
Turku Centre for Computer Science

TUCS Dissertations
No 152, December 2012

Fredrik Degerlund

Scheduling of
Guarded Command Based Models

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Library of Finland DSpace Services

https://core.ac.uk/display/39949474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scheduling of Guarded Command
Based Models

Fredrik Degerlund

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in

Auditorium Gamma on December 10, 2012, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahainengatan 3-5, FIN-20520 Åbo, Finland

2012

Supervisors

Prof. Kaisa Sere
Department of Information Technologies
Åbo Akademi University
Joukahainengatan 3-5, FIN-20520 Åbo
Finland

Docent Marina Waldén
Department of Information Technologies
Åbo Akademi University
Joukahainengatan 3-5, FIN-20520 Åbo
Finland

Reviewers

Prof. Einar Broch Johnsen
Department of Informatics
University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo
Norway

Dr. Thai Son Hoang
Institute of Information Security
Department of Computer Science
ETH Zentrum, CH-8092 Zürich
Switzerland

Opponent

Prof. Einar Broch Johnsen
Department of Informatics
University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo
Norway

ISBN 978-952-12-2811-7
ISSN 1239-1883

Abstract

Formal methods provide a means of reasoning about computer programs
in order to prove correctness criteria. One subtype of formal methods is
based on the weakest precondition predicate transformer semantics and uses
guarded commands as the basic modelling construct. Examples of such
formalisms are Action Systems and Event-B. Guarded commands can intu-
itively be understood as actions that may be triggered when an associated
guard condition holds. Guarded commands whose guards hold are non-
deterministically chosen for execution, but no further control flow is present
by default. Such a modelling approach is convenient for proving correctness,
and the Refinement Calculus allows for a stepwise development method. It
also has a parallel interpretation facilitating development of concurrent soft-
ware, and it is suitable for describing event-driven scenarios. However, for
many application areas, the execution paradigm traditionally used comprises
more explicit control flow, which constitutes an obstacle for using the above
mentioned formal methods. In this thesis, we study how guarded command
based modelling approaches can be conveniently and efficiently scheduled in
different scenarios. We first focus on the modelling of trust for transactions
in a social networking setting. Due to the event-based nature of the scenario,
the use of guarded commands turns out to be relatively straightforward. We
continue by studying modelling of concurrent software, with particular focus
on compute-intensive scenarios. We go from theoretical considerations to the
feasibility of implementation by evaluating the performance and scalability
of executing a case study model in parallel using automatic scheduling per-
formed by a dedicated scheduler. Finally, we propose a more explicit and
non-centralised approach in which the flow of each task is controlled by a
schedule of its own. The schedules are expressed in a dedicated scheduling
language, and patterns assist the developer in proving correctness of the
scheduled model with respect to the original one.

i

ii

Sammanfattning

Formella metoder erbjuder ett sätt att resonera om datorprogram med
målsättningen att bevisa korrekthetskriterier. En underkategori av formella
metoder baserar sig p̊a predikattransformerarsemantiken för svagaste för-
villkor och använder vaktade kommandon som grundläggande modellerings-
konstruktion. Aktionssystem och Event-B utgör exempel p̊a s̊adana formalis-
mer. Vaktade kommandon kan intuitivt uppfattas som aktioner förknippade
med ett vaktvillkor, och som kan utlösas under förutsättning att villko-
ret uppfylls. Vaktade kommandon vilkas villkor är uppfyllt väljs ut icke-
deterministiskt för att exekveras, men utöver det finns det i standardut-
förandet ingen ytterligare flödeskontroll. Ett s̊adant modelleringstillväga-
g̊angssätt är behändigt för att bevisa korrekthet, och preciseringskalkylen
erbjuder en metod för stegvis utveckling. Metoden omfattar ocks̊a ett sätt
att tolka modellerna i termer av samtidig exekvering, vilket underlättar ut-
veckling av parallella program, och den är ocks̊a lämplig för att beskriva
händelsedrivna scenarier. I många tillämpningsomr̊aden används emellertid
traditionellt en exekveringsparadigm som omfattar mer explicit flödeskon-
troll, vilket försv̊arar användandet av ovannämnda formella metoder. I den-
na avhandling undersöker vi hur modelleringstekniker baserade p̊a vaktade
kommandon kan användas i olika scenarier p̊a ett effektivt och behändigt
sätt. Vi fokuserar först p̊a modellering av social p̊alitlighet för transaktio-
ner i miljön av ett socialt nätverk. P̊a grund av scenariots händelsebasera-
de natur visar det sig vara relativt enkelt att använda vaktade komman-
don. Vi fortsätter genom att undersöka modellering av parallella program,
med särskild tonvikt p̊a beräkningstunga scenarier. Vi g̊ar fr̊an teoretiska
överväganden till att undersöka genomförbarheten av praktiska implemen-
tationer genom att utvärdera prestandan och skalbarheten i en fallstudie.
Denna studie utgörs av parallell exekvering via automatisk schemaläggning
utförd av en dedicerad schemaläggare. Slutligen föresl̊ar vi ett mera explicit
icke-centraliserat tillvägag̊angssätt där flödet av varje process kontrolleras av
ett eget schema. Schemorna uttrycks i ett dedicerat schemaläggningsspr̊ak,
och utvecklaren kan använda mönster för att bevisa korrektheten i den sche-
malagda modellen med avseende p̊a funktionaliteten av den ursprungliga
versionen.

iii

iv

Acknowledgements

Pursuing a PhD degree is a major undertaking. While the book you are
currently reading constitutes my personal thesis, it would not have been
possible without the direct and indirect involvement and support of many
other people.

First of all, I want to thank my supervisors Prof. Kaisa Sere and Docent
Marina Waldén for their valuable support, not only in theoretical matters
regarding refinement calculus, action systems and Event-B, but also for their
practical guidance throughout my PhD studies. My supervisors, as well
as Dr. Pontus Boström, have also played a crucial role in co-authoring a
number of original publications that make up a part of my thesis. I have also
had many informal luncheon discussions on formal methods with Pontus.
Furthermore, I want to direct my thanks to Prof. Einar Broch Johnsen for
acting as my opponent during the defence. He, as well as Dr. Thai Son
Hoang, also kindly agreed to review my thesis. I am grateful to both of
them for taking the time to read, evaluate and give important feedback on
my work.

Mats Neovius and I have frequently knocked on each others’ doors for
constructive discussions on refinement calculus, action systems, social trust,
or just about anything that PhD students talk about. Working together with
Richard Grönblom was a positive experience, and his programming related
to code generation and scheduling turned out to be very valuable for my
research. Conversations with Petter Sandvik have traditionally taken place
at luncheon time, and we have covered all kinds of topics from technology to
soft drinks. Johannes Eriksson has every now and then been spotted in the
coffee room or in the hallways, and such encounters have many a time resul-
ted in spontaneous discussions. The positive attitude of Linas Laibinis and
the jokes of Ragnar Wikman have very much contributed to the atmosphere
at the department, and I would also like to express my appreciation to Prof.
Ralph-Johan Back for his work on the Refinement Calculus. Many other
researchers, teachers and students have also played an important role at the
department during my studies, including, but not limited to, Luigia Petre,
Elena Troubitsyna, Marta Olszewska, Leonidas Tsiopoulos, Anton Tarasyuk,
Torbjörn Lundkvist, Kim Solin, Qaisar Malik and Larissa Meinicke.

v

I am also very grateful towards the administrative and technical staff
both at the department and at TUCS. Christel Engblom has been around
to handle a wide range of practical arrangements, while Britt-Marie Vill-
strand, Irmeli Laine, Tomi Mäntylä and many more have taken care of other
administrative tasks. Magnus Dahlvik has repeatedly helped me out in all
kinds of matters regarding my work computer.

My PhD studies have primarily been financed by TUCS and by the
European Union project DEPLOY, as well as the EFFIMA program co-
ordinated by FIMECC. It goes without saying that I want to express me
deepest gratitude to them for making it possible to pursue this project in
the first place. I also want to direct my thanks to Hans Bang Stiftelsen,
Stiftelsen för Åbo Akademi and all other organisations that have supported
my research financially.

Last, but not least, I want to thank all of my family and friends. My
parents Kaj Degerlund and Gunhild Degerlund have been around to support
me throughout the entire project. I also want to mention my grandmother
Hertta Lundström and my late grandfather Herbert Lundström. My friends
have given me the opportunity to also focus on other aspects of life, and I
have definitely enjoyed all the spelkvällar I have had with Johan Hindström
and Marina Asplund throughout all these years.

Åbo, November 2012
Fredrik Degerlund

vi

List of Original Publications

I. F. Degerlund and K. Sere. “A Framework for Incorporating Trust into
Formal Systems Development”. In: Theoretical Aspects of Computing
- ICTAC 2007, 4th International Colloquium, Proceedings. Ed. by Z.
Liu C. B. Jones and J. Woodcock. Vol. 4711. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 154–168.

II. F. Degerlund and K. Sere. “Refinement of Parallel Algorithms”. In:
Process Algebra for Parallel and Distributed Processing. Ed. by M.
Alexander and W. Gardner. Computational Science Series. Chapman
& Hall / CRC Press (Taylor & Francis Group), 2008, pp. 77–96.

III. F. Degerlund, K. Sere and M. Waldén. “Implementation Issues Con-
cerning the Action Systems Formalism”. In: Proceedings of the Eighth
International Conference on Parallel and Distributed Computing Ap-
plications and Technologies (PDCAT’07). Ed. by D. S. Munro, H.
Shen, Q. Z. Sheng, H. Detmold, K. E. Falkner, C. Izu, P. D. Codding-
ton, B. Alexander and S.-Q. Zheng. IEEE Computer Society Press,
2007, pp. 471–479.

IV. F. Degerlund. Scheduling Performance of Compute-Intensive Concur-
rent Code Developed Using Event-B. Tech. rep. 1051. Turku Centre for
Computer Science (TUCS), 2012.

Based on [30]: F. Degerlund. “Scheduling of Compute-Intensive Code
Generated from Event-B Models: An Empirical Efficiency Study”.
In: Proceedings of Distributed Applications and Interoperable Systems
(DAIS) 2012. Ed. by K. Göschka and S. Haridi. Vol. 7272. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2012, pp. 177–
184.

V. P. Boström, F. Degerlund, K. Sere and M. Waldén. “Derivation of
concurrent programs by stepwise scheduling of Event-B models”. In:
Formal Aspects of Computing (2012). doi: 10.1007/s00165-012-02
60-5.

vii

viii

Contents

I Research Summary 1

1 Introduction 3

1.1 Informal and Formal Methods 3
1.2 Classification of Formal Methods 4
1.3 Guarded Commands and Scheduling 5
1.4 Structure of the Thesis . 6

2 Background and Motivation 7

2.1 Weakest Precondition Predicate Transformers 7
2.2 Refinement . 9
2.3 Guarded Command Based Languages 11

2.3.1 Action Systems . 12
2.3.2 Event-B . 12
2.3.3 Terminology . 13

2.4 Scheduling . 13
2.4.1 Non-deterministic Choice 13
2.4.2 Parallel and Distributed Models 14

2.5 Problem Statement . 14
2.5.1 Background . 14
2.5.2 Interpretation of Theoretical Concepts 15

2.5.3 Questions of Particular Interest 15
2.6 Research Methods . 16

3 Contributions of the Original Publications 17

3.1 Paper I . 17
3.2 Paper II . 18
3.3 Paper III . 19
3.4 Paper IV . 20
3.5 Paper V . 21

4 Analysis and Discussion 23

4.1 Event-driven Scheduling . 23
4.2 Run-time Scheduling . 24

ix

4.2.1 Scheduling Framework 24
4.2.2 Related Techniques . 25

4.3 Development-time Scheduling 26
4.3.1 Towards Task-specific Schedules 26
4.3.2 Comparison to Other Work 27

4.4 Comparative Discussion . 28
4.4.1 Applicability . 28
4.4.2 Chronological Comparison 29

4.5 Success, Completeness and Limitations 29

5 Conclusions 31

II Original Publications 39

x

Part I

Research Summary

1

Chapter 1

Introduction

Software testing [64] has often been the method of choice in the quest to en-
force software correctness. However, as pointed out by Dijkstra [24], testing
can show the presence of bugs, but not their absence. History has shown
that even highly funded major projects are at risk of software errors. For
example, in 1996, a software controller error caused the Ariane 5 rocket
of Flight 501 to veer off its flight path and explode [54]. While the rocket
was unmanned and there were no human casualties, the incident resulted in
considerable economic and scientific losses. In contrast, there were several
deaths and serious injuries resulting from erroneous software in the Therac-
25 radiation therapy machine [53]. In the six known incidents, which took
place from June 1985 to January 1987, the patients received massive radi-
ation overdoses.

1.1 Informal and Formal Methods

There are many different software development processes that can improve
the quality of the resulting software. A traditional approach is the waterfall
model [67], containing sequential steps such as requirements specification,
design, implementation, testing and maintenance. More recently, agile de-
velopment [17] methods have been proposed, in which the focus is shifted
from processes to individuals, from following plans to responding to changes,
etc. Such an agile method is Extreme Programming [16], which involves unit
testing and focuses on pair programming as a mechanism of mitigating low
quality code.

The above mentioned development processes are informal in the sense
that they do not rely on strict mathematical-logical reasoning. This can
be contrasted to formal methods, which allow for rigorous reasoning about
software and proving properties thereof. Such properties typically constitute
some form of correctness criteria. Important mathematical-logical founda-

3

tions for reasoning about computer programs were laid in the 1960s [40, 45],
and formal methods provide a potentially powerful means of improving soft-
ware quality. The methods and tools have evolved over time, and a study of
their industrial applications [18] shows that many application areas have be-
nefited from formal modelling and verification, yet many challenges remain.
The current state of formal methods has also been questioned elsewhere [65].
This calls for more research in the field.

1.2 Classification of Formal Methods

Formal methods do not constitute a uniform class of techniques. The
mathematical-logical foundations may differ considerably from method to
method, but they can roughly be classified into three categories:

1. Model checking methods

2. State-based methods

3. Process algebras

In model checking [27, 66], the basic idea is to verify that certain properties
hold for a given system model. The properties are expressed in the form of a
specification in a temporal logic (e.g. LTL or CTL). A challenge is the state
space explosion problem, whereby the number of states to consider grows
exponentially. To mitigate this phenomenon, state reduction techniques
such as bisimulation can be used.

