Jeanette Heidenberg

Towards Increased Productivity
and Quality in Software
Development Using Agile, Lean
and Collaborative Approaches

Turku CENTRE for COMPUTER SCIENCE

TUCS Dissertations
No 133, January 2011

Towards Increased Productivity and
Quality in Software Development
Using Agile, Lean and Collaborative
Approaches

Jeanette Heidenberg

To be presented, with the permission of the Department of Information
Technologies at Abo Akademi University, for public criticism in Auditorium
Alpha, the ICT Building on February 11, 2011, at 12 noon.

Abo Akademi University
Department of Information Technologies
Joukahaisenkatu 3-5 A, 20520 Turku, Finland

2011

Supervisor

Prof. Ivan Porres

Department of Information Technologies
Abo Akademi University
Joukahaisenkatu 3-5 A, 20520 Turku
Finland

Reviewers

Prof. Casper Lassenius

Department of Computer Science and Engineering
Aalto University

POB 19210, 00076 Aalto

Finland

Prof. Dr. Tom Mens

Software Engineering Lab

Institut d’Informatique, Faculty of Sciences, University of Mons — UMons
Avenue du Champ de Mars 6, 7000 Mons

Belgium

Opponent

Prof. Casper Lassenius

Department of Computer Science and Engineering
Aalto University

POB 19210, 00076 Aalto

Finland

ISBN 978-952-12-2534-5
ISSN 1239-1883

In loving memory of Judit Ostman 1924-2010

“I keep on living, breathing though you’re far away.
Your gentle eyes smiling at me from far away.”
— Camilla Heidenberg 2010

Sammanfattning

Dagens programvaruindustri star infor alltmer komplicerade utmaningar i
en virld dar programvara ar nédstan allstides narvarande i vara dagliga
liv. Konsumenten vill ha produkter som &r palitliga, innovativa och rika
i funktionalitet, men samtidigt ocksa formanliga. Utmaningen for oss inom
[T-industrin &r att skapa mer komplexa, innovativa l6sningar till en lagre
kostnad.

Detta ar en av orsakerna till att processforbéttring som forskningsom-
rade inte har minskat i betydelse. I'T-proffs stéller sig fragan: “Hur haller vi
vara l6ften till vara kunder, samtidigt som vi minimerar var risk och dkar var
kvalitet och produktivitet?” Inom processforbéattringsomradet finns det olika
tillvigagangssatt. Traditionella processforbéttringsmetoder for programvara
som CMMI och SPICE fokuserar pa kvalitets- och riskaspekten hos forbat-
tringsprocessen. Mer lattviktiga metoder som t.ex. lattrorliga metoder (ag-
ile methods) och Lean-metoder fokuserar pa att halla 16ften och forbéattra
produktiviteten genom att minimera sléseri inom utvecklingsprocessen.

Forskningen som presenteras i denna avhandling utférdes med ett speci-
fikt mal framfor 6gonen: att forbéattra kostnadseffektiviteten i arbetsme-
toderna utan att kompromissa med kvaliteten. Den utmaningen attacker-
ades fran tre olika vinklar. For det forsta forbattras arbetsmetoderna genom
att man introducerar lattrorliga metoder. For det andra bibehalls kvaliteten
genom att man anvinder méatmetoder pa produktniva. For det tredje for-
béttras kunskapsspridningen inom stora foretag genom metoder som sétter
samarbete i centrum.

Rorelsen bakom lattrorliga arbetsmetoder véixte fram under 90-talet som
en reaktion pa de orealistiska krav som den tidigare forhérskande vatten-
fallsmetoden stéllde pa I'T-branschen. Programutveckling ar en kreativ pro-
cess och skiljer sig fran annan industri i det att den storsta delen av det
dagliga arbetet gar ut pa att skapa nagot nytt som inte har funnits tidigare.
Varje programutvecklare méaste vara expert pa sitt omrade och anvénder en
stor del av sin arbetsdag till att skapa losningar pa problem som hon aldrig
tidigare har 16st. Trots att detta har varit ett vélkant faktum redan i manga
decennier, styrs d&nda manga programvaruprojekt som om de vore produk-
tionslinjer i fabriker. Ett av mélen for rorelsen bakom lattrorliga metoder &r
att lyfta fram just denna diskrepans mellan programutvecklingens innersta
natur och séttet pa vilket programvaruprojekt styrs.

