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gd T cells play an essential role in the immune response to many pathogens, including
Plasmodium. However, long-lasting effects of infection on the gd T cell population still
remain inadequately understood. This study focused on assessing molecular and
functional changes that persist in the gd T cell population following resolution of malaria
infection. We investigated transcriptional changes and memory-like functional capacity of
malaria pre-exposed gd T cells using a Plasmodium chabaudi infection model. We
show that multiple genes associated with effector function (chemokines, cytokines
and cytotoxicity) and antigen-presentation were upregulated in P. chabaudi-exposed gd
T cells compared to gd T cells from naïve mice. This transcriptional profile was positively
correlated with profiles observed in conventional memory CD8+ T cells and was
accompanied by enhanced reactivation upon secondary encounter with Plasmodium-
infected red blood cells in vitro. Collectively our data demonstrate that Plasmodium
exposure result in “memory-like imprints” in the gd T cell population and also promotes gd
T cells that can support antigen-presentation during subsequent infections.

Keywords: RNA-Seq, memory, Plasmodium, chabaudi, gd T cell
INTRODUCTION

gd T cells are unconventional T cells that display characteristic features of both innate and adaptive
immunity. Their capacity to respond rapidly to non-peptide antigens in an MHC-independent
manner places them as part of the innate first line of defense against numerous pathogens.
Additionally, emerging evidence supports the concept that gd T cells also display memory T cell-like
abilities. This includes prolonged recall responses upon reinfection in various disease and vaccine
models, which contribute to protective immunity (1–6). Recent studies have now started to
delineate a more in-depth understanding of these adaptive-like gd T cells. For example, it has
been described that the TCR of tissue-resident gd T cells has an intrinsic ability to distinguish
between distinct antigen-stimulus and in this way promote either clonal or non-clonal responses (7)
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whereas adaptive-like gd T cells found in peripheral human
blood are suggested to be restricted to specific subsets of the gd
T cell population (8).

Plasmodium infection, which is responsible for the induction
of malaria in humans, elicits a multifaceted response activating a
wide range of immune cells, including gd T cells. Extensive
evidence shows that gd T cells are part of the immediate innate
response during human malaria infection where they are found
to be cytotoxically active and produce cytokines associated with
both protective immunity and symptomatic episodes (9–15). The
underlying mechanisms by which gd T cells either contribute to
beneficial outcomes in the host or mediate pathogenesis remain
to be fully elucidated.

In addition to human infections, gd T cells are also highly
involved in the immune response to murine malaria. In mice, they
are a major source of cytokines and contribute to parasite clearance
(16–21) and are essential for protective immunity following
vaccination (22). This makes murine malaria infection models a
useful platform to explore fundamental immunological questions
related to immune populations, such as gd T cells, in an infectious
disease setting. P. chabaudi infection in C57BL/6 mice is a self-
resolving infection, and this infection model has been used to
successfully elucidate various aspects of gd T cell biology. gd T cells
proliferate extensively in response to P. chabaudi infection and
mice lacking gd T cells experience exacerbated parasitemia (20, 23–
25). More recently, gd T cells from chronically infected mice were
described to produce inflammatory chemokines such as CCL3 and
CCL5 and also importantly m-CSF, which was vital to the control
of recrudescence (18) suggesting that “antigen-experienced” gd
T cells play a role in the suppression of parasitemia in chronic
infection. These studies further emphasize that gd T cells are
readily activated during acute Plasmodium infection. However,
the lasting effect that Plasmodium exposure has on these cells and
how this shapes the gd T cell population is still inadequately
understood. Consequently, we used the P. chabaudi murine
malaria infection model to investigate transcriptional profiles of
gd T cells from naïve and malaria-exposed mice, 12 weeks after
completion of anti-malarial drug treatment. Our findings revealed
that antigen-experienced gd T cells display a transcriptional profile
that shares features with that of conventional memory CD8+

T cells and have enhanced functional capacity. Thus, our data
support the notion that gd T cells differentiate and acquire a
memory-like phenotype after infection. These observations
advance our basic understanding of unconventional T cell
biology and establish novel molecular qualities in these cells as a
result of infection.
MATERIAL AND METHODS