The state-based methods focus on state space transitions of a given
model, brought about by the execution of commands. In this way, model
consistency can be checked, e.g. with respect to an invariant. Moreover,
refinement [6, 7, 13, 14, 35, 62, 63, 73] is typically also supported. Refine-
ment makes it possible to gradually turn an abstract specification into more
and more concrete ones through the means of correctness preserving trans-
formations. The Guarded Command Language [36, 37], the Action Systems
formalism [8, 9], the B-method [2], Event-B [1, 39], the Z notation [22, 70],
the Vienna Development Method (VDM) [19] and UNITY [26] all constitute
examples of state-based formalisms.

Finally, the process algebras, or process calculi, deal with communication
between processes. They are also known as event-based formalisms, where
the word event refers to the interactions taking place between the processes.
Notable examples of process algebras are CSP [46], CCS [60] and the pi-
calculus [61].

It should be noted that the above classification is only indicative. For
example, Circus [25] is a hybrid approach combining Z, which is state-based,
with the process algebra CSP. Furthermore, the Creol language [29, 50] is

4

inspired by process algebras, but differs from most of them in using asyn-
chronous rather than synchronous communication [49]. Creol is also object-
oriented and operates on a higher abstraction level than traditional process
algebras, and, in fact, than most formal methods in general. There are also
light-weight formalisms which combine informal and formal elements. Such
an approach is the Eiffel language [59], which inherently supports Design by
Contract. This allows the programmer to take advantage of concepts such
as preconditions, postconditions and invariants, which are traditionally not
found in programming languages.

1.3 Guarded Commands and Scheduling

This thesis is not about program correctness in general, nor about formal
methods as a whole. Instead, we focus on a specific class of modelling lan-
guages within the category of state-based formal methods. In the previous
section, we mentioned the Guarded Command Language as an example of
a state-based formalism. The language, proposed by Dijkstra together with
the weakest precondition predicate transformer semantics, provides a basic
but elegant means of reasoning about programs.

The language introduces the concept of guarded commands, a simplified
form of which can be constructed as follows:

〈guarded command〉 ::= 〈guard〉 → 〈statement 〉 (1.1)

The guard is a predicate on the state of the model, whereas the statement is
a command that updates the state. The intuitive interpretation of a guarded
command is that the statement is eligible for execution only when the guard
holds, i.e. evaluates to true. The guarded command is then said to be enabled
(the opposite being disabled). Guarded commands are typically combined
using the non-deterministic demonic choice operator 8 and included in a
do od loop, resulting in the following construct:

do

g1 → S1

8 g2 → S2

. . .

8 gn → Sn

od

This can be understood so that any one of the n guarded commands is
non-deterministically chosen for execution, under the condition that it is
enabled at the time of choice. Because of the loop, this procedure is repeated
until no guarded command is enabled any longer. Note that the choice
is demonic, which means that the model designer is not in control of the

5

choice. While these interpretations are informal, the precise semantics will
be given in the next chapter in terms of weakest precondition predicate
transformers. We will also mention how weakest preconditions can be used
to form a correctness preserving refinement chain, making it possible to
develop programs in a stepwise manner.

The principles of the guarded commands have been incorporated into a
number of newer specification languages, such as the Action Systems form-
alism and Event-B. We will refer to such languages as guarded command
based languages, and they constitute the object of study in this thesis. More
specifically, we are interested in how the theoretical concept of demonic
non-deterministic choice is controlled and implemented in practice. Such
scheduling aspects are important from a practical point of view, and, by
extension, industrial adoption. Guarded command based languages are par-
ticularly suitable for modelling parallel software, and, therefore, we focus
especially on parallel and ubiquitous scenarios.

1.4 Structure of the Thesis

The thesis is based on five original papers. Reprints of these articles are
provided in Part II. The purpose of Part I is to provide background in-
formation, to summarise the contributions of the publications, as well as
to provide further discussion and analysis. The text has deliberately been
written as a high level overview, and we refer to the the original papers for
more technical details.

The rest of Part I is structured as follows. In Chapter 2, we provide back-
ground information on guarded commands and languages based on them.
We also discuss associated scheduling issues that we attempt to address in
the thesis. In Chapter 3, we present the original publications, focusing on
their respective contributions in context of the topic of the thesis. The pur-
pose of Chapter 4 is to further analyse and discuss the approaches taken in
the papers. We also compare the methods to each others as well as to re-
lated work, and discuss their respective merits and drawbacks when applied
in different scenarios. Finally, in Chapter 5, we give a short summary of
what we have analysed and achieved in the thesis.

6

Chapter 2

Background and Motivation

In this chapter, we give a short theoretical background to our field of study.
We first deal with predicates and weakest precondition predicate trans-
formers. These fundamentals underpin the refinement relation, which, in
turn, plays an important role in guarded command based languages. After
providing an introduction to this category of languages, we move on to dis-
cuss scheduling and explain why it is motivated to study it. We also give a
problem statement as well as short summary of the research methods used
in the thesis. Much of the theoretical background in this chapter is based
on the work of Back and von Wright [13].

2.1 Weakest Precondition Predicate Transformers

In Chapter 1, we mentioned that guarded commands can be given a formal
semantics in terms of weakest precondition predicate transformers [13, 36].
Since guarded command based languages are state-based, focus is on the
state of a model as well as updates thereof. All possible configurations of
the variables in a model make up the state space, for which we use the
denotation Σ.

Before going into the details of predicate transformers, we shortly discuss
the underlying concept of predicates. A predicate q on Σ is a function
q : Σ → BOOL mapping states to Boolean values in BOOL = {F,T}. Two
important special cases of predicates are the constant functions false and
true, which map any state to the Boolean values F and T, respectively.
They are, thus, defined as false(s) = F and true(s) = T for any state s in Σ.
Predicates form a lattice with false as the bottom element, true as the top
element, and implication (⇒) as the ordering relation [13]. It is sometimes
convenient to think of predicates in terms of subsets of the state space,
instead of the function as such. The subset then consists of all such states
s in Σ for which the predicate function evaluates to T.

7

Predicate transformers can now be defined as functions mapping one
predicate to another, i.e. they have the type (Σ → BOOL) → (Σ → BOOL).
The idea is to use them as a means of giving a semantics for statements
(commands) in the modelling language. More specifically, a weakest pre-
condition predicate transformer takes a postcondition predicate q as input,
and returns a predicate reflecting the weakest predicate (smallest w.r.t. the
implication ordering) from which execution of a statement S terminates in a
state where q holds. The semantics of individual statements is, thus, defined
in terms of their associated predicate transformers. The following list gives
the weakest precondition predicate transformers associated with different
statements:

(v := E)(q) = q[v := E] ((Multiple) assignment)
(S;T)(q) = S(T (q)) (Sequential composition)
(S 8 T)(q) = S(q) ∧ T (q) (Demonic non-determ. choice)
Sω(q) = µX.(S;X 8 skip)(q) (Strong iteration)
S∗(q) = νX.(S;X 8 skip)(q) (Weak iteration)
skip(q) = q (Stuttering)
magic(q) = true (Miraculous behaviour)
abort(q) = false (Aborting behaviour)
[p](q) = p ⇒ q (Assumption)
{p}(q) = p ∧ q (Assertion)

Here, v (v1, . . . , vm) is a list of variables, E (E1, . . . , Em) is a list of ex-
pressions, p and q represent predicates, and S as well as T are arbitrary
statements. Moreover, q[v := E] refers to textual substitution, i.e. all free
occurrences of vi in q are replaced by Ei for all i ∈ {1, . . . ,m}. The notations
µ and ν represent least fixed point and greatest fixed point, respectively.

The statement v := E is a (multiple) assignment, where the variables of
v are assigned the corresponding expression in E. Sequential composition
(;) composes two arbitrary statements for sequential execution, whereas de-
monic non-deterministic choice (8) means that either one of the statements
will be executed. However, the choice is not up to the modeller, hence
the name “demonic”. Strong iteration, intuitively, repeatedly executes a
given statement a demonically chosen and possibly infinite number of times.
Weak iteration is similar, but the number of executions is finite. The skip

statement represents stuttering, i.e. it will leave the state unchanged. The
statement magic models miraculous behaviour, which means that any post-
condition is achieved regardless of the state in which it is executed. This is
in contrast to abort, which does not guarantee to achieve any postcondition
at all. It does not necessarily even terminate. Finally, we have assumption
[p] and assertion {p}. If executed in a state where p holds, they both behave
as skip. However, if p does not hold in the pre-state, assumption behaves as
magic, whereas assertion behaves as abort.

8

Similarly to the predicates, the statements also form a lattice, provided
that they are monotonic [63]. All statements we consider here fulfil the
monotonicity criterion. The bottom element is false, whereas the top element
is true. The statement lattice is ordered under the refinement relation, which
we will discuss later.

The predicate transformers associated with statements provide us with
a formal semantics for mathematical-logical reasoning. The ultimate goal
is typically to prove correctness in one form or another. A well-established
notion of correctness is that of Hoare triples [45], which are constructs con-
sisting of a precondition p, a postcondition q and a statement S:

{p} S {q} (2.1)

The meaning of such a Hoare triple is that if statement S is executed in
a state where p holds, then it is guaranteed to terminate in a state where
q holds. Despite the similarities in notation, the curly brackets of Hoare
triples are not to be confused with assertion statements. Also note that we
here deal with total correctness, which means that we do not consider the
triple to hold if the statement is non-terminating. This is in contrast to the
slightly different notion of partial correctness, according to which a triple is
said to hold if it either terminates and achieves q or it does not terminate
at all. It is worth noting that statements can be linked to total correctness
Hoare triples through the means of their respective predicate transformers:

S(q) = {p | {p} S {q}} (2.2)

This important connection demonstrates why predicate transformers have
the potential to be useful for reasoning about the correctness of programs.

2.2 Refinement

Sometimes it is not enough to consider the correctness of a single statement,
but we may be interested in how two statements are related to each other
in terms of correctness. Such reasoning can be achieved through the means
of refinement, which is particularly useful for stepwise development of pro-
grams. Refinement has been extensively studied in the literature [6, 7, 13,
14, 35, 62, 63, 73], and it can be defined as follows. Consider two statements
S1 and S2. Statement S2 is then said to be a refinement of S1, denoted by
S1 ⊑ S2, if:

∀q. S1(q) ⇒ S2(q) (2.3)

Stating that S1 ⊑ S2 can also equivalently be formulated in terms of total
correctness Hoare triples as follows:

∀p, q. {p} S1 {q} ⇒ {p} S2 {q} (2.4)

9

This intuitively means that whatever postcondition S1 is able to achieve,
S2 will also be able to achieve it. Statement S2 may or may not be able
to achieve a stronger postcondition than S1, but the important aspect is
that it will not be weaker. Because of this, the refined statement S2 can be
said to preserve correctness w.r.t. the original statement S1. The refinement
is said to be more concrete than the statement it refines, which, in turn,
is more abstract than the refinement. Note that the refinement relation
is reflexive and transitive, which means that it is possible to create chains
of refinements, whereby the most concrete statement is also necessarily a
refinement of the most abstract one.

Since relatively complex statements can be constructed from more ba-
sic ones using iteration, choice and sequential composition, statements can
be used to model specifications/programs. Starting from an initial spe-
cification, more concrete specifications can be be derived and shown to be
refinements of the initial one. This stepwise refinement approach, which
is illustrated in Figure 2.1, allows for a formal and correctness-preserving
means of developing software. Since correctness is an integral part of the de-
velopment process, the term correct by construction can be used. Note that
no clear distinction between specifications and (executable) programs has to
be made. In fact, an important goal of the Refinement Calculus [7, 13, 14]
was to eliminate previous restrictions requiring executability of statements
[36]. However, from a practical point of view, it is important that the final
version of a program only contains executable statements.

Example 1 Consider a variable x and two integers i1 and i2. The state-
ment x := i1 8 x := i2 is then refined by x := i2, i.e.:

x := i1 8 x := i2 ⊑ x := i2 (2.5)

That this is the case can be verified by resorting to the definition of refine-
ment as well as the predicate transformers of the two statements. This gives
us the following expression, which is obviously true:

∀q. q[x := i1] ∧ q[x := i2] ⇒ q[x := i2] (2.6)

This constitutes an example of how non-deterministic choice can be reduced
through the means of refinement, going from abstract statements towards
more concrete ones.

Example 2 The following refinement chain holds:

abort ⊑ x := i1 ⊑ [x = i2];x := i1 ⊑ magic (2.7)

This can also be easily verified using the definition of refinement. The fact
that the other statements (in fact, any other statements) are refinements of

10

Figure 2.1: Refinement chain illustrating stepwise development of programs.

abort can also be deduced from the fact that abort constitutes the bottom
element of the statement lattice. Similarly, magic, being the top element, is
a refinement of the other statements. The statement [x = i2];x := i1 has the
same effect as x := i1 if x = i2 initially holds, or else it behaves like magic

(miraculous behaviour). This means that it is a more concrete statement
than x := i1 in the Refinement Calculus sense of the word. This refinement
chain also shows us that more concrete behaviour does not in every single
case correspond to practical implementability. In fact, magic cannot be
implemented, and statements can from this point of view be refined “too
far”.

2.3 Guarded Command Based Languages

We shortly presented the Guarded Command Language in Chapter 1, and
we will now discuss guarded command based languages in light of the theory
in the above sections. However, we have not introduced any statements for
guarded command, nor for the do od loop. These can, however, be defined
in terms of the statements above as follows:

g → S = [g];S (2.8)

do B od = Bω; [¬gd(B)] (2.9)

It is common (but not mandatory) to require that S is strict with respect to
false, i.e. that S(false) = false. This guarantees that the the “guard portion”
of g → S is indeed confined to g. As for the do od loop, B is a statement
representing the loop body. Furthermore, gd(B) stands for ¬B(false), which
represents the states from which execution of B will not behave as magic

(miraculous behaviour), i.e. it extracts the guard portion of the statement.
The assumption prevents termination of the loop until the guard portion of
B is false.

Dijkstra considered guarded commands to be of a distinct syntactic cat-
egory than statements [36]. This is in contrast to the definition above, where
the whole guarded command g → S is seen as a statement, and not only
the non-guard part S. Treating guarded commands as statements is pos-
sible because of allowing for assumptions and miraculous behaviour, which
was not supported by Dijkstra1. The do od loop is also defined differently

1
The law of the excluded miracle was lifted in the Refinement Calculus.

11

than in Dijkstra’s work. The definition used here is convenient for algebraic
reasoning about loops [12].

2.3.1 Action Systems

We now give a schematic view of a model in the Action Systems formalism
[8, 9]:

A = |[var v1, v2, ..., vm
S0;
do

g1 → S1

8 g2 → S2

. . .

