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Abstract

This PhD thesis studies the solving capability of some solvers for optimization problems,
as well as presenting some improvements to one of the solvers.

The optimization problems that foremost are studied can be described by a model of
Mixed Integer Non-Linear Programming (MINLP) class. The class of MINLP problems
can be characterized as di�cult and can be found in several industries and it is, there-
fore, well motivated to study which solvers e�ectively solve MINLP models. Only since
2003 have methods become available to solve these problems to global optimality, i.e. a
guaranteed best possible solution, on optimization platforms like GAMS. Even though
a method can solve a model to global optimality, it is of little use if the solution is not
at hand when a decision needs to be made. Therefore, a solver which provides a good
solution in reasonable time can, in some cases, be more useful. The study shows that
all compared solvers have their strengths and weaknesses and that no solver is generally
better than all the others.

The solver improvements are implemented in GAMS/AlphaECP, which is based on
the Extended Cutting Plane (ECP) method. The improvements signi�cantly increase
solving capability and can be characterized as sensible. The enhancements include the
integration of AlphaECP with another solving method, the implementation of a heuristic
which can be activated when the solver cannot otherwise solve a problem and the use of
existing information in an improved way.
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Svenskt sammandrag

I denna doktorsavhandling undersöks lösningsförmågan hos ett antal lösare för optimer-
ingsproblem, samt vissa förbättringar till en av lösarna presenteras.

Optimeringsproblemen som främst undersöks kan beskrivas med hjälp av en modell
som innehåller ickelinjäriteter och heltalsvariabler, m.a.o. en Mixed Integer Non-Linear
Programming (MINLP) modell. Klassen av MINLP problem kan karaktäriseras som
svårlöst och förekommer inom ett �ertal industriområden. Det är därför välmotiverat
att undersöka vilka metoder som mest e�ektivt löser MINLP modeller. Först efter år 2003
har metoder att lösa ett MINLP problem till globalt optimum, d.v.s. den bästa möjliga
lösningen, blivit tillgängliga i optimeringssystem såsom GAMS. Även om en lösare kan
lösa ett problem till globalt optimum är den värdelös om lösningen inte är tillhands när
ett beslut måste fattas. Därför kan en lösare som ger en bra lösning inom rimlig tid, i
vissa fall vara mer användbar. Undersökningen visar att alla lösare har sina styrkor och
svagheter och att det inte �nns någon metod som är bättre än de andra för alla MINLP
problem.

Lösaren som förbättringarna utförts på heter GAMS/AlphaECP och baserar sig
på skärplansmetoden Extended Cutting Plane (ECP). Förbättringarna ökar avsevärt
lösarens lösningsförmåga och kan karaktäriseras som heuristiska. Förbättringarna omfat-
tar främst integreringen av AlphaECP med en annan lösningsmetod, implementeringen
av en heuristik som kan aktiveras ifall lösaren inte annars klarar av att lösa problemet
och användningen av den tillgängliga informationen på ett förbättrat sätt.
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CHAPTER1
Introduction

In this thesis we study Mixed Integer Non-Linear Programming (MINLP) problems. We
have mainly worked on two topics: comparison of the performance of some MINLP solvers
in the General Algebraic Modeling System (GAMS) and some improvements to the Al-
phaECP solver. GAMS is a high-level modeling system for mathematical programming
and optimization and currently includes 9 MINLP solvers.

The purpose of section 1.4 and 1.5 is to give a loose, but easy-to-understand, de-
scription of how MINLP problems can be solved. This introduction aims to support the
understanding of the performance di�erences in section 2.4.

The General Algebraic Modeling System (GAMS) [GAMS, 2011] optimization plat-
form is used. However, other platforms are also available: AIMMS [Bisschop, 2011],
AMPL [Fourer et al., 1990] and LINDO [LINDO, 2011]. We chose GAMS because of its
good selection of solvers and ease of �nding large test sets of problems.
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1.1 List of publications

This thesis is partly based on the following publications:

I) T. Lastusilta, M. R. Bussieck, and T. Westerlund. Comparison of Some High-
Performance MINLP Solvers. In Chem. Eng. Trans., volume 11, pages 125�130,
2007

II) T. Lastusilta, M. R. Bussieck, and T. Westerlund. An Experimental Study of
GAMS/AlphaECP MINLP Solver. Ind. Eng. Chem. Res., 48:7337�7345, 2009a

III) T. Lastusilta, L.G. Papageorgiou, and T. Westerlund. A Comparative Study of
Solving the Problem of Module Identi�cation in a Complex Network. In Chem.

Eng. Trans., volume 24, pages 319�324, 2011

IV) T. Lastusilta and T. Westerlund. A Comparative Study of Solving Quadratic As-
signment Problems Using Some Standard MINLP Solvers. In SIMULTECH 2011

1st International Conference on Simulation and Modeling Methodologies, Technolo-

gies and Applications, pages 409�412, 2011

In addition to the above mentioned papers, the paper Lastusilta et al. [2009b] has
been published during the research period. This paper presents a framework to solve
an industrial scheduling problem. The framework was developed to solve a scheduling
problem for a Finnish supplier of packaging material. An MILP model was used in
conjunction with a moving time window to enable the scheduling of a large set of orders.

• T. Lastusilta, O. Frankenhaeuser, F. Pettersson, and T. Westerlund. An Opti-
mization Framework for Solving a Large Scale Scheduling Problem. In European

Symposium on Computer Aided Process Engineering, volume 19, pages 525�529,
2009b
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1.2 Motivation for the research

MINLP optimization problems can be found from all disciplines of science and applied
science: economics in social science, engineering in applied science, operation research
as an interdisciplinary science, etc.. The research areas include: �nance, structural opti-
mization, production management, logistics, and parameter estimation [Floudas, 2000].
Optimization applications investigated at Åbo Akademi University are, for example: allo-
cation problems which include plant layout, scheduling and trim loss [Westerlund, 2005],
[Jernström, 2006], [Harjunkoski, 1997]; pump con�guration [Pettersson, 1994]; chromato-
graphic separation [Emet, 2004]; heat exchanger network problems [Björk, 2002]. The
solving methods available can be divided into three groups within global optimization:
deterministic, stochastic and heuristic. Deterministic methods are considered in this the-
sis and, typically, an appropriate deterministic method can provide information about
the solution quality. Stochastic algorithms, for example a Monte-Carlo simulation, or a
heuristic approach [Silver, 2004], for example an evolutionary algorithm, can typically
not provide information about the solution quality. Particularly for large-scale problems,
but also for other di�cult problems, even �nding a solution, is sometimes di�cult. A
heuristic approach might, in this case, be more useful when taking into consideration
a reasonable solution time. For example, in Farkas et al. [2006] the problem of distil-
lation column synthesis is solved by a Case-Based Reasoning approach and in Drezner
et al. [2005] a review of heuristic approaches applied on Quadratic Assignment Problems
(QAP) is given. Clearly, the heuristic solution approaches are also an important �eld of
study.

An important and challenging class of optimization problems is the class of Mixed
Integer Non-Linear Programming (MINLP) problems. Only in the last �ve years have
the theoretical advances to solve MINLP problems to global optimality resulted in solvers
that are available on standard optimization platforms. Traditionally, MINLP solvers have
only been able to solve convex MINLP problems (a subset) to proven global optimality,
otherwise they have worked as a local solver, i.e. if a solution is found, it is the best
one in some sense, but can also be seen as a heuristic solver1. Currently, the global
MINLP solvers solve a sequence of convex subproblems in order to solve an MINLP
problem and typically require much more computational e�ort than a local MINLP solver.
Especially for a large scale MINLP problem, for example an industrial application, the
computational e�ort is already a key issue and the solution time required by a global
solver can easily become unacceptably long. Furthermore, no method has outperformed
the other methods in all cases of convex or global MINLP optimization. The research in
methods concerning convex MINLP optimization, as well as, other heuristic approaches
has, therefore, its place in the scienti�c community.