Mice and Mouse Infection
Female C57BL/6 mice aged 6–8 weeks were infected with 5 x 104

Plasmodium chabaudi iRBC intravenously. All mice (both
infected and naïve mice) were drug-treated on day 14 p.i. or at
an equivalent time for naïve mice with an intraperitoneal
injection of chloroquine (CQ; 10 mg/kg) and pyrimethamine
Frontiers in Immunology | www.frontiersin.org 2
(10 mg/kg) followed by CQ (0.6 mg/ml) and pyrimethamine
(70 µg/ml) containing water for 5 days. Spleens and livers were
removed 12 weeks after completion of drug treatment. The
experimental design is summarized in Figure 1A. Organs from
drug-treated naïve mice were used as controls. All procedures
involving mice were approved by the Walter and Eliza Hall
Institute animal ethics committee (2015.020).

In Vitro Cell Stimulation
Single cell suspensions from spleen or liver were prepared as
previously described (26). Wholeblood from P. chabaudi-
infected donors were obtained during the dark cycle to obtain
mature parasites (27). The blood was washed in RPMI and 0.5–1
ml of blood in medium was overlayed onto 12.17 ml of a 74%
percoll gradient as described in (28) and centrifuged at 5000 g for
20 min at room temperature. IRBCs were collected from the
interface and washed with culture medium. Isolated iRBCs were
co-incubated with splenocytes and liver lymphocytes at a ratio of
1:1 for 24 h. Brefeldin A (Sigma, St. Louis, MO) and GolgiStop
(BD Biosciences, San Jose, CA) were added for the final 8 h
of incubation.

Adoptive Transfer
Single cell suspensions from spleens were prepared from naïve or
P. chabaudi-exposed mice. gd T cells were isolated using TCRgd
T cell isolation kit (Miltenyi Biotec, Australia) according to
manufacturer’s instructions. Isolated gd T cells were adoptively
transferred (1x106/mouse) into recipient C57BL/6 or RAG-1
mice, 1 day post-infection with 5 x 104 P. chabaudi iRBC
intravenously. Parasitemia was measured daily by thin blood
smears after Giemsa staining.

Flow Cytometry and FACS Sorting
A total of 1x106 splenocytes or liver lymphocytes were surface
stained with Brilliant Violet (BV) 421-conjugated anti-CD107a
(clone 1D4B, BioLegend, San Diego, CA) during the 24 h
stimulation. Further surface staining following stimulation was
performed with antibody mixtures in FACS buffer (phosphate
buffer saline containing 0.5% bovine serum albumin (BSA) and 2
mM ethylenediaminetetraacetic acid (EDTA) on ice for 30 min.
Antibodies used included: Fluorescein isothiocyanate (FITC)-
conjugated anti-CD3 (clone 145-2C11), PerCP Cy5.5-conjugated
anti-gdTCR (clone GL3), allophycocyanin (APC)-conjugated
anti-CD27 (clone LG.3A10), (all from BioLegend), Alexa700-
conjugated anti-CD44 (clone IM7) and Brilliant Violet (BV) 605-
conjugated anti-CD62L (clone MEL-14, BD Biosciences, San
Jose, CA). Aqua live/dead amine reactive dye (Life
Technologies, Carlsbad, CA) was used for dead cell exclusion.
Intracellular staining was performed after 2% paraformaldehyde
fixation and permeabilization with Perm 2 buffer (BD
Biosciences) using BV711-conjugated anti-IFNg (clone
XMG1.2, BioLegend). Samples were analyzed on a customized
four-laser Fortessa flow cytometer (BD Biosciences). Data
analysis was performed using FlowJo 9.9.6 software (TreeStar,
Ashland, OR) and Boolean gating. For FACS sorting, splenocytes
were surface stained with CD3, gdTCR, CD62L and CD44 as
October 2020 | Volume 11 | Article 582358
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above to identify and collect gd T cells with a phenotype
associated with T effector memory (EM, CD62L- CD44+).

