
Turku Centre for Computer Science

TUCS Dissertations
No 151, November 2012

Mats Neovius

Trustworthy Context
Dependency in Ubiquitous
Systems

Trustworthy Context Dependency
in Ubiquitous Systems

Mats Neovius

To be presented, with the permission of the Division of Natural

Sciences and Technology at Åbo Akademi University, for public

criticism in the Auditorium of Gamma on November 26th, 2012 at

12:00.

Åbo Akademi University

Department of Information Technologies

Division of Natural Sciences and Technology

Joukahaisenkatu 3-5, 20520 Turku

2012

Supervised by

Professor Kaisa Sere
Department Department of Information Technologies

University Åbo Akademi University
City, Country Turku, Finland

Adjunct Professor Luigia Petre
Department Department of Information Technologies

University Åbo Akademi University
City, Country Turku, Finland

Reviewed by

Associate Professor Christian Damsgaard Jensen

Department Informatics & Mathematical Modelling
University Technical University of Denmark

City, Country Lyngby, Denmark

Doctor Mauno Rönkkö

Department Department of Environmental Science
University University of Eastern Finland

City, Country Kuopio, Finland

Opponent

Associate Professor Christian Damsgaard Jensen
Department Informatics & Mathematical Modelling
University Technical University of Denmark

City, Country Lyngby, Denmark

ISBN 978-952-12-2808-7

i

Abstract

The modern society is getting increasingly dependent on software applications.

These run on processors, use memory and account for controlling functionalities

that are often taken for granted. Typically, applications adjust the functionality

in response to a certain context that is provided or derived from the informal

environment with various qualities. To rigorously model the dependence of an

application on a context, the details of the context are abstracted and the

environment is assumed stable and fixed. However, in a context-aware

ubiquitous computing environment populated by autonomous agents, a context

and its quality parameters may change at any time. This raises the need to derive

the current context and its qualities at runtime. It also implies that a context is

never certain and may be subjective, issues captured by the context’s quality

parameter of experience-based trustworthiness.

Given this, the research question of this thesis is: In what logical topology

and by what means may context provided by autonomous agents be derived and

formally modelled to serve the context-awareness requirements of an

application? This research question also stipulates that the context derivation

needs to incorporate the quality of the context. In this thesis, we focus on the

quality of context parameter of trustworthiness based on experiences having a

level of certainty and referral experiences, thus making trustworthiness

reputation based. Hence, in this thesis we seek a basis on which to reason and

analyse the inherently inaccurate context derived by autonomous agents

populating a ubiquitous computing environment in order to formally model

context-awareness.

More specifically, the contribution of this thesis is threefold: (i) we propose a

logical topology of context derivation and a method of calculating its

trustworthiness, (ii) we provide a general model for storing experiences and (iii)

we formalise the dependence between the logical topology of context derivation

and its experience-based trustworthiness. These contributions enable abstraction

of a context and its quality parameters to a Boolean decision at runtime that may

be formally reasoned with. We employ the Action Systems framework for

modelling this.

The thesis is a compendium of the author’s scientific papers, which are

republished in Part II. Part I introduces the field of research by providing the

mending elements for the thesis to be a coherent introduction for addressing the

research question. In Part I we also review a significant body of related literature

in order to better illustrate our contributions to the research field.

ii

Svensk Sammanfattning

Dagens samhälle är i allt högre grad beroende av programvara. Exekverbar

programvara, kallat applikationer, körs av processorer, använder minne och

svarar för kontroll och reglage av funktionalitet som ofta tas för given. Typiskt

för en applikation är att den justerar funktionaliteten i respons till en viss

situation. En sådan situation präglas av ett antal kontext. Varje kontext i sin tur

förses eller härleds från inexakta givare, vilka gestaltar något informellt fenomen

med varierande kvaliteter.

För att modellera en programvaras beroende av en situation bör dess kontext

inexakthet approximeras. Detta förutsätter abstraktion och antaganden av

omgivningen vilket följaktligen möjliggör rigorös modellering. Rigorös

matematisk modellering förlitar sig dessvärre på atomisitet, dvs. en kontext

uppdatering är förutsägbar. Rimligen är detta inte fallet för en funktionalitet med

autonomt verksamma aktörer i ubikvitär datateknik, t.ex. på grund av mobilitet.

Därför är den gällande kontexten och dess kvaliteter i vilken programvaran

exekverar aldrig säker och kan vara subjektiv, vilka utgör ämnen för en kontexts

kvalitetsparameter tillförlitlighet.

I denna avhandling, undersöks nivån på en kontexts kvalitetsparameter

tillförlitlighet samt dess härledning i syfte att ge en klarare presentation av

omgivningen åt programvaran. Tillförlitlighetsparametern identifierar en aktörs

förväntningar på en kontext samt dess övriga kvalitetsparametrar. Nivån av

tillförlitlighet fastställs av den kontext beroende aktören. Därmed fångar

tillförlitlighet in eventuella fördomar och förväntningar samt är subjektiv givet

ett kontext utfärdat av en aktör. Av detta följer behovet att behandla nivån av

tillförlitlighetens (o)säkerhet.

Givet detta utformas forskningsfrågan som: I vilken logisk topologi samt hur

kan kontext utfärdat av autonoma källor härledas och modelleras formellt för att

möta med en kontext medveten applikations krav? Mer specifikt redogör denna

avhandling för problemställningar gällande härledning av inexakt data i syftet att

användas ändamålsenligt i programvara. I avhandlingen framställs en logisk

topologi för kontext härledning, presenteras en generell modell för lagring av

erfarenheter samt modelleras beronedeskap formellt inom Aktion System

ramverket. Som en följd av detta studerar avhandlingen på vilket sätt det går att

ändamålsenligt modellera och beräkna osäker information att presenteras åt en

agent som är beroende av den vid körtid. Avhandlingen motiverar tagna beslut

genom referenser till relaterad forskning.

Tekniskt sett är avhandlingen ett kompendium av vetenskapliga artiklar där

skribenten medverkat, vilka är återpublicerade i Del II. Utöver introduktion av

forsknings området i Del I, förser denna del nödvändiga element för att

avhandlingen kunde förstås som en sammanhängande helhet, inklusive

definition av en kontexts härledningstopologi som ett polyträd.

iii

Acknowledgements

This thesis is a work highly influenced by, and made possible thanks to, its

author’s contexts. The inspiring contexts next to and in which I have been

privileged to work in during my PhD studies have raised the quality level of this

final version of the thesis. Of the whole thesis, this small chapter is the place

where I may express my sincerest gratitude to the contexts characterising this

thesis.

First of all, I owe my deepest gratitude to my supervisors, Professor Kaisa

Sere and Docent Luigia Petre; they have been the most important contexts in my

proximity. I am especially grateful to Kaisa Sere for the amazing (and rare I

believe) ability of introducing a fresh student to topics that sparkles the student’s

interest; I admire her broad view on research. Moreover, I am thankful for all the

time she took to discuss research with me, as well as for her patience in teaching

me academic writing. I am also grateful to her for making it possible for me not

worry about the financial arrangements of my PhD studies; I have been

privileged to depend on her by an absolute level of trust in this issue. To my

second supervisor, Luigia Petre, I am grateful for her continuous support. In

times of “challenging moments”, she has been the person that made me look on

the positive side; I thank her very much for this because without such

encouragement and coaching, this endeavour of mine might never have reached

this point or quality.

Associate Professor Christian Damsgaard Jensen from Technical University

of Denmark and Docent Mauno Rönkkö from University of Eastern Finland

kindly agreed to review this thesis. Their careful review and constructive

commenting greatly helped me to pull it all together into what it is today; I

sincerely thank them both for this. In addition, I would like to especially thank

Professor Jensen for accepting to be the opponent for the public defence of my

thesis.

I am honoured to have been a student of the Turku Centre for Computer

Science graduate school and am grateful for the financial and administrative

support I have received. In addition, I am privileged to have been a part of the

Department of Information Technologies at Åbo Akademi University and would

like to express my gratitude to all the administrative personnel for their support.

Moreover, I am sincerely grateful to all the persons in the context of the

Distributed Systems Laboratory for making it such an inspiring and good

working environment. Of these, my special thanks are directed towards my co-

authors, Lu Yan, Manoranjan Satpathy, Pontus Boström, Ian Oliver, Marina

Waldén, Fredrik Degerlund and Petter Sandvik; I have learned a great deal from

working with them. I wish also to express my gratitude for the financial support

in form of generous scholarships I have received from the Nokia Foundation,

Hans Bang Stiftelsen and TOP-Säätiö. As the list of contexts to thank could go

iv

on, I merely wish to express my thanks to all the other contexts that have been

influential.

In addition, I take this opportunity to thank my friends for giving my life

some extra meaning. Time spent with you is always well invested; there is only a

handful of things better than, for example, a round of disc golf in the company of

good friends.

Finally, last but definitely not least, I owe my gratitude towards my family.

All the love I got, and keep on getting from my beloved wife Meri and the smile

of the three most precious contexts in my life, Oscar, Elsa and Anni are

irreplaceable. Without your love, none of this would have been achieved. After

all, you are the contexts that make my life worthwhile.

 30
th
 October 2012, Turku, Finland

Mats Neovius

v

Contents

Abstract ……………………………………………………………………………….. i

Svensk Sammanfattning …………………………………………………………....... ii

Acknowledgements …………………………………………………………………… iii

Part I

1 Introduction ... 1

1.1 Background .. 3

1.2 Motivation .. 5

1.3 The Setting of the Thesis ... 6

1.4 Research Question and Methodology .. 7

1.5 Contribution and Limitations of Scope ... 8

1.6 Structure of this Thesis ... 9

2 Context and Context-Awareness.. 11

2.1 Introduction to Context and Context-Awareness 13

2.1.1 Definitions for Context and Context-Awareness 14

2.1.2 Categories of Contexts .. 16

2.1.3 Context Derivation .. 18

2.1.4 A Context-Aware Architecture .. 20

2.1.5 Context Acquisition and Modes of Adaption 22

2.1.6 Quality of Context ... 23

2.2 Problem Analysis ... 24

2.3 State of the Art ... 25

2.3.1 Context Processing Components ... 25

2.3.2 Context Representation .. 27

2.3.3 Context Acquisition and Binding .. 28

2.4 Success criterion .. 29

3 Context Models and Context Derivation Architectures 31

3.1 Introduction to Context Models and Context Derivation Architectures 32

3.1.1 Context Modelling .. 32

vi

 Conceptual Context Models ... 33 3.1.1.1

 Context Acquisition Models and Architectural Styles 34 3.1.1.2

3.1.2 Logical Topology of Context Derivation ... 36

3.1.3 Deriving with QoC Parameters ... 37

3.2 Problem analysis .. 38

3.3 State of the art .. 39

3.3.1 The Logical Topologies for Context Derivation 39

3.3.2 Existing Context Models .. 40

 Context Modelling Language ... 40 3.3.2.1

 Situation Lattices .. 42 3.3.2.2

 Other Context Models .. 43 3.3.2.3

3.3.3 A Context Derivation Architecture ... 45

3.4 Success Criterion ... 45

3.5 An Undirected Acyclic Context Derivation Topology 46

4 Trustworthiness as a Parameter of QoC 49

4.1 Trust and Trustworthiness ... 51

4.1.1 Properties of a Trust(worthiness) Relation 52

4.1.2 Policy-Based Trust Systems ... 54

 Weeks’ General Policy-Based Model .. 55 4.1.2.1

 Other Notable Policy-Based Models .. 56 4.1.2.2

4.1.3 Experience-Based Trust Systems... 57

 Experience-Based Trust Levels ... 58 4.1.3.1

 Dempster-Shafer Theory .. 59 4.1.3.2

 A General Model for Representing Trust ... 60 4.1.3.3

 Reputation on the General Model of Trust 60 4.1.3.4

4.1.4 Networks of Trust and Derivation Graphs 61

4.2 Problem analysis .. 63

4.3 State of the art .. 63

4.3.1 Non-Probabilistic Trust Computation Models 64

 EigenTrust Explained ... 64 4.3.1.1

vii

4.3.2 Computational Models for Probabilistic Trust 67

 Subjective Logic Framework ... 68 4.3.2.1

 Parameters of an Opinion .. 69 4.3.2.2

 Representing the Trustworthiness as Opinions 69 4.3.2.3

 Subjective Logic on the General Model .. 71 4.3.2.4

 Calculating with Trust.. 73 4.3.2.5

4.3.3 Filtering Unfair Opinions on the Βpdf .. 76

4.4 Success criterion .. 79

5 Trustworthy Context-Awareness ... 81

5.1 Formal Prerequisites ... 84

5.1.1 Weakest Precondition Predicate Transformers of the Action System

Framework.. 85

5.1.2 The Action System Framework and its Execution Model 87

5.1.3 Action System Features .. 88

5.2 Formal Modelling of Context Dependencies ... 89

5.2.1 Situational Dependence .. 89

5.2.2 Contextual Dependencies on Disjoint Contexts 91

5.2.3 Contextual Dependencies on Similar Contexts................................. 92

6 Description of Papers .. 95

Paper I. An Abstract Model for Incentive-Enhanced Trust in P2P Networks 96

Paper II. A Design Framework for Wireless Sensor Networks 97

Paper III. A Formal Model of Context-Awareness and Context-Dependency ... 97

Paper IV. Formal Modular Modelling of Context-Awareness 98

Paper V. Mastering the Relevance of Subjective Information in Ubiquitous

Computing ... 99

7 Discussion and Achieved Results ... 101

7.1 Trustworthiness of Context .. 102

7.2 Trustworthiness on Situations .. 105

7.3 An Incentive for Behaving Trustworthy .. 106

7.4 The Formal View on Contextual Dependency .. 108

8 Conclusions and Future Perspectives 111

viii

9 Abbreviations and Short Term Definitions 117

10 References .. 122

Complete List of Original Publications .. 141

Part II

 Original Publications ……………………………………….. 150

ix

List of figures

Figure 1 The evolution chain of computing .. 4
Figure 2: General context-aware system view .. 6
Figure 3: Situations and contexts .. 19
Figure 4: Schematic view of context derivation .. 20
Figure 5: Types of applications ... 22
Figure 6: The sentient object model .. 26
Figure 7: Context-aware system evolution.. 35
Figure 8: A situation lattice for meetings .. 43
Figure 9: An example of situation of contexts .. 44
Figure 10: A polytree .. 46
Figure 11: Trust transitivity .. 53
Figure 12: DAG not being a DSPG... 62
Figure 13: Binomial opinion triangle on a binary frame of discernment 70
Figure 14: Two disjoint DSPG .. 73
Figure 15a: Βpdf(6.5, 1.5) and 14b: Βpdf(6, 2) .. 77
Figure 16: Βpdf(31, 31), Βpdf(11, 11), Βpdf(3, 3) ... 78
Figure 17: Βpdf(6, 2) and q = 1% ... 78
Figure 18: The context-aware processing framework ... 82
Figure 19: Contextual polytree ... 91

List of tables

Table 1: Challenges, success criterions and contribution .. 102

x

Part II: Publication reprints

Paper I: Mats Neovius, “An Abstract Model for Incentive-Enhanced Trust in

P2P Networks”. In: Tomoya Enokido, Lu Yan, Bin Xiao, Daeyoung

Kim, Yuanshun Dai, Laurence T. Yang (Eds.), Embedded and

Ubiquitous Computing - EUC 2005 Workshops: UISW, NCUS,

SecUbiq, USN, and TAUES, Nagasaki, Japan, December 6-9, 2005. ,

Lecture Notes in Computer Science vol. 3823, 602 - 611, Springer

Berlin / Heidelberg, 2005.

Paper II: Mats Neovius, Lu Yan, “A Design Framework for Wireless Sensor

Networks”. In: Khaldoun Al Agha (Ed.), Ad-Hoc Networking: IFIP

19th World Computer Congress, TC-6, IFIP Interactive Conference

on Ad-Hoc Networking, August 20-25, 2006, Santiago, Chile , IFIP

International Federation for Information Processing vol. 212, 119 -

127, Springer, 2006.

Paper III: Mats Neovius, Kaisa Sere, Lu Yan, Manoranjan Satpathy, “A Formal

Model of Context-Awareness and Context-Dependency”. In: Van

Hung Dang, Pandya Paritosh (Eds.), Proceedings of the fourth IEEE

International Conference on Software Engineering and Formal

Methods (SEFM'06), 177 - 185, IEEE Computer Society Press, 2006.

Paper IV: Mats Neovius, Kaisa Sere, “Formal Modular Modelling of Context-

Awareness”. In: Frank S. de Boer, Marcello M. Bonsangue, Eric

Madelain (Eds.), Formal Methods for Components and Objects, 7th

International Symposium, FMCO 2008, Revised Lectures, 102-118,

Lecture Notes in Computer Science vol. 5751, 2008.

Paper V: Mats Neovius and Kaisa Sere. “Mastering the Relevance of

Subjective Information in Ubiquitous Computing”. Submitted to

International Journal of Networked Computing and Advanced

Information Management (IJNCM) Special issue on Social

Informatics and COMputing (SICOM), 2012.

Part I:

1

“Imagination is more important than knowledge.” – Albert

Einstein 1931

1 Introduction

In this chapter we provide an introduction to the concepts studied. We

describe a general background on which the approach is motivated; we

outline the research hypothesis, the research question and the adopted

methodology. We briefly highlight the contributions and the limitations of

scope as well as outline the rest of the thesis.

2

The notion of context is central in several disciplines [43] [46]. For instance,

humans are very good at recognising, perceiving and adapting to the implicit

context such as gestures, tone of voice, etc. This is called grounding [63] and

implies that humans are innately context-aware [48]. Thus we understand

context as some information that characterises the situation of entities, here

humans. Being aware of this context and adapting to it may be considered a sign

of intelligence, i.e. to be context-aware may be considered a characteristic of an

intelligent entity. Contrary to humans, computers are very good at acquiring,

aggregating, composing and processing data [90] by mathematical logical

instructions. These instructions manifest themselves as applications. Inputs of an

application are necessarily explicit, whereas the contexts are the implicit matters

of informal origin.

An application that consumes and adapts to such context is context-aware. As

the application provides a user means to perform a task [26] [27], an application

is context-aware whenever it provides this means defined by contexts [238].

Hence, contexts sensed and derived in the environment of an application may

rise to the level of a situation having an influence on the performance of the user

initiated task. For example, a conference assistant user application may shift a

phone’s means of alarm between vibration and sound depending on the whether

or not a presentation is attended. This is an example of a ‘user application’

consuming situation(s) that we distinguish from an ‘application’ that by

consuming context provides derived context(s).

A user application task typically resolves some informal need of a user, with

the help of some actuators. An actuator does, therefore, consume some formal

event and produce an informal event manifesting the purpose of executing the

user application. Dually, we recognise a sensor to capture an informal event that

by an application provides a formal event which may further be used by other

applications. Hence, stating that the beginning and end of each task is informal

[275] is reasonable. This is motivated as the formal mode merely extends the

informal mode, it does not replace it [198]. Thus, a formal specification with all

its advantages in terms of expressing unambiguous matters applies only on an

idealised view of the informal world [4], the model. Moreover, the coarser

approximations on the modelled reality, the greater the risk of alignment errors

in addition to discretisation errors. Therefore, context and context-awareness as

unpredictable matters that describe the environment break down the purely

algorithmic model of the formal mode demanded to show mathematical

correctness [234] [235]. This motivates quality parameters of a context as a

means to represent a model’s relatedness with reality, i.e. in terms of Abrial [4],

how far from the real environment the model is. Hence, a context as considered

in this thesis is a digitalised representation of a continuous analogue real world

phenomenon whose quality parameters capture the consequences of the

discretisation errors as well as other alignment errors.

With this, we have no intentions of devaluing the importance of analysing

properties of software in a formal mode for the sake of increasing behavioural

3

certainty and for having a structured means to reason on this. Our intentions are

merely to stress that mathematical logical rigour and proofs may not imply

correct system behaviour, i.e. that correctness is a mathematical property. That

is, in addition to serious challenges in defining correctness in engineering [202],

a context-aware user application’s behaviour is a realisation of a complex

composition of inherently imperfect context to a situation. An empirical survey

from industry studying machines (automatic assembly line, paper product line,

forest harvester and rock drill) strengthens this point of view, showing that a

majority of erroneous behaviour originate from human errors or wrong, slack, or

loosened fitting of the context sensing devices [137]. Common to these matters

are that they are outside the domain of mathematical correctness, i.e. of informal

causes.

Informalities need, under certain assumptions, to be considered formally.

These assumptions manifest the necessary axioms that if violated, something

fundamental is very wrong and nothing else may be considered certain either,

i.e. a formal model must be correct. For example, stating and trusting an apple

tree not to bear cherries must be acceptable though philosophically even this

could be argued [131]. In this example we refer to trustworthiness as the level of

belief in this proposition that captures a level of arguable assumptions involved

in the statement. For example, before bearing the first apple, i.e. in the context of

a plant and not a tree, only given that the plant is accepted as an apple plant and

not a cherry plant (which is not easy to tell) we may trust it to bear apples, if

any, in the future. Consequently, the foremost assumptions for establishing

necessary axioms demanded for analysis are that the input data is perceived in

context and that it is trustworthy; concepts that make up this thesis. This, in

addition to the other problem statements described above lead to the formulation

of the research question that this thesis aims to shed light on:

In what logical topology and by what means may context provided by

autonomous agents be derived and formally modelled to serve the

context-awareness requirements of an application?

The research question and methodology are further outlined in Section 1.3, while

specific contributions and limitations of scope are discussed in Section 1.5.

1.1 Background

We have come a long way from vacuum tubes amplifying signals, the pioneering

work of the transistor in 1947 by Bardeen and Brattain, and the integrated circuit

in the 1950’s by Dummer, Kilby and Noyce. All these contributed significantly

to the electronics revolution. The integrated circuit is often considered the

catalyst for the Information Age where one modern desktop computer’s

microprocessor contains thousands of millions of transistors. Later, being

connected ‘all the time everywhere’ [181] transformed the Information Age into,

4

the so called Information Revolution with applications producing automated

transactions [10].

In the early days of integrated circuits, the limited contextual availability and

stationary / dedicated nature of the devices resulted in applications that were

tailor made. Typically, these applications were expected to run in static

environments [223]. This fostered mathematical modelling of applications.

However, with the development of electro-mechanical devices, reduction in the

size of transistors on the integrated circuit has combined with reduced energy

consumption, production costs, increased mobility, and device connectivity; the

means to realise the once fictionary deployment scenarios of computerised

gadgetry have become reality.

This development first enabled the connectivity of stationary nodes, to

distribute the workload. Such systems came to be known as distributed systems.

Later mobile computing added mobility in the form of ‘availability anywhere’ to

distributed systems, as depicted in Figure 1 inspired by [222] [239] [263].

Mobile computing also featured a degree of context-awareness, e.g. location

awareness. Eventually, this development led to what is known as pervasive /

ubiquitous computing [222] [251] [252]; the third wave of computing [239]

[263].

Figure 1 The evolution chain of computing

In ubiquitous computing, the technologies are being weaved

indistinguishably to our everyday life, i.e. they disappear to the omnipresence as

envisioned by Weiser [253]. The interface to a ubiquitous computing application

is often transparent [3]. That is, when using a ubiquitous computing application

the user may not be aware of this. Hence, some authors claim the term cloud

computing to originate in ubiquitous computing [36]. Consequently, an

ubiquitous computing user application provides a means for a user to perform a

task with the device being a mere portal to the application space and the

computing environment, the user’s information enhanced physical environment

[26] [27] [73]. Moreover, for a ubiquitous user application to be minimally

5

intrusive, it needs to be aware of the context it functions in [222]. The extreme

of this view is the Internet as one computer, the pervasive cyberspace [7],

reflecting the vision of computing becoming invisible, location and device

independent with functionality accessible everywhere all the time [181].

The ubiquitous computing concept has given rise to study paradigms that

build on it. Calm Technology considers how not to saturate a user with

information [254]. In Calm Technology, the key is for information to migrate

between a user’s centre of focus and periphery, e.g. in car navigators the driving

direction is not of interest before coming to an intersection when direction

migrates to the centre of focus, for example, by voice guidance. Other related

concepts include Ambient Intelligence [274] and Autonomic Computing [157].

Ambient Intelligence studies characteristics demanded by a ubiquitous

computing environment in order to be intelligent and responsive to presence, e.g.

sharing a virtual whiteboard only with students attending the lecture.

Autonomic Computing, on the other hand, considers how computers may

eventually make decisions in favour of us. The vision is for the autonomic

system to monitor the context, analyse it, construct plans and execute them

based on the analysis in order to relieve humans from interacting with the

system. Elements of the autonomic systems need therefore to self-configure,

self-monitor, self-adapt and self-heal. Related to autonomic computing is

autonomic communication that focuses on the self-* properties of the networks

rather than computation [82]. From these, yet another concept called task

computing [172] [183] has emerged. The focus of task computing is on a user’s

intents with respect to what resources are available.

All of these disciplines are context dependent. Common to all these post-

centralised computing concepts is that they interact with one and each other in

addition to adapt to the momentarily setting. Hence, all of them are context-

aware.

1.2 Motivation

The amount of data created by the digital universe is estimated to increase from

487 ExaBytes (487 * 10
18

) in 2008 to 5 fold in 2012 according to IDC’s

estimates [138]. With an increasing portion of this information being potentially

available all the time everywhere, a ubiquitous computing dream with trillions of

connected computing devices providing data outlines an environment in which

navigation is of extreme complexity. In addition, this information availability

has contributed to applications breaking loose from the confinement of a single

agent observed at design time to Internet scale runtime environment [66] [181].

This new environment, in which computations are executed, is faced with

issues regarding dynamicity and selection of relevant from irrelevant

information. The promise of context-aware computing is to consider these issues

[119]. Addressing them demands binding of context transparently at runtime

6

[48]. Simultaneously, the notions of trust and privacy policies between the

context providing and consuming agents emerge because:

(i) Data collected from the personal ubiquitous devices is increasingly

intimate [164] giving rise to policies abstracting the details irreversibly

[27].

(ii) Acquired context’s qualities need to be defined.

To address these issues, researchers have (i) considered the policies typically

as logical rules evaluated by an agent in possession of the requested resource.

These policies are local to the agent and mathematical logical analysis on the

policies consistency is possible. On the other hand, acquired context’s qualities

(ii) are important due to the inherent imperfection of the context and autonomy

of intermediate agents. This is noted as a main research issue when derived from

uncertain contexts [270]. Together, (i) and (ii) constitute the motivation of this

thesis.

1.3 The Setting of the Thesis

In one sentence, this thesis is concerned with finding a basis on which to reason

and analyse inherently imperfect contexts that are derived by autonomous agents

populating a ubiquitous computing environment. The imperfection stems from

the inherent inaccuracy of capturing the informal environment. This is modelled

by the quality parameters of a context. Therefore, coming to terms with such

imperfection is necessary and providing a logic and defining an architecture is

sought based on which to calculate with the quality parameters. Such

architecture separates concerns between a part deriving context to a situation and

a part consuming the situation and reacting to it logically.

Figure 2: General context-aware system view

7

The setting that this thesis seeks to define and describe a context-aware

system model as outlined in Figure 2. In Figure 2, the informal events of the

informal environment are captured as elementary contexts that are the most basic

form of context with a formal representation. This elementary context formal

representation of an informal event may not capture all aspects of the informal

environment, motivating a context’s inherent imperfection [123] [126] and

approximation relation in Figure 2. These inherent imperfections are captured as

the metadata of a context, commonly called Quality of Context (QoC). The QoC

is a set of parameters. Of the QoC parameters trustworthiness is considered in

detail in this thesis, hence the trust relations. These QoC parameters propagate

throughout the context derivation. Contexts are derived in applications to

increase their level of information, denoted in Figure 2 as applications within

context derivation. Such derived context is called contextual information. The

logical topology of context derivation is defined in this thesis. Eventually the

context including its propagated QoC parameters is consumed by a user

application as a situation.

The user application evaluates the provided situation by the level of

trustworthiness on the provider in this proposition. On this evaluation the user

application applies a policy that determines to what extent the acquired situation

influences the user application’s logic. Hence, the user application logic that

may trigger an actuator is influenced by a situation basing on imperfect

context(s). The actuation, on the other hand, indirectly influences

(stigmergically) the environment in accordance to the task, i.e. the actuation is

stigmergic with respect to the contexts. Examples may include adjusting a valve

controlling the air conditioning system or merely display the result on a display.

This motivates the user application’s logic in separation from the situation

evaluating context applicability in Figure 2. Moreover, the device may provide

the user application with commands. Hence, Figure 2 outlines a general view of

the context-aware architecture we consider with separation between an

application and a user application.

1.4 Research Question and Methodology

The challenges with respect to trustworthiness, context-awareness and a formal

treatment of these are manifold. The hypothesis of the research that this thesis

presents is:

In a network populated by collaborating autonomous context providing

agents, it is possible to formally specify the contextual dependencies of

context-aware user applications performing user-centric tasks in a

scalable, maintainable and adaptable manner.

This hypothesis calls for formally specifying a collaborating scalable and

maintainable basis providing contexts to a context-aware user application.

8

Adapting to the current setting is crucial as the quality, availability and

applicability of a context providing agent may vary. For example, a printer may

run out of ink implying change of context. Moreover, as the environment of the

context consumer may change, the applicability of a context varies, e.g. the

closest printer is dependent on the location of the inquirer. These changes are

subject to being aware of the momentarily context.

With this hypothesis, the research question this thesis aim to answer is:

In what logical topology and by what means may context provided by

autonomous agents be derived and formally modelled to serve the context-

awareness requirements of an application?

This question yearns for elaborating on how to derive informal context to a

situation that may support a user application’s decision in providing a user

means to perform a task. This is also the specific problem setting the research

presented in the thesis.

The research methodology applied on this research question includes both

exploratory as well as constructive aspects. The exploratory research relates to

how the context’s quality parameter of trustworthiness may be modelled and

what its restrictions are. This yielded the confinements resulting in a polytree

logical topology for context derivation as well as the necessity to acknowledge

subjectivity and (un)certainty. Trustworthiness as a QoC parameter is noted by

many related works [54] [74] [158] [176] [236] [237], but to the best of our

knowledge, only examined in detail by Grossman et al. [113] whose approach

supports ours. Constructive research methodology is adopted when formally

modelling context and context propagation. Perhaps the most exemplifying of

our constructive research is the formal dependence operator binding a context.

1.5 Contribution and Limitations of Scope

With respect to the setting of this thesis and the research question, the following

challenges are addressed:

1 providing a means to include the ambiguous, unpredictable and

uncontrollable context in a formal manner

2 introducing a scalable end-to-end model for context derivation

3 providing a model for calculating with the QoC parameter of

trustworthiness

Thus, this thesis presents a formal means in which to model context and its

dependencies (1). Our more specific contribution to this topic are provided in

Papers III, IV and V defining the dependence operator in the Action System

framework; also considered in Section 5.1. Challenge (2) calls for a model in

which elementary contexts are derived to situations. For this, our contribution

includes the componentised views of context presented in Papers II, III and IV.

Moreover, in Section 3.5, a novel view on the context derivation’s logical

9

topology is proposed, motivated and defined to be a polytree; which is a

contribution in its own right. Challenge (3) considering the QoC parameters is

addressed more specifically by studying the parameter of trustworthiness in

detail. Our contribution to this challenge includes, to the best of our knowledge,

a novel view of using the Subjective Logic framework on a general model of the

recorded experiences for calculating the trustworthiness of context. Moreover,

the Subjective Logic allows for ascertaining the level of trust by referrals on

some proposition. Paper V proposes a means to consider as referrals only entities

that share likes of the subjective matter they evaluate.

The scope considered by this thesis is limited to the QoC parameter of

trustworthiness to how an application acquires its context, and to how contexts

are derived. Hence, in this thesis we do not consider context discovery, ontology

of contexts, artificial intelligence or context reasoning methods in a natural

language. Moreover, we neither consider synchronisation of the sources, try to

formalise the context as a construct, study types of information representation,

weighing between the QoC parameters nor address how appreciation is

distributed in case of many contributors. We do not differentiate between classes

of context (internal, external, social, cognitive and so forth) due to their

subjectivity. Our approach simply assumes the contexts to be available all the

time everywhere, hence the ubiquitous computing concept in the title. We

discard engineering problem settings, e.g. the sampling rate. We take a data-

oriented view on acquiring the context, i.e. whether the contexts are stored on a

server, or directly connected to, or acquired from some middleware is, out of the

scope of this thesis too.

Computer science approaches on trustworthiness, trust policies, security,

privacy and access control are each only briefly mentioned. The main focus is on

experience-based trustworthiness as it captures the ever changing and ambiguous

context by experiences. In line with related work on trustworthiness, how or by

what preferences the experiences are derived is not considered. Moreover, we

omit considering the consequences of breaching a context’s trustworthiness; as

failure management, fault tolerance and dependability issues branches to a

separate field of research [167].

1.6 Structure of this Thesis

This thesis consists of two parts. Part I is three-fold. Each chapter in Part I

begins with a short description what that chapter presents. Part II of the thesis

consists solely of republished publications.

In Part I, we start by introducing the research addressed in this thesis.

Context and context-awareness including quality parameters are defined and

discussed in Chapter 2 followed by context models and its architecture in

Chapter 3 and eventually, trustworthiness in Chapter 4. Chapters 2 and 4 are

divided into introduction, problem analysis, state of the art with respect to the

10

challenges and finally, success criterions that the chapter in question raised and

this thesis aims to shed light on. Chapter 3 follows the same structure with the

difference that the final sub-section 3.5 provides a contribution, the logical

context derivation topology of a polytree. This is, to the best of our knowledge, a

novel approach considering context derivation in a logical topology of a

polytree. Chapter 5 motivates how all these concepts fit together and describes

the formal methodology of choice, the Action Systems framework. The Action

Systems framework is later used to specify and reason on the complex structure.

Following these sections, in Chapter 6 we provide a short description of

scientific publications with the author’s role emphasised. In Chapter 7 we

discuss our results, raising points of criticism and answering these. The

discussion is followed by conclusions and future work in Chapter 8, a list of

abbreviations and short term definitions in Chapter 0 and a list of referenced

work in Chapter 10.

With the kind permission of the copyright holders, Part II of this thesis

consists of republished publications of the author in accordance to Chapter 6.

11

“For me context is the key - from that comes the understanding of

everything.” – Kenneth Noland

2 Context and Context-Awareness

In this chapter we define context and context-awareness in their various

forms as used in this thesis. We also address the representation of

context, including its quality parameters that capture a context’s inherent

inaccuracies. Moreover, we outline an application that may derive on a

context. The structure follows that presented in Section 1.6.

12

In the natural language, ‘context’ merely consists of 7 characters in the Latin

alphabet that when separated by spaces, is noted as a word. The definition of the

word context in the Merriam Webster’s dictionary is: “the parts of a discourse

that surround a word or passage and can throw light on its meaning” [188].

Hence, in the natural language, the context in which a word is written depends

on the sentence; the context of the sentence on the paragraph; the paragraph on

the book and the book on the definition provided. Consider the phrase “Sorry to

hear that, but better luck next time.”. This is a grammatically correct phrase in

the English language but the reader cannot perceive its true meaning without

knowing its context: better luck to what? Why “but”? Sorry for what? [259].

Moreover, the event that triggered this sentience may depend on the history

events [112], i.e. a sequence of events that led to this context. Consequently,

knowing the context of an event provides a means for a better, more precise

perception of the informalities at hand; these may be used to serve a user’s

customised intents that contrary to humans, computers cannot yet, if ever, master

very well. Having said this, we consider context as information shedding light

on an entity’s informal environment of which the QoC parameters constitute the

metadata capturing its imperfection.

At its simplest, context is captured by a sensor attached to a device executing

a context-aware application that provides a situation to the user application. An

application is context-aware whenever some context, and a user application

whenever some situation respectively and their QoC influence it [38], i.e. being

context-aware is to be responsive to the situation / context of the task [86] [168].

To be responsive may, or may not, trigger an update or an actuator. However, as

both an application and a user application is implemented in a programming

language that ideally is well-defined, the application and user application as a

concept may be considered part of the formal mode of a task. Consequently, a

context-aware application or user application is always triggered by a context,

i.e. by some informal real world event. This makes all adaptive applications

fundamentally context-aware [238] [276].

Such a view is supported by Zemanek who states that “no formalism makes

any sense in itself; no formal structure has a meaning unless it is related to an

informal environment” [275] where the informal environment may refer to

context and the formal structure to an application. Naur [198] enforces this view

by arguing that a formal mode extends the informal but does not replace it. He

argues against the claim that “an expression in an informal mode can be

conveyed by a formal expression” by that “the meaning of any expression in

formal mode depends entirely on a context which can only be described

informally” and continues stating that the meaning of the formal mode is

introduced by means of informal statements [198]. That is, a formal proof based

on facts often requires an intuitive understanding of these facts, hence,

demanding passing between the formal and informal modes with ease, e.g.

proving relation descendent of to be transitive requires an informal

understanding of descendent and its difference to a similar relation of child_of .

13

These views set the approach of this thesis. If an application is entirely and

natively context-unaware, then it cannot provide anything of interest to the

informal environment, i.e. it cannot provide for a task of a user’s interest. That

is, if an application does not include informalities, then whatever it outputs is of

reduced relevance and doubtful usefulness [198]. Dually, whenever an

application is context-aware, it approximates some characteristics of the

informal environment, i.e. contexts may never fully describe the current

environment. Consequently, this section as well as the whole thesis set out to

study matters related to deriving on informal context for supporting a user

application’s decision in means to provide a task.

2.1 Introduction to Context and Context-
Awareness

The research on context and context-awareness originates from Olivetti’s Active

Badge research in 1992 [247] with the notion coined by Schilit et al. in 1994

[224]. Later research has split into a branch of Artificial Intelligence (AI) and

natural language processing [33] [44] [47] [108]. Central questions in AI and

natural language processing refer to the meaning of sentences as well as to

methods to (dis)prove them together with follow up questions. For example, how

to reason about the meaning of the sentence “is there water in the fridge” or how

to (dis)prove “water in the fridge”; raising the follow up questions, how much

water, in what form and during what period? Other directions within AI include

context in information retrieval, in human-computer interaction and in

distributed AI [43]. In addition, context has been considered in formal logics

typically as an assertion [23] or basic assumption outlining a model’s static part

[4]. Perhaps because of these diverse views there is no commonly agreed

definition on context, on what it is, what it entails and by whom / what it is

created [32] [65] [72].

As a consequence, context has been defined in a number of ways [50] [60]

[136] [170] [203] [218] [224] [248] [264]. In this thesis we adopt a frequently

used definition in accordance to that of Dey and Abowd [76] considering context

to be information that characterises the situation of an entity. According to

Winograd [259], however, this definition is so broad that it covers nearly

everything, from the electric grid to file systems. Having an application’s view,

Winograd [259] further stresses that something is context due to the way it is

used in interpretation, not because of its inherent properties. Winograd’s view

could thus be put forward by the following example. In the context of speeding

characterising an entity car, the information temperature is not a context.

Obviously, temperature may be context for another setting. Hence, context does

not exist by itself, but is used to describe an entity [84].

We consider information to possibly be context regardless of its

instantaneous relevance to an application’s event as it may become relevant at

14

some later point and must therefore, not be neglected. That is, information as a

part of what led to the current context is context in its own right, e.g. the context

of a book’s loan period may be irrelevant until overdue. Hence, our view is

related to the AI view that considers a context (situation) as “a finite sequence of

actions. Period. It’s not a state, it’s not a snapshot, it’s a history” [212]. This

view defines an axiom stating that executing action in context is equal to

executing action’ in context’ if and only if action = action’ and context =

context’. Such an AI view is in contradiction to the state-based formal view

considering an instantaneous state of the system in which, for example, a

predicate transformer’s total function may execute [23].

Related to the formal and AI view, McCarthy and Hayes [185] consider a

situation as “the complete state of the universe at an instance of time“. They

correctly notice this to be impossible to capture and restrict themselves to only

provide facts about a specific view, i.e. a partial situation. Moreover, Ghidini

and Giunchiglia [104] note that within a partial situation, an observer is able to

view everything.

The temptation to approximate context of a partial view to a complete view

ignoring or assuming inaccuracies of it comes from the power of mathematical

functions [170]. This underlines the need to approximate the context

unambiguously to a model in order to formally analyse it [4]. Obviously, the

level of approximations and assumptions define the model’s validity on reality.

This is the reason why a formal method is applied on a model; whose ‘closeness’

to the real environment is critical [4]. Abrial [4] also notes a fundamental issue

in terms of context; that “it is quite clear that these elements cannot be

formalized completely” (sic) [4]. In addition, this constitutes the motivation for

context in the first place, where ambiguities are captured as quality parameters

and provided to the formal model of a user application.

Having presented these quite varying views on context, we continue by

presenting our definition of context used throughout the thesis.

2.1.1 Definitions for Context and Context-

Awareness

What is considered context to an application depends on its boundary. When

considering locally attached sensors providing information to an application, the

context-aware system boundary is obvious and sharp; it features the sensors and

the application. However, for distributed applications that interact and include

remote procedure calls, the boundary gets blurred [170], i.e. should a remote

procedure be considered context? In this thesis, however, we define the context

boundary of an application to be sharp: all information used within an

application but derived from outside is considered context, regardless its origin.

Moreover, as we define context on a general level and not for a specific purpose,

15

the definitions of context and context-awareness are intentionally vague. This

vagueness is the motivation for further categorisation of context in Section 2.1.2

Considering context this way, our definition of context follow Dey’s and

Abowd’s [76] but include ‘virtual objects’ and setting:

Definition 1. Context: “Context is any information that can be used to

characterise the situation of entities. An entity is a person,

place, object, virtual object or setting that is considered

relevant to the interaction between a user and an application,

including the user and the application themselves.”

Examples of person, place and object entities are Alice, cafeteria and car

respectively, e.g. context height characterises the entity person, a location

characterise a place and next_to characterises an object. ‘Virtual objects’ are

entities that exist virtually, e.g. board_of_directors, e-calendar and service

whose contexts may be in_meeting, entry and available respectively. The setting

entity refers to relation properties on the entities characterised by contexts [86],

playing a role to establishing context [122], e.g. settings next_to and married

where married may be identified by contexts time and spouse. Moreover, with

respect to the definition, the “any information” and “characterise the situation”

suggests that all information used to characterise a situation of an entity or group

of entities is, in its own right context. This includes social matters [133] [191]

[205] [216]. This definition does not explain what the “situation of entities” is

but illustrates it through simple examples [120]. This underlines the broadness of

this definition of context [259], making it an umbrella concept allowing entities

to be context characterising other entities, e.g. entities in proximity may be

context.

To restrict the definition of context slightly, we note that a context, as used in

this thesis, is sensed or derived from the informal environment, i.e. context is not

a formal quantity that the application may control directly. Hence, a queue’s

length by image recognition is context whereas the state of the ticket dispenser is

not. Thus, examples of contexts are: identity, spatial (location, altitude, speed),

temporal (date, time, season), environmental (luminosity, humidity,

temperature), social (close, reachable), resources (connected, availability),

physical (blood pressure, area, thickness), activity (walking, sitting) [8]. Of

these, for example the identity may not be sensed but provided by informal

means. Examples of necessary matters for an application that are not context

include variable, constants and state.

Having defined context, we consider an agent (used as a general term for

application, user application or informal entity) context-aware if it consumes

context or situation for deciding how, if at all to adapt. Hence, context-

awareness is related to adaptivity, making all adaptive applications context-

aware [75] [76] [238] [276]. Moreover, the context consumed may change at any

point of time, e.g. as a consequence of the entity’s mobility. Thus, the relevant

context is a property of the moment and very hard to approximate and define at

16

design time [86] as it is defined with respect to the process [65] [86].

Consequently, we employ the following definition on context-awareness as:

Definition 2. Context-aware: “An agent is context-aware whenever it

adapts its behaviour / output according to the momentarily

context.”

The key of this definition is in the behaviour / output. We consider an agent

context-aware if it combines contexts, calculates on acquired context or

performs an actuation, e.g. computes speed from revolutions and circumference,

calculates average or writes an entry to a log file. Consequently, the definition

considers context-awareness per se, not by its direct relevance to the user, e.g. an

entry in a non-rewritable log (earlier updated based on context information)

makes the application editing the log file a context-aware user application as this

entry may later become ‘relevant’ context. This definition of a context-aware

agent excludes mere forwarding of a context, as a forwarding agent does not

adapt, i.e. it functions in the same way regardless of the context. However, as

something is context due to the way it is used in interpretation, not because of its

inherent properties [259], a context-unaware forwarding agent may provide

context information.

2.1.2 Categories of Contexts

Two disjoint categories of context may be recognised based on the means of

acquiring the context. These are called implicit and explicit contexts and we

define them as follows:

Definition 3. Implicit context: “An implicit context is ambiguous

information describing the environment.”

Definition 4. Explicit context: “An explicit context is unambiguous

command inputs.”

We further categorise sensors capturing the implicit context into physical

sensors (e.g. temperature, humidity, location) and logical sensors (e.g. role, time)

[156] [226]. Our categorisation relates to external and internal sensors [118]

[119] [171] [209] [238] where the external context (physical sensors) provides a

user’s environment and the internal context (logical sensors) provides a user’s

internal state, e.g. cognitive (next_to, busy) or physical state (position). This

distinction is, however, not always clear as for example, a user’s social

environment can be provided partially by internal and partially by external

sensors [119]. Explicit context, on the other hand, captures information that is

provided unambiguously, sometimes called control input, e.g. a command

through a keyboard. Common to both categories is that they are sudden, i.e. they

may not be anticipated in a clear and unambiguous manner.

With respect to the implicit contexts, it is notable that terms in categorisation

vary. For example, Indulska and Sutton [139] categorised location sensors into

17

three types, namely physical, virtual and logical. They distinguish between these

by means of capture, i.e. physical refers to GPS, virtual to determine an agent’s

location by time and calendar entry, whereas a logical sensor may determine the

position by login at a desktop computer and fetching this computer’s location

from a database. Baldauf et al. [25] follow this three-fold categorisation but on a

general level, not mentioning explicitly this to apply on means of sensing

location.

In addition, we distinguish between two categories of implicit contexts:

elementary context and contextual information.

Definition 5. Elementary context: “An elementary context is unprocessed

raw data captured by sensors.”

Definition 6. Contextual information: “Contextual information is

information that is derived from elementary contexts and

other contextual information.”

The elementary context (or context-primitive) relates to atom, direct, physical,

source, provider, intrinsic whereas the contextual information (compositional

context) higher level context, indirect, logical, context information, virtual

context, context synthesisers output and situation respectively [25] [48] [66] [85]

[103] [117] [130] [139] [211] [245] [271]. The term context is used when it is

not important whether implicit elementary context or context information is

meant. Moreover, we consider a key stroke to be an elementary context captured

by the membrane switch. Hence, an elementary context is the product of an

application that transforms an informal event captured by a sensor to a formal

representation, in line with Figure 2. Characterising for such an elementary

context is that it is independent of other context. Moreover, the elementary

context, the contextual information and all their derivatives have no sense of

temporality in their own right. Thus, a context is a snapshot at a certain moment

whose sampling rate is sufficient, that when time stamped and stored is assigned

a temporal aspect.

For example, a spatial elementary context of an entity is location where a

sensor deriving location is attached to the entity, say a mobile phone used by

Alice. Another entity, Bob, may share the same spatial elementary context

‘location’ when associated with an entity whose location is known, e.g. Bob

share Alice’s location when associated by in_close_proximity. However, as

Bob‘s location depends on the relation between Bob and Alice’s mobile phone, it

is derived and thereof, contextual information. Contextual information Bob’s

location is derived in an application from elementary contexts and/or other

contextual information ascertaining the in_close_proximity relation. Hence,

context is derived hierarchically. Altogether, this resembles the simple logics

imposed by widgets built on top of widgets in Dey’s Context Toolkit [77] where

the widgets provide contextual information, Loke’s Prolog style of rule relations

[174], Henricksen et al. context modelling language [120] [126] to mention a

18

few. Issues relating to modelling of context are considered in greater detail in

Chapter 3.

If the context rises to the level of being consumed by a user application that

may, or may not, trigger an actuator based on this, the context manifests a

situation. Thus, a situation derived from hierarchically organised contexts is a

meta-level concept of contexts [200]. A situation is a prefabricated abstraction

defining logical conditions on the constants and contexts [75] [84] [122] that we

define as follows:

Definition 7. Situation: “A situation is a specific configuration of context(s)

and constant(s) consumed by a context-aware user

application.”

Consequently, we share the view on a situation with [65] [67] [68] [70] [71] in

that all situations and contextual information derive from the same set of

contexts. The fundamental difference between a situation and a context is that a

situation is consumed by a context-aware user application, whereas contexts are

consumed by a context-aware application. Consequently, a situation may be

considered a wrapper abstracting the internal configuration of context from the

context-aware user application, said to be “the semantic interpretations of

context” [268]. Moreover, the set of all situations acquirable by a user

application provides the partial view of the environment, the application’s

domain of discourse [105]; a matter elaborated on in Section 2.1.3.

A situation has internal and external perspectives [48] [83], called a ‘context

driver’ by Lei et al. [169] and cascading context by Prekop [209]. This implies

that a single context may contribute to several contexts (situations) [238].

Moreover, a context for some application may simultaneously be a situation to

another user application [84] [85]. Hence, the way a context is used determines

whether it is context or a situation. This topology is elaborated on in Section

3.3.1.

2.1.3 Context Derivation

According to Dey, “one of the main reasons why context is not used more often

in applications is that there is no common way to acquire and handle context”

[74]. He further notes that context handling is in general improvised, where

application developers choose an implementation technique at the cost of

generality and reuse. Partly as of this, this section outlines a general structure of

context derivation. In this outline we follow the notions of Coutaz and Rey [66]

in order to reason in a structured manner on context and its appearances with

sharp boundaries on applications. This view concurs with the idea of separation

of concerns between agents deriving context and agents consuming context, a

matter further elaborated on in Section 2.1.4 and 3.1.1.

For this outline, consider the (unrealistic) set of gross context CG(t) to be the

history of all observed facts together with those demanded by the user

19

application for providing the tasks at logical time t. Let the contexts observed by

a context sensitive system at time t be contextS(t), where subscript S stands for

‘system’. Let CS(t) define the history of these observed contexts, i.e. contextS(t)

⊆ CS(t), CS(t) ⊆ CG(t) and CS(t) = contextS(t) ∪ CS(t-1). Similarly, let the

situations a user application is concerned with at a specific logical time t be

situationA(t), where the subscript A for ‘application’ in user application, with

SA(t) denoting the history of these, SA(t) ⊆ CG(t) and SA(t) = situationA(t) ∪ SA(t-

1). The history of situations consumed by a user application is similarly defined

as situationN(t) and SN(t), where the subscript N stands for ‘net’ as in net

situations. In line, we have that SN(t) = SA(t) ∩ CS(t) and SN(t) = situationN(t) ∪

SN(t-1). Hence, our approach to the relation between contexts and situations

including their histories are as follows:

t = 0: CG(0) ∪ CS(0) ∪ SA(0) ∪ SN(0) = ∅

t ≥ 0: situationN(t) = contextS(t’) ∩ situationA(t)

t ≥ 0: contextG(t) = contextS(t’) ∪ situationA(t) ∪ <other observables>

t > 0: CS(t) = contextS(t’) ∪ CS(t-1)

t > 0: CG(t) = contextG(t) ∪ CG(t-1)

t > 0: Si(t) = situationi(t) ∪ Si(t-1) for i ∈ {A, N}

A feature of this representation is that despite temporalities, situationA(t) does

not need to consume the most recent contextS(t), a feature well motivated when,

for example, calculating the trend, or the average temperature during the last

week. We note that an application needs to be able to demand ‘old’ context, as

we do not consider a specific implementation. The relations are illustrated in

Figure 3.

Figure 3: Situations and contexts

With this, the underlying system’s context conformity with respect to the user

application’s desires is captured by |SN(t)|. If |SN(t)| = 0, the user application has

not been affected by context(s) until time t. If |SA(t)| = 0, the user application has

been context-unaware until time t. Moreover, |CS(t)| compared to |CG(t)| denotes

the whole system’s intrinsic context sensitivity up until time t.

From a ubiquitous computing view, the removal or abstraction of outdated

context is not an issue and all observed context are, for now, considered

available. Hence, we consider an application that provides a context to store the

20

history of it. Moreover, this view of system contexts contextS(t) and user

application situation situationA(t) is an initial suggestion to the separation of

concern in the context-aware architecture.

2.1.4 A Context-Aware Architecture

A starting point of division of a context-aware architecture consists in the

separation of concern between user application situationA(t) including SA(t) and

the context deriving applications providing contextS(t) and CS(t). This is depicted

in Figure 4 that is related to Figure 3 and Figure 2, i.e. the different levels of

contexts and situations are noted in terms with concepts introduced in Section

2.1.3. Such separation of concern is a fundamental feature of any context-aware

system for the sake of reusability and maintainability [8] [34] [56] [59] [60] [74]

[76] [77] [83] [111] [165] [216] [227]. Baldauf et al. [25] state that this

separation is the main criterion for a context-aware architecture. Moreover, it

makes the user application’s situation maintenance transparent, i.e. sufficiently

abstract to free the context-aware user application from reasoning on the

operational details but sufficiently precise for autonomous determination of

current context [216].

Figure 4: Schematic view of context derivation

Hence, for a user application to act on a non-empty set of contexts context(t’)

⊆ CS(t) provided by autonomous applications, this context is defined in

situationA(t) and becomes an element of situationN(t). A predicate deciding

whether or not the user application is in context is applied on situationN(t), called

exploitation [65] and context management layer [121] in related research.

Each contextS(t) is provided by an application. Such autonomous applications

share many features with an encapsulated component. Traditionally a component

is defined to be a “unit of composition with contractually specified interfaces

21

and explicit context dependencies only” that is “deployed independently and is

subject to composition by third parties” [241] [242]. Hence, key characteristics

of any application (component) in context derivation are [48] [250]:

(i) explicit dependencies that specify the contexts the application requires

in order to provide for its task

(ii) contract and interfaces specifying the functional and non-functional

characteristics of the component, i.e. what is needed and what is

guaranteed typically with pre- and postconditions

(iii) unit of deployment meaning that the component is an autonomous

element that may interact with other components through its interface

and;

(iv) third-party composability stating that the component may be further

composed

Moreover, the application providing a context adheres to Szyperski’s [241] [242]

claim that a component has no externally observable state. This supports the

independence of a context providing application.

Thus, we model an application deriving context by a uniform structure

dividing the application internally to three parts: one acquiring context, one

processing the acquired context and one providing the output [66] [97] [111].

We call these parts of a context acquirer, application body and provider and

define them as follows:

Definition 8. Context acquirer: “acquires the context(s) the application

depends on.”

Definition 9. Application body: “conducts some algorithmic functionality

on the acquired context(s).”

Definition 10. Context provider: “provides the output of the application.”

With respect to a component’s key characteristics, a context acquirer acquires

contexts and defines the explicit dependencies (i) and the input interface (ii). It

may also implement some selective predicate on the acquired contexts defining

the means of context binding, e.g. a threshold. An application body executes

instruction(s) on the acquired contexts whereas a context provider provides the

new, improved contexts (ii) context’(t) ⊆ contextS(t). Applications providing

context may depend on other applications providing context (iii, iv) abstracting

the contextS(t) making the context derivation hierarchical.

We consider an application to have two different kinds of input and output:

control and data. The control in / out constitutes a channel for unambiguous

information, the explicit contexts, e.g. commands, inquiries, handshaking. Inputs

on this channel influence the processing of the application. The data in / out

consists of contextS(t) including the QoC metadata. The QoC parameters are

elaborated on in Section 2.1.6. Altogether, four different types of applications

may be outlined: (i) an application providing elementary context x(t) ∈

contextS(t), (ii) an application deriving context acquiring y(t) ⊆ contextS(t) and

22

providing z(t) ⊆ contextS(t) where z(t) ∩ y(t) = ∅, (iii) an user application

acquiring α ⊆ contextS(t’) where contextS(t’) ⊆ CS(t) and contextS(t’) ⊆

situationA(t), as well as the (iv) actuator consuming ‘control out’ of the user

application and stigmergically affecting the informal environment. These are

depicted in Figure 5 that is influenced by related work, the component model

[66] [214] and context handling component model [111]. This approach share

the idea with sentient object model [35] [97] and the event-control-action pattern

[83].

Figure 5: Types of applications

2.1.5 Context Acquisition and Modes of
Adaption

According to Brown and Jones [51], there are two modes for context acquisition:

proactive and interactive. These are called push and pull by Cheverst et al. [61]

and synchronous stream of data and asynchronous events by Crowley et al. [71].

Proactive context acquisition refers to automatic acquiring of context with the

context continuously available for processing at a given quality whilst

interactive context acquisition update the context only on request.

Dually to proactive and interactive context acquisition, modes of adaption are

either active or passive [60]. Active adaption refers to an application or user

application automatically adapting in response to a context without user

interaction. Active adaption is also referred to as automatic execution of a

service [76], context triggered action [224] and contextual adaption [203].

Consequently, the design of a means for active context-awareness is delicate, as

a user’s intents are crucial to capture [222]. Passive adaption, makes the relevant

context available for later retrieval or presents it to a human user for specifying

how, if at all, to adapt; sometimes referred to as tagging [76], proximate

combination and contextual commands [224]. Whether passive or active

adaption is used is determined by the consuming application [60], implying that

a single context may be part of both active and passive adaption. Examples of

active and passive context-awareness are an automatic air conditioning and a

web site without auto-refresh respectively.

Erickson [90] argues against passive adaption as it violates the purpose of

context-awareness of letting the systems take actions autonomously. This desire

23

is facilitated by the fact that a user does not want to be in a control loop saturated

by simple inquiries, the idea that gave rise to calm technology. However, active

context-awareness will, most likely, never match the level of human context-

awareness motivating in favour of passive adaption. Obviously, a mixed mode of

adaption is possible, e.g. a control system may implement active adaption that

shifts to passive and freezes the system if ‘emergency stop’ is pressed.