The solver comparisons hold information about which MINLP solvers are good at
solving a particular type of problem. They might also provide a rough estimate on the
solution time in relation to problem size for a particular type of problem2. Note that

1A convex MINLP method can in some sense be considered as heuristic, since it does not provide
any information about the solution quality and, moreover, the solution can be starting point dependent.

2The relation can only be compared for similar problems because the type of non-convexity may
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the way the solver performance is measured can give a very di�erent perception of the
solving capability of a particular solver and, therefore, it is important to state how the
comparison is performed. For example, a local MINLP solver that �nds a solution quickly,
but is unable to improve the solution if more time is available, performs well if a short
time limit is used, but not so well with a longer time limit compared to other solvers. To
solve a particular optimization problem on a standard optimization platform there are
two important phases. The �rst phase is to create a model and the second phase is to
choose an appropriate solver by understanding the strengths of di�erent solvers. In this
thesis we do not consider the modeling aspect, but concentrate on the solvers and solving
techniques. One goal of this thesis is to point out the main di�erences in some MINLP
solvers in GAMS and give an overview of their performance. This can assist a novice
modeler to solve a particular problem by choosing a well suited solver, without years
of experience in optimization. Another goal is to present some algorithmic advances in
AlphaECP, an MINLP solver, and demonstrate the improved performance.

1.2.1 The objective of the research

This thesis aims to reveal if there exist a commercial MINLP solver that is universally
faster and �nds a higher quality solution than any of the other solvers. It intends to
uncover the di�culties of performing a fair comparison and, furthermore, explain the
major enhancements implemented in the AlphaECP algorithm. The research is carried
out by performing solver comparisons with very extensive problem libraries.

1.3 De�nitions

We now present some terminology which is used throughout this thesis:

Point Variable levels.

Fixing of variable levels Variable levels are considered as constants and can not be
changed by the sub-solver.

Constraint A function that needs to satisfy a particular value.

Feasible region All combinations of variable levels that satisfy all constraints, also
called solution space.

Start point Initial variable levels given to a solver.

Cutting Plane A linearization of a non-linear function.

Cut Abbreviation for cutting plane.

Cut generation point The variable levels used to derive a cut.

Violation The magnitude by which a constraint is violated.

Maximum violation The violation value for the most violating constraint at a speci�c
point.

heavily impact the solution time.



1.4. AN INTRODUCTION TO MINLP SOLUTION APPROACHES 5

Domain violation A function cannot be evaluated, for example,
√
−1.

Best solution known The best solution known for a model and not necessarily found
by any solver in a particular comparison.

For the optimization problems considered in this thesis, an optimization model has
been derived and the terms optimization problem and optimization model are used in-
terchangeably. Also, we are always considering minimization problems, if not mentioned
otherwise. Recall that a maximization problem can easily be transformed into a mini-
mization problem.

1.4 An introduction to MINLP solution approaches

The optimization problems considered directly or indirectly in this thesis can be classi�ed
and denoted as follows:

LP Linear Programming.

MILP Mixed Integer Linear Programming.

NLP Non-Linear Programming.

MINLP Mixed Integer Non-Linear Programming.

RMILP Relaxed Mixed Integer Linear Programming.

RMINLP Relaxed Mixed Integer Non-Linear Programming.

Figure 1.1: An Outer-Approximation with
linearizations.

Figure 1.2: A possible division of the prob-
lem in two subproblems.

Let us consider the following MINLP problem:
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min f(x, y) (objective function)

subject to

hi(x, y) = 0 i ∈ I (equality constraint)
gj(x, y) ≤ 0 j ∈ J (inequality constraint)
x ∈ Rn

y ∈ Zm

(1.4.1)

where I and J are sets of equality and inequality constraints and x and y are continuous
and discrete vectors, respectively. A function, f(x, y), h(x, y), or g(x, y) , can be either
linear or non-linear, however, in an MINLP problem at least one function is non-linear
and the model contains at least one integer variable. The objective function can be
made linear by moving the non-linearity into a constraint, for example, by stating min
z subject to z = f(x, y).... For demonstration purposes we consider in this section that
we minimize z subject to some constraints. Note also that an integer variable can be
expressed as a combination of binary variables.

An LP problem is a convex problem and can be solved in an e�cient manner, for ex-
ample, with the simplex method, see Vanderbei [2001]. An MILP problem is non-convex,
but if the discontinuity, i.e. the integer requirement, is relaxed, the resulting RMILP=LP
problem is convex. Loosely speaking, relaxing means that some restriction(s) are disre-
garded, for example, when the integer requirement is relaxed then the integer variables
may take continuous values at a solution. An MILP problem can be solved with the
Branch-and-Bound (BB) method by solving a sequence of convex LP problems, see Van-
derbei [2001]. Note that the BB method, in a worst case scenario, needs to divide the
problem into twice as many subproblems as there are combinations of the values of the
integer variables. Consider �gure 1.1, when z is minimized and if we require z and x to
take integer values, then the feasible solutions are represented by the black dots within
the feasible region of the integer relaxed MINLP problem. In �gure 1.2 we can see a
possible division of the problem in �gure 1.1 into two subproblems which can be solved
separately.

A non-convex MINLP problem can be solved by solving a sequence of convex MINLP
problems. For an MINLP model the non-convexity may be in the functions and therefore,
the non-convexity of the integer requirement for MINLP models is generally disregarded
in the discussion and, likewise, in this text. Hence, a non-linear function can be either
convex or non-convex and the problem in �gure 1.1 is a convex MINLP problem. Fur-
thermore, if all functions are convex, the model is convex, otherwise non-convex. To
informally describe convexity we can consider the problem of �nding the lowest point
(minimum). The lowest point of a bowl (convex) can be found by following a drop of oil
poured into the bowl. Let us now consider an NLP model, for example, an integer relaxed
MINLP model. The convex NLP solvers are based on the fact that we can always search
in the direction which the oil �ows and stop when the oil stops, i.e. local optimization.
It is worth pointing out that two local solvers may �nd di�erent solutions when started
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Figure 1.3: Global optimization BB illustration.

from the same starting point because the path to a local optimum is di�erent. However,
if we attempt to �nd the lowest valley between hills (non-convex) the approach does not
guarantee that we will �nd the lowest valley, see �gure 1.3. One approach to overcome
this is to solve a non-convex NLP problem by using convex underestimators and concave
overestimators that overestimate the feasible region, i.e. consider a larger feasible region.
To describe a non-convex function su�ciently well, the convex approximation can be en-
hanced at a point by dividing the problem into two subproblems and forming more exact
underestimators for each problem, i.e. a BB method, see �gure 1.3. The vertical lines
show how the problem is divided or branched into convex subproblems or nodes and each
node solved separately. Notice also that if the proposed Upper Bound (UB) in �gure 1.3
is found, the region approximated by the convex underestimator 3.4 can be disregarded
or fathomed, because we already know a better solution, i.e. the UB. Furthermore, the
UB enables us to sometimes reduce the variable bounds, because we are not interested
in the situation z > UB, i.e. after solving a relaxed problem the Branch-and-Reduce
(BR) can be applied. For a description of the resulting solution procedure see [Soland
and Falk, 1969], for an illustrative non-general description, and McCormick [1976], for a
more general formulation. Note that the global optimization BB method is, in general
computationally costly because several convex subproblems need to be solved. A general
description of global optimization techniques can be found in Floudas [2000].
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The local MINLP solver uses di�erent methods to converge to a solution, but mainly
solving subproblems of type LP, MILP and/or NLP. Many of the solvers use a local NLP
sub-solver to solve subproblems with �xed or relaxed integer variables. The local NLP
solvers usually require the Hessian matrix (the second order derivatives of all constraints)
or an approximation of it. This means, depending on the cost of this computation and
how frequently the NLP solver is called, a good choice of MINLP solver can be made.
Recall also, that any local NLP solver may fail to �nd a solution, due to the chosen
starting point or non-smooth functions. An important non-convexity, that can make a
crucial di�erence in solving a problem, is the treatment of non-linear equality constraints.
A non-linear equality constraint is always non-convex, but if the functions are convex 3