Library Preparation and Transcriptome
Sequencing
EM gd T cells from five naïve control mice and five mice that had
been previously infected with P. chabaudi and then drug-treated to
clear the infections were FACS sorted. Total RNA was isolated
from sorted cells using the Isolate II RNA mini kit (Bioline,
London, UK) according to manufacturer’s instructions. RNA
was quantified using the Agilent TapeStation 2200 system (Santa
Clara, CA). An input of 1 ng of total RNA were prepared and
indexed separately for sequencing using the CloneTech SMART
ultra-low RNA input Prep Kit (Illumina, San Diego, CA) as per
manufacturer’s instruction. The indexed libraries were pooled and
diluted to 1.5pM for paired end sequencing (2 x 76 cycles) on a
NextSeq 500 instrument using the v2 150 cycle High Output kit
(Illumina) as per manufacturer’s instructions. The base calling and
quality scoring were determined using Real-Time Analysis on
board software v2.4.6, while the FASTQ file generation and de-
multiplexing utilized bcl2fastq conversion software v2.15.0.4.
Frontiers in Immunology | www.frontiersin.org 3
Paired-end 75bp. Between 16 and 56 million read pairs were
generated for each sample and reads were aligned to the Mus
musculus genome (mm10) using the Subread aligner (29). The
number of read pairs overlapping each mouse Entrez gene was
summarized using featureCount (30) and Subread’s built-in NCBI
gene annotation. Genes were filtered using filterByExpr function
in edgeR (31) software package. Genes without current annotation
and Immunoglobulin genes were also filtered. Differential
expression (DE) analysis was undertaken using the edgeR and
limma (32) software packages. Library sizes were normalized using
the trimmed mean of M-values (TMM) method (33). Log2 fold-
changes were computed using voom (34). Differential expression
was assessed relative to a fold change threshold of 1.5 using the
TREAT (35) function, a robust empirical Bayes procedure (36)
implemented in the limma package. The false discovery rate
(FDR) was controlled below 0.05 using the method of Benjamini
and Hochberg (37). Over-representation of Gene Ontology (GO)
terms for the differentially expressed genes was identified using
the goana function in limma package. Barcode plots illustrating
the enrichment of interested pathway genes were drawn using the
barcode plot function in limma package (38).
A

B

DC

FIGURE 1 | Increased frequency of IFNg+CD107a+ gd T cells in previously infected mice. (A) C57BL/6 mice were infected with P. chabaudi and then drug-treated
with chloroquine and pyrimethamine 2 weeks later. Twelve weeks following completion of drug-treatment cells were isolated and stimulated with iRBCs or uRBCs
and frequencies of IFNg+ and/or CD107a+ cells were assessed. (B) Representative flow cytometry plots illustrating the gating strategy. Frequencies of IFNg+ and/or
CD107a+ (C) splenocytes, and (D) liver lymphocytes from previously infected mice (P. chabaudi black squares, n=14) and naïve control (white circles, n=10) after
stimulation. In the pie chart the data are presented as the frequency of IFNg+ CD107a+ (blue), IFNg+ CD107a- (red) and IFNg- CD107a+ (green) gd T cells in each
group following uRBC background subtraction. The data in the scatter plot are presented as mean ± SD following uRBC background subtraction. The data
represent results from two independent experiments. Statistical analysis was performed using Student’s t-tests. ***P < 0.001.
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Statistical Analysis
Statistical analyses were performed using Prism 8.0 (GraphPad
software, San Diego, CA) Flow cytometry data was analyzed
using the Student’s t-test. Statistical significance was considered
P ≤ 0.05.
RESULTS