2.1.6 Quality of Context

An implicit context is derived from the informal physical environment. As the

true configuration of the environment may not be accurately captured, a context

is considered inherently imperfect [123] [126]. For elementary context, it may be

incorrect when it fails to capture the true configuration of what it sheds light on,

inconsistent if it is derived from non-unanimous information or incomplete if

some aspect is abstracted or unknown. These inherent inaccuracies and

ambiguities on context give rise to the concept of quality of context (QoC) and

its parameters [54] [121] [158] [176] [205] [236] [237] [257]. We consider QoC

as the metadata of context.

QoC is typically modelled as a set of parameters. The most important QoC

parameters are according to Buchholz et al. [54]: precision, probability of

correctness, trustworthiness, resolution and up-to-dateness. Here, precision

refers to the relatedness with reality e.g. GPS accuracy; probability of

correctness refers to the unintentional erroneous metric of the elementary

contexts, e.g. frequency of internal errors typically acquired by testing;

trustworthiness the rated certainty of the provider with respect to the other QoC

parameters; resolution refers to the granularity of information, e.g. temperature

inside may vary; and up-to-dateness refers to the age of the context.

The QoC parameter of trustworthiness is noted as a complex parameter [54]

[236] and an interesting and open question by Dey [74]. Research referring to

Buchholz et al. [54] does typically not include trustworthiness [257], evades

considering it more closely [158] [236] [237], or simplifies the meaning to

considering it as a specific instance [176]. To the best of our knowledge,

Grossman et al. [113] are the first to consider means to calculate with

trustworthiness as a parameter of QoC. They model trust as a triple (belief,

disbelief, ignorance) but use, as stated, a simplified version assuming non-

existent disbelief making belief behave alike a percentage of truth.

A feature of trustworthiness as defined by Buchholz et al. [54] is that it is the

only QoC parameter that is interpreted by the agent consuming the context. As

this context consumer cannot have any data by which to place a level of trust on

a provider, trust needs to build up by experiences and includes the context

consuming agent’s expectations and cognition. It is also the only parameter that

captures the complete performance of the provider including the other QoC

parameters. The type of trustworthiness presented by Buchholz et al. [54]

24

therefore builds up from initial vacuous trust. Altogether, this makes the QoC

parameter of trustworthiness experience-based and subjective, issues that are

further discussed in Chapter 4.

In addition to these, Sheikh et al. [237] split the QoC parameter of resolution

to spatial and temporal resolution. They stress that the spatial resolution

describes the physical area (space) to which a context is applicable, i.e. a

temperature may be applicable ± 5m. Dually, the temporal resolution describes

temporal granularity, i.e. the time for which a context is applicable. As the

temporal granularity varies, it implies that the rate of aging is not uniform [225],

e.g. context name ought to age slower than temperature. Whenever the temporal

granularity is modelled as a continuous function on a continuous datum, such as

time (aging), with the granularity defined by a threshold on certainty, the

context’s certainty continuously changes. To the best of our knowledge,

McCarthy [184] was the first to acknowledge this. Research on presenting and

evaluating the QoC parameters as parameters that influence the ‘worth’ of the

context is scarce, with Manzoor et al. [176] claiming to be the first to consider

QoC parameters as the worth of context for an application.

There are several related concepts of QoC such as Quality of Service (QoS)

and Quality of Device (QoD). A main difference between QoC and QoS is that

QoC may exist without a service or a device, i.e. QoC is something related to

data whilst QoS to the providing service. Moreover, QoD limits QoS and QoC to

the hardware’s capabilities [54]. The concept Quality of Information (QoI) is

related to QoC and they are sometimes used interchangeably [257]. The

relatedness is obvious also for the parameters of QoI. For example, a study of

surveillance systems identified the following QoI parameters: certainty,

accuracy, integrity and timeliness; where certainty, accuracy and timeliness

surely overlap with the QoC parameters [135]. However, in this thesis we make

a clear distinction: as information may be any data including context, we

consider only context as some inherently imperfect data describing the

environment. Hence, this thesis focuses solely on QoC.

2.2 Problem Analysis

The main challenge with respect to context stems from the difficulty to define

the concept itself as well as what it describes. For example, a context’s inherent

inaccuracy breaks down the algorithmic model of an execution. Conversely, as

the execution is formal, the contexts are precise in computation. Here, the

contexts’ metadata of QoC parameters come to play a decisive role in

propagating the uncertainties related to a context, leading us to state Challenge

1:

Challenge 1 Define computations on an inherently imperfect context.

Challenge 1 basically calls for discovering functions to compute on contexts in

order to algorithmically derive contextual information. Hence, a best-effort

25

context derivation ascertains not to introduce additional inaccuracy / ambiguity.

In addition to problems related to representing the inherent inaccuracy of

context, selecting the most suitable context providers for deriving an output with

as high quality QoC parameters as possible is desired. Of the QoC parameters, in

this thesis we focus on the parameter of trustworthiness, elaborated on in

Chapters 4 and 5.

Ranking the possible context providers with respect to a parameter or

configuration of continuously changing parameters provides a basis for

straightforward dynamic binding. This requires rigorous and dynamic runtime

binding of context providers, leading to Challenge 2:

Challenge 2 Model runtime binding of context applications based on

QoC and suitability.

Providing a means to address Challenge 2 is crucial for context-awareness in an

ever changing environment, as the whole concept relies on adaption to context.

Together, Challenges 1 and 2 seek for a methodology in which to reason on the

QoC parameters. An architecture supporting these matters is presented in

Chapter 3.

2.3 State of the Art

Research on context and context-awareness as concepts is limited. Perhaps this

is because they are matters of definition. At the time of writing, existing

implementations on context and context-awareness are often restricted to the use

and test of physical sensors providing factual metrics as context providers [25]

[133]. In these, contexts are often assumed perfect [123] as opposed to

imperfect. This view gives rise to gathering as much context as possible to serve

for the ever finer grained contextual predicate of an application with the

drawback of increasing complexity. The research focus has therefore shifted to

architectural research on how to abstract, represent and identify relevant context

(situations) that the user application is in need of from elementary context [269].

Hence, much of the state of the art on context and context-awareness is on

considering the context deriving application, representation and means of

binding the context; issues that we address in this section.

2.3.1 Context Processing Components

The contextor component [66] [214], the context handling component [111] and

the sentient object [35] [97] are results of research on means to decompose a

context-aware architecture to manageable elements. The main difference among

these approaches is their point of focus. The focus of a context handling

component and of a contextor component is on the communicational channels

26

noting that a context’s metadata constitute the QoC parameters. A sentient object

focuses on the algorithmic core.

In any of these models, when several of their elements (components or

objects) are in succession, a hierarchy of a directed graph is formed. In the

directed graph, data in channels of a more abstract element are connected to

compliant data out channels of the more specific elements; and control out of

the abstract to control in of the concrete element [35] [66] [97] [111]. Coutaz et

al. [66] call this hierarchy a colony of components whose data flow they note to

be static (design time), semi-static (run time at system launch) or transient

(dynamically changing).

Figure 6: The sentient object model

In contrast to a contextor and a context handling component, a sentient object

[35] [97], depicted in Figure 6, focuses on the internal functionality of the object

consuming and producing software events. Three objects are defined in this

model: sensor that consumes real life events and produces software events,

actuator that consumes software events and produces real life events and the

sentient object that consumes and produces software events. In the model

outline, the actuators may influence the sensors stigmergically, i.e., by real life

events such as by adjusting a valve; this may indirectly affect the sensor.

Internally a sentient object is three phased: (i) sensory capture that performs

acquiring and fusion of input events integrated as a Bayesian network to model

the inaccuracy and dependency of sensor data, (ii) context representation /

hierarchy that transforms captured and fused exclusive and exhaustive contexts

(software events) to other context(s) in a hierarchy. These transformed

representations are consumed by (iii) inference engine that reason by a set of

rules to produce an output as a software event. Hence, a sentient object derives

acquired context X ⊂ CS(t) to establish and provide a new context X’, where X ∩

X’= ∅. Moreover, in accordance to Figure 6 this software event may be

consumed by another sentient object forming a hierarchy of objects. However,

the authors do note that “essentially, a sentient object is an encapsulated entity,

with its interfaces being sensors and actuators” (sic) [35] [97].

27

Consequently, there is a high degree of similarity between the sentient object

and the application types presented in Section 2.1.4.The similarity of the

application types in Section 2.1.4 with the contextor component [66] [214] and

the context handling component [111] are also obvious. Hence, we omit

presenting them in greater detail and direct interested readers to referenced work

[66] [111] [214]. We note that a contextor component, a context handling

component and the sentient object all encapsulate the functional update [48]. As

the functional update is algorithmic, it may be formally modelled, guaranteeing

not to introduce additional ambiguity. The informal updates are captured as

changes in the input event / data or its metadata.

2.3.2 Context Representation

A context may be represented as a symbolic, a factual or a truth value, e.g.

location as ‘A5050’, temperature as ‘293.15°’ or standing ‘true’ as a Boolean.

Each of these representations have their own characteristics; the symbolic model

refers to abstract symbols [95], e.g. staircase A and room number 5050, whereas

the factual value is a specification of the context it describes, e.g. Kelvin scale,

and the Boolean is an irreversible interpretation. In this section we present state

of the art means of contexts representation and how this may be utilised.

Considering the context as a term in a first order predicate logic, Gu et al.

[117] represent a context with the basic form Predicate (subject, value). With

respect to our definition on context, we consider the subject as the entity. Hence,

Predicate ∈ V where V = {‘predicate names’}, e.g. location, status; subject ∈ S

where S = {‘entities’} and value ∈ O where O = {‘all possible values of S’}, e.g.

O = {open, warm}. As predicates are Boolean valued functions, representation

as a predicate is defined as subjectRpredicatevalue → Bool. The expressivity of

context as a predicate is limited to irreversible interpretation on a subject in a

statement. Obviously, many such predicates may be combined by operations of

the Boolean algebra. Hence, expressing transitive properties to model relations

between concepts is possible, i.e. model an ontology [117] [246]. Concerns with

respect to ontology are, however, out of the scope of this thesis.

When representing context by the dimensions that makes it up leads to

context as a point in a three-dimensional space spanned by self, activity and

environment according to Schmidt et al. [226]. They consider this space to

define a user’s context. In their architecture, each implicit context (physical and

logical sensors) is defined at a time t in the range of possible values D. On each

sensor a set of cues each taking the sensor value up to a certain time t
i
 providing

a symbolic or sub symbolic output in the domain of possible values E is defined.

Thus, the values of one sensor may be represented by several cues. A context is

derived from these cues. Hence, a context is described by a set of two-

dimensional vectors h that each consist of a symbolic value v derived from the

cues and certainty p as a probability in the reading, i.e. context = {(v1, p1),… ,

28

(vn, pn)}. The context is then utilised by scripting by the context-aware agent.

The authors [226] recognised by their experiments three difficulties in such rule

based context recognition: ambiguity, boundaries and the undefined context

model, e.g. difficulties in recognising the context, operating close to thresholds

and in undefined context(s).

In addition to means of representing context as variables or predicates,

Zimmerman et al. [276] have quite a different way of representing context. The

difference of this view with respect to the other described in this section is that

Zimmerman et al. consider an “entity in the centre of a surrounding individual

context” [276]. Hence, they consider what we call situations and how the user

application migrates between them. Such a behavioural migration is interesting

and certainly important in defining situations demanded by the user application

to provide for a task; however, it is not related to how context is derived, to

context dependency not to trustworthiness and is thus not considered further.

2.3.3 Context Acquisition and Binding

When an application acquires context from another application we call this

binding. Hence, binding a context makes the context consumer dependent on the

provider. Binding is either static or dynamic. In static binding, a context

providing application is predefined. The model of static binding is simplified as

it assumes a context to be available all the time at some quality. However, within

a changing environment where qualities of a provider vary, dynamic context

binding is motivated.

Broens [48] defined dynamic binding of a context as a 5-stage process: (i)

discover context providers , (ii) select suitable providers, (iii) acquire the context

by establishing a binding, (iv) monitor the context provider and eventually, (v)

release the binding. They consider the discovery stage (i) with a kind of a broker

that discovers context providers and the selection stage (ii) to rank applicable

providers with the help of some user or of a predefined policy that determines

their suitability. Of the suitable context providers, some are bound in stage (iii)

meaning that the context of this provider is available until the binding is

released. These contexts are monitored in stage (iv) in order to react to changes

in their qualities and possibly initiate a new discovery phase. This continues

until the releasing stage (v) as a consequence of termination or of a command to

do so, e.g. in case the quality decreased below threshold.

Of this 5-stage process, we assume a context available as the system context

CS(t), hence omitting the discovery process as mentioned in Section 1.5,

limitation of scope. The selection stage (ii) is rudimentary defined by the context

consuming agent, that for a user application is defined by situationA(t). Similar

means could be applied for applications as well, in accordance to Sections 2.3.1

and later 3.3.2.3 where the context providing entity encapsulates its underlying

contexts. The contexts eventually bound (as in stage (iii)) by a user application

29

may be considered as situationN(t) and SN. These contexts are monitored (iv)

before each round of execution. This is equal to releasing the bindings (v) after

each execution.

The critical phase of selecting contexts to bind (ii) has largely been ignored

[48] or is described at a high level. A binding decision is reasonably defined by a

predicate. As a predicate is a policy, a drawback on the attempts to order

available contexts is the policy’s static nature. Henricksen et. al [121] do,

however, note that user feedback may be used for adjusting the policy to better

meet the user biases – further motivating the central role of the QoC parameter

of trustworthiness.

2.4 Success criterion

QoC metadata parameters capture and represent the inherent imperfection of a

context. QoC plays a significant role in the decision making. Hence, as context

is derived, it is necessary to present realistic functions for deriving QoC

parameters as well. This requires an accurate representation of context and QoC

parameters giving rise to a success criterion:

Success criterion 1 A methodology in which structured context derivation

including the QoC parameters is possible.

To meet Success criterion 1 in an open environment, the key lies in context

abstraction. This abstraction implies that (i) context providers are to state QoC

on the context(s) they provide and (ii) a means to compose the bound contexts’

QoC parameters.

If Success criterion 1 is met, context may logically be reasoned about. This

enables hiding the details of derivation from the user application logic declaring

situationA(t) and consuming situationN(t). Moreover, the realisation of context

consuming user applications dynamically binding at runtime appropriate context

based on some QoC parameters becomes feasible. These aspects lead us to state

Success criterion 2:

Success criterion 2 A rigorous means to model binding of a context in a

user application.

If Success criterion 2 is met, a means for a best effort formal analysis on context

is possible. Such an analysis would assume a context to remain unchanged

throughout the actuator’s execution.

30

31

“We are drowning in information but starved for knowledge.” John

Naisbitt

3 Context Models and Context

Derivation Architectures

In this chapter we build on the application types presented in Chapter 2
from the perspective of ubiquitous computing describing the context

models, means of context derivation and the logical topology of

derivation. We outline existing work on conceptual context models as well

as existing logical topologies for context derivation, together with the

used architecture for this. The success criterions of this chapter point out

qualities of system architectures. Finally, we provide a contribution of

this thesis in Section 3.5, motivating the logical context derivation

topology to be a polytree in Section 3.5; this is a contribution of this

thesis..

32

All applications are engineered to provide or assist in providing a means for

performing a task. A context-unaware agent operates algorithmically triggering

actuation in response to a predefined sequence of instructions; whereas a

context-aware agent adapts to the momentarily contexts [77]. Therefore, all

agents that adapt the behaviour with respect to context are fundamentally

context-aware [238] [276]. For this, the representation, means of modelling and

derivation of context need to be outlined.

3.1 Introduction to Context Models and
Context Derivation Architectures

Sensory devices capturing real world events are abstracted by applications

providing elementary contexts. Deriving such low-level information to

contextual information, both modelled as contextS(t), is the key for the system to

provide context requested by a user application, situationA(t). To derive on CS(t),

the represented contexts relations need to be modelled. In this section, we will

define and motivate issues regarding models for such structured derivation of

context.

3.1.1 Context Modelling

There is no general context model capable of modelling all contexts. However, a

context model is needed to define the context data [25] where a single model

may provide for a family of context consuming agents. Consequently, in

accordance to [83] we define a context model as follows:

Definition 11. Context model: “the representation of contexts and their

relations that may be relevant for a context-aware agent or a

family of such agents.”

This definition of a context model outlines a representation of an abstract view

on relations of contexts. In this section we focus on the abstract model of

relations of contexts; the representation of context information is considered in

Section 2.3.2.

For the context model, we distinguish between two types of context models:

the context acquisition model and the conceptual context model. The difference

between these is that the conceptual model is independent of technological

realisation. It is therefore primarily concerned with using contexts [25] [116].

Difficulties relate to modelling all conceptual contexts that the context

consuming agent may require at the moment and in the future. Hence, a

conceptual context model needs to distinguish between different contexts, while

still be simple enough to provide a base for programming [259]. The conceptual

context model is, therefore, often used and created at user application design

time.

33

The context acquisition model describes a context’s technical derivation, i.e.

it is about detecting contexts [25]. This model is concerned with how a context

and its QoC parameters are derived, i.e. about realising the conceptual model

[83]; we discuss more on context acquisition models in Section 3.1.1.2.

 Conceptual Context Models 3.1.1.1

The design of the conceptual context model should precede a detailed design of

a context-aware application or user application [83]. Consequently, modelling

contexts conceptually should be appropriate to [48] [85]:

(i) Characterise the context consuming agent’s universe of discourse

(ii) Support common understanding, problem-solving, and communication

among the various stakeholders involved in context-aware system

development

(iii) Unambiguous representation of context

Statement (i) refers to the need to establish a realistic conceptual view that

may be assumed by the context consuming agent [277]. Statement (ii) points out

the need for a shared understanding of the contexts facilitating correct

perception. This need was originally identified by Öztürk and Aamodt [277], e.g.

reachable(x, y) is to be defined with x as a person and y as a device where x and

y may have certain characteristics of their own. The last statement (iii) stresses

the agreement on the representation of the context. This agreement has two

dimensions, agreeing on conceptual representation and unit. For instance, speed

may be relative to object (air, water, another car, earth’s crust) and may be

represented as m/s, km/h, mph. Noteworthy is that Broens [48] intends by

unambiguity in (iii) merely unambiguity in perception, not unambiguity of the

term. Hence, a conceptual context model defines the contexts that the context

consuming agent may come to require.

Means to represent the context models are numerous and varied. Bettini et al.

[34] is a survey on various existing models whereas Strang and Linnhoff-Popien

[239] is a survey on classifying various context models for ubiquitous

computing. Strang and Linnhoff-Popien [239] classify the approaches by scheme

and data structure used to exchange contextual information to: key-value, mark-

up scheme, graphical, object-oriented, logic-based and ontological modelling.

Examples of these can be found in the survey [239]. They do identify

shortcomings of the various models with respect to a classification. The survey

[239] concludes that the ontological model is the most promising having, among

others, a high degree of formality. This formality does, however, refer to the fact

that ontology is machine readable [240]. The ontological context models do also

suffer from being error prone, time consuming and having scalability issues

when extending or modifying the ontology and they fail to capture imperfect

contexts [127]. Moreover, the ontological models “fall short in offering their

34

users suitable sets of modelling concepts for constructing precise and explicitly

characterized representations of their subject domains of interest” (sic) [116].

Hence, in this thesis we focus on logic-based context modelling. A logic-

based conceptual context modelling has a high degree of formality but does not

address partial validation, quality of information, applicability or incompleteness

/ ambiguity [239]. Except for applicability, this thesis addresses all the other

shortcomings.

The pioneers of logic-based context modelling are Giunchiglia [105] and

McCarthy [184]. Giunchiglia [105] views the context as a means to formalise the

subset of an individual’s knowledge used for reasoning. McCarthy [184] views

context to specify the circumstance of a proposition or term. The fundamental

difference between these views is that the former considers context as a partial

view of the reality on which reasoning is applied, whilst the latter asserts for

specifying more concretely the propositions and terms in a setting [104]; recall

the context representation of Section 2.3.2. The logic-based context information

modelling is considered further in Section 3.3.2.

 Context Acquisition Models and Architectural 3.1.1.2
Styles

Common to all conceptual context models is that they depend on some context

acquisition model(s) for technological realisation. The context acquisition model

is what Dockhorn Costa [83] calls the context information model and Perttunen

et al. [205] the context representation model. It is a model on context derivation

and establishes desired contexts from the history of observed contexts CS(t). The

view is supported by the separation of concerns between context acquisition and

usage [8] [25] [34] [56] [59] [60] [74] [76] [77] [83] [111] [165] [216] [227].

Moreover, a context acquisition model includes consideration of the QoC

parameters.

The acquisition model is outlined by Chen et al. [59] to three general models:

direct sensor access, middleware and context server. The direct sensor

acquisition model refers to systems with locally embedded sensory devices, e.g.

accelerometer, luminosity, acoustic sensors [103]. It has a logical topology of a

one hop star with the user application in the centre. The architecture of direct

sensor acquisition model constitutes the architecture of a first generation

context-aware system [48] as depicted in Figure 7 inspired by [48].

The context middleware acquisition model is based on a layered architecture.

The main tasks of a middleware is to transparently abstract the details of the

underlying platform in order to facilitate reuse of the contextual information and

perform functions that deal with common complexities [48]. With respect to the

direct sensor acquisition model, the middleware model is extendable and

provides transparency. The middleware acquisition model is depicted as the

35

second generation context-aware system in Figure 7 that performs elementary

context discovery and selection.

Figure 7: Context-aware system evolution

The context server acquisition model extends the middleware model by

centralising contextual information in order to organise the information and

permit multiple access to a context on a resource-rich device. As of

transparency, the server masquerades the middleware. It is depicted the third

generation context-aware system in Figure 7. In addition, a context server may

derive complex contexts on behalf of the client, e.g. decide on binding,

monitoring. Hence, a context server model is suitable when the contextual

computations are overly resource intensive for the device running the user

application. This is similar to that the user application would offload context

derivation to the server [48], a view advocated by Hong et al. [132]. A concern

with the context server acquisition model is, however, that of privacy. That is, a

server may need a user’s profile for deriving context, as is the case for the

interactive system framework by Hong et al. [134].

An example of a context server acquisition model is the event centric Context

Toolkit architecture [74] [77]. The Context Toolkit framework abstracts

resources by interpreters, aggregators, services, widgets and central discoverers.

In the Context Toolkit, a context discoverer is a context consuming agent’s

initial point of contact that maintains a registry over the framework’s resources.

A context consuming agent may subscribe the discoverer for notifications of

changes in the resources and use it to locate the resources. Discoverers may form

a hierarchy [74], e.g. a root discoverer with sub-discoverers. The context

derivation itself is abstracted by widgets. Widgets may be subscribed to by other

widgets, aggregators or a context consuming agent once discovered. Dey et al.

consider the widgets to “abstract context information to suit the expected needs”

[77].. Hence, widgets may form a hierarchy in their own right. An aggregator

aggregates context providing a simplified operation for the context consumer

36

through which to acquire contexts. They also note that an aggregator has similar

capabilities to a widget, but do not mention explicitly whether or not aggregators

may form a hierarchy. We assume this as we are unable to find reasons objecting

a hierarchy of aggregators. An interpreter in the framework may be used by a

widget or a context consuming agent as a ‘procedure’, e.g. transforming location

coordinates to an address. These are motivated by reuse. Services of the

framework are what we call actuators that may be triggered by a widget, i.e.

active context-awareness.

Other examples of implementations of context server acquisition models

include TEA by Schmidt et al. [226] and the management framework by Filho et

al. [96]. In Section 2.3.2 we have considered TEA. Filho et al. [96] implement a

context server model with the server called a context information service that

provides views for a user application in response to queries. Whether or not this

service is specific to a set of users remains unclear. The model propagates

sensors readings much alike our division. Their model reasoning does, however,

rely on a (unspecified) context management administrator to define rules and

QoC thresholds.

This separation of concerns and openness of the context acquisition supports

architectures where the conceptual models technical realisation depends on an

independent set of providing applications [243]. For more extensive overviews

on context acquisition models, we direct the reader elsewhere [25] [39].

3.1.2 Logical Topology of Context Derivation

The logical topology for deriving a situation from elementary context is in the

simplest case a one-to-one mapping [88]. This is the case for direct sensor access

acquisition [59] [103]. In this case, the elementary context is directly consumed

by the user application. More sophisticated system architectures, such as the

middleware of a logical mesh topology, include hierarchically organised

applications, abstracting the actual sensing and lower level context-derivation

from its context consumer. This logical mesh topology should support central

contexts, e.g. location, to be used by several higher level contexts, called a

context colony [66] and context sources and managers hierarchy pattern [83].

From a context consuming agent’s point of view, the contexts manifesting the

information space have been represented as a directed (oriented) graph [66]

[166] and as a directed acyclic graph (DAG) [35] [45] [83] [195]. The directed

graph can per definition be cyclic. However, in this thesis we consider context

depending indefinitely on itself infeasible. The DAG, on the other hand, is

acyclic.

Modelling the logical topology of deriving a context x(t) ∈ situationA(t) as a

DAG G = (V, A) with a set of vertexes V = {vi}, i = 1, …, n, and directed arcs A

= {(vj, vk)}, j ≠ k, with direction from vj to vk may be interpreted as that vj is the

context consuming agent depending on context provider vk. For an illustration,

37

consider Figure 4context derivation where dependencies are the opposite

direction to information flow. Here, each vertex represents an application and

given (vj, vk) ∈ A, vj consumes (depends on) the data that vk provides. Because G

is acyclic and finite, there is at least one vertex with an indegree deg
-
(v) = 0. In

terms of context derivation, this vertex necessarily provides a context x(t) ∈

situationA(t) or is void. Intermediate vertices with deg
-
(v) ≥ 1 and outdegree

deg
+
(v) ≥ 1 all provide and consume contextual information, i.e. they are

applications.

Obviously, some vertex providing context x(t) ∈ contextS(t) may provide a

situation x(t) ∈ situationA(t) simultaneously to have an indegree deg
-
(v) ≥ 1, i.e.

a context is part of a user application’s situation simultaneously to a context for

some other contextual information. An exception are the elementary contexts

that always have an outdegree deg
+
(v) = 0, i.e. they do not depend on any other

context. The abstraction of context in a graph G means that any vertex needs

only to be concerned with vertices that it refers to, i.e. given (vj, vk) ∈ A where j

≠ k, vj is concerned with vk whereas vk is not concerned with vj. Hence, a

provider abstracts a set of vertices from its context consumer. This model

follows the architectural style with a principle of limited visibility [243].

Regardless of the logical topology, each vertex needs a mechanism for

incorporating a support for trust, security and privacy as well as history

management and discovery / recovery [65] [214]. Of these, source discovery /

recovery are out of the scope of this thesis. Trust, security and privacy are to

protect the subject from revealing unwanted information where security and

privacy are matters of policies on the provider side, e.g. level of encryption and

abstraction. Whether Coutaz et al. [65] or Rey and Coutaz [214] consider trust as

a policy for access control or as experience-based is not stated clearly. In

addition, they do not outline the use of history in greater detail, i.e. whether

history refers to CS(t) and if it logs behaviour remains unclear. Hence,

determining whether trust refers to policy-based trust or experience-based trust

is not possible; this matter is considered in detail in Chapter 4.

3.1.3 Deriving with QoC Parameters

Each context is accompanied by the QoC metadata capturing the inherent

imperfection of contexts. Hence, an application consuming context and

providing another context needs to calculate on the QoC parameters as well.

This is motivated by research relating to indirect acquisition models [35] [66]

[78] that report QoC an important factor to consider. Moreover, research

addressing the QoC as a concept in its own right typically lists a set of

parameters and motivates their importance [54] [161] [237].

Manzoor et al. [176] claim that their work is the first that “presents and

evaluates the QoC parameters as the worth of context information for an

application and provides the context information enriched with these QoC

38

parameters” [176]. They provide equations on deriving up-to-dateness,

trustworthiness, completeness, and significance. However, we note that their

view on QoC parameters is very different from ours with the exception of up-to-

dateness. They relate trustworthiness of an object to the distance between the

sensor and the evaluated / measured subject. The latter has to be within a defined

threshold that, when multiplied with the accuracy of the sensor provides the

level of trustworthiness. In their motivating case the sensor is a camera and the

subject the photographed object. Thereby, what Manzoor et al. [176] call

trustworthiness is a mixture of QoC parameters of precision and resolution rather

than a measure derived from experiences. Moreover, their completeness as a

measure of “quantity of information that is provided by a context object” or

significance as “indicates the worth or the preciousness of context information”

[176] does not fully match any QoC parameter outlined by Buchholz et al. [54].

Of these, the significance parameter relies on the context provider’s user profiled

value, i.e. as if each sensor had a specific purpose and used within a specific

type of user applications only.

Filho et al. [96] present an interesting approach to derive on QoC parameters

considering sensitiveness, access security, completeness, precision and

resolution on context. They map these to a relative value in [0, 1] by relating to

the number of measureable parameters. Recall the QoC parameters presented in

Section 2.1.6; as the algorithms of Filho et al. [96] might suffice for the factual

parameters precision, granularity and freshness, they conclude that providing a

function on probability of correctness or trustworthiness is part of future work.

We provide our view on the parameter of trustworthiness in Chapter 4.

3.2 Problem analysis

A context-aware architecture is separated by concern to context derivation

populated by applications providing contextS(t) and context utilisation populated

by user applications declaring situationA(t). On situationA(t), the net situation

situationN(t) defines the relevant contexts of the user application logic at time t.

Hence, the enabled context-aware functionality of a user application is

determined by situationN(t) and SN(t) specifying how, if at all, to adjust. This

leads us to state Challenge 3.

Challenge 3 Defining an architecture that abstracts details of context

derivation from its context consumer without loss of QoC

information.

Challenge 3 is paramount as it constitutes the key for open, decentralised control

and derivation of a context that a context-aware user application depends on.

As the context derivation is done in an acyclic manner by autonomous

applications, the context consumer should adapt to changes in the context or its

qualities. This leads us to stating Challenge 4.

39

Challenge 4 Providing a methodology enabling dynamic runtime binding

of context providing applications.

Challenge 4 is critical for providing efficient and prompt contexts. It requires

great flexibility of the methodology it is expressed in. Together, Challenge 3 and

Challenge 4 yearn for an open architecture populated by autonomous

components that derive high quality contextS(t).

3.3 State of the art

Defining the possible contexts (CS(t)) serving a user application its desired

situations (SA(t)) at design time is very difficult or impossible. This is because

context is a dynamic construct and defining a priori all relevant contexts is not

feasible [112]. The dynamicity relates, among others, to informal updates, e.g.

mobility and changes in quality. As many of these informal updates may be

captured and defined in the conceptual context model, the modelled contexts’

changing qualities may not as it derives from elementary contexts. Such

changing quality of contexts has only been sparsely considered with Manzoor et

al. [176] claiming to be the first to address the value of the context. Perhaps this

is because the focus of context acquisition models has been on supporting

ubiquitous applications rather than on modelling the context [83]; a trend already

noted by Gwidzka in 2000 [119] and later supported by Soylu et al. [238].

Assuming separation of concern between a context provider and the context

consumer, the context provider or its qualities are not affected by its consumer.

However, as the context consumer critically depends on the provided contexts, it

may in addition to defining policies as predicates on the consumed contexts also

strive to bind as high-quality context providers as possible. As a consequence,

the context provider’s underlying derivation architecture should propagate

elementary context’s imperfection for the context consumer.

In order to provide QoC parameters, this section presents state of the art

logical topologies of context derivation, logic based context acquisition models

and conceptual system architectures.

3.3.1 The Logical Topologies for Context
Derivation

As noted in Section 3.1.2, the logical topology for deriving contexts is quite

frequently considered a DAG [35] [45] [83] [195]. Consider a DAG G = (V, A)

with vertices V = {vi}, i = 1, …, n and directed arcs A = {(vj, vk)} where j ≠ k

and vj, vk ∈ V. This type of graph allows undirected cycles, e.g. {(vx, vy), (vy, vz),

(vx, vz)} ⊆ A where x ≠ y ≠ z. Such undirected cycles are unacceptable in context

derivation of imperfect contexts in a middleware acquisition method; these,

similarly as in Broens [48] and in Section 3.1.1.2 are considered to abstract the

40

details from its context consumer for the sake of reuse. That is, if {(vy, vx1), (vz,

vy), (vz, vx1), (vz, vx2)} ⊆ A then vz may not know that the context it acquires base

only on two elementary contexts, vx1 and vx2 and not three. This is troublesome

whenever the amount of disjoint readings affect the outcome, e.g. in case of

average in addition to calculations on trustworthiness as presented in Chapter 4.

Hence, a DAG is not sufficiently restrictive and a logical topology prohibiting

undirected cycles is needed. To the best of our knowledge, we are the first to

acknowledge this shortcoming in terms of context derivation. We present a

novel view on this problem defining the logical topology to be a polytree in

Section 3.5.

3.3.2 Existing Context Models

Most existing approaches of context acquisition models focus on context

discovery and communication rather than on modelling the context [83].

Moreover, early context models where typically chiselled for providing for a

specific task or family of tasks [239]. These statements are supported by Soylu

et al. [238] stating that “approaches presented in current literature…” do “…not

really manage to go beyond the borders of traditional computing” [238]. Perhaps

this border is in including the user’s intents and biases, i.e. what Gwidzka [119]

called the internal context. In addition, with respect to the definition of a context

model in Section 3.1.1, the reasoning in favour of a logic-based approach in

Section 3.1.1.1 and the logical topology of a DAG, this section considers

conceptual models that adhere to these requirements.

Hence, in the following we consider logic-based conceptual context models.

We outline Context Modelling Language (CML) in Section 3.3.2.1, the situation

lattice in Section 3.3.2.2 and other relevant logic-based context models in

Section 3.3.2.3. The other models comprise of Loke’s abstract model, the

situation lattice model and Dockhorn Costa’s graphical notation of the situations.

For a more comprehensive review on context models we direct the reader to

Bettini et al. [34] and Strang and Linnhoff-Popien [239] whereas for a review on

means to identify a situation from contexts and their models’ enabling

technologies to Ye et al. [270]. In Ye et al. [270] logic-based models are called

specification-based context identification.

 Context Modelling Language 3.3.2.1

The CML is a graphical, still formal object role modelling language by

Henricksen et al. [120] [126]. It models roles between concepts within fact types

(contexts) assuming a closed world, i.e. known in detail. This model provides a

means for reasoning on the fact types by abstract high-level context defined in

predicate logic [34] [121] called situation predicates, S(v):φ where S is the name

of the high-level context, v a set of variables and φ a well-formed logical

41

expression over free variables v. The logical expression employs comparison

operators (≤, ≥, =, ≠…), logical connectives (∧, ∨, ¬,…) and arithmetic operators

(+, -, ×, ÷,…). It is defined on a finite space of immediately bound variables {x1,

…, xm} constrained by an assertion r[y1, …, yn] where r ∈ R of relations on the

model I and I(r) denotes the set of tuples in I that belong to a relation r ∈ R.

Then an assertion r[y1, …, yn] is true in I if <y1, …, yn> is a tuple in I(r) and false

otherwise. That is, given that r[y1, …, yn] evaluates true, <y1, …, yn> restrict the

possible values for the set of bound variables {x1, …, xm} as {x1, …, xm} ⊆ {y1,

…, yn}.

Hence, in line with Henricksen and Indulska [121], the predicate is of the form:

□x1, …, xm ● r[y1, …, yn] ● φ

Here □ is a placeholder for either ∀ or ∃ and ● is a mere separator lacking

semantics. Informally, this predicate may be read as ‘there exists at least one

variable x1, …, xm that satisfy r[y1, …, yn] for which formula φ holds’. Moreover,

combining abstract high-level contexts predicates, say S(v1):φ and S(v1):ψ to a

composite C predicate of CS(v1, v2):φ ∧ ψ is straight forward. Hence, CS(v1,

v2):φ ∧ ψ evaluates identically to the conjunction of its atoms S(v1):φ ∧ S(v1):ψ

closed under ¬ , ∧ and ∨ [120]. Obviously, such combinations of context

predicates support reuse and are considered in terms of this thesis as contextS(t)

∈ CS(t).
Given a context model with temporal fact type engagedIn over person,

activity, start time and end time, an example of a situation predicate may be:

occupied(p): ∃t1, t2, activity ● engagedIn[p, activity, t1, t2] ● ((t1 ≤ tnow ∧

(tnow ≤ t2 ∨ t2 = null)) ∨ ((t1 ≤ tnow ∨ t1 = null) ∧ tnow ≤ t2)) ∧
(activity = ‘in meeting’ ∨ activity = ‘taking a call’)

Here p is the bound variable denoting a person and start time t1, end time t2 and

activity are free variables. Examples of a composite predicate and a predicate

involving a probability are:

isReachable(p, c): ∀d ● requiresDevice[c, d] ● locatedNear[p, d] ∧

permittedToUse(p, d)

locatedAt(p, pl): ∃prob ● personLocatedAt[p, pl, prob] ● prob > 0.8

Here p stands for person, c for channel (means), d for device, pl for place and

prob for probability. Informally, isReachable defines the composite situation of

a person p being reachable on channel c so that all the devices required to use c

are located near p and p is permitted to use these devices d. CML also provides

quality annotation in terms of certainty as a probability on a fact, e.g., situation

predicate locatedAt is referred to with a probability and a threshold. More

examples are found in referenced work [120] [121] [126].

CML does not address uncertainty; however, Henricksen and Indulska [121]

[122] extend their model to address ‘unknowns’ and ‘ambiguity’. These are

defined on the assertion that the tuple <y1, …, yn> is not a tuple in I(r) but may

become one by replacing one or more yi by null or when r[c1,…, cn] is

42

ambiguous as was the case for locatedAt. Hence, the assertion defines what is

demanded and by relaxing the demands to null, the result is unknown. Having

this third value of ‘unknown‘, an assertion is false whenever it is neither

unknown nor true [121] [122], i.e. when it is certainly false.

The weakness of CML is that it assumes a closed world [121] [122] making

it suitable for conceptual modelling with a complete view on the domain it

models but not for evolving context acquisition models. In addition, CML is a

flat model with respect to the means of context derivation, i.e. all contexts are

represented as atomic facts. Hence, if having some dominant context or a

hierarchical structure, other models may be more appropriate [34]. A

consequence of this is that CML is well suited for development of models for

specific applications or application domains [34]. These weaknesses have given

rise to hybrid models combining the benefits of graphical models and

ontological modelling [127].

 Situation Lattices 3.3.2.2

Considering contexts as terms of predicates in a lattice structure was initially

proposed by Woods [261]. Later, the related formal concept analysis of context

as a concept lattice [258] was proposed. The concept lattice may be used to

define the hierarchy of concepts with respect to their common attributes from

some given relation [49]. It is noted to suite backward chaining whenever a

context under inspection is chosen beforehand, as well as for forward chaining,

when deriving elementary context to context(s) by inference rules [268] [269].

A situation lattice is a lattice L = (C, ≤) where C is a set of non-exhaustive

contexts ordered by the partial order ≤ specialisation relation. Hence, the lattice

is a dependence structure when viewing it bottom up, and conversely, a

generalisation viewing it top down. For contexts c(t), d(t) ∈ C, if c(t) ≤ d(t) then

in terms of context we say that c(t) is a more abstract level of context than d(t),

i.e. that the conditions for c(t) to hold are stronger than those of d(t). This

assumes c(t) and d(t) to be defined on the same dimensions [238], i.e. have the

same accepted values. Let a predicate pc characterise values when c(t) evaluates

true and pd characterise values of d(t), then if c(t) ≤ d(t) it holds that pc ⇒ pd

[268] [269]. E.g. with respect to Figure 8, as grp_meeting ≤ talk and talk ≤

speaker this means that pgrp_meeting ⇒ ptalk and ptalk ⇒ pspeaker that by transitivity

pgrp_meeting ⇒ pspeaker. Hence, the predicates are partially ordered by the

implication relation (⇒) defining abstraction / generalisation. Of any set of

elementary contexts, their meet is their most general situation. Hence, the

weakest predicate of all is true, element ⊤, that holds true for any configuration,

i.e. whenever the system is running properly; and contrary ⊥ identified by

predicate false being the strictest possible condition that is true for no

configuration at all, i.e. for the improper context [269].

43

Figure 8: A situation lattice for meetings

Figure 8 depicts a lattice model of context for a model of the domain ‘types of

academic meetings’. Considering Figure 8, for example context persons as

number of persons as well as work adheres to that a context should be available

at different phases of processing [83] and have the ability to contribute to many

(disjoint) higher-level contexts [25] whose meet is ⊥. Consequently, this view

concurs with the notation of CML CS(v1, v2):φ ∧ ψ where φ and ψ are

predicates in their own right over propositions combined by logical connectives

with join ⊤ and meet ⊥. A proposition for context work may for some model be

defined as persons ≥ 2 ∧ ∀persons: persons ⊆ colleague. Moreover, Figure 8

addresses that of encapsulating underlying contexts from the view of a more

general context [238]. That is, assuming shared dimension and values,

group_meeting is not directly concerned with the predicate of work but with its

encapsulating predicate of group providing more detail.

The main drawback of modelling context derivation in a situation lattice is

the irreversible abstraction by a predicate [268] [269]. When so, the QoC

parameters are abstracted as well or some novel means of propagating these

need to be found.

 Other Context Models 3.3.2.3

A model that is related to the situation lattice focusing on situation recognition is

proposed by Loke [173]. This formal model considers a white-box context-

aware system as (Σ, Π, Θ) where Σ denotes the sensors, Π denotes the

interpretation and Θ the situation reasoner. The finite sensors Σ = {σi} for i = 0,

…, n produces with time t a set of (history) sensor readings Gi ∈ G. The

interpreter Π performs a mapping from G to a context C ∈ C, e.g. noise provided

as a Boolean with respect to a threshold instead of decibel or persons as number

of persons. They consider C to be grounded in some ontology, i.e. consist of the

elementary contexts with respect to the situation lattice. The interpreter Π ⊆ (G

× C) applies each Gi to a set of contexts {C1, …, Cn}. Moreover, the situation

44

reasoner Θ defined as a pair of relations (ΘC, ΘS) maps in ΘC recognised contexts

𝓅(C) to situations and in ΘS recognised situations 𝓅(S) to higher level situations.

More precisely, when S denotes the set of situations we have that:

ΘC ⊆ (𝓅(C) × S)

ΘS ⊆ (𝓅(S) × S)

Loke [173] notes that these situation reasoners take context and derive situations

or aggregates situations to derive more situations. Let the set of contexts C be

{student, break, persons, scheduled, noise, colleague, speaker, projector} and

the set of situations S be {work, talk, supervision, informal_meeting,

grp_meeting, lecture, presentation} as in Figure 8. A few relations in ΘC and ΘS

are:

({scheduled, noise, speaker}, {talk}) ∈ ΘC

({persons, colleague}, {work}) ∈ ΘC

 ({talk, work}, {grp_meeting}) ∈ ΘS

This forms an incremental approach in building the situations and contexts. Any

change in any context or relation may change the situation [65].

Loke [173] further defines the actuator A on the recognised contexts and,

what they call, the recognition power of the system as module M that maps

recognised contexts by recognised change to an action A, i.e. M: 𝓅(C) ×

‘recognition change’ → A. Hence, a context-aware system with actions is

defined ((Σ, Π, Θ), M), e.g. let x be a person and y a room, then if ({x not in y at

t1, x in y at t2}, {x enter y at t2}) ∈ ΘC, then (({dark in y at t1}, {x enter y at t2}),

turn lights on y) ∈ M. For more detailed description, the reader is directed

elsewhere [172] [173].

Figure 9: An example of situation of contexts

In addition to Loke’s [173] model, Dockhorn Costa et al. [85] propose a

graphical context model representation as contexts (they call our context a

situation) that are genuine ontological entities. In their model, a context may

45

generalise another by encapsulating it [85]. They distinguish between intrinsic

and relational context with an intrinsic context describing a single entity

whereas relational context describes the relation among several entities always

manifesting a context. Moreover, they allow a context to depend on an intrinsic

context, e.g. connection context is characterised by start and end time. The

model also visualise that any change in any context or mapping relation may

change the general context depending on it [65]. Obviously, several contexts

may hold simultaneously. In Figure 9 we illustrate a sublattice of the specific

context grp_meeting Lsub = (C’, ≤) of Figure 8 to which the implicit relations of

a considered ontology are added explicitly for readability.

3.3.3 A Context Derivation Architecture

We consider a context-aware ubiquitous system consisting of three

complementary subsystems: (i) a system capturing elementary contexts by

mapping real world event to software events, (ii) a system reasoning on acquired

contexts (software events) and (iii) a system mapping software event(s) to real

world events for providing a user means to perform a context-aware task. It

follows the typical model outlined by Loke [173] and supports separation of

concern that is considered fundamental in numerous related works [8] [25] [34]

[56] [59] [60] [74] [76] [77] [83] [111] [165] [216] [227].

Recall Figure 4 for an outline of an architecture considered in this thesis

supporting the constraints mentioned above. In that architecture, the applications

providing elementary contexts capture the real world events (i); applications

deriving on elementary contexts provide contextual information (ii) and the user

application based on its logics may or may not trigger an actuation (iii). This

architecture is inspired by several frameworks [31] [94] [95] [111] [121] [124]

[133] [166] [173] [238] [270].

3.4 Success Criterion

In ubiquitous computing, the middleware populated by autonomous applications

deriving the contexts is transparent to the user application. This is necessary for

providing scalability, reuse and efficient utilisation of the available imperfect

contexts motivating the separation of concerns. It does, however, stress the

importance of representation of context in a model, specification of context

logically and reasoning on the propagation of imperfect contexts; noted “the

principal research topics on situation identification” by Ye et al. [270]. This

involves considering QoC parameters.

Reasoning on the QoC parameters leads us to stating Success criterion 3:

46

Success criterion 3 Defining a dynamic, scalable, transparent hierarchical

architecture for providing context accompanied by

QoC parameters.

Assuming rigorous representation of context, Success criterion 3 stresses the

importance of reasoning with QoC as a part of the architecture.

If Success criterion 3 is met, the context derivation architecture may provide

for a truly transparent framework in which situations are reasoned about. The

limitations relate more to the expressivity of the QoC parameters that in this case

provide means for expressing biases through the parameter of trustworthiness.

Hence, realising Success criterion 3 is a key in shifting the information age to

the information revolution where a ubiquitous computing paradigm would truly

be omnipresent to its user. Such a shift would provide a means to customise /

personalise adaption where each user application may utilise only situations of

its preferences.

3.5 An Undirected Acyclic Context
Derivation Topology

A DAG modelling context derivation is insufficient, as noted in Section 3.3.1.

The acknowledged reason is the undirected cyclicity of a DAG. Hence,

modelling a context to be derived in an undirected acyclic graph is necessary.

On such a graph, the dependency relation may induce direction for each arc.

This problem setting is indirectly noted by Dockhorn Costa who state that “a

system component can provide a service, but at the same time it can shield a

whole composition of services from its service users“ [83]. If the provider

shields the contexts it depends on from its context consumers, this implies that

only undirected acyclic graphs qualify for providing contexts consumed by an

application.

Figure 10: A polytree

A DAG with at most one undirected path between any two vertices ensures

shielding of a composition and undirected acyclicity. With undirected paths we

refer to making all arcs undirected e.g. in terms of a DAG with V = {u, x, z} and

{(x, u), (z, u)} ⊂ A there is an undirected path between x and z. Such a graph is

per definition a polytree; Figure 10 depicts the following polytree V = {s, t, u, x,

47

y, z} and A = {(x, u), (z, u), (u, s), (u, t), (x, y)}. Each polytree is a multitree, i.e.

a DAG where a subgraph reachable from a node forms a polytree in its own

right. The undirected acyclicity of a context x(t) ∈ situationA(t) implies that any

context may contribute with at most one view per x(t) and no two contexts xi(t),

xj(t) may share more than one subgraph. Hence, a context may only be used to

derive higher level contexts with disjoint set of dependencies. That is, a single

vertex w ∈ W may have an outdegree deg
+
(w) ≥ 2, but the intersection of the

reachable nodes needs to be ∅, e.g. for the depicted polytree V depicted in Figure

10 deg
+
(x) = 2 but {y} ∩ {u, s, t} = ∅.

Moreover, all vertices a vertex “shields” have a compatibility relation [104],

establishing a context providing a more comprehensive view of the environment

[105], e.g. vertices u and y have a compatibility relation with respect to x.

Thereby, each context ci(t) is a view of a set of contexts it depends on (are

reachable) at a given time t. Consequently, a polytree appears as a valid logical

topology for context derivation.

48

49

“There are two important entities on web: people and

information.” – Jennifer Golbeck 2009 [107]

4 Trustworthiness as a Parameter of

QoC

In this chapter we consider trust-aware context. We outline properties of

a trust relation as well as types of trust, motivating the need for the QoC

parameter of trustworthiness to be experience-based. On the experience-

based trust, the levels of trust, a generic model for representing trust as

well as the networks of trust relations are presented. For representation,

we outline the difference between trust as a variant of Dempster-Shafer

theory and trust modelled by probabilistic systems. On these, in the state

of the art section we consider computational models with an emphasis on

Subjective Logic. Finally, the success criterions are presented.

50

The ability to trust is fundamental for the existence of the human society [87]. It

is the mental state that enables collaboration, formation of groups, feelings of

relative security etc. [58]. Moreover, trust enables a feeling of reliance in

inherently inaccurate and imperfect matters, e.g. how trustworthy is a context

and finally, may the context be trusted. This ‘feeling’ is something that only

cognitive entities having internal explicit goals (intents), hereafter the trustor,

may perceive in some other uniquely identifiable matter, hereafter the trustee

[58] [93]. Hence, in terms of this thesis, the QoC parameter of trustworthiness

depicts the extent to which a trustor (the consuming entity) relies on the trustee

providing a context accompanied by QoC parameters; for the terminology,

(un)trustworthiness refers to a level of trust whereas (un)trusted is a Boolean

level; trust is used as a general term for these.

Trust in computer science is considered either policy-based or reputation-

based [40]. The policy-based trust, also called resource access trust [110], was

originally introduced by Blaze et al. [37] as a variant for specifying security

policies of a resource in terms of credentials and relationships for authorisation.

Implementations of policy-based trust include access control, firewall rules,

logical constraints. Common to all of these is that the level of trustworthiness is

decided by a policy, i.e. by a predefined Boolean rule making the trustee

(un)trusted with respect to the proposition.

The reputation-based trust is sometimes used interchangeably with the term

experience-based trust that we prefer hereafter. This describes a level of

trustworthiness based on a priori recorded experiences. In addition to the first

hand experiences a trustor possess in a trustee, the level of trustworthiness may

be ascertained by experiences acquired from referral entities, i.e. the reputation.

As each experience level of satisfaction is evaluated by the trustor, the

experience-based trust becomes similar to the human notion of trust, i.e. it is

dynamic, emergent, incomplete, relative and subjective. Computational models

on such a human notion of trustworthiness “aims at supporting a decision

making by computational agents in the presence of unknown, uncontrollable and

possibly harmful entities and in contexts where the lack of reliable information

makes classical techniques useless” [163]. Commercial implementation areas of

experience-based trust include online auctions, product review sites and

discussion forums, to mention a few.

Because of these characteristics, policy-based trust and experience-based

trust are nearly reverse views of each other: in experience-based trust the

resource consumer (trustor) evaluates the provider (trustee) whereas in policy-

based trust the resource provider (trustor) evaluates the consumer (trustee) [150].

As in this thesis we consider the QoC parameter of trustworthiness [54], we refer

to the level of trustworthiness a consumer (trustor) perceives in the provider

(trustee), i.e. experience-based trust. However, policy-based trust may be

relevant to certain context-aware settings. As a consequence, hybrid trust models

implementing both experience-based and policy-based trust have also been

introduced in the literature [57] [162]. Notable is also that when an experience-

51

based trust level is used in a Boolean decision, a policy is applied on it; this

defines the experience-based trustworthiness levels as supportive parameters.

With experience-based trustworthiness excluding the classical techniques, i.e.

probabilistic systems, this thesis studies an alternative, the Subjective Logic that

is based on Dempster-Shafer theory. Hence, we consider a Bayesian probability

from the subjectivist view measuring a ‘personal belief’ rather than objectivist

view treating probabilities as an extension of logic. That is, we do consider the

probability of provability as opposed to the probability of truth, i.e. we consider

trustworthiness probabilities as a representation of the natural language words

‘belief’, ‘doubt’, ‘evidence’ and ‘support’ [204]. From this level of

trustworthiness featuring a level of uncertainty we outline a means to compute

the context based on weighted contextual average on a deterministic domain

with compatibility relations.

4.1 Trust and Trustworthiness

The experience-based trust is responsible for overloading the concept of trust

[162]. It is typically defined in accordance to Gambetta [102] stating that: “Trust

is the subjective probability by which an individual, A, expects that another

individual, B, performs a given action on which its welfare depends” [102]. This

definition is called ‘reliability trust’ by Jøsang et al. [150]. However, as we do

not seek for a means to merely model trust, but use it as a parameter of context

supporting a context-aware decision, trust outlines a level of relative security,

called trustworthiness. Here relative security refers to the free will to jeopardise

welfare, hence negative consequences are possible. Therefore, in this thesis we

define trust based on the broader definition of McKnight and Chervaney [187],

called ‘decision trust’ [150], that we consider to include Gambetta’s [102]

‘reliability trust’. However, we include that the trustee does not need to be a

party (that refers to an agent or group of agents) but may be a matter of any kind

[58], e.g. a car. Moreover, with respect to the terms as used in this thesis, we

note that this definition defines trustworthiness:

Definition 12. Trustworthiness: “The extent to which a trustor is willing to

depend on a trustee in a given situation with a feeling of

relative security, even though negative consequences are

possible.”

This definition, even though general, includes two fundamental assumptions.

First, we observe that trustworthiness is relevant only when something can go

wrong. Hence, the concept of trustworthiness is a ‘feeling’ of unwarranted

expectations that a trustor perceives in a trustee and trusting something certain is

void. Secondly, trustworthiness is situation dependent. That is, trustworthiness

captures the subjective probability that the trustee will conform to the intents of

the trustor in a setting at a moment of time. The claimed behaviour of the trustee

52

is captured by the QoC parameters whereas the setting is called the proposition.

On a proposition a level of trustworthiness is expressed, e.g. in the event of

picking a ball from a bowl the level of trustworthiness is in the proposition ball

is green.

Hence, all the transactions where expressing trust is valid involve some risk

as well [58], where risk denotes the realisation of the negative consequences of

the definition, e.g. if the picked ball is red. Obviously, should this risk realise,

the level of trustworthiness on the proposition is to be decreased [131] [177] and

conversely, if the trustee provides as expected, the level of trustworthiness

should increase. The relation between risk and possibility for the trustee to

conforming to expectations multiplied by the importance of the event at hand is

what Marsh and Briggs [178] call cooperation threshold. This cooperation

threshold is fundamental for decision support that, as it turns out, may motivate

engaging in a transaction with a less a trustworthy provider when in great need

of the offered service. To calculate this relation, a utility function has also been

defined [145].

4.1.1 Properties of a Trust(worthiness)
Relation

The single most important aspect of a trust relation is the unique identification of

the entities. Assuming this, trust, and symmetrically not to trust, describes a

level of reliance a trustor perceives on a trustee. On such a relation, there is a

wide agreement on central properties [265]. Below we list some of them

including a motivation as to why this is the case. We omit references and note

that foundational research, such as Grandison et al. [110] agrees with these.

Trust property 1: Trust is subjective

As of the subjectivity, a level of (un)trusted or (un)trustworthiness perceived in a

trustee may vary between trustors due to the non-uniformity of available

experiences and/or appreciation. Hence, trust on a trustee is a specific trustor’s

perception. This motivates a non-universal level of trust, i.e. entity A’s and entity

B’s perceived level of trust in a matter C may differ.

Trust property 2: A trust relation is asymmetric

Simply, if A trusts B in proposition x to a level y, then nothing about B’s trust on

A in x may be derived from this. Hence, a trust relation is always directed

motivating asymmetry.

Trust property 3: Trust is incomplete

Here, incomplete is used as a substitute for not dogmatic, i.e. trust is non-

additive. This is the case for all informal acts [131]. If trust was dogmatic, it

would be void and the relation treatable by objective probabilistic logics. The

motivation is that not even a trustor may trust itself completely. Hence, a trustor

accepts some level of untrustworthiness. Moreover, notable is that an experience

53

may be modelled as dogmatic or even absolute, expressing complete

(unjustified) certainty. Again, such a model would need to approximate the

motivation for trustworthiness in the first place.

Trust property 4: Trust is transitive (with restrictions)

There are suggestions against transitivity, i.e. of delegation of trust. With this

we mean a perfectly normal (positive) trust delegation setting of A trusting B and

say B trusts C who is to A previously unknown, see Figure 11 for illustration. In

this case, the transitive relation is ((A ⇒ B) ∧ (B ⇒ C)) ⇒ (A ⇒ C). Arguments

against such trust transitivity often point out that A did not trust B to delegate

[62] [110], but trusted B to provide in the scope. If B does delegate despite this,

it is called unintentional transitivity, i.e. B may have imposed restriction that A

may not agree with or be aware of. For example, if A trusts B and B delegates to

C, then B may have evaluated C based on qualifications that A does not agree

with. This is prominent especially if the evaluation is subjective; how would A

know that B evaluates C with the same sense of appreciation? Hence, trust

transitivity is as if granting the trusted entity the power of deciding for the

trustor.

Figure 11: Trust transitivity

Dually to arguments against transitivity, arguments in favour of this are

numerous. For example, the concept of reputation-based trust would boil down

to second hand opinions without transitivity, i.e. as if instead of a reputation only

asking friends for advice. To address this problem, the type of trust has been

divided into referral trust and functional trust and a trust relation to indirect or

direct trust. We illustrate this with the transitive relation above and in Figure 11

where d on an arc denotes direct, i indirect, f functional, r referral and σ trust.