Lattrorliga arbetsmetoder har visat sig fungera vél i de sammanhang
de skapades for, dvs. sma, samlokaliserade team som jobbar i néira samar-
bete med en engagerad kund. I andra sammanhang, och speciellt i stora,
geografiskt utspridda foretag, ar det mera utmanande att infora lattrorliga
metoder. Vi har nalkats utmaningen genom att inféra lattrorliga metoder
med hjalp av pilotprojekt. Detta har tva klara fordelar. For det forsta kan

man inkrementellt samla kunskap om metoderna och deras samverkan med
sammanhanget i fraga. Pa sa siatt kan man ldttare utveckla och anpassa
metoderna till de specifika krav som sammanhanget stéller. For det andra
kan man lattare 6verbrygga motstand mot fordndring genom att introduc-
era kulturella fordndringar varsamt och genom att malgruppen far direkt
forstahandskontakt med de nya metoderna.

Relevanta méatmetoder fér produkter kan hjélpa programvaruutvecklings-
team att forbéttra sina arbetsmetoder. Né&r det géller team som jobbar
med lattrorliga och Lean-metoder kan en bra uppséattning méatmetoder vara
avgorande for beslutsfattandet ndr man prioriterar listan 6ver uppgifter som
ska goras. Vart fokus har legat pa att stoda lattrorliga och Lean-team med
interna produktmétmetoder for beslutsstod gillande sa kallad omfaktorering,
dvs. kontinuerlig kvalitetsforbattring av programmets kod och design. Det
kan vara svart att ta ett beslut att omfaktorera, speciellt for lattrorliga och
Lean-team, eftersom de forvantas kunna rattfardiga sina prioriteter i termer
av affarsviarde. Vi foreslar ett sétt att méita designkvaliteten hos system
som har utvecklats med hjilp av det sa kallade modelldrivna paradigmet.
Vi konstruerar éven ett sitt att integrera denna méatmetod i lattrorliga och
Lean-arbetsmetoder.

En viktig del av alla processforbéttringsinitiativ ar att sprida kunskap
om den nya programvaruprocessen. Detta giller oavsett hurdan process
man forsoker introducera — vare sig processen ar plandriven eller lattrorlig.
Vi foreslar att metoder som baserar sig pa samarbete nér processen skapas
och vidareutvecklas dr ett bra sétt att stoda kunskapsspridning pa. Vi ger en
oversikt Over forfattarverktyg for processer pa marknaden med det forslaget
i atanke.

i

Abstract

The challenges of the software industry get more complex as software per-
meates more and more of our daily lives. The consumer wants products that
are reliable, rich in functionality, innovative but at the same time inexpen-
sive. The industry faces the challenge of creating more complex, innovative
solutions to a lesser cost.

For this reason, process improvement is as relevant as ever in the software
industry. The question asked by software professionals is: “How do we keep
our promises, while minimising our risk, increase our quality and produc-
tivity?” Traditional software process improvement (SPI) approaches such as
CMMI and SPICE focus on the quality and risk aspect of the improvement
process, while more light-weight methods such as agile and lean focus on
keeping promises and increasing productivity by reducing waste.

The research presented in this dissertation was performed with that spe-
cific goal in mind: improving cost efficiency in the way of working while
at the same time not compromising quality. This challenge was attacked
from three different angles: the deployment of agile methods for improving
the ways of working; the usage of product metrics for quality improvement;
and the collaboration on process knowledge for dissemination within a large
company.

Agile methods evolved during the nineties as a reaction against the un-
realistic expectations placed on software development teams by the then
prevailing waterfall method for software project management. Software de-
velopment is a creative process. It differs from other industries in the fact
that the main investment in a software development project is in creating
something for the first time. Each developer has to be an expert in her own
field and spends large portions of her day creating new solutions and solving
problems that she has not solved before. Despite the fact that this has been
well known for decades, software development projects are still often run as
if they were manufacturing lines. One purpose of the agile movement was to
make visible this discrepancy between the nature of software development
and the practice of how software projects are run.

Agile methods have been proven to work well in the context for which
they were designed: small, collocated teams working towards a committed
customer. In other contexts, and specifically in large, geographically dis-
tributed settings, the adoption of agile methods is more challenging. Our
approach to this challenge has been to use piloting as a deployment method.
This has the two-fold benefit of incrementally building knowledge about the
methods and their interaction with the context in question while at the same
time helping to overcome resistance to change by gently introducing the cul-
tural changes through first-hand experience.

Relevant product metrics can help any software development team im-

il

prove their way of working. In the case of lean and agile teams, a good set
of metrics can be crucial in making the right decisions when prioritising the
work items in the backlog. Our focus has been on providing lean and agile
teams with internal product metrics for decision support on refactoring. A
decision to refactor may be difficult to make, especially for a lean or agile
team, that is expected to justify their priorities in terms of business value.
In our work, we propose a way of measuring design quality for systems de-
veloped using the model-driven paradigm. We also construct a method for
incorporating the metrics in the lean and agile way of working.