8 gn → Sn

od

]|

The var clause contains a list of variables, S0 is a statement initialising
the state, and it is sequentially followed by a do od loop, similar to the
one in the Guarded Command Language as presented in Chapter 1. An
action system, as defined above, can be seen as a statement in its own right,
i.e. as a weakest precondition predicate transformer. This implies that it
can also be refined accordingly, giving us a means of stepwise refinement of
action systems. This approach assumes that we are only interested in total
correctness, i.e. correctness with respect only to the pre- and post-execution
states (input-output relation). However, Action Systems theory can also be
extended to support stepwise refinement of reactive systems [7, 11, 15], in
which case intermediate states are also considered.

2.3.2 Event-B

Another important formalism based on guarded commands is Event-B [1,
39]. It shares much of its theoretical background with the Action Systems
formalism, as well as with the (classical) B-method [2]. It can also be seen
as a successor of the B Action Systems framework [72]. Despite the many
similarities, there are also a number of notable differences. For example,
Event-B is based on sets (subsets of the state space) rather than predicates,
and, therefore, set transformers are used instead of predicate transformers.
However, this is mostly an illusionary difference, since the two approaches
are effectively interchangeable. Another difference is the fact that Event-B,
on purpose, has no fixed behavioural semantics, i.e. it does not take a stand
on how the guarded commands are triggered. Furthermore, refinement is
defined as a number of proof obligations [42] instead of the way it was defined

12

in Section 2.2. This makes Event-B more flexible with respect to different
use cases, since any behavioural semantics that is compatible with the proof
obligations can be used. Typically, however, the same semantics as in ac-
tion systems is used. It is also worth noting that Event-B does not support
sequential composition, a fact that has consequences for the construction of
guarded commands. Furthermore, the mathematical language of Event-B
[58] is strictly defined, which is not the case for the Action Systems form-
alism. While this makes action systems more flexible, it also renders tool
support difficult. For Event-B, tool support is currently provided by the
open source Rodin tool [4, 3, 39]. It is based on the Eclipse platform [38],
and additional functionality can be added through the means of plug-ins.

2.3.3 Terminology

We also want to point out some discrepancy in terminology between differ-
ent guarded command based languages. In the Action Systems formalism,
guarded commands are known as actions, whereas they are called events in
Event-B. Furthermore, Event-B used the word “action” for the statement
following the guard, which may cause confusion because the same word is
used differently in Action Systems theory. In the rest of Part I of the thesis,
we will typically use the denotation “guarded command” regardless of the
formalism in question, and we will also otherwise try not to use ambiguous
terms in this respect.

2.4 Scheduling

2.4.1 Non-deterministic Choice

Models expressed in the Action Systems formalism, or as loops in the Guar-
ded Command Language, are scheduled by demonic non-deterministic choice
between guarded commands. Such a behavioural semantics is also commonly
used in Event-B, which is the case for the Event-B models studied in this
thesis as well. The precise mathematical-logical semantics is given by the
predicate transformers. However, an intuitive interpretation is that the de-
veloper has no control of which one of the guarded commands will be chosen
for execution. To elaborate what this means, consider the following weakest
precondition involving three guarded commands:

(g1 → S1 8 g2 → S2 8 g3 → S3)(q) (2.10)

According to the definition of demonic non-deterministic choice, this equals
to (g1 → S1)(q) ∧ (g2 → S2)(q) ∧ (g3 → S3)(q). Consequently, in order
for the composition to guarantee postcondition q, not only one or two, but
all three guarded commands have to individually guarantee q. This can be

13

seen as an adversary, or a demon, performing the choice, hence the name.
In fact, there is also an angelic non-deterministic choice, according to which
a composition achieves a given postcondition given that any one of the con-
stituent guarded commands (or, in general, statements) does so. However,
it is of less practical interest, and it is not conjunctive, which is a property
required by many rules for algebraic reasoning about statements.

2.4.2 Parallel and Distributed Models

Since the guarded commands are typically located inside a do od loop, exe-
cution of the commands takes place repeatedly until all of them are disabled.
Even though the choice is non-deterministic, once a guarded command has
been chosen, it will be executed in its entirety. The procedure of choice
and execution can be seen as sequentially repeated with only one command
executing at a time. However, the semantics also allows for a parallel inter-
pretation [7]. If several guarded commands are enabled and have no variables
in common, they can be executed simultaneously. This convenient means of
achieving parallelism is an argument for using guarded command based lan-
guages for the development of concurrent software. Furthermore, both the
Action Systems formalism and Event-B support decomposition [5, 23, 10],
which is useful when modelling distributed systems. Such decomposition
can be of two basic types: either the components communicate via shared
variables, or, if they have separate state spaces, they rely on shared guarded
commands.

2.5 Problem Statement

2.5.1 Background

As we have seen, guarded command based languages have several advant-
ages. First, they have a formal semantics supporting correctness preserving
stepwise refinement. They also have a parallel interpretation that is suit-
able for modelling concurrent software. Furthermore, there are techniques
for decomposition into sub-models. For Event-B, in particular, there is also
tool support. Features such as these make languages based on guarded
commands interesting for the development of parallel software in scenarios
where correctness is of particular importance. These arguments constitute
a compelling reason for studying and deploying guarded command based
languages in the first place. However, these languages also carry a num-
ber of drawbacks that currently limit their usability. One such problem, in
particular, is how to interpret demonic non-deterministic choice in terms of
scheduling in real-world scenarios, in which case implementation on a phys-
ical computer is typically a goal. Analysing and providing answers to such

14

questions in a way that is sound from a practical point of view, yet fully
compatible with the underlying theoretical concepts, constitutes the core of
this thesis.

2.5.2 Interpretation of Theoretical Concepts

The interpretation of demonic non-deterministic choice in practical terms
of scheduling is not straightforward. Demonic non-deterministic choice is
a rather theoretical concept, and it differs considerably from scheduling in
traditional programming paradigms such as the imperative one. Apart from
choice, there are also other theoretical modelling constructs that are typic-
ally not found in programming languages. A notable example is miraculous
behaviour, which is not suitable for execution on a physical computer. How-
ever, the way it is typically used in guarded command based languages is as
guards inside a do od loop, and as an assumption sequentially following the
strong iteration in the definition of the loop. When used precisely in this
way, the miraculous statements will never be executed, but they rather serve
as a mechanism of restricting the demonic non-deterministic choice, as well
as controlling loop termination. This ensures that only enabled commands
can be chosen for execution, and that the loop does not terminate as long
as at least one guarded command is enabled. Hence, the impact of miracu-
lous constructs is reduced to scheduling considerations. Consequently, it is
a part of the question about how demonic non-deterministic choice can be
interpreted and implemented in terms of execution on a physical computer.

2.5.3 Questions of Particular Interest

An important question is whether interpretation and implementation of de-
monic non-deterministic choice is scenario specific, rendering guarded com-
mand based languages more suitable for certain types of scenarios than for
others. Furthermore, a scheduling approach is not necessarily equally fit for
all scenarios, leading to the question what scheduling techniques to be used
in what cases. An interesting and fully relevant issue is also whether the
guarded command based nature is to be preserved at the implementation
stage, or whether models should be transformed to resemble programs writ-
ten in traditional programming languages. Performance of the final software
may also depend on the technique that has been used. We find that such
issues are important for the adoption of guarded command based languages,
and the rest of the thesis is dedicated to studying them, particularly in the
context of parallel/ubiquitous scenarios.

15

2.6 Research Methods

The research methods used in the thesis largely boil down to the nature
of computer science, and, in particular, to the sub-discipline we focus on.
Predicates, weakest precondition predicate transformers as well as the re-
finement concept are deeply rooted in mathematics and logic. This calls
for a mathematical and algebraic approach, in contrast to the empirical one
that is characteristic of natural sciences. Some of the scheduling methods
were, indeed, evaluated from a mathematical-logical correctness perspective.

However, despite its mathematical roots, there is also a practical aspect
of formal methods and scheduling. The reason why formal methods are used
in the first place is the development of computer programs, the performance
of which may be difficult to evaluate from a purely theoretical point of view.
Since factors such as communication overhead may also have a large impact,
complexity analysis as used in algorithmics is also not applicable. Because
of this, we found it motivated to perform an empirical study to evaluate the
performance of a specific scheduling approach.

In addition to mathematical correctness and real-world performance,
there is also an ease-of-use aspect. A scheduling method may be theor-
etically correct and perform well, yet be difficult to use from a developer’s
point of view. This property is difficult to quantify and evaluate from a
strictly objective perspective. Nevertheless, we consider it an important as-
pect that we have paid attention to and which we discuss when relevant.
We also shed more light on it when we compare the different scheduling
techniques to each other.

16

Chapter 3

Contributions of the Original

Publications

We will now focus on the research conducted in the original publications
re-published in Part II. In addition to just describing the research of each
paper in isolation (which can also be read in their respective abstracts), we
here put emphasis on relating them to each other. We also shortly discuss
to what degree the thesis author has been involved in each of the papers.

3.1 Paper I

F. Degerlund and K. Sere. “A Framework for Incorporating Trust into
Formal Systems Development”. In: Theoretical Aspects of Computing -
ICTAC 2007, 4th International Colloquium, Proceedings. Ed. by Z. Liu C.
B. Jones and J. Woodcock. Vol. 4711. Lecture Notes in Computer Science.
Springer, 2007, pp. 154–168.

In this paper, we study a means of modelling trust in a social networking
setting. The publication is based on a previous extended abstract [33].
The scenario involves a number of entities (or agents), that may interact
with each other by the means of transactions. Each transaction may have
some specific pre-requisites that must hold. Models are expressed in the
Action Systems formalism, and transactions are represented in the form of
guarded commands, whereby pre-requisites can be expressed in the guard.
In the paper, we used a car sales scenario as an example, whereby e.g. the
ability to afford the price of a car constituted such a pre-requisite. Trust
aspects can be seen as additional entity-specific pre-requisites that must
hold for a transaction to take place, in addition to the basic functional
ones. There are several alternative frameworks for modelling trust, e.g. as
proposed by Degerlund [31] or the subjective logic by Jøsang et al. [51].

17

We used the latter approach in the paper, and trust values representing the
degree of trust between different entities was expressed using variables and
the trust criteria were expressed in a special co-ordination language. The
non-trust part of the system, expressed as an action system, and the trust
aspects modelled in the co-ordination language can easily be merged into a
standard action system, whereby trust criteria become part of the guards
of the guarded commands representing transactions. We can conclude that
the use of a guarded command based modelling language fits this particular
use scenario well, since transactions and trust thresholds inherently exhibit
an event-based nature.

Work division. The principles of the paper were developed jointly by
both co-authors. Most of the writing was performed by Degerlund.

3.2 Paper II

F. Degerlund and K. Sere. “Refinement of Parallel Algorithms”. In: Process
Algebra for Parallel and Distributed Processing. Ed. by M. Alexander and
W. Gardner. Computational Science Series. Chapman & Hall / CRC Press
(Taylor & Francis Group), 2008, pp. 77–96.

We now move from inherently event-based scenarios and focus on the mod-
elling of parallel compute-intensive terminating programs. The approach
we use in this paper has its roots in the PhD thesis of Sere [68]. We start
from a sequential model and use algebraic rewrites to split it into separate
parts that can be executed concurrently, and the methodology is demon-
strated by applying it on a model for integer factorisation. The language
used adheres to the Action Systems formalism, with the extension that we
allow for multiple do od loops that can be sequentially composed. This
extension is valid, since action systems can be seen as a canonical form of
general statements. Refinement calculus is used to show that each rewriting
step is a valid refinement step of the previous one. Note that we focus on
correctness with respect to the input-output relation, i.e. total correctness.
This guarantees that we achieve the desired end result, but at the same
time allows us to flexibly restructure the inner workings of the model to be
compatible with parallel execution. Rewriting is performed in such a way
that we obtain sets of guarded commands, where the commands of different
set should have as few variables in common as possible in order to maximise
parallelism. The sets of guarded commands are intended to be executed on
different computational nodes, interconnected according to a star topology,
and scheduling takes place using the default non-deterministic choice. Note
that while we keep in mind an intended mapping to computational nodes,

18

we never state it explicitly. This is because we only operate on an abstract
modelling level and we have no means of expressing implementation level
details. Mappings contrary to the intended one do not lead to incorrect
results, but performance will typically suffer since variable conflicts would
impair the degree of parallelism.

Work division. The research was conducted in close co-operation by both
authors. Degerlund produced large portions of the text, including most of
the model listings.

3.3 Paper III

F. Degerlund, K. Sere and M. Waldén. “Implementation Issues Concern-
ing the Action Systems Formalism”. In: Proceedings of the Eighth Interna-
tional Conference on Parallel and Distributed Computing Applications and
Technologies (PDCAT’07). Ed. by D. S. Munro, H. Shen, Q. Z. Sheng, H.
Detmold, K. E. Falkner, C. Izu, P. D. Coddington, B. Alexander and S.-Q.
Zheng. IEEE Computer Society Press, 2007, pp. 471–479.

In Paper II, we considered modelling parallel software for execution on com-
putational nodes in a star topology. However, the solution was on quite a
theoretical level. While the restructuring refinement steps led to a model
designed to be suitable for parallel execution, more detailed implementation
aspects were not considered. This paper, which has its roots in the ideas
of an earlier extended abstract [34], focuses on the execution framework
and how scheduling is implemented in practice. It does not concern the
refinement process itself, which can be performed similarly to the method
in Paper II or to the principles in Sere’s thesis [68]. What is of particular
importance is that the models have been developed in such a way that the
guarded commands contain as few shared variables as possible. The basic
principle in this paper is to use a central scheduler that implements the role
of the theoretical non-deterministic demon. In addition to simply deciding
what guarded commands to schedule at what time, it also delegates them to
an appropriate computational node for execution. Scheduling decisions are
taken based on factors such as variable conflicts between guarded commands,
model designer decisions and fairness. Variable conflicts are expressed in a
matrix, which the scheduler respects when deciding which events to sched-
ule concurrently. The models designed may also provide a matrix containing
information on what node(s) specific guarded command may be scheduled.
Furthermore, the scheduler deploys a scheduling algorithm guaranteeing that
all guarded commands will have a chance to be scheduled (provided that
they are enabled), even though Action Systems theory as such does not deal

19

with fairness. The scheduler is also responsible for upholding a record of the
model state, and when scheduling a guarded command, it communicates the
current values of the relevant variables to the executing node. A proof-of-
concept version of the scheduler was developed in C++ [71] for use with
code generated from the Atelier B [28] tool when used to model B Action
Systems [72]. The MPI [56] framework allowed communication between the
central scheduler and the computational nodes.

Work division. The scheduling principles were suggested primarily by
Degerlund, but all three authors were involved in the work. The writing
process was undertaken mostly by Degerlund.

3.4 Paper IV

F. Degerlund. Scheduling Performance of Compute-Intensive Concurrent
Code Developed Using Event-B. Tech. rep. 1051. Turku Centre for Com-
puter Science (TUCS), 2012.