Increased Frequencies of Multifunctional
gd T Cells in Drug-Cured P. chabaudi-
Exposed Mice
The hallmark of memory T cells is increased functional capacity
upon secondary encounter with specific antigen, which commonly
includes IFNg production and cytotoxic activity. To establish
whether similar responses were generated in gd T cells following
Plasmodium infection, we compared responses of naïve and pre-
exposed gdTcells upon antigen re-encounter. Since spleen and liver
are central to the immune response toP. chabaudi infection (39, 40)
and are organs that have previously been shown to contain tissue
resident innate memory cells (41, 42), we assessed gd T cell
responses in both of these organs. To that end, C57BL/6 mice
were infected with P. chabaudi and drug-cured on day 14 post-
infection (p.i.) to clear parasitemia completely. Twelve weeks after
completion of drug-treatment spleens and livers were harvested
(Figure 1A). Splenocytes and liver lymphocytes were subsequently
isolated and stimulated in vitrowithP. chabaudi-infected red blood
cells (iRBC) or uninfected RBC (uRBC) as background controls.
Cells fromnaïvemice were included tomeasure baseline responses.
After a 24h incubation, CD107a surface expression (as ameasure of
cytotoxic activity) and IFNg production were assessed by flow
cytometry (Figure 1B). We found that a significantly higher
frequency of gd T cells that were both CD107a+ and produced
IFNg were present in the spleens of previously infected mice
compared to naïve mice (Figure 1C, P< 0.0001). No significant
differenceswere observedwith gdTcells thatproducedonly IFNgor
were CD107a+. Similarly, no significant differences in functionality
were detected in the liver-derived gd T cells from pre-exposed P.
chabaudi-infected mice and naïve mice (Figure 1D). This showed
that P. chabaudi infection resulted in the induction of multi-
functional memory-like gd T cells.

Responding gd T Cells Express an Effector
Memory-Like Phenotype
Previous studies indicate that the gd T cells that provide effector
functions during acute malaria infection express surface markers
that resemble conventional ab T effector memory cells (18, 43).
To assess the phenotype of the responding gd T cells of
previously exposed mice after full resolution of infection, we
stimulated spleen-derived gd T cells from drug-treated mice or
naïve mice in vitro and stained the cells for the surface markers
CD62L and CD44. This enabled the gd T cells to be subdivided
into CD62L+CD44- naïve cells, CD62L+CD44+ central memory
cells (CM) and CD62L-CD44+ effector memory cells (EM; Figure
2A). The frequency of IFNg+CD107a+ double positive gd T cells
in each subset was assessed in both groups of mice.
Frontiers in Immunology | www.frontiersin.org 4
Representative flow cytometry plots of these responses are
presented in Figure 2B. Upon stimulation with iRBC,
responding gd T cells were found to predominantly express an
EM phenotype and frequencies of IFNg+CD107a+ EM gd T cells
were significantly higher in previously P. chabaudi-infected mice
compared to naïve control mice (P< 0.0001; Figure 2C). This
demonstrated that gd T memory-like responses were specifically
confined within the EM subset. Furthermore, the increase in
frequency of responding cells did not reflect an overall increase
of EM gd T cells in the pre-exposed mice as assessment of the gd
T cell composition showed no differences in frequencies (Figure
2D) or cell numbers (Figure 2E) of naïve, CM or EM gd T cells
between P. chabaudi exposed mice and uninfected controls.

Transcriptional Profile Changes in EM gd T
Cells From Drug-Treated P. chabaudi
Exposed Mice Compared to EM gd T Cells
From Naïve Mice
Wehave shown that gdT cells expressing an EM-phenotype are re-
activated upon re-encounter with P. chabaudi iRBC in previously
infectedmice (Figure 2). As the frequency and number of EM gdT
cells in the spleens were not different between the naïve control
group and the pre-exposed mice, this indicated that this memory-
like enhanced responsiveness was due to intrinsic changes of the
cells. To investigate this, EM gdTcellswere FACS-sorted frommice
12 weeks after they had been drug treated to clear P. chabaudi
infection (n=5) and from naïve mice (n=5; Figure 3) and RNA-
sequencing was used to examine transcriptional profiles. A total of
207 differentially expressed (DE) genes in P. chabaudi pre-exposed
EM gd T cells compared to EM gd T cells from naïve mice were
observed relative to a fold change threshold of 1.5 (Supplemental
Table 1). Expression levels and log-fold changes were plotted in a
Mean-Difference (MD) plot (Figure 3A) of which 96 genes were
significantly upregulated (indicated in red) and 111 genes were
significantly down regulated (indicated in blue). The upregulated
genes included MHC class II-related genes (H2-Dmb2 and H2-A)
and also IFNg and NKg7, which corresponded to the observed
functional phenotype of enhanced IFNg production and
cytotoxicity in the pre-exposed EM gd T cells (Figure 2). The
chemokinegenes (CCL3,CCL4andCCL5)were alsoupregulated in
these memory-like gd T cells, which is similar to what had
previously been reported to be upregulated in gd T cells during an
active infection (Mamedov2018).Cytokine receptor genes (Il1r and
Il23r), scavenger-receptor gene (Cd163l1) and transcription factor
gene (Sox13)were among the down regulated genes. The top 75DE
genes are summarized in a heatmap presenting up- and down
regulated genes in eachmouse (Figure 3B). Collectively, this shows
that malaria-infection causes significant transcriptional changes in
the EM gdT cell population, which is still observed in absence of an
active infection.

