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Abstract

The introduction of quantitative image analysis has given rise to fields such as radiomics which have been used to
predict clinical sequelae. One growing area of interest for analysis is brain tumours, in particular glioblastoma
multiforme (GBM). Tumour segmentation is an important step in the pipeline in the analysis of this pathology.
Manual segmentation is often inconsistent as it varies between observers. Automated segmentation has been
proposed to combat this issue. Methodologies such as convolutional neural networks (CNNs) which are machine
learning pipelines modelled on the biological process of neurons (called nodes) and synapses (connections) have
been of interest in the literature. We investigate the role of CNNs to segment brain tumours by firstly taking an
educational look at CNNs and perform a literature search to determine an example pipeline for segmentation. We
then investigate the future use of CNNs by exploring a novel field—radiomics. This examines quantitative features
of brain tumours such as shape, texture, and signal intensity to predict clinical outcomes such as survival and
response to therapy.
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Keypoints

� Convolutional neural networks simply involve
analysing features derived from the image to
perform tasks such as segmenting tumours.

� This initially involves training the network with a
manually segmented dataset which then is poised to
segment patient images.

� This has a role in segmentation of brain tumours
such as glioblastoma and lower-grade astrocytomas.

� Segmented images can be further processed to
predict clinical sequelae such as survival and
response to therapy.

Introduction
With the introduction of methods to quantitatively
analyse gliomas with computational methods comes a

new frontier for radiology. It is important for radiolo-
gists to be abreast of advances in machine learning.
This has been recognised by the recent changes in
the Royal Australian and New Zealand College of Ra-
diologists (RANZCR) curriculum that incorporates
machine learning into the part I applied imaging
technology examinations [1]. Methods that incorpor-
ate quantitative analyses will add to the traditional
visual analysis of images. An important step in the
image analysis pipeline is the anatomical segmentation
of regions of interest (ROI), for example, defining a
volume of abnormal tissue from a background of nor-
mal tissue. This will allow for statistical analysis of
features that is not visible by human perception [2].
For example, the field of radiomics is fast developing
as a method of predicting survival times from imaging
features such as shape of a volume of interest and
texture and intensity of the voxel habitat. With the
development of these methods comes a greater need
for automated segmentation. Figure 1 shows incon-
sistencies in blinded manual segmentation of brain
tumours by the first and second authors. A measure
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of consistency of image segmentation can be per-
formed by the Sørensen–Dice coefficient, and this
was calculated with the StudierFenster calculator
(available at: http://studierfenster.tugraz.at/). This
ranges from 0 to 1 with 1 having 100% consistency
[3]. The value obtained from the segmentation by the
first and second author was 0.91 which demonstrates
the discrepancy in manual segmentation.
As an example of machine learning, this educational

paper will examine the use of convolutional neural net-
works for low-grade diffuse astrocytoma (World Health
Organization grade 2) and high-grade (World Health
Organization grade 4) glioblastoma—also known as glio-
blastoma multiforme (GBM) segmentation. Convolutional
neural networks (CNNs) are a unique machine learning
structure originally modelled on the human visual cortex
[4]. The brain was studied due to the abundance of seg-
mentation methods that are already available and well
established in the literature [5]. Machine learning is fast
developing and is exponentially being represented at inter-
national conferences [6]. An educational perspective is
needed for radiologists. This paper provides a novel bal-
ance between education and a state-of-the-art review on
convolutional neural networks in glioblastoma.
To better understand CNNs, artificial neural net-

works will be reviewed briefly as this is a simple
introduction for understanding neural networks such
as CNNs. Artificial neural networks involve inputs
which feed into a hidden layer which has biases or
weightings associated with it and outputs which
change as the machine ‘learns’ from a dataset to

produce the expected result [7]. Further details will
be provided in this paper.
From Fig. 2, each blue circle represents a node or

neuron from which the name ‘neural network’ is derived
from. There is an input to each neuron. The arrows or
‘axons’ represent the connection between neurons. The
result is an output which generates an approximation of
the image which is iteratively refined [8].
The nodes receive an initial input from a data

source—as seen in Fig. 2. This is then fed into the next
neuronal layer and given an initial weighting. This mid-
dle ‘hidden’ layer can be repeated a multitude of times.
This is then fed into the output node, and this produced
the desired result. However, this needs to be refined fur-
ther, and one loop or iteration is not sufficient for the
generation of an optimal output. This is where the nov-
elty of a neural network comes in. In order to refine the
output of the nodes, the weightings are changed. Thus,
through iteration, the nodes are given different weight-
ings. Based on these weightings, the output can changed
through each iteration and eventually an output that
reaches the desired result can be produced. Thus, neural
networks provide a means of optimising an initial data
input via weighting certain aspects of the input to pro-
duce an optimal result.
There are various other segmentation methods de-

tailed elsewhere [9]. Some of the notable segmentation
models are:

� Thresholding method—as the name implies, voxels
above a threshold are classified as belonging to the
tumour [10].