Software process dissemination is an important part of any software pro-
cess improvement initiative, regardless of whether the target process is plan-
driven or agile. We propose that collaboration on process authoring is a good
way to support dissemination and we have surveyed the process authoring
tools on the market with this aspect in mind.

v

Acknowledgements

This dissertation is the result of many years of intense and interesting work
— work I could not have accomplished on my own. Many have supported
and helped me in different ways, and I owe my debt of gratitude to each
and every one of you. The words on this page are a humble recognition of
what you have all done for me. Some of you I mention by name, some of
you remain anonymous, but the gratitude I feel is for you all.

First I would like to thank my supervisor and friend Professor Ivan Porres
at Abo Akademi University not only for supporting and believing in me, but
also for initially talking me into using the opportunity that life presented me
with to finish my thesis, as well as making it financially feasible for me to
do so.

I owe my ernest gratitude to Professor Tom Mens of the University of
Mons and Professor Casper Lassenius of Aalto University for reviewing and
providing valuable feedback on my dissertation. I am also grateful to pro-
fessor Lassenius for agreeing to act as opponent at the public defense of my
thesis.

All of the papers that serve as a foundation for this thesis where written
in cooperation with other people. I am grateful to all my co-authors for the
hard and, for the most part, also enjoyable work we carried out together.

I also wish to extend my thanks to Professor Jockum von Wright who
initially sparked my interest in research in the area of Computer Science and
Engineering.

My gratitude also goes out to the administrative staff of Abo Akademi
and TUCS for their support in all things practical around the completion
of this work. I especially wish to thank Tomi Méntyla, Christel Engblom,
Britt-Marie Villstrand, and Irmeli Laine.

All my research was carried out in industry settings. I am grateful for
the unique opportunity I was given to learn by immersing myself in the
interesting world that is the software industry today. For this and for the
support you gave me I wish to, first and foremost, thank the management at
Ericsson Finland, including Harri Oikarinen, Heli Hirvo, Sanna Johansson,
Hannu Ylinen, and Marko Koskinen. For the opportunity to work with
process improvement on a company-wide level, 1 also wish to thank the
management at EB and especially Pertti Korhonen.

Learning is much more effective and fun when done through discourse
with your peers. For the many interesting discussions on model driven de-
velopment I am grateful to the Ericsson SWAN team and the Ericsson IBM
Rational team, including Pér Emanuelsson, Olivera Milenkovic, Patrik Nan-
dorff, Tommy Lennhamn, Magnus Antonsson, Diarmuid Corcoran, Dietmar
Fiedler, Jussi Katajala, and Andras Vajda.

Hard work, as interesting as it may be, can still be taxing. For keeping my

spirit up by sharing not only my work load, but also both my laughter and
frustration, I wish to thank all my good friends and colleagues at Ericsson
and EB, including but not limited to Andreas Nals, Calle Bjorkell, Terho
Narva, Martin Dusch, Kurt Resch, Peter Kraus, Jari Partanen, and all the
past and present members of my family at EB: the EB SEP team. My
thanks also go to all my friends at the Software Engineering Lab and the
Department of Information Technologies at Abo Akademi. I also wish to
thank my friends outside work for their understanding and patience with my
often hectic schedule.

I also owe more gratitude than I can even begin to express to Su Dongyue
and all my dear friends at the European Zhineng Qigong Center for support-
ing me in maintaining both my physical and mental health and for helping
me grow as a human being over the last decade.

Last but by no means least, I wish to thank my loving family for their
undying support throughout. There is no substitute for the sense of security
you get from knowing that, through thick and thin, you are loved. I wish
to thank my parents, and especially my mother, for always letting me know
they are proud of me. Thank you Camilla, my kindred spirit, I’'m so blessed
and proud to call you my sister. Last but by no means least: to Chakie, my
loving husband, my life companion, my soul mate: thank you for being you
and for always being there.

This work was supported by Abo Akademi, Turku Centre for Computer
Science, Stiftelsen for Abo Akademi and Hans Bangs stiftelse.

Turku 5.1.2011

Jeanette Heidenberg

vi

List of original publications

I

II

II1

v

VI

Jussi Auvinen, Rasmus Back, Jeanette Heidenberg, Piia Hirkman, and
Luka Milovanov. Software process improvement with agile practices
in a large telecom company. In Product-Focused Software Process Im-
provement, volume 4034 of Lecture Notes in Computer Science, pages
79-93. Jiirgen Miinch and Matias Vierimaa, editors. Springer Berlin /
Heidelberg. PROFES 2006.

Jeanette Heidenberg, Andreas Nals, and Ivan Porres. Statechart fea-
tures and pre-release maintenance defects. Journal of Visual Lan-
guages and Computing, 19(4), pages 456-467. Philip Cox and John
Hosking, editors. Elsevier Ltd 2008.