Genes Involved in Antigen Presentation
and Processing Are Upregulated in Pre-
Exposed EM gd T Cells
To understand the biological processes affected by previous
exposure to malaria in the EM gd T cell population, gene
October 2020 | Volume 11 | Article 582358
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ontology (GO) pathway analysis was performed. Among the 20
most highly enriched GO terms in the upregulated biological
processes, seven were associated with antigen-processing and
presentation. In addition, genes were enriched for processes
involving positive regulation of acute inflammatory responses and
response to IFNg Supplemental Figure 1). Barcode plots and bar
Frontiers in Immunology | www.frontiersin.org 5
plots illustrating the enrichment of all genes in selected pathways
showed that antigen-processing andpresentationpathway included
upregulation of MHC class II-related genes (H2-Aa, H2-Dmb2,
H2-Ab1, H2-Eb1, H2-Dmb1), genes that support antigen-
processing and presentation (Clec4a2, Flt3, Cd74, Ifng) and genes
for FC receptor expression (Fcrgr2b, Fcer1g; Figure 4A). There
A B

D E

C

FIGURE 2 | In vitro re-stimulated and activated gd T cells express CD44, but lack CD62L expression. Splenocytes from previously infected and drug treated mice
and naïve controls were restimulated in vitro with iRBC or uRBCs. Representative contour plot to (A) distinguish between CD62L+CD44- (Naïve), CD62L+CD44+

(CM), and CD62L-CD44+ EM gd T cells. (B) Representative contour plots showing frequency of IFNg+CD107a+ gd T cells for each subset after 24 h stimulation with
either iRBC or uRBC from naïve or P. chabaudi pre-exposed mice. (C) Summary of IFNg+CD107a+ naïve, CM, and EM gd T cells after iRBC stimulation following
subtraction of background levels determined from uRBC stimulations in previously P. chabaudi-infected mice (filled squares; n=14) and naïve controls (open circles;
n=10). Overall (D) frequency and (E) number of gd T cells per spleen of naïve, CM and EM gd T cells (mean±SD) in naïve or P. chabaudi pre-exposed mice. The data
represent results from two independent experiments. Statistical analysis was performed using Student’s t-tests ****P < 0.0001.
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were also enrichment of genes that suggested an increased
responsiveness to IFNg stimulation as shown by upregulation of
chemokine and cytokine genes (Ccl3, Ccl4, Ccl5, Ifng, Xcl1),
interferon induced transmembrane protein genes (Ifitm2, Ifitm3)
and MHC class II-related genes (H2-Aa, H2-Ab1, H2-Eb1), but
down regulationof IL23r (Figure4B). In addition, geneenrichment
analysis suggested that pre-exposedEM gdTcells have the potential
to contribute to a sustained inflammatory response as shown by
upregulation of Fcer1a, Alox5bp. Ptgs2, Fcer1g, andCcl5 combined
with down regulation of Adam8 (Figure 4C).