� Edge-based method—changes in the intensity
between edges of voxels are used as the boundaries
of the tumours [11].

� Region growing method—a seed voxel is inputted
into the segmentation; from this seed, voxels that
are similar are classified as belonging to the
tumour [12].

� Watershed algorithm—this is a unique segmentation
method whereby the voxel intensities or gradients
are represented by a topographical map similar to
those seen in geography. Based on the ‘steepness’ of
the map, a boundary is assigned [13].

� Atlas method—a tumour free reference MRI is used
to segment the MRI containing the tumour volume
[14].

The advantages of the convolutional neural network are
the fact that it provides optimal accuracy of segmentation.
However, this is at the cost of computational load [9]. With
advances in computation, the implementation of convolu-
tional neural networks and refinement of the structural seg-
mentation of brain tumours can be enhanced.

Fig. 1 Manual anatomical segmentation by first (red) and second
author (yellow) with intersection (purple). Image courtesy of A.Prof
Frank Gaillard, Radiopaedia.org, rID: 22205
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Diffuse astrocytic and oligodendroglial tumours are
the commonest types of primary brain tumours in
adults. Such tumours are classified on the basis of histo-
logical features such as cytological atypia, anaplasia, mi-
totic activity, microvascular proliferation, and necrosis
by the World Health Organization as either grade 2,
grade 3, or grade 4 with grade 4 having the worst prog-
nosis. Glioblastoma (also known as glioblastoma multi-
forme or GBM) is the most frequently encountered
grade 4 diffuse astrocytic and oligodendroglial tumour in
adults [15]. Glioblastoma is a major public health con-
cern. Zinn et al. [16] demonstrated that out of a cohort
of 21,783 patients, the survival time without therapy has
been shown to be 1 month; however, even with gross
total resection, survival has been found to be only 11
months in the same population group. The cause of
death is often not related to direct GBM complications.
Diseases of the heart, pneumonia, influenza, stroke, and
infections remain the top causes of death [17]. The

accurate segmentation of GBM is a key step to allow for
computational analysis.
The aims of this educational paper are to (1) describe

machine learning as it pertains to neural networks, (2)
describe current trends in low-grade diffuse astrocytoma
and GBM segmentation with convolutional neural net-
works, and (3) describe potential uses and future
directions.

Machine learning and convolutional neural
networks
CNNs work by using an input, convoluting this input
with a filter (also termed a kernel) and giving an output.
Figure 3 demonstrates the general overview of this
process in a graphic, although additional steps are
needed to produce a fully functional CNN. The network
is first trained to a dataset. This is termed machine
learning. This data training works by cycling or iterating
through the training dataset multiple times and

Table 1 CNN studies and main findings obtained from literature search

Author, year Title Main findings

Pereira, 2016
[30]

Brain Tumour Segmentation Using Convolutional Neural
Networks in MRI Images

Small 3 × 3 kernels for convolution to combat overfitting. DSC—
complete tumour, 0.78; core tumour, 0.65; and enhancing regions,
0.75

Arunachalam,
2017 [23]

An efficient and automatic glioblastoma brain tumor detection
using shift-invariant shearlet transform and neural networks

Unique segmentation process involving SIST and NSCT
transformation to convert the image into a multi-resolution image.
Standard feature extraction occurs. Accuracy is reported at 99.8%
for the proposed method

Havaei, 2017
[28]

Brain tumour segmentation with Deep Neural Networks The TwoPathCNN (focusing on local and global paths) resulted in
a DSC of complete segmentation, 0.85; core, 0.78; and enhancing,
0.73

AlBadawy,
2018 [31]

Deep learning for segmentation of brain tumours: Impact of
cross-institutional training and testing

Training data on different institutions may produce dramatically
different results. Therefore, CNNs need to be trained on data from
the same institution

Hasan, 2018
[24]

A Modified U-Net Convolutional Network Featuring a Nearest-
neighbour Re-sampling-based Elastic-Transformation for Brain
Tissue Characterization and Segmentation

Traditional U-net ‘deconvolves’ the voxels rather than convolving.
For this study, the deconvolution layer is substituted with an
upsampling layer which passes through two convolution layers,
an upsampling layer followed by augmentation by elastic trans-
formation. DSC increased from 0.86 to 0.87.