, many NLP solvers �nd good solutions. If, however, linearizations are introduced, they
are likely to result in no solution being found. The reason is that two linearization for a
constraint, made at two points close to each other, where the constraint values are posi-
tive and negative respectively, typically reduce the feasible region exaggeratedly. On the
other hand, linearizations are computationally very inexpensive to calculate and usually
reduce the relaxed solution space e�ciently. An overview of MINLP solving techniques
can be found in Adjiman et al. [1998] and Grossmann and Kravanja [1995] and include
Branch-and-Bound (BB), Outer Approximation (OA), Generalized Benders Decomposi-
tion (GBD) and Extended Cutting Plane (ECP). A more thorough explanation of GBD
and OA is in Floudas [1995] and of ECP in Westerlund et al. [1998].

1.5 A short description of some GAMS MINLP solvers

The GAMS optimization platform was chosen due to its wide range of excellent solvers
and good availability of test models. The GAMS system became commercial in 1987
and, currently (2011), includes 9 MINLP solvers: 8 deterministic and 1 heuristic. In
this section a rough overview of 7 GAMS solvers is given. The heuristic solver OQNLP
will not be described and neither is KNITRO, because the MINLP solving capability is
designed for convex MINLP models of moderate size [GAMS, 2011]. The descriptions
aim to give an understanding of the main di�erences between the MINLP algorithms and
provide su�cient background to support the discussion in section 2.4. It is not meant
to be a complete description of the algorithms and therefore I want to apologize to the
method developers for any unmentioned important details. As a �rst source, for more
information about the solvers, the solver manuals GAMS, 2011, as well as, Bussieck and
Vigerske [2011] can be consulted.

1.5.1 SBB

SBB (Simple Branch-and-Bound) implements a Branch and Bound algorithm where NLP
problems are solved in every node. The algorithm starts by relaxing the integer variables
and solving an NLP problem. If the solution satis�es the integer requirement, the algo-
rithm terminates, otherwise the branching procedure is applied. After each NLP solution

3If the constraint h(x, y) ≤ 0 is non-linear and convex, then the constraint h(x, y) = 0 is non-convex.
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Figure 1.4: Simpli�ed SBB algorithm.

two nodes are added to the BB tree by tightening the bound for some variable(s), for
example, if y = 0.3 then require in the �rst node that y ≥ 1 and in the second node that
y ≤ 0. In the next step a node from the node table is selected and an NLP problem is
solved, starting from the previous NLP solution. If an MINLP solution is found, then
some nodes from the BB tree might be removed4, i.e. if the objective function value for
the node is worse than the MINLP solution. The algorithm terminates when the node
table is empty. More information regarding the solution procedure can be found, for
example, in Ley�er [2001].

SBB solves mainly NLP problems and is therefore well suited for models with fewer
discrete variables but more di�cult nonlinearities. SBB has a fair chance of �nding so-
lutions for non-convex models, but global optimality can only be guaranteed for convex
problems.

Solver Type: Convex MINLP solver.
Developer: ARKI Consulting and Development A/S.
Introduced in GAMS: 2001.

1.5.2 DICOPT

The algorithm in DICOPT is based on three key ideas: Outer Approximation (OA),
Equality Relaxation (ER) and Augmented Penalty (AP). The OA algorithm decomposes
the problem into a discrete linear problem (MILP) and a continuous non-linear problem
(NLP), see �gure 1.5. The master MILP problem is a linear approximation of the MINLP
problem, where the MINLP approximation is improved during the iteration procedure.
First the NLP problem is solved by �xing the integer variables and a UB can be obtained.
Then, linear approximation(s) of non-linear functions are added to the MILP problem
and by solving the resulting problem an LB is obtained. If the LB>UB then the integer
variables are �xed and an NLP problem is solved. The procedure is repeated until the
LB≤UB, when the solution, i.e. UB, can be returned.

4The term fathomed can also be used.
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Figure 1.5: Simpli�ed DICOPT algorithm by Kocis and Grossmann [1989].

Additionally, the following can be noted. A continuous NLP problem can be obtained
by simply relaxing the integer requirement. The equality constraints can be relaxed after
each NLP call into ≤, if the associate Lagrange multiplier is positive or else to a ≥
constraint. Furthermore, for some �xed y the NLP might be infeasible and in order to
avoid this, the non-linear constraints are allowed to violate by adding penalty variables
for the non-linear constraints. The violation(s) is/are penalized in the objective function
and if a feasible solution exists, the penalty variables will be driven to zero. If a feasible
solution does not exist then the continuous variable levels that minimize the summed
violation of the inequality constraints will be found. However, in this case an integer cut,
instead of linearizations, is added to the MILP problem that prevents �nding the same
integer combination again. A more detailed description of the algorithm can be found in
Floudas [1995] and Kocis and Grossmann [1989].

DICOPT was based on the assumption that MILP models can be solved e�ciently
and designed so that it minimizes the number of NLP subproblems solved, compared to,
for example, SBB.

Solver Type: Convex MINLP solver.
Developers: J. Viswanathan and Ignacio E. Grossmann at Carnegie Mellon University.
Introduced in GAMS: 1993.

1.5.3 AlphaECP

AlphaECP or αECP is based on the Extended Cutting Plane (ECP) method [Wester-
lund et al., 1998] and a simpli�ed view of the algorithm can be seen in �gure 1.6. First
the linear part of the problem is solved by excluding the non-linear constraints from the
problem. After the resulting MILP model is solved, the NLP solver can be called with
�xed integer levels from the MILP solution in the hope of �nding an MINLP solution. If
the point satis�es all the constraints an MINLP solution is found. However, if some of
the constraints are not satis�ed, at least one unsatis�ed nonlinear constraint is linearized
and the resulting MILP model is solved. A linearization is a valid underestimator of a



1.5. A SHORT DESCRIPTION OF SOME GAMS MINLP SOLVERS 11

Figure 1.6: Simpli�ed AlphaECP algorithm.

convex constraint, see �gure 1.1. However, it is not a valid underestimator of a pseu-
doconvex constraint5, but can be re�ned into such. The re�nement procedure speeds
up the convergence compared to if a valid underestimator of a pseudoconvex constraint
would be immediately formed. The algorithm terminates when the MILP solution is
also an MINLP solution and all linearizations are valid under-estimators of pseudocon-
vex constraints. For an illustrative presentation of the ECP method, see Lastusilta [2007].

Solver Type: Pseudoconvex MINLP solver
Developer: Tapio Westerlund at Åbo Akademi University.
Introduced in GAMS: 2007.

