefit from 

eutrophication, they are usually classified into eutrophication tolerant species 

whereas perennial species with larger and thicker thalli, lower growth rates 

and long life-cycles are generally classified as eutrophication sensitive species 

(Orfanidis et al. 2001, Blomqvist et al. 2012). Due to high seasonal and inter-

annual variation in the occurrence of filamentous annual algae (Kiriikki & 

Lehvo 1997, paper III), more “stable” perennial species are likely to be more 

suitable when considering mere species occurrence as an indicator of 

ecological status (Holt & Miller 2010). Therefore the occurrence of only 

perennial species was tested here.  

In the northern Baltic Sea, the occurrence of macroalgae and the 

community composition on a large scale are mainly driven by the salinity 

gradient (Snoeijs 1999, Schubert et al. 2011, paper I). Also exposure is very 

important; according to my results, the occurrence of a variety of perennial 

species was positively affected by increasing exposure (papers I and IV) and 

the number of perennial species was higher in exposed areas than in more 

sheltered areas (paper III), most likely linked to decreasing sedimentation 

effects (Wallentinus 1976, Roos et al. 2004, Eriksson & Johansson 2005). 

Thus, it is evident that the natural variation in species occurrence caused by 
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salinity and exposure gradients complicates the use of species occurrence as 

an indicator of ecological status.  

In general, there are few studies on the eutrophication tolerance of 

different perennial species in the northern Baltic Sea (except for Fucus 

vesiculosus discussed later), but  Polysiphonia fucoides, Furcellaria lumbricalis and 

Sphacelaria arctica have been suggested as relatively tolerant species to 

eutrophication effects (Wallentinus 1979, Eriksson & Johansson 2005). The 

persistence of many perennial algae in eutrophied conditions was confirmed 

in my studies, as no negative effects of eutrophication related factors (high 

nitrogen concentrations and low Secchi depth) on the occurrence 

(presence/absence) of perennial macroalgal species were found, when 

looking at a larger scale (paper I). Instead, some species seemed to be 

relatively tolerant to turbid waters and others to higher nutrient 

concentrations (paper I). However, in a smaller-scale study, the number of 

perennial species was significantly higher in areas in good status than in areas 

in moderate status (only exposed sites included, paper III), indicating 

negative effects of eutrophication on the occurrence of perennial species. 

Also in the Danish studies, nitrogen concentration has been found to be 

important in determining the number of late-successional species, with 

highest numbers of species found in low nitrogen concentrations (Carstensen 

et al. 2014). Thus, it is possible, that although differences between eutrophied 

and less eutrophied conditions in perennial species occurrence were not 

detected on a scale where salinity and exposure had significant effects (paper 

I), they may be detected on smaller spatial scales, especially if comparing sites 

with otherwise similar prerequisites for species occurrence (paper II, III).  

In Paper I I showed that the mere occurrence of Fucus (including 

potentially also Fucus radicans in the Quark) is not influenced by high nutrient 

concentrations, which was mainly due to its common occurrence in the 
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severely eutrophied Gulf of Finland. This suggests, that although Fucus is 