Naceur, 2018
[29]

Fully Automatic Brain Tumour Segmentation using End-To-End
Incremental Deep Neural Networks in MRI images

Incremental technique based on DSC which ‘learns’ features of
scan until no features are learnt that increase DSC. This is
iteratively refined. The DSC for this model is whole tumour, 0.89;
tumour core, 0.76; and enhanced tumour, 0.81

Perkuhn, 2018
[22]

Clinical Evaluation of a Multiparametric Deep Learning Model for
Glioblastoma Segmentation Using Heterogeneous Magnetic
Resonance Imaging Data from Clinical Routine

Evaluation of DeepMedic architecture. DSC—whole tumour, 0.86;
contrast enhanced tumour, 0.78; and necrosis, 0.62

Chang, 2019
[27]

A mix-pooling CNN architecture with FCRF for brain tumour
segmentation

For global context, a fully connected conditional random field was
combined to the CNN. DSC of complete tumour, 0.80; core
tumour, 0.75; and enhancing, 0.71

Sundararajan,
2019 [25]

Convolutional Neural Network Based Medical Image Classifier Segmentation by the watershed algorithm as opposed to manual
segmentation for training sets improved accuracy from 82 to 89%.
DSC is not reported

Chang 2019
[19]

Automatic assessment of glioma burden: a deep learning
algorithm for fully automated volumetric and bi-dimensional
measurement

Skull-stripping was superior to other methods proposed in the
literature. FLAIR hyperintensities relating to oedema were able to
be delineated in a multi-institutional context, pre- and post-
operatively. DSC was 0.917 for the FLAIR volume
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weighting the outputs or applying a bias on the artificial
neurons based on the how close the output is to the ex-
pected output. With each iteration, the biases change to
eventually obtain an output that is close to the expected
output [8].

Improving the output
To improve the output and develop the CNN, additional
steps are needed. This involves overfitting correction,

data augmentation, pooling, and the application of recti-
fied linear unit (ReLU). Further details are below:
Overfitting refers to the fact that the neural network

may be overtrained to the training dataset and produce
inferior segmentations. To account for this, the CNN
needs to be trained somehow to recognise imprecise fea-
tures of the input. Four example methods are described.
These are data augmentation, dropout, batch normalisa-
tion, and pooling.
Data augmentation can be used to generate imprecise

inputs. Similar to the software used to edit photographic
images, MRI images can be cropped, zoomed, and ro-
tated [18]. This reduces overfitting as the neural network
will not recognise specific patterns within the input
dataset based on morphological arrangements which are
deemed irrelevant between images. Dropout is a method
whereby nodes are temporarily ‘dropped’ in the convolu-
tional neural network in order to produce imprecision
within the dataset. Batch normalisation is a method
employed to reduce the weighting power of nodes that
have a high bias. This allows for generalisability on other
datasets as these high weights may be associated with
specific precise features within the training set.
Pooling is where the input image is downsampled or

the resolution is degraded in order to train the CNN to
identify features that are imprecise. In other words, it re-
duces the chance of the network identifying insignificant
details. For example, oedema on T2-FLAIR varies be-
tween patients. If the CNN was not pooled, it may pick

Fig. 2 Diagrammatic representation of a convolutional neural network

Fig. 3 Filtration of input through convolution
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up non-specific details from the training dataset result-
ing in imprecise segmentation of oedema from the
tumour during validation [8].
From the filtered data, the image is approximated

using a linear function. Given the heterogeneity of bio-
logical patterns, this only provides a rough approxima-
tion of the actual image. There needs to be a correction
to account for non-linearity within the image. A rectifier
can be applied which approximates for this non-linearity
within the dataset. An example unit that applies the rec-
tifier is called the ReLU [8].
The network is then flattened from the feature map

into a column for input into the neural network. In sim-
ple terms, there is the (1) input, (2) convolution with
non-linearity correction through ReLU, (3) overfitting
correction (in Fig. 4, we demonstrate pooling), (4) flat-
tening, and (5) insertion into the neural network. The
steps for this process are detailed in Fig. 4.