Jeanette Heidenberg, Petter Holmstrom, and Ivan Porres. Tool sup-
port for collaborative software process authoring in large organizations.
In European Systems € Software Process Improvement and Innovation
Industrial Proceedings. Jgrn Johansen, Mads Christiansen, editors.
DELTA, Denmark. 16th EuroSPI Conference 2009.

Jeanette Heidenberg, and Ivan Porres. Metrics functions for kanban
guards. In 17th IEEFE International Conference and Workshops on
Engineering of Computer-Based Systems. Roy Sterrit, Brandon Eames
and Jonathan Sprinkle, editors. IEEE ECBS 2010.

Jeanette Heidenberg, Piia Hirkman, Mari Matinlassi, Jari Partanen,
and Minna Pikkarainen. Systematic piloting of agile methods in the
large: Two cases in embedded systems development. In Product-
Focused Software Process Improvement, volume 6156 of Lecture Notes
in Computer Science, pages 47-61. M. Ali Babar, Matias Vierimaa,
and Markku Oivo, editors. Springer Berlin / Heidelberg. PROFES
2010.

Jeanette Heidenberg, Jussi Katajala, and Ivan Porres. Maintainability
index for decision support on refactoring. TUCS Technical Report
No 992, Turku Centre for Computer Science, November 2010, ISBN
978-952-12-2517-8.

vil

viil

Contents

I Research Summary 1
1 Introduction 3
2 Background 5
2.1 Agile Methods 5
2.1.1 Extreme Programming 6

2.1.2 Scrum 7

2.2 Lean and Kanban Methods 10
2.2.1 Lean in Software Development 11

2.2.2 Kanban in Software Development 12

2.3 Collaborative Methods and Bottom-Up Process Improvement 14
2.4 Software Quality 14
2.4.1 Software Metrics 16

2.5 Action Research 20

3 Overview of the Research 25
3.1 Research Setting, 25
3.2 Research Questions 28
3.3 Research Methods and Data Collection 29
3.4 Agile Deployment Papers 31
3.4.1 PublicationI 31

3.4.2 Publication V.. 32

3.4.3 Research Contributions 33

3.5 Quality Metrics Papers 34
3.5.1 Publication IT 34

3.5.2 Publication IV 36

3.5.3 Publication VI 37

3.5.4 Research Contributions 39

3.6 Collaborative Methods Papers 39
3.6.1 Publication ITIT 39

3.7 Validity of Our Research within the Action Research Framework 41

X

IT Original Publications 51

3.8 Publication I 53
3.9 Publication IT 71
3.10 Publication IIT 85
3.11 Publication IV 99
3.12 Publication V 107
3.13 Publication VI 125

Part 1

Research Summary

Chapter 1

Introduction

The software development industry tends to the needs of an increasingly
computerised world. Today, software can be found in almost every aspect of
our life. The technology we rely on, from our telephones and computers to
our cars and kitchen appliances, all need software to function.

The challenges of the software industry get more complex as software per-
meates more and more of our daily lives. The consumer wants products that
are reliable, rich in functionality, innovative but at the same time inexpen-
sive. The industry faces the challenge of creating more complex, innovative
solutions to a lesser cost.

For this reason, process improvement is as relevant as ever in the software
industry [51]. The question asked by software professionals is: “How do we
keep our promises, while minimising our risk, increasing our quality and pro-
ductivity?” Traditional software process improvement (SPI) approaches such
as CMMI and SPICE focus on the quality and risk aspect of the improve-
ment process, while more light-weight methods such as agile and lean focus
on keeping promises and increasing productivity by, e.g., reducing waste.

Software development is a creative process. It differs from other indus-
tries in the fact that the main investment in a software development project
is in creating something for the first time. There are few manufacturing
types of tasks and these can be easily automated. Each developer has to
be an expert in her own field and spends large portions of her day creating
new solutions and solving problems that she has not solved before. Despite
the fact that this has been well known for decades, software development
projects are still often run as if they were manufacturing lines.

One purpose of the agile movement was to make visible this discrepancy
between the nature of software development and the practice of how soft-
ware projects are run. Declarations such as the agile manifesto [2] and the
declaration of interdependence [5| highlight the human aspect of software
projects. The key to success is, according to the agile movement, motivated,
creative people collaborating to deliver what the customer needs.

3

It comes as no surprise that the agile movement initially met with resis-
tance from more traditional camps of the software industry. This resistance
has both technical and cultural aspects. The practices used in many agile
methods can be seen as technically challenging, especially in large organisa-
tions [51]. Examples include continuous integration and test driven devel-
opment [64]. The cultural aspects include the management’s fear of losing
control [20] through, e.g., quantitative project management and measure-
ment and analysis |73].