often considered as a sign of ”a healthy marine environment” among the 

public, it’s mere occurrence is not a very a suitable indicator of ecological 

status. However, in paper II we found that Fucus vesiculosus occurred much 

more frequently in the outer parts of the Bothnian Sea than in the more 

eutrophied outer Archipelago Sea, despite otherwise similar prerequisites for 

Fucus occurrence in both areas (exposed, rocky shores). The absence of Fucus 

from the outer Archipelago Sea was also noted in paper IV, where Fucus was 

absent from many reefs where it was predicted to occur. The unusually low 

occurrence of Fucus in the outer Archipelago Sea, in comparison to adjacent 

areas, both the southern Bothnian Sea and the Gulf of Finland suggests, that 

Fucus has not been able to recover from its large-scale disappearance from 

the outer and middle Archipelago Sea observed in the late 1970s - early 1980s 

(Mäkinen et al. 1984, Rönnberg et al. 1985). The disappearance was linked 

mainly to eutrophication effects (increased turbidity, sedimentation and 

filamentous algae) (Kangas et al. 1982, Rönnberg et al. 1985), but also to a 

mass occurrence of Idotea spp. (Kangas et al. 1982), an important herbivore 

of Fucus (Salemaa 1979). Since the 1970s, the water quality in the area has 

further deteriorated (paper II), thus decreasing the possibilities for Fucus re-

establishment in the area (Berger et al. 2003, Bergström et al. 2003a). The 

findings emphasize the importance of historical events that may influence 

species occurrence within specific areas and have long-term consequences on 

algal community structure. It also highlights the need for using multiple 

criteria and biological indicators in defining the ecological/environmental 

status or the marine areas sensu the WFD and the MSFD, as variation in the 

intensity of biotic interactions affecting the occurrence of species, for 

instance, may influence its ability to reflect the status of the marine area. It 

also argues against the “one out all out” approach applied in the WFD 
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assessments, where the indicator with the worst status scores, defines the 

final status of the marine area. 

Taken together, my results indicate that in the northern Baltic Sea, the 

mere occurrence of single perennial macroalgal species is not a very useful 

indicator of eutrophication as many species seem to tolerate relatively 

eutrophied conditions, when suitable substrate is available. Furthermore, the 

species occurrence is largely determined by other environmental factors 

(salinity and exposure), and may also be influenced by stochastic events and 

biotic interactions. However, as some indications on eutrophication effects 

on the number of perennial species were found when looking at smaller 

spatial scales, more studies on the responses of perennial species to 

eutrophication are encouraged, especially across more local eutrophication 

gradients, where other environmental factors are relatively constant.  

4.1.2. Depth penetration of species 

The general decrease in depth penetration of perennial macroalgae due to 

increased turbidity of waters with eutrophication is relatively well 

documented in the Baltic Sea (Kautsky et al. 1986, Eriksson & Bergström 

2005, Schories et al. 2008), and has also been noted on many vascular plants 

(reviewed in Krause-Jensen et al. 2008). The clear negative effects of 

decreasing Secchi depth on the depth penetration of red and brown algae 

were clearly seen also in paper I.  Furthermore, Fucus vesiculosus grew clearly 

deeper in the less eutrophied Bothnian Sea than in the Archipelago Sea 

(paper II). Thus, the use of lower limit of occurrence of perennial species 

shows high potential as a functioning indicator of ecological status  

However, Secchi depth was not the only factor causing variation in the 

lower limit of occurrence as also exposure, salinity and slope of the shore had 

significant effects (paper I). Exposure did not affect the depth penetration 
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of all species, but when effects were found (on Cladophora rupestris, Fucus spp., 

Sphacelaria arctica, Furcellaria lumbricalis), they were always positive, with 

increasing depth penetration in more exposed areas. Positive effects of 

exposure on lower limits of occurrence have also been found by Kiirikki 

(1996) and Eriksson & Bergström (2005). Also the slope of the shore 

affected the depth penetration of some species with deeper occurrences on 

steeper sloping shores, probably linked to lower sedimentation rates.   

 

The results show, that various environmental factors that together 

influence the lower limits of species occurrence, pose a challenge when 

considering the usage of species depth penetration in indicating the 

ecological status of the marine areas. In addition, the most eutrophied areas 

(e.g. inner archipelagos) are problematic, due to high sedimentation rates that 

have resulted in a change in bottom substratum, from hard to soft bottom. 

Thus, in most severely eutrophied areas, it may be difficult to find areas for 

monitoring macroalgal depth distribution, as in many places the suitable 

substrate becomes the limiting factor for macroalgal depth penetration, not 

light relating to water turbidity.  