The question of whether or not A possesses indirect functional trust in C by

direct referral trust in B is made subject to restrictions. These restrictions include

that transitivity is valid only when the last leg of a relation is direct functional

trust (i) [148] and all relations on the path share the scope of trust (ii) [148]

[152]. Hence, for trust transitivity to hold, the trustor must explicitly rely on the

trustee to delegate (i), i.e. for providing referral trust. In addition, if A possesses

direct referral trust in B in recommending a car mechanic, then whomever B

54

recommends with direct referral or functional trust needs to share the scope (ii),

i.e. be evaluated as car mechanic. Hence, trust transitivity requires matching

scope. Moreover, transitivity with negative trust may have unwanted

consequences, i.e. if A has negative trust in B and B negative trust in C, then

nothing about A’s trust (or negative trust) in C may be derived. The notion of

trust transitivity is elaborated on later in Section 4.3.2.

In addition to these properties on a general view of trust, additional properties

have been suggested. These include that a trust relation is context-dependent, i.e.

the scope as discussed with respect to the transitivity property.

Trust property 5: A trust relation is context-dependent

Whenever trust is experience-based, the level of trustworthiness evolves over

time.

Trust property 6: Trust evolves over time

Hence, trust and the level of trustworthiness may change non-monotonically due

to new experiences or lack of these.

In addition to these properties, each viable trust system ought to implement a

representation of trust, a means to compute with it and means of setting the level

of trust(worthiness). Hence, trust needs to be representable and measureable.

The representation can be binary, discrete, based on continuous values or range;

the computation can thereof be (i) logical, (ii) fuzzy, (iii) based on transitivity or

(iv) probabilistic respectively. Existing implementations of these representations

include (i) summation [1] [228]; (ii) REGRET [221]; (iii) PageRank [201]; and

(iv) Βpdf [53] [142] [197], EigenTrust [155] respectively. EigenTrust is detailed

in Section 4.3.1.1. The trust metric’s scale can be of any kind but need to be

partially ordered and is typically totally ordered, e.g. any real in [0, 1], {-1, 0,

+1} with -1 < 0 < 1, {low, mediocre, high} where low ≤ medium ≤ high. With

these scales, an interpretation of the outcome may be a threshold, rank as for

greater the better, probability or mere cognition leaving it up to the human to

decide [217].

4.1.2 Policy-Based Trust Systems

Policy-based trust has its roots in user authorisation, called trusted computing as

defined by the Trusted Computing Group [114]. Essentially, this amounts to

enforcing a given set of policies (rules) to determine a discrete level of

trustworthiness. Sometimes this is called access control that is an example of a

formal policy-based trust usually reduced to a Boolean decision [41]. For

example, the combination of username – password provides certain rights to

access a resource. Policy-based trust might also build up, called negotiation,

when parties gradually reveal information in exchange for higher trust, e.g.

TrustBuilder [260]. In fact, such negotiation is a strategy that gradually raises

stakes in a manner that defecting is more costly than cooperating.

55

Artz and Gil [13] provide a survey on policy-based trust with more examples

noting that having a sufficient policy, the recursive question of the policy for

trusting the credentials arise; which is frequently solved by having a mutually

trusted certification authority signing and verifying the credentials. An overview

on such formal foundations for computational trust may be found elsewhere

[163]. In the following, we provide the reader with an overview of the setting by

outlining a few policy-based trust systems. We do this with the sole purpose of

motivating our choice of experience-based trust for capturing trust in context.

 Weeks’ General Policy-Based Model 4.1.2.1

A general mathematical framework for modelling policy-based trust is presented

by Weeks [249]. This model base on the least fixpoint in a (complete) lattice

requiring a partially ordered set (policies) as well as monotonic functions on

these. Consider the complete lattice (Auth, ≼) and a set of entities Principal;

where ≼ denotes the binary order relation of the elements in Auth. If policy a ≼

b when a, b ∈ Auth, then a ≼ b means that policy b authorises at least as much as

a in Auth. The lattice Auth specifies authorisations for a principal; here we

consider Alice ∈ Principal. This authorisation is defined by a function AuthMap

that maps Principal to Auth, i.e. AuthMap = Principal → Auth where AuthMap

is a lattice under the pointwise extension as Auth is.

Consider the lattice to denote rights of Alice’s file access. Realistically, Auth

= {N, R, W, RW} with the order relation N ≼ R, N ≼ W, R ≼ RW, W ≼ RW for

N ‘no right’, R ‘read’, W ‘write’ and RW ‘read and write’. Let m1 ∈ AuthMap,

then function m1 describes the authorisations the principal(s) grants to Alice. For

example, m1 may be m1(Bob) = RW and m1(Claire) = R which means that Bob

may grant Alice the right to RW and Claire may grant Alice to the rights to R.

The license l ∈ License is a monotone function AuthMap →m Auth, i.e.

(Principal → Auth) →m Auth where p ∈ Principal is authorised as specified by

license l(m). A licence l(m) expressed in λ-calculus, e.g. λm.⊓{W, m(Bob),

m(Claire)} means that the principal in question may “write if Bob and Claire

may” as of the greatest lower bound ⊓ on the Auth lattice. That is, for a specific

m1 ∈ AuthMap, m1(Bob) = RW and m1(Claire) = R, then by reduction λm1.⊓{W,

m1(Bob), m1(Claire)} = N as Claire was not allowed to write.

They further define assertions Assert = Principal × License a pair ‹p, l› where

p ∈ Principal and l ∈ License, read so that the issuer p authorises l. For example,

‹Bob, λm3.RW› asserts that Bob is assigned RW. The set of authorisations

granted by p is {l(m) | ‹p, l› ∈ A} and its least upper bound ⊔{l(m) | ‹p, l› ∈ A}

describes a single most generous authorisation issued by p. The consistent

authorisations are therefore the least fixpoint of the AuthMap lattice. Therefore,

in the policy, the least fixpoint is whenever all principals agree and no changes

in authorisations occur by iteration on the licenses. Examples of the fixpoint

computations in the lattice can be found elsewhere [162] [249].

56

 Other Notable Policy-Based Models 4.1.2.2

Other notable formal policy-based models include those of Fuchs et al. [100]

[101], Carbone et al. [57] and Krukow [162]. Fuchs et al. [100] [101] strive to

prove that some data actually origin from the source it is claimed, discarding its

qualities but noting that this may be expressed in the framework as well. This is

done by signature in a public key infrastructure guaranteeing security

requirements. Carbone et al. [57] and Krukow [162] consider a trust structure T

= (D, ≼, ⊑) where in addition to ordering trust values D by ≼, also add another

dimension, information ordering ⊑ stating that if m ⊑ m’, then m’ is based on

more information (evidence). Let D = {unknown, low, mid, high} then low ≼
unknown ≼ high and low ≼ mid ≼ high as well as unknown ⊑ low, mid, high.

Their goal is by defining T and a set of principals to find and establish a global

trust state that represent each principal’s trust in each other. This model may be

used to define policies but seem to be restricted to access control [101].

The strength of these models are their drawback as well; as trust evolves and

the autonomous environment changes, the common shortcoming shared by

policy-based trust systems is that they employ a static form of interpretation on

trust [55] [110] and do consider only exclusive and exhaustive matters. That is,

in Weeks model [249] the simplest form of an update, a provider updating its

policy (license) triggers a change in the related policies demanding a re-

computation of at least a part of it [57], including the fixpoint. Moreover, the

existence of a fixpoint is guaranteed only as long as the policy updating function

is monotonic. Hence, it assumes non-revocation of rights and the universally

agreed ordering of the lattice elements, e.g. an axiom stating that R is unrelated

to W whereas in many cases, R ≼ W and W = RW.

An alternative, but very interesting use of policy-based trust includes the

reverse use of context and trust, called device comfort [179] [180]. Device

comfort aims at providing the device a relative comfort by tasks that a user may

want to perform. Whenever the comfort level is too low with respect to the task

desired to perform, the device may refuse to perform a task or ask for additional

authorisation. Obviously, contextual ‘safe zones’ may be used, e.g. home, office

etc. Hence, device comfort seeks the device’s comfort in performing a task in the

context, e.g. if the device is not at work or at home, it may require further

authentication for accessing e-mails.

Altogether, policies are what technology-driven mobile human-computer

interaction has researched [159] [181] [199]. Traditionally its focus has been on

the security aspects assuming non-functional requirements, such as availability,

reliability, honesty [266]. Contrary, as the ubiquitous applications are

increasingly performing tasks on behalf of its user [125], on means stated by the

user [30] [79] and embedded in our everyday, a more user-centric approach is

desired. Hence, policy-based trust as a framework for ubiquitous computing

settings does not seem to fit very well and will not be considered further in this

thesis.

57

4.1.3 Experience-Based Trust Systems

An experience-based trust system derives a level of trust based on past

experiences on a trustee in a proposition. The concept of experience-based trust

was coined by Barber [29] who defined three expectations of trust that

experiences contribute to:

(i) an expectation of the fulfilment of the biological, physical and moral

order persistence

(ii) an expectation of the technical competent role performance on the

trustee and

(iii) an expectation on fiduciary obligations

For the expectations, (i) seeks for evidence of continuity and (ii) for evidence of

competence whereas (iii) for evidence that the fiduciary will place the trustor’s

welfare above its own [28]. An example of a fiduciary obligation is the

professional secrecy of a doctor on which a patient (trustor) places expectations.

Falcone and Castelfranchi [93] further categorised the concept of trust into

competence, disposition, dependence, fulfilment, willingness, persistence, self-

confidence and motivation beliefs. All of these expectations are enforced by

experiences.

Having a set of recorded experiences, whenever these are shared with other

entities the system is a reputation-based trust system. Hence, a reputation-based

system relies on first-hand experiences that typically are enforced by referrals’

experiences, the reputation [220]. As each experience is a trustor’s perception of

a trustee, a reputation is subject to the perceiver’s biases, making reputation-

based systems very hard (if not impossible) to define formally [162]. Hence,

recalling the discussion about transitivity and Figure 11, reputation-based trust is

further divided to direct trust as for first-hand experiences and indirect trust for

referrals’ experiences, the reputation, also called service provision and

delegation trust [110].

The difference between reputation and first-hand experiences is well shown

by the following perfectly normal sentences [150]:

I trust you because of your good reputation.

I trust you despite your bad reputation.

The first sentence states trust based on the good reputation, i.e. in case of

insufficient or inexistent first-hand experiences. The second sentence suggests

that a trustor is in possession of some information that overweighs the bad

reputation. Other factors that might influence trust are, among others, the

contextual relation between the entities, called meta-knowledge [220], e.g.

mother_of. Clearly this kind of relation is fundamental in the social trust.

Whenever the amount of first-hand experiences is insufficient, this gives rise

to a level of uncertainty with respect to the level of trustworthiness. In case of

uncertainty, for the trustor to ascertain a level of trustworthiness in a trustee in a

proposition, reputation in form of referrals experiences may be inquired.

58

Composing such referral experiences, however, brings along several difficulties

in the establishment of a level of trustworthiness. These include discounting of

second-hand experiences and how to reach a consensus when several referrals

are used. These are matters that the subsequent subsections will delve into.

 Experience-Based Trust Levels 4.1.3.1

The level of trust in experience-based trust systems has been represented as both

probabilistic and non-probabilistic. A probabilistic model outputs a percentage

on the likeliness of a proposition whereas a non-probabilistic model typically a

value lacking meaning, i.e. the greater the better. Examples of non-probabilistic

trust models include EigenTrust [155], PeerTrust [262] and Abdul-Rahman’s

and Hailes’ system [1]. Further, the level of trust in non-probabilistic systems

may well be within [0, 1] and adhere to additivity, i.e., as if it was probabilistic.

An example of this category is EigenTrust [155] that is presented in greater

detail in Section 4.3. Below, we will elaborate on the probabilistic model.

Consider a probabilistic setting with a frame of discernment X of possible

outcomes, called propositions, i.e. X = {x, ̅}. Here ̅ is the complement of x

with x, ̅ ∈ [0, 1] and x + ̅ = 1. Hence, this frame of discernment describes

exclusive and exhaustive propositions in a binomial frame of discernment.

Consider for brevity at the moment values of x (trustworthiness) and ̅

(untrustworthiness) to be defined by the set of past experiences. Initially, an

objectivist view with no experiences suggests a level of trustworthiness in a

probabilistic model to indicate x = 0.5 and ̅ = 0.5, i.e. indicating equal

probability. Similarly, with n-ary outcomes on a frame of discernment X, the

initial equal distribution in a probabilistic model is 1/n where n = |X| is motivated

[210], i.e. all propositions of the frame of discernment are equally probable.

Hence, such a view is unable to differentiate between uncertainty and certainty

of no variance, i.e. no evidence and full evidence of equal distribution. To

exemplify this, consider a sealed box containing red, green and blue balls;

initially the probabilistic model is indifferent from that of having 12 experiences

with 4 of each colour when discarding experience dissolving by time, typically

called aging.

This raises the compelling need to express uncertainty as opposed to

certainty, i.e. a subjectivist view on probabilities. Here, uncertainty must not be

confused with ‘untrustworthy’ [57] [177] as untrustworthiness refers to evidence

of ‘not trustworthy’ and uncertainty refers to the lack of evidence, i.e. ‘do not

know’. Hence, trustworthy is opposed to untrustworthy and certainty is opposed

to uncertainty; the level of evidence is related to the experiences. The

importance of the concept of uncertainty is further emphasised in scenarios with

incomplete information. Such scenarios include, but are not limited to, scenarios

where the decay of experiences as a function on time or inherent inaccuracy on

the acquired information is applied. Consequently, we conclude that this kind of

59

trustworthiness is what the inherently imperfect context derived in an

autonomous architecture yearns for. As of this, for the sealed box with coloured

balls, the initial trustworthiness and untrustworthiness in the ball being red is

necessarily 0, as is the case for all other colours as well. This is because there is

no experience giving rise for any certainty in any proposition; hence, the

uncertainty is 1. To represent this, Dempster-Shafer theory seem to qualify well.

 Dempster-Shafer Theory 4.1.3.2

Dempster-Shafer theory represented by a Belief function is a generalisation of

the Bayesian theory of subjective probability as Belief functions allow

uncertainty on the power set of propositions [144]. Its domain is a set of

outcomes X where the mass (certainty) m denotes the evidence of each and m: 2
X

→ [0, 1]. The probabilistic view on the evidence assigns a mass m to each

element in 2
X
 and is called basic belief assignment where m(∅) = 0 and

∑) ∈ assuming that there is an outcome every time, i.e. in case of the

sealed box assuming a ball and not a cube is picked each time. Hence, the

possible outcomes conform to additivity. This additivity is modelled on a mass

space, e.g. Ball = {red, green, blue} then the mass ‘red or green’ denote the

certainty of a ball not being blue, but not certain whether it is red or green;

realistically the case when a red – green colour blind person is performing the

evaluation.

In addition to the mass m, disjoint sets of probabilities bel are defined bel(A)

= ∑) ⊆ , i.e. the sum of the masses of its subsets. Hence, the belief denotes

the ‘certainty’ or ‘evidence in’ the proposition, e.g. bel({red, green}) = m({red})

+ m({green}) + m({red, green}). A feature is that the mass of the total set

m(Ball) ≠ 0 is reasonable in case of a blind person evaluating but bel(Ball) is 1

due to additivity. Plausibility pl denotes the ‘max probability’ or that ‘there is

evidence against this proposition to a level’ where pl ≥ bel and pl(A) =

∑) ∩ ∅ , the sum of non empty intersecting masses; or more conveniently,

pl(A) = ̅) where ̅ denotes the complement of A, e.g. pl({red, green})

= m({red}) + m({green}) + m({red, green}) + m({red, blue}) + m({blue,

green}) + m({red, green, blue}) or, equivalently, 1 – bel({blue}). With mass,

belief and plausibility, intervals may be expressed within this framework, where

plausibility and belief denote the upper and lower limits respectively.

Uncertainty is the interval between pl and bel, the probability lacking evidence

in favour for or against the proposition.

Further notable is that Dempster’s rule of combining independent evidence

has been criticised as providing counterintuitive results when combining

conflicting evidence [273]. This gives rise to a number of combination

operations addressing this shortcoming [231] and raises discussions on its

domains of applicability [204]. Pearl [204], however, notes that belief theory is a

theory on the probability of provability as opposed to probabilities of truth, i.e.

60

that belief theory may be used to derive on the certainty. That is, “Bel(A) stands

for the probability that the constraints imposed by the available evidence,

together with the constraints that normally govern the domain, will be sufficient

to compel the truth of A and exclude its negation” [204], i.e. that Bel(A) provides

a certainty level of the truth of A. However, as examining Dempster’s rule of

combination and arguing for and against it is out of the scope of this thesis, we

will not discuss this matter any further.

 A General Model for Representing Trust 4.1.3.3

To express the levels of trust, we use a general representational model for

experience-based trust. The model is inspired by Krukow’s general model [162].

In this model, an experience Exp the trustor P ∈ {<Entities>} has recorded is

modelled as a 4-tuple: =) where δ ∈ {<Entities>} is the trustee

and is a long term identification, ϵ is the datum of interest where ϵ ≤ ϵ0 and ϵ0

denote a specific perspective taken where the subscript defines the interval with 0

denoting ‘now’, ζ ⊆ {<Propositions>} and η ∈ {<Score>}. The datum ϵ is

typically time, but other continuous data may also be considered, e.g. sociality.

The Score is the trust metric’s scale and is considered hereafter totally ordered,

recall Section 4.1.1. The implemented type of the metric is trivial for modelling

and becomes relevant only when calculating.

With this model of representation, an entity’s history of experiences is a set

of experiences, = {)}. As of this,) = {)} and

) = {)} as inquiring for history prior to . Hence, writing

) calls for a set of direct experiences trustor P has had with trustee R

where) ⊆) and) {)}. Writing

) {)} provides the set of experiences regarding a trustee

R in a proposition at datum ϵ up until whereas for a specific datum,

) provides a score. Dually, we may write)
 {)} for the experience P has had in itself in the proposition .

In text, we acknowledge the out of the ordinary use of capital letters as a

single entity of a set. Lower case letters are provided a special meaning of their

own when representing trustworthiness. For the Propositions, ζ ⊆
{<Propositions>} as a composition of outcomes may be of interest; a matter that

is of ontological nature and thereof not considered further.

 Reputation on the General Model of Trust 4.1.3.4

The general model representation of experiences provides the basis for storing

them and hence, deriving referrals’ opinions as reputations. In this case,

reputation is, for example, when trustor P ascertains) by a referral’s

experiences in R, e.g. by Q’s experiences in R:) where P ≠ Q. We

61

omit modelling the “request”, i.e. the message sent from P to Q for).
Obviously, P may possess experiences) whose applicability is

defined by m age. This forms the need of transitivity in accordance to trust

property 4, i.e.) should be discounted by P’s level of referral trust

in Q in for proposition . Moreover, we assume in accordance to principles for

ubiquitous systems that the experiences are stored in a distributed manner. In a

system storing the experiences centrally, the “global trust” of R would

rudimentary be calculated from {⋃)

 } when Pi ∈ Entity \ R and i =

1, … n and n = |Entity \ R|. In this case, any composition of experiences

according to demands may be used to calculate a trust level, much as it is done

in Wikipedia reputation systems [160].

In case of referral experiences as above, when referring to entity Q in a

distributed environment, Q is faced with the decision of trusting P with possibly

sensitive detailed information. This gives rise for Q to consider hiding

information for the sake of preserving privacy and intimacy. This is done by the

abstracting experience operator Abs; we write ()), more precisely

in this case)). As means to accomplish such abstraction,

calculation on the score of the distinct experiences is demanded. This requires

defining this score that we postpone to Section 4.3.2 and ask the reader for the

moment to consider abstraction merely as a composition of the scores omitting

the timestamp, i.e. ()) = (∑)). We define

the function fourth as the fourth-component projection, i.e., projecting on the

score of the tuple: fourth) = .

Whenever a trustee is referred to by a trustor for experiences in a scope in a

third entity, this gives rise for trustor to serially compose each acquired

) or the ()) with the trustor’s trust in the

trustee, i.e. if Q is referred to by P for its experiences in R, then)

or the ()) is to be discounted by ()). Hence,

this calls for parallel and serial composition, i.e.

 ()) (())□ ())) where □

is a placeholder for serial composition and a placeholder for parallel

composition. Such combination forms the first link of a network of trust where

Q is called a referral of trustor P in deriving the level of experience-based

trustworthiness in trustee R.

4.1.4 Networks of Trust and Derivation Graphs

A network of trust is formed when two or more entities collaborate by sharing

experiences regarding a trustee in a proposition, e.g. P collaborating with Q to

ascertain its level of trust on R in . As P may not trust Q in , but only as a

62

referral as in recommending another entity for , the distinction between direct

referral trust and direct functional trust of P trusting R in is necessary.

The structure of such a trust network is a directed graph G = (V, E). Graph G

may be cyclic, e.g. Alice’s trust in Bob must not prohibit Bob from expressing

trust in Alice. However, for each instance of trust derivation, the path(s) needs to

be acyclic. Such a graph is a directed acyclic graph (DAG) where a derivation

path is denoted ρ. These paths are the chains of trust that are calculated with.

Figure 12: DAG not being a DSPG

Considering the conditional dependency structure of Figure 12 with three

valid paths denoted ‘ρ’ from trustor S to trustee x4. Let ‘;’ denote serial

composition, ⋄ parallel and f functional, r referral, d direct, i indirect and σ trust

in accordance to [148] [151]. Then the paths are:

ρ1 = [S, x4, ifσ] = [S, x1, drσ] ; [x1, x3, drσ] ; [x3, x4, dfσ]

ρ2 = [S, x4, ifσ] = [S, x2, drσ] ; [x2, x3, drσ] ; [x3, x4, dfσ]

ρ3 = [S, x4, ifσ] = [S, x1, drσ] ; [x1, x2, drσ] ; [x2, x3, drσ] ; [x3, x4, dfσ]

Common to all is that the last arc in the path is direct functional, noted as a

condition for transitivity in Section 4.1.1, and all the other arcs are referral trust,

all sharing the same proposition [152]. The different compositions of the indirect

functional trust from S to x4 are 2
{ρ1, ρ2, ρ3}

\ ∅
 = ρ1 | ρ2 | ρ3 | ρ1 ⋄ ρ2 | ρ1 ⋄ ρ3 | ρ2 ⋄

ρ3 | ρ1 ⋄ ρ2 ⋄ ρ3. Yet, the parallel composition of ρ1 ⋄ ρ2 can yield two

configurations i.e. ([S, x1, drσ] ; [x1, x3, drσ] ; [x3, x4, drσ]) ⋄ ([S, x2, drσ] ; [x2,

x3, drσ] ; [x3, x4, dfσ]) and (([S, x1, drσ] ; [x1, x3, drσ]) ⋄ ([S, x2, drσ] ; [x2, x3,

drσ])) ; [x3, x4, dfσ]. These configurations provide different output whenever ‘;’

and ‘⋄’ are not considered binary ‘AND’ and ‘OR’; a problem identified by

Jøsang in 1999 [145] noting that either some evidence is discarded or the

independence is violated.

To resolve this, a restriction that each arc must only appear once in each set

of derivation paths is introduced, called canonical expression [148]. Such a

restriction defines the latter configuration of ρ1 ⋄ ρ2 parallel configuration correct

[151], i.e. where [x3, x4, dfσ] appears only once. Moreover, this restriction makes

the derivation graph a Directed Series Parallel Graph (DSPG). A DSPG may be

constructed by applying the following series and parallel rules on G = (V, A)

with S, x4, u ∈ V [98]:

Series: replace the arc (S, x4) with (S, u) and (u, x4) where u is a new vertex.

Parallel: replace the arc (S, x4) with two arcs (S, x4)1 and (S, x4)2

63

Obviously, the parallel arcs (S, x4)1 and (S, x4)2 are disjoint only when applying

series composition on either or both. In trust derivation, these rules establish

canonical paths ρ between trustor and trustee, s and x4. In addition, each DSPG

is a special case of a DAG, i.e. the DAG in Figure 12 is not a DSPG but

removing (x1, x2) or (S, x2) invalidating ρ3 or ρ2 respectively makes it a DSPG.

Composing parallel paths each providing a set of experiences therefore increase

the level of certainty. Contrary, sequential composition that makes the paths

‘longer’ suggests less certainty.

4.2 Problem analysis

Trust and trustworthiness in the context of this thesis are issues that stem from

the uncertainty on the data provider’s capability in supplying correct data, i.e.

the acquired data’s probability of provability. Its metric is motivated to include

uncertainty as opposed to certainty of (un)trustworthiness. Moreover, as of the

decentralised setting of inconsistently behaving autonomous entities,

trustworthiness builds up from initial uncertainty by local and referral

experiences and changes continuously in a non-monotonic manner. This

motivates the trustor and the user application to continuously monitor and

measure trustworthiness, leading us to stating a Challenge 5.

Challenge 5 A means to calculate with trustworthiness for monitoring

data reliability.

Addressing Challenge 5 requires the ability to calculate with possibly conflicting

experiences. Moreover, the unpredictable behaviour suggests a decay of

experiences according to the recorded context datum. This decay facilitates

prompt reaction to a change in the behaviour of a trustee or referral.

4.3 State of the art

In experience-based trust an experience is optimally a realisation of a subjective

perception by cognition [64] of the trustor and contributes to the level of

certainty. In case of insufficient certainty, an entity may ascertain its level of

trustworthiness by referral’s experiences in the trustee, the reputation-based

model. Computational models for reputation-based trustworthiness can be

divided by their representation into probabilistic and non-probabilistic models.

For probabilistic approaches, the outcome is a percentage whereas for non-

probabilistic, typically ‘the greater the better’.

In this section we clarify the differences between these. Moreover, we outline

Subjective Logic that is a framework able to represent and calculate with

uncertainties. Whenever the algorithms are not self-explanatory, examples are

provided.

64

4.3.1 Non-Probabilistic Trust Computation

Models

The non-probabilistic computational models for calculating of trustworthiness

provides trustworthiness as a value without uncertainty [1] [14] [115] [155]

[201] [228] [262]. Methods implementing a non-probabilistic model include

methods aiming to add evidence [1] [201] [228], average on scores already in

the closed interval [0, 1] [14] and normalisation of the score [115] [155] [262].

In these, the semantics of the non-probabilistic model’s output is typically ‘the

greater the better’. This drawback may be illustrated by considering a score η ∈

[0, 1] of binomial experiences. Moreover, let P, Q, R ∈ Entities and P trusting Q

be denoted TPQ ∈ [0, 1]. Then, if the outcome of the applied method on

experiences) in a non-probabilistic system for entities yields TPQ =

TPR it is possible to say that from entity P’s view, entities Q and R are equally

trustworthy. However, the semantics provide no means to tell how trustworthy,

or how certain the indicated posterior expectation value is or on how extensive

evidence this score is based on and what the distribution is, as is the case of

EigenTrust [155]. Dually, if TPQ = 0.4 and TPR = 0.6 the semantics merely

supports a conclusion that TPQ < TPR. That is, the detailed information is lost

during abstraction and aggregation of) to TPQ and one can only tell

that the greater the better. To the best of our knowledge, this drawback is similar

for all such approaches that are discussed in Section 4.1.2. Thus we will for

brevity only outline the seminal algorithm of EigenTrust [155] in greater detail

to motivate our selection of a probabilistic model. Probabilistic models are

examined in Section 4.3.2.

 EigenTrust Explained 4.3.1.1

In EigenTrust [155], each experience is rated either unsatisfactory or

satisfactory, making the score binary η ∈ {0, 1}. Consider entities i and j in line

with Kamvar et al. [155] and the sum of the satisfactory experiences as satij =

fourth(())). Moreover, with the binary score, consider the

complement of the abstracted score ()) =

(∑)) that defines unsatisfactory experience unsatij =

fourth(())). The abstracted score sij of entity i regarding

entity j is:

sij = satij - unsatij

The score sij loses critical details by composing the history of propositions to one

irreversible metric. This is correctly noted by [155] as that sij of an entity with

65

poor experience is the same as for no experience, e.g. sij is the same for satij = 1

and unsatij = 0 and satij = 10 and unsatij = 9.

The abstracted score sij is normalised for entity j with respect to all other

entities sik where k ∈ Entities \ i, i.e. entities that i may have had direct

experience with. The normalisation is intended to countermeasure arbitrary high

influence of one entity’s experiences. However, for newcomers lacking any

experiences, a set of pre-trusted entities P are provided with initial trust of pj = 1

/ |P| when pj ∈ P and pj = 0 otherwise. With this, the normalised local trust value

cij is:

 {

 ()

∑)

 ∑)

For example, let Entities = {x, y, z} and from entity y’s point of view satyx = 8,

unsatyx = 2, satyz = 3 and unsatyz = 0, then cyx = ⅔ and cyz = ⅓ where the sum is

1.

Aggregating the local trust value cij with known referrals’ trust values defines

an entity’s extended view of the environment.

 ∑

To motivate this fundamental view, consider the three entities, x y and z in this

order with the following normalised experiences in each other:

) (⁄ ⁄) (⁄ ⁄)

That by a i-by-j global matrix C = [cij] is:

 [

 ⁄
 ⁄

 ⁄

 ⁄

]

Then deriving tij for each is as if asking friends (referrals); calculating tij for this

example gives after one iteration:

 (⁄ ⁄)

 (⁄ ⁄)

 (⁄ ⁄ ⁄)

The result is the same as of C and vector ⃗ = C
T ⃗ denoting each entity’s

opinion, i.e. C transposed times ⃗ , e.g.

 ⃗

[

 ⁄

 ⁄

 ⁄

 ⁄]

 (⁄ ⁄) (⁄ ⁄)

66

The matrix C denotes on each row the trustworthiness an entity perceives in

other entities; when transposed, this denote on the row the other entities’ trust in

one entity, e.g. row 1 in the example C
T
 denotes the trustworthiness others have

in x. Obviously, the sum of the entries in the vectors ⃗ adds up to 1 meaning that

additivity of each entity’s opinion is preserved.

Having the normalised satisfactory and unsatisfactory experiences

represented as C
T
 denoting trust after asking friends, asking friends of friends

propagates on the network of trust providing more referral evidence. This is

performed by multiplying C
T
 by itself (C

T
)

n
. Deriving matrix (C

T
)

3
is shown

below, i.e. the result after asking friends of friends.

)

[

 ⁄

 ⁄
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄]

,)

[

 ⁄
 ⁄

 ⁄

 ⁄

 ⁄
 ⁄

 ⁄

 ⁄
 ⁄]

With sufficiently large n, ⃗) ⃗ basically converges to a global trust

value ⃗ that is the eigenvector; in this example ⃗ ≈ (0.163, 0.348, 0.489) when

n = 145. We note that convergence is with some tolerance whose accuracy

increases with n, hence, ≈. This also proves the calculations on C irreducible and

aperiodic, i.e. there is no void data and no cycles in the values.

In the distributed version of EigenTrust, i.e. when the experiences are stored

locally on each entity, the trust vector ⃗ in addition to its global trust value ti is

calculated by:

)

)(

)

Here a is the frequency of selecting a non-trusted entity, c1i is entity 1 local

normalised trustworthiness in i and
 is the first entity’s global trust value.

They correctly note this not to be computationally very expensive as many

= 0. They continue to present how the managers of the experiences may be

distributed securely using distributed hash tables (DHT), with the assumptions of

robust and well-designed DHTs. These assumptions include that an experience

manager does not tamper and successfully passes the values to a “live” entity

when leaving the system, i.e. no redundancy and synchronisation is considered.

Moreover, they provide personalising by biasing local experience ⃗ over the

global ⃗ that is achieved by a constant d in the interval [0, 1].

 ⃗ =) ⃗ ⃗

Critics regarding EigenTrust include the treatment of newcomers,

unsatisfactory reputation rated as 0, no model for aging, intermediaries do not

get recognised, the information sij is critically abstracted, and the score is relative

to the selection of the pre-trusted entities. While all other points of criticism may

be considered features of the algorithm, the selection of pre-trusted entities is

essential [155] and forms a critical single point of failure [140] as the pre-trusted

entities determine the set of peers by which the entity will start interacting with.

67

This has been verified by simulations [255]. Hence, if one of these pre-trusted

entities subvert to malevolence, this jeopardises the whole system. Moreover, as

matrix multiplication is computationally costly, any update or decay (such as by

time) generates a new matrix by each logical hop. Critics regarding the

fundamental assumption that each element of the matrix has an opinion at all

imply EigenTrust to regard bi-directional trust where Alice trusting Bob implies

Bob to express his trust in Alice. In addition, as mentioned, EigenTrust suffers

from the lack of semantics with the mere interpretation of ‘the greater the

better’, noted by the authors [155]. These are also matters that, to the best of our

knowledge, all non-probabilistic trust systems suffer from.

Related to EigenTrust is the model presented by Guha et al. [115] with the

difference of considering trust and distrust matrices in separation to predicting

the unknown value. They motivate their approach, with respect to among others

EigenTrust, by that expressing distrust is equally important, where the score of 0

may be confused between ‘don’t know’ and ‘don’t trust’. They also propose

some new types of trust propagation, namely direct propagation, co-citation,

transpose trust and trust coupling. Of these, direct propagation and co-citation

may be relevant for contexts. In direct propagation, if A trusts B then whatever B

trusts, A is considered to trust as well; in terms of matrices this is expressed as A’

= A × A. In co-citation, if A trusts C and D and B trusts only C, then by co-

citation B’s trust in D may be derived; in terms of matrices this is expressed as

A’ = A × A
T
 × A, e.g. who trusts the same entities as B will imply B to trust those

as well. The critics for EigenTrust are valid for Guha et al. [115] framework as

well though they state that their initial matrices are given. Hence, they abstract

among others, the critics regarding newcomers and pre-trusted entities, but do

not solve them.

4.3.2 Computational Models for Probabilistic
Trust

A probabilistic trust model represents trust as a probability with an output

 . Examples of computational models for probabilistic models

include maximum likelihood by Despotovic and Aberer [2], TrustNet [272]

based on Dempster Shafer theory and Bayesian models based on statistical

updating of Beta Probability Density Functions (Βpdf) as of spanning [0, 1]

interval [53] [142] [149] [197] [244]. Of the probabilistic systems, the ones

based on Dempster Shafer theory capturing uncertainty seem the most versatile.

However, these systems often lack a representation of trustworthiness as they

omit considering how or what is an expression of (dis)trust, i.e. what are the

input values composed of. Βpdf models are used for representation where

evidence (experiences) is denoted as a tuple (α, β). In the tuple, α denotes

experience of satisfactory behaviour and β denotes experience of unsatisfactory

behaviour; hence, very similar to sat and unsat of EigenTrust. Moreover, Βpdf

68

represent uncertainty by distribution with complete uncertainty (no experience)

as even distribution.

Including a degree of uncertainty, however, demands deciding on the level of

certainty needed for triggering an actuator. It also motivates acquiring referrals’

experiences to increase the level of certainty [53]. However, these referral

experiences need to be discounted by the trustor’s trustworthiness in the referral.

Hence, a sufficient computational model needs to manage sequential and parallel

transitivity as well as combining disjoint sources in a mathematically sound

manner including the properties listed in in Section 4.1.1 from easily expressible

experiences. These criterions are met by Subjective Logic, hence motivating this

for more detailed presentation.

 Subjective Logic Framework 4.3.2.1

Subjective Logic is a probabilistic logic that addresses uncertainty, provides a

means of transitivity and derives a level of subjective belief in an entity in a

proposition [141] [142] [144] [150]. Moreover, it provides a computational

model for calculating with trustworthiness. Subjective Logic is related to

Dempster-Shafer theory and consists of logical operators; it is also related to

Βpdf as there is a unique transformation rule (shown shortly) and it may be used

to analyse Bayesian networks. Hence, Subjective Logic is both belief-based and

Bayesian as a Bayesian update (the posterior adding evidence) is straight

forward [150], presented in Section 4.3.2.5. Hence, Subjective logic provides a

viable model for calculations on the QoC parameter of trustworthiness.

Moreover, we cite Jøsang that “Subjective logic must not be confused with fuzzy

logic. The latter operates on crisp and certain measures about linguistically

vague and fuzzy propositions, whereas the subjective logic operates on uncertain

measures about crisp propositions” [141]. Here crisp is used as a substitute for

lack of uncertainty. This means that as fuzzy logic operates on fuzzified crisp

values and fuzzy propositions, the subjective logic operates on values with

uncertainty on a certain proposition.

The trustworthiness “type” in a Subjective Logic is an opinion, denoted ω.

Opinion
 denotes the opinion held by an entity A in proposition x. When

sequential reasoning is utilised,

 denotes A having an opinion on B in

proposition x. An opinion ω is always expressed on a binomial proposition, e.g.

binomial: ball ∈ {colour1, ¬colour1}; recall 4.1.3.1 and 4.1.3.2. Moreover, the

Subjective Logic is a generalisation of binary logic; meaning that whenever an

opinion is Binary, the Subjective Logic operators behave alike their

corresponding logical expressions [144]. Obviously, Subjective Logic also scale

to multinomial opinions, i.e. n-ary ball ∈ {colour1, colour2, …, colourn}. The

following subsections define an opinion and means to calculate with the

recorded experiences to acquire the momentarily subjective level of

trustworthiness as perceived by an entity.

69

 Parameters of an Opinion 4.3.2.2

The representation of trustworthiness as subjective opinions on frames of

discernments as presented in this section follows that of Jøsang [144]. There, the

representation of a multinomial subjective opinion is by a belief vector ⃗⃗, an

uncertainty scalar u and a base rate vector ⃗ in a k-nomial barycentric coordinate

system. Assume a frame of discernment Q = { | i = 1, …, k} where k = |Q| and

⋂ = ∅, i.e. a frame of discernment on a finite number of outcomes that are

exclusive and exhaustive, e.g. picking a ball of a certain colour ∈ Q from a

box. The belief mass vector for an outcome qi is ⃗⃗) where ∑ ⃗⃗) ∈ and

 ⃗⃗ ∅) = 0. That is, ⃗⃗) denotes the belief in outcome whose sum is

subadditive as of uncertainty. Uncertainty scalar u is defined u = ∑ ⃗⃗) ∈ ,

i.e. u ∈ [0, 1]. To acquire an expectation value with u = 0, a base rate vector of

non-informative a priori probability is introduced. This base rate vector on each

outcome is defined ∑ ⃗) ∈ = 1 where ⃗ ∅) = 0. The expectation value vector

is defined ⃗⃗) ⃗⃗) ⃗) .

Having these vectors in a k-nomial barycentric coordinate system on a frame

of discernment Q, the composite function over Q is
 ⃗⃗ ⃗). It denotes

P’s opinion on Q where ⃗⃗ and ⃗ have k parameters each and u is a scalar. Hence,

the multinomial opinion will have 2k + 1 parameters. With the opinions, the

subscript indicates the frame of discernment and the superscript the owner of

this opinion. We may omit expressing the owner when trivial.

 Representing the Trustworthiness as Opinions 4.3.2.3

In a representation of trust, all the properties of trust mentioned in Section 4.1.1

needs to be addressed. One of these is that of the incompleteness of trusts, i.e.

complete certainty cannot exist indicating that u > 0. The base rate vector ⃗ is

therefore always influential in finding the expectation value. Moreover, n-ary Q

over exclusive and exhaustive outcomes is easily coarsened to a binary view by

defining ⃗⃗ ̅) ∑) ∈
 and ⃗ ̅) ∑) ∈

 reducing the

cardinality of the set of outcomes |Q| = 2, i.e. to a binomial proposition Q ={ ̅ ,

 }. However, viewing this proposition in Dempster-Shafer theory, the belief

mass bel is m(), uncertainty mass m({ , ̅ }) from which pl may be defined as

bel + u or m() + m({ , ̅ }). Hence, disbelief is mass m(̅), i.e. evidence

against [153].

70

Figure 13: Binomial opinion triangle on a binary frame of discernment

A binomial opinion may be illustrated by a 2+1 vertex shape such as a

triangle depicted in

Figure 13 [145] formed by vertices u, x and ̅, trinomial by a tetrahedron

formed by u and exclusive and exhaustive vertices x ∈ Q where |Q| = 3.

Similarly, an n-nomial opinion on an n-nary frame of discernment may be

depicted by an n+1 vertex shape, i.e. by a Dirichlet Probability Density Function

(Dpdf) [147]. Any area coordinate (point) in an n-nomial barycentric coordinate

space adheres to additivity and is given by an n+1 tuple. Moreover, as noted, any

n-ary frame of discernment of exclusive and exhaustive outcomes may be

coarsened to a binary view.

As an opinion is binomial, it is written

). This opinion

exempt of the base-rate ax is a point in a triangle and its area coordinate is

formed by vector ⃗⃗) denoting
 , scalar u denoting

 ,
 as for base-rate

and
 derived from vector ⃗⃗ ̅). Dually, a tetrahedron is formed by 4 vertices

and an area coordinate is defined as a 4-tuple.

An expectation value on the binomial view is denoted E(x) and defines the

apriori assumed distribution of the uncertainty u [145], calculated:

E(x) = bx + u * a

Thus, an expectation value is a point on the basis of the triangle. The expectation

value proves its importance when ordering opinions in a total order based on

belief. Otherwise, deciding whether ωx≤ ωy or ωx ≥ ωy for arbitrary propositions

x and y for example with opinions ωx = (0.3, 0.3, 0.4, a) and ωy = (0.4, 0.4, 0.2,

a) is impossible as ωy depicts more trust, but more distrust as well.

71

 Subjective Logic on the General Model 4.3.2.4

Modelling experiences of the general model as opinions of subjective logic

requires a means of composing the disjoint) to one abstract experience.

Such an abstract experience qualifies for referral experiences. It should however

take into account possible experience-specific characteristics, for example, aging

of experiences. Hence, it provides some privacy and intimacy by hiding details,

as noted in Section 4.1.3.4.

The abstracted experience ()) is a composition of the

disjoint experiences) in some entity in a proposition. Let us

assume for each experience a score η represented as a tuple of satisfactory sat

and unsatisfactory unsat experiences (sat, unsat) where sat, unsat ∈ [0, 1] and

sat + unsat ≤ 1. As of non-additivity, a non-dogmatic experience may be

expressed that is relevant in case a trustor acknowledges some deficiency in

evaluating an experience. An update by new experiences merely adds to this set,

) =) ∪) where “no experience” is denoted as

(null, ϵm, null, (0, 0)), i.e. an ‘empty’ experience with score η = (0, 0). Dually, an

experience of complete uncertainty is denoted (, ϵm, , (0, 0)). However, before

composing this set of disjoint experiences to an abstract experience, the optional

decay on each experience need to be performed. Hence, the quantity of

information compensates for the lack of quality [213].

Decay is an operation of forgetting / forgiveness. It is an operation that

enables prompt reaction to sudden changes in behaviour by continuously

adjusting the abstracted experiences. For example, when applied on time the

intuition is that former experiences weigh less than recent experiences. Hence,

decay is implemented as reducing the weight of a local experience (sat, unsat)

with respect to its continuous datum ϵ. Central in decay is that it must not

subvert the decayed experiences, but merely reduce their relative weigh, i.e.

there is no evidence of the experience being less trustworthy but merely less

certain. Abstractions exempt of decay are valid when assuming consistent

behaviour with a goal to increase the trustor’s confidence level [2] [244], making

the implemented trust model’s task merely to pinpoint the objective level of

trustworthiness, e.g. the relation of outcomes when tossing a dice . According to

Massa and Avesani [182], “most of the current research takes the assumption

that every user has an objective trustworthiness value and the goal of the

techniques is just to guess this correct value” [182]. However, in terms of

context, such assumption is improper.

Hence, the decay is performed on each experience). This assures the

trust property of incomplete trustworthiness. Let λ denote a decaying term by a

datum , 0 ≤ λ ≤ 1; other terms may be introduced similarly. Then a decayed

experience by at time in a continuous datum is defined:

) {)}

72

Where ∈ Entities, ∈ Propositions, ≤ and denotes the moment of

snap-shot reducing η, i.e. increasing uncertainty. The decay factor λ defines the

‘forgetting’ speed where the closer to 1, the smaller the speed [256] and

obviously, λ = 1 implies no decay. Hence, linearity is not required and any other

means may be defined, i.e. instead of for example)

defining that experiences within the last 10 datums are taken fully into account.

The level of decay λ has also been defined as a function on forgiveness and

therefore on, regret as defined by Marsh and Briggs [178].

On decayed experiences, abstraction is the means of merging them to one

abstract experience at datum . As only abstraction on an entity in a

proposition is reasonable, the abstraction is (
)):

(

)) (∑

)

)

Hence,
(

)) score is the summed score as a tuple of

abstract satisfaction and unsatisfaction respectively, i.e. (abssat, absunsat) is

given by fourth(
(

))) where abssat, absunsat ∈ ℝ.

Not surprisingly, as (
)) denotes a tuple decayed on

datum , the updated
(

)) where is a recursive

function whenever the decaying factor is universal and applied on all

experiences locally [53] [149] [196]. Therefore, an abstraction is a continuous

function. For example, let = , then the abstract score at is:

(

)) =

 (∑ () ()))

Again, in case of no experience, fourth()) = (0, 0).

The decay serves also the purpose of giving a new chance to entities that

behaved unsatisfactory. This may be implemented alike in EigenTrust [155]

forcing an application to bind a newcomer with some probability, or demanding

a newcomer to provide their service with minimal costs in order to gain a

reputation. With decay, an untrustworthy entity will start to resemble a

newcomer over time and is, hence, subject to be bound as a newcomer by a

specific entity. However, as of the possible diversity in biases and performance,

untrustworthiness might not be unanimous. This further argues against a global

level of trustworthiness and for enabling formation of conglomerates of

reciprocally trustworthy entities, i.e. a social bond.

In addition, a general model’s abstract scores (abssat, absunsat) denote

composed decayed experiences, i.e. a trustor’s opinion in a trustee. This tuple is

the opinion ω and qualifies as input for representation in a Βpdf. Hence,

converting it to and from the opinion ω notation is central for the sake of

calculation, as Subjective Logic functions are defined on binomial opinions. The

73

mapping function was originally provided by Jøsang [142] and later elaborated

in [141] [148] [149]:

{

 }

In this mapping function, the parameter W denotes the non-informative prior

weight. Choosing W = 2 for binomial views assures initial uniform distribution

of the Βpdf whenever a = 0.5. Higher W merely slows the influence of

experiences down [141] [148]. More on the Βpdf and examples of these are

presented in Section 4.3.3.

 Calculating with Trust 4.3.2.5

Mending local abstracted experience fourth(
(

))) with

referrals’ abstract experiences fourth(
(

))) where δ ≠

δ’’ demands a means to calculate with the level of trustworthiness. In line with

the DSPG and (in)direct functional relations, presented in Section 4.1.4,

functions for calculating the sequential ‘;’ and parallel ‘⋄’ combinations are

demanded. These are called discounting and consensus respectively. In addition,

combining several derived levels of trustworthiness on disjoint trustees is

needed, e.g. an entity Alice may need to derive the level of trust in trustee Bob in

proposition x and Claire in proposition y. This is done by a special variant of

‘AND’ or ‘OR’ as of the uncertainty, called multiplication and co-multiplication

respectively. These functions are defined on opinions and have been originally

proposed by Jøsang [142] and later refined in [148] [256].

Figure 14: Two disjoint DSPG

Let us first consider multiplication and co-multiplication in Subjective logic

that may be used to combine opinions of disjoint DSPGs. This may be relevant

74

whenever the trustor depends on several trustees to perform in a certain manner

as depicted in Figure 14 where X and Y are evaluated on disjoint paths.

Obviously, B seek to ascertain its ifσ in a proposition on X and Y with frame of

discernments X = { ̅} and Y = { ̅}. The possible outcomes are therefore X ×

Y, i.e. { ̅} × { ̅} = {) ̅) ̅) ̅ ̅)}. Each of these outcomes

need to be assigned a level of trustworthiness; where multiplication ‘∧’ concerns

the opinion in proposition {)} and co-multiplication ‘∨’ in proposition

{) ̅) ̅)}.
To provide the functions, consider an entity B to have derived opinions

 and
()⋄))

 where x ∈ X and y ∈ Y. Multiplication on these,

{)}, written
 ∧

()⋄))
 = (∧ ∧ ∧ ∧)

defined:

 ∧

{

 ∧

))

 ∧

 ∧
())

 ∧

Having the same propositions and DSPG, co-multiplication derives the

outcomes {) ̅) ̅)} written
 ∨

()⋄))
 =

(∨ ∨ ∨ ∨) and defined:

 ∨

{

 ∨

 ∨
())

 ∨

 ∨

Multiplication and co-multiplication are commutative but not distributive, i.e.

 ∧ = ∧ but ∧ ∨)≠ ∧ ∨ ∧ and similarly for co-multiplicaiton.

Multiplication is well formed except for when ax = 1 and ay = 1 similarly co-

multiplication is well formed except for when ax = 0 and ay = 0 (division by

zero); in this case when the opinions and may be considered as limiting

values and subject to relative rates of ax and ay. More about these may be found

in Jøsang and McAnally [151].

With respect to probabilistic calculations, calculation of belief in

multiplication and disbelief in co-multiplication deviates. That is, for

multiplication, the calculation of belief may appear non-standard, that in

probabilistic calculations is motivated as numerical multiplication; and likewise

75

for disbelief in co-multiplication. The purpose of this is to get the expectation

value to converge with its probabilistic peer and keeping the base rate motivated.

For example, consider ωx = (0.466, 0.074, 0.459, 0.5) with E(ωx) = 0.696 and ωy

= (0, 0.685, 0.313, 0.5) with E(ωy) = 0.158, for E(ωx∧y) = E(ωx) * E(ωy), this

deviation is necessary.

Having defined how to combine disjoint opinions by multiplication and co-

multiplication, deriving an opinion on one proposition in a DSPG is by

consensus and discounting. Consider the network on proposition provided by Y

depicted in Figure 14, DSPG Graph = ({B, E, F, G, Y}, {(B, E), (B, F), (E, G),

(F, G), (G, Y)}) where vertex Y has direct functional trust dfσ on local

experiences on proposition y; this means direct functional trust in matching

proposition y in accordance with trust property 4 and [152]. Hence, the two paths

ρ1 and ρ2 are:

ρ1 = [B, y, ifσ] = [B, E, drσ] ; [E, G, drσ] ; [G, Y, drσ] ; [Y, y, dfσ]

ρ2 = [B, y, ifσ] = [B, F, drσ] ; [F, G, drσ] ; [G, Y, drσ] ; [Y, y, dfσ]

To calculate the opinion from these paths, consensus and discounting are

needed. Discounting, denoted ⨂, merges serialised opinions denoted ‘;’ in the

paths, i.e. ρ1 =

 ⨂
 ⨂

 ⨂
 . This relates, for example, E’s

opinion in G by B’s opinion in E. Consensus, denoted ⨁ is the operation of

combining parallel opinions denoted ⋄, i.e.

()))⋄())))

 (
 ⨂

)⨁
 ⨂

))⨂
 ⨂

Hence, DSGP of Figure 14 on y, in accordance to Section 4.1.4 is:

ρ1⋄ρ2 = (([B, E, drσ] ; [E, G, drσ]) ⋄ ([B, F, drσ] ; [F, G, drσ])) ; [G, Y, drσ]

; [Y, y, dfσ]

At least three different means for discounting opinions in various scenarios

have been defined for arbitrary

 [154]:

)

{

)

{

)

Case (i) discounts the evidence while favouring uncertainty, originally published

in 1997 [142]. Case (ii) view conflicting opinions as belief, that is, your enemy’s

enemy is your friend [144]. However, the authors note that modelling chains

longer than two arcs with this methodology is doubtful. The third case (iii)

operates on expectation values being a bad choice at high uncertainty, but might

be (in special cases) the least bad choice, called base rate sensitive discounting.

76

)

{

)

 (

)

 (

)
 (

)

In case (iii), expectation (
)

), as before. Obviously,

discounting is asymmetric, i.e.

 ≠

.

Contrary to discounting, consensus ⨁ enforces the evidence in a third party

by combining parallel paths. In Graph consensus is needed when combining the

two serial paths

(
 ⨂

)
 and

(
 ⨂

)
, i.e. (

 ⨂
)⨁

 ⨂
)). The

first variant of consensus was published alongside (i) of discounting [142]

whereas only later, the consideration of a priori a was included [141]. For an

arbitrary case
 ⋄ the consensus is defined:

 ⋄

)

)

 ⋄

)

)

 ⋄

)

)

 ⋄

 (

)

Here division by 0, i.e.

), is guaranteed as of decay λ reducing

certainty. Consensus is symmetric, i.e.
 ⋄ =

 ⋄ .

In addition to these, conditional subjective reasoning has been defined as

deduction [153] and abduction [208]. The conditional deduction and abduction

on multinomial opinions have been presented in [143] [144]. For binomial

opinions [153], conditional deduction and abduction is a causal probabilistic

reasoning methodology that makes analysis of Bayesian networks in Subjective

Logic possible [143]. However, as this thesis does not seek causal relationships

on contexts, we direct interested readers to referenced literature [143] [144]

[153] [208]. Moreover, trust transitivity utilising conditional deduction and

abduction has been further examined by Jøsang et al. [146], in which the authors

note that “despite the fact that uncertainty is taken into consideration, its value

results from a sound and calculative model, rather than being an ad-hoc

representation of the unpredictable nature of the transaction outcome” [146].

4.3.3 Filtering Unfair Opinions on the Βpdf

A Probability Density Function (pdf) describes the relative likelihood of a

random variable to occur at a given point. The Β distribution of a pdf is

considered as it spans an interval [0, 1]. Hence, a Βpdf models the posterior

probability. It captures uncertainty by uniformity of the distribution. Using the

Βpdf for modelling trust was originally considered by Mui et al. [196] [197].

77

Their Βpdf did, however, not consider the ‘forgetting’ (decay) factor which was

added by Jøsang et al. [149].

With respect to the general model, the input parameters (α, β) of a Βpdf are

derived from the experiences, here (abssat, absunsat). This transformation is

defined by Jøsang and Whitby in [148] [256]:

α = abssat + Wa,

β = absunsat + W(1 – a)

The only input generating a uniform distribution is when α = 1 and β = 1, equal

certainty in all outcomes. Hence, α = 1 and β = 1 is motivated as the initial

configuration whenever abssat and absunsat = (0, 0) and base rate is 0.5; also

motivating W = 2 as presented in Section 4.3.2.4 and yielding initially ωx = (0, 0,

1, a). The base rate a may not be 0.5 as W may be greater than 2. Larger W

merely slows the influence of evidence.

The Βpdf itself is defined by gamma functions as follows:

Βpdf |)
)

))
)

A gamma function is defined for positive n as an integer as Γ(n) = (n – 1)!.

The expected probability prob is be defined as α / (α + β). Hence, with 0

experiences and a uniform a priori expectation base rate a = 0.5 on a binomial

frame of discernment with W = 2, α = 1 and β = 1. In Figure 15 we illustrate the

Βpdf with abssat = 5 and absunsat = 1 where W = 2, a = 0.5 and a = 0.75. The

opinions are thereof ωx = (0.625, 0.125, 0.25, 0.5) and ωx’ = (0.625, 0.125, 0.25,

0.75).

Figure 15a: Βpdf(6.5, 1.5) and 14b: Βpdf(6, 2)

The expectation value divides the signed area of a Βpdf into two equal sized

halves. For the Βpdfs of Figure 15 the expectation values are E(ωx) = 0.75 and

E(ωx’) = 0.8125, e.g. E(ωx) = 5/8 + 2/8 * 0,5. Additional Βpdfs are illustrated in

Figure 16 where the Βpdf (3, 3) is the most uniform and Βpdf (31, 31) is the

least uniform.

78

Figure 16: Βpdf(31, 31), Βpdf(11, 11), Βpdf(3, 3)

To filter unfair / biased evaluations that manifest as overly negative or

positive experiences, a quantile approach has been proposed [256]. This quantile

defines a lower and upper bounds as a percentage of the Βpdf within which an

expectation value of any opinion considered need to fall. The quantile is defined

on the Beta distribution, where a quantile q for unfair ratings is in the interval [0,

0.5] means that q percentage of the points of the

Β((
(

)))) fall under q and another q percentage

over.

Figure 17: Βpdf(6, 2) and q = 1%

A Βpdf with q = 1% is depicted in Figure 17. Defining the lower quantile low

= q of an opinion and up as the upper bound up = 1 – q, then for each U ∈

Entities the quantile of trustor S opinion
 determines U’s suitability as a

recommender by its expectation value E(
) by whether or not this is in the

interval:

 ((())))

)

 ((())))

If this predicate does not hold, then entity U’s abstracted experience is not

included. That is, the most unfairly positive and negative ratings are excluded

with respect to the expected opinion. Noteworthy is that in contrast to this thesis

and expectations on opinions, Whitby et al. [256] utilise expectation of α / (α +

79

β), i.e. as if discarding base rate. Moreover, they assume existence of cumulative

rating vectors for each owner in the community with only one proposition.

Hence, they do not consider the initial view with no experiences and they

assume the existing view correct.

4.4 Success criterion

In this thesis we consider experience-based trustworthiness from the QoC

perspective where trust denotes a trustor’s subjective belief in a trustee to

provide according to the QoC parameters it claims. Such trustworthiness may be

represented as a probability or by a non-probabilistic metric. Moreover,

trustworthiness should preferably model the level of (un)certainty.

Including uncertainty in experience-based trust suggests to employing the

Dempster-Shafer theory. A variant of the Dempster-Shafer theory restricting the

DAG of a Bayesian network to a DSPG is the Subjective Logic. The Subjective

Logic framework provides a probabilistic computational model of opinions on

propositions. These opinions may be mapped to and from a history of summed

decayed experiences. Moreover, Subjective Logic may be used to calculate trust

in context derivation as well, as each path of a (sub)polytree is trivially a DSPG.