1.5.4 BARON

The Branch And Reduce Optimization Navigator derives its name from its
combining interval analysis and duality in its �reduce� arsenal with enhanced
�Branch and Bound� concepts as it winds its way through the hills and valleys
of complex optimization problems in search of global solutions. [Sahinidis,
2000]

The BARON (Branch And Reduce Optimization Navigator) algorithm is based on the
Branch and Bound (BB) concept to solve non-convex MINLP problems to global opti-
mality, see �gure 1.8 and the more accurate �gure 1.7. Let (P) be the MINLP problem
and (R) an Outer-Approximation (OA) of (P), see �gure 1.1 OA example. Solving (R)
provides a valid Lower Bound (LB), while (P) provides a local Upper Bound (UB). If
UB-LB is su�ciently small the algorithm terminates. Otherwise the BB subdivides the
feasible region into more accurate approximations, for which a new LB closer to UB
is obtained and possibly a lower UB (�gure 1.3 represents the main idea). The pro-
cedure is repeated until UB and LB become su�ciently close to each other. In order

5Note that a pseudoconvex constraint is a slightly more general constraint class, hence, a convex
constraint is also pseudoconvex.
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Figure 1.7: Schematic GAMS/BARON connection diagram [Website: BARON].

to make the algorithm e�cient, several techniques are used, of which the most impor-
tant are mentioned here. BARON has a set of di�erent function relaxations that create
outer-approximations6, i.e. convex/concave envelopes which can be linearized. Note that
nonlinear programs are harder to solve and are associated with more numerical issues
than linear programs [Tawarmalani and Sahinidis, 2004]. Range reduction is incorporated
to enhance the convergence speed, i.e. to �nd tighter variable bounds by, for example,
using the convexity and optimality of (R). A detailed description of the algorithm can
be found in Tawarmalani and Sahinidis [2002] and Sahinidis [2000].

BARON can guarantee global optimality under fairly general assumptions. These
include �nite lower and upper bound on variables and their expressions. Note that if a
variable is bounded it does not necessary result in a bounded expression, for example,
1/x, x ∈ [0, 100] results in an in�nite expression value if x = 0. BARON supports the
following nonlinear functions: multiplication, division, ex, ln(x), xα for real α, βx for real
β, xy, and |x|.

Solver Type: Global MINLP solver (for a limited set of nonlinear functions).
Developer: Nick Sahinidis at Carnegie Mellon University (partly developed at the Uni-
versity of Illinois at Urbana-Champaign).
Introduced in GAMS: 2001.
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Figure 1.8: Simpli�ed LindoGlobal and BARON algorithm.

1.5.5 LindoGlobal

LindoGlobal is based on the following ideas:

a) converting the original nonlinear/nonconvex into several linear/convex sub-
problems, b) using a Convex, Interval, and Algebraic(CIA) analysis, and c)
a Branch-and-Bound technique to exhaustively search over these subproblem
for the global solution. [Schrage and Gau, 2003]

LindoGlobal, as well as BARON, uses the Branch-and-Bound approach to decompose the
non-convex model into several convex sub-models. The algorithm starts with a presolving
step where problem (P), see �gure 1.8, is solved with local search procedures by starting
the search from di�erent starting points. A solution can obviously be used in the BR
step, as well as, be returned as a solution. In the �rst step the problem (R) is solved,
which is a relaxation of (P). This means a non-convex function f(x) is relaxed by a
convex underestimation g1(x) ≤ f(x) and a concave overestimation g2(x) ≥ f(x), which
can, in turn, be approximated by linearizations. If the solution to (R) is also a solution to
(P) the solver can terminate and return the global optimal solution, otherwise the BR is
applied. BR subdivides the feasible region into more accurate approximations and places
the new nodes in a node table. When all nodes have been solved or fathomed (inferior to
already obtained MINLP solutions) the algorithm terminates. More information about
the solving procedure can be found in Schrage and Gau [2003] and Schrage and Lin
[2009].

LindoGlobal and BARON are presented with the same simplistic algorithm diagram
in �gure 1.8, however, despite the basic idea is the same the algorithms di�er signi�-
cantly. LindoGlobal supports a large set of nonlinear functions and furthermore, relax-
ations, node selection, range reduction and node selection might be signi�cantly di�erent.

Solver Type: Global MINLP solver (currently limits the model size to 3000 variables and
2000 constraints)

6 An outer-approximation refers to how the MINLP model is approximated, while the outer approx-
imation algorithm refers to a solution approach.
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Developer: Lindo Systems, Inc.
Introduced in GAMS: 2007.

1.5.6 COIN-OR solvers Bonmin and Couenne

COIN-OR (COmputational INfrastructure for Operations Research) is open-source soft-
ware for the operations research community [Lougee-Heimer, 2003]. One part of the
project is to host the GAMS interface and in this section only the MINLP solvers of the
COIN-OR infrastructure are very brie�y described: Bonmin (Basic Open-source Nonlin-
ear Mixed Integer programming) and Couenne (Convex Over and Under Envelopes for
Nonlinear Estimation). The reader is referred to the COIN-OR manual [GAMS, 2011]
and Website: COIN-OR for further information.

Bonmin has six di�erent algorithms, however, the default algorithm, B-BB, is similar
to SBB. The other algorithms are: B-OA, B-QG, B-Hyb, B-ECP and B-iFP. B-OA is sim-
ilar to DICOPT, while B-QG is an outer-approximation based branch-and-cut algorithm
based on solving a continuous linear model at each node of the search tree, improving
the linear model by outer approximation, and branching on integer variables. B-Hyb is
a hybrid of B-BB and B-QG. B-ECP uses Kelley's outer-approximation [Kelley, 1960]
based branch-and-cut algorithm, while B-iFP is an iterated feasibility pump algorithm.

Couenne is a global optimization solver for MINLP problems.

Couenne solves convex and nonconvex MINLPs by an LP based spatial branch-
and-bound algorithm that is similar to the algorithm used in BARON. The
implementation extends Bonmin by routines to compute valid linear outer
approximations for nonconvex problems and methods for bound tightening
and branching on nonlinear variables. [GAMS, 2011].

Solver Type: Convex MINLP solver (Bonmin)
Developers: Collaboration between Carnegie Mellon University and IBM Research.
Introduced in GAMS: 2007.

Solver Type: Global MINLP solver (Couenne)
Developers: Collaboration between Carnegie Mellon University and IBM Research, and
later also Lehigh University.
Introduced in GAMS: 2009.



CHAPTER2
The performance of some

MINLP solvers

When solving an MINLP problem, the type of non-linearity and the number of integer
variables can signi�cantly impact upon the solving capability of a solver. Paying atten-
tion to the model characteristics and observing the solving capability of a solver can give
insight into a suitable solver choice for a particular problem. An easily observed charac-
teristic is the application area of the problem, which might provide indicative information
for a good solver choice. When di�culties arise in solving a model it is sometimes worth-
while to analyze the non-linearity in detail in order to improve the model. However, in
other cases it might be easier to simply try another solver.

2.1 Problem libraries

Problem libraries can be used to measure the performance of solvers.1 In this chapter two
model libraries, MinlpLib and Convex MinlpLib, are used to measure the performance
of MINLP solvers. Additionally, GlobalLib is used in paper II and 50 problems from
QapLib in paper IV. In total 875 models has been used in the comparisons of this thesis:
MinlpLib(270), Convex MinlpLib(140), GlobalLib(415) and QapLib (50).

1. MinlpLib, with 270 models, both convex and non-convex [Website: MINLP Li-
brary].

2. Convex MinlpLib with 140 convex models 2[Website: Convex MINLP Test Prob-
lems]. Note that the values best solution known was obtained by collecting them
from this comparison.

1 For a collection of test problem libraries see Website: Global Optimization Test Libraries.
2 Contains at the time of writing 142 models, but problems Syn10M.gms and Syn30M03M.gms had

a faulty solve statement, which was discovered after the test run and is not included in the comparison.

15
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3. GlobalLib, with 415 NLPmodels 3 , both convex and non-convex [Website: GLOBAL
Library].

4. QapLib, with 136 Quadratic Assignment problems, however, only 50 of them were
used [Website: QAP Library]4.

Some characteristics of MinlpLib, which was introduced in Bussieck et al. [2003],
can be seen in table 2.1. Note that model meanvarxsc.gms contained semi-continuous

Table 2.1: MinlpLib statistics.