4.1.3. Macroalgal cover  

The increase in filamentous algae and the associated loss of large perennial 

species are well known effects of anthropogenic nutrient over-enrichment 

(Duarte 1995). Many experimental studies have shown the increase in 

filamentous algae with nutrient additions (Berger et al. 2003, Worm & Lotze 

2006) and also several field surveys have noted the increase in filamentous 

algae in comparison to historical data (Mäkinen et al. 1984, Vogt & Schramm 

1991, Eriksson et al. 1998). Consequently, metrics related to macroalgal cover 

(e.g. cumulated algal cover, fraction of opportunistics) are used in some 

European countries as indicators related to the WFD (Orfanidis et al. 2001, 
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Juanes et al. 2008, Birk et al. 2010), and have been suggested as indicators 

also in the Baltic Sea region (Moy et al. 2010, Anonymous 2012a, Blomqvist 

et al. 2012, Carstensen et al. 2014). As metrics related to macroalgal cover are 

relatively easy to measure, they are attractive choices as operational 

indicators. However, quantitative studies on the eutrophication effects on e.g. 

the total cover of algae, perennial cover and other variables related to 

macroalgal cover are scarce (Krause-Jensen et al. 2007a, b, Krause-Jensen et 

al. 2009) and thus, knowledge on their responses to eutrophication and other 

environmental variability in different areas is of key importance.  

In the Danish waters, the cumulated algal cover was generally lower in 

eutrophied conditions (Krause-Jensen et al. 2007 a, b). Furthermore, a Baltic-

wide model including Danish and Finnish data showed the negative response 

of cumulated algal cover to decreasing Secchi depth (Krause-Jensen et al. 

2009). Contrary to previous findings, I found no significant responses of 

cumulated algal cover to nutrient concentrations (paper III) and the positive 

effects of increasing Secchi depth were only apparent in the sheltered areas. 

More importantly, the highest cumulated cover values in the study area were 

reached due to high covers of filamentous algae, while in the more saline 

areas the highest values in cumulated cover are reached due to multilayered 

canopies of perennial algae (Krause-Jensen et al. 2007a, b). According to 

Carstensen et al. (2014) the responses of cumulated algal cover to nutrients 

vary depending on salinity, with stronger responses in higher salinities (> 

25psu). This, together with my results, suggests that cumulated macroalgal 

cover may function as an indicator of ecological status in the fully marine 

environments, but the effects are less apparent or even opposite in the less 

saline areas, such as the northern Baltic Sea, due to differing species 

composition in high algal covers. Therefore, it seems that the eutrophication 

effects on cumulated algal cover are not consistent across the Baltic Sea 
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region, which may hamper its use as an indicator of ecological status in the 

region. 

On the contrary, the cover of perennial algae and the fraction of annual 

species showed some potential as indicators of ecological status, as the 

fraction of annuals was clearly lower and the perennial cover was clearly 

higher in the areas in good status, in comparison to areas in moderate status 

(paper III). However, effects consistent with the southern Baltic Sea, i.e. 

decreasing perennial cover and increasing fraction of annuals with increasing 

nutrient concentrations, (Krause-Jensen et al. 2007b), were found only in the 

exposed areas. In the more sheltered areas no effects were found or they 

were opposite. Furthermore, the effects of Secchi depth on both perennial 

cover and the fraction of annuals were not as expected, as increasing Secchi 

depth (often linked to less eutrophied conditions) in the exposed areas 

seemed to favor mainly annual species, and decrease the perennial algal 

cover, confounding the results from the indicator perspective.  The positive 

effects of increasing Secchi depth on annual algae suggests that in the overall 

nutrient-rich environments, the light availability may more important factor 

in controlling the annual algae than nutrient concentrations. Due to the 

parallel effects of increasing phosphorus concentration and increasing Secchi 

depth, where opposite effects were expected (more annual and less perennial 

algae with increasing nitrogen and decreasing Secchi depth), I recommend 

more studies on the responses of perennial algae cover and the fraction of 

annuals across eutrophication gradients to further investigate their suitability 

as indicators of ecological status.  