Literature review process
As per the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA), a literature review
was performed on Web of Science, Scopus, and PubMed
using the search terms: (neural AND network*) AND
(GBM OR “glioblastoma” OR astrocytoma) AND seg-
ment*. We found 18 articles from PubMed, 72 from Sco-
pus, and 51 from Web of Science. After duplicates were
removed, 92 articles remained. For a broad scope, we in-
cluded all studies that examined convolutional neural
networks in MRI brains the past 5 years. We excluded
conference abstracts, non-English papers, reviews, and
genomic papers. Microscopy papers were excluded.
Grading studies and differentiation studies were also ex-
cluded on the basis that these studies did not address
segmentation directly. After the inclusion and exclusion
criteria were applied, 29 studies remained. Full texts
were reviewed. Four studies were excluded on the basis
that they were non-convoluted neural networks, 3

studies were excluded since they were not available, and
3 grading studies, 2 reviews, 2 purely genetic studies, 1
survival prediction study, 1 computed tomography study,
2 radiomic studies, and 1 which looked at the differenti-
ation between different tumours were also excluded.
This is summarised in Fig. 5.
In addition to the 9 studies found by the data search, a

hand search revealed one additional study [19]. There-
fore, n = 10 studies were used in the qualitative analysis.

Literature findings
Convolutional neural networks represent a growing field
within the literature. Our search found 10 studies that
detailed the methodology of segmentation involving con-
volutional neural networks. The methodology examined
in this review will be divided into subsections relating
each step of the segmentation process. The main find-
ings will be reported. An example segmentation algo-
rithm will be proposed based on the findings from the
literature. The main output measure is the Sørensen–
Dice coefficient (DSC) which is calculated as follows [3]:

DSC = 2jX∩Y j
jXjþjY j

The X represents the cardinal elements in the first set
(automatic segmentation set), and Y represents the second
set—generally the manually segmented set that the auto-
matic segmentation set is tested against. The ⋂ symbol
represents where the segmentations intersect. Where the
DSC is not reported, the accuracy will be used. Table 1 re-
ports the main findings of studies involving CNNs.
For the training set, most studies used the Multimodal

Brain Tumour Segmentation (BraTS) benchmark which is
a dataset of manually segmented MRIs containing high-
grade and low-grade gliomas set up by the Medical Image
Computing and Computer-Assisted Interventions (MIC-
CAI) [20]. Only one study [21] used a training set from
their own institution. This study negated the need for ini-
tial manual segmentation due to using a watershed

Fig. 4 Input into a single node within a convolutional neural network
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algorithm which automatically segmented the training
dataset. This improved the accuracy of segmentation from
82 to 89% and could be used for the development of fu-
ture CNNs.
Specifics of convolution layers (i.e. filtration of images)

were not detailed extensively. This is partly because fea-
ture extraction involves multiple algorithms and mul-
tiple methodologies. For example, Perkuhn et al. [22]
used 53 kernels for feature extraction in four convolu-
tional layers. It would be difficult to summarise such ex-
tensive and numerous convolution methodology.
Overfitting was done in a variety of ways. Three arti-

cles did not correct or did not report details of overfit-
ting [23–25]. The majority of overfitting was done via
down sampling [24, 26–29]. This involves reducing the
resolution of the image in order reduce interpretation of
irrelevant fine details within the training dataset. Pereira
et al. [30] used a unique method of overfitting correction
whereby they used augmentation by 90° rotation on the
training dataset.
For non-linearity correction, different algorithms were

used. This includes leaky rectifier units [30], max-out

Fig. 5 PRISMA flowchart for search performed on the 24 October

Fig. 6 Generation of fractal model of tumour microvasculature
through FracLac [37]
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non-linearity [28], noisy rectifier linear units [26], recti-
fied linear units [29], and parametric rectified linear unit
which is a modification of the traditional rectified linear
unit. One study used 3 corrections—leaky rectifier units,
Softmax function, and hyperbolic tangent function [27].
For two studies, the non-linear correction applied was
not reported [23, 25].
From the literature search, an example segmentation

process is devised. The segmentation process should be
fully automated and in an ideal situation be performed
in institutions with the same scanner/imaging protocols
given discrepancies would affect the segmentation
process [26]. However, this would negate the generalis-
ability to other contexts and CNNs need to be optimised
for the multi-institutional context. Normalisation of im-
ages could be done by methods proposed in the BraTS
[20] segmentation challenge. This was done by standar-
dising multi-institutional images to 1 × 1 × 1 mm voxel
parameters which were then skull stripped. This initial
training input can be done via the watershed algorithm
which has been shown to have superior segmentation
potential than manual segmentation [25]. Nearest-
neighbour Re-sampling-based Elastic-Transformation
(NNET) U-Net deep convolution algorithm suggested by
Hasan et al. [24] can be applied for the initial filter as
this has shown to increase the DSC. Overfitting can be
improved by using the ELOBA_λ algorithm proposed by
Naceur et al. [29] which has shown a DSC of 0.89, 0.76,
and 0.81 for the whole tumour, tumour core, and en-
hanced tumour respectively. FLAIR volume can be seg-
mented with the methods proposed by [19] as DSC has
been reported as 0.917 for volume of FLAIR hyperinten-
sity. Non-linearity correction has not been extensively
studied, so no recommendations can be made. The main
limitation is the computing power given the intricate
processes involved in each step.