Thus, Subjective Logic provides a viable solution for the QoC parameter of

trustworthiness. This leads us to state Success criterion 4:

Success criterion 4 Provide a means to compose disjoint contexts by their

QoC parameter of trustworthiness and to represent the

composed context.

This success criterion coins what is demanded by QoC parameter of

trustworthiness in context derivation; that it affects the provided context.

With this, the need of a working incentive is emphasised. This leads us to

state yet another Success criterion as an incentive ought to encourage the trustee

to perform consistently and benevolently.

Success criterion 5 Defining a bidirectional incentive that encourages

consistent behaviour possibly forming groups of

mutually trusted entities.

The importance of such an incentive must not be belittled in an environment

populated by autonomous possibly inconsistently behaving entities. Altogether,

providing a scalable means for Success criterion 4 and Success criterion 5 would

capture several of the central problems related to context and context-awareness.

80

81

“Civilization advances by extending the number of important

operations which we can perform without thinking about them.” -

Alfred North Whitehead

5 Trustworthy Context-Awareness

In this chapter we consider the means to capture context and its

inaccuracies formally. First, we present the formal prerequisites. Second

we explain how the context and context dependencies may be modelled

formally. These dependencies are modelled on the user application as

well as on the applications and consider a “best effort” means to capture

contexts. Finally, we present how trustworthiness may be included on the

context dependencies with the novel view of weighing the context with

respect to its providing contexts’ levels of trust.

82

All applications are triggered by some external means such as a key press, a

remote procedure call or some other algorithmically unpredictable event. Let this

(these) external means be denoted c as of context provided by the context-aware

system architecture contextS(t) and monitored by an application situationA(t), as

discussed in Sections 2.1.3, 2.3.3 and 3.1.2. Hence, in a triggered application c is

of relevance at time t, c ⊆ SN(t-1), i.e. c ⊆ SA(t-1) ∧ c ⊆ CS(t-1). This makes

SN(t) ≠ ∅ for all context-aware agents not in their initial state, i.e. all applications

and user applications are fundamentally context-aware [198] [238] [275] [276].

Because of this and because the context is inherently inaccurate, the purely

algorithmic model of a context-aware agent breaks down. Moreover, the

inherent inaccuracy and the continuously changing qualities of contexts give rise

to the QoC parameters. Of these, we consider the parameter of trustworthiness in

detail.

Figure 18: The context-aware processing framework

The context-aware architecture that we model in this thesis is illustrated in

Figure 18. With respect to Figure 4, Figure 18 includes the notion of trustworthiness

calculations through the DSPG in the user application. It models a user triggering a

context-aware user application for performing a task through a device and the

filing of experiences by an edge between the user and the device. These are

considered contexts to the user application. The possible user inputs in addition

to all other momentarily relevant contexts for a user application (situationA(t))

are irreversibly abstracted as terms of a predicate. The term on trustworthiness

may also incorporate user authentication policies, e.g. when we have principal

Alice ∈ Entities, then ((
))) with λ = 0 is

trivially (0, 0). This indicates the a priori opinion ωAlice = (0, 0, 1, a) with

E(ωAlice) determined by a that may be defined by a Boolean policy, e.g. a is 0 in

proposition where the policy prohibits Alice and 1 otherwise. Eventually,

contexts in situationA(t) with affirmative predicates are candidates for being

83

reacted on by the context-aware user application. Of these, the ones used by the

user application are captured by situationN(t).

 The contexts of situationA(t) on which trustworthiness is resolved are

provided by contextS(t) and derived from elementary contexts in a logical

topology of a polytree. In a polytree, only nodes of direct dependence need to be

known as of undirected acyclicity. Each node therefore abstracts a subpolytree in

which QoC parameter of trustworthiness appears as direct functional trust (no

reputation or referrals) and merger may be done by multiplication and co-

multiplication.

To provide the user application with a trustworthy situation, the contextual

derivation needs to be analysed. We assume the algorithmic part of the

applications and the user application’s logic to be formally specified and their

functions verified. Hence, as mentioned in Section 1.5, this thesis focuses on the

formal modelling of the logical context derivation topology and on capturing the

imperfection of context. Consequently, we do not use formal methodologies for

analysing mathematical characteristics of a specification in a model of the

implementation environment; but use the formal methodologies to model the

contextual dependence and imperfection. We motivate this approach by that

verification of inherently imperfect and unpredictable contexts is only possible

when the imperfection of these are unjustifiably assumed [4], typically

abstracted / approximated by the model [42].

For our purpose of modelling the logical topology of context derivation, use

of formal deductive methods appears valid. These deductive methods “build on

logical inferences and rely on theorems for proving” [91]. They rely on

intermediate assertions for checking intermediate states and manage complexity

in program verification with research dating back to the 1940s. On this basis, the

seminal work by Hoare in 1969 [128] introduced a set of axioms and rules for

correctness, called Hoare triples. Related to the Hoare triples is the weakest

precondition predicate transformer (wp) semantics by Dijkstra [80] [81]. The wp

provides an algebraic means to reason on transformation of predicates. Further,

this predicate transformation semantics paved the ground for developing a

formal relation of the deductive method of increasing detail in a step-wise

manner from an abstract specification to a more concrete specification of the

system while preserving its (mathematical) correctness. This enabled a variant of

formal modelling [206] referred to as refinement whose mathematical foundation

is based on work by Back [17] and Morgan [192]. Later, this developed into the

refinement calculus framework [24] that relies on lattice theory. Moreover, a

specification in a deductive formal methodology may include probabilities [193]

[194]. These probabilities are, however, probabilities of truths that are bound by

the model.

To the best of our knowledge, there are no means to measure a model’s

relatedness with its environment, i.e. to deduce a level of how far from the real

environment the model is [4]. In addition, the model’s relatedness with the

environment may be subjective and when considering context, the model’s

84

relatedness is inaccurate. To these issues, we claim the level of trustworthiness

derived from an experience-based trust model valid. This is because the

experience-based trust model captures a user’s belief dynamically in the model

and the specification’s correctness, i.e. the probability of provability as opposed

to probability of truth.

5.1 Formal Prerequisites

Formally specifying a system relying on a model of the environment is

motivated by the desire to analyse the specified system rigorously. For analysis,

a specification typically defines what is guaranteed, not how. Moreover, as the

requirements specify what a system is expected to perform, a specification may

be used to show the adherence with the requirements. To rigorously show this

adherence, a formal specification is expressed in a language with an associated

formal semantics, hereafter called formal methods.

At the moment of writing, there is an abundance of formal methods for

specifying computerised systems. Roughly speaking, the formal methods can be

divided into three groups: one focusing on communicational matters known as

event based formalisms including CSP [129], CCS [189], π–calculus [190] and

REO [12]; one focusing on the state of a software known as state based

formalisms including Action Systems [19], B [5], Event B [4], Z [6], Unity

[175], Hoare triples [128], wp predicate transformers [81]; and the property

based formalisms (temporal logics) including LTL [207], CTL [89]. The formal

method selected for specifying a specific system is often dictated by its

convenience on the characterising problem setting, its user’s familiarity with its

semantics and its possible tool support.

For rigorous modelling of context dependencies and context-awareness

where a context may trigger an actuation, the state based formalisms fit well;

recall Definition 1 where a situation is modelled as part of the state. Of the state

based formalisms, we use the Action System framework [19] originally

developed for specifying distributed systems.

Due to its flexibility, yet formal rigor, the Action System framework is

convenient for expressing novel ideas in the distributed nature of context we

seek. The Action System framework also adheres to an extensive set of

refinement rules [16] enabling rigorous stepwise development of a specification.

Its semantics are based on the well-established weakest precondition (wp)

predicate transformer [81], that is an alternative for Hoare logic to proving

correctness [24]. Moreover, an action system 𝒜 in the Action System framework

may be part of a larger system, where the rest is modelled as the environment ℰ

of 𝒜. The action systems may communicate, for instance, via global variables.

This is similar to the local and distributed applications of context [48].

Drawbacks on the Action Systems framework include, from the implementer’s

view, the lack of tool-support and, from the context point of view, the lack of

85

temporalities. However, Event B [4] having tool support in the form of the

Rodin-platform [92] shares many characteristics with the Action System

framework.

5.1.1 Weakest Precondition Predicate
Transformers of the Action System

Framework

The state based methodologies focus on observing a system’s state space and

defining update statements. The weakest precondition predicate transformer wp

is a defined based on a statement s and a postcondition q, wp(s, q). In this thesis

we use wp(s, q) instead of wp.s.q with the wp-bracket separating the left-hand

statement from the postcondition by a comma ‘,’. This makes wp a function that

on s is a predicate transformer to q, i.e. wp(s, q): (Σ → Bool) → (Γ → Bool)

where Σ and Γ denote before – after state spaces [24]. Hence, wp(s, q) is a

composite predicate (Boolean function) identifying a set of states Σwp(s,q) ⊆ Σ for

which executing s guarantees establishing q, i.e. Γq ⊆ Γ.

Originally, the wp semantics was defined by the language of guarded

commands [80] [81]. The wp semantics assumed that no statement may establish

the false postcondition, i.e. that wp(s, false) = False, a property known as the

‘law of the excluded miracle’. It was developed thinking of ‘assigning meanings

to programs’ incorporating healthiness conditions in addition to being

monotonic, conjunctive and continuous [22] as well as allowing nested loops etc.

Of these well motivated conditions on the meanings of programs, only

monotonicity has remained unquestioned when analysing the programs as

idealised executable, i.e. as program specifications. The others have been

sacrificed for expressivity of specification languages. For example, the

continuity condition is violated by unbounded non-determinism which is a

necessary property in specifications as a miraculous statement does invalidate

the law of the excluded miracle. In the following, we define the semantics used

in this thesis.

The predicate transformer semantics of wp(s, q) for any predicate q is defined

as follows:

wp(magic, q) = true Miraculous statement (1)

wp(abort, q) = false Aborting statement (2)

wp(skip, q) = q Stuttering statement (3)

wp(x ≔ E, q) = q[E/x] Multiple assignment (4)

wp(x :∈ S, q) = ∀x’. x’ ∈ S ⇒ q [x’/x] Nondeterm. assignment (5)

wp(sA; sB, q) = wp (sA, wp (sB, q)) Sequential composition (6)

wp(sA [] sB, q) = wp (sA, q) ∧ wp (sB, q) Nondeterministic choice (7)

wp([a], q) = a ⇒ q Assumption (8)

wp({a}, q) = a ∧ q Assertion (9)

86

A wp(s, q) is read as ‘the predicate that identifies the states on Σ where

executing s guarantees establishing a state that satisfies predicate q’. The

weakest precondition predicate identifying the states in which executing magic

establishes q is true, i.e. magic applied on any state always establishes q.

Disallowed behaviour is captured by the statement abort with weakest

precondition predicate being false as q may never be established. Statement skip

is a stuttering statement, not changing the state space. In multiple assignment,

the variables in list x are assigned the corresponding expression in list E. Non-

deterministic assignment non-deterministically assigns x a value in set S where q

captures any value on x from S. Sequential composition of two statements sA

and sB is denoted sA; sB, whereas sA [] sB here denotes demonic non-

deterministic choice. This same rule for angelic non-deterministic choice would

be defined wp (sA, q) ∨ wp (sB, q), i.e. the difference is that for demonic choice

q is established by all statements (universal quantification) whereas angelic for

any statement (existential quantification). For assumption statement [a], if

predicate ‘a’ evaluates to false, the statement behaves miraculously whilst for

assertion {a}, if predicate ‘a’ evaluates to false, the statement aborts; if the

predicate evaluates to true, both assumption and assertion behaves as skip. For

the miraculous behaviour, note this may never be implemented and is, therefore,

not a desired statement. It is, however, necessary as a consequence of the lattice

theoretical foundation of refinement calculus manifesting the common least

upper bound for all elements within the lattice.

With this semantics, we say that a statement is enabled whenever the system

is in a state where by executing the statement a state satisfying the postcondition

is guaranteed. This guarantee is enforced by the guard predicate gd calculated

with the aforementioned list of predicate transformers, defined on statement s as

follows:

gd(s) = ¬wp(s, false) Enabledness

That is, the guard predicate identifies any state that guarantees a proper outcome.

Hence, statements abort, skip, x ≔ E and {a} are always enabled.

With the definitions above, it is possible to define a guarded statement: [gA];

sA called an action. Commonly gA is referred to as the guard whilst sA as the

body of an action.

A = [gA]; sA Action / guarded statement

gd(A) = gA ∧ ¬wp(sA, false) Action enabledness

The wp predicate of an action on some q is:

wp([gA]; sA, q) = gA ⇒ wp(sA, q) wp of an action

Yet, one more restriction is imposed, that actions are finitely conjunctive:

wp(A, q ∧ r) ⇒ wp(A, q) ∧ wp(A, r)

This implies demonic non-determinism and excludes angelic non-determinism.

The conjunctivity on operators implies monotonicity, i.e.:

87

(q ⇒ r) ⇒ (wp(A, q) ⇒ wp(A, r))

Having defined the actions, we define repetitive construct:

wp(do A od, q) = (∀n.wp(A
n
, gA ∨ q)) ∧ (∃n.¬gA

n
) Repetitive construct

Here A
0
 = skip and A

n+1
 = A

n
; A. The repetitive construct defines that after each

action some other action is enabled or the postcondition q needs to be satisfied.

It also defines that the number of actions are finite. Moreover, there exist some

action that establishes a state where no other action is enabled, and hence q

needs to be satisfied. This state is the termination state. Termination of a

construct as an obligation is known as total correctness; and dually, partial

correctness when q is established if the construct terminate [23].

The weakest precondition predicate transformers constructs are subject to

refinement (⊑). Refinement is defined monotonously on predicates on the state

space ordered by the relation R as a lattice [16] [22]. Hence, we say that A’

refines A with the relation R as ⇒ (logical implication) when the following

condition holds:

A ⊑R A’ ̂ ∀q • wp(A, q) ⇒ wp(A’, q)

As of monotonicity, A’ may for a certain precondition establish a stronger

postcondition q’ than q guaranteed by A. That is, for a certain state, if q’ ⇒ q and

wp(A, q) ⇒ wp(A, q’), then this is a refinement as well. Hence, refinement

applies both to operations making the predicate transformer more deterministic

as on the data structure elaborating on the process.

5.1.2 The Action System Framework and its

Execution Model

The wp semantics and actions form the basis of the Action System framework.

An action system 𝒜 in the framework consists of an initialisation statement a0

and a do … od repetitive construct of actions separated by nondeterministic

choice []. An action system 𝒜 is outlined as follows:

𝒜 = |[var x, y* ● a0; do A1 [] … [] An od]| : z

In 𝒜, x and y are variables declared by this action system. Variables x are local

variables and y are exported variables, denoted by an asterisk. Statement a0 is the

initialisation statement sequentially ‘;’ composed with a do … od repetitive

construct of actions Ai. The actions within the do … od are separated by non-

deterministic choice []. Variables z constitute the optional imported variables

declared in the environment of 𝒜. Hence, z and y* form a means for

communication between action systems by shared variables. All variables need

to have unique names [18].

The execution model of an Action System begins with the initialisation

statement a0 assigning the variables declared by this system their initial value; if

the initialisation is absent, variables are assigned an arbitrary value of their type.

Initialisation is followed by the repetitive construct in which an enabled action is

88

non-deterministically chosen for atomic execution. This selection is demonic,

hence, providing no sense of fairness. An action system terminates when no

action within the do … od loop is enabled, i.e. when exiting the repetitive

construct. For reactive systems abstracting variable assignments to its

environment, termination is a global property and the formalism comes to show

properties of execution traces. Hence, reactive systems typically show partial

correctness. In addition, parallel execution of actions is possible whenever they

operate on a disjoint set of variables making it equivalent to executing them in

either order, detailed in [15] [18] [20] as is parallel algorithms implementable

[232].

5.1.3 Action System Features

Action systems have many characterising features. Some of these originate from

the flexibility of the semantics that provide a methodology in which to define

theoretical features. Of these features, this section presents composition, remote

procedures and prioritising; in this order.

Separate action systems may be composed in parallel, denoted ||. Consider

action systems 𝒜 and ℬ:

𝒜 = |[var x, y* ● a0; do A1 [] … [] An od]|: z

ℬ = |[var u, v* ● b0; do B1 [] … [] Bm od]|: w

The composition of these is defined as follows:

𝒜 || ℬ = |[var x, u, y*, v* ● a0; b0; do A1 [] … [] An

[] B1 [] … [] Bm od]|: (z ∪ w) \ (v ∪ y)

A composed system’s variable naming remain unique for the local variables in

𝒜 || ℬ if x ∩ u = ∅; and when not, mere a priori local renaming suffice. Hence,

theoretically composing the environment ℰ with the action system 𝒜 at hand

makes all variables local. Moreover, composition is associative and commutative

as variable declaration and non-determinism have no order [18]. However,

composition is irreversible and therefore, often used for analysis purposes of the

whole system as a monolithic specification.

The second feature of an action system is the procedure clause, denoted

‘proc’. A procedure is a placeholder for a labelled statement that when referred

to is substituted for its referral statement. Hence, a procedure may affect the

enabledness of an action. In action system 𝒜 below, pi refers to a label and Pi to

the procedure body.

𝒜 = |[var x, y*; proc p1: P1, …, pm*: Pm ● a0; do A1 [] … [] An od]|: z

The procedures can, alike variables, be local or globally referable. Global

procedures are denoted with an asterisk. The procedures are called by one of the

three types: call-by-value, call-by-value-result or call-by-result. More on this and

procedures in general can be found elsewhere [233].

89

The final feature is the prioritising operator in Action Systems framework. The

prioritising operator gives a certain action higher priority over some other action

and is denoted // [230]. It is defined on two actions A and B where A is

prioritised over B as:

A//B = A [] [¬gA]; B Prioritising

Hence, B is enabled only in states where A is not.

5.2 Formal Modelling of Context

Dependencies

Dependency between actions in the wp-semantics may be expressed by

sequential composition, e.g. A; B. Therefore, stating that B depends on A as A

needs to finish before B in a state where B is enabled is valid; with the

enabledness predicate gA ∧ ¬wp(sA, ¬gB ∨ wp(sB, false). However, with

sequential composition, sA might enable B. As of this, sequential composition

for expressing dependence qualifies when atomicity is guaranteed and all

executing statement’s behaviours are known in detail.

When modelling context, however, the assumption of atomicity is

unreasonable as the contextual environment is dynamic and matters may happen

concurrently. That is, having a context-aware action A that is to execute in a

context of B, writing B; A; B unreasonably “freezes” the environment from

executing. Moreover, the action resolving the context B is modelled to execute

twice. Hence, contextual dependency needs a more flexible means to be

modelled, where Boolean rigour may not be achieved, i.e. being certain that B is

enabled once A finishes is impossible.

5.2.1 Situational Dependence

All context-aware agents depend on some situation captured as situationA(t).

When the context deriving system provides a matching imperfect context

contextS(t), the situation available for providing context-awareness is captured as

situationN(t). On situationN(t) a predicate is applied determining whether or not

to engage in an context-aware action. However, as all contexts are imperfect, the

situationN(t) is imperfect as well. Hence, a predicate on situationN(t) and its QoC

parameters indicate reliance on an imperfect situation as a whole. This includes

relying on the correctness of the derivation, the temporal resolution, the

benevolence of the provider and many other aspects. Consequently, modelling

dependence on such an imperfect matter that does not adhere to atomicity is

necessarily a best effort model. Simplifying these models for formal analysis

typically abstracts or assumes the imperfect matters that are causes of faults and

failures [202].

90

A straight forward model for simplifying the imperfection alike in

probabilistic analysis may not be provided for a contextual environment as of its

dynamicity. This is because imperfection may be due to the implementation

environment, human biases or any other inconsistent aspect. Consequently, we

propose in this thesis to capture the dynamic imperfection as the QoC parameter

of subjective posterior trustworthiness as an experience-based trust parameter. In

a way, this extends probabilistic analysis forming the foundation for formal

performance analysis and probabilistic formal methods by probabilistic choice

[186] [193] considered as the QoC parameter of probability of correctness.

Consequently, a predicate on situationN(t) should evaluate all QoC parameters

where for trustworthiness, this implies a threshold on the expectation value E(ω)

≥ z and / or on the opinion, e.g. ωy(b) ≥ 0.5 ∧ ωy(u) ≤ 0.2.

Consider two actions A and B of a user application and where A provides the

context-aware functionality and B defines the situation by a predicate on

situationN(t). Due to the atomic execution model of actions, what context

dependence should assure is that the predicate on situationN(t) modelled as gB

holds prior and after action A. Hence, assuring that A does not share variables of

gB seems valid. However, the informal environment violates this assumption as

contexts do not adhere to atomicity. Hence, a best-effort model for assuring a

situationN(t) as gB is realised as an action B = [gB]; skip that encapsulates a

context-aware action A, i.e. B; A; B. Obviously, the body of B (skip) may be

superposition refined [21] to some new functionality, e.g. filing =
).

As of this, the dependence operator \\ is defined in Paper IV as:

A\\B = [gB]; A; B

This operator has two important implications: Firstly it assures the context prior

to engaging in executing the context-aware action and Secondly, the separation

of the formal actions and contextual environment is preserved where the same

context may contribute to several actions in many Action Systems. Hence,

writing A\\B assures that action A may not (stigmergically) enable gB, may only

execute in context of gB and as B is executed after A, A may be guaranteed not

to update the state in a manner disabling B. Moreover, dependence A\\B is a

refinement of A; B, i.e. A; B ⊑R A\\B.

Proof. A; B ⊑R A\\B

∀q: wp(A; B, q) ⇒ wp(A\\B, q)

 < expanding \\ >

∀q: wp(A; B, q) ⇒ wp([gB]; A; B, q)
 < assumption (8) >

∀q: wp(A; B, q) ⇒ (gB ⇒ wp(A; B, q))
 < definition ⇒ >

∀q: wp(A; B, q) ⇒ (¬[gB] ∨ wp(A; B, q))
 < definition ⇒ >

∀q: ¬wp(A; B, q) ∨ (¬[gB] ∨ wp(A; B, q))

91

 < reduction of parenthesis >

∀q: ¬wp(A; B, q) ∨ ¬[gB] ∨ wp(A; B, q)

 < logic >

true □

In addition, without the atomicity assumption, A is subject to temporal

granularity because terms of gB, as considered in this thesis, may change

unpredictably. Strengthening gB by requiring, for example, higher expectation

value is trivially a refinement with ultimate state of E() ≥ 1, i.e. Boolean

expectation. Abstracting context for formal analysis is easily achieved by

requiring Boolean expectation and binary a priori expectation.

5.2.2 Contextual Dependencies on Disjoint
Contexts

The logical topology of context derivation is, as motivated in Chapter 3, a

polytree. In a polytree, the context is provided by underlying autonomous

applications; called colonies [66] or situation of situations [85]. These

applications process acquired context c ∈ contextS(t) for providing another

context c’ ∈ contextS(t). This process being an algorithmic behaviour may be

formally modelled. Moreover, if c = c’, then the application performed a

stuttering statement, being realistically a forwarder.

Figure 19: Contextual polytree

Assume A\\B in a polytree with the left hand side abstracting the right, i.e.

context provided by A depends on the context acquired from B. As A and B

provide contextS(t), they necessarily abstract the QoC parameters as well, i.e. A

need to discount B’s claimed level of trust
 ⨂

 . Hence, \\ in calculating a

level of trust is discounting ⨂. Moreover, if an action depends on several

providers, say B\\(B1; B2), the composition of the disjoint dependants

trustworthiness is either multiplication or co-multiplication, i.e.

(

 ⨂
)□ (

 ⨂
) where □ is a placeholder for multiplication or co-

multiplication.

92

For example, consider a polytree alike that depicted in Figure 19. The context

derivation of the QoC parameters for A is defined straightforward where

A\\(B\\(B1; B2); C) is a viable execution path. Other iterations on A\\(B\\(B2; B1);

C), A\\(C; B\\(B1; B2)) and A\\(C; B\\(B2; B1)) need to be viable paths as well as a

consequence of contextual independence and symmetry of multiplication and co-

multiplication. Hence, with respect to Figure 19, ∧
 =

 ∧
 expands to

(
 ⨂(

 ⨂
) ∧

 ⨂
))) ∧

 ⨂
) that is a viable

trustworthiness derivation path for speeding ∈ contextS(t). Notable from the

trustor’s point of view is that each path appears as having a length of 1, i.e. A’s

trustworthiness on B is determined by B’s claimed trustworthiness on B1 and B2.

Hence, B shields a colony of applications [83], here B1 and B2. This provides

structured context derivation as stated in Success criterion 1.

Notable in a derivation such as the above is that on a principle level it differs

from the means presented in Chapter 4. Here the goal is to derive a level of

trustworthiness of a composite formed by a polytree, not to calculate a level of

trustworthiness on each proposition by referrals in a DSPG that are eventually

composed.

5.2.3 Contextual Dependencies on Similar
Contexts

In the polytree, several agents may provide the same context. In this case, an

abstracting agent composes these readings. This is realistically the case for triple

modular redundancy or when combining the readings from a new sensor and an

old with greater certainty but less belief due to wear and tear.

Existing work addressing this problem include Grossman et al. [113] who

addressed the readings’ inconsistencies as the arithmetic mean of the smallest

and largest distance on equally distributed situations. They also considered

uncertainty as the spread of the readings modelled by a restricted probability

density function and trust simplified to belief. They do consider a binomial

approach on providers’ reliability and have all the metrics with a focus on

deriving probabilities on a proposition, e.g. what is the probability of reading a

being closer to x than b. Another view considering calculations of confidence in

a situation by weights of the context with respect to their confidences is

presented by McKeever et al. [219].

Our view is different as we consider trustworthiness in a well-defined

proposition and include calculation of trust and merger of context, i.e. as if

knowing a context reading with certain doubts on it as opposed to inconsistent

and uncertain readings and seeking to calculate a merged proposition’s level of

trust. To the best of our knowledge, this is a novel view. For brevity, we assume

equal base rates 0.5 and consider only the QoC parameter of trustworthiness.

The proposed merged c’ ∈ contextS(t) by an agent S is then the weighted average

of the context readings with respect to the expectation value of the provider

93

⊆ contextS(t) \ c’ on a proposition and its corresponding level of positive

experiences abssat. Hence, we define the merged context c’ as follows:

∑ (

 ⨂
)))

∑

 (

 ⨂
)

For example, with two opinions (

 ⨂
) = (0.3, 0.5, 0.2, 0.5) and

(

 ⨂
) = (0.16, 0.8, 0.04, 0.5), the corresponding abssat and absunsat are

(3, 5) and (8, 40) respectively with W = 2 and E(

 ⨂
) = 0.4 and E(

 ⨂

) = 0.18. Let the provided contexts of X1 and X2 be c1 = 20 and c2 = 10

respectively, then the weighted average is 14,545 indicating that c2 had slightly

greater influence because greater certainty in its provider X2 though less

trustworthy. As c’ base on two disjoint readings, composing their QoC is

necessary as well. For trustworthiness, the outcome is similar to that of adding

the abstracted scores of the opinions, i.e.

 (
(

))) (
(

))),

in this case (11, 45). This turns out to be the same as consensus ⨁, i.e.

 ⨂
)⨁

 ⨂
) = (0.1896, 0.7758, 0.0344, 0.5). Consequently,

weighted average of context with respect to its abstracted satisfactory

experiences and expectation value seems to be a viable solution for enforcing the

certainty in the weighted context.

94

95

“A computer shares with mathematics the property of being at the

same time the queen of science and technology and the most

humble servant.” – Heinz Zemanek 1980

6 Description of Papers

In this chapter we briefly present the author’s scientific publications that

relate to context, context-awareness and trustworthiness. Each

publication is described separately with an analysis on its contribution

with respect to the stated success criterions. Reprints of these publications

are available in Part II of this thesis.

96

Having presented context, context-awareness, trustworthiness and how these

concepts fit together in a formal framework; the author’s scientific publications

may be considered as milestones on this track. The publications are reprinted in

Part II. Each of them considers a particular aspect from a certain point of view.

This section lists the main contribution of each paper, how it fits the research,

what challenges and success criterions it addresses and how. Moreover, the

author’s role in each of them is described. The papers are presented in a

chronological order.

Paper I. An Abstract Model for Incentive-Enhanced Trust in

P2P Networks

Mats Neovius, “An Abstract Model for Incentive-Enhanced Trust in P2P

Networks”. In: Tomoya Enokido, Lu Yan, Bin Xiao, Daeyoung Kim, Yuanshun

Dai, Laurence T. Yang (Eds.), Embedded and Ubiquitous Computing - EUC

2005 Workshops: UISW, NCUS, SecUbiq, USN, and TAUES, Nagasaki, Japan,

December 6-9, 2005. , Lecture Notes in Computer Science 3823, 602 - 611,

Springer Berlin / Heidelberg, 2005.

This paper presents a model for facilitating benevolent behaviour on a uniform

event by an incentive in a Peer-to-Peer (P2P) network. The P2P network is

organised by two interconnected distributed hash tables, one for the long term ID

and one for the session ID. It defines a P2P system in a manner requiring all

experiences to be stored on the ‘live’ entities, i.e. by the entities having a session

ID. A recovery method by a logical expression for suddenly dropped entities is

also outlined.

The level of benevolence is derived from experiences (feedbacks) as

experience-based trust. The paper also presents how to propagate, distribute and

compose experiences in a decentralised P2P network by means of Subjective

Logic. It implements decay with two P2P specific operators: by time and

sociality. Sociality is motivated by considering the information rightfully from

the “long tail”, i.e. in a setting fitting the P2P environment. Moreover, the paper

considers the base rate for acquiring the expectation value as the expectation

value of the general opinion, i.e. providing the ability to trust despite bad

reputation [150]. It also addresses whitewashing by assigning a newcomer

minimal privileges. In addition, as each entity utilises a set of trustworthy

entities for derivation, the incentive for any entity to behave consistently is its

influence on entities trusting it.

This paper addresses Success criterion 5 by valuing consistent behaviour. In

terms of context, it considers one context on which all experiences are

expressed. The author is the sole author of this paper.

97

Paper II. A Design Framework for Wireless Sensor Networks

Mats Neovius, Lu Yan, “A Design Framework for Wireless Sensor Networks”.

In: Khaldoun Al Agha (Ed.), Ad-Hoc Networking: IFIP 19th World Computer

Congress, TC-6, IFIP Interactive Conference on Ad-Hoc Networking, August

20-25, 2006, Santiago, Chile , IFIP International Federation for Information

Processing 212, 119 - 127, Springer, 2006.

This paper presents a general architecture of a wireless sensor networks (WSN).

The amorphous WSN is modelled in a 3-dimensional architecture with

communicational layers, vocational segments and management planes. The

communicational layers refer to the level of abstraction of data whilst the

vocational segments to a node’s capabilities. The layers and segments are called

vertical and horizontal reasoning by Broens [48]. The sensor network specific

management planes of power-, mobility- and task planes are implemented on

each node [9]; the 3
rd

 dimension. On such a framework, the paper stresses that

the main load is on the diagonal ellipse. Thus, each component being a part of

the derivation chain performs some functionality with a role in the system that

may be illustrated by its location within the ellipse.

This paper introduces a framework for developing applications relying on a

decentralised network populated by autonomous agents demanding collaboration

in order to deliver for some inquiry. It motivates and briefly addresses Success

criterion 3. The WSN was chosen as it relates to context (this paper was written

simultaneously with paper III) and the sensor motes were easily acquirable.

Moreover, the spirit in which the paper is written supports the idea of a logical

topology of a polytree.

The author’s contribution to this paper was approximately 85% of the work.

The co-authors mainly contributed in the section on middleware and in

discussing the coining of the framework.

Paper III. A Formal Model of Context-Awareness and Context-

Dependency

Mats Neovius, Kaisa Sere, Lu Yan, Manoranjan Satpathy, “A Formal Model of

Context-Awareness and Context-Dependency”. In: Van Hung Dang, Pandya

Paritosh (Eds.), Proceedings of the fourth IEEE International Conference on

Software Engineering and Formal Methods (SEFM'06), 2006., 177 - 185, IEEE

Computer Society Press, 2006.

This paper formally considers how context is derived and how a context may be

modelled in a context dependent entity. It treats the domain outlined in Paper II

with respect to specifications of nodes in a context-aware scenario. It is inspired

98

by the WSN research as well as the co-authors’ previous publications on context

in mobile computing [267].

In this paper, context is considered uncontrollable and defined as “a setting in

which an event occurs”. These contexts are rudimentary evaluated by a context

dependent entity as terms of a predicate, called context guard. Whenever context

guards are false, the paper models some other action enabled when out of

context. This is fundamental for the sake of showing the termination condition in

refinement. The paper also shows a strategy to refine context with respect to its

definition on context. In addition, the paper outlines how context is derived in

line with Paper II and how a provider abstracts its underlying architecture from

its consumer.

The paper contributes to Success criterion 1, Success criterion 2 and Success

criterion 3 providing a hierarchy and treating the context merely by a predicate.

The author’s contribution to this paper was approximately 35% of the work with

the main contribution in setting the idea of treating context merely as a general

uncontrollable variable that may change unexpectedly.

Paper IV. Formal Modular Modelling of Context-Awareness

Mats Neovius, Kaisa Sere, “Formal Modular Modelling of Context-Awareness”.

In: Frank S. de Boer, Marcello M. Bonsangue, Eric Madelain (Eds.), Formal

Methods for Components and Objects, 7th International Symposium, FMCO

2008, Revised Lectures, 102-118, Lecture Notes in Computer Science vol. 5751,

2008.

This paper presents how a context-aware application may integrate a context

(situation). It builds on Paper III as deriving context. The idea rose from

considering combining paper II and III more rigorously, capturing the difference

between a context and a state, defining a means to treat the inherently imperfect

contexts formally. The paper considers context pragmatically as exclusively

updated globally readable variables. Hence, the contexts are considered as read-

only variables that only the application that publishes that context may update.

The main contribution of the paper is the context dependence operator \\, as

presented in Section 5.2.1. The \\-operator formally defines how context(s) may

be utilised by a context consumer. As the contexts are inherently imperfect and

inconsistent, \\ provides a best effort model. This dependence operator extends

mapping context as a mere term in the guard predicate by assuring the contextual

condition gB to hold (as rigorously as possible) throughout execution of context-

aware consumer functionality A.

The view conforms to the ellipse of paper II. It addresses Success criterion 1,

Success criterion 2, Success criterion 3 and Success criterion 4. The author’s

contribution was approximately 65%.

99

Paper V. Mastering the Relevance of Subjective Information in

Ubiquitous Computing

Mats Neovius and Kaisa Sere. “Mastering the Relevance of Subjective

Information in Ubiquitous Computing”. Submitted to International Journal of

Networked Computing and Advanced Information Management (IJNCM) Special issue

on Social Informatics and COMputing (SICOM).

This paper presents how sets of entities may be abstracted as a group. Such a

group is bonded by likes on some proposition and behaves as an entity in its own

right. It abstracts subjective experiences of entities being members of this group.

This bonding also defines the specificity in a proposition. Hence, a group is a

virtual entity that provides a composed referral opinion and in the context of this

thesis, eases the user application’s derivation of trustworthiness. The paper

illustrates this by an example. The paper considers, for brevity, a very simple

grouping. However, quantiles or more advanced grouping capturing overly

positive and negative ratings could easily be defined. The views presented are, to

the best of our knowledge, novel in terms of approach as well as proposed

solution.

The paper addresses Success criterion 4 by composing experiences as a

group. Moreover, it addresses Success criterion 5 by strengthening a

bidirectional incentive for the members of a group to be consistent in order to

acquire more influence. The author’s contribution was approximately 90%.

100

101

“The most important step in getting a job done is the recognition of

the problem. Once I recognize a problem I usually can think of

someone who can work it out better than I could.” – Leo Szilard

1961

7 Discussion and Achieved Results

In this chapter we discuss and analyse the achieved results in a systematic

manner. We discuss the role of trustworthiness on context derivation,

trustworthiness on a situation, incentive for consistent behaviour as well

as means to formally model this. Each section shares the following

structure: presenting the problem, contribution of this thesis, motivation,

impact and objections against the presented approach. The goal is to

convince the reader of the validity of our approach.

102

Trust and context are related by, among others, the QoC parameter of

trustworthiness that captures a context consumer’s uncertainties related to the

provided context. To model this relation in a structured manner, we consider

these aspects from a formal point of view. However, rather than striving to

verify mathematical characteristics on such a relation of inaccuracy, this thesis

utilises formal methods merely as a means of expression. Hence, the focus in

this chapter is on imposing a critical discussion on the view taken with respect to

related work. This chapter further stresses the contribution of this thesis by

elaborating on how the contribution fits the stated success criterions. Table 1

provide the reader with a view of which paper or section addresses what

challenge and success criterion.

Table 1: Challenges, success criterions and contribution

Challenge Success criterion Papers Other

Challenge 1 Success criterion 1 I, V

Challenge 2 Success criterion 2 II, III, IV

Challenge 3
Success criterion 3 II, III, IV Polytree Section 3.5

Challenge 4

Challenge 5
Success criterion 4 I, V Polytree Section 3.5, Section 5.2.3

Success criterion 5 I, V

This chapter is divided in four subsections Section 7.1 discusses the role of

trustworthiness on contexts in derivation whereas Section 7.2 the trustworthiness

perceived on a situation. Section 7.3 discusses the incentive to behave

trustworthy and Section 7.4 brings forward the formal modelling of this. All

subsections share the same structure. They present in this order the problem (i),

the contribution (ii), the motivation (iii), the impact (iv), and (some) objections

(v). The problem (i) considers difficulties raised and acknowledged by existing

work with fitting the setting of context and context-awareness. The contribution

(ii) is presented with respect to the stated success criterions followed by

motivation (iii) explaining the made design decisions. This is followed by

impacts (iv) the contribution may have in the field of study and finally, a critical

view (v) on the results presented is taken, to answer points of criticism and

objections.

7.1 Trustworthiness of Context

A context’s QoC parameter of trustworthiness models the level of probability of

provability of this context as claimed by its provider. Sometimes this level is

considered stable and modelled as a term of a predicate abstracting the context

and its QoC parameter of trustworthiness. Abstractions alike are motivated only

103

in very specific settings where the context’s imperfection is minimal, e.g. the

prominent implementation of the B method modelling the automated Paris metro

line nr. 14, as this metro line have, among others, platform edge doors at all

stations. In such environments it may be justified to model context and ignore its

imperfection providing the rigorous foundation from which formal methods in

software development derive their strength [170].

Broadening the domain of discourse to open networks, such as the ubiquitous

computing environment, the need for adaptive QoC parameters capturing the

changing environment is evident. This characteristic of context is commonly

acknowledged as the inherent imperfection [117] [121] [205]. Moreover, this

imperfection breaks down the purely algorithmic model [235], excluding the

otherwise very interesting situation lattices [268] [269]. Thus, a ubiquitous user

application is indeed merely a piece of technology that provides the user a means

to perform a task [26] without considering the environment. Consequently, for

considering context formally, the context(s) imperfection needs to be

encapsulated and provided separately, for example, in the QoC parameters. Of

the QoC parameters, the parameter of trustworthiness is considered in detail in

this thesis.

This thesis contribution is in defining and providing a means to capture and

calculate the QoC parameter of trustworthiness, based on experiences.

Moreover, a novel means to increase certainty by disjoint contexts on the similar

contexts by weighing them by their trustworthiness is provided in Section 5.2.3,

hence addressing Success criterion 4. Consequently, this thesis provides a

comprehensive view on how a context is derived from a set of elementary

contexts experiences and how the QoC parameter of trustworthiness emerges by

combining the merged discounted sources by multiplication and co-

multiplication. This context derivation is modelled as a polytree in Section 3.5,

that is a contribution of this thesis. Hence it addresses Success criterion 3.

Moreover, modelling QoC parameter of trustworthiness on a well-defined

proposition, trustworthiness may be used for suitability purposes stated in

Success criterion 1.

This thesis has motivated the QoC parameter of trustworthiness to be

experience-based. Moreover, as trustworthiness builds up and changes,

distinguishing between ‘don’t know’ and ‘equally trustworthy as untrustworthy’

is fundamental. Hence, the QoC parameter of trustworthiness may reasonably be

based on Dempster-Shafer theory for capturing the level of uncertainty, as it is a

probabilistic matter and is derived from the acquired experiences. In addition, as

trustworthiness is applied on inherently imperfect context, no fixed level of

trustworthiness may be assumed. As of this, the Subjective Logic presented in

Section 4.1.3 and Section 4.3.2 is selected as the computational model. The

Subjective Logic framework provides a logic for calculating trustworthiness in a

DSPG on an arc of a polytree.

A possible impact of these findings is to encapsulate the QoC parameter of

trustworthiness from the context. This makes the algorithmic part of context

104

processing subject to formal reasoning. Moreover, as providing a means to

merge disjoint contexts of a polytree, trustworthiness in a truly hierarchical

topology is possible. Therefore, the applications providing context, as presented

in Sections 2.1.4 and 2.3.1 may be considered hierarchically supporting the

hierarchical context models of Section 3.3.2.

These findings may be objected to by that reading a value, as is the case for

elementary contexts captured by a sensor, trust on it is trivial and subject to

probability of correctness. Such probability of correctness would be subject to

probabilistic analysis within a formal model, more on this in Section 7.4.

However, trustworthiness as presented in this thesis is an artefact capturing the

informal view and is based on insufficient evidence and is, therefore, very apt to

context. For a specific elementary context, the inherent imperfection has been

empirical found in a survey from industry [137] to relate to mechanical wear,

dirt, human errors and environments affects, among other forms of informal

imperfection. Obviously, this is a motivation for the existence and definition of

the QoC parameter of trustworthiness [54]. Further, the Subjective Logic

proposed in this thesis to be used to calculate with these insufficiencies can also

handle absolute levels of trust (dis)belief (b ∈ {0, 1}) of non-aging (λ = 1)

(in)correctness, making Subjective Logic behave like Boolean ‘AND’ and ‘OR’.

Such Boolean certainty on any non-algorithmic matter is, however,

unreasonable. Research has pointed out that time takes its toll on even the

seemingly permanent elements, such as DRAM [229]. In addition, even an

automatic theorem prover is subject to trust in terms of trusting the author of the

prover to have implemented the inference rules properly [198]. Together, these

add to the need of an adaptive, incomplete quality parameter, i.e. to the need of

trustworthiness.

Objections on the logical topology of deriving context include the motivation

of relaxing the polytree structure to a directed tree where each context may

contribute at most once per matter. This objection is motivated, however

requiring a universal ontology for defining the ‘once per matter’, which does not

exist. This becomes prevalent in hierarchical structures, e.g. calculating average

speed requires a reading to be included at most once. Hence, we consider a

polytree as a reasonable logical topology for deriving context with

trustworthiness.

Objections on the means to derive the experiences demanded for calculating

experience-based trust may be criticised as compromising the idea of context-

awareness due to requiring human interaction [90]. This point of criticism is

very valid. However, this thesis takes no stance on whether or not these are

automatically or interactively provided, e.g. by triple modular redundancy or by

the cognitive entity.

105

7.2 Trustworthiness on Situations

A situation abstracts a set of contexts in the logical topology of a polytree. It

shares all aspects of a context, including the QoC parameters providing a partial

view of the informal environment for a user application. The user application

considers a situation by a predicate where trusting a situation is equivalent to

depending on it to represent a set of contexts correctly. In this setting, the user

application may affect a situation only through actuators that may stigmergically

affect the contexts.

The trustworthiness a user application perceives in a situation is similar to

that used for deriving the situation except for the logical derivation topology

being a DSPG, i.e. referrals are included to recommend the situation. This

provides the user application with means to calculate an accurate and timely

level of trustworthiness. However, to the best of our knowledge, regardless the

abundance of research on computing with experience-based trust and quite a few

proposals outlining the QoC metrics, research proposing a usage for the QoC

parameter of trustworthiness has not been considered.

The contribution of this thesis consists in defining a mapping from the

uncertain situation to the formal context consumer by a predicate on some

threshold on context terms. The view accepts the fact that this is uncertain and

the outcome may, therefore, be undesired. The mapping does thereby define the

cooperation threshold weighing risk and profit [178] where a discounted opinion

may be ascertained by referrals experiences in a logical topology of a DSPG.

Moreover, papers III and IV contribute to the view of how context may be

introduced formally to a user application. These papers support separation of

concerns between context derivation and usage. They also consider a situation

effectively as terms of a guard. Hence, these papers and Part I of this thesis

collectively addresses Success criterion 2.

The motivation of this approach relates to the separation of concern and

abstraction of details where a user application yearns for a means to map the

informal environment to a formal environment. For this, the inherent inaccuracy

of context must be captured and eventually abstracted to a Boolean at point of

actuation. This is the effect of the context guard of the \\-operator that

additionally demands atomic behaviour of the environment.

The impact of abstracting a situation as terms of a predicate is that an enabled

action may be provided in a certain situation characterised by the quality.

Optimally, the situation guard’s cooperation threshold is restricted to what

would otherwise be assumed correct in systems and forms therefore, a mere

means to verify the assumptions on contexts. Obviously, as a predicate is a

Boolean valued function, this evaluation is irreversible and enables thereafter

formal reasoning on the construct.

Objections regarding the taken view include questioning the use of formal

modelling on a situation derived from inherently inaccurate sources. This

106

objection is very motivated. It is however discarded in this thesis, because all

adaptive functionality including all applications of practical relevance is context-

aware and all contexts are inherently inaccurate. Hence, a formal view on any

non-mathematical domain of discourse assumes and accepts this inaccuracy of

the model if it provides a Boolean argument. Therefore, employing

trustworthiness as presented in this thesis is advantageous because it provides a

sound and realistic means to model this inaccuracy adaptively. Moreover, the

Subjective Logic with absolute opinions converges to Binary ‘AND’ and ‘OR’

[144] if necessary. Hence, using Subjective Logic on absolute contexts will not

divert the formal model motivating the claim that the presented means extend

the traditional means of formalising matters. In addition, Subjective Logic on

dogmatic opinions (no uncertainty) converges with classical probabilistic

systems [143]. Hence, Subjective Logic also extends on the traditional Bayesian

analysis.

Another argument against the presented approach is the use of experience-

based trustworthiness that eventually is abstracted by a policy as terms of the

situation guard. This objection is discarded in this thesis by motivating

experience-based trust instead of policies by the need to adapt to changes.

Experience-based trust can further be argued against with the motivation that

people perceive trustworthiness in people, not technology [99]. As technology is

fundamentally manmade and run on an infrastructure that always have a human

stakeholder, relying on the engineers’ work and the stakeholder supporting this

system surely is subject to trustworthiness. In addition, questioning how

experiences forming the opinions of a DSPG for deriving trustworthiness in a

situation are acquired is motivated. This is indeed a fundamental issue that in

related work is often discarded and experiences are merely assumed to exist and

be correct. We consider this to be provided by a cognitive user.

7.3 An Incentive for Behaving
Trustworthy

In real life, the incentive for behaving according to some scheme is typically

money, fame or some other craved benefit or contrary, fear of sanction in terms

of fining, reduced reputation or something alike. All of these incentives rely on

the identification of the counterpart and common basic desires, e.g. freedom,

fame and wealth. The levels of these desires are enforced by the masses as what

is considered socially appropriate or by third parties enforcing laws such as the

police and court. As no entity has the role of the real life third party entities in

computerised communication, collaboration relies on mutual trust between

entities that share appreciation, i.e. views on appropriateness and bias. Hybrid

incentives may be present in case of credentials enforced by real-life contracts,

e.g. the university network is only available to users who have signed the terms

of use, making the user subject to real-life laws. Nevertheless, incentives are as

107

central in computerised interaction as in real life. Live implementations on the

open computerised network populated by egocentrically behaving entities

include Ebay.com’s reputation score, Slashdot’s karma and Google’s page rank.

To this, this thesis contributes by outlining an implicit incentive in a setting

of context where the incentive for providing and acquiring a highly trustworthy

context is bidirectional. This incentive is based on trustworthiness. Providing

highly trustworthy context assigns the provider higher influence on the context

consumer’s decision and an increased possibility to exceed the threshold of

being bound. Dually, an incentive for the context consumer to bind high quality

context(s) is reduced computational load. Hence, the contribution addresses

Success criterion 5 encouraging consistent and benevolent behaviour.

The approach is motivated by the sheer necessity of providing an incentive.

This incentive is defined and enforced by conglomerates of mutually trusted

entities, i.e. by the group an entity is associated with.

The impact is that the set of entities an entity identifies with share to a high

degree the biases and appreciation by a proposition, e.g. the set of entities

sharing the perception on proposition cold drink may be different from that in

proposition cold climate. Characterising for such entities of a set of mutually

trustworthy entities may be that when they interact, they are likely to assign

satisfactory experiences to each other. Hence, such a set of entities forms a code

of their own with respect to expectations, an approach further discussed in Paper

V.

Objections against an incentive would typically relate to its computational

costs, difficulties in distribution and it attracting fraud. However, in an

environment populated by autonomous entities, the incentive is necessary. The

computational costs are when implementing Subjective Logic reasonable

compared to other options, e.g. matrix multiplication as in EigenTrust.

Moreover, the experiences are distributed upon request and fraud may

collaboratively be noticed and reacted to. Other related means to provide an

incentive for benevolent behaviour include negotiations revealing increasingly

sensitive data and therefore, tying entities increasingly to each other. However,

we consider incentives as presented in the thesis to include this aspect as more

trustworthy providers have greater stakes than less trustworthy ones in the event

of an unsatisfactory experience.

Objections may also relate to how the appreciation is evaluated and

distributed if several situations are used. This point of criticism is valid.

Solutions may relate to distributing this according to the weight, importance or

any other means. However, as noted in Section 1.5, this thesis does not consider

distribution of appreciation.

108

7.4 The Formal View on Contextual
Dependency

The importance of structured reasoning is augmented in complex systems such

as ubiquitous systems. Often complexity is addressed by decomposing a system

to manageable parts. Context makes no exception in this sense. However, as

context is inherently imperfect, a formal specification of a context-aware agent

is relative to its model’s relatedness with the reality, behavioural assumptions

and restrictions. Hence, formal analysis is possible only given irreversible

mapping of the informal environment to a Boolean, i.e. approximating and

assuming characteristics on what is modelled. However in deriving a situation,

the imperfection of contexts this situation depends on needs to be considered. In

related research on formal methods and their applications, this mapping is

typically evaded by underlining the model as an abstracting entity on an

approximated reality, i.e. Boolean assumptions are made on the elementary

contexts. Moreover, this model is frequently considered to encompass all of the

relevant aspects that are being specified. However, “should this approximation

be too far from the real environment, then it would be possible that our software

would fail under unforeseen external circumstances” [4].

The contribution of this thesis is in line with Papers III and IV; an application

conducts actions only in some context. This is modelled by the predicate that

defines a threshold on the context that in Paper III this is called the context guard

and in Paper IV is modelled by the predicate that needs to hold before and after

the application with the \\-operator. On these predicates, including the QoC

parameter(s) is straight forward. On this matter, Paper V and this thesis’ part I

provide insight. Hence, Success criterion 5 is addressed.

The motivation for expressing dependence on an imperfect context in the first

place is simply that an elementary context captures the informal world and must,

therefore, not be assumed formally. Moreover, as the context may be subjective,

a formal interpretation in terms of a model is void. Hence, subjectivity needs to

be captured by some of the context’s quality parameters. In this thesis this

parameter is the trustworthiness QoC parameter that bases on user application

specific experiences on the provider as a whole.

Objection on the use of formal methods on inherently inaccurate context are

many. Mainly these relate to the fundamental differences among these. In the

following the most prominent from this thesis point of view are outlined.

Criticism on using experiences instead of well-founded probabilistic systems

and their implementations on formal methods is evaded by the different views

taken. This thesis considers trustworthiness to be dynamic, subjective and to

build up from initial uncertainty, motivating Dempster-Shafer theory over

statically provided probabilities [193] [194].

Valid critic regarding the dependency operator \\ is that it in fact coincide

with sequential composition ‘;’. This holds true when atomicity is assumed and

109

context is provided as read_only. Dually however, as A\\B is a refinement of

A;B, i.e. A;B ⊑ A\\B, and the meanings coincide, expressing dependency by \\

assuming atomicity and read_only is valid. However, when considering context

capturing the informal environment and assuming no atomicity, the algorithmic

model breaks down. For this, \\ provides a supreme model over ; expressing

dependence whose realistic implementation depends on the left hand side

action’s temporal granularity with respect to the contexts’ temporal resolution.

This temporal granularity brings up the next point of criticism, that context

breaks the atomicity of an action. This is the case per definition of context that is

inaccurate and unpredictable in the sense that it is not created by a computer, i.e.

in A\\B the parameters of gB may change during execution of A. Assuming the

algorithmic part of an action to adhere to atomicity and modelling actuator Act

as a separate action that A enables, Act may not be triggered before B has

executed. Hence, a designer needs to decide whether to accept uncertainty or to

assume unjustifiably context updating to be atomic. Moreover, questioning for

A\\B whether A depends on B or vice versa may arise. This is only motivated

when context is interpreted as terms of a predicate incapable of disabling itself

and when context adheres to atomicity. If this was the case, a context’s temporal

resolution is lost.

Other criticism includes that of using formal methods in the first place on a

non-formal matter like context. This point of criticism is very valid as the

context compromise the means of mathematical analysis which is the catalyst for

formalising in the first place. It also scales to the fundamental difference

between mathematical modelling and engineering. On this stance, this thesis lies

in between as experience-based trust could be considered a kind of testing.

However, in this thesis the aim is not to prove mathematical characteristics but

to use the formal methods for providing a means to model and reason on context

in a structured manner. Again, Subjective Logic behaves like Boolean logic

when assuming atomicity and an absolute level of trust. Hence, replacing axioms

with the QoC parameter of trustworthiness is an improvement. Moreover,

dependency \\ executes equivalently to ; in case of atomicity and independence.

Consequently, all operators and means fall back on their traditional use, further

highlighting the contributions validity and implementability.

110

111

“Experience seems to most of us to lead to conclusions, but

empiricism has sworn never to draw them.” - George Santayana

8 Conclusions and Future Perspectives

In this chapter we summarise the thesis in terms of contributions. We also

consider some future perspectives of context and context-awareness in

ubiquitous computing and the role of trustworthiness in this.

112

This thesis considers a means to formally model contextual dependencies on

inherently inaccurate contexts derived from a ubiquitous computing architecture.

The Action System framework featuring a means for structured correct-by-

construction (refinement) is used as a formal framework for logic-based context

modelling and analysis. As the Action System framework is based on a well-

established mathematical-logical theory, the challenge relates to modelling a

context’s inherent imperfection. This contextual imperfection is captured by the

context’s QoC parameters that are modelled as a context’s metadata. Of these

QoC parameters, the parameter of trustworthiness, noted as a challenging

parameter by related work [54] [236], is examined in this thesis in greater detail.

Moreover, as context is derived, challenges with respect to propagating the QoC

parameter of trustworthiness are considered. Hence, in an idealised system a

context with QoC parameters would provide the user application a view of the

environment that is more realistic than if assumptions / approximations on the

environment would have been modelled.

In the ubiquitous computing architecture that is populated by autonomous

agents, a context consuming agent is in this thesis considered to acquire contexts

provided by other autonomous agents. As this context consuming agent may not

assume or enforce any conditions on the context provided, the QoC parameter of

trustworthiness evaluated by the consumer on the provider is essential. This

trustworthiness is considered to be based on subjective experiences. It captures a

level of unwarranted reliance the context consumer perceives on a provider

momentarily in a specific proposition. Hence, trustworthiness is considered

experience-based and its level is non-monotonic. Moreover, as initially there are

no experiences, the QoC parameter of trustworthiness needs to include a factor

of uncertainty as opposed to certainty. Thus, trustworthiness is not a probability

of truth captured by the QoC parameter of probability of correctness adhering to

additivity, but a probability of provability referring to concepts as ‘belief’,

‘doubt’, ‘evidence’, ‘support’ [204]. This motivates Dempster-Shafer theory as a

candidate for representing trustworthiness. Moreover, as an experience is entity-

and proposition-specific, it is subjective. In addition, this thesis provides a

general model for managing this history including abstraction of it for the sake

of a referral’s ability to preserve privacy, i.e. supports reputation-based

trustworthiness

To effectively address these aspects, this thesis considers the Subjective logic

framework. Subjective logic is experience-based addressing uncertainty where

the level of trustworthiness is considered as functions on constructs called

opinions. It is a probabilistic logic related to Dempster-Shafer theory being a

generalisation of binary logic and classical probabilistic logic [143] [144]. It is

also related to Βpdf by unique bidirectional transformation rules. The probability

density function with a Β-distribution (Βpdf) is represented as a tuple (α, β) and

fits the abstracted experience tuple (x, y) where x, y denote the level of

subjective satisfaction and dissatisfaction. The abstraction (aggregation) of such

subjective experiences is considered as simple summation of the decayed

113

experiences. Each experience is represented by a tuple (xi, yi) for i = 1, …, n and

xi + yi ≤ 1 with 1 – x – y denoting the level of uncertainty, on which decay by a

continuous datum reduces the certainty. Hence, decay reduces the weight of

evidence of satisfaction and dissatisfaction of an experience and captures the

fundamental assumption of context being ever changing, always incomplete and

non-monotone. For the sake of decision, a posterior expectation value adhering

to additivity may be derived assuming a provided a prior base-rate, denoted a.

In modelling this formally in the Action System framework, the inherent

imperfection of context motivating trustworthiness as a QoC parameter raises

some concerns. These concerns relate to the foundational assumption that a

formal analysis relies on, e.g. complete and correct variables as well as the

atomic execution model. Therefore, sound mathematical characteristics may not

be shown on inherently imperfect matters without approximation by the model.

Hence, this thesis presents a best-effort model for formal analysis of a context-

aware user application acknowledging the context’s characteristics.

This model approximates the context and its QoC parameters irreversibly as

terms of a predicate at the time of execution by the context dependency operator.