Although some indications on the usability of perennial algal cover and 

the fraction of annuals as indicators were obtained, all of the studied 

macroalgal cover metrics showed high stochastic variation (paper III), also 

found in the southern Baltic Sea (Carstensen et al. 2014). The stochasticity 
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was even higher when moving to larger spatial scales, at least when 

considering the fraction of annuals (paper I). In addition, high temporal 

variation was also found in all studied macroalgal cover metrics, with no clear 

linkage to the variation in water quality (paper III). The high stochastic and 

year-to year variation found in all studied macroalgal cover metrics highlights 

the difficulty of detecting human-induced change in dynamic marine systems, 

where the “signals” of anthropogenic change may be hard to detect due to 

high background noise (McLusky & Elliot 2004). The high stochasticity and 

uncertainty related to biological indicators should be accounted for e.g. in 

sampling designs for monitoring and when handling the resulting data to 

determine the ecological/environmental status of the marine areas 

(Lindegarth et al. 2013). Some authors even suggest that assessments based 

solely on numerical approaches may not be achievable and thus some room 

for expert judgment should be left (Borja et al. 2010).   

The future status assessments are also challenged by the climate change 

that is likely to have significant impacts on the Baltic Sea ecosystem, 

including macroalgal communities. Some of the changes observed in the 

future in species composition or depth penetration, for instance, are likely 

due to climate change, but separating climate change effects from the effects 

of manageable pressures, such as eutrophication or spreading of invasive 

species via ballast waters (endogenic managed pressure as defined in Borja et 

al. 2010), may be difficult. Due to climate change, also adjustments to the 

reference conditions (or indicator values resembling good status) may be 

needed, as the levels of impacts where we aim today, may not be achievable 

with future climate (Villnäs & Norkko 2011).  
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4.2 The distribution of reefs in the Archipelago Sea 

With the aim towards an ecosystem-based approach to management of the 

marine areas (as stated in MSFD, MSPD), the spatial element of marine 

management has become more important; without sound spatial data on the 

distribution of species and habitats, the sustainable use of marine resources is 

not possible. As gathering marine data is time-consuming and expensive, 

large areas cannot be covered by surveys and sampling, and thus predictive 

methods for identifying valuable marine areas are needed. 

In paper IV we established a methodology for mapping a Habitats 

Directive Annex I habitat that commonly hosts macroalgal communities, i.e. 

the reefs, using limited, but the best available data on bathymetry and geology 

in the Archipelago Sea. The habitats listed in Annex I of the Habitats 

Directive are important entities from the Baltic Sea management perspective, 

as the Natura 2000 network established specifically to protect the species and 

habitats listed in the Annexes of the Directive currently forms the key marine 

protected areas (MPA) network of the Baltic Sea (HELCOM 2010). In the 

past, the establishment of the marine Natura 2000 network has been largely 

based on insufficient knowledge on the distribution of the habitats, thus, in 

addition to the assessment requirements, one of the major demands for 

spatial data on Annex I habitats arises from the need to evaluate and ensure 

the functioning of the Baltic Sea MPA network (Piekäinen & Korpinen 2007, 

HELCOM 2010). 

The fact that the marine Annex I habitats are mainly large physical 

habitats, defined to a large extent by topographical and geomorphological 

attributes (European commission 2007), enables the use of topography and 

geological attributes in their mapping (Bekkby & Isaeus 2008, Diesing et al. 

2009, paper IV). Despite the relatively rough background datasets that were 

available in the Archipelago Sea (a depth model based mainly on sea-chart 
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data and detailed geological data covering only 40% of the study area), our 

results were encouraging, as most of the potential reefs identified using GIS 

analyses were confirmed to be reefs in ground-truthing. However, ground-

truthing also revealed the zonation of substrates present on most reefs, 

where out-cropping bedrock and boulders graded into gravel and sand 

towards the deeper end of the identified elevations. This suggests that in 

many areas the reefs were not as large as identified by the analysis and the 

largest reefs were, in fact, larger reef complexes with sedimentary substrates 

in between. 