Paper III relied on modelling in the Action Systems formalism and code gen-
eration was performed by the Atelier B tool. However, since Atelier B only
supports classical B, the solution relied on using B Action Systems, which is
an approach of expressing action systems in terms of classical B. To enable
the use of a single formalism, we turned to Event-B and the Rodin tool. As
part of Grönblom’s master’s thesis [41], a code generator was developed as a
plug-in for the Rodin platform, and the scheduler of Paper III was updated
to be compatible with the resulting code. The approach was also described
in a technical report [32]. However, while this constituted a concrete frame-
work for deployment, optimisation had not yet been considered, nor had the
performance of the approach been evaluated in practice. Because of this,
we introduced an optimisation approach and performed an empirical effi-
ciency study in a conference article [30], of which Paper IV is an extended
version. In the unoptimised version, each scheduled guarded command, is
only executed once by a computational node before returning the updated
variables to the central scheduler. This implies a considerable communic-
ation overhead. To counteract the problem, a repetition mechanism was
introduced, allowing for the guarded command to be executed repeatedly a
specific maximum number of times, or, until it disables itself. The sched-
uler implementation, which also contains code controlling the computational
nodes, was adapted to support this mechanism, and a model for parallelised
integer factorisation was used for benchmarking. The tests were performed
on a multicore/multiprocessor machine, and we studied both the practical
applicability of the method itself and the scalability when additional cores

20

were used. The results were compared to a sequential C++ program that
corresponded as closely as possible to the parallel model as far as the fac-
torisation algorithm is concerned. While the sequential version obviously
contained less overhead, it did not have the potential of speed-up from par-
allelism. Because of this, the sequential version was faster when the work
load was low and the number of cores in use was low. However, the parallel
version was considerably faster for larger workloads and a higher number of
cores. We also found indications suggesting that the scheduling framework
scales relatively well.

Work division. Degerlund is the sole author of this paper and the con-
ference paper [30] on which it is based.

3.5 Paper V

P. Boström, F. Degerlund, K. Sere and M. Waldén. “Derivation of concurrent
programs by stepwise scheduling of Event-B models”. In: Formal Aspects of
Computing (2012). doi: 10.1007/s00165-012-0260-5.

The scheduling framework involving a central scheduler bears similarities
to the non-deterministic choice of the modelling languages, and the de-
veloper does not explicitly have to take a stand on scheduling. However,
such a scheduler needs computational resources at run-time, and sometimes
the developer may desire to have more control over scheduling details. To
cater for such situations, we proposed a decentralised approach involving
explicit schedules in a workshop paper [21], of which Paper IV is an ex-
tended version. The idea is that instead of a dedicated scheduler taking
decisions at run-time, the developer expresses an explicit schedule for each
task/process. We rely on shared-variable model decomposition as in related
work [5, 44] and use Event-B for modelling, but the schedules are given
in a separate scheduling language containing e.g. sequential composition of
guarded commands. What constitutes a particular challenge is that such
scheduling deviates from the original non-deterministic choice of Event-B,
yet the scheduled version must functionally adhere to the original specifica-
tion. Because of this, schedules are introduced as refinement steps. We also
note that miraculous behaviour may take place should a guarded command
turn out to be disabled when the schedule mandates its execution. While
this would strictly speaking constitute a valid refinement step, it is not desir-
able for practical reasons. Consequently, it also has to be shown that no new
miraculous behaviour is introduced. Another challenge is that the scheduled
system as a whole should be a refinement of the original model, i.e. it is not
enough to consider each task in isolation, a problem we address by taking

21

interference from other tasks into account. Consequently, there are several
factors that have to be considered as part of schedule introduction, and to
alleviate the burden on the developer, we provide pattern support for some
common scheduling scenarios. To demonstrate our approach in practice, we
schedule a model of the dining philosophers problem [47].

Work division. The idea was originated by Boström and Sere as an ex-
tension of Boström’s previous work [20]. Further theoretical approaches were
developed jointly by all authors. Most writing was performed by Degerlund
and Boström, with some text contributed by Waldén and Sere. This divi-
sion concerns the work resulting in both the underlying article [21] and this
paper (Paper V).

22

Chapter 4

Analysis and Discussion

In this chapter, we focus on analysing the different scheduling approaches
presented in the previous chapter and the original publications. We put
particular emphasis on the respective advantages and drawbacks of each
method, in what scenarios they are most useful, and to what degree they
can be seen as mutually interchangeable for a given modelling scenario.
Furthermore, we compare them to related work in order to highlight the
contribution of the thesis and to position them in a wider research context.
We also briefly discuss how well we have succeeded in addressing the problem
statement of the thesis as given in Section 2.5, and what limitations remain.

The scheduling approaches we have considered can roughly be divided
into three categories:

1. Event-driven scheduling

2. Run-time scheduling

3. Development-time scheduling

Using this classification, Paper I deals with approach number 1, papers II,
III and IV use approach 2, whereas paper V relies on approach 3. We will
now analyse each of the methods more closely.

4.1 Event-driven Scheduling

It is important to note that languages based on the Guarded Command
Language have much in common with event-driven programming. This is
because they contain a collection of instructions without explicit control
flow, but rely on invocation from an external entity. It would be tempting
to call them event-based languages, but that term is already reserved for
process calculi, which clearly constitute a different class of languages. The
key as to why both classes are related to “events” is that they represent two

23

sides of the same coin. Whereas process calculi can be used for controlling
invocations, guarded commands bear similarities to the event handlers in
the event-based programming paradigm. The demonic non-deterministic
choice typically used to invoke the guarded commands can be seen as a
general placeholder for more elaborate control mechanisms. However, it
is not the same as random choice, and it is important to be clear about
this distinction. Whereas random choice would imply a specific distribu-
tion over time, demonic non-deterministic choice does not. Consequently,
demonic non-deterministic choice is more general, and it is intuitively very
close to the concept of spontaneous choices made by one or several agents
(actors/entities) that act on their own behalf. This is similar to user in-
teraction in e.g. graphical user interfaces, which are often designed in an
event-based fashion. This constitutes a connection between guarded com-
mand based languages and event-based programming, and it also explains
why ubiquitous social networking scenarios as discussed in Paper I can be
conveniently modelled in a guarded command based language. The trust
aspects that originally stem from the separate co-ordination language are
easily merged with the guards of the guarded commands and fit well into
the event-driven approach.

4.2 Run-time Scheduling

A key aspect of the scenarios discussed above is their event-driven nature,
which facilitates both modelling in a guarded command based language
as well as the scheduling. However, in other cases, there are no inherent
agents that invoke the guarded commands and implement the demonic non-
deterministic choice. For example, in compute-intensive scenarios such as
those described in Papers II, III and IV, there is no explicit agent that in-
teracts with the system. It may also not be obvious why such scenarios are
modelled in a guarded command based language in the first place. How-
ever, in addition to their formal semantics and refinement support, the
parallel interpretation of these languages constitutes a particular advant-
age when modelling systems intended for concurrent execution. The three
papers dealing with the approach also specifically focus on parallel systems.
Furthermore, they explicitly focus on terminating programs, which is in con-
trast to the scheduling scenario of Paper I. Again, this is a consequence of
the nature of the scenarios modelled (compute-intensive result oriented vs
ubiquitous user-centric).

4.2.1 Scheduling Framework

A crucial question is how to implement the non-deterministic demonic choice
when there are no external agents available. The solution taken here is to use

24

Figure 4.1: Central scheduler and slave tasks in the run-time scheduling
scenario.

a dedicated piece of code, running as a task (process) of its own and schedul-
ing guarded commands at run-time. When a guarded command is chosen,
it will be executed in one of several slave tasks. The scenario is illustrated
in Figure 4.1. Ideally, the physical platform should contain one computa-
tional unit, such as a processor or a processor core, for each slave process
as well as one for the scheduler itself. The scheduler then takes advantage
of the parallel interpretation of guarded command based languages, so that
it may schedule independent guarded commands concurrently. Papers III
and IV also specify low-level aspects such as the use of MPI as the inter-
task communication framework, how the variables are passed between the
scheduling task and the slave ones, as well as how guarded commands are to
be translated to programming language functions/methods. Taking a stand
on such low-level details was important especially in Paper IV in which the
scheduling efficiency of a model for integer factorisation was benchmarked.
However, in general, other communication frameworks could also be used.
Furthermore, it would be possible to implement a more light-weight version
of the scheduling approach where a shared memory platform is assumed,
whereby passing on variable values would be rendered unnecessary. How-
ever, this would obviously eliminate the possibility of executing the model
on a cluster.

4.2.2 Related Techniques

Note that the run-time scheduling approach bears some similarities to the
concept of animation as in the ProB [52], AnimB [57] and BRAMA [69]
plug-ins for the Rodin platform. However, while both run-time scheduling

25

and animation provide for a means of “running” the model by execution
of enabled events, animation is not necessarily automatic but can also be
manually controlled. Perhaps more importantly, the purpose of the run-time
scheduling approach is very different from that of animation. Animation is
typically performed in the development platform in order to test how the
model behaves in practice. It can therefore be seen as a complement to
consistency and refinement proofs as well as model checking. Run-time
scheduling, on the other hand, is intended as a means of deploying the
end product, i.e. it is not a part of the development process. Furthermore,
animation typically does not support parallel execution.

It is also worth comparing our approach to the one used by Méry and
Singh [55]. They have developed a tool, EB2ALL, for translating Event-B
models to the programming languages C, C++, C# and Java. Scheduling
of the resulting code takes place essentially by using a loop construct to
invoke the (translated) guarded commands of the model. However, their
primary focus seems to lie on the code generation part, and, to our know-
ledge, they do not provide support for concurrent execution. However, their
code generator, in itself, is of interest. It can be seen as a more advanced
version of an early Event-B code generator by Wright [74], which supports
the most basic constructs. Wright’s work inspired the translator [32, 41]
that was (partially) used in Paper IV, and EB2ALL could possibly consti-
tute an even more advanced means of generating code for scheduling using
our run-time scheduling approach.

4.3 Development-time Scheduling

In the above run-time scheduling approach, the demonic non-deterministic
choice is implemented by introducing a dedicated scheduler, the role of which
is to invoke the guarded commands. However, the introduction of a schedul-
ing agent may seem like an artificial attempt to enforce an event-based ap-
proach for a scenario that is not inherently event-driven.

4.3.1 Towards Task-specific Schedules

An alternative way forward would be to focus on moving away from the
event-focused nature of the guarded command based languages. Such an
approach would eliminate the need for a separate scheduler, and the code
would instead contain more elaborate control structures such as those typ-
ically associated with imperative programming languages. An important
aspect of such a transition is to preserve the properties of the original spe-
cification. This can be achieved by introducing the constructs as one or
several refinement steps. However, it may be inconvenient to introduce the
control constructs on an ad-hoc basis directly on the set transformer level.

26

Figure 4.2: Development-time scheduling. The model is first decomposed
into sub-models. Schedules are then introduced on the individual sub-
models.

This is where schedules expressed in a separate scheduling language enter
the picture. Furthermore, to constitute a viable alternative to the previ-
ously discussed run-time scheduling approach, parallel execution must be
supported. This can be achieved by the developer giving a separate sched-
ule for each task in the system. Prior to schedule introduction, the model
has to be decomposed into sub-models, one for each task to be scheduled.
Shared-variable decomposition can be performed both in the Action Systems
formalism [10] and in Event-B [5]. Here, we have focused on the latter. A
conceptual illustration of the development-time scheduling approach is given
in Figure 4.2, showing a special case in which schedules are introduced in a
single refinement step.

4.3.2 Comparison to Other Work

In the approach of Paper V, the schedules are given in a special purpose
scheduling language, and this language is given a semantics through the
means of a function mapping it to the corresponding set transformers. It
then needs to be proven that the resulting set transformers constitute a re-
finement of the unscheduled model. As previously mentioned in the paper
overview, patterns can be used to assist the developer. They can be seen as
general proofs of commonly occurring scheduling scenarios, and the paper
provides a few examples of such patterns. The approach of Paper V is an
extension of an approach by Boström [20], in which a similar technique was
used to schedule Event-B models sequentially. It also bears similarities to
the scheduling frameworks of Hallerstede [43] and Iliasov [48]. The major im-
provement compared to Boström’s sequential framework is the support for
multiple tasks. Since the tasks communicate with each other using shared
variables, they cannot be refined completely in isolation. This restriction
also applies to scheduling, since schedule introduction involves refinement.
The key here is to strike a balance by taking interference from other tasks
into account in the form of external variables and external events (external

27

guarded commands) [5], yet to allow for relatively independent refinement.
The refinement approach of individual tasks of a parallel program is sim-
ilar to what has been proposed by Hoang and Abrial [44]. However, explicit
schedules constitute a complicating factor as compared to their work, where
they use the standard demonic non-deterministic scheduling. A more com-
prehensive comparison to related work is given in Section 7 of Paper V.

4.4 Comparative Discussion

From the above discussion, we can see that the three scheduling approaches
are quite different from each other, even though they all have the same goal,
i.e. to schedule software developed using a guarded command based lan-
guage. To emphasise their differences, we find it motivated to classify them
as scheduling paradigms. As for terminology, it is also worth noting that the
names “event-driven scheduling”, “run-time scheduling” and “development-
time scheduling” must be understood as the specific scheduling paradigms
that we have analysed here. For example, “run-time scheduling” can gen-
erally be applied to any scheduling that is performed on-the-fly, whether it
is sequential or parallel, and whether there is a separate scheduler or not,
whereas “run-time scheduling” in this thesis has a very specific meaning.

4.4.1 Applicability

It is evident that the different scheduling paradigms are not equally well
applicable in all possible cases. In fact, their respective suitability depends
on the nature of the scenario. This gap is evident especially when comparing
the event-driven scheduling to the two other paradigms, where practical
applicability boils down to whether the scenario is inherently event-driven
or not.

The choice between run-time and development-time scheduling is, in
contrast, less obvious. Both paradigms constitute possible candidates for
parallel models without inherent invoking agents. An important difference
is that for run-time scheduling, a separate task is needed for the scheduler,
in addition to those used by the model itself. For performance reasons, an
extra hardware computational unit should preferably be reserved for this
task. Furthermore, since scheduling is performed automatically and on-
the-fly, the developer is not able to explicitly optimise scheduling, apart
from simply limiting what guarded commands can be executed in what
tasks. However, the developer can (and should) implicitly improve parallel
schedulability by making sure that events have as few variables as possible
in common.