The number of problems with following characteristics:
Interval constraints non-linear

constraints
non-linear
equality
constraints

variables integer
variables

0 0 0 160 0 0
1-49 111 218 61 107 179
50-99 33 4 5 21 30
100-499 83 27 32 89 33
500-999 14 11 5 23 21
1000-4999 22 9 6 23 4
5000-9999 5 1 1 4 0
10000-99999 2 0 0 3 3
Sum 270 270 270 270 270

variables which could not be handled by all solvers. The Convex MinlpLib refers to
140 convex MINLP problems collected from Website: Convex MINLP Test Problems
for which some characteristics can be seen in table 2.2. In table 2.3 and in table 2.4
some characteristics of GlobalLib and QapLib, respectively, can be found. Note that in
table 2.4 all problems include only one non-linear constraint and the related columns are
therefore left out.

2.2 Comparison setup

The test computer is an Intel core i7 with 4 cores of 2,8 GHz and 6 GB of memory. A
time limit per model is set for the solvers to perform the optimization. In the comparison
a time limit of 1000 seconds per problem is used, except for the performance pro�les for
AlphaECP in �gures 2.1, 2.2 and 2.3, when a time limit of 6 hours per problem is used.
If the solver has not stopped within 10 minutes after the time limit has been exceeded,
the solution process is terminated by force. In this case the solver will not produce a
solution �le. The GAMS solvers were used with default settings, since it is assumed

3Only 403 models can be solved by AlphaECP. 4 models contained equilibrium constraints and
are excluded from the comparison. Additionally, 8 problems contained equation or variable types that
AlphaECP can not handle and those problems are excluded from table 2.3.

4 Additionally, two problems were excluded from the comparison because of a system or memory
limitation and are therefore, not included in table 2.4.
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Table 2.2: Convex MinlpLib statistics.

The number of problems with following characteristics:
Interval constraints non-linear

constraints
non-linear
equality
constraints

variables integer
variables

0 0 0 140 0 0
1-49 4 115 0 9 46
50-99 10 21 0 13 30
100-499 55 4 0 67 62
500-999 20 0 0 29 2
1000-4999 51 0 0 22 0
5000-9999 0 0 0 0 0
10000-99999 0 0 0 0 0
Sum 140 140 140 140 140

Table 2.3: GlobalLib statistics.

The number of problems with following characteristics:
Interval constraints non-linear

constraints
non-linear
equality
constraints

variables integer
variables

0 0 1 210 0 403
1-49 289 308 120 255 0
50-99 31 19 15 29 0
100-499 20 22 19 36 0
500-999 7 13 12 10 0
1000-4999 41 39 26 48 0
5000-9999 11 1 1 18 0
10000-99999 4 0 0 7 0
Sum 403 403 403 403 403

that the solver developer has chosen, as default, the best settings for an arbitrary model.
If customized settings were used, it would be very time consuming when solving large
problem and solver sets. Furthermore, we would need to have a deep understanding of
the underlying algorithm for all solvers so the best settings for each solver could be chosen
for the particular test batch. Otherwise the comparison might be disadvantageous for
some solvers because of a lack of knowledge of the best settings for the considered test
batch.

2.3 Performance indicators

To measure the solver performance for a batch of problems the following indicators can
be used: number of found solutions, solution quality and solution time. An optimization
model may or may not have a solution and if a feasible (possible) solution is found, then it
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Table 2.4: QapLib statistics.

The number of problems with following characteristics:
Interval constraints bilinear

terms
variables integer

variables
0 0 0 0 0
1-49 0 0 0 0
50-99 28 0 0 0
100-999 20 0 16 16
1000-9999 0 0 32 32
10000-99999 0 0 0 0
100000-999999 0 16 0 0
1000000-9999999 0 18 0 0
10000000-99999999 0 14 0 0
Sum 48 48 48 48

is not necessarily a local or global optimal solution. The notation �best solution known�
is self explanatory, but note that it is not necessarily found by any solver during the
test run. Solution quality can be de�ned as the di�erence between a found solution and
the best solution known. A tolerance that determines if we have found the best solution
is used. If the absolute solution value of the best solution known is ≤ 1 an absolute
tolerance 10−6 is used, else a relative tolerance. Solver performance can be measured as
the number of found solutions over time, furthermore, the solution quality can also be
observed. Presenting the performance of a solver in a performance pro�le, see �gure 2.1,
can however, result in a distorted view if all the desired information is not available.

There are mainly two issues when the GAMS platform is used for a solver comparison.
Firstly, only one solution and the respective solution time is easily retrieved from the
system and, secondly, not all MINLP solvers always respect a given time limit su�ciently
well. It would be desirable to have information about all intermediate solutions and
their solution times. When only one solution for a model is available it is very likely
to cause a distorted performance pro�le, for example, when a solver �nds the global
optimal solution within seconds, but takes a very long time to verify the solution. In
this case the solver shows a good performance with a short time limit, but a less good
performance with a long time limit. Currently, the GAMS solution report is produced
at the �nal step in the optimization and contains only one solution and its respective
solution time. To overcome this issue, continuous performance pro�les are not presented
for the MINLP solver comparison, but rather the solver performance at di�erent time
points, where the solver has been given the time point speci�c time limit. Obviously,
this is computationally much more costly since the same models have to be repeatedly
solved with di�erent time limits. However, currently no better way is known by the
author to overcome the distortion issue. To illustrate the issue AlphaECP is used, since
it provides the intermediate solution values and their solution time in a log �le. Figures
2.1-2.3 presents the performance of AlphaECP when the problems in the MinlpLib are
solved with a 6 hour time limit per problem. In �gure 2.1 we can see the performance
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Figure 2.1: Performance pro�le for AlphaECP when intermediate solutions are taken
into consideration.

pro�le of AlphaECP when information regarding intermediate solutions is available and
in �gure 2.2 when only the �nal solution is available. In �gure 2.3 the measurement error
between the two pro�les can be seen. The global MINLP solvers, but possibly also other
local MINLP solvers, su�er from a distorted performance pro�le if only the �nal solution
is available.
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Figure 2.2: Performance pro�le for AlphaECP when intermediate solutions are not taken
into consideration.

Figure 2.3: The measurement error caused by not taking the intermediate solutions into
consideration.
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Another issue that occurs when undertaking a solver comparison on the GAMS plat-
form is that some solvers do not respect the time limit su�ciently well. For example, for
SBB this issue occurs because the reading/writing of �les in SBB is not included in the
time consumption measurement [Bonami et al., 2008]. If a time limit is given, but the
solver does not stop at the limit, it is possible to stop the optimization by force or com-
plete the optimization. For comparison purposes both options are unsatisfactory. If we
stop the solver by force, an earlier found solution is not reported, but on the other hand
a solution found after the time limit is exceeded, does not result in a fair comparison.
Hence, a compromise must be made and, here, we chose to let the solver exceed the time
limit with 10 minutes before terminating the solver by force.

2.4 Solver comparisons

Many of the GAMS/MINLP solvers are currently convex MINLP solvers. A local MINLP
solver can, in some sense, be seen as a heuristic solver when a non-convex MINLP model
is solved. It can converge to a di�erent local optimal solution depending on the choice
of sub-solver, start point or solver settings. The models in the convex MinlpLib and
MinlpLib are solved with a 1000 seconds (∼ 17 minutes) time limit per problem.

In �gures 2.4 and 2.5 we can observe the ability of the compared solvers to �nd so-
lutions when di�erent time limits are given to the solvers. In �gure 2.4, which consisted
of 140 convex models, we can see that some local solvers outperformed the global solvers
BARON, LindoGlobal and Couenne. Observe that AlphaECP can, already, �nd a solu-
tion to all problems within 10 seconds and, furthermore, that over 80% of the problems
are solved to the best known value when the ∼ 17 minutes time limit per problem is
reached 5. This implies that a global solver for non-convex models does not need to be
the best choice to solve a convex MINLP problem!