As the diversity of species and communities occurring in Annex I habitats 

are key aspects contributing to their ecological value, we also incorporated 

species information to the habitat maps, to increase their usability in 

management. This was done by using species distribution modelling, a tool, 

where species-environment relationships are described statistically and used 

to make spatial predictions of species distribution (probability of presence) 

(Elith & Leathwick 2009). The number of species predicted to occur on the 

reefs correlated significantly with the number of species observed in ground-

truthing, thus the estimates on the reefs’ ecological value were at least 

indicative. However, the predicted distributions of modelled red algae that 

were somewhat biased towards the inner and middle archipelago (paper IV), 

revealed some important issues concerning the use of marine survey data in 

species distribution modelling. In the Archipelago Sea, both drop-video and 

SCUBA-transects have been used in the surveys, with more diving surveys in 

the north. Although during the surveys many of the relatively small red algae 

(such as Phyllophora pseudoceranoides and Coccotylus truncatus in the northern 

Baltic Sea) were mainly found in the northern (dive) sites, the ground-

truthing dives revealed that they were relatively common also in the south. 

This suggests that they may have been left unnoticed in the drop-videos, due 
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to filamentous or drift algae, or high water turbidity. The result emphasizes 

the need for using methods with equal detection probabilities across survey 

areas if the data is to be used for modelling the distribution of such species, 

which detection may depend on the survey method.  

The produced maps provide valuable information on the potential 

distribution of reefs in the Archipelago Sea that serve as background 

knowledge for further, more detailed surveys on the biodiversity occurring 

on reefs. Although higher resolution environmental variables and full-

coverage data would have likely further improved the results, the study 

showed that relatively high accuracy may be achieved by combining existing 

and available knowledge on the geomorphological and geological elements. 

Despite their shortcomings, the maps produced, together with similar maps 

produced for other Finnish marine areas using the same methodology, 

currently provide the best available information on the distribution of reefs 

in the Finnish marine area and they have already been widely used in 

different management contexts: in national reporting of the implementation 

of the Habitats Directive to the EU (carried out in 2013), in considerations 

regarding the extension of the marine Natura 2000 network, as well as in the 

general plan for the marine areas in the eastern Gulf of Finland 

(Kymenlaakso 2013). 
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5. CONCLUSIONS AND FUTURE RESEARCH NEEDS 

 

This thesis contributes to scientific knowledge on macroalgal communities of 

the northern Baltic Sea. The new knowledge gained can be directly applied in 

various management contexts. The thesis has 1) increased spatial knowledge 

on the distribution of one of the most valuable marine habitats in the 

northern Baltic Sea, i.e. the rocky reefs hosting diverse macroalgal 

communities, 2) increased our understanding on the natural variation 

occurring in macroalgal communities across environmental gradients, needed 

as a basis for macroalgal indicator development, and 3) tested the usability of 

simple macroalgal metrics as indicators of ecological status in the northern 

Baltic Sea. 

To summarize the results regarding indicators, the lower limits of 

occurrence of red and brown perennial algae could potentially be valuable as 

indicators. Also, the number of perennial species, the perennial cover and the 

fraction of annual species showed some potential as indicators of ecological 

status. On the scale of the whole Finnish coast, the mere occurrence of many 

perennial algal species was more closely linked to salinity and exposure than 

to eutrophication-related variables, but showed some potential as a 

eutrophication indicator on smaller spatial scales. The cumulated cover of 

algae, commonly used as an indicator in the fully marine environments, 

showed low responses to eutrophication. Furthermore, the highest values for 

cumulated cover were reached due to high coverage of filamentous annual 

algae, while the highest values in more saline environments are reached due 

to multilayered canopies of perennial species. Thus, in the Baltic Sea, the 

value of cumulated algal cover as an indicator of ecological status may be 

reduced due to differing responses to eutrophication between regions. 
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The thesis also revealed many challenges in the use of biological indicators 

in assessing human-induced change that occurs in coastal ecosystems. First 

of all, the strong natural environmental gradients, on the Baltic Sea -scale but 

also from inner to outer archipelagos, create substantial differences in the 

biota between areas. In my studies, the natural environmental gradients were 

found to influence species occurrence, depth penetration and community 

composition of macroalgal communities, which significantly complicates the 

use of different macroalgal metrics as indicators of ecological status. 