In the development-time scheduling approach, no dedicated scheduling
task is needed, and the developer has the possibility to write optimised

28

schedules for each task. At first sight, it may seem as if there are only ad-
vantages as compared to run-time scheduling. However, designing appropri-
ate schedules increases the burden on the developer, who has to foresee what
events will be enabled at what point during execution. The schedules must
also be proven correct, requiring additional effort from the developer. These
problems do not exist in the run-time scheduling paradigm, since it is easy
to check enabledness of the guarded commands at run-time. Another limit-
ation of the development-time scheduling is that a shared memory platform
is assumed, which is not the case for the run-time paradigm, if it is imple-
mented, as proposed, using MPI. On the other hand, if the intended target
platform indeed has shared memory, the run-time scheduling paradigm could
be adapted to use e.g. POSIX threads instead of MPI, which could give a
performance speed-up, at least in theory.

There is obviously not a clear-cut answer to which of these two paradigms
is “better”, but the above considerations should rather be evaluated in each
individual case. An interesting prospect would be to use both paradigms
for the same project. For example, run-time scheduling could be used for
prototype development, whereas time would be invested in developing and
proving explicit schedules for the final product.

4.4.2 Chronological Comparison

We also note that the three scheduling paradigms can be ordered chronolo-
gically with respect to how much they adhere to an event-driven approach.
An illustration is given in Figure 4.3. The event-driven paradigm, obviously,
presents the most event-driven characteristics of the three. Next, we have
run-time scheduling, which is event-driven with an artificial invoking agent.
The least event-driven paradigm is development-time scheduling, where ex-
plicit schedules replace the scheduling agent. However, while providing a
means of classification, the chronological order does not necessarily correl-
ate with the applicability of the paradigms.

4.5 Success, Completeness and Limitations

In Section 2.5, we gave a problem statement for the thesis and discussed
questions to be answered. The core challenge was how to handle the the-
oretical nature of demonic non-deterministic choice for practical scheduling
purposes, which is a question of particular interest in parallel scenarios. Our
approach to tackling the problem has been to identify three distinct schedul-
ing paradigms and to explore their respective merits and applicability. These
methods have been thoroughly discussed and we have demonstrated how
they can be applied.

29

Figure 4.3: Chronological comparison indicating relative differences between
the scheduling paradigms.

We have also compared the scheduling paradigms to each other and
briefly discussed which one to choose for what kind of scenarios. However,
an interesting question is how well the paradigms, when taken as a whole,
cover the whole array of conceivable scheduling needs. A complicating factor
is that the scheduling paradigms have been chosen on the basis of practical
considerations rather than strict mathematical-logical reasoning, making it
more difficult to draw conclusions on their “completeness” on the whole.
Despite this, some interesting facts can be noted. For example, from a
strictly computational point of view, any model that can be translated can
also be executed according to the run-time scheduling paradigm. Constructs
that are not currently supported by code generation cannot be used, though,
and the resulting code may be very inefficient if the method is applied on
models that are less than ideal for automatic scheduling. In such cases, re-
modelling (e.g. optimising for parallelism and repeated execution of events)
or switching to development-time scheduling may be appropriate. Further-
more, applying the computationally oriented run-time scheduling paradigm
to event-driven scenarios does not make much sense in practice, since the
guarded commands would not be associated with external events, missing
what constitutes the purpose of such models in the first place. Despite the
fact that many, or most, models can be scheduled using one of the three
paradigms, there may be models for which none of them is ideal. A prob-
lematic scenario would be a compute-intensive model that is difficult to
optimise or parallelise for automatic run-time scheduling, and for which the
proof obligations involved in development-time scheduling are hard to prove.
However, sometimes such difficulties may also be due to inappropriate mod-
elling or algorithms rather than limitations of the scheduling paradigms.

On the whole, we believe that while challenges and limitations remain,
our research has been successful in providing additional insight into the prob-
lem of implementing and scheduling models based on guarded commands.
Our work indicates that the proposed solutions may be viable and have the
potential as a foundation for further research and practical deployment.

30

Chapter 5

Conclusions

In this thesis, we have studied practical scheduling aspects of languages with
their roots in Dijkstra’s Guarded Command Language. While we have fo-
cused primarily on the Action Systems formalism and Event-B, we believe
that both the challenges and solutions could be extended to other languages
based on guarded commands. This class of languages provides a powerful
means of reasoning about models, largely thanks to the weakest precon-
dition predicate transformer semantics and the Refinement Calculus. The
behavioural semantics of models in these languages relies on demonic non-
deterministic choice between enabled guarded commands, i.e. those guarded
commands whose guards evaluated to true. This theoretical scheduling prin-
ciple also has an impact on how models are to be expressed, and it may or
may not be convenient for representing a given scenario. An equally inter-
esting aspect is how the non-deterministic scheduling works out when an
abstract model is implemented and executed on physical computers. Since
guarded command based languages are particularly suitable for concurrent
scenarios, we have focused on scheduling of parallel and ubiquitous systems.

We first studied a ubiquitous scenario in which scheduling took place
solely based on external agents triggering the guards. Additional scheduling
criteria, reflecting social trust between agents, were modelled in a separate
co-ordination language. These policies were then imposed onto the main
model as part of the guards. This approach turned out to be successful, but
it cannot be used in more general cases. The ubiquitous scenario we studied
was inherently event-driven, in which case the agents conveniently play the
role of the non-deterministic demon.

In the general case, there are no inherent agents that invoke the guarded
commands. One approach to addressing this problem is to introduce a ded-
icated scheduler. We focused on parallel, compute-intensive scenarios and
suggest a scheduling task, or process, that invokes guarded commands in
computational slave tasks. It is the responsibility of the scheduler not to

31

delegate conflicting guarded commands for concurrent execution. Further-
more, the scheduler keeps track of the global state space of the model, and
variables are communicated between the scheduler and the slave nodes as
needed. In order to avoid excessive communication overhead, we proposed an
optimisation, according to which the slaves under certain circumstances may
repeat guarded command execution without the involvement of the sched-
uler. To evaluate practical applicability of the approach, we performed an
empirical performance study on a multicore/multiprocessor computer using
the MPI message passing library for inter-task communication. We found
that the approach performed and scaled well in our test case model. How-
ever, certain granularity parameters has to be appropriately set in order to
achieve the good results.

Finally, we considered a scheduling paradigm in which schedules for the
tasks are manually designed at development-time. This is in contrast to the
automatic run-time scheduling discussed above. Here, we also assumed that
the variables are stored in a shared memory. The schedules are expressed
in a dedicated scheduling language, and they are introduced as refinement
steps onto sub-models, which result from shared-variable decomposition of
the initial model. To assist the developer, we proposed a pattern-based
approach to showing that the scheduled task is, indeed, a refinement of the
original sub-model. A complicating factor is interference from other tasks.
This aspect is taken into account in the correctness proofs, and it manifests
as external guarded commands when operating at a low level. However,
efforts were made to abstract it away from the developer, and it is not
visible on the scheduling language level.

In conclusion, we have considered three different paradigms for schedul-
ing models expressed in guarded command based languages. We have com-
pared these approaches to each other as well as to related methods in the
literature. The methods are quite different from each other, and they
have their respective advantages and drawbacks. Furthermore, they are
not equally suitable for all cases, but what can be considered the most ap-
propriate scheduling paradigm depends on the scenario in question. We
believe that practical scheduling considerations are important for the wider
adoption of guarded command based languages, and it is our hope that the
contributions of this thesis will constitute one further step in that direction.

32

Bibliography

[1] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[3] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta and
L. Voisin. “Rodin: an open toolset for modelling and reasoning in
Event-B”. In: International Journal on Software Tools for Technology
Transfer (STTT) 12.6 (2010), pp. 447–466.

[4] J.-R. Abrial, M. Butler, S. Hallerstede and L. Voisin. “An Open Ex-
tensible Tool Environment for Event-B”. In: Formal Methods and Soft-
ware Engineering. Ed. by Z. Liu and J. He. Vol. 4260. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2006, pp. 588–605.

[5] J.-R. Abrial and S. Hallerstede. “Refinement, Decomposition, and In-
stantiation of Discrete Models: Application to Event-B”. In: Funda-
menta Informaticae 77.1-2 (2007), pp. 1–28.

[6] R. J. R. Back. “On the Correctness of Refinement Steps in Program
Development”. Report A-1978-4. PhD thesis. University of Helsinki,
Department of Computer Science, 1978.

[7] R. J. R. Back. “Refinement calculus, part II: Parallel and reactive
programs”. In: Stepwise Refinement of Distributed Systems Models,
Formalisms, Correctness. Ed. by J. de Bakker, W. de Roever and G.
Rozenberg. Vol. 430. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 1990, pp. 67–93.

[8] R. J. R. Back and R. Kurki-Suonio. “Decentralization of process nets
with centralized control”. In: Proceedings of the second annual ACM
symposium on Principles of distributed computing. ACM, 1983, pp. 131–
142.

[9] R. J. R. Back and R. Kurki-Suonio. “Distributed Cooperation with
Action Systems”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 10.4 (Oct. 1988), pp. 513–554.

33

[10] R. J. R. Back and K. Sere. “From Action Systems to Modular Sys-
tems”. In: Formal Methods Europe (FME’94). Lecture Notes in Com-
puter Science. Springer-Verlag, 1994, pp. 1–25.

[11] R. J. R. Back and K. Sere. “Superposition Refinement of Reactive
Systems”. In: Formal Aspects of Computing 8 (3 1996), pp. 324–346.

[12] R. J. R. Back and J. von Wright. “Reasoning algebraically about
loops”. In: Acta Informatica 36 (1999), pp. 295–334.

[13] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. First edition. Springer, 1998.

[14] R. J. R. Back and J. von Wright. “Refinement calculus, part I: Sequen-
tial nondeterministic programs”. In: Stepwise Refinement of Distrib-
uted Systems Models, Formalisms, Correctness. Ed. by J. de Bakker,
W. de Roever and G. Rozenberg. Vol. 430. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1990, pp. 42–66.

[15] R. J. R. Back and J. von Wright. “Trace Refinement of Action Sys-
tems”. In: CONCUR ’94: Concurrency Theory. Ed. by B. Jonsson
and J. Parrow. Vol. 836. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 1994, pp. 367–384.

[16] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 1999.

[17] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham
et al. Manifesto for Agile Software Development. 2001. url: http:
//agilemanifesto.org/.

[18] J. Bicarregui, J. Fitzgerald, P. Larsen and J. Woodcock. “Industrial
Practice in Formal Methods: A Review”. In: FM 2009: Formal Meth-
ods. Ed. by A. Cavalcanti and D. Dams. Vol. 5850. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2009, pp. 810–813.

[19] D. Bjørner and C. B. Jones, eds. The Vienna Development Method:
The Meta-Language. Vol. 61. Lecture Notes in Computer Science.
Springer, 1978.

[20] P. Boström. “Creating Sequential Programs from Event-B Models”.
In: Integrated Formal Methods: 8th International Conference (IFM
2010). Ed. by D. Méry and S. Merz. Vol. 6396. Lecture Notes in Com-
puter Science. Springer, 2010.

[21] P. Boström, F. Degerlund, K. Sere andM.Waldén. “Concurrent Sched-
uling of Event-B Models”. In: Proceedings 15th International Refine-
ment Workshop. Ed. by J. Derrick, E. A. Boiten and S. Reeves. Vol. 55.
Electronic Proceedings in Theoretical Computer Science (EPTCS).
Open Publishing Association, 2011, pp. 166–182.

34

[22] S. M. Brien and J. E. Nicholls. Z Base Standard Version 1.0. Technical
Monograph PRG-107. 1992.

[23] M. Butler. “Decomposition Structures for Event-B”. In: Integrated
Formal Methods. Ed. by M. Leuschel and H. Wehrheim. Vol. 5423. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2009,
pp. 20–38.

[24] J. N. Buxton and B. Randell, eds. Software Engineering Techniques.
Report on the NATO Software Engineering Conference 1969. NATO
Science Committee, 1970.

[25] A. Cavalcanti, A. Sampaio and J. Woodcock. “A Refinement Strategy
for Circus”. In: Formal Aspects of Computing 15 (2 2003), pp. 146–
181.

[26] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[27] E. Clarke and E. Emerson. “Design and synthesis of synchronization
skeletons using branching time temporal logic”. In: Logics of Pro-
grams Workshop 1981. Vol. 131. Lecture Notes in Computer Science.
Springer, 1982, pp. 52–71.

[28] ClearSy System Engineering. Atelier B web site. url: http://www.a
telierb.eu/.

[29] Creol web site. url: http://heim.ifi.uio.no/~creol/.

[30] F. Degerlund. “Scheduling of Compute-Intensive Code Generated from
Event-B Models: An Empirical Efficiency Study”. In: Proceedings of
Distributed Applications and Interoperable Systems (DAIS) 2012. Ed.
by K. Göschka and S. Haridi. Vol. 7272. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2012, pp. 177–184.

[31] F. Degerlund. “Trust Mass, Volume and Density - a Novel Approach
to Reasoning about Trust”. In: Proceedings of the 2nd International
Workshop on Security and Trust Management (STM 2006). Ed. by
S. Etalle and P. Samarati. Vol. 179. Electronic Notes in Theoretical
Computer Science. Elsevier, 2007, pp. 87–96.

[32] F. Degerlund, R. Grönblom and K. Sere. Code Generation and Schedul-
ing of Event-B Models. Tech. rep. 1027. Turku Centre for Computer
Science (TUCS), 2011.

[33] F. Degerlund and K. Sere. “A Framework for Incorporating Trust into
the Action Systems Formalism”. In: Proceedings for the 18th Nordic
Workshop on Programming Theory (NWPT’06), Reykjav́ık, Iceland,
18-20 October, 2006. 2006.

35

[34] F. Degerlund, M. Waldén and K. Sere. “Implementation Issues Con-
cerning the Action Systems Formalism”. In: 17th Nordic Workshop
on Programming Theory, Presentation Abstracts. DIKU, University of
Copenhagen, 2005, pp. 59–61.

[35] E. W. Dijkstra. “A constructive approach to the problem of program
correctness”. In: BIT Numerical Mathematics 8 (3 1968), pp. 174–186.

[36] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[37] E. W. Dijkstra. “Guarded commands, nondeterminacy and formal de-
rivation of programs”. In: Communications of the ACM 18.8 (Aug.
1975), pp. 453–457.

[38] Eclipse platform. url: http://www.eclipse.org/.

[39] Event-B and Rodin platform web site. url: http://www.event-b.or
g/.

[40] R. W. Floyd. “Assigning Meanings to Programs”. In: Mathematical
Aspects of Computer Science 19 (1967), pp. 19–32.

[41] R. Grönblom. “A Framework for Code Generation and Parallel Exe-
cution of Event-B Models”. Master’s thesis. Åbo Akademi University,
2009.