In this thesis, we suggest that the solution lies in the combination of
the acceptance of software development as a creative craft as propagated by
agile and lean methods on the one hand with lightweight measurement mech-
anisms borrowing from the more traditional command and control paradigms
on the other hand. Organisations that have reached a certain maturity using
plan-driven development methods, should not throw the baby out with the
bath-water. A healthy level of measurement can support the agile team in
different ways. Good product metrics can help the team make the right de-
cisions regarding the effort spent on, e.g., refactoring and creating unit tests.
Good product and process metrics can support the team in prioritising their
task list and improving their way of working.

This thesis is supported by six years of industry experience in process
improvement through agile deployment and product metrics, starting from
a small scale pilot of a selected subset of agile practices 9] initiated in 2004
and ending with a large scale agile deployment initiative, which is still on-
going [34].

This first part provides the background and glue for the individual pa-
pers that make up the rest of this thesis. Chapter 2 provides background
information on the key concepts: agile methods, lean and kanban methods,
collaborative process authoring, software quality, software metrics, and ac-
tion research. Chapter 3 provides an overview of the research, including a
presentation of the research questions, the research methods and data col-
lection methods used and a presentation of each of the papers.

The second part contains all the original publications.

Chapter 2

Background

This chapter introduces the key concepts of the thesis. The first concept
introduced is agile methods in Section 2.1, including a brief overview of two
of the most popular agile methods: Extreme Programming and Scrum. This
is followed by an introduction to lean and kanban methods in Section 2.2,
starting with these concepts in the field of manufacturing and followed by
their translation into the field of software development. The third concept in-
troduced is collaborative methods used for bottom-up process improvement,
which is described in Section 2.3. Section 2.4 briefly summarises the vast
field of software quality, focusing on the concept of maintainability, which is
a central theme for this thesis. The last section, Section 2.5 gives an overview
of action research, which is the overall research framework we used in the
research presented in this thesis.

2.1 Agile Methods

The agile methods movement started in the early 1990’s with several si-
multaneous efforts being made to guide the software industry away from
the then prevailing waterfall model [67]. The industry saw the emergence
of methods such as Scrum [69], eXtreme Programming [12]|, Chrystal [17],
DSDM, Adaptive Software Development, Feature-Driven Development, and
Pragmatic Programming. In the year 2001, representatives of these methods
gathered and distilled their different methodologies to the now famous Agile
Manifesto (see Figure 2.1).

Two of the most widely deployed methods today [3] are Scrum and eX-
treme Programming (XP). These are often used together, since Scrum is a
project management framework, while XP addresses development practices
and methods in software projects.

Manifesto for Agile Software Development

‘We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
‘Ward Cunningham Jon Kern Dave Thomas

Figure 2.1: The agile manifesto. Fetched from [2].

2.1.1 Extreme Programming

Extreme Programming (XP) [12] is maybe the best known of the agile meth-
ods. It is credited to Kent Beck, Ward Cunningham and Ron Jeffries in the
mid 1990s. The name comes from the basic principle of taking practices that
work well, such as early testing, and using them “to the extreme”, as in test
driven development where tests are written before any code is written.

The XP process is iterative and incremental with very small increments.
An iteration in XP is typically less than four weeks. The input for an it-
eration is a number of requirements in the form of user stories. These are
discussed and prioritised in cooperation with the customer, so that the user
stories that provide the most business value are implemented first.

The philosophy of XP is based on five values: communication, simplicity,
feedback, courage and respect. XP also prescribes twelve practices to be
used when developing software.

XP has evolved over time and some of the concepts have been modified.
There used to be only four values. The value of respect is a later addition.
The names of the twelve practices have also changed. In the list below, the
new name is stated in brackets when applicable.

The Planning Game The team and the customer negotiates the priority
of the user stories to be implemented in the next increment.

Small Releases An iteration is no longer than four weeks and every itera-
tion results in a testable increment of the product for the customer to
evaluate.

Metaphor The system is described using a simple metaphor. This simpli-
fies communication with the customer and helps internal communica-
tion of the architecture.

Simple Design The team should not over-design the system for possible
future needs. The design should be based on what is known of the sys-
tem today. This is sometimes also referred to as the YAGNI principle,
an acronym for “You Ain’t Gonna Need It”.

Early Testing Test early, preferably already before the code is written.

Refactoring (Design Improvement) Continuously improve the design of
the system. This way the architecture emerges with the system rather
than up front.

Pair Programming Improve quality by working in pairs. Two people
share one computer and take turns in acting as the driver (who does the
typing) and the navigator (who maintains a higher-level perspective.)

Collective Ownership The whole team owns the produced artifacts. This
means in particular that anyone in the team can change any part of
the code at any time.