Some of the most significantly down regulated biological
processes included cell-substrate adhesion and cellular
response to stimulus (Supplemental Figure 1B). Considering
that responsiveness to IFNg stimulation was increased
(Supplemental Figure 1A), decrease in the biological process
of cellular response to stimulus suggests that the pre-exposed EM
gd T cell population is modulated to only respond to specific
conditions such as presence of IFNg. Barcode plots and bar plots
illustrating the enrichment of all genes in these down regulated
pathways showed that a total of 85 DE genes were represented in
the cellular response to stimulus (Figure 5A). The three most
down regulated genes in this pathway were Itgb4, Plxnd1, and
Tspan2, which are all associated with signal transduction and
cell-cell signaling. The most upregulated gene in this pathway
was Fcer1a, which has been associated with an immune
suppressive role in APCs (44). The enrichment of all genes in
the cell-substrate adhesion pathway included down regulated
integrin genes (Itgb4, Itga5, Itgb5), protein kinases (Trmp7, Slk)
and genes associated with cell recruitment, adhesion and
migration (Adam8, Jag1, Lamc1, L1cam) whereas Epdr and
Smoc2 genes were upregulated (Figure 5B).
Differentially Expressed Genes in Pre-
Exposed EM gd T Cells Are Positively
Correlated With Differentially Expressed
Genes in Resting Memory CD8+ T Cells
Aprevious study demonstrated that conventional CD8+memory T
cells have distinct transcriptional profiles, even in a resting state (i.e.
without re-stimulation) that significantly differ from those of their
naïve counterparts (45). As we had also performed transcriptional
analysis from pre-exposed but resting cells, we wanted to examine
similarities between the two transcriptional profiles and we
compared our DE expression data (Supplemental Table 1) with
thepreviouslydescribed signaturedefining restingCD8+memoryT
cells (45) (Russ et al. Supplemental Table 2). A total of 43DE genes
were represented in both gene sets, of which 32 were upregulated
and 11 were down regulated DE genes (Figure 6A). These
overlapping genes presented in a heatmap (Figure 6B) included
genes that were associated with hallmark functions of conventional
memory T cells such as cytokine/chemokine production and
cytotoxicity (Ccl4, Ccl5, Ccl3, Ifng, Nkg7). Genes involved in
antigen presentation and processing (Clec4a2, Fcgr2b, H2-Aa,
H2-Dmb2, H2-Ab1, H2-Eb1, Cd74, H2-Dmb1, Fcer1g), which
was a prominent transcriptional signature of the memory-like
EM gd T cell DE gene set, also overlapped with the DE genes
from CD8+ memory T cells. Furthermore, enrichment analysis
A

B

FIGURE 3 | RNA-sequencing of EM gd T cells from P. chabaudi pre-exposed
mice and naïve controls. EM gd T cells from drug-treated naïve mice (n=5
donors) and P. chabaudi pre-exposed mice (n=5) were FACS sorted followed
by RNA extraction and RNA-sequencing. Differential gene expression for P.
chabaudi over naïve mice was summarized in (A) mean-difference (MD) plot
of log2 expression fold-changes against the average log-expressions for each
gene. The differentially expressed (DE) genes relative to a fold change
threshold of 1.5 are highlighted, with points colored in red and blue indicating
up- and down regulated genes respectively. (B) Heatmap of the expressions
of the top 75 DE genes between P. chabaudi and naïve mice. Each vertical
column represents genes for each mouse. For a given gene the red and blue
coloring indicates increased and decreased expression in P. chabaudi
compared to naïve respectively.
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showed that both up and down regulated DE genes in the EM gd T
cell gene set positively correlated with the DE genes in the CD8+

memory T cell gene set (P= 0.008; Figure 6C). To investigate if pre-
exposed gd T cells could alter the course of infection in naïve mice,
we isolated gdT cells from the spleen of either naïve or previouslyP.
chabaudi exposed mice. These cells were then adoptively
transferred into recipient C57BL/6 or RAG-1 mice (lacking T and
B cells) that had been infected 1 day before with P. chabaudi iRBC.
Additional control mice were infected and then injected with PBS.
Parasitemiawasmeasured daily by thin blood smears.We observed
no significant difference in parasitemia or clearance of parasites
Frontiers in Immunology | www.frontiersin.org 7
between the experimental groups in the C57BL/6 WT mice
(Supplementary Figure 2A). Assessment of whether pre-exposed
gd T cells had a direct effect on infection in absence of adaptive
immunity, yielded similar results with no significant change in
parasitemia in RAG-1 mice between the groups and all mice were
unable to control the infection (Supplementary Figure 2B).
Altogether, these observations supports the novel concept that
Plasmodium exposure induces EM gd T cells with a
transcriptional profile resembling conventional memory T cells,
but their protective role during a secondary infection in vivo
remains to be determined.
A