In �gures 2.6 and 2.7 we can see the time consumption of the solvers. The notation
GAMS time refers to the time consumption reported by GAMS. The notation Additional

refers to the additional actual time it took to complete the test run. Hence, the total
time to complete the test run is the sum of GAMS time and Additional. Note that the
external time check used an interval of 30 seconds and, therefore, the total

error in the �Additional� measurement can be up to 70 minutes in �gure 2.6

and 135 minutes in �gure 2.7, which is about the lowest total time used at

time point 10 seconds in both �gures.

5 AlphaECP did not �nd for all models a higher quality solution than some other solver (not shown
in �gure 2.4).
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Figure 2.4: Convex MinlpLib: a solution quality comparison.

Figure 2.5: MinlpLib: a solution quality comparison.
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Figure 2.6: Convex MinlpLib: a solver solution time comparison.

Figure 2.7: MinlpLib: a solver solution time comparison.





CHAPTER3
GAMS/AlphaECP algorithm

development

The GAMS/AlphaECP algorithm is a local MINLP solver implemented in C language
and available in the General Algebraic Modeling System. An early release and illustration
of the main ideas can be found in Lastusilta [2007].

3.1 An introduction to AlphaECP

The ECP method is an extension of Kelley's cutting plane method for convex NLP prob-
lems, see Kelley [1960]. The ECP method was introduced by Westerlund and Pettersson
[1995] and �nalized by Westerlund and Pörn [2002]. In the �rst phase it was developed for
solving convex MINLP problems and in the second phase to solve MINLP problems with
pseudoconvex constraint Westerlund et al. [1998]. In the �nal phase it was developed
to solve pseudoconvex MINLP problems, i.e. problems with a pseudoconvex objective
function. Note that the ECP method requires only the solution of an MILP subproblem,
the evaluation of the non-linear constraint and one gradient evaluation in each iteration.

In addition to the described ECP method the following functionality has been added
to AlphaECP in order to improve the performance: an NLP solver can be called; a
cut reselecting heuristic can be used and the solver is able to take advantage of multi-
ple MILP solutions. The NLP solver is typically able to �nd an accurate solution in a
short time and therefore, improves the performance especially for problems containing
mainly continuous variables in the non-linear constraints. It also improves the proba-
bility of �nding a solution for problems containing non-linear equality constraints. The
cutting plane reselecting heuristic is not required for pseudoconvex MINLP problems,
but improves the probability of solving non-convex MINLP problems. The capability
of selecting an MILP solution, after an MILP solver call, improves the quality of cut-

25
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ting planes and, furthermore, slightly increases the convergence speed at the end of the
iteration procedure.

3.2 The enhancements to AlphaECP

In this section the algorithm changes to the ECP method described in Westerlund and
Pörn [2002] is discussed. The focus was set on improving the solution capability for non-
convex MINLP even though nothing more than feasibility can be said about the solution
quality, if a solution is found. The main changes discussed are the following:

1. The use of an NLP sub-solver.

2. A cutting plane reselecting heuristic.

3. The use of multiple MILP solutions.

The essentials parts of the algorithm will now be described. The GAMS/AlphaECP
version 2.04.01 algorithm, which was released in GAMS version 23.7.1, can be seen in
�owchart 3.1. The general idea of the algorithm is to solve an MINLP problem by solving
a sequence of MILP problems. An iteration is de�ned by the loop seen in the �owchart 3.1,
i.e. typically solving an MILP problem and adding cuts. An MILP problem in AlphaECP
typically consists of the linear part of the MINLP problem and the generated cutting
planes. When AlphaECP calls an NLP sub-solver, the NLP problem consists of the
original problem where the integer variables have been �xed to variable levels, obtained
from the MILP solver solution. To verify optimality, which guarantees optimality for
problems with pseudoconvex constraints, alpha values are increased to their upper limits,
alphamax. When the alpha values are increased, the approximated feasible region of the
MINLP problem is likely to grow and better solutions might be found. The default
strategy guaranteeing optimality for a problem with pseudoconvex constraints and a
convex objective function will be given 1 . In �gure 3.1, the rectangular holders denote
processes and the diamond-shaped holders decisions. (*) denotes that the decision Y es
is taken only after the question is true for a speci�ed number of consecutive iterations.
The reasons why we are unable to add cuts can be: all gradient values are below the
accepted tolerance for violating constraints or the function can not be evaluated, for
example,

√
−1. The MILP solver parameter MIPoptcr denotes the accepted relative gap

between the MILP solution and its integer relaxed solution.
The use of an NLP sub-solver enables AlphaECP to frequently �nd an MINLP so-

lution early in the solution process. AlphaECP calls an NLP solver with �xed integer
variables levels obtained from the MILP solution. Typically, the solution found by the
NLP solver is accurate and the solution time short with respect to the MILP solution
time. Therefore, it is usually bene�cial to call the NLP sub-solver several times during the
AlphaECP solution procedure. Cutting planes generated early in the solution procedure

1The changes required to solve problems with a pseudoconvex objective function can be found in
Westerlund and Pörn [2002]. Here, they are not taken into consideration because they are not essential
for discussing the enhancements to the algorithm.
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typically reduces the MILP feasible region of MILP subproblems e�ciently. However,
when closing in on a solution a cut of a non-convex constraint, especially of an equality
constraint, might result in an infeasible subproblem. Hence, the pure ECP method is
not well suited for solving problems with many non-linear equality constraints. Since
MINLP problems frequently include non-linear equality constraints it is understandable
that an NLP sub-solver considerable improves the performance of AlphaECP. A cutting
plane reselecting heuristic is, by default, called in the following cases:

a) If the MILP solver would return an infeasible solution.

b) The maximum violation is not decreasing and cutting planes are repeatedly moved
close to their generation point.

c) When the violation is not decreasing and domain violations are repeatedly encoun-
tered.

The �rst case is obvious, instead of converging to an infeasible MINLP solution, a rese-
lection of cuts is done. The second case is an early recognition of a probably infeasible
MINLP. The updating (or movement) of cuts so that almost the same point can be found,
is necessary to be able to make small changes in the variable levels. The chosen tolerance
is 10−6, de�ned as the maximum perpendicular distance between a cut and its generation
point. Especially when the problem has non-linear equality constraints the high toler-
ance has shown itself to enable the solver to �nd better solutions. The drawback in this
approach is that the convergence becomes computationally costly when a large number
of almost identical MILP subproblems need to be solved. Furthermore, many times the
convergence process results in an infeasible MINLP solution. Therefore, early recognition
of a probably infeasible MINLP solution is implemented. Instead of completing the slow
procedure we reselect cuts, since it is likely that the algorithm converges to an infeasible
MINLP solution. In the third case we reselect the cuts when all constraints cannot be
evaluated and we identify that the cuts do not reduce the maximum violation. In other
words, the MILP solution point is not e�ectively moving closer to an MINLP feasible
one.

Before the cut reselecting heuristic is described, some necessary notations are de�ned.
Generating a cut refers to linearizing a non-linear constraint at a speci�c point. Including
cuts refers to adding a cut or cuts to the next MILP problem. The cut or cuts are
generated at the considered point. Cutting away refers to a linearization that prevents
the MILP solver �nding again the point that is cut away. A point is considered reachable
if it is possible for the MILP solver to return the considered point as a solution. The cut
reselection is done as follows:

1. From start no cuts are included in the MILP problem. The MILP problem consists
of the linear constraints de�ned by the problem.