This dependency model forces the context-aware user application to evaluate the

context before and after a context-aware statement, hence guaranteeing a

statement to be executed only in a context. Should the context update in a

manner subverting the predicate’s outcome during execution, the model was

evidently unreasonable, i.e. too far from the reality.

Such modelling of context and QoC parameters approximated as terms of a

predicate is supported by alleged separation of concerns in context-aware

systems. This separation is between the user application’s approximated model

on context and the context derivation imperfect view including QoC parameters.

Separation also supports context derivation transparency for a context

consuming agent facilitating reusability and maintainability as stated in Section

3.1.1. Moreover, the separated views implement different logical topologies in

derivation of QoC parameter of trustworthiness.

The context derivation view may require an agent to depend acyclically on

several disjoint agents. The logical topology of such a derivation is therefore a

polytree. Context derivation in a polytree requires merger and propagation of

context and the QoC metadata. This thesis provides the details on how this may

be performed on the QoC parameter of trustworthiness, noted a challenging

parameter by related work [54] [236]. On the other hand, the user application is

concerned with a single context provider providing the situation. Hence,

deriving a level of trust possibly by inquiring referrals to ascertain a perception

is modelled by a logical topology of a DSPG. This is the original use of

subjective logic. With respect to these, this thesis proposes a novel function for

merging of context by trustworthiness in a polytree, counting for settings where

several providers provide the same context with different values, proposed in

Section 5.2.2.

114

Consequently, Part I of the thesis has presented the following novel

contributions:

 Modelling context derivation as a polytree

 Defining a general model for a history of experiences on which calculations

of trustworthiness in Subjective logic may be conducted

 Providing a means to calculate a weighted context by trustworthiness

In addition, each of the reprinted publications views some specific problem in a

specific setting. Hence, Part I of the thesis also describes how all these aspects

relate to each other and provides an overview of the topics discussed; that is a

contribution in its own right.

The Success criterions stated in Sections 2.4, 3.4 and 4.4 are addressed

forming the basis of the discussion in Chapter 7 that motivates for and against

the approaches taken. What publication or in what section these success

criterions are addressed is outlined in Table 1 in Chapter 7.

As future perspectives, we envision the pursuit to increased user experience

yearning for ever more complex context derivation. This is due to the increasing

availability of contexts, personalisation / customisation needs as well as the

expanding application domains in form of device mobility, connectivity and

context locality. Hence, context is likely to be used in the future in ever more

varied and dynamic settings, demanding adaptive means to evaluate it. This

brings forward the contributions of this thesis that captures uncertainties on

contexts and their derivation as trustworthiness. The extreme of this vision is

that in the future, context derivation would constitute the ecosystem populated

by adaptive autonomous entities organising themselves to provide contexts

desired by user applications [11].

We motivate our views by that abstracting computations to the “cloud” is for

real already today. The “social computer” [106] using crowdsourcing is

envisioned. Nevertheless, whatever the time frame or reality of realising this

extreme vision, the behaviour of a future ubiquitous system is likely to be overly

extensive and complex for formalisation as a monolithic structure, hence,

requiring means of integration. The reason, as we see it, is that formal methods

rely on mathematical correctness and defining correctness is a serious challenge

[202]; defining correctness on autonomous agents may just become too difficult.

This view also underlines the difficulties of implementing existing formal

frameworks on the distributed challenges of autonomous agents populating the

transparent distributed system of today and tomorrow. Paradoxically however, at

the same time as we envision bold architectures of dynamic uncontrolled

behaviour, we are in greater need of formal methods to reason and analyse this

complex structure than maybe ever before [52]. As a response to this, this thesis

envisions a novel relaxed view on formal methods as to the adaptive parameter

of trustworthiness where ‘aborting’ is not the ultimate fault, but a feature that is

inevitable and need to be managed. Consequently, we hope that this thesis

provided the reader ideas on how to bring (subjective) “theory into the

115

unsystematic world of practice” [52] that software is tightly connected with as

“software lives in a dirty and imperfect world” [52].

116

117

9 Abbreviations and Short Term

Definitions

118

Absolute (experience / opinion): Boolean valued

Acquisition model (context): Models the context’s technical derivation

Actuator: An agent consuming a formal event and producing an informal event

Agent: An entity capable of reasoning. In this thesis typically an application, a

user application or an informal being; typically used with context /

situation or context-awareness

Application: Piece of software that provides for a task optionally consuming

context

Application body: The logical part of an application

Approximation: A generalised view

Atomic (atomicity): Without interrupts from the beginning till the end

Base rate: A prior probability on uncertainty

Bayesian: An evidential probability including uncertainty

Belief: The level of warranted expectation that the term meets with expectation

Βpdf: Beta Probability Density Function

Boundary (context) of an application: All information used within an application

but derived from outside is considered context, regardless its origin

making the boundary sharp

Component (software): An identifiable piece of software that provides a feature

and is reusable

Conceptual model: A model from the user’s point of view that is independent of

technological realisation

Concept: A modelled construct

Context consumer: A context-aware agent whose action depends on the context

it acquires

Context (definition): Information characterising entities, whose situation is

relevant for a context-aware user application, e.g. ring tone level of

a phone. See Definition 1

Context (term): Used when indifferent whether elementary context or contextual

information is meant

contextS(t): See system context

Context acquirer: The part of an application that acquires context

Context-aware: Responsive to some context

Context-aware system: The complete architecture incorporating applications

and user applications

Contextual information: Context derived from elementary context and other

contextual information

Context provider: An application that provides a context

Crisp (value / proposition): A measure without uncertainty

Correct (correctness): The mathematical logical property of ‘True’

DAG: Directed Acyclic Graph

Demanded situation (situationA(t)): a set of situations subscribed to by an

application at logical time t

Demonic (choice): Arbitrary choice, in modelling any choice is possible

119

Device: A piece of equipment

Disbelief: The level of warranted expectation that the term fails to meets with

expectation

Dogmatic: Complete certainty, i.e. no uncertainty

Dpdf: Dirichlet Probability Density Function

DSPG: Directed Series Parallel Graph

Element: A piece of a greater system

Elementary context: Raw low-level context captured by a sensor and provided

by an application

Entity: Something whose situation is sought including the user and application;

typically used when indicating a trust relationship

Environment (context): The phenomenon that a sensor captures

Environment (system): Other agents that may directly or indirectly influence the

agent under inspection

Event (context): An occurrence of something that gives rise to an experience

ExaByte: 8*10
18

bits

Experience (in this thesis): Knowledge of a past event represented by a reading

on a scale (sat, unsat)

Experience-based trust: A level trustworthiness derived from disjoint experiences

Explicit context: Unambiguous configuration inputs to an application

Formalism: See formal method

Formal event: The occurrence of a well-defined and identified matter

Formal method: A methodology of mathematically rigorous techniques enabling

tools for the specification, design and verification of software and

hardware systems

Formal mode: Well-defined mode

Formal model: See formal specification

Formal specification: A rigorous representation of formal entities and their

relations on a model

fourth: A function taking the score dimension from the four-tuple of experiences

Frame of discernment: The set of possible exclusive outcomes, the valid

propositions

Ignorance: See uncertainty

Implicit context: Ambiguous context describing the environment

Informal: Something that destitute a formal (mathematical) representation

Informal event: The occurrence of something that is physically identifiable

Metadata: Metadata of context is in this thesis the QoC prameters

Model: An approximated (generalised) view of the described artefact

Net situation (situationN(t)): the relevant context for a user application at logical

time t

Policy-based trust: A level of (dis)trust determined by defined logical rules

(policies).

Polytree: A logical topology with no undirected cycles

Proposition: A specific outcome within the frame of discernment

120

Quality of Context (QoC): A set of parameters describing the informal quality of

a context represented as metadata

Referral (agent): A third party whose experiences (opinion) is requested

Relevant context: A context used by a user application at time t, the situationN(t)

Reputation-based trust: In this thesis, See experience-based trust

Sensor: A device capturing an informal phenomenon / event and representing it

an formal event, i.e. as a context

Situation: A composition of contexts that provides a user application means for

context-awareness

situationA(t): See Demanded situation

situationN(t): See Net situation

Stakeholder: A thinking being (animals, humans) whose welfare depends on

what it is a stakeholder for

State-space: A snapshot of variables at a moment

Stigmergy: Indirect coordination

Subjective logic: A logic on experience-based trust addressing uncertainty

System context: contextS(t) set of elementary context or contextual information

sensed by the system and valid at logical time t

Trust (as a term): General term for the Boolean (un)trusts or level of

(un)trustworthiness

Trusted (trusts) / untrusted (untrusts): A Boolean level of trustworthiness, i.e. the

result of an applied policy defining whether or not to engage in a

transaction

(Un)Trustworthy / (un)trustworthiness: A level describing the warranted

evidence on the trustee behaving according to the expectations of

the trustor giving rise for a sense of relative (in)security

Trustee: An entity whose trustworthiness is sought, the provider

Trustor: An entity with internal goals (intents) whose trust in the trustee is

sought, the consumer

Uncertainty: The level of ‘do not know’ with respect to belief and disbelief

User: The stakeholder relying on actuation by a user application

User application: Piece of software that provides a user means to perform a task

optionally consuming a situation

Virtual object: A concrete entity whose existence is virtual

121

122

10 References

123

[1] A. Abdul-Rahman and S. Hailes, "Supporting Trust in Virtual Communities," in In

Proceedings of the 33rd Hawaii International Conference on System Sciences,

2000.

[2] K. Aberer and Z. Despotovic, "Managing trust in a peer-2-peer information

system," in In Proceedings of the Tenth international Conference on information

and Knowledge Management, 2001, pp. 310-317.

[3] G. Abowd, "Software engineering issues for ubiquitous computing," in In

Proceedings of the 21st international Conference on Software Engineering, 1999,

pp. 75-84.

[4] J-R. Abrial, Modeling in Event-B: System and Software Engineering.: Cambridge

University Press, 2010.

[5] J.-R. Abrial, The B-Book: Assigning programs to meanings. New York, USA:

Cambridge University Press, 1996.

[6] J-R. Abrial, S. Schuman, and B. Meyer, "A Specification Language," in On the

Construction of Programs.: Cambridge University Press, 1980.

[7] G. Agha, "Computing in pervasive cyberspace," Commun. ACM, vol. 51, no. 1,

pp. 68-70, 2008.

[8] H. Ailisto, P. Alahuhta, V. Haataja, V. Kyllönen, and M. Lindholm, "Structuring

Context Aware Applications: Five-Layer Model and Example Case," Position

paper Workshop in Ubicomp 2002.

[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor

networks," Communications Magazine, IEEE, pp. 102-114, Aug 2002.

[10] H. P. Alesso and C.F Smith, Thinking on the web.: Wiley Inc. ISBN-13: 978-0-

471-76814-2, 2006.

[11] Amritesh and R. Sarkar, "Conceptualizing ‘knowledge organisms’ for a

sustainable digital knowledge ecosystem," in 3rd IEEE International Conference

on Digital Ecosystems and Technologies, 2009, pp. 247-252.

[12] F. Arbab, "Reo: A Channel-based Coordination Model for Component

Composition," Mathematical Structures in Computer Science, vol. 14, no. 3, pp.

329-366, 2004.

[13] D. Artz and Y. Gil, "A survey of trust in computer science and the Semantic

Web," Web Semantics: Science, Services and Agents on the World Wide Web,

Software Engineering and the Semantic Web, vol. 5, no. 2, pp. 58-71, 2007.

[14] P. Avesani, P. Massa, and R. Tiella, "A trust-enhanced recommender system

application: Moleskiing," in In Proceedings of the 2005 ACM symposium on

Applied computing (SAC '05), 2005, pp. 1589-1593.

[15] R. Back, "A Method for Refining Atomicity in Parallel Algorithms. ," in In

Proceedings of the Parallel Architectures and Languages Europe, 1989, pp. 199-

216.

[16] R. Back, "Correctness Preserving Program Refinements: Proof Theory and

Applications," Mathematical Centre, Amsterdam, The Netherlands, Mathematical

Center Tracts vol: 131, 1980.

[17] R. Back, "On the correctness of refinement steps in program development,"

Department of Computer Science, University of Helsinki, PhD thesis, Report A-

124

1978-4 1978.

[18] R. Back, "Refinement calculus, part II: parallel and reactive programs," in In

Proceedings on Stepwise Refinement of Distributed Systems: Models, Formalisms,

Correctness, 1990, pp. 67-93.

[19] R. Back and R. Kurki-Suonio, "Decentralization of Process Nets with Centralized

Control," in 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed

Computing, 1983.

[20] R. Back and K. Sere, "Stepwise Refinement of Action Systems," in In Proceedings

of the international Conference on Mathematics of Program Construction, 375th

Anniversary of the Groningen University , 1989, pp. 115-138.

[21] R Back and K. Sere, "Superposition refinement of reactive systems," Formal

Aspects of Computing, vol. 8, no. 3, pp. 324-346, 1996.

[22] R. Back and J. von Wright, "Refinement Calculus, Part I: Sequential

Nondeterministic Programs," in In Stepwise Refinement of Distributed Systems,

Models, Formalisms, Correctness, REX Workshop, 1990, pp. 42-66.

[23] R. Back and J. von Wright, Refinement Calculus: A Systematic Introduction.:

Springer, 1998.

[24] R. Back and J. Wright, Refinement Calculus: a Systematic Introduction.: Springer-

Verlag New York, Inc. , 1998.

[25] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on context-aware systems,"

vol. 2, no. 4, pp. 263 -277, 2007.

[26] G. Banavar et al., "Challenges: an application model for pervasive computing.," in

In Proceedings of the 6th Annual international Conference on Mobile Computing

and Networking, 2000, pp. 266-274.

[27] G. Banavar and A Bernstein, "Software infrastructure and design challenges for

ubiquitous computing applications," Commun. ACM, vol. 45, no. 12, pp. 92-96,

2002.

[28] B. Barber, Social Studies of Science.: Transaction Publishers, 1990.

[29] B. Barber, The Logic and Limits of Trust.: Rutgers University Press, 1983.

[30] L. Barkhuus and A. Dey, "Is Context-Aware Computing Taking Control Away

from the User? Three Levels of Interactivity Examined," in In Proceedings of

Ubicomp 2003, 2003, pp. 149 - 156.

[31] L. Bass et al., "A metamodel for the runtime architecture of an interactive system,"

ACM SIGCHI Bulletin, vol. 24, no. 1, pp. 32-37, 1992.

[32] M. Bazire and P. Brézillon, "Understanding Context Before Using It," in In

Modeling and Using Context, 2005, pp. 29-40.

[33] M. Benerecetti, P. Bouquet, and C. Ghidini, "Contextual Reasoning Distilled,"

Journal of Expirimental Artificial Intelligence, vol. 12, no. 3, pp. 41-67, 2000.

[34] C. Bettini et al., "A survey of context modelling and reasoning techniques,"

Pervasive Mob. Comput., vol. 6, no. 2, pp. 161-180, 2010.

[35] G. Biegel and V. Cahill, "A Framework for Developing Mobile, Context-aware

Applications," in In Proceedings of the Second IEEE international Conference on

Pervasive Computing and Communications (Percom'04) , 2004.

125

[36] K. Birman, Guide to Reliable Distributed Systems: Building High-Assurance

Applications and Cloud-Hosted Services.: Texts in Computer Science, Springer-

Verlag London Limited, 2012.

[37] M. Blaze, J. Feigenbaum, and J. Lacy, "Decentralized Trust Management ," in In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, 1996.

[38] C. Bolchini et al., "And what can context do for data?," Communications of the

ACM, vol. 52, no. 11, pp. 136-140, 2009.

[39] C. Bolchini, C. Curino, E. Quintarelli, F. Schreiber, and L. Tanca, "A data-

oriented survey of context models," SIGMOD Rec., vol. 36, no. 4, pp. 19-26, 2007.

[40] P. Bonatti, C. Duma, D. Olemdilla, and N. Shahmehri, "An Integration of

Reputation-based and Policy-based Trust Management," in In Proc. Semantic Web

and Policy Workshop, 2005.

[41] P. Bonatti and P. Samarati, "Regulating service access and information release on

the Web," in In Proceedings of the 7th ACM Conference on Computer and

Communications Security, 2000, pp. 134-143.

[42] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User

Guide.: Addison-Wesley, 1998.

[43] P. Bouquet, C. Ghidini, F. Giunchiglia, and E. Blanzieri, "Theories and Uses of

Context in Knowledge Representation and Reasoning," Journal of Pragmatics,

vol. 35, no. 3, pp. 455 -484, 2003.

[44] P. Bouquet, C. Ghidini, F. Giunchiglia, and E. Blanzieri, "Theories and uses of

context in knowledge representation and reasoning," Journal of Pragmatics, vol.

35, no. 3, pp. 455-484, 2003.

[45] P. Brézillon, "Context dynamic and explanation in contextual graphs," in In

Proceedings of the 4th international and interdisciplinary Conference on

Modeling and Using Context , 2003, pp. 94-106.

[46] P. Brézillon, "Context in problem solving: a survey," The Knowledge Engineering

Review, vol. 14, pp. 47-80, 1999.

[47] P. Brézillon, "Task-Realization Models in Contextual Graphs," in Modeling and

Using Context, 2005, pp. 55-68.

[48] T. Broens, "Dynamic context bindings - Infrastructural support for context-aware

applications," Univ. of Twente, PhD thesis CTIT Ph.D.-thesis series No. 08-125,

ISBN 978-90-75176-47-6 , 2008.

[49] T. Broens, S. Pokraev, M. van Sinderen, J. Koolwaaij, and P. Dockhorn Costa,

"Context-aware, ontology-based, service discovery," in In: European Symposium

on Ambient Intelligence, 2004.

[50] P. Brown, "The stick-e document: a framework for creating context-aware

applications," in Proceedings of the electronic publishing, 1996, pp. 259 - 272.

[51] P. Brown and G. Jones, "Context-aware Retrieval: Exploring a New Environment

for Information Retrieval and Information Filtering.," Personal Ubiquitous

Comput., vol. 5, no. 4, pp. 253 - 263, 2001.

[52] M. Broy, "Can Practitioners Neglect Theory and Theoreticians Neglect Practice?,"

Computer , vol. 44, no. 10, pp. 19-24, Oct. 2011.

126

[53] S. Buchegger and J-Y. Le Boudec, "A Robust Reputation System for Peer-to-Peer

and Mobile Ad-hoc Networks," in P2PEcon 2004, Harvard University,

Cambridge MA, U.S.A., 2004.

[54] T. Buchholz, A. Küpper, and M. Schiffers, "Quality of Context Information: What

it is and why we need it," in In proc. of tge 10th HPOVUA workshop , Geneva,

2003.

[55] V. Cahill et al., "Using Trust for Secure Collaboration in Uncertain

Environments," vol. 2, no. 3, pp. 52-61, 2003.

[56] L. Capra, W. Emmerich, and C. Mascolo, "CARISMA: Context-Aware Reflective

mIddleware System for Mobile Applications," IEEE Trans. Softw. Eng., vol. 29,

no. 10, pp. 929-945, 2003.

[57] M. Carbone, M. Nielsen, and V. Sassone, "A Formal Model for Trust in Dynamic

Networks ," BRICS Report Series Publications. RS-03-4 2003.

[58] C. Castelfranchi and R. Falcone, "Principles of Trust for MAS: Cognitive

Anatomy, Social Importance, and Quantification," in In Proceedings of the 3rd

international Conference on Multi Agent Systems, 1998.

[59] H. Chen, "An Intelligent Broker Architecture for Pervasive Context-Aware

Systems ," University of Maryland, Baltimore County, PhD Thesis 2004.

[60] G. Chen and D. Kotz, "A Survey of Context-Aware Mobile Computing Research,"

2000.

[61] K. Cheverst, K. Mitchell, and N. Davies, "Investigating Context-aware

Information Push vs. Information Pull to Tourists," in In Proceedings of Mobile

HCI 01 , 2001.

[62] B. Christianson and W. Harbison, "Why isn't trust transitive?," in In Proceedings

of the Security Protocols International Workshop, 1996, pp. 171-176.

[63] H. Clark and S. Brennan, "Grounding in communication," in Perspectives on

socially shared cognition, L. Resnick, J. Levine, and S. Teasley, Eds.: APA

Books, 1991.

[64] D. Clark, C. Partridge, J. Christopher Ramming, and J. Wroclawski, "A

knowledge plane for the internet," in ACM SIGCOMM '03, 2003, pp. 3-10.

[65] J. Coutaz, J. Crowley, S. Dobson, and D. Garlan, "Context is key," Commun.

ACM, vol. 48, no. 3, pp. 49-53, 2005.

[66] J. Coutaz and G. Rey, "Foundations for a Theory of Contextors," in Proceedings

of the Fourth International Conference on Computer-Aided Design of User

Interfaces, 2002, pp. 13-34.

[67] J. Crowley, "Context Driven Observation of Human Activity," in European

Symposium on Ambient Intelligence, 2003.

[68] J. Crowley, "Situation Models for Observing Human Activity," ACM Queue

Magazine, vol. 4, no. 6, pp. 35-43, 2006.

[69] J. Crowley, "Social Perception," Queue 4, vol. 4, no. 6, pp. 34-43, 2006.

[70] J. Crowley, O. Brdiczka, and P. Reignier, "Learning Situation Models for

Understanding Activity ," in 5th International Conference on Development and

Learning, 2006.

127

[71] J. Crowley, J. Coutaz, G. Rey, and P. Reignier, "Perceptual Components for

Context Aware Computing," in In Proceedings of the 4th international Conference

on Ubiquitous Computing, 2002, pp. 117 - 134.

[72] "Dagstuhl seminar on ubiquitous computing,"

http://www.inf.ethz.ch/vs/events/dag2001/ visited: 28.7.2010, 2001.

[73] N. Davies and H-W Gellersen, "Beyond Prototypes: Challenges in Deploying

Ubiquitous Systems," IEEE Pervasive Computing, vol. 1, no. 1, pp. 26 - 35, 2002.

[74] A. Dey, "Providing Architectural Support for Context-Aware Applications,"

Georgia Institute of Technology, PhD Thesis 2000.

[75] A. Dey, "Understanding and Using Context," Personal Ubiquitous Comput., vol.

5, no. 1, pp. 4 - 7, 2001.

[76] A. Dey and G. Abowd, "Towards a Better Understanding of Context and Context-

Awareness," in Workshop on the What, Who, Where, When, Why and How of

Context-Awareness, 2000, In the Workshop on The What, Who, Where, When,

and How of Context-Awareness.

[77] A. Dey, G. Abowd, and D. Salber, "A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications," in Human

Computer Interaction., 2001, pp. 97 - 166.

[78] A. Dey, J. Mankoff, G. Abowd, and S. Carter, "Distributed mediation of

ambiguous context in aware environments," in. In Proceedings of the 15th Annual

ACM Symposium on User interface Software and Technology, 2002, pp. 121-130.

[79] A. Dey and A. Newberger, "Support for context-aware intelligibility and control,"

in In Proceedings of the 27th international Conference on Human Factors in

Computing Systems, 2009, pp. 859-868.

[80] E. W. Dijkstra, A Discipline of Programming.: Prentice Hall, 1976.

[81] E. W. Dijkstra, "Guarded commands, nondeterminacy and formal derivation of

programs," vol. 18, 8 , no. Commun. ACM, pp. 453-457, 1975.

[82] S. Dobson et al., "A survey of autonomic communications," ACM Trans. Auton.

Adapt. Syst., vol. 1, no. 2, pp. 223-259, 2006.

[83] P. Dockhorn Costa, "Architectural support for context-aware applications: from

context models to services platforms," Centre for Telematics and Information

Technology, University of Twente, PhD thesis http://purl.org/utwente/58357,

2007.

[84] P. Dockhorn Costa, J. Almeida, L. Ferreira Pires, G. Guizzardi, and M van

Sinderen, "Towards Conceptual Foundations for Context-Aware Applications," in

In: Proc. of the Third Int'l Workshop on Modeling and Retrieval of Context

(MRC'06), 2006.

[85] P. Dockhorn Costa, G. Guizzardi, J. Almeida, L. Ferreira Pires, and M. van

Sinderen, "Situations in Conceptual Modeling of Context," in In Proceedings of

the 10th IEEE on International Enterprise Distributed Object Computing

Conference Workshops (EDOCW '06)., 2006.

[86] P. Dourish, "What we talk about when we talk about context," Personal

Ubiquitous Comput., vol. 8, no. 1, pp. 19-30, 2004.

[87] J. Dunn, The Concept of Trust in the Politics of John Locke , JB Schneewind and

128

Q. Skinner R. Rorty, Ed.: Cambridge University Press, Cambridge, 1984, vol.

Philosophy in History.

[88] W. Du and L. Wang, "Context-aware application programming for mobile

devices," in In Proceedings of the 2008 C3S2E Conference, 2008, pp. 215-227.

[89] E. Emerson and J. Halpern, "Decision procedures and expressiveness in the

temporal logic of branching time," Journal of Computer and System Sciences , vol.

30, no. 1, pp. 1–24., 1985.

[90] T, Erickson, "Some problems with the notion of context-aware computing,"

Commun. ACM 45, 2, vol. 45, no. 2, pp. 102 - 104, 2002.

[91] J. Eriksson, "Tool-Supported Invariant-Based Programming," Turku Centre for

Computer Science, Ph.D. Thesis No 127, 2010.

[92] Rodin: An Open Toolset for Modelling and Reasoning in Event-B, "Abrial, J-R;

Butler, M.; Hallerstede, S.; Hoang, T.; Mehta, F.; Voisin, L. ," International

Journal on Software Tools for Technology Transfer (STTT), vol. 12, no. 6, pp.

447-466, 2010.

[93] R. Falcone and C. Castelfranchi, Social trust: a cognitive approach, Christiano

Castelfranchi and Yao-Hua Tan, Ed.: In Trust and deception in virtual societies,

Kluwer Academic Publishers, 2001.

[94] A. Ferscha, "Coordination in pervasive computing environments," in Proceedings.

Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure

for Collaborative Enterprises, 2003, pp. 3- 9, 9-11.

[95] A. Ferscha, C. Holzmann, and S. Oppl, "Context awareness for group interaction

support," in In Proceedings of the Second international Workshop on Mobility

Management &Amp; Wireless Access Protocols, 2004.

[96] J. Filho, A. Dia Miron, I. Satoh, J. Gensel, and H. Martin, "Modeling and

Measuring Quality of Context Information in Pervasive Environments," in IEEE

International Conference on Advanced Information Networking and Applications,

2010, pp. 690-697.

[97] A. Fitzpatrick, G. Biegel, S. Clarke, and V. Cahill, "Towards a Sentient Object

Model," in Workshop on Engineering Context-Aware Object Oriented Systems and

Environments (OOPSLA/ECOOSE'02), 2002.

[98] P. Flocchini and F. Luccio, "Routing in Series Parallel Networks," Theory of

Computing Systems, vol. 2, no. 36, pp. 137-157, 2003.

[99] B. Friedman, P. Khan, and D. Howe, "Trust online," Commun. ACM, vol. 43, no.

12, pp. 34-40, 2000.

[100] A. Fuchs, S. Gürgens, and C. Rudolph, "A Formal Notion of Trust - Enabling

Reasoning about Security Properties," in IFIPTM 2010, 2010, pp. 200-215.

[101] A. Fuchs, S. Gürgens, and C. Rudolph, "Formal Notions of Trust and

Confidentiality - Enabling Reasoning about System Security," Journal of

Information Processing, vol. 19, pp. 274-291, 2011.

[102] D. Gambetta, "Can We Trust Trust?," in Trust: Making and Breaking Cooperative

Relations.: Department of Sociology, University of Oxford, chapter 13, pp. 213-

237, 2000.

[103] H. Gellersen, A. Schmidt, and M. Beigl, "Multi-sensor context-awareness in

129

mobile devices and smart artifacts," Mob. Netw. Appl. , vol. 7, no. 5, pp. 341-351,

2002.

[104] C. Ghidini and F. Giunchiglia, "Local Models Semantics, or contextual reasoning

= locality + compatibility," Artificial Intelligence, vol. 127, no. 2, pp. 221-259,

2001.

[105] F. Giunchiglia, "Contextual reasoning," Epistemologia (Special Issue on I

Linguaggi e le Macchine), vol. 16, pp. 345–364, 1993.

[106] F. Giunchiglia and D. Robertson, "The Social Computer: Combining Machine and

Human Computation," Ingegneria e Scienza dell'Informazione, University of

Trento., Technical Report DISI-10-036 2010.

[107] J. Golbeck, Computing with social trust, J. Golbeck, Ed.: Springer, 2009.

[108] A. Gonzalez and R. Ahlers, "Context-based representation of intelligent behavior

in training simulations," Trans. Soc. Comput. Simul. Int., vol. 15, no. 4, pp. 153-

166, 1998.

[109] T. Grandison, "Trust Management for Internet Applications ," Imperial College

London, PhD Thesis 2003.

[110] T. Grandison and M. Sloman, "A Survey of Trust in Internet Applications," IEEE

Communications Surveys and Tutorials, vol. 3, no. 4, 2000.

[111] P. Gray and D Salber, "Modelling and Using Sensed Context Information in the

Design of Interactive Applications," in In Proceedings of the 8th IFIP

international Conference on Engineering For Human-Computer interaction, vol.

LNCS vol. 2254, 2001, pp. 317-336.

[112] S. Greenberg, "Context as a dynamic construct," Hum.-Comput. Interact., vol. 16,

no. 2, pp. 257-268, 2001.

[113] M. Grossmann, N. Hönle, C. Lübbe, and H. Weinschrott, "An abstract processing

model for the quality of context data," in In Proceedings of the 1st international

conference on Quality of context (QuaCon'09), 2009, pp. 132-143.

[114] Trusted Computing Group. (2011) TPM Main Specification Level 2 Version 1.2,

Revision 116. [Online].

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[115] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, "Propagation of trust and

distrust," in Proceedings of the 13th International Conference on World Wide Web

, 2004, pp. 403–412.

[116] G. Guizzardi, "Ontological foundations for structural conceptual models,"

University of Twente, PhD Thesis 2005.

[117] T. Gu, H. Pung, and D. Zhang, "A service-oriented middleware for building

context-aware services.," Journal of Network and Computer Applications , vol. 1,

no. 28, pp. 1 -18, 2005.

[118] R. Gustavsen, "Condor - an application framework for mobilty-based context-

aware applications," in Workshop on concepts and models for ubiquitous

computing, 2002.

[119] J. Gwizdka, "What' s in the Context? ," in Workshop The What, Who, Where, Why

and How of Context-Awareness, 2000.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

130

[120] K. Henricksen, "A framework for context-aware pervasive computing

applications," School of Information Technology and Electrical Engineering, The

University of Queensland , PhD Thesis 2003.

[121] K. Henricksen and J. Indulska, "A Software Engineering Framework for Context-

Aware Pervasive Computing," in In Proceedings of the Second IEEE international

Conference on Pervasive Computing and Communications , 2004.

[122] K. Henricksen and J. Indulska, "Developing context-aware pervasive computing

applications: Models and approach.," Pervasive Mob. Comput., vol. 2, no. 1, pp.

37-64, 2006.

[123] K. Henricksen and J. Indulska, "Modelling and Using Imperfect Context

Information," in In Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops (PERCOMW '04), 2004, p.

200.

[124] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam, "Middleware

for Distributed Context-Aware Systems," in In OTM Conferences, 2005, pp. 846-

863.

[125] K. Henricksen, J. Indulska, and A. Rakotonirainy, "Infrastructure for Pervasive

computing: Challenges," in Workshop on Pervasive Computing INFORMATIK 01,

Vienna, 2001.

[126] K. Henricksen, J. Indulska, and A. Rakotonirainy, "Modeling Context Information

in Pervasive Computing Systems," in In Proceedings of the First international

Conference on Pervasive Computing , 2002, pp. 167-180.

[127] K. Henricksen, S. Livingstone, and J. Indulska, "Towards a hybrid approach to

context modeling, reasoning and interoperation.," in Proceedings of the First

International Workshop on Advanced Context Modelling, Reasoning and

Management, 2004, pp. 54-61.

[128] C. Hoare, "An axiomatic basis for computer programming," Communications of

the ACM, vol. 12, no. 10, pp. 576 - 580, 583, October 1969.

[129] C. Hoare, "Communicating sequential processes," Communications of the ACM,

vol. 21, no. 8, pp. 666–677, 1978.

[130] T. Hofer et al., "Context-Awareness on Mobile Devices - the Hydrogen

Approach," in International Conference on System Sciences (HICSS'03, 2003.

[131] M. Hollis, Trust within reason.: Cambridge University Press, 1998.

[132] J. Hong and J. Landay, "An infrastructure approach to context-aware computing,"

Hum.-Comput. Interact. 16, 2 (Dec. 2001), vol. 16, no. 2, pp. 287-303, 2001.

[133] J. Hong, E. Suh, and S. Kim, "Context-aware systems: A literature review and

classification," Expert Syst. Appl., vol. 36, no. 4, pp. 8509-8522, 2009.

[134] J. Hong, E-H. Suh, J. Kim, and S. Kim, "Context-aware system for proactive

personalized service based on context history," Expert Syst. Appl. , vol. 36, no. 4,

pp. 7448-7457, 2009.

[135] M. Atrey, P. Hossain and A. El Saddik, "Modeling Quality of Information in

Multi-sensor Surveillance Systems," in IEEE 23rd international Conference on

Data Engineering Workshop, 2007.

[136] R. Hull, P. Neaves, and J. Bedford-Roberts, "Towards Situated Computing," in In

131

Proceedings of the 1st IEEE international Symposium on Wearable Computers ,

1997, p. 146..

[137] S. Hänninen, J. Järvenpää, M. Reunanen, and J. Suominen, "Mekatronisten

komponenttien ja laitteiden vikaantuminen," Suomen metalliteollisuuden

keskusliitto MET , Tekninen tiedoitus 15 Isbn 951-817-479-2, 1990.

[138] IDC, "As the Economy Contracts, the Digital Universe Expands," IDC, White

Paper 2009.

[139] J. Indulska and P. Sutton, "Location management in pervasive systems," in In

Proceedings of the Australasian information Security Workshop Conference on

ACSW Frontiers , vol. 21, 2003, pp. 141 - 151.

[140] R. Jansen, T. Kaminski, F. Korsakov, A. Saint Croix, and D. Selifonov, "A Priori

Trust Vulnerabilities in EigenTrust," Technical report 2008.

[141] A. Jøsang, "A logic for uncertain probabilities," Int. J. Uncertain. Fuzziness

Knowl.-Based Syst., vol. 9, no. 3, pp. 279-311., 2001.

[142] A. Jøsang, "Artificial Reasoning with Subjective Logic," in Second Australian

Workshop on Commonsense Reasoning, 1997.

[143] A. Jøsang, "Conditional Reasoning with Subjective Logic," Journal of Multiple-

Valued Logic and Soft Computing, vol. 1, no. 15, pp. 5-38, 2008.

[144] A. Jøsang, "Subjective Logic," Draft book Available at:

http://persons.unik.no/josang/papers/subjective_logic.pdf , visited 26.10.2010,

Unpublished.

[145] A. Jøsang, "Trust-Based Decision Making for Electronic Transactions," in

Proceedings of the 4th Nordic Workshop on Secure Computer Systems

(NORDSEC’99), 1999.

[146] A. Jøsang, T. Ažderska, and S. Marsh, "Trust Transitivity and Conditional Belief

Reasoning," in In proceedings of IFIPTM 2012, 2012, pp. 68-83.

[147] A. Jøsang and J. Haller, "Dirichlet Reputation Systems ," in The Second

International Conference on Availability, Reliability and Security , 2007, pp. 112-

119.

[148] A. Jøsang, R. Hayward, and S. Pope, "Trust network analysis with subjective

logic," in In Proceedings of the 29th Australasian Computer Science Conference,

vol. 48, 2006, pp. 85-94.

[149] A. Jøsang and R. Ismail, "The beta reputation system," in In Proceedings from the

15th Bled Conference on Electronic Commerce, 2002.

[150] A. Jøsang, R. Ismail, and C. Boyd, "A survey of trust and reputation systems for

online service provision," Decis. Support Syst., vol. 43, no. 2, pp. 618-644, 2007.

[151] A. Jøsang and D. McAnally, "Multiplication and Comultiplication of Beliefs,"

International Journal of Approximate Reasoning , vol. 38, no. 1, pp. pp.19-51,

2004.

[152] A. Jøsang and S. Pope, "Semantic constraints for trust transitivity," in In

Proceedings of the 2nd Asia-Pacific conference on Conceptual modelling , 2005.

[153] A. Jøsang, S. Pope, and M. Daniel, "Conditional Deduction Under Uncertainty," in

Proceedings of the 8th European Conference on Symbolic and Quantitative

132

Approaches to Reasoning with Uncertainty, 2005, pp. 824-835.

[154] A. Jøsang, S. Pope, and S. Marsh, "Exploring Different Types of Trust

Propagation," in Proceedings of the 4th International Conference on Trust

Management (iTrust'06), 2006, pp. 179-192.

[155] S. Kamvar, M. Schlosser, and H. Garcia-Molina, "The Eigentrust algorithm for

reputation management in P2P networks," in In Proceedings of the 12th

international Conference on World Wide Web, 2003, pp. 640-651.

[156] G. Kappel, B. Proll, W. Retschitzegger, and W. and Schwinger, "Customisation

for ubiquitous web applications: a comparison of approaches," Int. J. Web Eng.

Technol., vol. 1, no. 1, pp. 79-111, 2003.

[157] J. Kephart and D. Chess, "The Vision of Autonomic Computing," Computer, vol.

36, no. 1, pp. 41-50, 2003.

[158] Y. Kim and K. Lee, "A Quality Measurement Method of Context Information in

Ubiquitous Environments ," in International Conference on Hybrid Information

Technology, 2006, pp. 576-581.

[159] J. Kjeldskov and C. Graham, "A Review of Mobile HCI Research Methods," ,

2003.

[160] T. Korsgaard and C. Damsgaard Jensen, "Reengineering the Wikipedia for

Reputation," In Electronic Notes in Theoretical Computer Science, vol. 244, pp.

81-94, 2009.

[161] M. Krause and I. Hochstatter, "Challenges in Modelling and Using Quality of

Context (QoC)," in Mobility Aware Technologies and Applications, 2005, pp. 324

- 333.

[162] K. Krukow, "Towards a theory of trust for the global ubiquitous computer,"

University of Aarhus, PhD Thesis 2006.

[163] K. Krukow, M. Nielsen, and V. Sassone, "Trust models in ubiquitous computing,"

Philos Transact A Math Phys Eng Sci., vol. 366, pp. 3781-3793, 2008.

[164] S. Lahlou, M. Langheinrich, and C. Röcker, "Privacy and trust issues with

invisible computers," Commun. ACM, vol. 48, no. 3, pp. 59 - 60, 2005.

[165] R. Lange et al., "Making the World Wide Space happen: New challenges for the

Nexus context platform," in In Proceedings of the 2009 IEEE International

Conference on Pervasive Computing and Communications (PERCOM '09), 2009,

pp. 1-4.

[166] R. Lange et al., "Making the World Wide Space happen: New challenges for the

Nexus context platform," in In Proceedings of the 2009 IEEE International

Conference on Pervasive Computing and Communications (PERCOM '09)., 2009.

[167] J. Laprie, "Dependable Computing and Fault Tolerance: Concepts and

terminology ," in In Proc. 15th IEEE Int. Symp. on Fault-Tolerant Computing,

1985.

[168] W. Lee, "Deploying personalized mobile services in an agent-based environment,"

vol. 32, no. 4, pp. 1194-1207, 2007.

[169] H. Lei, D. Sow, J. Davis, G. Banavar, and M. Ebling, "The design and applications

of a context service," SIGMOBILE Mob. Comput. Commun., vol. 6, no. 4, pp. 44-

55, 2002.

133

[170] H. Lieberman and T. Selker, "Out of context: computer systems that adapt to, and

learn from, context," vol. IBM Syst. J. 39, no. 3 - 4, pp. 617-632, 2000.

[171] H. Li, J. Salomaa, M. Jian, and Y. Kuifei, "Research on Context-Aware Mobile

Computing," in In Proceedings of the 22nd international Conference on Advanced

information Networking and Applications, 2008, pp. 24-30.

[172] S. Loke, "Building Taskable Spaces over Ubiquitous Services," IEEE Pervasive

Computing, vol. 8, no. 4, pp. pp. 72-78, 2009.

[173] S. Loke, "Incremental awareness and compositionality: A design philosophy for

context-aware pervasive systems," Pervasive Mob. Comput., vol. 6, no. 2, pp. 239-

253, 2010.

[174] S. Loke, "Logic programming for context-aware pervasive computing: language

support, characterizing situations, and integration with the web ," in Proceedings

of 2004 IEEE/WIC/ACM International Conference on Web Intelligence, 2004, pp.

44-50.

[175] K. Mani Chandy, Parallel Program Design: a Foundation.: Addison-Wesley

Longman Publishing Co., Inc., 1988.

[176] A. Manzoor, H. Truong, and S. Dustdar, "On the Evaluation of Quality of

Context," in In Proceedings of the 3rd European Conference on Smart Sensing

and Context, 2008, pp. 140-153.

[177] S. Marsh, "Formalizing Trust as a Computational Concept," University of Stirling,

Department of Computer Science and Mathematics, PhD thesis 1994.

[178] S. Marsh and P. Briggs, Computing with social trust, J. Golbeck, Ed.: Springer,

2009, Chapter 2.

[179] S. Marsh and P. Briggs, "Short paper: Defining and Investigating Device

Comfort," in 4th IFIP WG 11.11 International Conference on Trust Management,

2010, pp. 17-24.

[180] S. Marsh, P. Briggs, K. El-Khatib, Esfandiari B., and J. Stewart, "Defining and

Investigating Device Comfort ," Journal of Information Processing, vol. 19, pp.

231-252, July 2011.

[181] S. Marzano and E. Aarts, The New Everyday View on Ambient Intelligence.:

Uitgeverij 010 Publishers, 2003, ISBN: 9064505020.

[182] P. Massa and P. Avesani, "Trust Metrics on Controversial Users: Balancing

Between Tyranny of the Majority and Echo Chambers," International Journal on

Semantic Web and INformation Systems, vol. 3, no. 1, 2007.

[183] R. Masuoka, B. Parsia, and Y. Labrou, "Task Computing — The Semantic Web

Meets Pervasive Computing ," in Proc. 2nd Int'l Semantic Web Conf. , 2003, pp.

pp. 866–881.

[184] J. McCarthy, "Notes on formalizing context," in In Proceedings of the 13th

international Joint Conference on Artifical intelligence, 1993, pp. 550-560.

[185] J. McCarthy and P. Hayes, "Some Philosophical Problems from the Stand-point of

Artificial Intelligence," in Machine Intelligence 4.: Edinburgh University Press,

1969, pp. 463-502.

[186] A McIver and C. Morgan, Abstraction, Refinement and Proof for Probabilistic

Systems.: Springer Monographs in Computer Science, 2005.

134

[187] H. McKnight and N. Chervaney, "The Meanings of Trust," Technical Report

Working Paper Series 96-04 1996.

[188] (2011, July) Merriam Webster Online Dictionary. [Online]. http://www.merriam-

webster.com/dictionary/context

[189] R. Milner, A Calculus of Communicating Systems.: Springer Verlag, 1980.

[190] R. Milner, J. Parrow, and D. Walker, "A calculus of mobile processes, I," Inf.

Comput. , vol. 100, no. 1, pp. 1-40, 1992.

[191] T. Moran and P. Dourish, "Introduction to this special issue on context-aware

computing," Hum.-Comput. Interact., vol. 16, no. 2, pp. 87-95, 2001.

[192] C. Morgan, Programming from Specifications.: Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1990.

[193] C. Morgan and A. McIver, "pGCL: Formal reasoning for random algorithms,"

South African Computer Journal, vol. 22, pp. 14-27, 1999.

[194] C. Morgan, A. McIver, and Seidel. K., "Probabilistic Predicate Transformers,"

ACM Transactions on Programming Languages and Systems, 1995.

[195] G. Mostefaoui, J. Pasquier-Rocha, and P. Brezillon, "Context-Aware Computing:

A Guide for the Pervasive Computing Community," in IEEE/ACS International

Conference on Pervasive Services, 2004, pp. 39-48.

[196] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt, "Bayesian

Ratings in Distributed Systems: Theories, Models, and Simulations," MIT LCS

Memorandum 2001.

[197] L. Mui, M. Mohtashemi, and A Halberstadt, "A Computational Model of Trust

and Reputation for E-businesses," in In Proceedings of the 35th Annual Hawaii

international Conference on System Sciences Hicss, 2002.

[198] P. Naur, "Formalization in program development," BIT Numerical Mathematics,

vol. 22, no. 4, pp. 437 - 453, Dec. 1982.

[199] A. Oulasvirta, "Grounding the innovation of future technologies," An

Interdisciplinary Journal on Humans in ICT Environments, vol. 1, no. 1, pp. 58 -

75, 2005.

[200] A. Padovitz, S. Loke, and A. Zaslavsky, "Multiple-Agent Perspectives in

Reasoning About Situations for Context-Aware Pervasive Computing Systems,"

IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and

Humans, vol. 38, no. 4, pp. 729-742, 2008.

[201] L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking:

Bringing Order to the Web," Technical Report. Stanford InfoLab. 1999.

[202] D. Parnas, "Really Rethinking 'Formal Methods," Computer, vol. 43, no. 1, pp. 28-

34, 2010.

[203] J. Pascoe, "Adding Generic Contextual Capabilities to Wearable Computers," in In

Proceedings of the Second International Symposium on Wearable Computers,

1998.

[204] J. Pearl, "Reasoning with Belief Functions: An Analysis of Compatibility," The

International Journal of Approximate Reasoning, vol. 4, no. 5/6, pp. 363-389,

1990.

http://www.merriam-webster.com/dictionary/context
http://www.merriam-webster.com/dictionary/context

135

[205] M. Perttunen, J. Riekki, and O. Lassila, "Context Representation and Reasoning in

Pervasive Computing: a Review," International Journal of Multimedia and

Ubiquitous Engineering, vol. 4, no. 4, 2009.

[206] L. Petre, "Modeling with Action Systems ," Turku Centre for Computer Science,

Turku, PhD Thesis, TUCS Dissertations 69 2005.

[207] A. Pnueli, "The temporal logic of programs," in Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, 1977, pp. 46-57.

[208] S. Pope and A. Jøsang, "Analysis of Competing Hypothesis using Subjective

Logic ," in Proceedings of the 10th International Command and Control Research

Technology Symposium , 2005.

[209] P. Prekop and M. Burnett, "Activities, context and ubiquitous computing,"

Computer Communications, vol. 26, no. 11, pp. 1168-1176, 2003.

[210] D. Quercia, S. Hailes, and L. Capra, "B-Trust: Bayesian trust framework for

pervasive computing," in In: Trust Management: Proceedings of the 4th

International Conference, iTrust 2006. , 2006, pp. 298-312.

[211] A. Ranganathan, J. Al-Muhtadi, and R. Campbell, "Reasoning about Uncertain

Contexts in Pervasive Computing Environments," IEEE Pervasive Computing,

vol. 3, no. 2, pp. 66-70, 2004.

[212] R. Reiter, "The Situation Calculus Ontology," Electronic News Journal on

Reasoning about Actions and Change, vol. 2, p. NIL , 1997.

[213] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, "Reputation systems,"

Commun. ACM , vol. 43, no. 12, pp. 45-48, 2000.

[214] G. Rey and J. Coutaz, "The Contextor Infrastructure for Context-Aware

Computing," in Component-oriented Approaches to Context-aware Computing

ECOOP'04, 2004.

[215] G. Rey and J. Coutaz, "The contextor infrastructure for context-aware computing,"

in Workshop on Component-oriented Approaches to Context-aware Computing,

2004.

[216] G. Roman, C. Julien, and J. Payton, "A formal treatment of context-awareness.," in

Fundamental Approaches to Software Engineering FASE’04, 2004.

[217] S. Ruohomaa, L. Kutvonen, and E. Koutrouli, "Reputation Management Survey ,"

in The Second International Conference on Availability, Reliability and Security ,

2007, pp. 103-111.

[218] N. Ryan, J. Pascoe, and D. Morse, "Enhanced Reality Fieldwork: the Context-

aware Archaeological Assistant," British Archaeological Reports, Oxford, 1998

1998.

[219] McKeever S., J. Ye, Coyle L., and S. Dobson, "A Multilayered Uncertainty Model

for Context Aware Systems," in Pervasive 2008, 2008.

[220] J. Sabater-Mir and M. Paolucci, "On representation and aggregation of social

evaluations in computational trust and reputation models," vol. 46, no. 3, pp. 458-

483, 2007.

[221] J. Sabater and C. Sierra, "Social ReGreT, a reputation model based on social

relations," SIGecom Exch., vol. 3, no. 1, pp. 44-56, Dec. 2001.

136

[222] M. Satyanarayanan, "Pervasive Computing: Vision and Challenges," IEEE

Personal Communications, vol. 8, pp. 10 - 17, 2001.

[223] W. Schilit, "A System Architecture for Context-Aware Mobile Computing,"

Columbia University, PhD Thesis 1995.

[224] B. Schilit, N. Adams, and R. Want, "Context-aware computing applications,"

IEEE Workshop on Mobile Computing Systems and Applications (WMCSA'94),

pp. 89-101, 1994.

[225] A. Schmidt, "A Layered Model for User Context Management with Controlled

Aging and Imperfection Handling ," in Proceedings of the 2nd

InternationalWorkshop on Modeling and Retrievalof Context, 2006, pp. 86-100.

[226] A. Schmidt et al., "Advanced Interaction in Context," in In Proceedings of the 1st

international Symposium on Handheld and Ubiquitous Computing, 1999.

[227] R. Schmohl and U. Baumgarten, "Context-aware Computing: a Survey Preparing a

Generalized Approach ," in Proc. of the Int. MultiConference of Engineers and

Computer Scientists, 2008.

[228] J. Schneider, G. Kortuem, J. Jager, S. Fickas, and Z. Segall, "Disseminating Trust

Information in Wearable Communities," Personal Ubiquitous Computing, vol. 4,

no. 4, pp. 245-248, Jan. 2000.

[229] B. Schroeder, E. Pinheiro, and W-D. Weber, "DRAM errors in the wild: a large-

scale field study," in In Proceedings of the eleventh international joint conference

on Measurement and modeling of computer systems (SIGMETRICS '09), 2009, pp.

193-204.

[230] E. Sekerinski and K. Sere, "A Theory of Prioritizing Composition," The Computer

Journal, vol. 39, no. 8, pp. 701-712, 1996.

[231] K. Sentz and S. Ferson, "Combination of Evidence in Dempster–Shafer Theory,"

SAND 2002-0835 2002.

[232] K. Sere, "Stepwise derivation of parallel algorithms," Åbo Akademi, Department

of computer science, PhD Thesis ISBN: 951-649-748-9, 1990.

[233] K. Sere and M. Waldén, "Data Refinement of Remote Procedures," Formal

Aspects of Computing, vol. 12, no. 4, pp. 278-297, 2000.

[234] M. Shaw, "Beyond Objects: A Software Design Paradigm Based on Process

Control," ACM SIGSOFT Software Engineering Notes , vol. 20, pp. 27-38, 1995.

[235] M. Shaw and D. Garlan, Software Architecture, Mona Pompili, Ed. New Jersey:

Prentice-Hall Inc., 1996.

[236] K. Wegdam, M. Sheikh and M. van Sinderen, "Middleware Support for Quality of

Context in Pervasive Context-Aware Systems ," in In: Fifth Annual IEEE

International Conference on Pervasive Computing and Communications

Workshops, 2007.

[237] K. Sheikh, M. Wegdam, and M. Sinderen, "Quality-of-Context and its use for

Protecting Privacy in Context Aware Systems," Journal of Software, vol. 3, no. 3,

pp. 83 - 93, 2008, Available at:

http://ojs.academypublisher.com/index.php/jsw/article/view/1939. Date acc.

[238] A. Soylu, P. De Causmaecker, and P. Desmet, "Context and Adaptivity in

Pervasive Computing Environments: Links with Software Engineering and

137

Ontological Engineering," Journal of Software, vol. 4, no. 9, pp. 992-1013, 2009.

[239] T. Strang and C. Linnhoff-Popien, "A Context Modeling Survey," in Workshop on

Advanced Context Modelling, Reasoning and Management, 2004.

[240] R. Studer, V. Benjamins, and D. Fensel, "Knowledge engineering: Principles and

methods," Data and Knowledge Engineering, vol. 25, no. 1-2, pp. 161-197, 1998.

[241] C. Szyperski, Component Software.: Addison-Wesley, 1998.

[242] C. Szyperski, D. Gruntz, and S. Murer, Component Software – Beyond Object-

Oriented Programming – Second Edition.: Addison-Wesley and ACM Press,

2002.

[243] R. Taylor et al., "A component- and message-based architectural style for GUI

software ," IEEE Transactions on Software Engineering, vol. 22, no. 6, pp. 390-

406, 1996.

[244] L. Teacy, J. Patel, N. Jennings, and M. Luck, "Coping with inaccurate reputation

sources: experimental analysis of a probabilistic trust model," in In Proceedings of

the fourth international joint conference on Autonomous agents and multiagent

systems (AAMAS '05), 2005, pp. 997-1004.

[245] F. Turkmen, B. Crispo, and P. Mazzoleni, "A service-based context management

framework for cross-enterprise collaboration," in In Proceedings of the 2010 ACM

Symposium on Applied Computing, 2010.

[246] X. Wang, D. Zhang, T. Gu, and H. Pung, "Ontology Based Context Modeling and

Reasoning using OWL," in In Proceedings of the Second IEEE Annual Conference

on Pervasive Computing and Communications Workshops, 2004.

[247] R. Want, A. Hopper, V. Falcao, and J. Gibbons, "The Active Badge Location

System," ACM Transactions on Informations Systems, vol. 10, 1992.

[248] A. Ward, A. Jones, and A Hopper, "A new location technique for the active

office," IEEE Personal Communications , vol. 4, no. 5, pp. 42 - 47, 1997.

[249] S. Weeks, "Understanding Trust Management Systems ," in In Proceedings of the

2001 IEEE Symposium on Security and Privacy, 2001.

[250] M. Wegdam, "Dynamic Reconfiguration and Load Distribution in Component

Middleware," University of Twente, Enschede, PhD thesis 2003.

[251] M. Weiser, "Hot Topics: Ubiquitous Computing," IEEE Computer, October 1993.

[252] M. Weiser, "Some Computer Science Problems in Ubiquitous Computing,"

Communications of the ACM, July 1993.

[253] M. Weiser, "The Computer of the Twenty-First Century," Scientific American,

September 1991.

[254] M. Weiser and J. Brown, "Designing Calm Technology," Xerox PARC, 1995.

[255] A. West, S. Kannan, I. Lee, and O. Sokolsky, "An evaluation framework for

reputation management systems," in Trust Modeling and Management in Digital

Environments: From Social Concept to System Development.: IGI Global, 2010.

[256] A. Whitby, A. Josang, and J. Indulska, "Filtering out unfair ratings in bayesian

reputation systems," in Proceedings of the Third International Joint Conference

on Autonomous Agenst and Multi Agent S, 2004, pp. 106-117.

[257] C. Villalonga, D. Roggen, C. Lombriser, P. Zappi, and G. Tröster, "Bringing

138

quality of context into wearable human activity recognition systems.," in In

Proceedings of the 1st international Conference on Quality of Context, 2009, pp.

164-173.

[258] R. Wille, Restructuring lattice theory: an approach based on hierarchies of

concepts.: Dordrecht-Boston , 1982.

[259] T. Winograd, "Architectures for context," in Hum.-Comput. Interact., 2001, pp.

401-419.

[260] M. Winslett et al., "Negotiating Trust on the Web," IEEE Internet Computing ,

vol. 6, no. 6, pp. 30-37, 2002.

[261] W. Woods, "Taxonomic lattice structures for situation recognition," in In

Proceedings of the 1978 workshop on Theoretical issues in natural language

processing (TINLAP '78), 1978, pp. 33-41.

[262] L. Xiong and L. Liu, "PeerTrust: Supporting Reputation-Based Trust for Peer-to-

Peer Electronic Communities," IEEE Trans. on Knowl. and Data Eng., vol. 16, no.

7, pp. 843-857, 2004.

[263] L. Yan, "Systematic design of ubiquitous systems," Åbo Akademi / Turku Center

for Computer Science, PhD Thesis no. 70 2005.

[264] K. Yang and A. Galis, "Policy-Driven Mobile Agents for Context-Aware Service

in Next Generation Networks," in In Proceedings of the 5th International

workshop on Mobile Agents for Telecommunication Applications MATA03, 2003.

[265] Z Yan and S. Holtmanns, "Trust Modeling and Management: from Social Trust to

Digital Trust," in Computer Security, Privacy and Politics: Current Issues,

Challenges and Solutions, R. Subramanian, Ed.: IGI Global, 2007.

[266] Z. Yan and C. Prehofer, "Autonomic Trust Management for a Component-Based

Software System," IEEE Transactions on Dependable and Secure Computing, vol.

8, no. 6, pp. 810-823, 2011.

[267] L. Yan and K. Sere, "A Formalism for Context-Aware Mobile Computing," in

Third International Symposium on Parallel and Distributed Computing, 2004, pp.

14-21.

[268] J. Ye, L. Coyle, S. Dobson, and P. Nixon, "Representing and manipulating

situation hierarchies using situation lattices," Revue d’Intelligence Artificielle, vol.

22, no. 5, pp. 647-667, 2008.

[269] J. Ye, L. Coyle, S. Dobson, and P. Nixon, "Using situation lattices to model and

reason about context," in In Proceedings of MRC 2007 , 2007, pp. 1-12.

[270] J. Ye, S. Dobson, and S. McKeever, "Situation identification techniques in

pervasive computing: a review," Pervasive and Mobile Computing, 2011.