Continuous Integration Ensure that the whole system can be integrated
all the time. This is sometimes achieved by means of so called nightly
(or daily) builds.

40-Hour Week (Sustainable Pace) Treat the project as a marathon rather
than a sprint. Ensure that the working pace is one that can be sus-
tained over time.

On-Site Customer (Whole Team) Ensure that the team has all the mem-
bers it needs to perform its task. The customer should also be repre-
sented in the team.

Coding Standards Enable collective ownership by adhering to shared cod-
ing standards.

XP has shown to be both successful [24] and challenging [66, 64, 30|.
Critics of this method make the points that it is difficult to scale to large
projects, that it is too simplistic and too ad hoc. The individual practices
have also been criticised, interestingly enough the criticism here often seems
to stem from the practices being too strict. Practices such as pair program-
ming, unit testing and continuous integration require strict discipline both
on a personal and an organisational level, which may be difficult to maintain.

2.1.2 Scrum

Scrum [69] is an agile project management framework introduced by Jeff
Sutherland and Ken Schwaber in the early 1990s. Scrum is owned by an

7

organisation called Scrum Alliance, who provides training and certification
of Scrum professionals. One of the main merits of Scrum is that the theory
is easy to learn. A Scrum Master Certification course is only two days long,
and the basics of the method can be summarised in just a few pages. The
basic process is depicted in Figure 2.2.

24 h

30 days

—

Product Backlog Sprint Backlog Sprint

Worling increment
of the software

Figure 2.2: The Scrum process, fetched from|46].

Just as with XP, Scrum has evolved over the years and new concepts have
been introduced. The basic roles of a Scrum project are the Scrum Team,
which is a self-organising, cross-functional team of seven + two members;
the Scrum Master, who is responsible for enforcing the process and acts as
a buffer shielding the team from external interruptions; and the Product
Owner, who maintains the customer perspective.

The work is focused on transforming the product backlog, which contains
all the user stories to be implemented, into working increments of software.
This is done through a series of sprints — short iterations of a maximum of
four weeks. For each sprint, a portion of the product backlog is selected for
implementation in cooperation with the Product Owner. This is called the
sprint backlog. The heartbeat of the sprint is the daily scrum meetings. The
team gets together for 15 minutes every day in a highly formalised meeting,
where progress is tracked. Each member answers three questions:

e What have you done since the last meeting?
e What will you do until the next meeting?

e What are your impediments?

It is common to use a low-tech solution like sticky notes on a whiteboard
to visualise the progress. As sprint backlog items get assigned and completed,

8

they are moved from section to section on the whiteboard. The whiteboard
is usually placed in a central place in the team room so that it is easy to
immediately see the state of the project. It is also common to use a so called
burndown chart to visualise the amount of work effort still remaining before
delivery (see Figure 2.3.)

Sample Burndown Chart
250 r 25

~ .
X ,5

+ 10

(]
(=3
S

-
I
=]

= Completed tasks
—+—Remaining effort

Ideal burndown

=
(=]
=1

—— Remaining tasks

Remaining effort (hours)
Remaining and completed tasks

5

50
N B TP l\lgl

Day Day
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2.3: A sample burndown chart, fetched from [71].

Sprints are set up and closed by means of meetings. The sprint plan-
ning meeting is when the sprint backlog is selected. The sprint review is
when the outcome of the sprint is discussed with the product owner. The
retrospective is when the team evaluates their performance and tweaks their
working methods after a sprint. A later addition to the meeting portfolio of
Scrum is the product backlog refactoring meeting, which is organised during
an ongoing sprint with the purpose of preparing the product backlog for the
next sprint.

One of the great benefits of Scrum is that it is backed by a professional
organisation with standardised training and certification. This makes it eas-
ier for companies to get started with Scrum. The main criticism against
Scrum is that it does not easily scale up to the needs of large projects. The
main challenge for larger projects is communication and synchronisation be-
tween the larger number of team members and teams, which may even be
geographically dispersed. This is a known drawback and the focus of a large
body of work. One of the better known is Leffingwell’s work on scaling ag-
ile [49], which has evolved from his extensive work with companies such as
Nokia. Later years have seen the emergence of the lean methodology for
supporting the scaling of agile methods to larger contexts [4].

9

2.2 Lean and Kanban Methods

The lean methodology finds its roots in the Toyota Production System for
car manufacturing [59] in the 1980s. During this time it was called just-in-
time production or kanban. The term Lean Production was introduced in
the book The Machine That Changed the World [76], which describes the
superiority of the Toyota Production System when compared to the mass-
production methods used in North America and Europe.