B

C

FIGURE 4 | Summary of significant up or down regulated genes in selected upregulated biological processes. Barcode plots for enrichment of the pathway genes along
with p-values relative to gene enrichment tested using ROAST method (left panel) and bar graphs of log fold changes of the significant pathway genes (right panel) for
pathways (A) GO:0019882 antigen processing and presentation, (B) GO: 0034341 response to IFNg and (C) GO:0002675 positive regulation of acute inflammatory
response. The barcode plot ranks genes right to left from most up- to most down regulated in P. chabaudi mice, with genes in the pathways marked by vertical bars.
The bar graph show log fold changes of significantly upregulated and down regulated genes in the pathway using pink bars and blue bars respectively.
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DISCUSSION

In this study we used a malaria infection model to understand
whether “memory-like imprints” were detectable in gd T cells
after the infection was cleared and whether this was associated
with memory-like gd T cell responses. We found that the
transcriptional profile in pre-exposed EM gd T cells was
significantly different from EM gd T cells from naïve mice and
that differentially expressed genes in the pre-exposed EM gd T
Frontiers in Immunology | www.frontiersin.org 8
cells were positively correlated with previously reported
differentially expressed genes in resting CD8+ memory T cells.
Although the overlapping differentially expressed genes were not
unique to T cells, elevated transcript levels of effector molecule
genes in otherwise resting gd T cells were suggestive of an
inherent functional ready-state that is a characteristic of
conventional memory T cells. Furthermore, this showed that
although gd T cell populations in both naïve mice and previously
P. chabaudi-infectedmice were classified as “memory” populations
A B

FIGURE 5 | Summary of significant up or down regulated genes in selected down regulated biological processes. Barcode plots for enrichment of the pathway
genes along with p values relative to gene enrichment tested using ROAST method (top panel) and bar graphs of log fold changes of the significant pathway genes
(bottom panel) for pathways (A) GO:0051716 cellular response to stimulus and (B) GO: 0031589 cell-substrate adhesion. The barcode plot ranks genes right to left
from most up- to most down regulated in P. chabaudi mice, with genes in the pathways marked by vertical bars. The bar graph show log fold changes of
significantly upregulated and down regulated genes in the pathway using pink bars and blue bars respectively.
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based on traditional surface markers, only pre-exposed gd T cells
were observed to resemble that of conventional T cell memory.

Consistent with their memory-like transcriptional profile, we
also found that pre-exposure to antigen resulted in enhanced
functional capacity of responding gd T cells upon encounter with
cognate antigen. It has been suggested that as gd T cells emerge
from the thymus, they have already acquired a functional
imprint, which limits their plasticity in the periphery (46–48).
Furthermore, functionally distinct gd T cells seem to have
specific tissue distribution where spleen-derived gd T cells are
predominately prone to producing IFNg (46). We found that
pre-exposed gd T cells were multifunctional as they produced
both IFNg and were cytotoxically active. However, the EM gd T
cell population previously-exposed to malaria displayed
significant reductions in the expression of genes associated
with IL-17 responses, suggesting limitation to their functional
plasticity after Plasmodium infection. Apart from low gene
expression of IL-17a, this included significantly lower
expression levels of Sox13 and Il1r1 genes. Sox13 is a lineage
specific gd T cell transcription factor (49), which promotes IL-17
producing gd T cells (50) and IL-1 has recently been indicated to
play an important role in supporting IL-17 production by
Frontiers in Immunology | www.frontiersin.org 9
antigen-specific T cells in vivo. Cells from Il1r1-deficient mice
had dramatically reduced IL-17 production compared to cells
from wild-type mice (51). Furthermore IL-17 producing gd T
cells have been shown to rapidly respond to IL-23, which induces
and supports IL-17 production (52–54). Interestingly following
Plasmodium exposure, EM gd T cells have down regulated their
Il-23r gene expression suggesting that they are less responsive to
endogenous IL-23. As stimulation in vitro was carried out on
bulk splenocyte preparations, which include CD4+ and CD8+ T
cells, we could not exclude that a bystander effect was
contributing to the activation of pre-exposed gd T cells.
However, the transcriptional data from ex vivo EM gd T cells
indicates that the functionally intrinsic characteristics of these
cells is altered with infection and is maintained in absence
of parasites.