[42] S. Hallerstede. “On the Purpose of Event-B Proof Obligations”. In:
Abstract State Machines, B and Z. Ed. by E. Börger, M. Butler, J.
Bowen and P. Boca. Vol. 5238. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, pp. 125–138.

[43] S. Hallerstede. “Structured Event-B models and proofs”. In: Abstract
State Machines, B and Z. Vol. 5977. Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2010, pp. 273–286.

[44] T. S. Hoang and J.-R. Abrial. “Event-B decomposition for parallel pro-
grams”. In: ABZ 2010. Vol. 5977. Lecture Notes in Computer Science.
Springer-Verlag, 2010, pp. 319–333.

[45] C. A. R. Hoare. “An axiomatic basis for computer programming”. In:
Communications of the ACM 12.10 (Oct. 1969).

[46] C. A. R. Hoare. “Communicating sequential processes”. In: Commu-
nications of the ACM 21 (8 Aug. 1978), pp. 666–677.

[47] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[48] A. Iliasov. On Event-B and control flow. Tech. rep. CS-TR-1159. School
of Computing Science, Newcastle University, 2009.

[49] E. B. Johnsen and O. Owe. “An Asynchronous Communication Model
for Distributed Concurrent Objects”. In: Software and Systems Mod-
eling 6 (1 2007), pp. 39–58.

36

[50] E. B. Johnsen, O. Owe and M. Arnestad. “Combining Active and Re-
active Behavior in Concurrent Objects”. In: Proceedings of the Nor-
wegian Informatics Conference (NIK’03). Ed. by D. Langmyhr. Tapir
Academic Publisher, Nov. 2003, pp. 193–204.

[51] A. Jøsang and S. J. Knapskog. “A metric for trusted systems”. In:
Proceedings of the 21st National Security Conference. NSA, 1998.

[52] M. Leuschel and M. Butler. “ProB: an automated analysis toolset
for the B method”. In: International Journal of Software Tools for
Technology Transfer (STTT) 10 (2 Feb. 2008), pp. 185–203.

[53] N.G. Leveson and C.S. Turner. “An investigation of the Therac-25
accidents”. In: Computer 26.7 (July 1993), pp. 18–41.

[54] J. L. Lions. ARIANE 5 Flight 501 Failure. Report by the Inquiry
Board. 1996. url: http://www.di.unito.it/~damiani/ariane
5rep.html.

[55] D. Méry and N. K. Singh. “Automatic Code Generation from Event-
B Models”. In: Proceedings of the Second Symposium on Information
and Communication Technology. SoICT ’11. ACM, 2011, pp. 179–188.

[56] Message Passing Interface Forum. url: http://www.mpi-forum.or
g/.

[57] C. Métayer. AnimB web site. url: http://www.animb.org/.

[58] C. Métayer and L. Voisin. The Event-B Mathematical Language. 2009.
url: http://deploy-eprints.ecs.soton.ac.uk/11/4/kernel_lan
g.pdf.

[59] B. Meyer. Eiffel: The Language. First edition. Prentice Hall, 1991.

[60] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[61] R. Milner. Communicating and mobile systems: the pi-calculus. First
edition. Cambridge University Press, 1999.

[62] C. Morgan. Programming from Specification. Second edition. Prentice
Hall, 1994.

[63] J. M. Morris. “A theoretical basis for stepwise refinement and the
programming calculus”. In: Science of Computer Programming 9.3
(Dec. 1987), pp. 287–306.

[64] G. J. Myers. The Art of Software Testing. First edition. Wiley, 1979.

[65] D. Parnas. “Really Rethinking ‘Formal Methods’”. In: Computer 43
(2010), pp. 28–34.

[66] A. Pnueli. “The temporal logic of programs”. In: Proceedings of 18th
Annual Symposium on Foundations of Computer Science. 1977, pp. 46–
57.

37

[67] W. Royce. “Managing the Development of Large Software Systems”.
In: Proceedings of IEEE WESCON. IEEE, 1970.

[68] K. Sere. “Stepwise Derivation of Parallel Algorithms”. PhD thesis.
Åbo Akademi University, 1990.

[69] T. Servat. “BRAMA: A New Graphic Animation Tool for B Models”.
In: B 2007: Formal Specification and Development in B. Ed. by J.
Julliand and O. Kouchnarenko. Vol. 4355. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2006, pp. 274–276.

[70] J. Spivey. The Z Notation: A Referene Manual. Prentice-Hall, 1992.

[71] B. Stroustrup. The C++ Programming Language. Third edition. Addi-
son-Wesley Professional, 1997.

[72] M. Waldén and K. Sere. “Reasoning about Action Systems using the
B-Method”. In: Formal Methods in System Design 13 (1 1998), pp. 5–
35.

[73] N. Wirth. “Program development by stepwise refinement”. In: Com-
munications of the ACM 14 (4 Apr. 1971), pp. 221–227.

[74] S. Wright. “Using EventB to Create a Virtual Machine Instruction Set
Architecture”. In: Abstract State Machines, B and Z (2008), pp. 265–
279.

38

Part II

Original Publications

39

Paper I

A Framework for Incorporating Trust into Formal
Systems Development

Fredrik Degerlund and Kaisa Sere

Full original reference:

F. Degerlund and K. Sere. “A Framework for Incorporating Trust into
Formal Systems Development”. In: Theoretical Aspects of Computing -
ICTAC 2007, 4th International Colloquium, Proceedings. Ed. by Z. Liu C.
B. Jones and J. Woodcock. Vol. 4711. Lecture Notes in Computer Science.
Springer, 2007, pp. 154–168.

c© 2007 Springer Berlin/Heidelberg. Reprinted in accordance with the
policies of the copyright holder.

N.B. This paper is not included in the electronic edition of the thesis.

Paper II

Refinement of Parallel Algorithms

Fredrik Degerlund and Kaisa Sere

Full original reference:

F. Degerlund and K. Sere. “Refinement of Parallel Algorithms”. In: Process
Algebra for Parallel and Distributed Processing. Ed. by M. Alexander and
W. Gardner. Computational Science Series. Chapman & Hall / CRC Press
(Taylor & Francis Group), 2008, pp. 77–96.

Process algebra for parallel and distributed processing by ALEXANDER,
MICHAEL Copyright 2008 Reproduced with permission of TAYLOR &
FRANCIS GROUP LLC - BOOKS in the format Dissertation via Copy-
right Clearance Center.

N.B. This paper is not included in the electronic edition of the thesis.

Paper III

Implementation Issues Concerning the Action
Systems Formalism

Fredrik Degerlund, Kaisa Sere and Marina Waldén

Full original reference:

F. Degerlund, K. Sere and M. Waldén. “Implementation Issues Concern-
ing the Action Systems Formalism”. In: Proceedings of the Eighth Interna-
tional Conference on Parallel and Distributed Computing Applications and
Technologies (PDCAT’07). Ed. by D. S. Munro, H. Shen, Q. Z. Sheng, H.
Detmold, K. E. Falkner, C. Izu, P. D. Coddington, B. Alexander and S.-Q.
Zheng. IEEE Computer Society Press, 2007, pp. 471–479.

c© 2007 IEEE. Reprinted, with permission, from Fredrik Degerlund, Kaisa
Sere and Marina Waldén, Implementation Issues Concerning the Action Sys-
tems Formalism, Eighth International Conference on Parallel and Distrib-
uted Computing, Applications and Technologies, PDCAT 2007, December
2007.

N.B. This paper is not included in the electronic edition of the thesis.

Paper IV

Scheduling Performance of Compute-Intensive
Concurrent Code Developed Using Event-B

Fredrik Degerlund

Full original reference:

F. Degerlund. Scheduling Performance of Compute-Intensive Concurrent
Code Developed Using Event-B. Tech. rep. 1051. Turku Centre for Com-
puter Science (TUCS), 2012.

The paper is based on the following work:

F. Degerlund. “Scheduling of Compute-Intensive Code Generated from Event-
B Models: An Empirical Efficiency Study”. In: Proceedings of Distributed
Applications and Interoperable Systems (DAIS) 2012. Ed. by K. Göschka
and S. Haridi. Vol. 7272. Lecture Notes in Computer Science. Springer Ber-
lin / Heidelberg, 2012, pp. 177–184.

Scheduling Performance of Compute-
Intensive Concurrent Code Developed
Using Event-B

Fredrik Degerlund
Åbo Akademi University, Department of Information Technologies
Joukahainengatan 3-5, FIN-20520Åbo/Turku, Finland
fredrik.degerlund@abo.fi

TUCS Technical Report

No 1051, August 2012

Abstract

Event-B is a tool-supported specification language that canbe used e.g. for the
modelling of concurrent programs. This calls for code generation and a means
of executing the resulting code. One approach is to preservethe original event-
based nature of the model and use a run-time scheduler and message passing to
execute the translated events on different computational nodes. While constitut-
ing a straightforward method, it involves considerable communication overhead, a
problem aggravated by the fine-grained nature of events in Event-B. In this paper,
we consider the efficiency of such a solution when applied to acompute-intensive
model. In order to mitigate overhead, we also use a method allowing computa-
tional nodes to repeat event execution without the involvement of the scheduler.
To find out under what circumstances the approach performs most efficiently, we
perform an empirical study with different parameters.

Keywords: Parallel computing, Event-B, Scheduling, Message passing, Effi-
ciency

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Event-B [2] is a formal modelling language based on set transformers and the
stepwise refinement approach. While designed for full-system modelling, it can
also be used for correct-by-construction software development. Event-B also has a
parallel interpretation, which allows for the modelling ofconcurrent systems. Tool
support for Event-B has been achieved through the open-source Rodin platform
[3, 4, 27], to which further functionality can be added in theform of plug-ins.

Code generation from Event-B can be achieved in a number of different ways.
A straightforward approach that preserves the event naturehas been proposed in
[12, 18], for which a preliminary plug-in has been developed. In this approach,
the model is translated into a C++ class, where events are directly translated into
methods. The methods are invoked using a separate scheduler, which in turn
deploys the MPI (Message Passing Interface) [24] library toachieve parallel exe-
cution on a multi-core/multi-processor system, or even on acluster. This solution
has the advantage that code execution very closely reflects the operating mecha-
nisms of the Event-B model. An additional benefit is that it also does not require
the developer to take a stand on specific schedules and prove that they are com-
patible with the original model.

However, this approach has a potentially serious drawback in the amount of
overhead introduced by the scheduler and the MPI communication. Due to the
practical nature of communication overhead, we recognise that it is difficult to
evaluate the impact from a strictly mathematical-logical perspective. The purpose
of this paper is, instead, to evaluate the viability of the scheduling approach by
performing an empirical study. Since preliminary tests indicate that the overhead
is unacceptably large, we propose a means of repeating execution of events with-
out the involvement of the scheduler. The repetitive approach is implemented as
part of the scheduling platform, and we let a factorisation model serve as a testbed
for benchmarking. This technical report constitutes an extended version of a pre-
viously published conference paper [11]. We here provide additional background
information as well as a more detailed description of our research than in the orig-
inal article.

The rest of the paper is structured as follows. We first discuss related work
in Section 2. In Section 3, we present background information on the Event-B
formalism to the extent needed for understanding this paper. We also discuss how
the models can be translated into a programming language (C++). Section 4 is
dedicated to concurrent scheduling of models. We also deal with communication
overhead and propose a repeating approach to improve efficiency. In Section 5, we
present the factorisation model that serves as the testbed for our study, whereas we
in Section 6 discuss how the actual benchmarking takes place. We give a number
of test configurations that we have used for the test runs, after which we present
the resulting execution times as well as an interpretation thereof. Finally, we sum
up the paper and draw conclusions in Section 7.

1

2 Related Work

Unlike the classical B method [1], which focuses on acorrect-by-construction
approach, Event-B [2] was designed with system-level modelling in mind, but it
can also be used for pure software development. The formalism has its roots in B
Action Systems [30], based on the Action Systems formalism [6], which has been
used e.g. for the derivation of parallel algorithms [28]. Asa result, Event-B is
also suitable for modelling of parallel software. The use ofEvent-B is facilitated
by the Rodin platform [3, 4, 27], which provides tool supportfor the formalism.
Rodin is based on the Eclipse framework [14], and custom plug-ins can also be
used in the platform to provide additional functionality.

The Event-B scheduling approach we evaluate in the paper is based on [12,
18], which in turn has its roots in [13]. It is superficially related to the concept
of animation as in the ProB [22], AnimB [25] and Brama [29] plug-ins for the
Rodin platform. However, animation can be seen as a supplementary methodol-
ogy during the modelling and development stage, while we (asin [12, 13, 18])
use automated scheduling as a means of executing the final code generated from
the model. Furthermore, parallelism is typically not supported in animation, since
the primary goal of animation is to analyse models instead ofachieving efficient
execution.

Another approach to scheduling of Event-B models has been taken in papers
[21], [19] and [8]. The basic idea is to provide the models with explicit (sequen-
tial) control flow information expressed in dedicated scheduling languages. The
developer then has to prove that the desired control flow is correct with respect
to the typical Event-B behavioural semantics discussed in Section 3. This kind of
scheduling can also be extended to handle parallelism [9]. However, an important
difference as compared to the method we study is that scheduling decisions are
taken and proven correct by the developer at the modelling stage. The approach
we explore can instead be regarded ason-the-flyscheduling, where the scheduler
takes scheduling decisions duringrun-timebased on the current state. This elimi-
nates the need for explicit schedule design and associated proofs, but may, on the
other hand, induce a performance penalty.

A means of scheduling is also proposed in [23] for use with code obtained
by the Event-B to C/C++/C#/Java code generator EB2ALL, which the authors
present in the paper. However, to our knowledge, it supportsonly sequential exe-
cution, and therefore operates in a setting different from the one we consider here.
An approach that does support parallelism is given in [15], where Event-B models
are translated into Java for concurrent execution. The schedules are expressed by
the model developer in a dedicated language called OCB (Object-oriented Concur-
rent B). In that sense, it bears similarities to the developer-scheduled approaches
discussed above, in contrast to an on-the-fly approach. The method has also more
recently been adapted [16] for use with the Ada language.

2

3 Event-B and Code Generation

3.1 The Event-B Formalism

Models in Event-B consist ofstaticanddynamicparts, denotedcontextsandma-
chines, respectively. Contexts may contain e.g.constants, carrier setsandaxioms,
and can be used by one or several machines. Machines, in turn,contain elements
such asvariables, eventsand invariants. The variablesv form the state space of
the model, whereas events model atomic state updates. Thereis also a special
initialisation event that gives initial values to the variables. The invariant I(v)
is used to assign types to the variables, as well as to restrict the valid state space.
Consequently, the initialisation event mustestablishthe invariant, whereas the rest
of the events mustpreserveit.