2. Choose the best point from the list of possible initial points, i.e. the previously
found MILP solutions. Choose a cut violation level, de�ning whether a cut should
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be included in the MILP problem at a considered point if its corresponding con-
straint violation is above the level value. The cut violation level is obtained from
one of the violations at the best point. Then, include cuts at the best point.

3. Choose the closest still reachable point to the previous point, determined by the
Euclidean norm. Repeat the procedure until all points are unreachable.

4. If no feasible MILP solution can be found, modify the cut level 6 times, each time
increasing the cut level.

5. If no feasible MILP solution can be found, discard the best point from the possible
initial points and repeat the procedure until the list of possible points is empty.

The list of possible initial points is that of the points found by the MILP sub-solver during
the solution procedure. The initial point can be an MINLP solution, a point where all
constraints can be evaluated, or a point where at least some cuts can be successfully
generated. The best point is the best MINLP solution, if one has been found, otherwise
the point that has the lowest maxviol, i.e. the lowest violation on the most violating
constraint. When the cut level is changed it signi�cantly modi�es the �nal cut selection.
The idea is that, at �rst, several cuts at each chosen MILP solution are included in the
next MILP problem, whereas at the sixth modi�cation, only a few cuts per point are
included. Naturally at each considered and still reachable point, at least one cut needs
to be included in order to ensure that the point can not be found again.

The use of multiple MILP solutions refers to selecting one MILP solution when the
MILP solvers return several solutions. It is easy to convince oneself that an improved
performance can be expected when the MILP point can be selected and the additional
computational e�ort is small. Note that the most time consuming step is, in general, to
solve the MILP subproblem and therefore, the solver can usually return several solutions
with a relatively low additional computational e�ort. The point is selected from the
obtained MILP solutions according to the following criteria:

1. Choose the point with no violations and best objective value.

2. Choose the point with the smallest gap between the most and least violating con-
straints, at a point where all the constraints can be evaluated.

3. Choose the point with the smallest gap between the most and least violating con-
straints and accept domain violations.

The following performance improvements can be noted: An MINLP solution might be
found faster, a domain violating point can be avoided and a point with the smallest
gap can be chosen. The idea behind choosing the point with the smallest gap is the
following. If the gap is small, then the maximum violation is also small. If the gap is
small, but the maximum violation is large, then all cuts e�ectively reduce the solution
space. Furthermore, the likelihood that the whole solution space is cut away because of
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cuts on nonlinear equality constraints2 is reduced. The alpha updating will e�ectively
and gradually enlarge the solution search space, i.e. the quality of cuts is improved.

In �gures 3.2 and 3.3 we can observe the performance improvement of the algorithm
changes discussed in the beginning of section 3.2. In this comparison the 270 problems
found in the MinlpLib are solved with a 1000 second time limit per problem.

2If two cuts are generated close to each other for the same nonlinear equality constraint, where at
one point the nonlinear constraint value is positive and the other negative, then the whole feasible region
is likely to be cut away for a problem with several nonlinear constraints.
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Call an MILP solver and if the MILP solver returns with an infeasible result, then perform the following mo-

difications and solve the resulting MILP problem after every modification. 

1. Update all cuts with alphamax requirement until they are valid under-estimators. 

2. Delete all temporal cuts. 

3. Update all cuts until they are close to their generation point, also called inf-alpha-update.  

4. Apply cut reselection heuristic. 

5.  Exit (status: Infeasible). 

If the MINLP solution is better 

than earlier obtained MINLP 

solutions, then the variable le-

vels are set to the levels found 

by the NLP solver. 

Generate cutting planes for one or more vio-

lating constraints .  

Increase every alpha value which is below its 

alphamax requirement. 

Reduce the value of the MILP solver option 

MIPoptcr. If MIPoptcr is less than or equal to 

0.2 then remove all temporal cutting planes. 
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Figure 3.1: AlphaECP �owchart
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Figure 3.2: AlphaECP improvement: the percentage of found solutions.

Figure 3.3: AlphaECP improvement: a solution quality comparison.





CHAPTER4
Notes for the papers

This chapter is intended to give an overview of the papers which form an important
part of this thesis. The papers are numbered in chronological order. Papers 1, 2, 3
and 4 consider solver benchmarking and analyze solving capability by comparing solver
performance. Furthermore, algorithm advances and algorithmic settings are analyzed for
AlphaECP. The main �ndings during the evolutionary process of writing these papers are
presented in chapters 2 and 3. However, these papers include additional and problem-
type speci�c information, which enrich the view of the strengths and weaknesses of
some MINLP solvers. Additionally, this chapter speci�es and corrects some points in
the included papers. In �gure 4.1 the considered papers can be seen and an indicative
overview of the topics considered, in relation to each other, is given. The symbol (∗)
denotes where this PhD thesis could be placed if appendix B is disregarded. The arrows
denote the order in which the papers can be read if the aim is to study MINLP solver
comparisons.

Figure 4.1: Publication content diagram.
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4.1 Notes to paper I

This paper introduces AlphaECP, an Extended Cutting Plane implementation, on the
General Algebraic Modeling System (GAMS) by presenting an MINLP solver comparison
of four solvers. Furthermore, it presents a discovery that each of the four solvers is able to
contribute to the overall solving capability of the optimization platform. The conclusion
is based on a batch run with 250 models with a 1000 seconds (∼ 17 minutes) time limit
per problem. Moreover, note that the terms �optimal� and �global optimal� are used
instead of the more correct term �best solution known�.

4.2 Notes to paper II

A comparison of six MINLP solvers is presented, as well as, a closer analysis of AlphaECP.
The analysis considers the use of di�erent sub-solvers, algorithmic advances and the
capability to solve NLP problems. The NLP model library [Website: GLOBAL Library]
was used and consisted of 415 models. The MINLP comparison comprises of solving 265
models, 15 additional models to the comparison in Paper I, with both a 1000 seconds (∼
17 minutes) and a 6 hour time limit per problem. Note that, in general, there is not only
one but many factors contributing to an improved solving capability of an optimization
system. For example, the computing power of the test computer, the operating system,
the optimization platform and/or solver improvements.

4.3 Notes to paper III

The solving capability of seven Mixed Integer Quadratic Constraint Programming (MIQCP)
solvers is compared1 for the problem of module identi�cation in a complex network. Five
problem instances are studied where, for each, instance four models were tested, including
both convex and non-convex models.

4.4 Notes to paper IV

The solving capability of local MINLP methods for Quadratic Assignments Problems
(QAP) is presented. Four MINLP solvers are compared with a compact non-convex
MIQCP formulation for 50 instances where a time limit of 1 hour per problem is used.
No new best solutions were found. It should be noted however, that the one hour time
limit per instance may have been too low to give the solvers a reasonable chance to solve
a di�cult combinatorial QAP problem.

1MIQCP is a special case of MINLP.



CHAPTER5
Conclusions and discussion

In this thesis the performance of some MINLP solvers has been studied1. The issues
in preparing a fair comparison have been discussed and illustrated. Some advances
of the GAMS/AlphaECP MINLP solver have been presented and analyzed by using
performance pro�les.

This work aims to give a survey of the solving capability of di�erent MINLP solvers
and an understanding of the strengths and weaknesses of solvers. Furthermore, it may aid
a novice MINLP modeler to make a good solver selection by pointing out the fundamental
di�culties in solving MINLP problems and the key di�erences in the solution approaches.
To solve an academic or industrial MINLP problem, the use of a well-suited method and a
good model can provide a more e�cient way for solving the problem. Solver comparisons
can support the solver choice and thus save time, but also point out unique strengths
of some solving methods. Moreover, the study shows that no solver is universally faster
and provide a higher quality solution than the other solution approaches existing on the
GAMS optimization platform. However, due to the vast increase in computing power and
new algorithms, a comparison is only valid for a short time. For this reason, systematic
and continuously performed solver comparisons should be considered. Moreover, the
issues pointed out in this thesis, when making a comparison, would be worthwhile tackling
in order to improve solver comparisons. Furthermore, this could indirectly make it easier
to choose a good solution approach for a particular model.