We showed here that the gd T cell population in the spleen
not only acquires memory-like characteristics, but also
potentially fill an additional role as APCs. Although antigen-
presentation and processing by gd T cells has previous been
described, this characteristic remains relatively unexplored. This
function is seemingly acquired upon TCR activation and human
Vd2 T cells activated with the phosphoantigen isopentenyl
A

B

C

FIGURE 6 | Differentially expressed genes in P. chabaudi pre-exposed gd T cells are positively correlated with differentially expressed genes in CD8+ memory T cells.
(A) Venn diagram showing the number of overlapping and non-overlapping up-regulated (red) and down regulated (blue) genes. (B) Heatmap of the gene expression
relative to P. chabaudi pre-exposed gd T cells data for the genes commonly significantly regulated (overlapping DE genes) between P. chabaudi pre-exposed gd T
cells data and CD8+ memory T cell data. Each vertical column represents genes for each mouse. For a given gene the red and blue coloring indicates increased and
decreased expression in P. chabaudi compared to naïve respectively. (C) Barcodeplot for the enrichment of DE genes in the resting CD8+ memory T cell data in P.
chabaudi compared to naïve in the P. chabaudi pre-exposed gd T cell data, along with the ROAST p-value for the gene set testing.
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pyrophosphate induced high levels of APC-related molecules,
which resulted in a functional capacity to present antigens to ab
Tcells (55). InP. falciparum-infected individuals there is an increase
ofVg9Vd2Tcells that expressAPC-related surfacemarkers and this
expression was induced by iRBCs (56). These cells were also able to
elicit ab T cell responses in vitro suggesting that gd T cells may
simply supplement existing APC populations. However, spleen-
derived gd T cells reside in an organ that plays a central role in the
capacity to control and clear parasites and are in a location that
allows them to encounter and remove blood-borne antigens and
also initiate innate and adaptive immune responses. It is possible
that following an initialmalaria infection once an adaptivememory
has been established, exposed gdT cells promote specific adaptiveT
cell functions. In support of this proposition, intestinal gd T cells
have been found to have APC function and elicit distinct CD4+ T
cell responses compared to responses induced by typical
professional APCs (57). While the Vg9Vd2 T cell subset in
humans are responsive to phosphoantigens (58), there is no
evidence that murine gd T cells are equally responsive to this
stimulation. Despite this, it is interesting to note that the APC-
like state of gdTcells show that similar inductionoccurred in vivo in
mice. Furthermore, in contrast to Howard et al. (56), our study also
demonstrated that this APC-relevant expression by gd T cells
remained after clearance of the infection. However, a
comprehensive understanding of the APC-capacities of tissue-
resident gd T cells and the specific functions that they provide for
subsequent Plasmodium infections remains to be determined.

The work presented here demonstrates that blood-stage
Plasmodium infection has a profound effect on the splenic gd T
cell population, modifying its response capacity and gene
expression profile. While our observations here support the
existence of traditional memory cells with augmented
secondary responses upon antigen re-encounter, their
protective role during a secondary infection in vivo remains to
be resolved. Evidence suggests that the role of gd T cells in
protection is an intricate balance of timing, accessory signals
from other immune cells, and also regulation of other immune
cells by gd T cells (18, 22, 59–62). Collectively, this confounds
effective investigation of protective capacity of memory-like gd T
cells in a traditional sense using adoptive transfers into naïve
mice upon challenge. Survival and effector capacity of pre-
exposed gd T cells may be closely tied to other memory
populations, which would not be present in newly infected
mice. Therefore we were unable to determine whether pre-
exposed memory-like gd T cell effector functions such as
enhanced cytokine production and cytotoxic activity, could
alter the course of infection or not upon antigen re-exposure
in vivo. Furthermore, it also appears that effector function may
not necessarily be the only role for these cells. Our findings here
Frontiers in Immunology | www.frontiersin.org 10
suggest a model by which antigen-experienced gd T cells undergo
transcriptional changes that allows them to fulfil a novel role as
antigen-presenting cells in subsequent infections. These findings
have important implications for our understanding of the role of
gd T cells in host immunity and gives insight into potential
therapeutic modulations that can be achieved.
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