Each event, except for the initialisation, contains aguardG(v) and anaction
v :| A(v, v′). The guard contains a condition that must hold in order for the event
to be allowed to take place, whereby the event is said to beenabled. The action
describes how the state space is to be updated once the event is enabled and trig-
gered. An event can be expressed in the following general form [20]:

E , when G(v) then v :| A(v, v′) end

Here,v andv′ represent the variables before and after the event has takenplace,
respectively. The operator :| represents non-deterministic assignment, whereby
v :| A(v, v′) intuitively means that the variablesv are updated in such a way that
thebefore-after predicateA(v, v′) holds. A special case of the non-deterministic
assignment operator is the deterministic assignment, :=, which closely resembles
the assignment operator in standard programming languages. Note that the initial-
isation event is an exception, containing only an action butno guard. It also does
not depend on a previous state.

Refinement [5, 7, 31] is a key concept in Event-B, enabling models to be de-
veloped in a stepwise manner. The idea is to achieve a chain ofmodels, beginning
from an abstract one and gradually turning it into more concrete ones. For each
step, it must be shown that the new model is correct with respect to the previous
one. We omit a detailed description of refinement in this paper, since we only
focus on the last refinement step, which is the one to be converted to program
code.

Event-B does not mandate any specific behavioural semantics. Instead, it de-
fines a number of proof obligations, and any semantics compatible with them can
be used. Typically, the same behavioural semantics as in theAction Systems
formalism is deployed, and that one has also been used in thispaper. First, the ini-
tialisation event is executed, after which the rest of the execution can be thought of
as the events of the machine residing inside a loop. In each iteration, any enabled
event is non-deterministically chosen for execution, and the loop only terminates

3

when no event is enabled any longer. This can be interpreted as a deadlock situa-
tion in control systems, but for the input-output focused models we are interested
in, it corresponds to termination.

3.2 Code Generation

Event-B does not specify how to generate executable code from models, and the
Rodin tool in its basic form cannot translate models into a programming language
without the use of extensions. However, a number of different approaches have
been proposed. In [32], a code generator plug-in was developed. It was mainly
intended for use as part of a virtual machine project, and supported translation of
the most important Event-B constructs. This approach was taken a step further
towards a more general-purpose tool, albeit an experimental one, in [12, 18]. The
model first has to be refined according to the Event-B refinement rules (e.g. using
the Rodin tool) until the events only contain concrete constructs that have direct
equivalents in C++. The guard of the event is translated intoa method returning
a boolean value reflecting enabledness, whereas the action results in a separate
method containing the C++ equivalent of its assignments. The idea was that the
resulting methods could be invoked by an accompanying scheduler.

The testbed model (see Section 5) we benchmark in this paper (Section 6) is
based upon a model originally used in [12, 18], and the translated code thereof.
The model has, however, been amended in ways that could not behandled by
the translation plug-in, and the code used for in this paper has, to a certain de-
gree, been translated manually. Even though we here rely on manually generated
code for evaluation of the scheduling approach, the processis time-consuming
and error-prone. Due to the latter, in particular, manual translation may negate the
correctness benefits of formal methods and does not constitute a realistic option
for use in industrial projects. A possible path forward would be further devel-
opment of the code generator of [12, 18]. An alternative approach would be to
use the translation tool EB2ALL, even though adaptations would have to be made
for the resulting code to be in a form compatible with the desired scheduling as
discussed in the next section.

4 Scheduling

4.1 Scheduling Platform

When an Event-B model has been translated into C++ code, a means of schedul-
ing the resulting code is required. Since we in this paper areinterested in eval-
uating the viability of run-time scheduling, we need a scheduling platform that
can invoke the methods that have been translated from the events. A prototype
version of such a scheduler, called ELSA, was developed in [13] for running code

4

generated from the Atelier B tool [10] when used for developing B Action Sys-
tems. The goal was to be able to execute the code of compute-intensive models
in parallel on a multi-processor computer or a cluster usingthe MPI framework.
In [12, 18], ELSA was adapted for use with code translated from Event-B mod-
els using a plug-in developed as part of the same research. Weuse this Event-B
compatible version of ELSA for the evaluations performed inthis paper, but we
have improved it further in a number of ways, e.g. to handle 64-bit integers and to
support repetition of events as presented in Section 4.2.

The scheduler code, which is written in C++, technically runs as part of both
the scheduling process and a number of slave processes. The code takes a separate
execution path on the scheduling process than on the event-executing slave pro-
cesses, reflecting the different roles they play. The processes are mapped to phys-
ical processors or cores by the MPI framework, which the scheduling software
uses for all inter-process communication. Communication takes place according
to a star topology with scheduling process is in the centre, delegating event exe-
cution to the slaves. The scheduling process keeps track of the state space of the
model, and when delegating an event for execution, it submits the current values
of the variables involved to the slave. When the slave has executed the event, it
returns the updated values of the variables to the scheduling process. To avoid
conflicts, events that have variables in common must not be scheduled in parallel.
It is also the responsibility of the scheduler to verify thatevents are enabled prior
to delegating them. Enabledness is easy to check, since the guards are translated
as boolean functions separate from the event actions. Though much simplified,
the workings of the scheduling process can be explained as checking events for
enabledness and delegating them for execution to slaves that are currently not pro-
cessing any other events. This takes place until no events are enabled, whereby
the scheduler terminates execution. A more detailed description of the scheduling
algorithm can be found in [12, 18].

4.2 Repeated Execution of Events

The scheduler in its basic form, as described above, has a practical problem that
needs to be tackled. After initial testing, it became evident that the overhead
involved outweighs the benefits that parallelism can provide, resulting in poor
execution times. The heart of the problem is not only the overhead in itself, but it
becomes particularly problematic when combined with the fine-grained nature of
Event-B events (or the corresponding C++ code). Events cannot contain structures
such as sequential composition or loops, and complex behaviour instead has to be
modelled in an alternative way, such as by repeated execution of events.

The scheduling approach above would imply that if an event isexecuted sev-
eral times in a row, the scheduling processes would be involved in every invo-
cation, resulting in excessive overhead. For this reason, we have amended the
scheduling platform so that the slave processes may executean event several times

5

on their own. Before the scheduling process first delegates an event, it verifies the
enabledness and passes on the values of the variables to the slave process as pre-
viously described. However, after execution, the slave checks whether the event
is still enabled. If that is the case, it may run it again without any involvement
of the scheduling process. This procedure may take place several times, until the
event has been executed at mostREPEATtimes (including the initial execution
delegated by the scheduling process), after which the updated variable values are
reported to the central scheduler. The constantREPEATcan be seen as a pa-
rameter of the scheduling platform, and it applies to all slave processes and, in
principle, to all events. However, since events may disablethemselves even af-
ter only one or a few consecutive executions,REPEATis to be seen as an upper
limit. Also note that an event does not automatically becomedisabled after being
executedREPEATtimes, but to continue running it, it must once again be chosen
for execution by the scheduling process. In fact, the repetition mechanism has no
impact on the enabling/disabling of events, and it operateswithin the limits of the
behavioural semantics as described in Section 3.1.

5 Testbed Model

A suitable testbed model for our study should be compute-intensive, easily paral-
lelisable, convenient to express, and, for generality, as representative as possible
of how other high performance computation models would be expressed in Event-
B. The generality of the model is particularly important, since our goal is to draw
as universal conclusions as possible on the viability of thescheduling approach.
We find that an integer factorisation example given in [12, 18] for the most part
fulfils these requirements. However, since we have made improvements to the
scheduling approach as compared to [12, 18], especially by introducing repetition
of events, we have also revised the model accordingly.

The goal of the model is to find a factor of a given integern, such that it is
greater than or equal to 2 and less thann. However, ifn is a prime number, the
result reported will ben itself. The approach we take is based on trial division.
While there are much more sophisticated factorisation algorithms available, they
are not as straightforward, resulting in models much more difficult to follow and
evaluate. We are also not primarily interested in evaluating the efficiency of the
algorithmper se, but rather that of the scheduling method.

At the core of the model are the factorisation eventsprocess1, process2, etc.,
up till the number of computational slave processes. This typically corresponds to
the number of hardware computational nodes (processors or cores) to be used for
slave computations. The Event-B notation of the factorisation events, in a model
designed for two computational processes, is given in Figure 1. Note that we use
separate events instead of parametrisation, since we want the factorisation events
to be separate from each other. It was also of utmost importance that the model be

6

process1,
when

continue 1 > 0
result 1 6= 0
i 1 < n/2

then
result 1 := n mod i 1
i 1 := i 1 + STEP

continue 1 := continue 1− 1
end

process2,
when

continue 2 > 0
result 2 6= 0
i 2 < n/2

then
result 2 := n mod i 2
i 2 := i 2 + STEP

continue 2 := continue 2− 1
end

Figure 1: Factorisation events for two computational processes.

expressed in such a way that the factorisation events have novariables in common,
since the scheduler would otherwise be unable to run them in parallel. They may,
nevertheless, refer to the same constants.

There are variablesi 1, i 2, etc., associated with the respective factorisation
events. Variablei 1 is initialised to the value 2 (i.e. 1+1),i 2 to the value 3 (i.e.
2+1), etc., and each time a factorisation eventm is executed, it checks whether
the constantn is divisible by the current value of its associated variablei m. If
that is the case, a factor has been found. To distribute the work evenly among the
processes,i m is after each trial division incremented by a constantSTEP, con-
taining the number of factorisation events in the model. In addition to the variable
i m, each factorisation eventm is also associated with a countercontinue m.
Initially set according to a constantCONTINUES, it is decreased by 1 after every
trial division. By checking thatcontinue m > 0 as part of the guard, the number
of consecutive executions of each factorisation event is limited toCONTINUES.

Since the factorisation events must not have any variables in common, they
cannot directly check whether another event has found a factor. This is where a
synchronisation eventnewroundcomes into play. After the factorisation events
have been executed for a maximum ofCONTINUEStimes, they disable them-
selves, and can only be re-enabled bynewround, provided that none of them has
already found a factor. The listing fornewroundis given to the left in Figure 2.
Note thatnewroundis disabled if the value of all variablesi m is greater than
n/2. Each of them factorisation events also disables itself if the corresponding
i m exceedsn/2. This is because a factor (less thann itself) cannot exist beyond
this threshold. It would actually be enough to check numbersup till

√
n, but since

Event-B does not support square root, we usen/2 as the limit.
In the case that no factorisation event finds a factor, and alli m exceedn/2,

eventfound0becomes enabled. This event is shown to the right in Figure 2,and
it simply sets a variableresult, storing the final result, ton. There are also events
found1, found2, etc., related to the factorisation eventsprocess1, process2, etc.,
respectively. These events, as shown in Figure 3, set theresult variable to the

7

newround,
when

result 1 6= 0 ∧ result 2 6= 0
¬(i 1 > n/2 ∧ i 2 > n/2)
continue 1 < CONTINUES

∨continue 2 < CONTINUES

then
continue 1 := CONTINUES

continue 2 := CONTINUES

end

found0,
when

result 1 6= 0
result 2 6= 0
result = −1
i 1 > n/2
i 2 > n/2

then
result := n

end

Figure 2: Events for re-enabling the factorisation events (left) and for finalising
when it becomes clear that the number is prime (right).

found1,
when

result 1 = 0 ∧ result = −1
then

result := i 1− STEP

end

found2,
when

result 2 = 0 ∧ result = −1
then

result := i 2− STEP

end

Figure 3: Events for finalising when process 1 (left) or process 2 (right) has found
a factor.

value found by their associated factorisation events. Notethat even though the
final result has been found oncefound0or any of thefound1, found2, etc. events
has been executed, there is a possibility that one or severalof the factorisation
events may still be executed several times afterwards. Thisundesired behaviour
is a side effect of the independence of events, and it is aggravated by setting the
CONTINUESconstant to a large value. The choice of value forCONTINUESis,
however, a trade-off, since setting it to a value that is too small results in excessive
synchronisation by thenewroundevent.

In Figure 4, we give a sequential C++ function designed to perform factori-
sation similarly to the model presented above. A program based on the function
is used as comparison in Section 6 when evaluating the efficiency of the parallel
model. Though designed to resemble as closely as possible a sequential version
of the algorithm above, there are a number of differences. For example, since the
program is sequential, it obviously contains no synchronisation or other process-
related mechanisms, resulting in much simpler code. The sequential version also
always finds the lowest factor greater than or equal to 2, whereas the Event-B
model may find a greater factor depending on the relative progress of the pro-
cesses.

8

long long factor(long long n) {
long long i = 1;
long long res = -1;
while(i < n/2 && res != 0) {
i++;
res = n % i;

}
if(res == 0) return i; else return n;

}

Figure 4: The C++ function for sequential factorisation used as comparison.

6 Benchmarking

6.1 Approach

Performance of the scheduling approach discussed in previous sections has been
evaluated by scheduling the testbed model on a multi-core/multi-processor system
using different parameters. The scheduler was compiled together with the C++
translation of the model using the GNU Compiler Collection (GCC) [17] with the
maximum (O3) level of optimisation. Since some parameters were part of the
model and could not be changed afterwards, we technically compiled different
models with minor changes from each other. To facilitate scripting for bench-
marking purposes, we also slightly modified the scheduler aswell as the model
code to support additional parametrisation. We do not expect these changes to
have disrupted test results by having any relevant impact onperformance.

The system used for the test runs consists of two Xeon E5430 (2.66 GHz)
processors, each of which has four computational cores, running a GNU/Linux
operating system and the MPICH2 [26] implementation of MPI.While thenu-
mericalresults will be dependent upon factors such as the clock frequency of the
processors, instruction set architecture, performance ofthe system memory, etc.,
we believe that theinterpretationof the results is representative of modern com-
puter systems with similar topology (e.g. the same number ofprocessor cores).
This is because we are mainly interested in the overall feasibility of the schedul-
ing framework and the impact of different parameter values.Since all our test
runs, including the comparison with a sequential program, have been done on the
same system, the results are mutually comparable to each other.