[271] X. Ying and X. Fu-yuan, "Research on Context Modeling Based on Ontology," in

Computational Intelligence for Modelling, Control and Automation, 2006 and

International Conference on Intelligent Agents, Web Technologies and Internet

Commerce, 2006.

[272] B. Yu and M. Singh, "An evidential model of distributed reputation management,"

in In Proceedings of the first international joint conference on Autonomous agents

and multiagent systems: , DOI=10.1145/544741.544809, 2002, pp. 294-301.

[273] L. Zadeh, "Reviews of Books: A Mathematical Theory of Evidence," The AI

139

Magazine v5, pp. 81-83, 1984.

[274] E. Zelkha and B. Epstein, "From Devices to "Ambient Intelligence," Digital

Living Room Conference, June 1998.

[275] H. Zemanek, "Abstract Architecture, General concepts for systems design," Paper

for the Winterschool on Abstract Software Specification at the Danish University

of Technology, Lecture Notes in Computer Science 86/1980 ISBN 978-3-540-

10007-2, 1980.

[276] A. Zimmermann, A. Lorenz, and R. Oppermann, "An operational definition of

context," in In Proceedings of the 6th international and interdisciplinary

Conference on Modeling and Using Context , 2007, pp. 558-571.

[277] P. Öztürk and A. Aamodt, "Towards a model of context for case-based diagnostic

problem solving," in Proceedings of the First International and Interdisciplinary

Conference on Modeling and Using Context, 1997, pp. 198-208.

140

141

Complete List of Original Publications

1. Mats Neovius, “An Abstract Model for Incentive-Enhanced Trust in P2P

Networks”. In: Tomoya Enokido, Lu Yan, Bin Xiao, Daeyoung Kim,

Yuanshun Dai, Laurence T. Yang (Eds.), Embedded and Ubiquitous

Computing - EUC 2005 Workshops: UISW, NCUS, SecUbiq, USN, and

TAUES, Nagasaki, Japan, December 6-9, 2005. , Lecture Notes in

Computer Science vol. 3823, 602 - 611, Springer Berlin / Heidelberg,

2005.

2. Kaisa Sere, Lu Yan, Mats Neovius, “Dependability Challenge in

Ubiquitous Computing”. In: Proceedings of the International Workshop

on Software Engineering Challenges for Ubiquitous Computing (SEUC

2006), June 1-2, 2006 - Lancaster, UK, 2006.

3. Mats Neovius, Lu Yan, “A Design Framework for Wireless Sensor

Networks”. In: Khaldoun Al Agha (Ed.), Ad-Hoc Networking: IFIP 19th

World Computer Congress, TC-6, IFIP Interactive Conference on Ad-

Hoc Networking, August 20-25, 2006, Santiago, Chile , IFIP

International Federation for Information Processing 212, 119 - 127,

Springer, 2006.

4. Mats Neovius, Kaisa Sere, Lu Yan, Manoranjan Satpathy, “A Formal

Model of Context-Awareness and Context-Dependency”. In: Van Hung

Dang, Pandya Paritosh (Eds.), Proceedings of the fourth IEEE

International Conference on Software Engineering and Formal Methods

(SEFM'06), 2006., 177 - 185, IEEE Computer Society Press, 2006.

5. Pontus Boström, Mats Neovius, Ian Oliver, Marina Waldén, “Formal

Transformation of Platform Independent Models into Platform Specific

Models”. In: Jacques Julliand, Olga Kouchnarenko (Eds.), B 2007:

Formal Specification and Development in B, 7th International

Conference of B Users, Besancon, France, January 7-19, 2007,

Proceedings, Lecture Notes in Computer Science vol. 4355, 186-200,

Springer-Verlag, 2007.

6. Fredrik Degerlund, Mats Neovius, Kaisa Sere, “A Framework for

Formal Reasoning about Distributed Webs of Trust”. In: Olaf Owe

Einar Broch Johnsen, Gerardo Schneider (Eds.), Proceedings of the 19th

Nordic Workshop on Programming Theory, Universitetet i Oslo -

Institutt for informatikk Research Report 366, 78-80, University of Oslo,

2007.

7. Mats Neovius, Fredrik Degerlund, “Extending Dependability to Include

User-Specific Trust”. In: Kaisa Sere Luigia Petre, Einar Broch Johnsen

(Eds.), NODES 07 - NOrdic workshop and doctoral symposium on

142

DEpendability and Security, Oslo, Norway, October 2007, Abstracts,

Åbo Akademi Reports on Computer Science & Mathematics Ser. B. No.

37, Åbo Akademi University, 2007.

8. Mats Neovius, Fredrik Degerlund, Lu Yan, “Forming a Context-

Sensitive Web of Trust by Relying on Sentimentally Like-Minded”.

International Journal of Pervasive Computing and Communications

4(1), 92-109, 2008.

9. Mats Neovius, Kaisa Sere, “Formal Modular Modelling of Context-

Awareness”. In: Frank S. de Boer, Marcello M. Bonsangue, Eric

Madelain (Eds.), Formal Methods for Components and Objects, 7th

International Symposium, FMCO 2008, Revised Lectures, 102-118,

Lecture Notes in Computer Science vol. 5751, 2008.

10. Petter Sandvik, Mats Neovius, “The Distance-Availability Weighted

Piece Selection Method for BitTorrent: A BitTorrent Piece Selection

Method for On-Demand Streaming”. In: Antonio Liotta, Nick

Antonopoulos, George Exarchakos, Takahiro Hara (Eds.), Proceedings

of The First International Conference on Advances in P2P Systems

(AP2PS 2009), 198-202, IEEE Computer Society, 2009.

11. Mats Neovius, Fredrik Degerlund, Kaisa Sere, “Inter-service

Dependency in the Action System Formalism”. In: Gordon J. Pace,

Gerardo Schneider (Eds.), Third Workshop on Formal Languages and

Analysis of Contract-Oriented Software, FLACOS’09 , 45 - 53,

University of Oslo, Department of Informatics, 2009.

12. Petter Sandvik, Mats Neovius, “A Further Look at the Distance-

Availability Weighted Piece Selection Method: A BitTorrent Piece

Selection Method for On-Demand Media Streaming”. International

Journal on Advances in Networks and Services 3(3 & 4), 473-483, 2010.

13. Mats Neovius and Kaisa Sere. “Mastering the Relevance of Subjective

Information in Ubiquitous Computing”. Submitted to International Journal

of Networked Computing and Advanced Information Management (IJNCM)

Special issue on Social Informatics and COMputing (SICOM).

143

Part II

Original Publications

144

Paper I

An Abstract Model for Incentive-Enhanced Trust in P2P

Networks

Mats Neovius

Originally published In proc. of Embedded and Ubiquitous Computing - EUC

2005 Workshops: UISW, NCUS, SecUbiq, USN, and TAUES, Nagasaki, Japan,

December 6-9, 2005. , Lecture Notes in Computer Science vol. 3823, 602 - 611,

Springer Berlin / Heidelberg, 2005.

©2005 Springer-Verlag GmbH. Reproduced with permission.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 602 – 611, 2005.
© IFIP International Federation for Information Processing 2005

An Abstract Model for Incentive-Enhanced
Trust in P2P Networks

Mats Neovius

Department of Computer Science, Åbo Akademi University,
Lemminkäisenkatu 14, FIN-20520 Turku, Finland

mats@neovius.com

Abstract. Peer-to-Peer (P2P) networks have emerged as a prime research topic,
partly due to the vast unexploited possibilities unrestricted distribution of the
workload provides. The main hindrance for unrestricted exploitation of the P2P
topology is, due to lack of security-related issues, the gullible attitude taken
towards unknown agents. Therefore, the severity of the vulnerabilities caused
by gullibility must be mended by other means, for example, by an effective
incentive scheme encouraging agents to trustworthy behaviour. This paper
presents an abstract model for incentive enhanced trust, to progressively assign
the participating agents rights for accessing distributed resources, emphasising
consistent behaviour. The model consists of a degrading formula, an illustrative
incentive triangle and a best-effort distributed supervision model. Moreover, the
same incentive model facilitates anticipation of future behaviour concerning
any given agent founded on several distinct agents’ opinion, suggesting that any
knowledge concerning the counterpart is better than none.

Keywords: Peer-to-Peer networks, incentive, trustworthiness, anticipation.

1 Introduction

Reputation-based trust systems are widely studied and are probably the most realistic
approach to anticipate future behaviour of an agent. Consequently, as in reality, there
must exist a powerful incentive encouraging participants in a P2P network to credibly
exchange information and act consistently benevolently. Thus, as mentioned by
Kamvar, Schlosser and Garcia-Molina in [1], the identification must be a long-term
user-specific, not relying on an externally assigned identity such as the IP address.

One way to encourage consistent behaviour is by assigning a covetous benefit to
agents behaving benevolently. This gain should play the role of real-life money; it
should be desirable and entitle to additional privileges. However, such an advantage
attracts fraud in various forms. To describe the problems, it is essential to declare the
basic frameworks and concepts which trust, in this case, is to be applied on.

1.1 Peer-to-Peer Networks

A P2P system implementing trust resembles inter-human communication in many
ways. In a P2P network, all participating agents act as clients as well as servers and

 An Abstract Model for Incentive-Enhanced Trust in P2P Networks 603

possess equal rights, which suggest to a self-policing structure. Therefore, the
definition concerning P2P architecture to be used throughout this paper is as follows:

A P2P architecture is a distributed network where each node grants other
requesting nodes access to its shared resource(s). The resource(s) is/are
accessible by any other participant on the network directly without
intermediate servers.

Consequently, this paper views the participants in a P2P network as “members of a
society”, where an agent’s actions are egocentrically determined by benefit.
Moreover, a P2P system should be capable of handling any arbitrary agent’s
unexpected drop-off from the network at any given time, without the network
suffering any loss of service [2]. This excludes implementation of a predefined
structure, such as servers or pre-shared secrets.

Despite the exclusion of central units, we argue that deploying an incentive in an
agent-centric P2P architecture, a structured overlay network is a necessity. This is
motivated because it enables systematic knowledge lookup, efficient collaboration
between the participating agents for maintaining the incentive and assignment of
credit to the appropriate agent. This paper considers the overlay system organised as a
Pastry Distributed Hash Table (DHT) architecture. The Pastry DHT system provides
scalability, low network diameter and proximity selection [3, 4].

1.2 The Trust Metric

Trust is a social phenomenon and can only exist between two distinct matters of
which at least one is capable of feeling. As such, all models of trust should be based
on the same as the social trust, knowledge about the counterpart. This paper discusses
unrestricted agent-centric trust and situations where it is assumed that the counterpart
is behaving irrationally. Walsh and Sirer in [5] propose an object centric reputation
scheme that is restricted to a specific kind of objects, in their case files. Such a system
is however, unsuitable for agent-centric reputation evaluation because peers’
behaviour vary.

Implementing trust to be processed in a microprocessor requires that it can be
measured and thereby, compel assigning a value for the metric. In a binary formation,
an agent is evaluated as either trustworthy (affirmative) or untrustworthy (negative).
Eventually every assessment should fit the binary formation. Considering the
perpetually changing environment and variety of levels demanded, binary formation
is insufficient for comprehensive usage. Therefore, the trust metric is considered in
this paper discrete, between 0 (none) and 1 (complete), with a sufficient amount of
states. According to calculations made on the values, the trustor will assign the
trustee-specific rights to access and/or exploit resource(s), as will the trustee select the
provider.

Besides the value of the metric, it must be distinguishable on a per actor basis and
thus, explicitly mapped to a unique ID, as humans are recognised by characteristics
such as the voice, by sight etc. Consequently, we argue that a unique ID is a
precondition for implementing trust of any kind between conditionally trustworthy
matters.

604 M. Neovius

1.3 Recognised Abuses in P2P Networks

The present gullible approach adapted by participants in a P2P network, and the
limited possibilities to locate colluding agents, attracts abuses of many kinds.
Concerning peer misbehaviours, three types are recognised: collude inflation,
deflating and faking [6].

Collude inflation are situations where a conglomerate of agents collaborate by
reporting positively about each other in order to achieve a higher trustworthiness
value. The problem is present in centralised online auctions and in reality, because
there is no way to verify the feedback’s truthfulness and dignity. However, including
only one report per agent such as in eBay.com [7] and degrading the information by
time would hamper any colluding intentions.

Deflation is a situation where a set of agents defames another’s reputation by
reporting unsatisfactory behaviour concerning it. This is comparable to spreading
rumours in reality. However, degrading of reports as for collusion, affects deflation
equally and is a feasible countermeasure.

A faker is an agent that introduces itself as another agent (usually) possessing a
higher reputation. This problem should be solved at the assignment of the ID or at the
mapping of the feedbacks to an ID. However, this is out of the scope of the topic and
this paper assumes that the ID’s are unique and the feedbacks are authentic.

Besides the misbehaviours concerning reputations; annoyances such as “free-
riding” and “tragedy of the commons” are widely acknowledged. Both are
consequences of unfair exploitation and contribution respectively, of the commonly
accessible resources and can be solved utilising the kind of incentive presented later
in this paper.

2 Trust in an Open Environment

A trust relation can be of many forms; it can be one-to-one, many-to-one, or many-to-
many [8]. Optimally, the relation is many-to-one, where the knowledge about the
counterpart is based on a combination of several sources’ experiences. However, a
distinction of the knowledge credibility according to sources’ trustworthiness is
required. This paper considers a three-level hierarchy of knowledge sources: a
personal opinion, trusted agents’ opinions and a public opinion.

2.1 Personal, Trusted and Public Opinions

As when considering humans, trust between P2P-networked agents should equally
count on the capability of distinguishing between trust derived from different matters
and events. Deducing personal opinions based on personal experiences is essential.
However, in some situations the observations cannot cover adequate knowledge and
relying on others’ judgements is necessary. The trusted agents’ opinions are “advises”
and acquired gathering information by inquiring friendly sources. A public opinion is
one reflecting the majority’s opinion concerning the matter. Hence, the personal
opinion is a concern that is alterable only by the possessing agent. Moreover, each
agent should contribute in providing and maintaining a public opinion and collaborate
with personally trusted agents to enforce understanding about the counterpart, which

 An Abstract Model for Incentive-Enhanced Trust in P2P Networks 605

is/are considered advises and trusted conditionally. Thereby, the agents form sets of
reciprocal trusted conglomerates.

The public opinion does not alone solve any of the problems mentioned. It should
be considered as we consider, for example, reviews at epinions.com [9]. Therefore,
the public opinion can, at most, mend the uncertainty left by the trusted and personal
opinion. However, uncertainty should have primary influence on the decision
concerning selecting the agent to process the event. This is motivated by the threat of
a colluding set of malicious agents collaborating in building a benevolent public
opinion.

Because of the anonymity and egocentric behaviour, it is justified that the personal
opinion has greater influence on the final outcome than the trusted agents and public
opinions [10]. Consequently, a hierarchy of credibility is formed where the personal
opinion mends with the trusted and only then with the public opinion. This hierarchy
severely hampers the effect of collusion and deflation. However, the different levels
of opinions must not result in conflicts though possibly indicating an opposite
outcome, and a method of achieving a consensus is needed. This consensus should
handle situations such as, for example, when the public opinion suggests negative
assessment while the trusted and personal opinion suggest to affirmative with some
uncertainty. In addition, a consensus method of the opinions adjusts the personal
opinion to the trusted and public opinions and reduces “obstinacy”. The consensus of
the different opinions results in a situation equal to inter-human interaction, i.e. that a
maliciously behaving agent is capable of taking advantage of the conglomerate of
reciprocally trusted agents’ benevolence only a finite amount of times.

2.2 Feedback Formation and Distribution

Trust relying on a public opinion in P2P networks is motivated because no single
entity can have accurate information about all others’ conducts. Initially, no data
concerning the counterpart exist, suggesting that reputation has to be built from some
state. The state of no reputation, and thus the initial state, is considered in this paper
as the state of uncertainty; because modelling trust in dynamic networks cannot allow
confusion between “don’t trust” and “don’t know” [11].

A feedback is the generated data concerning the provider of the resource(s) after an
event. The generated data is stored locally and submitted to the supervising agent
including the ID of the counterpart, a timestamp, the feedback score and the ID of the
reporter [12]. Additional application-specific data can be added. Including IDs in the
feedback provides a possibility to identify and verify the transaction. In addition, the
agents should monitor their reputation and when disagreeing on an evaluation, change
the personal opinion about the reporting source accordingly. The timestamp enables
utilisation of a degrading formula, with the justification that attitudes can change over
time. The feedback itself is graded with a triplet of values; belief (b), disbelief (d) and
uncertainty (u). As discussed in section 1.2 and because the metrics are in
contradiction and complete equal 1, their sum must equal 1.

Considering the definition of a P2P network, the feedbacks must be stored on the
connected (live) agents. As a countermeasure for colluding inflation, the agents
supervising feedbacks concerning any given agent should perpetually change.
Moreover, the agent the feedbacks concern should not be included in the lookup chain

606 M. Neovius

of locating the supervising agent. Therefore, the feedback supervising agents must be
known by all participants all the time. Enabling this in a system utilising Pastry DHT
is possible by having the trust supervising agents’ IDs dynamically assigned by a
hard-coded function in the application. This requires the DHT to assign the IDs
dynamically on a per-session basis as a countermeasure for colluding alternation.
However, the need of a unique static ID for each participant compels usage of two
interconnected DHTs, each consisting of x tier to maintain scalability. In such a
system, one layer provides the static nodeID while the other layer accounts for
proximity selection, lookups and the feedback, being dynamically assigned, hereafter
denoted sessionID (sID). This way the needs of a static unique ID and the
requirements for countermeasures are satisfied.

Requiring any reporter to file the feedback to, for example, two closest supervising
agents of its own sID, would provide data redundancy. That is, if sID c < d < e < f, the
agent with sID e files reputation regarding sID c to sID d and sID f. A possible
recovery can be conducted by a logical expression, where peer g, h, i, j and k
represents adjacent supervisors for x, according to the distribution. i’s stored data can
be retrieved by kgjhdata ¬∧¬∧∨∈ . In other words, if sID i fails, its data can be

recovered by summarising all data that sID h or sID j store and that are not stored by
sID g, nor by sID k.

Moreover, the redundancy provides a way for a newly assigned supervising agent
to verify the passed feedbacks. In addition, such sID data passing provides means for
semi-symmetrical distribution. Consequently, in order for colluding inflation to
succeed, the malevolent agent should cooperate with the majority of the involved
dynamically changing supervising agents. The feedbacks reported to the supervising
agents are the values resulting in the public opinion that is a sum, calculated by a
subjective logic, for example, the one presented in [13], of all feedbacks from a set of
interactions with the agent(s) concerned.

3 The Incentive

In reality an incentive is very simple. It is usually money, fame or some other
covetous benefit that good performance entitles to. However, distribution of the
beneficial is complex. The incentive to be deployed for usage in computerised
communication must be based on the idea of giving benefit to the active and
benevolent agents and reducing the value of the beneficial as a consequence of
unsatisfactory performance. As a result, there must exist a carrot as well as a stick. In
order to increase the anticipations truthfulness, experiences should degrade according
to time.

3.1 A Degrading Formula for Trust

Philosophically, trust can never be absolute [14]. The core idea of this is the fact that
even a friend, considered as trustworthy, can fail the expectations; respectively can an
untrustworthy agent behave benevolently. To meet these challenges, a degrading
formula must weaken the weighs of the feedbacks based on time and sociality. This is
necessary in order to give less social agents equal possibilities; weakening recent

 An Abstract Model for Incentive-Enhanced Trust in P2P Networks 607

experiences less. Whitby, Jøsang and Indulska [15] proposed a formula without the
sociality factor, however, including it in the same formula is easy, resulting in
formula 1.

 (1)

In formula 1,
tX

tZ R
p ,

, is agent X’s rating of agent Z at time Rt , t being the current

time. In other words, an event occurred at time Rt where agent X rated agent Z, the

current time being t. 10 << λ is the longevity factor degrading the rating according

to time. The kl −γ represents the ordering of the feedback by occurrence, l being the

selection’s size and k the position number where the most recent is l, degrading
according to sociality and being 10 << γ .

The formula should be applied upon the belief and disbelief values in personal
opinions’ every experience. Because the sum of the metrics is 1, uncertainty equals
1-b-d. In addition, formula 1 sociality factor covers the claim that complete trust or
distrust cannot exist, and is a countermeasure for key-space depletion, dropping
agents with uncertainty exceeding some predefined threshold value. The values
assigned for λ and γ are subject to the application and the environment. The γ value
should adjust to the frequency of attitude changes; the lower value, the heavier weight
on recent events. λ depends on the frequency of transactions conducted with the
counterpart. γ and λ combination reacts to changes in attitude and allow the agent to
adapt to the environment. Moreover, the degrading formula is forgivable and will
grant the maliciously behaving agent a new chance, after a given time, depending on
the longevity factor, of acquiring favouring among the reciprocal conglomerate it
tried to fool.

3.2 Calculating with the Metrics

Calculating and enforcing the accuracy of the metrics is essential in order to reach the
decision. Figure 1 illustrates a situation where two trusted agents, Bob and Claire,
contribute in enforcing Alice’s anticipation concerning the target, David.

Fig. 1. Trust combination

X
tZ

kltttX
tZ R

R

R
pp ,

)(,
,

−−= γλ

608 M. Neovius

The trusted agents participating in the evaluation should contribute with their
personal opinions to the requesting entity, without enforcing their understanding by
querying further or redirecting. This is motivated because Alice trusts Bob and Claire,
not a fourth party, to evaluate David. A situation alike the one in Figure 1 compels a
consensus to be achieved between Bob’s and Claire’s metrics. Bob’s and Claire’s
consensus will eventually be combined with Alice’s personal opinion, and finally
patched by the public opinion, resulting in the final opinion.

The calculation merging the participating agents’ degraded metrics is based on
probability calculations and can be performed according to formula 2 illustrated
below, originally proposed in [16].

)*/()*(

)*/()**(

)*/()**(

NMNMMNM
N

NMNMNMMNM
N

NMNMNMMNM
N

uuuuuuyuncertaínt

uuuuududdisbelief

uuuuububbelief

−+=

−++=

−++=

 (2)

M and N are any agents which personal opinion metrics are to be merged; in this
case Bob and Claire. If several agents contribute, the merging is done between any
two agents or sets of agents at the same level of the consensus process. Eventually the
consensuses will reach such magnitudes that it represents the understanding of the
underlying group.

The final patching of the uncertainty for the expected outcome utilising the public
opinion should be performed after applying the metrics from the trusted agents. This
can take place utilising, for example, the following formulas.

 (3)

 (4)

In these formulas, calculated denotes the degraded trustworthiness of the levels
higher in the hierarchy, acquired by formula 2 and 1. Mending this calculated opinion
with the public opinion that does not recognise uncertainty, forms an opinion
correlating to the expected outcome based on the available knowledge.

Utilising these methods, the trust metric fits the triangle illustrated in Figure 2,
when uncertainty is included and the anticipation of forthcoming behaviour is
possible. Thus, all possible providers of the requested service can be compared and
the most suitable chosen.

3.3 An Incentive View

In every incentive method, the inducement must be such that the users cannot gain
from reinitiating with a new identity [1]. Hence, we argue that the initial state must be
equal to or worse than the state of untrustworthy, with the justification that any
knowledge to base anticipation on reducing the risk of misjudgement is better than
none. This results in the idea that the state of disbelief is preferred to the initial state,
countermeasuring whitewashing.

This paper considers the initial state as the state of uncertainty, a state where no
anticipation about future behaviour based on reputation is possible. At the same time,

publiccalculatedcalculatedcalculated
public

publiccalculatedcalculatedcalculated
public

disbeliefyuncertaíntdisbeliefdisbelief

beliefyuncertaíntbeliefbelief

*

*

+=

+=

 An Abstract Model for Incentive-Enhanced Trust in P2P Networks 609

the state of uncertainty indicates that the ID is available for any requesting newcomer.
The incentive triangle, derived from the opinion triangle in [16], illustrated in Figure
2, summarises these ideas.

The triangle should be interpreted so that each vertex represents completeness.
Therefore, the trustworthiness of any agent consisting of three metrics is representable
by one point in the triangle. The median starting at each vertex is the grading of the
different values, where belief is represented by Q, disbelief by R and uncertainty by P.
The dot represents an example (personal opinion), with belief (Q) 0.25, disbelief (R)
0.65, uncertainty (P) 0.1. E(x) presents the mending (expectation), illustrated in
formula 3 and 4, where the personal opinion’s uncertainty is mended by the public
opinion, whose value is represented by the dotted line ax. In Figure 2, this starts at
uncertainty, ending at belief = 0.6 and thus disbelief = 0.4.

Fig. 2. Incentive triangle

When calculating the expectations value, the final value is required to be either
affirmative or negative and thus uncertainty must equal 0. Uncertainty is reduced to
equal 0 by applying the public opinion on formula 3 and 4, resulting in the removal of
the uncertainty metric. The degrading formula 1 affects the opinion in the way that it
moves towards uncertainty on the axis with the original relation between trust and
distrust. Moreover, the triangle recognises two priorities, which are determined by
trust qualities and thus purpose specific.

In this specific view, a newcomer is not assigned any profit, which should be the
best countermeasure for avoiding an agent with bad reputation to reinitiate its trust
relation in form of signing in with a different ID. This implies that the participants are
encouraged to consistently act using the same identity every time.

The presented ideas maintain a balance between capability to operate and actual
trustworthiness. If some agent is incapable of fulfilling the placed expectations, its
trustworthiness will suffer among the expecting agents. Consequently, the network
has reacted to this successfully and the trustworthiness/capability balance is
maintained.

610 M. Neovius

4 Conclusion

Combining the models presented in this paper reduces the presented problems’
severity. Colluding inflation can occur a finite amount of times per conglomerate of
reciprocally trustworthy agents because of the influence of the personal opinions.
Deflation compromises the public opinion but the target maintains its ability to
operate due to the personal opinions and will recover because of the degrading
formula. Issuing countermeasures for faking is very difficult, if not impossible,
without pre-shared secrets or intermediate authenticating servers. The “free-rider” and
the “tragedy of the commons” problems are solved by a carrot - stick relation and
utilisation of the personal and public opinion. In addition, the presented incentive
reacts to changes in attitude and provides a possibility for malevolent/passive
behaviour to change without re-identification.

The problems remaining are the evidence concerning a feedback and the assigning
of a unique ID. These issues are of different character and we cannot see the way
these could be solved utilising an incentive. Moreover, credentials are excluded from
this paper, but being an extension of trust relationships, they are an essential part of
trust in reality.

Any accurate simulations to enforce the claims in this paper are difficult to make
because the contribution is in anticipation of the irrational. Simulations can thereby
not reach greater accuracy than having a static value to calculate irrationality from,
which is superficial. The reason is that this would imply simulating human behaviour,
but since the human society is functional, creating a similar environment for
computerised communication should be the objective. This paper has provided some
ideas in order to reach this objective from the point of view that nature has evolved
the ultimate trust formation scheme.

References

1. Spandar D. Kamvar, Mario T. Schlosser, Hector Garcia-Molina (2003). ”The EigenTrust
algorithm for reputation management in P2P networks”. In Proceedings of the Twelfth
International World Wide Web Conference, May, 2003.

2. Rydiger Schollmeier (2002). “A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architectures and Applications”. Proceedings of the First
International Conference on Peer-to-Peer Computing (P2P'01).

3. Dan S. Wallach (2002). “A Survey of Peer-to-Peer Security Issues”. International
Symposium on Software Security (Tokyo, Japan), November 2002.

4. Miguel Castro, Peter Druschel, Y. Charlie Hu, Anthony Rowstron (2002). “Exploiting
network proximity in peer-to-peer overlay networks“. Technical Report MSR-TR-2002-82
(2002).

5. Kevin Walsh, Emin Gun Sirer (2005). “Thwarting P2P Pollution Using Object
Reputation”. Cornell University, Computer Science Department Technical Report
TR2005-1980.

6. YangBin Tang, HuaiMin Wang, Wen Dou (2004) “Trust Based Incentive in P2P
Network”. Proceedings of the IEEE International Conference on E-Commerce Technology
for Dynamic E-Business (CEC-East’04).

 An Abstract Model for Incentive-Enhanced Trust in P2P Networks 611

7. eBay.com. “Understanding feedback scores”. URL: http://pages.ebay.com/help/feedback/
feedback-scores.html

8. Tyrone Grandison, Morris Sloman (2000). “A survey of trust in internet applications”. 4th
Quarter 2000 issue of IEEE Communications Surveys & Tutorials.

9. Epinions.com. http://www.epinions.com
10. Vinny Cahill, Elizabeth Gray, Jean-Marc Seigneur, Christian D. Jensen, Yong Chen, Brian

Shand, Nathan Dimmock, Andy Twigg, Jean Bacon, Colin English, Waleed Wagealla,
Sotirios Terzis, Paddy Nixon, Giovanna di Marzo Serugendo, Ciarán Bryce, Marco
Carbone, Karl Krukow, Mogens Nielsen (2003). “Using trust for secure collaboration in
uncertain environments”. IEEE pervasive computing, volume 2, number 3, July –
September 2003, page 52 – 61.

11. Marco Carbone, Mogens Nielsen, Vladimiro Sassone (2003). “A formal model for trust in
dynamic networks”. BRICS Report RS-03-4, 2003.

12. Li Xiong, Ling Liu. “PeerTrust: Supporting reputation-based trust for peer-to-peer
electronic communities”. IEEE Transactions on knowledge and data engineering, vol. 16,
no. 7, July 2004.

13. Audun Jøsang (2001). “A Logic for Uncertain Probabilities”. International Journal of
uncertainty, Fuzziness and Knowledge-Based Systems. 9(3), pp.279-311, June 2001.

14. Martin Hollis (1998). “Trust within reason”. Cambridge, United Kingdom, Cambridge
university press.

15. Andrew Whitby, Audun Jøsang, Jadwiga Indulska (2004). “Filtering Out Unfair Ratings in
Bayesian Reputation Systems”. In the Proceedings of the Workshop on Trust in Agent
Societies, at the Third International Joint Conference on Autonomous Agents \& Multi
Agent Systems (AAMAS2004), New York, July 2004.

16. Audun Jøsang (1997). “Artificial Reasoning with Subjective Logic”. In Proceedings of the
Second Australian Workshop on Commonsense Reasoning, 1997.

Paper II

A Design Framework for Wireless Sensor Networks

Mats Neovius and Lu Yan

Originally published In proc. of IFIP WCC 2006, Ad Hoc networking track,

Santiago de Chile, Chile, August 20-25 pp. 119-127. ISBN: 0-387-34635-X

©2006 International Federation for Information Processing. Reproduced with

permission.

A Design Framework for Wireless Sensor

Networks

Mats Neovius, Lu Yan
Åbo Akademi University, Department of Information Technologies,

Lemminkäisenkatu 14, FIN-20520 Turku Finland.
{mneovius, lyan}@abo.fi

Abstract. Wireless sensor networks (sensornets) are wirelessly
communicating smart gadgets with the capability of sensing the environment.
With the immense applicability of sensornets, there is an increasing need of a
general organisational and architectural development framework for sensornet
systems. This paper outlines an abstract framework for modelling
responsibilities and tasks to sets of nodes according to their vocation. These
guidelines are presented with the intension to ease reasoning about a sensornet
as a system, and its applications.

1. Introduction

The amount of research conducted regarding wireless sensor networks
(sensornets) is emerging. The concept of sensornets envisions a new ambitious
paradigm of computing, brought forth by Weiser in 1991 [1], usually referred to as
ubiquitous or pervasive computing.

Large scale sensornets are complex and challenging environments in which to
develop software. The applicable areas for ubiquitous sensors providing raw
unprocessed data about the environment are vast. Moreover, sensornets constitute
several Internet-era challenges, making them interesting for the research community
as well as for industry.

Typically, a sensornet comprises a set of energy constraint nodes which, in
addition to amorphous Ad Hoc networks, relies on collaboration with each other.
The main advantage, from a research point of view, compared to more efficient
computing units is that the sensornet node has only a limited number of reasonably
executable tasks, which it is designed for.

2 Mats Neovius, Lu Yan

The future potential of sensornets is immense. Sensornets provide a sensible
transition towards ubiquity and pervasiveness, which might very well be the next
step in the development of computing gadgets. If so, sensornets might trigger a new
“era” in computing, like the one entered when the computers shrank to desktop size.

Only human imagination is the limit for what sensornets ubiquity can assist in
and/or do for us when brought around and integrated to our environment and daily
life. In order for this to happen, the units must be miniaturised. In minimised
gadgets, the energy supply constitutes a significant portion of the total size. Hence,
there are two ways to proceed; decreasing either energy consumption or battery size.

Many ideas and implementations utilising the ubiquity of a sensornet have already
been presented, one of the most well known is the smart home with the example
refrigerator automatically composing the shopping list [2]. Technically, this has been
done and is available. The questions arising today address what humans are willing
to learn, use and long for. Consumers have comprised as the test bed for the past era
of computing development and a kind of technical saturation might come up.
Consequently, a transition towards ubiquity, where the system filters relevant from
irrelevant data, and assist in decision making is likely to be about.

The sensornet could thereby be viewed as a wirelessly inter-communicating
encapsulated environment harvesting raw data with its sensors. The sensors extract
measurements from its surroundings, that might be further refined in others, for that
specific task dedicated units. The sensornet, as an architecture, ends where the data is
passed to gadgets not fulfilling the criterions of a wireless sensor. Because the
encapsulated nature and limited functionality, it is also attractive to make an effort to
reuse code or parts of it.

Research regarding sensornets is often interdisciplinary, usually concerning at
least the areas of computer science and electrical engineering. There are plenty of
unsolved issues in various fields of study within the area. From a software point of
view, there is a demand for novel ideas in areas concerning human-computer
interaction, energy-saving, optimisation, self-organisation, information composition,
query propagation and miniaturisation to mention a few. Consequently, sensornets
assert the extreme of many problems in computing related disciplines.

We argue that in order for achieving a breakthrough in sensornets, a consensus
regarding a general system framework for declaring which computations are
performed on which parts of the network is necessary. If done, the network could
apply the most suitable existing method for each situation.

The organisation of this paper is as follows. In section 2, we discuss the
fundamental building blocks, identifying sensornets, from a perspective of hardware,
functionality and middleware. The proposed system design framework is presented
in section 3. Finally, we conclude the paper in section 4.

2. Fundamental building blocks of sensornets

 The amount of separate building blocks of any system depends on the level
abstraction it is viewed at. In this paper, we take a high-level of abstraction in order

A Design Framework for Wireless Sensor Networks 3

to keep the ideas scalable and as general as possible, to fit sensornets from small
stationary static environments to vast dynamic mobile networks.
 A sensornet can be viewed as an encapsulated end-to-end mini-world with limited
energy. The nodes energy capacity varies within the network. Moreover, for a
sensornet to supply any service, it must have an interface for external data
consumption. If the system provides means for bidirectional data flow, an overlay
structure to organise query propagation is required.

The aim of the system is providing a method to obtain raw data and fuse it with
appropriate context. Because the sensornet is a raw data provider for a service, it
must address all the different parts; interface, propagation, data extraction and so
forth. Moreover, each node must be able to function independently and collaborating
when suitable. Thereby, dynamicity is a core issue to address. The highest priority
for the system is to reply any proper query origin and deliver the requested service to
the inquirer.

2.1 Hardware blocks in sensornets

Unfortunately, there is no commonly agreed definition for what a wireless sensor
is, and what it is not. In order for providing a system framework for the sensornet to
be applied on, an explicit definition is demanded. Deducing a definition from the
meanings of the words wireless, sensor and network seems right, [3] described the
concept as a simple equation which is supported by [4]:

“Sensing + CPU + Radio = Thousands of potential applications” [3]

[5] adds to this equation a power unit. However, this definition covers, for example,
a laptop with WLAN capability that adjusts its display contrast to the environments
luminosity, which was not the original idea of the equation.

With the compelling need of a definition, we agree on the equation, except for the
term “radio” which we would like to replace with “wireless transceiver”. The reason
is that wirelessness does not necessarily equal radio-transmission. Moreover, we
would like to add that a wireless sensor is usually a stand-alone small-scale device.
Hence, this is the definition to be used throughout this paper.
 The constituting compulsory blocks are thereby the clear-cut power unit,
sensor(s), CPU (and consequently some memory) and the transceiver(s). Sensing
capabilities are restricted by energy consumption and the physical size. The CPU
power is restricted by the energy source capacity and should respond to the given
sensor’s needs, e.g. measuring temperature do not require much CPU power. The
transmitter is the single device usually consuming the majority of the available
energy. Consequently, energy efficient routing in self organising mesh networks
attracts researchers focus. All of these units are connected to each other on a
motherboard-like circuit, usually referred to as the mote.

4 Mats Neovius, Lu Yan

2.2. Functional classification of sensornets

 As described earlier, the sensors sense the environment and produce raw data, for
example, “+20°C”. Naturally, the amount of information this data provide without
the context of location is limited. The context is added by another sensor connected
to the same mote or by data composition1 with data from another device. Regardless
of the extent the data is composed of and refined to, it must finally be representable
and becomes relevant only when it is sufficient enough to influence a decision.
However, still at this era of ubiquity, the decision is often made by a human, on the
top of the system hierarchy.

As stated, data without context destitute information and distinct raw data seldom
have context. Considering sensornets, the context of the specific data becomes
crucial. Any unit composing the data possesses additional knowledge that combined
increases the amount of information. For example, in a simplified case, three distinct
measurements are composed to provide relevance, temperature, location and time
that might origin from distinct nodes. Unless this device is the gateway, there is a
system hierarchy consisting of at least two levels.

In order to efficiently utilise available energy, moderate sized sensornets routing
employs multi-hop protocols [6, 7, 8]. In many ways, the protocols resemble ideas
used in decentralised mesh networks. The network is often fragmented and “cluster
heads” are appointed [9]. Consequently, the framework must handle systems that are
hierarchical to an undefined depth as well as flat networks, in order to preserve
scalability and generality.

If the sensornet nodes are heterogeneous, with nodes dedicated for a specific tasks
such as communication (more energy), locating (for example, GPS), their special
capabilities should be taken into account when initialising the network. Thereby, we
classify nodes in a sensornet as follows:

1) Sensing node(s)
2) En route node(s)
3) Gateway node(s)

The sensing nodes are the “bottommost” nodes in the system hierarchy, the ones

sensing the environment. The en route nodes are devices that act as cluster heads or
forwarders of the data between its endpoints, and possibly aggregate 2 or/and
compose the raw data. The obligation of acting as an en route node is, due to energy
capacity, traffic load and network lifetime, in some cases altered between nodes
according to the routing method. Consequently, the nodes classified in class 1 and 2
should vary for efficient utilisation of network resources. The gateway node(s)3 is
responsible for the “topmost” level of a sensornet and according to the definition, the
upper boundary. This node acts as the interface towards an external data consumer,
for example, the Internet.

1 Composition: Two distinct parts of data combined to be one.
2 Aggregation: Two distinct parts of data embedded with their key characteristics into one

packet in order to save energy consumed in transmission.
3 Gateway node: Considered written singular though possibly plural occurrence.

A Design Framework for Wireless Sensor Networks 5

The gateway is the interface to the outside. Any node can belong to one or more
classes at the same time. In special cases, one node can constitute in all taxonomy,
meaning that the gateway’s underlying network size is one.

2.3. Middleware and components

Middleware technologies in a broad sense, which covers operating systems and
virtual machines, query processing, data composition and aggregation, resource
awareness and energy harvesting, overlay routing and communication management,
etc., have the potential to ease and accelerate software development in sensornet
environments by offering simplified application-level views that abstract over factors
such as the above.

As a supporting example, as well as prevailing paradigm, lots of experimental
sensornets today run on top of TinyOS [10] and TinyDB [11]. The first, TinyOS, is
an open-source operating system specially trimmed for sensornets. It features a
component-based architecture which enables rapid prototyping and implementing
sensornet applications via providing higher-level programming abstractions. The
latter, TinyDB, is a query processing system for extracting information from
sensornets made from sensors running TinyOS. It features a SQL-like query
interface technology which alleviates the complex of writing low-level C codes and
supports traditional database queries with auxiliary sensornet parameters.

3. The design framework

A system design framework for sensornets is longed for, as Culler et. al.
conclude: “We contend that the main obstacle limiting progress in sensornet work is
the lack of an architecture. A sensor network architecture would factor out the key
functionalities required by applications and compose them in a coherent structure,
while allowing innovative technologies and applications to evolve independently”
[12]. [5] describes the sensor networks protocol stack as 2-dimensional with six
communication layers and three management planes.

We agree with both, but in addition tackle the issue from a “horizontal” view of
node vocation, making the framework 3-dimensional. The 3-dimensionality is
necessary in order to give the sensornet an overview of the system’s status and adapt
to it. Adjustment to prevailing situation is made by altering the routing method,
changing functionality between reactive, proactive and hybrid protocols or by any
other modification.

The strength is the utilisation of the core quality of each node, “because any
specific context can often be provided by a variety of different types of sensors and
used by different applications” [13]. We describe a general system framework for
implementation on any sensornet platform that meets with the constraints described
in section 2.

6 Mats Neovius, Lu Yan

3.1 . The layers

To factor out the key functionalities, a viable sensornet system design framework
must partition the model to a structure with “black-boxes”. This way the developer
needs to know only the task and the interface of the box in order to develop a
replacement, use, test or evaluate it. “To become a reusable asset, it is not enough to
start with a monolithic design of a complete solution and then partition it into
fragments Instead, descriptions have to be carefully generalised to allow for reuse in
a sufficient number of different contexts” [14]. Thus, developers are able to tune the
sensornet upon the system framework according to their preferences.

As described in section 2.2 and 3, the framework have n horizontal and at least 3
vertical layers. Figure 1, deduced from [15], illustrates the vertical layers and
horizontal node classes combined with the diagonal execution ellipse. [5] motivated
the 2-dimensionality on each sensor, which is considered.

Figure 1. The sensornet system framework

The grey-shaded angular areas illustrate the main responsibility for the sensors
belonging to them, where the dark grey area constitutes the sensing nodes, the grey
the en route nodes and the light-grey the gateway node. Moreover, Figure 1 should
be interpreted so that each item is considered belonging primarily on the “layer” and
secondarily to the “segment”. The unified sensing system model presented in [16]
supports the idea, layers and tasks meet in the ellipse.

A contribution in this framework is that all sensors do not necessarily provide
data needed for replying a query, nor does all function as en route nodes.
Consequently, the en route nodes can decide based on the query whether their

A Design Framework for Wireless Sensor Networks 7

underlying sensing nodes can provide relevant information and thereby, decide to
forward or not.

Moreover, the framework in Figure 1 could, if needed, illustrate a subset of a
complete sensornet system and there might potentially be several such models in
parallel interconnected by, for example, the Internet. As an example, one subset
might concern the heating adjustments in a building whilst another is responsible for
logging the temperature near by. Combining the data from these two completely
distinct systems refines the information.

The ellipse describes issues the system framework emphasises on the different
classes. Vaidya et al. [16] present a strict hierarchy for sensor management and
configuration used for solving a tracking problem. The model is applicable with
minor modifications for different applications and supports the ellipse. Huebesher
and McCann describe a middleware’s context provision, which is a three level
hierarchy [13]. Additional service providers and refiners could easily be added in this
scenario supporting the ellipse of node vocation.

3.2. Query propagation and reply composition

Query propagation and reply composition are the things affecting QoS (quality of
service) and quality of context the most. Consequently, the system robustness is
preserved during these phases. In addition to providing QoS, propagation and
composition should preserve energy by merging into packets payloads, reducing
transmission. According to studies, the ratio of sending one bit compared to one
CPU-instruction is in WINS NG 2.0 nodes around 1 to 1400 [17] and usually
considered to be approximately 1 to 1000. Hence, it is motivated to emphasise the
critical parts affecting consumption of the scarce resources, the en route nodes.

Figure 2. Data propagation / composition

8 Mats Neovius, Lu Yan

Query propagation and reply composition are opposite to each others and can

theoretically take place anywhere en route, see Figure 2. Fundamentally, the inquirer
expects providing of announced service, whether it is a user or a layer above. The
query must be properly propagated down the layers until replied or reaching the
“bottom” and the raw data replied composed with context, providing relevance.

Figure 2 illustrates how data is propagated and composed in a 3-level hierarchical
system. The context providers provide distinct raw data that is in the en route node
composed to increase information. The gateway finally functions as the interface.
Placing this figure diagonally on the framework provides an illustration of node
vocation and executing tasks.

A reply for the query can also be processed at any node en route. This depends on
the context-awareness method used. According to Chen and Kotz [18], two different
kinds exist and they defined them as following:

Active context awareness: an application automatically adapts to discovered
context, by changing the application’s behavior.

Passive context awareness: an application presents the new or updated context to
an interested user or makes the context persistent for the user to retrieve later.

[18]

The similarity of these to reactive and proactive data passing modes in sensornets
is evident. Recalling the examples mentioned in section 3.1, adopting the heating to
temperature variations would be active context awareness whilst logging outside
temperature is an example of passive.
 An additional strength of our system framework is the possibility to differentiate
between layers in the data forwarding hierarchy. The advantage is that different
layers can adopt different operating modes. Consequently, dynamically adapting to
application demands by implementing active or passive modes in a system can save
energy.

4. Conclusions

We argue that today, the main task is to harvest as much information as possible.
However, with the development and ubiquity of processing units, we anticipate an
overwhelming magnitude of available information in the future. Thereby, the
challenge will be to differentiate between “data” and “relevant data”.
 In this work we have presented a framework for systematic development of
sensornet applications. The proposed framework is supported by numerous works
and binds together the fundamental points in them. Its level of abstraction covers
known demands and adapts to new situations. It eases reasoning and provides a
method upon which to facilitate the development of new innovative applications in
sensornets.

A Design Framework for Wireless Sensor Networks 9

References

1. M. Weiser, The Computer for the Twenty-First Century, Scientific American, Sept.,
1991.

2. A. C. Huang, B. C. Ling, S. Ponnekanti, A. Fox, Pervasive Computing: What is it Good
for?, In Workshop on Mobile Data Management (MobiDE) in conjunction with ACM
MobiCom, 1999.

3. J. Hill, System Architecture for Wireless Sensor Networks, Ph.D. Thesis, UC Berkeley,
2003.

4. A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, K. Jones, Training a wireless sensor
network, Mobile Networks and Applications, Volume 10, Issue 1-2, February 2005,
Pages: 151 – 168.

5. I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks,
Communications Magazine, IEEE, Volume: 40, Issue: 8, Aug 2002, page(s): 102- 114,
ISSN: 0163-6804.

6. A. Woo, T. Tong, D. Culler, Taming the Underlying Challenges of Reliable Multhop
Routing in Sensor Networks, In Proc. ACM Conference on Embedded Networked
Sensor Systems (SenSys'03), 2003.

7. W. Ye, J. Heidemann, D. Estrin, An Energy-Efficient MAC Protocol for Wireless
Sensor Networks, In Proc. IEEE INFOCOM'02, 2002.

8. W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient
Communication Protocols for Wireless Microsensor Networks, In Proc. IEEE
HICSS’00, 2000.

9. Jamal N. Al-Karaki, Ahmed E. Kamal, Routing techniques in wireless sensor networks:
a survey, IEEE Wireless Communications, ISSN: 1536-1284, Dec. 2004, Volume:
11, Issue: 6, page(s) 6- 28.

10. TinyOS: http://www.tinyos.net/ .
11. TinyDB: http://telegraph.cs.berkeley.edu/tinydb/ .
12. David Culler, Prabal Dutta, Cheng Tien Ee, Rodrigo Fonseca, Jonathan Hui, Philip

Levis, Joseph Polastre, Scott Shenker, Ion Stoica, Gilman Tolle, Jerry Zhao, Towards a
Sensor Network Architecture: Lowering the Waistline, Tenth Workshop on Hot Topics
in Operating Systems (HotOS X), Eldorado Hotel, Santa Fe, NM, USA, June 12–15,
2005.

13. Markus C. Huebscher, Julie A. McCann, Adaptive middleware for context-aware
applications in smart-homes, ACM International Conference Proceeding Series; Vol. 77
archive, Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc
computing, Toronto, Ontario, Canada 2004, Pages: 111 – 116, ISBN:1-58113-951-9.

14. Clemens Szyperski, Dominik Gruntz, Stephan Murer, Component Software - Beyond
Object-Oriented Programming, Second Edition Addison-Wesley / ACM Press, 2002.
ISBN 0-201-74572-0.

15. Jurgen Ziegler, End-to-End Concepts Reference Model, Nokia, 2003.
16. D. Vaidya, J. Peng, L. Yang, J. W. Rozenblit, A Framework for Sensor Management in

Wireless and Heterogeneous Sensor Network, ecbs, 12th IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS'05), 2005, pp.
155-162.

17. V. Raghunathan, C. Schurgers, Sung Park, M.B. Srivastava, Energy-aware wireless
microsensor networks, Signal Processing Magazine, IEEE Volume 19, Issue 2, Mar
2002 Page(s):40 – 50. 2002.

18. Guanling Chen, David Kotz, A Survey of Context-Aware Mobile Computing Research,
Department of Computer Science, Dartmouth College, Dartmouth Computer Science
Technical Report TR2000-381.

Paper III

A Formal Model of Context-Awareness and Context-

Dependency

Mats Neovius, Kaisa Sere, Lu Yan and Manoranjan Satpathy

Originally published in proceedings of Fourth IEEE International Conference on

Software Engineering and Formal Methods (SEFM'06), 2006 pp. 177-185.

©2006 IEEE. Reproduced with permission.

A Formal Model of Context-Awareness and Context-Dependency

Mats Neovius, Kaisa Sere, Lu Yan, M. Satpathy
Dept. of Information Technologies, Åbo Akademi University, FIN-20520 Turku, Finland

{Mats.Neovius, Kaisa.Sere, Lu.Yan, Mannu.Satpathy}@abo.fi

Abstract

The communication environment surrounding our
daily experience is increasingly characterized by
mobile devices that can exchange multimedia
information and provide access to various services of
complex nature. The trend is now clear that future
consumer computing experience will be based on
multiple pervasive communication devices and services,
where navigability, context-sensitivity, adaptability
and ubiquity are key characteristics. Several issues
have been studied, models and methodologies
proposed, and tools and systems implemented.
However, we look at the foundation, where some of the
most relevant issues probably are a formal model of
context-awareness and context-dependency. In this
paper, we discuss a formal foundation and software
engineering techniques for mobile context-aware and
context-dependent service derivation and application
development, emphasizing the relationships between
context and system.

1. Introduction

With more than two billions terminals in
commercial operation world-wide, wireless and mobile
technologies have facilitated in the first wave of
pervasive communication systems and applications.
This trend shows several aspects consistent in the
evolution of computing including the increasing
miniaturization of the computing units and an
increasing emphasis of the role of communication
between them. Significant research work has been
done over recent years on these systems at several
levels, from the lowest physical level to the highest
information processing level. However, the latter is
less developed than the research at the lower levels.
For instance, we think that the most relevant issue for
the future perspective of true ubiquitous computing,
context-aware and context-dependency has not
received justified attention in the research community.

The term context has been extensively studied since
the early 1990s; it was mainly associated with the
concept of location, but it is much richer than this;
some works have categorized context into different
aspects, such as computational, user, physical, spatial
and temporal context [1, 2, 3, 4, 5, 6]. However, there
is no consensus on the semantics of the word context in
the literature. In order to reason about the concept, we
interpret context as a setting in which an event occurs,
and this construe, we believe, is suitable for the system
software research.

In a previous work [7], a formal approach to
context-aware mobile computing is described: we offer
the context-aware action systems framework, which
provides a systematic method for managing and
processing context information, defined on a subset of
the classical action systems [8]. Based on the essential
notions and properties of this formalism, we applied
this formalism in deriving context-aware services for
mobile applications [9], and implemented in a wireless
sensor network a smart context-aware kindergarten
scenario where kids are supervised unobtrusively [10].

Issues that have been considered are both
theoretical and practical: modeling the system
requirement rigorously with formal approaches,
deriving the software architecture from formal models,
stepwise refinement of the specification, code
generation, and verification vs. simulation. While all
these research issues have been individually studied in
an extensive way, their interaction within the final
implementation raises new challenges, which
constitutes the focus of this paper.

The remainder of the paper is organized as follows:
after a short introduction to related work in section 2, a
design framework for wireless sensor networks is
presented in section 3. In section 4 we describe a
formal model of context-awareness and context-
dependency, and show the relationship between the
model and software architectures. We discuss a case
study on applying this model to software development
process in section 5, and then conclude the paper in
section 6.

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

2. Related work

Several related works have noticed the importance
of seeking a foundation of context-aware computing
[22]. Roman et al. presented a formal treatment of
context-awareness via extending the mobile UNITY
with context handling part into context UNITY [23].
The context UNITY formalism is similar to our
context-aware action systems formalism, but
approaching from an agent-like view in modeling
context-awareness and context-dependency.

Henricksen et al. showed a conceptual framework
and software infrastructure that together address
known software engineering challenges in context-
aware computing applications [24]. The context model
is built at the semantic level using the CML language
[25], which can be categorized as an extension of the
Object-Role Modeling in software engineering process.

UML approach to context models was presented by
Hinze et al., where UML diagrams are combined with
discrete event systems to facilitate the development of
mobile context-aware systems [26]. Due to the
limitation of UML, which lacks a rigorous mathematic
foundation, this approach can be deemed as a semi-
formal one. The similar UML-like approach can be
found [27], where a simulation-based paradigm was
presented. Besides general aspect of context, fragment
aspects of context, such as ontology [28], rational [29],
middleware [30], trust [31] were also considered.

3. Wireless sensor networks

Wireless sensor networks provide perfect platforms
to study context-aware and context-dependent systems
on. Wireless sensor networks have been an area of
active research since the early 1990s [11], accelerated
by the advancement of wireless networking and the
development of sensors. Only recently, wireless sensor
networks have moved from academic research
concepts to commercially available products,
increasing production quantities.

Although significant research work has been
undertaken, most of the research is still very
application specific, with security and environmental
applications dominating [12]. However, it is likely that
more generic and comprehensive approach is required,
where true system level problems in wireless sensor
networks and their applications can be studied. With
such a perspective, we deduced Figure 1 from the
design framework for wireless sensor networks
proposed in [13].

In this framework, we have distinguished between
context-provider (CP) and context-utilizer; the former
is the reactive part which detects the surroundings and

acquires the context, and latter is the proactive part
which interprets and responds to the context. The
interaction between the context-provider and context-
utilizer constitute a complete context-aware and
context-dependent system (CD). A context-dependent
part of the system depends on a context-provider to
supply the metrics for fulfilling its declared service.

Figure 1. The sensornet system framework

Because the possibly bi-directional communication
and the impossibility of restricting context to be a
sensor reading, all nodes can potentially act as context-
providers as well as context-utilizers. The roles are
dependent on whether the data is propagating (an
inquiry) or composing (a reply).

4. Formalizing context-awareness and
context-dependency

We start by giving a brief overview of the action
system formalism and then present how we model
context-awareness and context-dependency within this
formalism. By mapping the formal model back to the
software architecture of wireless sensor networks, we
show some realistic implementations of this model on
system software research.

4.1. Action systems

The action systems formalism is based on Dijkstra’s
language of guarded commands [14]. This language
includes assignment, sequential composition,
conditional choice, and iteration.

4.1.1. Actions

An action is a guarded command, i.e. a construct of
the form Sg → , where g is a predicate, the guard,
and S is a program statement, the body. An action is

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

said to be enabled when its guard is evaluated to true.
If an action does not change the program state it is
called a stuttering action

The body S of an action is defined as follows:

2121 ;|fielse then if
|}|':{|:|skip|abort::

SSSSg
RxxexS ===

Here x is a list of attributes; e is a corresponding list of
expressions, x’ is a list of variables standing for
unknown values, and R is a relation specified in terms
of x and x’. Intuitively, skip is an stuttering action,
x:=e is a multiple assignment, if g then S1 else S2 fi is
the conditional composition of two statements, and
S1;S2 is the sequential composition of two statements.
The action abort always fails and is used to model
disallowed behaviors. Given a relation R(x,x’) and a
list of attributes x, we denote by {x:=x’|R} the non-
deterministic assignment of some value xRx .'∈ to x
(the effect is the same as abort, if φ=xR.).

The semantics of the actions language has been
defined in terms of weakest preconditions in a standard
way [14]. Thus, for any predicate p, we define:

fi),(else
),(then if),fielse then if(

)),(,(),;(
]':[.')},|':({

]:[),:(
),skip(

false),abort(

2

121

2121

pSwp
pSwpgpSSgwp

pSwpSwppSSwp
xxpxRxpRxxwp

exppexwp
ppwp

pwp

=
=

=⋅∈∀==
===

=
=

where p[x:=e] stands for the result of substituting all
the free occurrences of the attributes x in the predicate
p.

4.1.2. An action’s building blocks

An action system is a construct of the form:

|]
od[]...[][]do

;: var
;:export

;import[|A

21

0

0

nAAA
vv
ee

i

=
=

=

The import section describes the imported variables i
that are not declared, but used in A. The variables i are
declared in other action systems, and thus they model
the communication between action systems. The

export section describes the exported variables e
declared by A. They can be used within A and also
within other action systems that import them. Initially,
they get the values e0. If the initialization is missing,
arbitrary values from the type sets of e are assigned as
initial values. The var section describes the local
variables of action system A. They can be used only
within A. Initially they are assigned values i0, or, if the
initialization is missing, some arbitrary values from
their type set. Technically, all the used variables in
import and export sections are global variables, and
only variables defined in var section are local ones.
The do...od section describes the computation involved
in A. Within the loop, A1, ... , An are actions of A.

The behavior of the action system A is as follows:
the execution starts by initialization of all variables,
and then repeatedly, an enabled action from A1, ... , An
is nondeterministically selected and executed. If two
actions are independent, i.e., they do not have any
variables in common, they can be executed in parallel
[15]. Their parallel execution is then equivalent to
executing the actions one after the other, in either order.