The Toyota Production System was developed as the answer to a need.
The Japanese car industry did not have as large a market as their American
counterparts. When American companies reduced cost by mass-producing
cars, the Japanese had to find a way of cutting cost while producing fewer
units of more varied models, meeting the varying needs of their customers.

The central idea of the Toyota Production system is to minimise waste.
In manufacturing, one main source of waste is producing parts too early,
since they then become inventory, which constitutes risk. The vision in the
Toyota Production System is to manufacture the product when the order has
been placed, that is, with no inventory. Two main principles are followed in
order to achieve this. One is the principle of not manufacturing anything
until it is needed (just-in-time manufacturing). The second is the principle
of stopping the line as soon as any problems are detected and immediately
rectifying them before work is allowed to continue. This is a clear step away
from quality assurance through inspection and testing of the product as it
comes off the manufacturing line. In lean manufacturing, quality assurance
is built into the system and highly automated, but not fully automated,
since a fully automated system is very expensive to build. Instead, some
human interaction is required. The term autonomation (Japanese: jidoko)
was invented for this concept.

The autonomation principle builds a culture where every worker is in-
volved in improving the production line. The Japanese term for this type
of continuous improvement is kaizen. Operations are optimised by continu-
ous improvement, for instance, by optimising the limits of the queues in the
manufacturing chain, but also by autonomation.

In practice, the kanban methodology is quite simple. In a manufacturing
plant, the parts needed to assemble, for instance, a car are stored in shelves
with token cards (kanbans) on them. When the number of a part runs below
a predefined limit, the corresponding card is given to the station upstream
that produces that particular part. This station will then proceed to man-
ufacture the part. Any station will not produce new parts until they have
an order through a kanban card to do so. This is sometimes called a pull
mechanism for production. Instead of focusing on pushing new parts down
the production chain, the parts are created on demand.

The lean production system is now widely adopted. The lean way of

10

thinking has also been successfully deployed in supply chain management
and product development. It has proven to reduce the production and de-
velopment time significantly. The lean methodology also allows for making
changes later in the development process, which allows the manufacturer to
better react to changing market needs.

2.2.1 Lean in Software Development

The success stories of lean manufacturing and product development have
created an interest also in the field of software development. Mary and Tom
Poppendieck adapted the lean principles to the software engineering indus-
try in their books on lean software development [62, 63]. The Poppendiecks
used lean principles as a means to promote agile principles in software de-
velopment.

The concept of lean software development is not very clearly defined, and
different definitions exist, depending on whether the definition is based on
the Poppendiecks’ work or on own interpretations of the Toyota Production
System. Here, we refer to the Poppendiecks’ definition when we talk about
lean software development, and we also present an alternate definition in the
following section, which we refer to as kanban software development. The
Poppendiecks define seven principles of lean software development, listed
below.

Eliminate waste. Recognise and minimise any activities that do not add
value.

Build quality in. Avoid creating defects in the first place, by means of, for
instance, early testing and continuous integration.

Create knowledge. Have a development process that encourages system-
atic learning, and that is systematically improved.

Defer commitment. Schedule irreversible decisions for the last responsible
moment, leaving your options open as long as possible.

Deliver fast. Respond to the customers needs quickly and with high qual-
ity.

Respect people. The people doing the work should be empowered to do
so. Process improvement should be performed by the people doing the
work.

Optimise the whole. Make sure you understand the whole value stream
and optimise the whole, not parts of it.

11

The Poppendiecks’ also map the seven manufacturing wastes of the Toy-
ota Production System to corresponding software development wastes. These
are listed below together with their corresponding manufacturing wastes in
brackets.

Partially done work (In-process inventory) Any work that has not yet
resulted in deployable code is partially done work and should be min-
imised. Examples include documentation not yet translated to code,
untested code, and undocumented code.

Extra features (Over-production) Do not develop any features that don’t
demonstrate a clear and present economic need.

Relearning (Extra processing) Capture knowledge in a way that is easy to
reference later, to avoid having to rediscover things you already knew.

Transportation (Handoffs) Tacit knowledge is always lost at handoffs, so
the number of handoffs should be reduced.

Task switching (Motion) Let the developers focus on their work. Switch-
ing between multiple tasks takes time.

Delays (Waiting) Avoid having people wait for decisions. Ensure that
knowledge is available when it is needed.

Defects (Defects) Test driven development decreases the number of defects,
and improves the design of the code.

Based on the seven principles and seven wastes, the Poppendiecks provide
suggestions on how to improve the value stream of software companies by
reducing waste.

2.2.2 Kanban in Software Development

Whereas the Poppendiecks use the lean philosophy to argue for agile develop-
ment methods, Corey Ladas argues that the kanban methodology is superior
to agile methods in general and Scrum [69] in particular in that it provides
better support for the early phases of development. He presents experience
of using kanban in software development [45].