6.2 Parameters and Results

From the perspective of the scheduling platform, there are especially two param-
eters of interest: the number of slave processes and the value of REPEATused in

9

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean

Sequential 13.37 13.36 13.36 13.36 13.36 13.36 13.36 13.36
Par.c = 10

2 91.42 85.52 90.45 92.00 85.37 91.34 87.43 89.08
Par.c = 10

3 16.57 16.59 16.78 16.63 16.94 16.55 16.07 16.59
Par.c = 10

4 10.23 10.28 9.92 10.17 9.57 10.18 10.26 10.09
Par.c = 10

5 9.29 8.90 9.31 9.55 9.38 8.68 9.60 9.24
Par.c = 10

6 9.19 9.46 8.13 9.13 8.82 9.19 9.24 9.02
Par.c = 10

7 9.31 8.47 9.44 9.15 9.18 9.32 9.33 9.17
Par.c = 10

8 9.26 9.48 9.47 9.46 9.49 9.58 9.38 9.45
Par.c = 10

9 9.51 9.44 9.54 8.70 9.46 9.51 9.30 9.35

Table 1: Test runs with 3+1 processes,n = 2,147,483,647.

the scheduler. Important parameters related to the model are n, i.e. the number
to factorise, and the value of the constantCONTINUES. Even though we will not
mention it explicitly from now on, the number of slave processes also has impli-
cations on the model in that the number of factorisation events has to match, and
the value ofSTEPmust be set accordingly. Furthermore, we decided to keep the
values ofREPEATandCONTINUESbound to each other, even though it would
not absolutely have to be that way. We motivate our decision as follows. The value
of REPEAT, being a property of the scheduler, may have an impact on the perfor-
mance of execution, but it does not change the logics of the model. In contrast,
CONTINUESis part of the model, which is nevertheless constructed to produce
a correct result for different values ofCONTINUES. A value of REPEATless
than CONTINUESwould imply that there may be unnecessary involvement of
the scheduler even in cases where the slave processes could have been repeatedly
executed events on their own. Since the model is not aware of the impact of the
repetition mechanism of the scheduler, though interrupted, it would not even have
a chance of synchronising by executing thenewroundevent. AREPEATvalue
greater thanCONTINUESis also not motivated, since repeated execution of the
factorisation events would be limited byCONTINUESanyway.

For each set of parameters, we performed eight timed test runs. The initial
one was disregarded, since it may not be comparable should subsequent execu-
tions have any caching benefits. The timings of the subsequent seven executions
(numbered 1-7) were recorded, and the mean value was computed. The time unit
used was seconds and fractions thereof. Our first set of runs was performed with
the parametern = 2,147,483,647 with three slave processes. An additional process
was used for the scheduler, so technically, the execution involved four processes.
Note that we chosen to be a prime number in order to achieve benchmarking
times long enough to draw conclusions. We ran several subsequent test sets, with
the values ofc = REPEAT= CONTINUESbeing102, 103, ..., 109, respectively.
The results are shown in Table 1.

As can be seen in Table 1, with thec value set to 100 (i.e.102), the execution

10

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean

Sequential 498.63 427.11 549.03 448.51 555.63 567.38 516.91 509.03
Par.c = 10

2 2844.532883.502850.312802.622846.892840.902864.31 2847.58
Par.c = 10

3 544.07 555.74 542.31 560.58 557.56 552.23 550.53 551.86
Par.c = 10

4 320.24 320.19 319.80 320.67 320.69 317.67 318.21 319.64
Par.c = 10

5 292.76 293.95 293.61 293.13 294.09 292.09 292.34 293.14
Par.c = 10

6 288.50 290.00 290.34 288.24 290.16 290.23 288.50 289.42
Par.c = 10

7 288.32 286.88 288.05 288.52 289.86 296.57 288.13 289.48
Par.c = 10

8 289.03 287.51 289.40 288.18 287.32 286.79 287.81 288.01
Par.c = 10

9 288.06 288.29 287.24 288.24 287.97 288.34 287.68 287.97

Table 2: Test runs with 3+1 processes,n = 68,720,001,023.

times are several times higher than that of the sequential program with a mean
value of 13.36 seconds for the sequential version versus 89.08 seconds for the
parallel one. It can be explained by overhead that, in this case, is clearly not
outweighed by the potential benefits of parallelism. This isapparently the case
even though the slave processes may allow the factorisationevents to be executed
up to 100 times without involving the scheduling process. The overhead may
in part be due to MPI communication, but also behaviour specific to the parallel
model, such as thenewroundevent, may have an impact. However, ifc is set
to 1000, timings approach those of the sequential model, andwith a c value of
10000, the parallel model is faster at 10.09 seconds on average. Values ofc beyond
105 do not seem to provide further gains, and execution times level out at about
9 to 9.5 seconds, which constitutes approximately 70% of therunning time of
the sequential version. However, we also realise that execution times of only
a few seconds may not necessarily be representative of performance in general.
For example, the time taken to initialise the scheduling platform may have an
unduly large impact. Therefore, we performed a new set of test runs with the
same parameters, except for setting the value ofn to 68,720,001,023, which is
also a prime number. We present the results in Table 2.

The general pattern turned out to be the same as for the lower value ofn. For
ac value of 100, execution times are poor in this case, as well, but fromc = 10000
and beyond, we see performance gains. While they also level out for higher val-
ues ofc, execution times are around 50%-60% as compared to the corresponding
sequential program. This is better than in the previous case. However, we were
also interested in testing how the framework scales when thenumber of processes
increases. Therefore, we did yet another set of test runs. Wekept the value ofn at
68,720,001,023, but increased the number of slave processes to six, in addition to
the scheduling process, which is always present. The results are given in Table 3.
Note that the sequential test runs used for comparison were not redone, since the
value ofn remained unchanged.

While we see the same pattern as before, execution times are considerably

11

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Mean

Sequential 498.63 427.11 549.03 448.51 555.63 567.38 516.91 509.03
Par.c = 10

2 2574.732074.182609.962647.202494.592577.472632.28 2515.77
Par.c = 10

3 338.11 319.87 347.55 335.40 324.07 348.34 346.58 337.13
Par.c = 10

4 159.96 137.46 165.59 141.58 160.85 158.15 153.70 153.90
Par.c = 10

5 147.62 146.77 147.72 147.02 121.49 148.72 146.45 143.68
Par.c = 10

6 113.44 144.23 136.24 145.56 145.35 145.51 145.68 139.43
Par.c = 10

7 145.03 145.50 134.56 146.20 129.59 145.29 146.63 141.83
Par.c = 10

8 119.44 146.29 144.89 134.04 145.75 139.15 130.20 137.11
Par.c = 10

9 140.61 120.94 139.71 138.91 140.97 142.09 141.35 137.80

Table 3: Test runs with 6+1 processes,n = 68,720,001,023.

shorter. The scenario wherec = 100 is still highly inefficient, but it is nonetheless
slightly faster than with three slave processes. We also note that for ac value
of 1000, performance is now better than for the sequential comparison, whereas
it was a bit slower than sequential in the 3+1 set-up. Atc = 10000, and espe-
cially from c = 105, where the levelling out seems to start, performance is greatly
increased as compared to using three slave processes. For such values ofc, exe-
cution times in the 6+1 process set-up are around half of those in the 3+1 setting,
indicating a good scalability of the scheduling approach.

7 Conclusions

In this paper, we have performed an empirical study on the efficiency of MPI-
based parallel scheduling of compute-intensive code translated from an Event-B
model. The purpose was to evaluate whether an on-the-fly scheduling approach
taken is feasible from a practical perspective. We used an integer factorisation
model as a testbed for the study. The main pitfall we suspected in the basic form
of the framework was that the overhead of the scheduler and the MPI library
communication would defeat the potential speed gains of parallelism. This is
because individual events in Event-B are typically very fine-grained.

In an attempt to mitigate excessive overhead, we introducedan optimisation
in the form of repeated event execution without the involvement of the scheduler.
A benefit of this solution is that it directly reduces the communication overhead.
The repetitive behaviour introduced is compatible with theoriginal behavioural
semantics typically used in Event-B, and can therefore be considered correct from
a theoretical point of view. To benefit from this strategy, the model should be
designed so that computational events are enabled a large number of times in a
row.

We performed a number of test runs on a multi-core/multi-processor system
to evaluate the performance of the testbed factorisation model when using the op-
timisation. The tests involved different numbers of processor cores in use, and

12

different limits on how many times events can be executed consecutively with-
out involving the scheduling process. The runs showed that given a large enough
number of repetitions, the performance increased to a degree where the program
clearly benefits from parallel execution, as compared to a corresponding sequen-
tial program. We also found that when increasing the cores inuse from 3 slave
processes + 1 scheduler, to a 6+1 configuration, performanceincreased consider-
ably. This indicates a good scalability of the approach. In conclusion, the em-
pirical study we have performed hints at a potential practical applicability of the
run-time scheduling framework in question.

Acknowledgements

This research was supported by the EU funded FP7 project DEPLOY (214158).
http://www.deploy-project.eu

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] J.-R. Abrial.Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

[3] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. In-
ternational Journal on Software Tools for Technology Transfer (STTT),
12(6):447–466, 2010.

[4] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible
tool environment for Event-B. In Zhiming Liu and Jifeng He, editors,For-
mal Methods and Software Engineering, volume 4260 ofLecture Notes in
Computer Science, pages 588–605. Springer Berlin / Heidelberg, 2006.

[5] R.J.R. Back. Refinement calculus, part II: Parallel and reactive programs.
In J. de Bakker, W. de Roever, and G. Rozenberg, editors,Stepwise Refine-
ment of Distributed Systems Models, Formalisms, Correctness, volume 430
of Lecture Notes in Computer Science, pages 67–93. Springer Berlin / Hei-
delberg, 1990.

[6] R.J.R. Back and R. Kurki-Suonio. Decentralisation of process nets with
centralised control. InProc. of the 2nd ACM SIGACTS-SIGOPS Symp. on
Principles of Distributed Computing, pages 131–142, 1983.

13

[7] R.J.R. Back and J. von Wright. Refinement calculus, part I: Sequential non-
deterministic programs. In J. de Bakker, W. de Roever, and G.Rozenberg,
editors,Stepwise Refinement of Distributed Systems Models, Formalisms,
Correctness, volume 430 ofLecture Notes in Computer Science, pages 42–
66. Springer Berlin / Heidelberg, 1990.

[8] P. Boström. Creating sequential programs from Event-Bmodels. InPro-
ceedings of the 8th International Conference on IntegratedFormal Methods
(IFM 2010), pages 74–88. Springer-Verlag, 2010.

[9] P. Boström, F. Degerlund, K. Sere, and M Waldén. Concurrent scheduling of
Event-B models. InProceedings 15th International Refinement Workshop,
pages 166–182, June 2011.

[10] ClearSy. Atelier B web site.http://www.atelierb.eu/ .

[11] F. Degerlund. Scheduling of compute-intensive code generated from Event-
B models: An empirical efficiency study. In K. Göschka and S.Haridi,
editors,Proceedings of Distributed Applications and Interoperable Systems
(DAIS) 2012, volume 7272 ofLecture Notes in Computer Science, pages
177–184. Springer Berlin / Heidelberg, 2012.

[12] F. Degerlund, R. Grönblom, and K. Sere. Code generation and scheduling
of Event-B models. Technical Report 1027, Turku Centre for Computer
Science (TUCS), 2011.

[13] F. Degerlund, M. Waldén, and K. Sere. Implementation issues concerning
the action systems formalism. InProceedings of the Eighth International
Conference on Parallel and Distributed Computing Applications and Tech-
nologies (PDCAT’07), pages 471–479. IEEE Computer Society Press, 2007.

[14] Eclipse platform.http://www.eclipse.org/ .

[15] A. Edmunds.Providing Concurrent Implementations for Event-B Develop-
ments. PhD thesis, University of Southampton, 2010.

[16] A. Edmunds and M. Butler. Tasking Event-B: An extensionto Event-B for
generating concurrent code. InPLACES 2011, 2011.

[17] GNU Compiler Collection (GCC) web site.http://gcc.gnu.org/ .

[18] R. Grönblom. A framework for code generation and parallel execution of
Event-B models. Master’s thesis,Åbo Akademi University, 2009.

[19] S. Hallerstede. Structured Event-B models and proofs.In Abstract State
Machines, B and Z, volume 5977 ofLecture Notes in Computer Science,
pages 273–286. Springer-Verlag, 2010.

14

[20] S. Hallerstede. On the purpose of Event-B proof obligations.Formal Aspects
of Computing, 23:133–150, January 2011.

[21] A. Iliasov. On Event-B and control flow. Technical Report CS-TR-1159,
School of Computing Science, Newcastle University, 2009.

[22] M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B
method. International Journal of Software Tools for Technology Transfer
(STTT), 10:185–203, February 2008.

[23] D. Méry and N. K. Singh. Automatic code generation fromEvent-B models.
In Proceedings of the Second Symposium on Information and Communica-
tion Technology, SoICT ’11, pages 179–188. ACM, 2011.

[24] Message Passing Interface Forum.http://www.mpi-forum.org/ .

[25] C. Métayer. AnimB web site.http://www.animb.org/ .

[26] MPICH2 web site. http://www.mcs.anl.gov/research/
projects/mpich2/ .

[27] Rodin platform web site.http://www.event-b.org/ .

[28] K. Sere. Stepwise Derivation of Parallel Algorithms. PhD thesis,Åbo
Akademi University, 1990.

[29] T. Servat. BRAMA: A new graphic animation tool for B models. In J. Jul-
liand and O. Kouchnarenko, editors,B 2007: Formal Specification and De-
velopment in B, volume 4355 ofLecture Notes in Computer Science, pages
274–276. Springer Berlin / Heidelberg, 2006.

[30] M. Waldén and K. Sere. Reasoning about Action Systems using the B-
Method.Formal Methods in System Design, 13:5–35, May 1998.

[31] N. Wirth. Program development by stepwise refinement.Communications
of the ACM, 14:221–227, April 1971.

[32] S. Wright. Using EventB to create a virtual machine instruction set architec-
ture. Abstract State Machines, B and Z, pages 265–279, 2008.

15

Paper V

Derivation of concurrent programs by step-
wise scheduling of Event-B models

Pontus Boström, Fredrik Degerlund, Kaisa Sere and Marina
Waldén

Full original reference:

P. Boström, F. Degerlund, K. Sere and M. Waldén. “Derivation of concurrent
programs by stepwise scheduling of Event-B models”. In: Formal Aspects of
Computing (2012). doi: 10.1007/s00165-012-0260-5.

The paper is based on the following work:

P. Boström, F. Degerlund, K. Sere and M. Waldén. “Concurrent Sched-
uling of Event-B Models”. In: Proceedings 15th International Refinement
Workshop. Ed. by J. Derrick, E. A. Boiten and S. Reeves. Vol. 55. Electronic
Proceedings in Theoretical Computer Science (EPTCS). Open Publishing
Association, 2011, pp. 166–182.

c© 2012 British Computer Society. Reprinted in accordance with original
copyright agreement.

N.B. This paper is not included in the electronic edition of the thesis.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2811-7
ISSN 1239-1883

Fredrik D
egerlund

Fredrik D
egerlund

S
cheduling of G

uarded C
om

m
and B

ased M
odels

S
cheduling of G

uarded C
om

m
and B

ased M
odels