4.1.3. Composition of action systems

An action system is not usually regarded in isolation,
but as a part of a more complex system. A large action
system can be constructed from smaller ones using
composition. Consider two action systems A and B
below:

|]
od[]...[][]do

;: var
;:export

;import[|A

21

0

0

nAAA
vv
ee

i

=
=

=

|]
od[]...[][]do

;: var
;:export

;import[|B

21

0

0

mBBB
ww
ff

j

=
=

=

where φ=∩ wv . We define the parallel composition
of A and B, written A||B, to be the following action
system C:

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

|]
od

[]...[][][][]...[][]do
;:r va
;:export

;import[|B||A

2121

0

0

mn BBBAAA
uu
hh

k

=
=

=

where fehhjik ∪=∪= ,\)(and wvu ∪= .The
initial values of the variables and the actions in A||B
consist of the initial variables and actions of the
original action systems.

The binary parallel composition operator || is
associative and commutative and thus extends
naturally to the parallel composition of a finite set of
action systems. The behavior of a parallel composition
of action systems is dependent on how the individual
action systems interact with each other. The parallel
composition operator can also be used in a reverse
direction to decompose one action system into a
number of those. More on these topics can be found
elsewhere [15].

4.1.4. Refinement of action systems

A formal basis for the stepwise development of
action systems is the refinement calculus [16]. In the
refinement calculus, program statements are identified
with their weakest precondition predicate transformers.
However, the predicate transformer framework is not
sufficient to reason about proactive systems. A trace
refinement extension is described by Back and Wright
[17] and data refinement extension by Sere and
Waldén [18]. Our treatment of the action system
refinement is based on the theory presented there.

4.2. Context models

With this formalism, we start modeling the context-
aware and context-dependent systems by specifying
the context-provider and context-utilizer roles as
described in section 3. First we consider a context-
dependent system, modeled by the action system CD:

|]
od

[][]do
... var
...export

...import[|CD

βTgSg →¬→

=

Here g is the context guard and S is a statement
dependent on the context g: Sg → models the system
behavior with provided context, and Tg →¬ models
the system behavior without provided context; β
stands for the other actions of CD. The context guard g
is a predicate on the local and context variable(s) x. A
subset of the import and the export variables
constitutes the context variables. The value of g is
maintained by some other action system, called
context-provider CP. Consequently, the context
variable x is an imported variable to CD and an
exported variable in CP.

Hence, we need to introduce the context provider,
maintaining g in Figure 2. The context provider can
potentially be a context-utilizer, depending on the
service. If it were not a context-provider, there would
not be any layer requiring handling of the context and
it being the final consumer of the information. Thus,
the provider is an independent, but necessary part of
the system.

The context provider is modeled by action system
CP: where b is a predicate; and },{'|': ggxxxb ¬∈=→
nondeterministically updates the global context
variable x. The nondeterministic update is later refined
to realistic intelligent algorithms. Hence, it models the
context provided to CD.

|]
od

V
},{'|':do

... var

...export
...import[|CP

→¬
¬∈=→

=

b
ggxxxb

Now, the parallel composition of action systems CD
and CP, i.e. CD||CP is a complete context-aware model,
and it models interactions between the context-
provider and context-utilizer.

The implication of this model in the software
architecture design can be explained in Figure 2,
where the gray-shaded areas illustrate the main
responsibility for the nodes belonging to them. The
dark grey area constitutes the sensing nodes, the grey
the en route nodes and the light-grey the gateway node.
Moreover, it should be interpreted so that each item is
considered belonging primarily to layer and
secondarily to segment.

One merit of our model is that we intentionally
separate the origin of the context from the whole
context-aware system. This separation has one
important consequence: the context is the result after

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

processing within the context-provider; i.e. the action
system CP differentiates between data and relevant
data and context is therefore always refined raw data.

Figure 2. Data propagation / composition

As the realistic implication, the above idea
contributes to a further classification of sensor nodes in
wireless sensor networks as Figure 2. In this service
oriented view, all sensors do not necessarily provide
data needed for replying a query, nor does all function
as en route nodes. Consequently, if possible the en
route nodes decide based on the context whether their
underlying sensing nodes can provide relevant
information and thereby, forward them or not. The en
route nodes can also, if implemented, compose data for
providing relevance and energy efficiency. In the end,
the context information is fused in the gateway node
from the en route nodes to provide relevant and
accurate answers for the propagated query.

4.3. Context refinement

In this section we discuss how the refinement
principles can be used together with a parallel
composition rule in our model. We show how to refine
an abstract specification towards a detailed one, as well
as the realistic implications of these refinements in
system software design.

4.3.1. The context-utilizer

First, we consider one simple refinement scenario:

CP||CD'CP||CD R≤

where CD’ is the refinement result of CD. The realistic
implication of this scenario is upgrading the sensor
application without touching the sensing part. This
kind of refinement could mean: suppose we have a
supervisory software CD running on top of the wireless
sensor network infrastructure, now we update the
existing software to a later version with more features
CD’.

Since this category of refinement only concerns
individual action systems, there should not be any
change in the aggregated behavior of the whole system.
Thus, we give the refinement rules as follows [17].

Consider two actions systems CD and CD’:

|]
od

[]...[][]do
;: var
;:export

;import[|CD

21

0

0

nAAA
aa
ee

i

=
=

=

|]
od

[]...[][][]'[]...[]'[]'do
;':' var

;:export
;import[|CD'

2121

0

0

mn XXXAAA
aa
ee

i

=
=

=

where the local variables a in CD are replaced with
new local variables a’ in CD’. The actions Ai in CD are
replaced with Ai’ in CD’, and auxiliary actions Xj are
added into CD’.

R is a mapping relation between the new local
variable a’ and the old variable a. Consequently, we
can say that the action system CD is refined by the
action system CD’, if there exists an abstraction
relation R(a,a’) such that the following conditions hold:

1. Initialization:)',(00 aaR
2. Main actions: niAA iRi ,...,1for,' =≤
3. Auxiliary actions: mjX jR ,...,1for,skip =≤
4. Continuation condition: 'gCDgCDR ∧
5. Internal convergence:

) trueod,[]...[][]do(21 mXXXwpR

Here, the first condition says that the abstraction is
established by the initializations. The second condition
requires that each action Ai is refined by the
corresponding action Ai’ using R(a,a’). The third
condition states that the auxiliary actions Xj behave like

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

skip with respect to the global variables ei ∪ while
preserving R(a,a’). The fourth condition requires that
an action in CD’ is enabled whenever an action in CD
is enabled and R(a,a’) holds. The last condition
stipulates that the execution of the auxiliary actions
taken separately cannot continue forever whenever
R(a,a’) holds.

4.3.2. Refining the context variable

The other simple refinement scenario considers the
context-provider itself:

CP'||CDCP||CD R≤

where CP’ is the refinement result of CP. The realistic
implication of this scenario is in improving the context
processing unit without touching the upper layer sensor
applications. This kind of refinement could be
exemplified by for example: suppose we have a
supervisory software running on top of the wireless
sensor network infrastructure, now we improve the
wireless sensor network infrastructure to provide more
relevant and precise context information.

This category of refinement also concerns
individual action systems and there is no change in the
aggregated behavior of the whole system. Therefore,
we can use the refinement rules described in section
4.3.1 in this case as well.

Here we consider one common refinement example
on refining the context providing algorithm. In our
initial model, the context providing algorithm is
rudimentally expressed as },{'|': ggxxxb ¬∈=→ .
There is a need for further refining this algorithm into a
realistic intelligent one. Usually this kind of refinement
only refines local actions, more about this can be
found elsewhere [18].

4.3.3. Compositional refinement

The last refinement scenario is a complex one,
where the context-provider and context-utilizer co-
refine together; i.e.,

CP'||CD'CP||CD R≤

where CD’ is the refinement result of CD, and CP’ is
the refinement result of CP. The realistic implication of
this scenario is refining the sensing part and
application part simultaneously, interacting with each
other. This kind of refinement could be exemplified as:
suppose we have a supervisory software running on top
of the wireless sensor network infrastructure, now we
redesign the whole system, touching both the existing

upper layer software and lower layer wireless sensor
network infrastructure.

Obviously, this category of refinement is complex,
because it concerns not only the individual behavior of
each action system but also the aggregated behavior of
the whole system [19].

Figure 3. Individual refinement vs.
compositional refinement

We can use the compositional refinement extension
by Back and Wright [19], together with other
refinement rules in section 4.3.1 and section 4.3.2, to
refine this kind of scenario. In order to make the paper
concise, we do not list down the complete refinement
rules (more on these topics can be found [19]), but
present an intuitive illustration for understanding this
kind of refinement in Figure 3, where an arrow
represents a refinement step and a line represents an
abstraction relation.

Here we show an example of introducing new
context to the whole system via compositional
refinement: suppose we have the original system
modeled as CD||CP, where CD and CP are defined in
section 4.2. In this original setting, we have only g as
our context. Now we would like to extend the context
part by introducing a new context to the whole system.
In reality, this scenario implies the case as utilizing
additional data in the system which makes it necessary
to redesign the system.

Using the compositional refinement, we can
approach the problem as follows. First we consider the
CD’, which is the refinement result of CD. Let this
new extra context be d. Assume d is a subset of g¬ ,
i.e. gd ¬⊆ . Applying the refinement rules in section
4.3.1 and section 4.3.2, we can refine the original
action Tg →¬ in section 4.2 into two new actions

')\[](TdgRd →¬→

where R and T’ are refined statements satisfying

'and TTRT RR ≤≤

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

Then the new context V’ is evaluated in CP’, which is
the refinement result of CP, declared in section 4.2.

'\ Vdb →¬

Now CD’||CP’ is the refinement result of CD||CP.
Actually this is an effective way of stepwise adding

new features to the system, when simultaneously
touching both the sensing part and the application part
is inevitable. If we limit the context to system failure,
this approach is similar to the work in [20] in which
fault tolerance has been introduced to handle certain
kind of faults.

5. Case study: from specification, via
formalism, to implementation

We have implemented a smart kindergarten
(nursery school) scenario as a case study for the
proposed context-role categorization approach. The
core concept of this application is illustrated in Figure
4, as a smart surveillance system for a kindergarten.

The system consists of stationary base stations,
mobile sensor nodes which are attached to the children,
and the supervisory application. The children are
allowed to move freely in a predefined area
(playground), and the supervisor is able to get the
location information of all nodes (visually). When a
child leaves the predefined area, the alertness level of
the system increases, and the supervisor is informed.
Higher alertness level implies intensified
communication. Moreover, intensified location
reporting, by the distinct node, is conducted when
vibration is detected (the child is expected to be
moving).

Figure 4. Smart kindergarten case study

This scenario is a typical context-aware and
context-dependent example consisting of a context-

provider and a context-utilizer. The system behavior,
the context-utilizer, is critically dependent on different
contexts provided by the context-provider, i.e. for
supervision and localization. Moreover, in this
particular example the base stations function as
context-providers, the beacon, as well as context-
utilizers, calculating the position and raising the
alertness level.

Figure 5. Final model of the system

Using the proposed context model in section 4, we
implemented a variant of ROCRSSI [21] for the
localizing service. Here we show a reduced model of
the system in Figure 5, which is the stepwise
developed result of Figure 1. This model works as the
basis of the kindergarten application. The conclusion
drawn was that the system is hierarchically
pushing/pulling context information.

In order to make the paper concise, we elaborate a
reduced system specification here, corresponding to
Figure 5. A description of the kindergarten application
and its implementation is available elsewhere [10].

The gateway segment on the application layer in
Figure 5 consists of a system Main which has been
formalized as a composition of three subsystems
AenquirePosition, AsetBorders, AstartUp and an
interface system pushing data towards the inquirer.
Main is below formalized as an action system. We take
the subsystem AenquirePosition and its thread as our
example.

The Main system is active on nodes belonging to
the gateway segment. The subsystem AstartUp handles
system the initialization, AsetBorders the definition
process of the playground area and AenquirePostion
request the position of a node (child). The system
AenquirePosition fires when a user input of locEnquiry
is detected. A variable called task is defined as a tuple
space, functioning as the link to other action systems,
defined underneath.

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

Gateway Segment
Main = AenquirePosition || AsetBorders || AstartUp

AenquirePosition = |[
userInput locEnquiry;
export task;
var task = {(type,xa,yb,zc,flag)}…;
do

task := task ∪ {(location, locEnquiry, y, z, false)})
od
]|

The En Route segment is active on the intermediate
nodes functioning as “forwarders” in the system. It
provides a service called ToDo. One instance in ToDo
is AgetPosition that is context-dependent of the content
in variable task. If AenquirePosition in the gateway
segment is triggered, AgetPostion is also triggered.
AgetPostion imports the task variable and in addition, a
variable called recHeardSig that originates from the
sensor segment. This action system also exports
variables execute (imported to the sensor segment) and
locationNodex (imported into gateway segment).
Consequently, AgetPostion is CD upon task and
recHeardSig but a CP for execute and locationNodex.
Here we do not give the specification of the En Route
segment because of its complexity.

The specification for the sensor segment is shown
underneath. The principles are the same as for the
gateway segment.

Sensor Segment
Tracking= AsetCurrentState || Aresponse

Aresponse |[
import execute, recTimeSec nowTime;
export recHeardSig, execute;
var recHeardSig∈{(inqNodeID, (ids, dst, timeStamp))},

stopTime ∈ Nat;
do
stopTime := nowTime + recTimeSec
if
nowTime < stopTime -> recHeardSig := recHeardSig

∪ (myID, (ids, dst, stopTime)) ∧
(∀ execute.nodeID = myID : execute.flag = true)

fi
od
]|

The refinement has followed the ideas presented in
this paper. The context variable is refined to be
relevant for the user, providing an answer for the
inquired task. For example, the amount of information
for the user is limited if only a child’s distance to its
heard base stations would be provided. The relevance
is increased by adding the location of the base stations
and thus, the relative position of the child. This relation
can be mapped into defined areas (AsetBorders).

Compositional refinement is conducted as soon as
an imported / exported variable type is changed, that is
when new functionality is added.

6. Concluding remarks

By taking a formal view of context-aware
computing, we are able to reason about the
foundational relationships that process context. A
formal approach provides a framework for
understanding the basic principles behind these various
forms of interactions. In particular, our context model
in this paper serves as a rigorous basis for the further
development of a formal framework for design and
evaluation of context-aware technologies.

Reference

[1] A. K. Dey and G. D. Abowd. Towards a better
understanding of context and context-awareness. In Proc.
CHI 2000 Workshop on the What, Who, Where, When, and
How of Context-Awareness, The Hague, The Netherlands,
2000.

[2] Mika Raento, Antti Oulasvirta, Renaud Petit, Hannu
Toivonen. ContextPhone - A prototyping platform for
context-aware mobile applications. In IEEE Pervasive
Computing, 4 (2): 51-59, 2005.

[3] Special issue on Context-Aware Computing. IEEE
Pervasive Computing, 2002.

[4] H. Chen, T. Finin, and A. Joshi. An ontology for
contextaware pervasive computing environments. Special
Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review, 18(3):197.207, 2004.

[5] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is
more to context than location. Computers & Graphics, 23(6):
893-901, 1999.

[6] G. Chen and D. Kotz. A survey of context-aware mobile
computing. Technical Report TR2000-381, Dartmouth
College, Department of Computer Science, 2000.

[7] Lu Yan and Kaisa Sere. A Formalism for Context-Aware
Mobile Computing. In Proc. Third International Symposium
on Parallel and Distributed Computing/Third International
Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks, 2004.

[8] R.J.Back and K. Sere. From Action Systems to Modular
Systems. In Software - Concepts and Tools. (1996) 17: 26-39.

[9] Mats Neovius and Christoffer Beck. From requirements
via context-aware formalisation to implementation. In Proc.

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

the 17th Nordic Workshop on Programming Theory,
Copenhagen, Denmark, 2005.

[10] Christoffer Beck. An application and evaluation of
Sensor Networks. Master thesis, Åbo Akademi, Finland,
2005.

[11] S. Sitharama Iyengar and Richard R. Brooks.
Distributed Sensor Networks. Chapman & Hall/CRC, 2004.

[12] Eiko Yoneki and Jean Bacon. A survey of Wireless
Sensor Network technologies: research trends and
middleware’s role. Technical Report UCAM-CL-TR-646,
University of Cambridge.

[13] Mats Neovius and Lu Yan. A Design Framework for
Wireless Sensor Networks. To appear in Proc. of IFIP 1st
International Conference on Ad-Hoc Networking, Santiago
De Chile, Chile. 2006

[14] E. W. Dijkstra. A Discipline of Programming. Prentice
Hall, 1976.

[15] R.J. Back and K. Sere. Stepwise Refinement of Action
Systems. In Structured Programming, 12(1): 17-30, 1991.

[16] Ralph-Johan Back, Joakim von Wright. Refinement
Calculus: A Systematic Introduction. Graduate Texts in
Computer Science, Springer-Verlag, 1998.

[17] Ralph-Johan Back, Joakim von Wright. Trace
Refinement of Action Systems. In Proc. 5th International
Conference Concurrency Theory, Lecture Notes in Computer
Science 836, Springer, 1994.

[18] Kaisa Sere, Marina A. Waldén. Data Refinement and
Remote Procedures. In Proc. Third International Symposium
on Theoretical Aspects of Computer Software, Lecture Notes
in Computer Science 1281, Springer 1997.

[19] R. J. Back and J. von Wright. Compositional action
system refinement. In Proc. BCS FACS Refinement
Workshop, Vol. 70 of Electronic Notes in Theoretical
Computer Science, Elsevier 2002.

[20] K. Sere and E. Troubitsyna. Hazard Analysis in Formal
Specification. In Proc. of SAFECOMP'99, Toulouse, France,
September 1999. Lecture Notes in Computer Science 1710,
Springer Verlag.

[21] Chong Liu, Kui Wu, and Tian He. Sensor localization
with Ring Overlapping based on Comparison of Received
Signal Strength Indicator. In Proc. IEEE International
Conference on Mobile Ad-hoc and Sensor Systems (MASS),
Oct. 2004.

[22] Paul Dourish. Where The Action Is: The Foundations of
Embodied Interaction. MIT Press, 2001.

[23] Gruia-Catalin Roman, Christine Julien, and Jamie
Payton. A Formal Treatment of Context-Awareness. In Proc.

7th International Conference Fundamental Approaches to
Software Engineering (FASE), Lecture Notes in Computer
Science 2984, Springer 2004.

[24] Karen Henricksen and Jadwiga Indulska. A Software
Engineering Framework for Context-Aware Pervasive
Computing. In Proc. 2nd IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2004.

[25] K. Henricksen. A framework for context-aware
pervasive computing applications. PhD thesis, University of
Queensland, Sept. 2003.

[26] A. Hinze, P. Malik, and R. Malik. Interaction design for
a mobile context-aware system using discrete event
modelling. In Proc. Twenty-nineth Australian Computer
Science Conference (ACSC), Hobart, Australia, 2006.

[27] Ping Guo and Reiko Heckel. Modeling and Simulation
of Context-Aware Mobile Systems. In Proc. 19th IEEE
International Conference on Automated Software
Engineering (ASE), 2004.

[28] Andreas Pappas, Stephen Hailes, and Raffaele Giaffreda.
A design model for context-aware services based on
primitive contexts. In Proc. UbiComp 2004.

[29] Yannis Roussos and Yannis Stavrakas. Towards a
Context-Aware Relational Model. Technical Report TR-
2005-1, National Technical University of Athens, 2005.

[30] Eleftheria Katsiri. Middleware support for context-
awareness in distributed sensor-driven systems. Ph.D. Thesis,
University of Cambridge, Feb. 2005.

[31] Marco Carbone, Mogens Nielsen, and Vladimiro
Sassone. A Formal Model for Trust in Dynamic Networks.
BRICS Report RS-03-4, 2003.

Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal Methods (SEFM'06)
0-7695-2678-0/06 $20.00 © 2006

Paper IV

Formal Modular Modelling of Context-Awareness

Mats Neovius and Kaisa Sere

Originally published in Formal Methods for Components and Objects, Frank S.

Boer, Marcello M. Bonsangue, and Eric Madelaine (Eds.). Lecture Notes In

Computer Science, vol. 5751. Springer-Verlag, Berlin, Heidelberg, 2009 pp.

102-118.

©2009 Springer-Verlag GmbH. Reproduced with permission.

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 102–118, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Formal Modular Modelling of Context-Awareness

Mats Neovius1,2 and Kaisa Sere1

1 Åbo Akademi University, Joukahaisenkatu 3 – 5, 20520 Turku, Finland
2 Turku Center for Computer Science, Joukahaisenkatu 3 – 5, 20520 Turku, Finland

{mats.neovius,kaisa.sere}@abo.fi

Abstract. Characterising for a context-aware software is its ability to adjust
to the prevailing situation. Such software reacts and bases the context-aware
decisions upon inputs describing its operating conditions, i.e. on context(s). In
this paper, we will seek the roots of context(s) and reason on the methods for
deducing information by processing contexts; that is, present a methodology to
enhance the relevance from raw data to knowledge. Thus, this paper will point
out the relationship between introducing, constructing, serving, gluing and util-
ising context. Moreover, we show how to in a structured manner construct a
context-service that satisfies given requirements and supplement the context-
aware utiliser. For the sake of reuse and scalability, we will separate an applica-
tion’s specification from context reasoning and consider them as systems
in their own rights. The findings will be motivated on a general level, with an
easily conceivable example and formalised with the action system formalism.

1 Introduction

With the electro-mechanical development and the miniaturisation of transistors, the once
fictitious deployment scenarios of computerised gadgetry turn into reality. As the com-
puting is being weaved into the very foundations of our society, the domain of applicabil-
ity extends. The reliance and expectations placed on these computerised gadgets are also
ever increasing. Among others, gadgets are expected to be aware of the surrounding
conditions and adapt automatically to them as envisioned by Weiser in 1991 [1]; that is,
be context-aware. Because this development is likely going to continue, the future will be
about navigating the ubiquity of information, being able to select, rely on and process
relevant information [2, 3] as well as to reason rigorously with these.

Context in all its aspects complements software. As software alone is algorithmic and
bound to operate on mathematical rules; the source of context in all its forms is data
relying on some reading that characterise the operating conditions, e.g. temperature,
location or identity. However, the contexts are ambiguous due to inherent inaccuracies of
the acquiring equipments but are from the system’s point of view unambiguous as no
more descriptive data is available. Hence, context breaks the algorithmic model down [4]
but introduces the possibility to context-awareness. Moreover, the provided contexts
must be universal as no obligations on its utiliser aka. context consumer [5] or widgets
[6], can be placed at time of creation. On the other hand, even though the application’s
algorithmic calculations were verifiable correct, misinterpreting a context is similar to

 Formal Modular Modelling of Context-Awareness 103

misinterpreting the operating conditions. Since context typically constitutes a decisive
artefact, such misinterpretation can potentially result in faulty behaviour. We will how-
ever not consider faulty, absent, timeout or ambiguity of contextual information, as sheer
fault tolerance and dependability issues branches to a separate field of research [7, 8, 9].

In paper we argue that a context-aware system cannot be said to be verified unless
the construction and integration process of the necessary contextual information is. The
sole reason is that discarding the treatment of context is intolerable for the sake of
rigour, constituting the motivation of this paper. The main contribution addresses this
source of motivation; this paper provides a methodology that will challenge the context
(system) engineer to formally specify how the contextual information is constructed
and integrated to a context-aware system that is to operate in a continuously changing
contextual surrounding. That is, this paper is not about how to use context(s) but on
what the context(s) constitute of, what are demanded from them and specifying how
they are treated for providing rigorously to the required context-aware functionality.

Our approach takes an abstract view on the continuously changing context in a sys-
tem. The contexts are considered globally available and thus, modelling the functional
behaviour with shared variables suites our purpose well. Hence, we will concentrate
on assuring the correct treatment of the provided (deduced) context. We treat context
in a modular fashion defining an interface for the utiliser with which to depend on the
contextual information through the glue that acquires and prepares contexts. This
modularity is fundamental for the sake of adaptability [3], and hence also for scalabil-
ity and reusability. Consequently, the context can be considered to be provided by a
standalone, independent, replaceable and interoperable service. We use the action
system formalism [10, 11, 12] to formally specify treatment of context, where the
required syntactical language constructs are discussed in greater detail in Section 3.

We build on our earlier work [13, 14, 15] providing a methodology for integrating,
depending on and formally treating continuously changing context. The context is
represented by modules in separation from its utiliser alike in Context UNITY [3] that
relates to our work but having an agent-like view on context-awareness with policies
on updating the common context. In process calculi, Braione and Picco [16] consider
an approach where inhibiting channels with context enables different implementations
satisfying the same basic requirement whilst Zimmer [17] formalises, among others, a
remote procedure call. Other approaches we are aware of [18, 19, 20] consider how a
specification can be constructed given a rigorously modelled continuously changing
environment, yielding a specification on the certain environment that it models.

The outline of this paper is as follows: in Section 2 we provide our definition of
context and an example that is used throughout the paper. Section 3 introduces the
action system formalism used to formally reason about context. Section 4 ties the
context model with the action system formalism presenting how context is utilised,
discovered, processed and composed for increasing the informative value. Finally,
Section 5 concludes this paper.

2 Concepts Used in This Paper

We start by providing a definition of context and its different appearances. In Section 2.2
we outline an example to support the intuition of the reader when gradually referred to
along with the formal definitions to various aspects that are provided throughout this
paper.

104 M. Neovius and K. Sere

2.1 Definition of Context and Context Related Matters

Research on context and context-awareness stems from 1992 and Olivetti’s Active
Badge research [21]. Following this, context has been given many and varying defini-
tions. Pascoe [22] consider context to be subjective and defined by the entity that
perceives it. Pascoe’s subjectivity however refers to the perception made on the given
context, such as ‘close to’. Schilt et al. [23] considers aspects of context as “where
you are, who you are with and what resources are nearby”. Chen and Kotz [24] de-
fines context to be environmental states and settings that affect the application and
Yang and Galis [25] add the virtual object to the definition. Hence, according to these
definitions context describe the operating conditions that have an impact on the appli-
cation. As we concur with all, but further add the dictionary interpretations [26, 27]
and Dey’s and Abowd’s [28], we end up in defining context accordingly:

Thus, according to the definition, context is a piece of information describing the
situation of/in an entity that impacts the output/computations. Such context is typi-
cally extracted from either the logical e.g. identity, member of workgroup, time; or
from the physical surroundings e.g. temperature, luminosity [29]. We do however not
consider context to be cold, high, close, pretty, late or any other perceived matter.

In this paper, we call the source of contextual data elementary context. An elemen-
tary context is always from the system’s point of view, a still-shot of the matter as it
was at a specific moment. We call the outcome of composing contexts together and/or
processing elementary contexts for providing enhanced information deduced context;
which covers roles and relations of entities [30]. Consequently, we use the word con-
text on a general level, whether it being an elementary or deduced context. The con-
texts are only updated by the entity introducing them. Given this definition and its
interpretations, we define an activity or a system to be context-aware whenever any of
its functionalities are impacted by some context per definition [28]. In other words,
nearly all software reacting on some input could be considered context-aware to some
extent [6].

The instance providing for the context is called a context-service. Thereby, a
context-service is typically a careful composition of elementary context(s) that is
considered an entity in its own right. The consumer of a service, the application or an
intermediate compositional entity, is called the utiliser of this context-service.

In order for a context-service to provide some deduced contextual information, the
service’s output needs to be published. As an elementary context as such can poten-
tially constitute a context-service in its own right, all context need to be published.
Because all contexts are published, one context can provide to several context-
services. For example, temperature at location x can be inquired by an utiliser, where
translated to a Boolean (<20°C) as well as read to be used in some other service for
calculating average temperature.

Definition 1, context: Context is any information that can be used to charac-
terise the situation of entities. An entity is a person, place, object, virtual ob-
ject or state that is considered relevant to the interaction between a user and
an application, including the user and the application themselves.

 Formal Modular Modelling of Context-Awareness 105

2.2 The Example: A Fictitious Speed Surveillance System

In order to motivate our ideas, we will construct a fraction of a simplified fictitious
context-service providing the necessities for a speed surveillance system. The speed
surveillance system is able to decide whether to allow further acceleration, qualifying
as a good example encompassing straight forward decision making. The example
demonstrate that once the algorithmic functionality of a context utiliser is verified, the
hazards relate to the informal acquiring and perception of the information provided by
context [31, 32]. It relies on easily conceivable calculations and on three distinct ele-
ments of contexts; namely one counting for current speed, one for the speed limit and
one for whether the gas pedal position indicates acceleration. As the speed inevitably
involves the logical context of time, we will show how to construct and integrate the
context-service providing the perceived state of speeding, depicted in Figure 1.

Fig. 1. Speed surveillance context architecture

In Figure 1, the bottommost “diamonds” depicts elementary contexts. The boxes
compose and/or process the elementary context. Because the surveillance system is
context-aware functioning in a continuously changing conditions where non-
algorithmic events occur, exceptions to the functionality are implementable, depicted
with the dashed lines and ‘other’ boxes. We show the adaptability of our approach by
introducing the factor of a trailer coupling fixing the maximum speed limit. Exam-
ples basing on this surveillance system are clearly distinguishable in the text.

3 The Action System Formalism at a Glimpse

Formal methods facilitate systematic construction of reliable and rigorous software.
Even though elementary contexts, as defined in this paper, are not software, formal
treatment of them is important as they constitute in a decisive factor in the functional-
ity of the context-aware software. Hence, not only the way contexts are integrated
to software, but the methodology of composing deduced contexts from elementary
context is of interest.

106 M. Neovius and K. Sere

We model the construction and integration of contextual knowledge in the action
system formalism. The action system framework provides means for reasoning about
the contextual information in a modular, distributed, manner. For brevity, we omit
type checking of the variables. Moreover, we aim at presenting a methodology rather
than stepwise development, omitting the supported paradigm of refinement. Readers
interested in the powerful methodology of refinement are directed to publications
devoted to describing this [10, 11, 13, 33, 34, 35, 36, 37]. However, we feel obliged to
stress that since refinement is about preserving correctness on mathematical founda-
tions, it is restricted to the algorithmic part [4, 31, 32] and thereby, refinement as
presented in the referenced literature, cannot be directly applied on the physical or
logical elementary contexts.

3.1 Action System at a Glimpse

The action system framework is a state based formalism for defining distributed sys-
tems [12, 38]. It bases on Dijkstra’s language of guarded commands [39, 40] and is
defined with the weakest precondition predicate transformer, wp. From wp (A, q) we
can derive all pre-conditions for which executing action A, the post-condition q is
satisfied where pre and post-conditions are predicates over state variables. The weak-
est precondition is defined for various actions as follows:

wp (abort, q) = false Aborting action
wp (magic, q) = true Miraculous action
wp (skip, q) = q Stuttering action
wp (x ≔ E, q) = q[E/x] Multiple assignment
wp (A; B, q) = wp (A, wp (B, q)) Sequential composition
wp (A [] B, q) = wp (A, q) ∧ wp (B, q) Nondeterministic choice
wp ([a], q) = a ⇒ q Assumption
wp ({a}, q) = a ∧ q Assertion

The action abort is used to model disallowed behaviour, thus q is never satisfied, i.e.
the outcome is false. Action magic always establishes true. Stuttering action skip does
nothing, thus, the weakest pre-condition for establishing post-condition q is q. Action
x ≔ E is multiple assignment where every occurrence of x is substituted with an ele-
ment from E. A; B is the sequential composition of two actions and A [] B the nonde-
terministic choice between actions A and B. [a] is the assumption and {a} is called the
assertion. Assumption [a] is assumed true and {a} is a predicate needed to evaluate
true in order for the execution to proceed to guarantee q. If assumption ‘a’ is false, the
action behaves magically whilst if assertion ‘a’ evaluates false, the action aborts.

The language allows guarded commands, [g]; A, for convenience written g → A,
where g is the guard, the predicate and A the action, meaning in the wp-notation:

wp (g → A, q) = g ⇒ wp (A, q)
that given the guard g, executing A satisfies q. The guard of A, gA is defined so that it
does assure the establishment of a valid post-condition.

gA = ¬wp (A, false)
Having defined the guarded actions, we can define conditional choice and repetitive
construct:

 Formal Modular Modelling of Context-Awareness 107

wp (if A fi, q) = wp (A, q) ∧ gA
wp (do A od, q) = (∀n.wp (An, gA ∨ q)) ∧ (∃n.¬gAn)

where A0 = skip and An+1 = An; A. The repetitive construct defines that each action
enables another or establishes q and that there must exist some that does not enable
any other, i.e. partial correctness and termination. Within the repetitive construct, we
define an action to only execute whenever its guarding predicate evaluates true.

To start reasoning with action systems, we define the elements of one, here
named ࣛ:

In ࣛ, v and w* are the variables declared by this action system. Variables v are local
and w* constitute the uniquely named exported variables (denoted with an asterisk).
The clause proc defines procedures where P: p is a local procedure p labelled P, only
executed if called upon whilst R* is a uniquely named globally referable procedure. A
procedure is substituted for each call on it from an action. Action Init:A0 is the initial-
ising action assigning the variables their initial value where Init is the label of this
action, A0. Each action and procedure label belongs to the Names of labels in the de-
claring action system. The do…od bracket pair constitutes the repetitive construct
within which the action A, labelled Lbl, is repeatedly executed until A aborts or until
termination i.e. when gA evaluates false; otherwise it continues infinitely. Whenever
gA evaluates true, we say that the action is enabled. Of the enabled action(s) within
the do…od clause, one is chosen non-deterministically for atomic execution. Vari-
ables i stand for the optional imported variables that are declared and exported
by other action systems but referenced from this. Together, import i and export w*
variables constitute a situation resembling shared writable memory between action
systems.

This paper considers reactive action systems in which action system ࣛ is a part of
a greater system where all other action systems are considered in their own rights but
as ࣛ‘s environment, commonly denoted as ℰ for environment. As the action atomic-
ity holds on the greater system, an action of ࣛ can be preceded by an action in ℰ
impacting ࣛ by writing to ࣛ‘s global variable space. Consequently, in a reactive
system a component does not terminate by itself as the environment can, through the
global variables, enable some actions within this. This makes termination a global
property and the formalism comes to showing properties of execution traces.

Distinct action systems can be composed according to Definition 3:

Definition 3, parallel composition ‘||’: Let ࣛ and ℬ be two action systems ࣛ = |[var va, wa*; proc P:p ● Init:A0; do LblA: A od]| : i ℬ = |[var vb, wb*; proc R*:r ● Init:B0; do LblB: B od]| : j
Then, their compositional action system ࣝ = ࣛ || ℬ is ࣝ = |[var vm, wn*; proc P:p; R*:r ●Init:A0; B0 do LblA: A
 [] LblB: B od]|: h

Where h = i ⋃ j\(wa ⋃ wb), wc* = wa ⋃ wb and vc = va ⋃ vb given that va ⋂ vb= ∅.

Definition 2, action system: ࣛ = |[var v,w*; proc P:p; R*:r● Init: A0; do Lbl:A od]|:i

108 M. Neovius and K. Sere

In Definition 3, action system ࣝ is a parallel composition of ࣛ and ℬ. The definition
basically states that if a set of action systems operate on disjoint set of local variables,
va ⋂ vb = ∅, procedure names and action labels, they can be composed to one action
system where the actions within the repetitive do … od loop are treated non-
deterministically and procedures remain intact. If the local variables are not disjoint or
the local procedure names coincide, non-interference can be achieved through renam-
ing. This compositionality provides a powerful means to formally compose and de-
compose action systems for abstraction and refactoring. In total, the action system
framework provides us with a well established mathematically verified ‘toolbox’ with
a sound semantic foundation to formally master modularisation, parallel composition,
parallel and sequential execution, conditional and repetitive constructs.

3.2 Action Systems for Modelling Context

When modelling context, the import and export clauses do not suffice for passing of
context due to the possibility of overwriting. Consequently, we introduce two new
variable types for declarations of locally writable and globally readable variables:
read_only and publish respectively denoted by a suffixing ⋄, called sentient and im-
pact variables by Roman et. al. [3]. Hence, advertising and reading the non-writeable
context is possible, addressed in Property 1.

Property 1, context passing: Each read_only variable has exactly one system pub-
lishing it.

In addition, the introduction of elementary contexts motivates declaration of a special
clause to the action system called elemContext, revising Definition 2 to 2’.

In Definition 2’, elemContext denotes the non-writeable elementary context c intro-
duced by this action system whilst variables x⋄ and y⋄ denote the published and
read_only variables respectively.

One elementary context can contribute to many deduced context. Thus, the action
system introducing an elementary context needs to publish it as such, without
alternation or processing, addressed in Property 2.

Property 2, introduction of context: Each elementary context is published as such.

The new variable types compel to revision of Definition 3 to 3’:

Definition 2’, contextual action system: ࣛ=|[elemContext c; var v,w*, x⋄; proc P:p; R*:r● Init:A0; do Lbl:Aod]|:i, y⋄

Definition 3’, parallel composition of contextual action systems ‘||’:
Definition 3 with read_only variables va⋄, vb⋄, vc⋄; publish variables wa⋄, wb⋄,
wc⋄ and elemContext ca, cb

 and cc for ࣛ, ℬ and ࣝ respectively. Then:
vc⋄ = va⋄ ⋃ vb⋄\ (wa⋄ ⋃ wb⋄), wc⋄ = wa⋄ ⋃ wb⋄, cc⋄ = ca⋄ ⋃ cb⋄

provided that ∀ca∈ wa
 and ∀cb ∈ wb.

 Formal Modular Modelling of Context-Awareness 109

Given these definitions and properties, we can denote contextual action systems
and encapsulate its algorithmic calculations for verification. We exemplify this in
example 1, omitting several pitfalls such as assurance of type checking.

Example 1: Consider three action systems, ℱ, ࣡ and ℋ calculating velocity based on
revolutions in degrees per second (rps) and diameter. ℱ = |[var vel⋄ ● Init:F0;

do Km/h: true → vel⋄ ≔ rpm⋄ × dia⋄ × π × 60 ÷ 1000 od]| : iF, rpm⋄, dia⋄ ࣡ = |[elemContext rps; var rpm⋄, v⋄ ● Init:G0;
do RevPerMin: true → v⋄ ≔ rps; rpm⋄ ≔ (rps ÷ 360 × 60) mod 1 od]|: iG ℋ = |[elemContext diameter; var dia⋄● Init:H0;
do WheelDia: true → dia⋄ ≔ diameter od]| : iH

The action system ℱ provides a service constituting of the deduced context velocity in
km/h through the publish variable vel⋄. vel⋄ is calculated in the action labelled Km/h,
given that the read_only variables are provided. Service ℋ provides the diameter in me-
ters and publishes this as dia⋄ and ࣡ provides the service rpm⋄ in revolutions per min-
ute. Here, ℋ merely maps the elementary context whilst ࣡ processes the elementary
context rps to rpm⋄. Hence, ࣡ and ℱ function as the algorithmic part that is subjects to
verification. Moreover, ࣡ publishes the elementary context rps unchanged as v⋄. Unit
concurrence, absolute vs. relative velocity, tolerance to mention a few are omitted. –
end of example

In addition to the two types of variables and elemContext, we need to define means
for the context utiliser to acquire this with unidirectional dependency, the glue.
Thereby, we define a language construct called dependency operator, \\:

Definition 4 states the definition for \\ language construct denoting a dependency
relation between two actions. This dependency relation is unidirectional, where both
actions A and B need to be enabled and A guaranteed not to disable B1 for A\\B to be
enabled. Mathematically, action B evaluates its guard gB prior to execution.

We will model the dependency on action/procedure labels in order to avoid confu-
sion of concepts, i.e. A\\Borig in action system ࣞ where Borig is the label of an action. ࣞ = |[var w; proc P; ● Init: D0; do LblAdependB: A\\Borig [] Borig: B od]| : i

Declaring dependency between A and B directly restricts the expressiveness of action B
to the inclusion of its guard as we cannot differentiate when action B is executed as a
dependency reference and when as an action in its own right. Expressiveness is
achieved by referencing a procedure instead of action B’s label directly i.e. the action
labelled LblAdependB: A\\Borig translates to A\\P where P stands for a procedure that
enables a specific variant of action B where the procedure action is substituted for the
call on it. We label this specific variant Bwake. Bwake is executed once in the wake of a
dependency reference, disables itself with a guard complementing gBorig. Hence, the
action labelled Borig split up to two actions, Bnat and Bwake, making an action specifically

1 The guard for A\\B: ¬wp(A\\B, false) = gA ∧ gB ∧ ¬wp(A, ¬gB).

Definition 4, \\ dependency operator: Let A and B be two actions. Then,
A\\B is defined as: A\\B = gA ∧ gB → A; B.

110 M. Neovius and K. Sere

for dependency reference purposes. However, doing so breaks the atomicity of \\ and
assurance of no other action disabling Bwake needs to be guaranteed, formally defined as
atomicity refinement [10, 11]. ࣲ = |[… do LblAdependB: A\\Borig [] Borig: B od …]|

-- translates to – ࣲ = |[… proc P: gB ∧ coord = false → coord ≔ true
 do LblAdependB: gA ∧ gP → A; P
 [] Bwake: gB ∧ coord = true → B; coord ≔ false
 [] Bnat: gB ∧ coord = false → B
 od …]|

In the operational outline above, notable is that both Bwake and Bnat assure execution
of action B, i.e. Borig and the add-on guards exclude each other. The referenced proce-
dure P’s guard must include gB. The Boolean coordination variable coord assures that
no dependencies are “pending”2. Procedure call substitution makes action labelled
LblAdependB to execute the following:

LblAdependB: gA ∧ gB ∧ coord = false → A; coord ≔ true

For assurance of the transformation validity, the translation compliance with refine-
ment ought to be shown. Indeed, the refinement calculus provides the conditions for
auxiliary functionality to be added to Bwake and/or Bnat. Consequently, we have
reached the situation of Definition 4 where given action A\\Borig, A depends on an
action labelled Bwake through the variables assigned by procedure P that guarantees
execution of action B exactly once in the wake of action A.

In addition to \\, we define the @ operator to enable remote references in
Definition 5.

Combining Definitions 4 and 5, writing in action system ࣛ: A\\K@ࣥ 3 makes action
A depend on an action labelled K in action system ࣥ, providing for, for example,
some deduced context. Recalling breaking of atomicity above, referring to a remotely
available procedure is as follows where gP* is the outcome of gB ∧ coord = false and
P is coord ≔ true: ࣲ = |[… do LblAdependB: A\\P*@ࣴ od …]|

-- translates to – ࣲ = |[… do LblAdependB: gA ∧ gP* → A; P od …]| ࣴ = |[… proc P*: gB ∧ coord = false → coord ≔ true
 [] Bwake: gB ∧ coord = true → B; coord ≔ false
 [] Bnat: gB ∧ coord = false → B
 od …]|

2 Other data structures are implementable as well, such as queues, rings and so forth.
3 Writing A\\K*@ࣥ refers to a remote procedure.

Definition 5, @ construct location: Let K label an action or a globally refer-
able procedure and ࣥ an action system where K ∈ labels of ࣥ. Then K@ࣥ
refers to action or globally referable procedure labelled K in action system ࣥ.

 Formal Modular Modelling of Context-Awareness 111

Definition 3’ is applicable for composition. Hence, if K@ࣥ provides a context, we
have managed to successfully encapsulate the behaviour and construction of this con-
textual information and its updates from A@ࣛ, just as intended, still complying with
Definition 4. In the rest of the paper, we focus on showing how this separation of
concerns can be exploited in a sensible manner.

4 Context Modelled with Actions Systems as a Part of a Program

As all software operates algorithmically, reasoning mathematically about its functional-
ity is feasible and software can be shown to satisfy its requirements given that these are
provided formally. When a system is formally verified, it explicitly meets with the for-
mal requirements. Consequently, on a theoretical level, formally verified software on
formally expressed requirements does not fail; it merely complies with its requirements.

Following the definition of context used in this paper, context and changes in it
cannot be modelled formally as we cannot model the behaviour of the elementary
contexts. However, putting effort into reasoning with context is motivated, as from a
user point of view the reason for failing software, let it be misinterpretation or errone-
ous algorithm, is irrelevant as the consequences remain.

The aim of treating context in the presented modelling methodology is to reveal the
characteristics of context to the designer for specifying them rigorously and verifying
the involved algorithmic calculations. Because of this, we start by describing how a
context-service is integrated to an utiliser, followed by describing how the elementary
contexts are introduced. In Section 4.3 we show how these are formally treated to
provide context information and provide a complete view of the characteristics.

4.1 Integrating Contextual Information to an Application

Claiming to have verified a context-aware system inevitably includes verification of its
context. As the utiliser’s context-aware decisions are impacted by read_only variables,
a context-service can be treated as a black (white) box. Thereby, a context-service can
be independently substituted for another, given that it provides the same verified con-
textual information on the same publish variables. This modularisation of contextual
information facilitates reuse and provides comprehensibility through abstraction.

Fig. 2. Context-service - utiliser relation with references to example

112 M. Neovius and K. Sere

A context-aware system can be depicted as in Figure 2, where the context utilising
action system ࣯ depends on its glue to perceive matters based on certain context(s).
Action U in ࣯ inquires an action or procedure in its glue, LblY@࣡lue to resolve
some matter based on the read_only variable x⋄ published by a context-service. The
action initiating this, i.e. U, is only enabled given that the guard of LblY@࣡lue
evaluate true. The dotted arrows and the labels in Figure 2 concur with action system ࣯ and ࣡lue action U labelled LblU and action Y labelled LblY respectively, outlined
below. ࣯ =|[var w ● Init:U0; do LblUdependonY: U\\LblY@࣡lue

 [] ‘other actions’ od]| : j ࣡lue =|[var y ● Init:Y0; do LblY: Y [] ‘other actions’ od]| : i, x⋄

Considering action system ࣯ to be the utiliser in Figure 2, it relies on action system ࣡lue to glue. When so, guard gY is a predicate on the read_only variable(s) x⋄ pub-
lished by some other context-service. With this, we say that action system ࣡lue
perceives a feature of interest to ࣯.

The operators \\ and @ abstract the perception of context from the specific action
that decides on it, i.e. LblUdependonY. This is essential as the utiliser cannot antici-
pate all operating conditions it will have to place decisions in throughout its lifetime
[3]. Moreover, the read_only variable x⋄ can be a prerequisite for several independent
gluing action systems, facilitating scalability.

Example 2: Consider a speed surveillance system assembled in a car assuring that
speeding will not take place, action system ࣯ in Figure 2. Because speeding is some-
thing that bases on speed limit and velocity, the system cannot proceed unless they are
provided. Action system ࣡lue counts for the glue, defining its action LbLY as follows: ࣡lue =|[var ; ● Init:Y0;

 do LblY: vel⋄ ≤ spdLmt⋄ → Y
 [] ‘other actions’
 od]| : i, vel⋄, spdLmt⋄

where vel⋄ refers to velocity as calculated in example 1 and spdLmt⋄ to speed limit that
are updated and published by some context-service. According to Definition 4,
U\\LblY@࣡lue is to be enabled if gU is true and speeding is false, resolved in the guard
of action labelled LblY. As maximum velocity is fixed whenever a trailer is coupled, in-
cluding the Boolean trailCpl⋄ according to Figure 1, action labelled LblY must treat this
for the whole range of values. Consequently, action system ࣡lue becomes: ࣡lue =|[var ; ● Init:Y0;

 do LblY: ((vel⋄ ≤ spdLmt⋄ ∧ ¬trailCpl⋄) ∨
 (vel⋄ ≤ spdLmt⋄ ∧ trailCpl⋄ ∧ vel⋄ ≤ 80kmh)) → Y

 [] ‘other actions’
 od]| : i, vel⋄, spdLmt⋄, trailCpl⋄

Notable is that the utiliser needs only to rely on that the action system ࣡lue indeed pro-
vides adequate velocity. Having actions in the glue raising specific flags whenever
certain condition are met abstracts the evaluation of sometimes long guards from the
utiliser – end of example

 Formal Modular Modelling of Context-Awareness 113

Because the utiliser ࣯ and the glue ࣡lue are treated independently from the context-
service providing x⋄, the service must not pose any obligations on how its reading is to
be perceived. For the context x⋄ we cannot allow confusion between a valid “context
value” and the absence/timeout of it, i.e. “do not know”. The absence/timeout refers to
erroneous or outdated context that as noted earlier, is out of the scope of this paper.

We define context universality for valid values, Definition 6:

Since the nature of context, the utiliser becomes a coordinating system that triggers
some functionality based on current context(s). The impact of a context can be tuned
with non-contextual information in the referencing action ࣯, for example, scheduling
action U in action system ࣯ or prioritising it over another [41].

4.2 Composing Information from Elementary Contexts

The elementary contexts constitute the basis for all deduced contexts and context-
awareness, making the process of constructing a context-service seemingly hierarchical.
Figure 3 depicts any level in the process of constructing a context-service. The input
data to this level, the context dependent (CD) segment aka. context provider [5], takes
the elementary context c introduced here and/or some read_only variables y⋄ as inputs,
publishing it as z⋄. z⋄ is then processed in the context refiner/reasoner (CI) segment (aka.
context synthesizer [5]). The output is published by the providing (CP) segment [13].
We define the segment interdependencies as follows, omitting type checking:

Hence, the output of this processing level is x⋄ ≔ f(z⋄ ⋃ c) ⋃ r⋄ given that the neces-
sary input is provided. Writing this as action systems, the three segments in Figure 3 and
Definition 7 through 9 translate into namesake action systems ࣝࣞ, ࣝℐ and ࣝ࣪. ࣝࣞ =|[elemContext c; var z⋄, r⋄● CD0;

do Get: true → z⋄ ≔ y⋄ ⋃ c, r⋄ ≔ c [] ‘other actions’ od]| : y⋄ ࣝℐ = |[var q⋄, β; ● CI0; proc;
 do Process: true ∧ i → q⋄ ≔ f1(z⋄, i)[] ‘other actions’ od]| : i, z⋄ ࣝ࣪ = |[var x⋄; ● CP0; do Provide: true→ x⋄ ≔ q⋄⋃ r⋄ [] ‘other actions’ od]| : i, q⋄, r⋄

Definition 6, context universality: Let cn denote the domain of a context and
cm the range decided on, where cm ⊆ cn and let ci be the complement of cm.
Then the context-service must provide for ci as well.

Definition 7, acquiring context CD: Let CD read_only y⋄, introduce ele-
mentary context(s) c ⊆ cn and publish z⋄ and r⋄, then z⋄ ⊆ y⋄⋃c and r⋄ = c.

Definition 9, providing context CP: Let CP publish x⋄ and read_only q⋄,
then assuming q⋄ is published by the CI and r⋄ is the set of elementary con-
text(s) introduced by this processing level, x⋄ ≔ q⋄ ⋃ r⋄ and i be updated.

Definition 8, improving context CI: Let CI read_only z⋄ and publish q⋄,
then q⋄ ≔ f(z⋄) according to refiner/reasoner involving optional imported
variable conditions i.

114 M. Neovius and K. Sere

Fig. 3. Processing context

The action system labelled ࣝࣞ handles the introduction of the variables, the ࣝℐ the
actual algorithmic functionality and the ࣝ࣪ the publishing of the deduced context(s)
and the possible elementary context(s). The import variables i provide the possibility
for shared variables, e.g. asynchronous handshaking.

This segmentation defines input and output interfaces and encapsulates the algo-
rithmic part. At the same time, the elementary context(s) is available as measured to
be included by other systems. Combined with the read_only variables, the processing
increases the level of information that is eventually published.

4.3 Processing Context

The task of constructing a context-service providing the context read by the glue re-
veals the importance of mastering the composition and calculation with context. Re-
calling Figure 3, one instance of context processing, Figure 4 illustrates the relation of
several such instances resulting in context services providing for action system ࣡lue
in Section 4.1.

Figure 4 depicts how the en route context improvers increase the relevance depend-
ing on publish variables [2, 13] and elementary contexts. Hence, guaranteeing loop
freeness of the context variables is necessary; declaring that the publish variable(s)

Fig. 4. Context processing

 Formal Modular Modelling of Context-Awareness 115

that are read_only to a certain level must not include that same level’s published vari-
ables nor a deduced context depending on such constituting in Property 3.

Property 3, loop avoidance: Let an instance read_only yn⋄ relying on publish vari-
ables tn⋄ and α ≔ yn⋄ ⋃ tn⋄. Then α denote all variables this instance relies on. Let c
denote elementary contexts introduced by this instance and x⋄ variables it publishes,
then α ⋂ x⋄ = ∅ and x⋄ comes to rely on α ⋃ c.
In addition to Property 3, in order to provide well defined abstractions and verifiable
deduced context, keeping track of the context unit(s) is important.

With these restrictions, processing context is the act of increasing the relevance of
information by applying some algorithm or composing several contexts together.
Each context processing level, as there might be several (denoted by three dots in
Figure 4), is alike the one depicted within the dotted lines down left in Figure 4 and in
Figure 3. The context utiliser, in upper right corner Figure 4, is as the dependency
references depicted in Figure 2.

Fig. 5. Construction of a context-service

Example 3: Considering example 1 and 2 and Figure 4, the unit of velocity and speed
limit must coincide. The three CI boxes in Figure 4 could stand for action systems ℱ, ࣡
and ℋ in example 1. The utiliser’s names correspond to names used in Section 4.1.
Moreover, for the sake of reuse, the system must take a stand on the units and their
implementation, such as whether the velocity is absolute or relative – end of example.

Figure 5 combines all presented the figures depicting the processing of context to a
context-aware system. The Definitions 4 through 9 presented in this paper assure that
contexts place no obligation on its utilisers and that it can be reasoned about like if it
was a special variable with restricted write access.

5 Conclusions

This paper stresses the importance of processing contextual information systemati-
cally as context most certainly constitutes a decisive factor of any context-aware sys-
tem. Because of this, in order to claim that a system is formally verified, we argue that

116 M. Neovius and K. Sere

the decisive matters, including context and its processing, need to be formally
expressed and its mathematical matters verified. In this paper, we have presented a
methodology and a language construct to the action system formalism that split the
contextual characteristics from the software through a gluing system. The contexts are
considered to be provided and processed within context-services. We have also out-
lined and motivated qualities of a context variable that need to hold for facilitating
scalability and reuse.

Modelling context in the presented methodology challenges the designer to con-
struct rigorous realistic context-aware systems. This is achieved by revealing the
characteristics of the needed context when formally specifying the processing of con-
text utilised by an application. Once these contexts are formalised, the formalisation
has fulfilled a purpose of revealing shortcomings to the designer. The action system
framework is used for processing and composing contexts where the constraints are
placed by the elementary context. Moreover, as this paper consider modularised con-
text, we can foresee that the presented ideas could be extended to formalise other
distributed well-defined matters as well.

Being able to express dependencies between actions and services is a first step in
modelling services with action systems; future work will address chains of dependen-
cies, unordered dependencies as well as showing characteristics of refinement of
inter-dependent actions. We aim at instead of having a library of model transforma-
tion rules, to define new simple language construct with which expressing the chal-
lenges brought along with the ever increasing distribution of computations and
responsibilities are possible.

Acknowledgements. Mr. Neovius wishes to express his gratitude towards TOP-säätiö
for the financial support he has received. The authors’ wishes to thank to Mr. Fredrik
Degerlund for the discussions and comments and the FP7 IST-2007.1.2 DEPLOY-
project for partly funding this research. Moreover, a special thank goes to the review-
ers for extraordinary extensive and valuable comments on means to improve this
paper.