Despite the fact that the future will most probably be dominated by global MINLP
solvers, the solution techniques are most likely based, at least partly, on �nding local
optimal solutions. Many global MINLP solvers are based on solving sequences of convex
MINLP problems. A convex MINLP problem is again, for example in the ECP method,

1 The latest solver comparisons are presented at:

• T. Lastusilta. MINLP Solver Comparisons, September 2011. URL http://users.abo.fi/

tlastusi/minlp_solver_comparisons/
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solved as a sequence of MILP or LP problems. Therefore, we might very well see success-
ful new local optimization techniques be integrated into global solvers by using di�erent
frameworks. Note that a good heuristic approach might well be worthwhile if there is
signi�cant speedup in the solution procedure of the global solver and especially if the
global solver can take further advantage of the work done by the heuristic procedure.
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APPENDIXA
Test run model names

The models used in the performed test run without post�x �.gms�:

[Website: MINLP Library]
4stufen, alan, batch, batchdes, beuster, blendgap, cecil_13, chp_partload, contvar,
csched1, csched1a, csched2, csched2a, deb10, deb6, deb7, deb8, deb9, detf1, dosemin2d,
dosemin3d, du-opt, du-opt5, eg_all_s, eg_disc2_s, eg_disc_s, eg_int_s, elf, eniplac,
enpro48, enpro48pb, enpro56, enpro56pb, ex1221, ex1222, ex1223, ex1223a, ex1223b,
ex1224, ex1225, ex1226, ex1233, ex1243, ex1244, ex1252, ex1252a, ex1263, ex1263a,
ex1264, ex1264a, ex1265, ex1265a, ex1266, ex1266a, ex3, ex3pb, ex4, fac1, fac2, fac3,
feedtray, feedtray2, fo7, fo7_2, fo7_ar25_1, fo7_ar2_1, fo7_ar3_1, fo7_ar4_1, fo7_ar5_1,
fo8, fo8_ar25_1, fo8_ar2_1, fo8_ar3_1, fo8_ar4_1, fo8_ar5_1, fo9, fo9_ar25_1,
fo9_ar2_1, fo9_ar3_1, fo9_ar4_1, fo9_ar5_1, fuel, fuzzy, gasnet, gastrans, gbd, gear,
gear2, gear3, gear4, gkocis, hda, hmittelman, johnall, lop97ic, lop97icx, m3, m6, m7,
m7_ar25_1, m7_ar2_1, m7_ar3_1, m7_ar4_1, m7_ar5_1, mbtd, meanvarx, mean-
varxsc, minlphix, netmod_dol1, netmod_dol2, netmod_kar1, netmod_kar2, no7_ar25_1,
no7_ar2_1, no7_ar3_1, no7_ar4_1, no7_ar5_1, nous1, nous2, nuclear104, nuclear10a,
nuclear10b, nuclear14, nuclear14a, nuclear14b, nuclear24, nuclear24a, nuclear24b, nu-
clear25, nuclear25a, nuclear25b, nuclear49, nuclear49a, nuclear49b, nuclearva, nucle-
arvb, nuclearvc, nuclearvd, nuclearve, nuclearvf, nvs01, nvs02, nvs03, nvs04, nvs05,
nvs06, nvs07, nvs08, nvs09, nvs10, nvs11, nvs12, nvs13, nvs14, nvs15, nvs16, nvs17,
nvs18, nvs19, nvs20, nvs21, nvs22, nvs23, nvs24, o7, o7_2, o7_ar25_1, o7_ar2_1,
o7_ar3_1, o7_ar4_1, o7_ar5_1, o8_ar4_1, o9_ar4_1, oaer, oil, oil2, ortez, parallel,
pb302035, pb302055, pb302075, pb302095, pb351535, pb351555, pb351575, pb351595,
prob02, prob03, prob10, procsel, product, product2, pump, qap, qapw, ravem, ravempb,
risk2b, risk2bpb, saa_2, sep1, space25, space25a, space960, spectra2, spring, stockcy-
cle, st_e13, st_e14, st_e15, st_e27, st_e29, st_e31, st_e32, st_e35, st_e36, st_e38,
st_e40, st_miqp1, st_miqp2, st_miqp3, st_miqp4, st_miqp5, st_test1, st_test2, st_test3,
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st_test4, st_test5, st_test6, st_test8, st_testgr1, st_testgr3, st_testph4, super1, su-
per2, super3, super3t, synheat, synthes1, synthes2, synthes3, tln12, tln2, tln4, tln5, tln6,
tln7, tloss, tls12, tls2, tls4, tls5, tls6, tls7, tltr, uselinear, util, var_con10, var_con5,
waste, water3, water4, waterful2, waters, watersbp, watersym1, watersym2, waterx, wa-
terz, windfac.

Website: Global Optimization Test Libraries
BatchS101006M, BatchS121208M, BatchS151208M, BatchS201210M, CLay0203H, CLay0203M,
CLay0204H, CLay0204M, CLay0205H, CLay0205M, CLay0303H, CLay0303M, CLay0304H,
CLay0304M, CLay0305H, CLay0305M, FLay02H, FLay02M, FLay03H, FLay03M, FLay04H,
FLay04M, FLay05H, FLay05M, FLay06H, FLay06M, fo7, fo7_2, fo8, fo9, o7, o7_2,
RSyn0805H, RSyn0805M, RSyn0805M02H, RSyn0805M02M, RSyn0805M03H, RSyn0805M03M,
RSyn0805M04H, RSyn0805M04M, RSyn0810H, RSyn0810M, RSyn0810M02H, RSyn0810M02M,
RSyn0810M03H, RSyn0810M03M, RSyn0810M04H, RSyn0810M04M, RSyn0815H, RSyn0815M,
RSyn0815M02H, RSyn0815M02M, RSyn0815M03H, RSyn0815M03M, RSyn0815M04H,
RSyn0815M04M, RSyn0820H, RSyn0820M, RSyn0820M02H, RSyn0820M02M, RSyn0820M03H,
RSyn0820M03M, RSyn0820M04H, RSyn0820M04M, RSyn0830H, RSyn0830M, RSyn0830M02H,
RSyn0830M02M, RSyn0830M03H, RSyn0830M03M, RSyn0830M04H, RSyn0830M04M,
RSyn0840H, RSyn0840M, RSyn0840M02H, RSyn0840M02M, RSyn0840M03H, RSyn0840M03M,
RSyn0840M04H, RSyn0840M04M, SLay04H, SLay04M, SLay05H, SLay05M, SLay06H,
SLay06M, SLay07H, SLay07M, SLay08H, SLay08M, SLay09H, SLay09M, SLay10H, SLay10M,
Syn05H, Syn05M, Syn05M02H, Syn05M02M, Syn05M03H, Syn05M03M, Syn05M04H,
Syn05M04M, Syn10H, Syn10M02H, Syn10M02M, Syn10M03H, Syn10M03M, Syn10M04H,
Syn10M04M, Syn15H, Syn15M, Syn15M02H, Syn15M02M, Syn15M03H, Syn15M03M,
Syn15M04H, Syn15M04M, Syn20H, Syn20M, Syn20M02H, Syn20M02M, Syn20M03H,
Syn20M03M, Syn20M04H, Syn20M04M, Syn30H, Syn30M, Syn30M02H, Syn30M02M,
Syn30M03H, Syn30M04H, Syn30M04M, Syn40H, Syn40M, Syn40M02H, Syn40M02M,
Syn40M03H, Syn40M03M, Syn40M04H, Syn40M04M.
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