Clinical applications and future directions
The main application of brain tumour segmentation
in the clinical sphere is quantitative image analysis.
Brain tumours have traditionally been analysed quali-
tatively through inspection, and this have given rise
to an elaborate feature lexicon summarised by pro-
jects such as Visually AcceSAble Rembrandt Images
(VASARI) [32]. Radiomics is a field focused on quan-
titative feature analysis. This field is focused on
extracting voxel and volume features of the tumour
habitat and predicting clinical outcomes such as sur-
vival. It has been used to grade tumours, evaluate re-
sponse to therapy and predict genetic status of
GBM—for example, isocitrate dehydrogenase (IDH)
status in GBM, which is of clinical significance since
negative status (or ‘wildtype’) implies a more aggres-
sive tumour [33]. Segmentation and the processes

involved in extraction can be translated into meaning-
ful analysis in radiomics. Radiomic features such as
shape, texture, intensity, and patterns of the microvas-
culature have been extensively studied in GBM [34].
Shape and texture represent the most extensively stud-

ied radiomic features. Filtration matrices that are applied
during the convolution of images during the segmenta-
tion processes can subsequently be used to predict clin-
ical outcomes such as survival. For example, in a study
by Sanghani et al. [35], 2200 shape, volumetric, and tex-
ture features were extracted from 163 patients. Using
kernels for each feature, i.e. shape, texture, and volume,
prediction of overall survival was sorted into groups with
short (< 10 months), medium (10–15months), and long
(> 15months) term survival with 88.95% accuracy. In the
same study, prediction of short (< 400 days) and long (>
400 days) was shown to have a higher accuracy of 98.7%.
This demonstrates the novelty of radiomics in predicting
clinical outcomes and the importance of translating seg-
mentation algorithms into radiology.
Other applications are in the sphere of treatment

planning, particularly for radiotherapy and targeted
chemotherapy. Assessment of the tumour microvascu-
lature can be performed by fractal analysis which as-
sesses repeating patterns of the vasculature not easily
represented by simple Euclidian geometry. Studies of
tumour vasculature through susceptibility-weighted
imaging (SWI) have shown a decrease in a measure
of fractal capacity dimension post-treatment with an
anti-angiogenic (bevacizumab) [36]. Figure 6 demon-
strates the modelling of tumour vasculature in the
programme FracLac [37]. This demonstrates the ap-
plicability of quantitative analysis to predict tumour
response to therapy. Similarly, tumour volumes and
features such as oedema, spiculation, and necrosis can
be extracted to represent response to radiotherapy
[38]. This demonstrates the novel use of segmentation
processes to to aid in the production of meaningful
results that have an impact on clinical practice.
Machine learning has an important role in the automa-

tion of quantitative image analysis. The dataset is trained
using feature extractions on a training dataset which ne-
cessitates the need for feeding fixed parameters. Machine
learning through multiple iterations can provide more ac-
curate results than standard voxel-based manipulation
methods. Survival prediction for classification into short,
medium and long term survival has shown to have a mod-
erate accuracy of up to 57.8% using ensemble learning
(combination of multiple machine learning algorithms) in
a study of 9 types machine learning models [39]. Further
work is needed in this area to investigate the highest pre-
dictive machine learning models of survival, and this can
be achieved by translation of segmentation features ex-
traction and modelling into radiomics.
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Conclusion
Convolutional neural networks remain a growing area of
research in automated tumour segmentation. It is im-
portant for radiologists to have a working knowledge of
convolutional neural networks so that they are well posi-
tioned to deploy these tools in future clinical practice. A
basic overview is provided in this paper that allows the
reader to be well-informed in the world of automated
segmentation. Clinical applicability to GBM is highly
relevant as brain tumour segmentation from normal par-
enchyma is the first step in the utilisation of quantitative
image feature analysis such as radiomics for prognostica-
tion, and treatment planning. Through the further devel-
opment of segmentation techniques in brain tumours,
this could be applied to other areas of radiology. Convo-
lutional neural networks represent a growing field that
will likely help radiologists provide more accurate care
for their patients.
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