Secondly, high stochasticity, typical to dynamic systems such as the marine 

environment, was observed in all studied metrics suggesting that finding 

signals of anthropogenic change from the “background noise” may be 

challenging. Further, it was shown that past events, that could be due to 

changes for instance in biotic interactions, may have long-term effects on the 

macroalgal community, that are reflected also in the chosen indicators. 

Although here the challenges in the use of biological indicators were 

identified specifically for macroalgal communities, similar challenges are most 

likely met with other marine communities. Thus, the spatial variation and 

uncertainties related to biological indicators should be accounted for in the 

status assessment, for example in the sampling designs for monitoring or 

allowing certain level of expert judgment in final assessments. The 

uncertainties related to biological indicators also strongly argue against the 

“one out all out” principle applied in the WFD, where the indicator defining 

the worst status, defines the final status for the sea area in question. 

In this thesis, I also showed that baseline spatial knowledge on the 

potential distribution of Habitats Directive Annex I habitat reefs, can be 

achieved with relatively high accuracy, by combining existing and available 

knowledge on bathymetry and geology. However, although many of the 

potential reefs identified were actual reefs when ground-truthed, many of 
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them were actually smaller than predicted, reflecting the coarser scale chosen 

for the analyses. This emphasizes the use of modelling products as a “way 

forward” for more accurate mapping of potentially interesting areas, instead 

of their direct use as a basis for management decisions. Species distribution 

modelling proved also to be a useful way of adding an indication of reefs’ 

ecological value to the habitat maps, but balanced sampling designs, using 

methods with equal detection probabilities across study areas are needed to 

ensure the best possible accuracy in species distribution models. 

An important finding of the thesis was also that the main habitat-forming 

macroalgae of the northern Baltic Sea, Fucus vesiculosus, has not recovered 

from its large-scale disappearance from the outer Archipelago Sea, probably 

due to the continued nutrient enrichment and its associated effects in the 

area, preventing its re-establishment. 

Despite the information now gained, many challenges remain for future 

research. For example, the environmental requirements of many macroalgal 

species in the northern Baltic Sea, as well as their tolerance to human-

induced changes are still unclear. Hence, there is still room for many basic 

ecological questions regarding macroalgal distribution and factors affecting it, 

at different spatial scales. In regards to macroalgal indicators, a lot remains to 

be done. As many of the potential indicators were tested for the first time in 

the northern Baltic Sea, more studies on different scales (local, Baltic Sea 

sub-basin, Baltic Sea -wide) are needed to test and ensure their usability. 

Furthermore, other potential indicators remain to be tested (Anonymous 

2012a). Local scale studies across eutrophication gradients are especially 

important in defining specific eutrophication effects on species occurrence, 

community composition and structure, while other environmental variation 

is kept to the minimum. At the other end of the spectrum, Baltic Sea -wide 

studies are needed to ensure the coherence in pressure responses across the 
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region that would enable the use of similar metrics over the region, further 

allowing coherent assessment and comparability of results across the whole 

Baltic Sea.  

To conclude, the knowledge on the distribution of habitats and biotic 

communities, and reliable and efficient ways to measure human-induced 

change occurring in them, provide ways forward towards ecosystem-based 

management of the Baltic Sea. In a desirable future scenario, spatial 

knowledge on the distribution of important marine habitats is included into 

marine decision making at different levels (e.g. via marine spatial planning 

and environmental impact assessments), and detecting critical change in 

marine communities will lead to adjustments in the pressures and governing 

policies. As a result, the ecosystem goods and services provided by the Baltic 

Sea coastal ecosystems will be sustained and the important biological 

communities will thrive, including the colorful macroalgal communities of 

the rocky shores.  
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