References

1. Weiser, M.: The Computer for the Twenty-First Century. Scientific American (1991)
2. Neovius, M., Yan, L.: A Design Framework for Wireless Sensor Networks. In: Proceed-

ings of the IFIP 19th World Computer Congress (2006)
3. Roman, G.-C., Julien, C., Payton, J.: A formal treatment of context-awareness. In:

Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 12–36.
Springer, Heidelberg (2004)

4. Shaw, M., Garlan, D.: Software Architecture, Perspectives on an Emerging Discipline.
Prentice-Hall Inc., Englewood Cliffs (1996)

5. Ranganathan, A., Al-Muhtadi, J., Campbell, R.H.: Reasoning about Uncertain Contexts in
Pervasive Computing Environments. IEEE Pervasive Computing 3(2) (2004)

6. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Human-Computer Interaction 16(2)
(2001)

7. Aviziens, A.: Fault-Tolerant Systems. IEEE Transactions on Computers C-25(12) (1976)

 Formal Modular Modelling of Context-Awareness 117

8. Randell, B., Lee, P., Treleaven, P.C.: Reliability Issues in Computing System Design.
ACM Computer Survey 10(2) (1978)

9. Avizienis, A., Laprie, J.-C., Randell, B.: Dependability and its Threats: A Taxonomy. In:
Proceedings of the IFIP 18th World Computer Congress (2004)

10. Sere, K., Waldén, M.A.: Data Refinement and Remote Procedures. In: Ito, T., Abadi, M.
(eds.) TACS 1997. LNCS, vol. 1281. Springer, Heidelberg (1997)

11. Sere, K., Waldén, M.A.: Data Refinement of Remote Procedures. Formal Aspects of
Computing 12(4) (2000)

12. Back, R.J.R., Kurki-Suonio, R.: Decentralization of Process Nets with Centralized Control.
In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distri-
buted Computing (1983)

13. Neovius, M., Sere, K., Yan, L., Satpathy, M.: A Formal Model of Context-Awareness
and Context-Dependency. In: Proceedings of the 4th IEEE International Conference on
Software Engineering and Formal Methods (2006)

14. Degerlund, F., Sere, K.: A Framework for Incorporating Trust into Formal Systems Devel-
opment. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711,
pp. 154–168. Springer, Heidelberg (2007)

15. Yan, L., Sere, K.: A Formalism for Context-Aware Mobile Computing. In: Proceedings of
the Third international Symposium on Parallel and Distributed Computing/Third interna-
tional Workshop on Algorithms, Models and Tools For Parallel Computing on Heteroge-
neous Networks (2004)

16. Braione, P., Picco, G.P.: On Calculi for Context-Aware Coordination. In: De Nicola, R.,
Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949. Springer,
Heidelberg (2004)

17. Zimmer, P.: A Calculus for Context-Awareness. BRICS Report Series RS-05-27, Denmark
(2005) ISSN 0909-0878

18. Petre, L., Qvist, M., Sere, K.: Distributed Object-Based Control Systems. Technical Report
241, TUCS (Feburary 1999)

19. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid Action Systems. Theoretical Computer
Science 290(1) (2003)

20. Hayes, I.J., Jackson, M.A., Jones, C.B.: Determining the specification of a control system
from that of its environment. In: Proceedings of the International Symposium of Formal
Methods (2003)

21. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System. ACM
Transactions on Information Systems 10 (1992)

22. Pascoe, J.: Adding Generic Contextual Capabilities to Wearable Computers. In: Proceed-
ings of the Second International Symposium on Wearable Computers (1998)

23. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: Proceedings
of the IEEE Workshop on Mobile Computing Systems and Applications (1994)

24. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Technical
Report TR2000-381, Dept. of Computer Science, Dartmouth College (2000)

25. Yang, K., Galis, A.: Policy-Driven Mobile Agents for Context-Aware Service in Next
Generation Networks. In: Horlait, E., Magedanz, T., Glitho, R.H. (eds.) MATA 2003.
LNCS, vol. 2881, pp. 111–120. Springer, Heidelberg (2003)

26. Merriam Webster Online dictionary, Merriam-Webster Inc., Springfield, MA 01102
27. Oxfords Advanced learner’s dictionary (2000) CD-ROM
28. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-

awareness. In: Proceedings of the CHI 2000 Workshop on the What, Who, Where, When,
and How of Context-Awareness (2000)

118 M. Neovius and K. Sere

29. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de
Velde, W.: Advanced interaction in context. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS,
vol. 1707, p. 89. Springer, Heidelberg (1999)

30. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Communications of the
ACM special issue: The disappearing computer 48(3) (2005)

31. Zemanek, H.: Abstract Architecture, General concepts for systems design. In: Bjorner, D.
(ed.) Abstract Software Specifications. LNCS, vol. 86. Springer, Heidelberg (1980)

32. Naur, P.: Intuition in software development. In: Ehrig, H., Floyd, C., Nivat, M., Thatcher,
J. (eds.) TAPSOFT 1985 and CSE 1985. LNCS, vol. 186. Springer, Heidelberg (1985)

33. Back, R.J.R., Sere, K.: Stepwise Refinement of Action Systems. Structured Program-
ming 12(1), 17–30 (1991)

34. Back, R.J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction. Graduate
Texts in Computer Science. Springer, Heidelberg (1998)

35. Back, R.J.R., von Wright, J.: Trace Refinement of Action Systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836. Springer, Heidelberg (1994)

36. Back, R.J.R., von Wright, J.: Compositional Action System Refinement. TUCS technical
report no. 464 (June 2002)

37. Back, R.J.R.: Correctness Preserving Program Refinements: Proof Theory and
Applications. Mathematical Center Tracts, vol. 131, Mathematical Centre, Amsterdam,
The Netherlands (1980)

38. Sere, K.: Stepwise derivation of parallel algorithms, PhD dissertation, Åbo Akademi
(1990)

39. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)
40. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM 18(8) (1975)
41. Sekerinski, E., Sere, K.: A Theory of Prioritizing Composition. The Computer Journal 39(8)

(1996)

Paper V

Mastering the Relevance of Subjective Information in

Ubiquitous Computing

Mats Neovius and Kaisa Sere

Submitted to International Journal of Networked Computing and Advanced

Information Management (IJNCM) Special issue on Social Informatics and

COMputing (SICOM).

Mastering the Relevance of Subjective Information in Ubiquitous

Computing

1, *2
Mats Neovius,

2
Kaisa Sere

1 Turku centre for Computer Science, Joukahaisenkatu 3-5, 20520 Turku Finland, E-mail:
firstname.surname@abo.fi

2 Åbo Akademi University, Department of Information Technology, Joukahaisenkatu 3-5,
20520 Turku, Finland, E-mail: firstname.surname@abo.fi

Abstract

An application that relies on a ubiquitous computing environment populated by autonomous
software agents is saturated by information availability. When this information is subjective, to master
the (ir)relevance of it, this paper formally defines group that bond by likes. A group is a set of software
agents. The likes and their bonding are captured by comparing the frequency and character of the
experiences on some provider. Because the group bond by likes, the experiences of a group an inquirer
associates itself with are considered relevant information. These experiences are calculated with and
means to compose, customise and define abstract groups are provided. For this, the Subjective Logic
framework capturing a degree of certainty in addition to (ir)relevance is chosen. Hence, this paper
proposes a methodology for abstracting sets of software agents to groups that capture the subjective
experiences of a proposition by likes. This constitutes the key to master relevance of information.

Keywords: reputation based trustworthiness, subjective logic, collaboration, information relevance

1. Introduction

Ubiquitous computing is called the third wave of computing, a successor to distributed

computing and mobile computing [1]. It is characterised by technologies that weave themselves

indistinguishably to the everyday life [2]. Moreover, we consider it in this paper distributed,

open, of a structure that is ever changing and being populated by interacting autonomous

software agents. These software agents produce and process information to be consumed by an

application that provides the user a means to perform a task [3]. The consumed information is

considered subjective because of the autonomy of the providing software agents and the

inherent inaccuracy of the source of information, i.e. not knowing the intents of the providing

subject(s), their frequency of error or the context of the view. The level of subjectivity on the

acquired information is captured by user specific experiences. A user specific experience is a

cognitive evaluation by the user on the providing subject in a proposition, e.g. A’s experience in

subject B in proposition serves tasty food. These user specific experiences are recorded and

constitute a user’s history. The history forms a user’s profile that is considered a software agent

in its own right. Hence in accordance to [4, 5, 6, 7, 8] and depicted in Figure 1, we separate

concerns between information providing and functional segments.

Considering a user’s history of experiences at a given moment and the ever changing nature

of the ubiquitous computing environment, a user’s experiences may be used to estimate the

degree of truth on the subject software agent in a proposition. This degree of truth involves a

level of (un)certainty due to the changing ubiquitous computing environment. To mend the

uncertainty, a user may ascertain its degree of truth by referring to other users’ experiences.

However, due to the subjectivity of the experiences, only users’ experiences who share the likes

are considered relevant. The bonding by likes is determined by the similarity of the users’

profiles where the bonded software agents form a social group on a subject in a proposition.

The outline of the paper is as follows. In Section 2 a general model to record the experiences

of subjects in a proposition is presented. This is fundamental to express experiences in a subject

providing for multiple propositions, e.g. B may provide for serves tasty food and relaxing
atmosphere. Section 2 also defines the type of an experience used in this paper. The presented

model of an experience and their histories may be mapped to the type required by the Subjective

Logic (SL) framework. Section 3 presents functions of the SL framework [9, 10, 11, 12]

including the mapping function in Section 3.2. Section 4 proposes the contributions of this

paper. Firstly, it proposes a formal definition of a group. A group is considered a set of software

agents bonded by likes on a subject in proposition. It is considered a software agent in its own

right. Hence, a group provides experiences and a hierarchy of groups is expressible. The means

to derive these experiences are examined. The section also outlines how such groups may be

composed with respect to a Boolean operation, defining a customised group. Such grouping of

software agents is, to the best of our knowledge, novel. Secondly, as each experience is of equal

weight, we propose a view of distributing the experiences on software agents involved in

acquiring the understanding. After these contributions, Section 5 provides an example followed

by a discussion in Section 6 and conclusions in Section 7.

Figure 1. Setting of this paper

As a consequence, this paper considers the (ir)relevance of a subjective piece of information

to be a synonym to experience based trust evaluating its (un)trustworthiness. That is, a provider

provides a subjective piece of information whose relevance to the user is defined by the user’s

experiences. Both (ir)relevance and (un)trustworthiness aim at resolving a level of reliance on a

subject in a proposition by observing the history. Moreover, as initially there is no experiences,

(un)trustworthiness / (ir)relevance is something that builds up from initial ignorance (do not

know). This underlines the importance of expressing the level of ignorance, hereafter called

(un)certainty. This gives rise to a three-valued parameter further motivating the choice of the

SL framework. We consider information derivation and relations between propositions

(ontology) out of the scope of this paper. Moreover, we will hereafter use consistently the term

(un)trustworthiness over (ir)relevance.

2. Trustworthiness and its formation

The ability to trust is a cornerstone for the existence of the human society [13]. In cognitive

sciences, it is a mental state that enables collaboration, formation of groups, feeling of relative security

etc. [14]. Moreover, trust enables a feeling of reliance in a matter, e.g. trust on the babysitter to take

care of the children. This ‘feeling’ is something that only cognitive agents having internal explicit goals

and beliefs may perceive in some other uniquely identifiable matter [14, 15]. In computer science, trust

has been realised as policy and reputation based trust [16]. The latter is sometimes considered a subset

of the former, as ultimately the decision is Boolean, i.e. a policy that weigh between risk and profit.

Hence, experience based trust is a means to provide the decision maker with data to make a better,

more satisfactory decision. In addition, a third form called social trust has been presented [17], but we

consider this an instance of reputation based trust.

Policy based trust, also called resource access trust [18], was originally introduced by Blaze et al.

[19] and relies on logical rules to enforce trust, typically realised as a predicate. Implementations of

policy based trust includes access control, firewall rules, authorizations etc. In the policy based setting,

inaccurate or incomplete information are not allowed or considered rudimentary, i.e. as complete and

correct. Hence, policy based trust is suitable in environments where assuming complete and correct

behaviour is motivated and is sometimes considered as a branch of security. As of this, policy based

trust could be weaved into a formal model. Because this paper has a focus on the trustworthiness of

subjective information, policy based trust will not be considered any further in this paper.

Reputation based trust, on the other hand, is similar to the human notion of trust. It is used

interchangeably with the term experience based trust, which we prefer hereafter. The kind of

experience based trust considered in this paper is dynamic, incomplete, subjective and it builds up.

Therefore, in addition to trust and distrust, the initial level of uncertainty for ‘do not know’ is to be

captured, requiring a three-valued parameter. Following [20], also we consider confusion between ‘do

not know’ and ‘do not trust / trust’ intolerable. Moreover, complete certainty may never exist as of the

changing environment. Hence, the goal with experience based trust is to provide the subjective

probability with which an agent assesses that the target will perform according to expectations [21] by

examining past behaviour. Implementations of experience based trust include, but are not limited to,

online auctions (eBay.com), product review sites (Epinions.com) and discussion forums (SlashDot

karma) [22]. Hence, for the application to evaluate a level of trust on a subject in a proposition, the

trust is necessarily experience based. Hence, experience based trust is merely a means to provide the

decision maker with data to make a better, more satisfactory decision.

We define trust according to McCarthy and Chervaney [23]:

Definition of Trust: “The extent to which one party is willing to depend on the other matter in a
given situation with a feeling of relative security, even though negative consequences are possible”.

This definition implies that expressing trust in something certain is void, making trust viable whenever

evaluating something not Boolean, i.e. uncertain or dogmatic. Moreover, the definition considers

dependence, reliability and motivates considering risk as a factor in the decision [15]. The subsequent

sections elaborate on the properties and relations between the trustor and the trustee, motivate the

foundation of the (un)certainty, provide a representation of it as well as outline the restrictions on a

network of trust.

2.1. Conditions and Logical Properties of Trust Relations

To establish a trust relation, unique identification of the counterpart is necessary. Assuming this and

complete trust in oneself, trust, distrust and uncertainty together denote a level of reliance the source

(trustor) places on the trustee. This level of reliance is subjective and may be ascertained by inquiring

referrals. That is, consider software agents A, B and C, then trustor A may inquire trustee B for its

experiences on subject C in a proposition x to ascertain its level of reliance.

This is called trust transitivity and exemplifies the need of discounting reliance, i.e. A discounts B’s

view on C in x by A’s view on B in recommending to x. Trust transitivity is argued against by

Christianson et al. [24]. However, we claim that trust transitivity is feasible with certain restrictions.

The restrictions stem from the definition of trust where expressing distrust as opposed to trust is

possible. Thereby, transitivity by distrust (disbelief) is argued as of the binary relation of transitivity

[25], e.g. if A distrusts B and B distrust C in say x; then, does this imply that A should trust C in x?

Hence, we restrict transitivity to ‘positive’ trust. The positive trust (belief) delegation of A trusting B to

recommend where B recommends C in x is captured; where A provides B with the (partial) power to

decide for A whom to trust, i.e. � ��������� 	
 	 ��������� � � � ��������� �. Another property of a trust relation is

that it is asymmetric [18, 26], i.e. if A trusts B in proposition x then nothing may be said about B’s trust

on A in x. In addition to logical properties, a trust relation needs to allow controversial experiences.

Each viable system implementing trust relations needs to consider the representation of trust and

the means to compute with it. The representation can be binary / discrete, range or continuous values

and the computation therefore, logical / fuzzy, probabilistic or basing on transitiveness respectively.

Existing implementations to compute with these representations include, but are not limited to,

summation [27, 28], fuzzy models [29], Βpdf [9, 30, 31, 32], EigenTrust [33] and PageRank [34]. The

scale of a trust metric can be of any kind. It however needs to be partially ordered and is often totally

ordered, e.g. ℝ [0, 1] with relation ≤, {-1, 0, +1} with -1 ≤ 0 ≤ 1, {low, mediocre, somewhat, high}

where low ≤ mediocre ≤ high and low ≤ somewhat ≤ high. Hence, the interpretation of the outcome

may be a threshold, rank, probability or mere cognition leaving it up to the human to decide.

2.2. Foundations of the Three-Valued parameter

This paper considers trust to be a three-valued metric. The metric bases on Belief functions, or

Dempster-Shafer theory, that is a generalisation of Bayesian theory of subjective probability. A

Belief function operates on a set of known outcomes X where the mass (certainty) m: 2
X
 → [0,

1] denotes the evidence of each outcome. The probabilistic view on the evidence assigns m to

each element 2
X

 and is called basic belief assignment where m(∅) = 0 and ∑ ���� � 1���� .

This additivity is modelled on a mass space, e.g. X = {x1, x2, x3} where the mass ‘x1 or x2’

denote the certainty of not x3, but not certain whether x1 or x2, i.e. the mass of ({x1, x2}).

Realistically this is the case when X denotes colours of balls in a box, say {red, green, black}

and the evaluator is red-green colour blind knowing that the ball drawn was not black.

In addition to the mass m, belief bel is defined bel(A) = ∑ ��	���� . Hence, bel denotes the

‘certainty’ or ‘evidence’ in a set of interest as the sum of masses that are subsets of it, e.g.

bel({red, green}) = m({red}) + m({green}) + m({red, green}). The mass of the total set m(X)

need not be 0, i.e. m({red, green, black}) ≠ 0. Plausibility pl denotes the ‘max probability’ or

that ‘there is evidence against this proposition’ where pl ≥ bel and pl(A) = ∑ ��	�����∅ , the

sum of non empty intersecting masses; or more conveniently, pl(A) = 1 � � !��"� where �"
denotes complement of A, in this case 1 � � !�#�!$%&'�.

With mass, belief and plausibility provides the upper (pl) and lower (bel) bounds of

probability. This interval between pl and bel is the uncertainty, the scope of lacking evidence in

favour for or against the set of interest constituting the third-value in our trust metric.

2.3. Representation of Experiences

To represent the levels of trust, we propose a general representational model for experience

based trust relying on the history of recorded experience(s) on subjects in propositions. The

model follows Krukow’s general model [35]. In this model, the history of experiences is defined

by a set of 4-tuples ()*�����+��,-� = #�., ,, 0, 1�' where trustor is the software agent whose

experiences are examined, . � subject is the trustee’s long term identification with whom the

experience was, ϵ is the datum where ϵ ≤ ϵ0, 0 � proposition and 1 � score. The datum may be

virtually any continuous matter, typically time. For example, �	4�, ,-,), 1� � ()*�5678 denotes

that at datum ϵ0 Alice recorded an experience on 	4� in proposition) with score 1 where Bob

may provide x or act as a referral to another δ providing for x, the transitivity. Moreover, we

write ()*99:�,� for the .-selection on the history of .;. Then < != lists all rows that satisfy some

predicate ϕ. E.g. ()*�+?�5678�,� provides a set of n-tuples #�,@, 0, 1�' where A �B . � 	4� and

dually, ()*�+?�5678�,, C44D� where A �B . � 	4�
 0 � C44D provides a set of n-tuples #�,@, 1�'.

With this syntax and selections, ()*99: �,-� � ()*9:�,-�and()*99: �,6� � ()*9:�,-� when ,6 ≤ ,-.

2.3.1. Experience Type

Having defined the general model for representing experiences, we consider the type of each such

experience a tuple (sat, unsat), i.e. ()*�+?�5678�,6 , 0� � #�<$E, FG<$E�', the 1-projection on < !=. In this

tuple, sat and unsat denotes the level of satisfactory and unsatisfactory behaviour respectively.

Characteristics include that sat, unsat � [0, 1] and sat + unsat ≤ 1, i.e. the tuple may be subadditive.

Subadditivity is fundamental for decay, described in Section 2.3.2. This type of experience allows

complete uncertainty to be expressed as (0, 0), i.e. no evidence of either satisfactory or unsatisfactory

behaviour, dogmatic experiences as (sat, unsat) where sat + unsat = 1 and absolute experiences when

(sat, unsat) = (0, 1) or (1, 0). Moreover, the type enables simple aggregation of experience by

summation on 1-projection of a selection on a subject in proposition with an initial view at ,6 as ∑ ()*�+?�5678�,6 , 0�. <$E = 0 and ∑ ()*�+?�5678�,6 , 0�. FG<$E = 0; that is, a view of no evidence.

2.3.2. Experience Decaying and Abstracting Experiences

Each agent’s experiences at ϵ is defined ()*9:�,� = #�., ,, 0, 1�' making the set of experiences at m

defined by ()*9:�,I� � ()*9�,IJK� L #�., ,I, 0, 1�'. On these experiences, the decaying of the

relative weigh of each experience with respect to ϵ is necessary for rapidly adjusting to changes in the

autonomous subject’s behaviour. The method of decay must recognise the independence of the three-

valued parameter metrics, i.e. it must not subvert the experience, merely reduce its weigh.

Let the decay factor be λ defined 0 ≤ λ ≤ 1 on a continuous datum ϵ. This defines the general decay

function d at ,@ called DMNas:

DMN O()*9�,-�P � #�., ,, 0, QMNJM R 1�'

Where each experience is decayed by λ defining the ‘forgetting’ speed where the closer to 1, the less

speed and trivially, λ = 1 is no decay whereas λ = 0 is complete [36]. Complete decay is motivated

when aprior experiences may not be used to estimate posterior outcomes, e.g. in case of idealised

lottery. Hence, the affect of decay is that an experience score 1 is reduced by factor λ on datum, i.e. 1

at ,@ ≤ 1 at ,I when n ≤ m whenever λ < 1. Realistically, if ϵ is time and λ < 1, then experiences are

decayed by time.

The abstracted experience is a composition of the disjoint experiences on the subject in a

proposition. Having decayed experiences, the abstracted decayed experiences provide a tuple �$�<T<$E, $�<TFG<$E� as the 1-projection on the decayed selection, defined: ��<MN O()*99: �,, 0�P � ∑ DMN()*99:�,@, 0�

That is, as DMN()*99:�,@, 0� provides a set #,, �$�<<$E, $�<FG<$E�' and the 1-projection restricts this to #�$�<<$E, $�<FG<$E�', then the sum on this is called �$�<T<$E, $�<TFG<$E�.

Not surprisingly, as ��<MN O()*99:�,, 0�P denotes the tuple decayed on datum ϵn, an updated

abstract view ��<MV O()*99:�,, 0�P where m ≥ n is a recursive function whenever the decaying factor is

universal, continuous and applied on all experiences locally, e.g. decay by time. Hence, updating ��<MN O()*99: �,, 0�P is straight forward.

��<MV O()*99:�,, 0�P � ��<MVWX O()*99: �,, 0�P R Q + 1
Here, 1 = (sat, unsat) at time ϵm, i.e. the new experience. Thereby, abstraction is an irreversible

function that provides a level of privacy that decay enhances on. When no experience occurred at time ϵm, ()*99:�,I, 0� = �0, 0�. Moreover, ∑ DMN()*99: �,@, 0� = ∑ ()*99:�,@, 0� if λ = 1, i.e. no decay.

2.4. Trust Networks and Trust Transitivity

The basis of trust evaluation where the trustor (s) derives a level of trust in a trustee (t) may be

considered as a graph G = (V, E) where V is a set of vertices and edges E a set of ordered pairs of

vertices. Such a graph, hereafter network, may expand by adding intermediary referral nodes. In a

Bayesian network this is defined a directed acyclic graph (DAG). However, when instead of binary

‘AND’ and ‘OR’, probabilistic multiplication and co-multiplication on incomplete opinions are used

for serial and parallel composition, the DAG does not qualify [25, 37]. The problem is coined to

parallel and serial path confusion, e.g. let {(S, A), (A, B), (A, C), (S, B), (B, C), (C, D)} � E, then either

(A, B) or (A, C) is to be discarded or independence is violated.

The solution is to limit the DAG to a Series Parallel Graph (SPG). A SPG may be constructed by

applying the following series and parallel rules on a graph G2 = ({S1, S2, S3}, {(S1, S2)}) [38]:

Series: replace the edge (S1, S2) with (S1, S3) and (S3, S2) where S3 is a new vertex

Parallel: replace the edge (S1, S2) with two edges (S1, S2)1 and (S1, S2)2

Hence, in a SPG either edge (A, B) or (A, C) may not be created. Moreover, as a trust relation is

directed, the SPG becomes a Directed SPG (DSPG). Each DSPG is a DAG. Hence, the DSPG outlines

trust transitivity. Moreover, with edge splitting as proposed in [39], a DAG may be transformed into a

DSPG assuming a “fission factor” [6 where ∑ [6@6\K � 1 on which path of the i paths to take. This is

similar to defining the probability of selecting (A, B) over (A, C); preserving the analytical possibilities

of such a network. Moreover, the perceived topology of a network must concur with the real topology,

i.e. no edge may occur twice. Interested readers are directed elsewhere [25].

3. Calculating with Experiences

The type of a score η of an experience is defined a tuple (sat, unsat). Abstractions of

experiences include tuple (abssat, absunsat) and decayed tuple (absDsat, absDunsat). To

calculate with these capturing uncerainty in a structure alike a DSPG, functions on parallel and

sequential composition on a three-valued metric need to be defined. Moreover, when composing

several DSPGs, functions for multiplication and co-multiplication is demanded. For this, SL fits

well. SL is a probabilistic logic basing on belief theory that takes uncertainty and the trustor

into account [9, 11, 12, 22]. The SL defines an opinion in the interval [0, 1]. Hence, it is related

to the Β-family of probability density functions (Βpdf) and Dirichlet pdf for k-dimensions.

Moreover, it may be used to Bayesian networks as conditional reasoning functions have been

defined, interested readers are directed to referenced literature [40, 41, 42]. The SL must not be

confused with fuzzy logic as the latter operates on crisp and certain measures about

linguistically vague and fuzzy propositions; whereas SL operates on uncertain measures about

‘crisp’ propositions [11].

The level of (un)trustworthiness in SL is defined by (dis)belief and (un)certainty on a subject in

proposition, called an opinion denoted ω. The opinion is uniquely mapped from the score tuple.

Thereby, it builds up and changes by datum and decay operator. Moreover, it is a generalisation of

binary logic, i.e. whenever an SL opinion is absolute, the SL functions behave alike their

corresponding logical expressions [12]. In addition, the level of trustworthiness perceived in a software

agent varies, stressing the impossibility of defining a “globally correct behaviour”. This implies

impossibility of applying formal approaches extensively as no precise assumptions on the environment

of the (formal) model may be taken [43]. The following subsections elaborating on means to calculate

with an opinion base on work by Jøsang et al. [9, 10, 11, 12].

3.1. Foundations for an Opinion

An opinion is a three-valued metric on a certain outcome of possible outcomes. To explain the opinion,

consider a set of exclusive and exhaustive outcomes], called a frame, e.g.] = {x1, x2, x3}. An opinion

on the frame is defined as a 3-tuple ^�_̀ , F, $̀ a of a belief mass vector, uncertainty mass scalar and base

rate vector a in a k-nomial barycentric coordinate system where k = |]|. The vectors �_̀ and $̀ are

vector-valued functions on the propositions of] with range [0, 1]
k
, e.g. ��_̀ (x1), u, $̀(x1)), ��_̀ (x2), u, $̀(x2)), ��_̀ (x3), u, $̀(x3)) as of trinomial]. The beliefs are subadditive, i.e. ∑ �_̀ �)6� ≤ 1bc�] with the

uncertainty u covering for additivity, F � 1 � ∑ �_̀ �)�b�] , i.e. u � [0, 1]; whereas the base rate vectors

are additive ∑ $̀�)�b�] = 1. Hence, the length of �_̀ �)6� denotes the evidence, bel in belief functions on

a proposition)6.

Figure 2. A binomial opinion triangle

A multinomial frame |]| ≥ 3 may be coarsened to a binomial frame when partitioned into x and its

complement)", i.e.]’ = #),)"' and |]’| = 2. Hence, we will hereafter consider |]’| = 2, directing readers

interested in |]| ≥ 3 to [11]. The binomial form of an opinion is �_̀ �)�, �_̀ �)"�, F, $̀�)� and may be

illustrated as a point in the binomial barycentric coordinate system Figure 2. This is the opinion

defined as a four tuple gb � ��_̀ �)�, �_̀ �)"�, F, $̀�)�� where belief b = �_̀ �)� , disbelief d = �_̀ ()"),
uncertainty u = {),)"} and base rate a is given. Moreover, b + d + u = 1.

As of the changing environment, we consider all opinions with a level of uncertainty, u > 0. Hence,

the base rate vector a comes to be decisive in finding the expectation value. The expectation value of

an opinion on a proposition x is defined (�gb� � � h F R $ denoting the posterior belief mended by

the uncertainty. In Figure 2 this is the interval on the base spanned by orthogonal vectors to �_̀ �)� and �_̀ ()"). Obviously, the posterior belief satisfies additivity, ∑ (�gbb�] � � 1, hence establishing a crisp

value of expected probability for each proposition of] [10].

The expectation value proves its importance when ordering opinions in a total order based on

belief. Otherwise, deciding whether ωx ≤ ωz or ωx ≥ ωz for arbitrary propositions x and z for example

when ωx = (0.3, 0.3, 0.4, a) and ωz = (0.4, 0.4, 0.2, a) is impossible as ωz depict more trust, but more

distrust as well. With respect to belief theory, the point in the barycentric coordinate system is where

belief = ∑ �_̀ �)�b�] and disbelief = ∑ �_̀ �)"�b"�] intersect defining u (gap between bel and pl).

3.2. Mapping from Abstracted Experiences to an Opinion

Having defined the experiences’ score as a tuple 1 and as the SL apply on opinions, a mapping

function is desired. Consider a 1 –projection on a selection of ��<MN O()*99:�,, 0�P providing the

(absDsat, absDunsat). This tuple may be converted to and from an opinion ω by the mapping relation

(1) originally proposed by Jøsang [9] and later elaborated on in [11, 25, 32]:

 g
lm
n
mo� � p?�q�p�p?�q�p�rp?�q�@�p�rsD � p?�q�@�p�p?�q�p�rp?�q�@�p�rsF � sp?�q�p�rp?�q�@�p�rs$ � �$< t$E

 u v u
$�<T<$E � s?�$�<TFG<$E � sw�$ � �$< t$E xm

y
mz EF*! (1)

In this mapping, the parameter W denotes the non-informative prior weight. It also guarantees u

> 0. When (absDsat, absDunsat) = (0, 0), u = 1. The Βpdf input parameters α = absDsat + Wa

and β = absDunsat + Wa that indicate a uniform distribution whenever a = 0.5. Βpdf:s may be

used to illustrate an opinion. Greater W slows the influence of evidence [11, 25]. This mapping

relation is central as experiences’ score η are recorded as a tuple and calculations on them are

done as opinions.

3.3. Functions of Subjective Logic

In order to calculate on opinions, some functions are demanded. To provide the functions, consider

a subject . to direct experiences in propositions x �] and y � {, i.e. (., x) by 1–projection on a

selection ��<M^()*9�,,)�a and (. , y) by ��<M^()*9�,, |�a . Mapping these to opinions by (1)

provides gb9 � ��b , Db, Fb , $b� and g}9 � ��} , D} , F} , $}�. The opinion ω is labelled by the source as

upper and target as lower index. An opinion gb
}9 indicates a multiplication of two propositions and gb~}9 co-multiplication by δ’s opinions. Moreover, we use ‘;’ for sequential and ⋄ for parallel

composition, e.g. gb9; 9: � g9:9 ; gb9:
 and gb9⋄ 9: � gb9 ⋄ gb9:

.

Multiplication is the function for the opinion on outcome of #�), |�' �] × {, written gb9
 g}9 � gb
}9 � ^�b
}, Db
} , Fb
} , $b
}a. It is defined following [37]:

 gb
}9 �
lm
n
mo�b
} � �b�} h �KJp��p�?���r�KJp��p�?���KJp�p�Db
} � Db h D} � DbD}

Fb
} � FbF} h ^KJp�a?���r�KJp��?���KJp�p�$b
} � b}

u (2)

Having the same propositions, co-multiplication denotes the opinion on outcomes

{�), |�, �), |��, �)", |�} �] × {, written gb9 ~ g}9 � gb~}9 � ^�b~}, Db~} , Fb~} , $b~}a . It is defined

following [37]:

 gb~}9 �
lm
n
mo

�b~} � �b h �} � �b�}Db~} � DbD} h ^KJp�ap�w���r�KJp��p���w�p�rp�Jp�p�Fb~} � FbF} h p�w���rp�w���p�rp�Jp�p�$b~} � bh} � b}

u (3)

Multiplication and co-multiplication are commutative but not distributive, e.g. gb
}9 � g}
b9 but gb
�}~��9 ≠ gb
}9 ~ gb
�9 . Thereby, multiplication and co-multiplication are the functions for composing

two exclusive propositions of disjoint frames. These are well formed with the exception of

multiplication when ax = 1 and ay = 1, and for co-multiplication except for when ax = 0 and ay = 0.

With respect to probabilistic calculations, calculation of belief in multiplication and disbelief in co-

multiplication deviates. This is to get the expectation value to converge with its probabilistic peer and

keeping the base rate motivated [37]. For example, consider gb9 = (0.466, 0.074, 0.459, 0.5) with

E(gb9) = 0.696 and g}9 = (0, 0.685, 0.313, 0.5) with E(g}9) = 0.158, for E(gb9
 g}9) = E(gb9) * E(g}9),

this deviation is necessary.

Deriving an opinion in a target from multiple paths of a DSPG is called consensus and discounting.

Consider a DSPG G’ = ({S, X, Y, Z, t}, {(S, X), (S, Y), (X, Z), (Y, Z), (Z, t)}) where vertex Z has direct

functional trust in an arbitrary proposition t. The two paths are ρ1 = (S, t) = (S, X) ; (X, Z) ; (Z, t) and ρ2

= (S, t) = (S, Y) ; (X, Z) ; (Z, t) that combined is (((S, X) ; (X, Z)) ⋄ ((S, Y) ; (X, Z)) ; (Z, t). To calculate

the opinion from these paths consensus and discounting are needed. Discounting denoted ⨂ operates

on serialised opinions denoted ‘;’, i.e. g���;�;�� � g�� ⨂ g��⨂ g�� . By discounting software agent X

evidence in Z is related by S’s evidence in X and there exist at least three different means for

discounting an opinion g��;� [44]:

��
lmn
mo ���;� � ������D��;� � ���D��F��;� � D�� h F�� h ���F��$��;� � $��

, ���
lmn
mo ���;� � ������ h D��D��D��;� � ���D�� h D�����F��;� � F�� h ����hD���F��$��;� � $��

,uu ����
lmn
mo ���;� � (�g������D��;� � (�g���D��F��;� � 1 h (�g���F�� � (�g���$��;� � $��

u(3)

Case (i) is discounting while favouring uncertainty, originally proposed in [9]. Case (ii) view

conflicting opinions as belief, i.e. your enemy’s enemy is your friend [25]. For case (ii), the authors [25]

note that modelling chains longer than two edges with this methodology is doubtful. The third case (iii)

operates on expectation values being a bad choice at high uncertainty, but might in special cases be the

least bad choice, called base rate sensitive discounting. In case (iii), expectation (�g��� � ��� h�F�� $��), as before. Discounting is trivially asymmetric.

Contrary to discounting, consensus ⨁ enforces the evidence in a third party by combining parallel

paths. Consensus is denoted ⨁ and is the operation of combining parallel opinions denoted ⋄, i.e. g�̂��;��;��;��a⋄^��;��;��;��a � g�̂��;��;��;��a ⨁ g�̂��;��;��;��a
. Hence, g�� of DSGP G’ is ρ1⋄ρ2 which by

opinions is g�� � g�̂���,��;��,���⋄���,��;��,���a � ^�g�� ⨂g���⨁ �g�� ⨂ g���a⨂g�� . The first variant of

consensus was proposed in [9] whereas only later, the consideration of a priori base rate a was included

[11], defined:

����;��⋄��;�� � ^����;�F���;�� h ����;��F���;��a/^F���;��hF���;�� � F���;��F���;��aD���;��⋄��;�� � ^D���;��F���;�� h D���;��F���;��a/^F���;��hF���;�� � F���;��F���;��aF���;��⋄��;�� � ^F���;��F���;��a/^F���;��hF���;�� � F���;��F���;��a
$���;��⋄��;�� � p���;������;��rp���;������;��JOp���;��rp���;��P����;������;��

����;��r����;��J�����;������;��

 (4)

With these fundamental functions on opinions, it is possible to calculate the possible structures of a

DSPG as well as combine disjoint DSPGs.

4. The Notion of a Group by Trustworthiness

Trustworthiness relations have been identified among others as one-to-many or many-to-one

[18]. Here, the ‘many’ captures the concept of a set of actors. We consider this ‘many’ a group

in the context of deriving a level of trust on a subject in proposition. A group is a set of

software agents that are categorised by a bond by likes. This notion of a group lends itself from

social sciences peer group, where the social background, roles, statuses are excluded and

members interact possibly on the level of a group, share a common goal and are bonded by the

likes. Examples of real-life peer groups are friends, fan club and community. Related work on

groups in a similar context includes [29]. They do however choose the most representative agent

from a set, as a kind of supernode that represents the “witness” merely to reduce the number of

queries, not to categorise by trustworthiness. Hence, the way we treat a group is different.

This Section defines such a group, where the likeness is defined by the relative frequency of

the decayed abstracted experiences on some proposition(s). Moreover, this Section outlines the

implications of such a group on the software agents and presents how these may be utilised to

ascertain a level of trust by trustworthy experiences in a subject in a proposition. To the best of

our knowledge, the presented approach is novel.

4.1. Definition of a Group

A group is a set of agents that are bonded by the similarity of their experiences on a subject

in a proposition. We consider such a group a software agent in its own right. Thereby, any agent

referring to a group is provided the group’s aggregated experiences. As the group abstracts a set

of software agent(s) and all software agents have complete trust in themselves, the group has

complete trust in its members. Hence, let Y, Z � subject and x � proposition and tuple (low,

high) denote the thresholds for grp, then a group �M^�b���a is defined:

Definition of a Group:

��
��
��
�

�C ��<MN^()*���,,)�a. $�<TFG<$E ≠ 0
E� G �M^�b���a � �� � .: !4���� ≤ �?��NO�b����M,b�P.p?�q�p�

�?��NO�b����M,b�P.p?�q�@�p� ≤ �������
 !< �C ��<MN^()*���,,)�a. $�<TFG<$E � 0
 ��<MN^()*���,,)�a. $�<T<$E ≠ 0 E� G �M^�b���a � #� � .: !4���� ≤ �$) ≤ �������'

u

Hence, the group �M^�b���a is a software agent abstracting a set of software agents that share the

likes on subject Z in a proposition x at time ϵ constrained by thresholds lowgrp
 and highgrp.

Realistically, let Z be a restaurant and x food taste, then �M^�b���a is a set of software agents

who share likes on Z in x. Whenever both absDsat = 0 and absDunsat � 0, an agent is vacuous

with respect to the proposition and may not belong to any group over such.

The group’s �M��b���� experience on a proposition x is defined by summation: O∑ ��<MN^()*���,,)�a�� ¡����¢£¤�\¦§¨©¦ª«ª P (5)

Hence, the group’s experience is the sum of its members’ experiences excluding the inquirer.

On this, two observations may be made: firstly, the group’s experiences depend on who inquires

and secondly, a group that the inquirer does not share likes with may be inquired. The

summation of (absDsat, absDunsat) is equivalent to consensus on the disjoint members’

opinions in the proposition where discounting is excluded as of complete trust.

Figure 3. Group abstracted by R in a DSPG

This definition of a group has four features. Firstly (i), as the members of a group are

dynamic, the trustor perceives experiences in the group software agent, R in Figure 3. We

consider for brevity experience to be evenly distributed, i.e. ()*��,-� � ()*��,K� L¬.6 , ,-, 0, O �p�w8�­��� , �@�p�w8�­���P® where deg+
 is the outdegree edges from S and i = 1, deg+

. Secondly

(ii), as the trustor inquires referrals for their experiences, referring to itself is unmotivated.

Hence, the trustor is excluded from the group. This implies that referring to a singleton group

whose member is the inquirer provides (0, 0), i.e. in accordance to ∑)∅ = 0. Thirdly (iii), as a

group is defined on a subject in a proposition, it abstracts direct functional trust relations, i.e. a

relation on the proposition. With respect to Figure 3, software agent �M�¯����� where R is a

subject abstracts (((R; X);(X; Z)) ⋄ ((R; S); (S; Z)) ⋄ ((R; Y);(Y; Z))); (Z; t). As of R’s complete

trust in its members and discounting as well as S being the trustor, �M�¯����� collapses to ((X; Z) ⋄ (Y; Z)); (Z; t). The real topology of the opinion g�� in structure DSPG of Figure 3 concurs

with the perceived and is therefore g��⨁ °g±�⨂g�¡�^±�¢£¤a² . The last feature (iv) is that the

thresholds define the group(s) and are decisive. These thresholds need to be exclusive and

exhaustive, i.e. any software agent � �M��b� is a member of one �M��b���c�. That is, ³ �M��b���c�6

= ∅ and ´ �M��b���c�6 = �M��b� for i = 1… n.

4.2. Setting the Thresholds

The threshold values low, high � [0, 1] restricting the group are defined as a sorted ≤ array

(set of tuples) Ar of ℝ, e.g. Arµ$, �¶ where a ≤ b. However, for exhaustiveness the smallest

value and thresholds inverses are included. Therefore, the array Ar expands to Ar’·0, $, �, ��, $�, 0�¸
where 0 ≤ a ≤ b ≤ �� ≤ $� ≤ 0� with inverses defined ¹$!���� = 1/val and 0� = max that in case of ℝ = ∞. The number of groups in a view on a subject in proposition is always odd and is (Ar’.length-

2) + 1 because excluding 0 and 0� defining the intervals.

An empty array Ar gives rise to a global group; all non-vacuous agents belong to this group.

The group order on a software agent � � �6 for i = 0, …, k where k = (A’.length-2) + 1 is �t;µ0¶ ≤ �K ≤ �t;µ1¶ ≤ �� ≤ �t;µ3¶ ≤ ¼ ≤ �t;µ& � 2¶ ≤ �¾ ≤ �t;µ& � 1¶ ≤ �¿ ≤ �t;µ&¶. Hence,

consider an agent with m = absDsat and n = absDunsat, then if (m, n) � �À the experience (n, m) � �Á where � � & � ¹ h 1, e.g. with k = 5 and (m, n) � �� then (n, m) � �¾.

4.3. Group Customisation and Composition

Group customisation refers to composition of groups by a set theoretic operator op. A

customised group is hence an abstraction of its underlying software agents. Let X be a set of

groups on subjects in propositions, X = ¬�M��KÂX���X�, �M���ÂÃ���Ã�, … , �M��@ÂN���N�® . Then, the

customised group is defined:

�M+���Â���� � �4*�Åc¢£¤c � ��M��Âc���c�

The op of intersection on groups Z bonded by 06 provides the most restrictive configuration

where all members of �M�c��Â���� adheres to all propositions. Contrary the op of union on 06 is

the most liberal group composition.

Other logical combinations of groups in disjoint propositions are also possible. Realistically,

consider a set of restaurants {Z1, Z2, …, Zn} and propositions on these 0 = {ft, p, at} for food

taste, placing and atmosphere respectively, then the groups are ¬�M+� O�ÆÇ����P , �M+� O�Æ����P , �M+� O�Æp����P® for j = 1, …, n. Hence. for example, Bob inquiring for

agents that bond by his likes in restaurant(s) Zj by food taste and either placing or atmosphere is

defined:

 �MÇ����Lp��^�Â���a � È	4� � �Âc���c : É�M O�ÆÇ����P � Ê�M O�Æ����P L �M O�Æp����PËÌÍ

Hence, group customisation defines by set theory the referrals as members of the group that

is considered trustworthy. Extending this to model groups ascertaining by related subjects in a

proposition is straight forward. For example, consider restaurant R to be related to Z = {Z1, Z2,

…, Zn}, realistically they may all serve Italian food. Then, ascertaining experiences of R by the

experiences of the group sharing likes on Z is reasonable, i.e. �M^¯ÎÂ���a = �M^¯Â���a L �M^�Â���a

that by (5) provides the members’ summed experiences on R. Consequently, the model enables a

previously uncertain subject in proposition be ascertained also by related subjects in

proposition.

5. Case Restaurant Evaluation System

To exemplify the contribution of this paper, this section outlines an example of a restaurant

evaluation system. The system itself is an application that manages multiple users’ experiences

in multiple subjects Ri in multiple propositions 0 manifesting the users’ profiles. These are

outlined in table 1, where ¯60 stands for subject Ri in proposition 0. The example comprises of

restaurants #¯K, ¯�' with 0 � #E, *, $E' for taste, placing and atmosphere respectively. The

threshold values are ThrA = [3/10, 3/5] whereas sat denotes absDsat and unsat absDunsat, b, d,

u an opinion and a group_name � {NT, SNT, ST, VT, ExT} for ‘not true’, ‘somewhat not true’,

‘somewhat true’, ‘very true’ and ‘extremely true’. Let the order be 0 ≤ ÏÐ ≤ ÑK- ≤ ÒÏÐ ≤ Ñ¿ ≤ÒÐ ≤ ¿Ñ ≤ ÓÐ ≤ K-Ñ ≤ ()Ð ≤ 0�. The considered software agents are A, B, C and D. The table is

read so that columns indicate an agent’s experiences and rows the subject and proposition.

Thereby, for example agent A has no experience in restaurant ¯�0 and C have in ¯�* abstract

decayed experiences (1, 7) indicating bonding with a group named NT as 0 ≤ KÔ ≤ ÑK-.

Table 1: Agent experiences

A decision, here buying the restaurant’s service, is either affirmative or negative. It is

defined by a policy that may be generalised as a predicate on the assumed posterior

performance, i.e. the expectation value and certainty. For example, a predicate may be (�gb� ≥0.8
 gb�F� ≤ 0.1 indicating in this case that the expected level of service a restaurant provides

is at least 4 satisfactory experiences out of 5 and this to a certainty exceeding 0.9. However,

when the predicate’s condition on uncertainty is not fulfilled, ascertaining by referrals is

motivated.

What this paper argues in favour of is that only a carefully selected subset of agents that

bond by likes may qualify as referrals. Hence, assume agent D ascertaining its opinion in ¯K0 as

a general concept. The general concept is summed or a consensus on opinions of its parts, both

providing the same experience / opinion (4, 5) = (0.36, 0.5, 0.18, a). Then experiences of

relevance for D in ¯K0 with ThrA is �M O¯KÂ�ÖP, i.e.

�M O¯KÂ�ÖP: �� � .
 ��<MN O()*±X� �,, 0�P . $�<TFG<$E ≠ 0: Ñ¿
�Ö ≤ �?��NO�b����M,Â�P.p?�q�p�

�?��NO�b����M,Â�P.p?�q�@�p� ≤ ¿Ñ
�Ö

providing #	, T' whose experiences by summation (equation 5) is:

��<MN É()*±X
¡�O±XÅ�×P�,, 0�Ì � O∑ ��<MN O()*±X� �,, 0�P�� ¡��±XÅ�×� P � ��<MN O()*±Xq �,, 0�P

That gives (1, 1.5).

Mapping this to opinions is ≈ (0.222, 0.333, 0.444, a) giving rise to calculating g±XÂq �
g±XÂq ⨁ Êg¡�O±XÅ�×Pq ⨂ g±XÂ¡�O±XÅ�×PË. Let us assume g¡�O±XÅ�×Pq to be, for the sake of the example, (36,

2) = (0.9, 0.05, 0.05, a). With this, g±XÂq ⨁ Êg¡�O±ÃÅ�×Pq ⨂ g±ÃÂ¡�O±ÃÅ�×PË on only relevant data

defined by ThrA is ≈ (0.366, 0.511, 0.11, a). With the decision predicate above, a decision may

not be taken whatever base rate a. Relating this to not considering relevance, the bonding by

sameness would yield g±XÂq ⨁^g�q ⨂ g±XÂ� a⨁�g�q ⨂ g±XÂ� �⨁�gØq ⨂ gKÂØ � obviously requiring g�q, g�q, gØq for calculation. The outcome is the same if g�q, gØq = (0, 0, 1, a) and provides

otherwise a more certain but less “accurate” opinion, as consensus with any opinion (relevant or

irrelevant) strengthens the certainty.

6. Discussion

This paper has presented a means to group agents by their experiences on a subject in a

proposition. The effect of grouping is similar to excluding the most divergent abstracted

experiences. The problem settings giving rise to this are well known with abuses in open

environments known as inflation and deflation [45], i.e. unfairly positive or negative ratings

[46]. Filtering such overly positive or negative approaches by the tuple (absDsat, absDunsat)
have been considered in a Beta probability density function (Βpdf) by excluding a quantile of

the most unfair ratings [36]. As filtering by a quantile is a viable solution, it does not abstract

the experiences to groups, i.e. the experiences are agent based. This paper provides the

foundation for a novel approach to this; that by categorising software agents to groups with

respect to the thresholds that defines the group membership, only trustworthy experiences are

considered. Moreover, in this framework group composition provides a computationally lighter

and more expressive means to filter unfair or divergent experiences. The proposed approach

does not consider the abusing agents as “misbehaving” agents that may unconditionally be

excluded, but merely as agents with diverging view on appreciation. This is a central issue as

the setting does not support division between misbehaviour and correct behaviour; merely

between trustworthy and untrustworthy.

As a level of trustworthiness relies on experiences, a follow up critic is the distribution of an

experience among subjects and proposition. This is not an issue when inter-agent

trustworthiness is given. However, when this is not the case, this paper proposes an even

distribution to the directly dependent subjects. Even distribution is obviously only possible

given that a single experience need not to be dogmatic, i.e. not additive. This underlines the

importance of the three-valued metric that also provides the possibility of expressing initial

ignorance. With initial ignorance, the groups are initially empty and no vacuous subjects are

ever introduced to the groups. Related work, for example [33], faces this same issue and solves

it by assigning a priori trusted agents and/or a certain probability to selecting a vacuous agent

for transaction in order to broader the domain of knowledge.

Privacy issues with respect to revealing intimate information have been acknowledged by

irreversible abstraction, i.e. decay, abstracted experiences and groups. Hence, the framework

provides a sense of privacy. Elaborating on this is possible by introducing a predicate defining

the software agents to whom abstracted experiences are revealed. If this predicate defines a

cardinality of groups, providing experiences only to such whose cardinality exceeds some

threshold provides increased privacy. This obviously requires trust to be placed on the group to

preserve this.

 7. Conclusions

In an ever changing ubiquitous computing environment populated by autonomous agents, no

information may be considered unconditionally correct. Hence, the information is subjective. To

master the subjectivity, experience based probabilistic methods may be applied. An opinion that

base on experiences builds up from initial ignorance. To capture this, Subjective Logic that base

on Belief functions is applied.

Having the Subjective Logic as a mathematical framework, this paper proposes a novel view

on how such uncertain probabilities may be used to form groups that bond by likes. A group is

defined as a set of software agents. Therefore, the experiences a group provides on a subject in

proposition is its members’ experiences. We provide the means to derive this. Moreover, this

paper proposes how groups may be customised by a logical operator. Consequently, it is

possible for a software agent to ascertain its opinion on a subject in a proposition by a set of

filtered referrals.

8. References

[1] T. Strang, C. Linnhoff-Popien, “A Context Modeling Survey”, in Workshop on Advanced Context

Modelling, Reasoning and Management, 2004.
[2] M. Weiser, “The Computer of the Twenty-First Century”, Scientific American, September 1991.
[3] G. Banavar, A Bernstein, “Software infrastructure and design challenges for ubiquitous computing

applications”, Commun. ACM, vol. 45, no. 12, pp. 92-96, 2002.

[4] M. Baldauf, S. Dustdar, F. Rosenberg, “A survey on context-aware systems”, International Journal

of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263 -277, 2007.
[5] C. Bettini et al., “A survey of context modelling and reasoning techniques”, Pervasive Mob.

Comput., vol. 6, no. 2, pp. 161-180, 2010.
[6] A. Dey, Providing Architectural Support for Context-Aware Applications, Georgia Institute of

Technology, PhD Thesis 2000.

[7] P. Dockhorn Costa, Architectural support for context-aware applications: from context models to

services platforms, Centre for Telematics and Information Technology, University of Twente, PhD

thesis, 2007.

[8] R. Schmohl, U. Baumgarten, “Context-aware Computing: a Survey Preparing a Generalized

Approach”, in Proc. of the Int. MultiConference of Engineers and Computer Scientists, 2008.

[9] A. Jøsang, “Artificial Reasoning with Subjective Logic”, in Second Australian Workshop on

Commonsense Reasoning, 1997.

[10] A. Jøsang, “Trust-Based Decision Making for Electronic Transactions”, In Proceedings of the 4th

Nordic Workshop on Secure Computer Systems (NORDSEC’99), 1999.

[11] A. Jøsang, “A logic for uncertain probabilities”, Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,

vol. 9, no. 3, pp. 279-311, 2001.

[12] A. Jøsang, “Subjective Logic”, Draft book Available at:

http://persons.unik.no/josang/papers/subjective_logic.pdf , visited 01.03.2012, Unpublished.

[13] J. Dunn, “The Concept of Trust in the Politics of John Locke”, Cambridge University Press,

Cambridge, 1984, vol. Philosophy in History.

[14] C. Castelfranchi, R. Falcone, “Principles of Trust for MAS: Cognitive Anatomy, Social

Importance, and Quantification”, In Proc. of the 3rd Int. Conf. on Multi Agent Systems, 1998.

[15] R. Falcone, C. Castelfranchi, “Social trust: a cognitive approach”, In Trust and deception in virtual

societies, Kluwer Academic Publishers, pp 55-90, 2001.

[16] P. Bonatti, C. Duma, D. Olemdilla, N. Shahmehri, “An Integration of Reputation-based and

Policy-based Trust Management”, In Proc. Semantic Web and Policy Workshop, 2005.

[17] J. Golbeck, Computing with social trust, J. Golbeck, Ed.: Springer, 2009.

[18] T. Grandison, Trust Management for Internet Applications, Imperial College London, PhD Thesis

2003.

[19] M. Blaze, J. Feigenbaum, J. Lacy, “Decentralized Trust Management”, In Proceedings of the 1996

IEEE Symposium on Security and Privacy, 1996.

[20] M. Carbone, M. Nielsen, V. Sassone, “A Formal Model for Trust in Dynamic Networks”, BRICS

Report Series Publications. RS-03-4, 2003.

[21] D. Gambetta, “Can We Trust Trust?” in Trust: Making and Breaking Cooperative Relations.:

Department of Sociology, University of Oxford, chapter 13, pp. 213-237, 2000.

[22] A. Jøsang, R. Ismail, C. Boyd, “A survey of trust and reputation systems for online service

provision”, Decis. Support Syst., vol. 43, no. 2, pp. 618-644, 2007.

[23] H. McKnight, N. Chervaney, “The Meanings of Trust”, Technical Report Working Paper Series

96-04 1996.

[24] B. Christianson, W. Harbison. Why Isn't Trust Transitive?. In Proceedings of the International

Workshop on Security Protocols, T. pp. 171-176. 1996.

[25] A. Jøsang, R. Hayward, S. Pope, “Trust network analysis with subjective logic”, In Proceedings of

the 29th Australasian Computer Science Conference, vol. 48, pp. 85-94, 2006.

[26] P. Massa, P. Avesani, “Trust Metrics on Controversial Users: Balancing Between Tyranny of the

Majority and Echo Chambers”, Int. Journal on Semantic Web and INformation Systems, vol. 3,

no. 1, 2007.

[27] A. Abdul-Rahman, S. Hailes, “Supporting Trust in Virtual Communities”, In Proceedings of the

33rd Hawaii International Conference on System Sciences, 2000.

[28] J. Schneider, G. Kortuem, J. Jager, S. Fickas, Z. Segall, “Disseminating Trust Information in

Wearable Communities”, Personal Ubiquitous Computing, vol. 4, no. 4, pp. 245-248, Jan. 2000.

[29] J. Sabater, C. Sierra, “Social ReGreT, a reputation model based on social relations”, SIGecom

Exch., vol. 3, no. 1, pp. 44-56, Dec. 2001.

[30] S. Buchegger, J-Y. Le Boudec, “A Robust Reputation System for Peer-to-Peer and Mobile Ad-hoc

Networks”, in P2PEcon 2004, 2004.

[31] L. Mui, M. Mohtashemi, A Halberstadt, “A Computational Model of Trust and Reputation for E-

businesses”, In Proceedings of the 35th Annual Hawaii international Conference on System

Sciences Hicss, 2002.

[32] A. Jøsang, R. Ismail, “The beta reputation system”, In Proceedings from the 15th Bled Conference

on Electronic Commerce, 2002.

[33] S. Kamvar, M. Schlosser, H. Garcia-Molina, “The Eigentrust algorithm for reputation management

in P2P networks”, In Proceedings of the 12th international Conference on World Wide Web, pp.

640-651, 2003.

[34] L. Page, S. Brin, R. Motwani, T. Winograd, “The PageRank Citation Ranking: Bringing Order to

the Web”, Technical Report, Stanford InfoLab. 1999.

[35] K. Krukow, Towards a theory of trust for the global ubiquitous computer, University of Aarhus,

PhD Thesis, 2006.

[36] A. Whitby, A. Indulska, J. Josang, “Filtering out unfair ratings in bayesian reputation systems”, In

Proceedings of the Third International Joint Conference on Autonomous Agenst and Multi Agent

System, pp. 106-117, 2004.

[37] A. Jøsang, D. McAnally, “Multiplication and Comultiplication of Beliefs”, International Journal of

Approximate Reasoning , vol. 38, no. 1, pp. pp.19-51, 2004.

[38] P. Flocchini, F. Luccio, “Routing in Series Parallel Networks”, Theory of Computing Systems,

vol. 2, no. 36, pp. 137-157, 2003.

[39] A. Jøsang, T. Bhuiyan. Optimal Trust Network Analysis with Subjective Logic. Proceedings of the

Second International Conference on Emerging Security Information, Systems and Technologies

(SECURWARE 2008), Cap Esterel, France, August 2008.

[40] A. Jøsang, S. Pope, M. Daniel, “Conditional Deduction Under Uncertainty”, In Proceedings of the

8th European Conference on Symbolic and Quantitative Approaches to Reasoning with

Uncertainty, pp. 824-835, 2005.

[41] S. Pope, A. Jøsang, “Analysis of Competing Hypothesis using Subjective Logic”, In Proceedings

of the 10th International Command and Control Research Technology Symposium, 2005.

[42] A. Jøsang, “Conditional Reasoning with Subjective Logic”, Journal of Multiple-Valued Logic and

Soft Computing, vol. 1, no. 15, pp. 5-38, 2008.

[43] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge University

Press, 2010.

[44] A. Jøsang, S. Pope, S. Marsh, “Exploring Different Types of Trust Propagation”, In Proceedings of

the 4th International Conference on Trust Management (iTrust'06), pp. 179-192, 2006.

[45] Y. Tang, H. Wang, W. Dou, “Trust based incentive in P2P network”, IEEE International

Conference on E-Commerce Technology for Dynamic E-Business, pp.302-305, 2004.

[46] C. Dellarocas, “Immunizing Online Reputation Reporting Systems Against Unfair Ratings and

Discriminatory Behavior”. In ACM Conference on Electronic Commerce, pp. 150-157, 2000.

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2808-7
ISSN 1239-1883

M
ats N

eovius

M
ats N

eovius
Trustw

orthy C
ontext D

ependency in U
biquitous System

s

Trustw
orthy C

ontext D
ependency in U

biquitous System
s

	Paper1.PDF
	Introduction
	Peer-to-Peer Networks
	The Trust Metric
	Recognised Abuses in P2P Networks

	Trust in an Open Environment
	Personal, Trusted and Public Opinions
	Feedback Formation and Distribution

	The Incentive
	A Degrading Formula for Trust
	Calculating with the Metrics
	An Incentive View

	Conclusion
	References

	Paper4.pdf
	Formal Modular Modelling of Context-Awareness
	Introduction
	Concepts Used in This Paper
	Definition of Context and Context Related Matters
	The Example: A Fictitious Speed Surveillance System

	The Action System Formalism at a Glimpse
	Action System at a Glimpse
	Action Systems for Modelling Context

	Context Modelled with Actions Systems as a Part of a Program
	Integrating Contextual Information to an Application
	Composing Information from Elementary Contexts
	Processing Context

	Conclusions
	References