The basic idea of kanban pull systems in manufacturing translates into
the area of software engineering by treating requirements, user stories or
tasks as the produced parts of a manufacturing chain. Minimising waste
then becomes a matter of not performing tasks that will not end up in
production code to be delivered to the customer. For example, the team
should not analyse and design more user stories than can be immediately
implemented. Chances are that the customer will change their mind or the

12

market situation will change before the “inventory” tasks can be implemented
so that they either are not needed or need to be re-analysed. The initial
analysis then becomes waste.

In practice, this can be implemented so that each activity of a software
project (analysis, design, implementation, testing, refactoring, documenting,
etc...) is considered to be a kanban queue with predefined upper and lower
limits on the allowed number of items. When an upper limit is reached, no
more items are allowed in that queue until one or more items are ready and
moved to the next queue. When a lower limit is reached, items are pulled in
from the previous queue.

Organising the work into different queues per activity enables the team
to assign members with different skill-sets to different types of tasks. This
allows for specialisation, which may be seen as a benefit but may also lead
to the waste of transportation (handoffs) in the value chain.

Kanban systems in software development are often visualised using co-
loured sticky notes on white boards. See Figure 2.4 for an example of this
practice. The team gathers around the white board once a day in the daily
stand-up meeting [69] to survey and plan the ongoing work. One of the
critical steps is the prioritization of new items to be pulled in. It is crucial
to make the right prioritization based on the business value of the tasks [62].

Aodse) Deign Tplowed, Tt

N g

Figure 2.4: Example: a task is pulled into the testing queue.

The lean team is also expected to continuously improve their way of
working. If they notice that tasks get backed up in one of the queues, they
are expected to analyse the situation and improve the process to avoid that
situation from reoccuring. This is the idea of stopping the line and kaizen
in software development.

Usually, the team has access to other data besides just the notes on the
white board. The sum of all the items on the white board is called the work
in progress (WIP). The team may be presented with historical data on their

13

throughput of WIP and average delivery times for individual user stories.
This information can be used to better understand the velocity of the team,
to improve the management of the kanban queues and to recognise problems
that may need kaizen events.

2.3 Collaborative Methods and Bottom-Up Process
Improvement

The way of working in almost any software development project today is
collaboration. The power of collaboration as a development method is unde-
niable with success stories such as the Wikipedia project and numerous ex-
amples of open-source projects. There is an ever-growing plethora of collabo-
ration tool-sets striving to support large, geographically distributed projects
in their effort to manage knowledge in a collaborative way. Microsoft Share-
point Workspace [55] is one example of a general purpose collaborative tool-
set. MediaWiki [75] — the platform on which Wikipedia is built — is another
example. IBM Rational’s Jazz platform [40] is an example of a collaboration
platform targeted specifically at software development projects.

The technical issue to solve in order to enable collaborative working meth-
ods is how to build and share knowledge in a decentralised way. As an ex-
ample, let’s consider our specific case, as described in Paper III. In our case,
the knowledge to share is the software engineering process at the company.
We wanted to move away from the more traditional “ivory tower” approach
to process engineering, where a dedicated team is responsible for defining
and disseminating the process. Instead we wanted to involve the entire staff
in evolving the process of the company. For this we used a general purpose
tool (MediaWiki), which we found to be too generic in nature. We needed a
tool that could capture the specific concepts of a process in a more powerful
way. Paper III describes our work of collecting specific requirements for this
tool and evaluating the tools available on the market.

2.4 Software Quality

One of the important targets for most software projects is to build function-
ing software with sufficient quality. Software quality is a concept that at
first thought seems simple enough. Intuitively, we have a picture of what
distinguishes good software from bad software. Software of good quality has
few defects and provides a comfortable and reliable user experience. But if
we take a second look at the concept of software quality, through the eyes
of the software developer, we notice that there is more to the concept than
just the user experience.

14

A developer intuitively knows that the design and code of the software
may be of different quality. Well designed software and clearly written code
may provide the same user experience and have as few bugs as poorly de-
signed and unclearly written code, but the design and code have an impact
on the developer’s daily work. Good quality software is easier to work with
when correcting defects and adding new features. This is not a pure devel-
oper aspect of software quality, however, since it will indirectly affect the user
experience through the software’s ability to evolve in order to meet future
needs of the user. Good quality software may be good also when the next
version is released, while bad quality software most likely will deteriorate
from one version to the next.

These two main perspectives to software quality: the user experience
perspective and the developer perspective, can be further elaborated into
a set of standard quality criteria for software quality. The ISO 9126 stan-
dard for software engineering product quality [42] does just that. The stan-
dard defines software product quality in the terms of six quality criteria:
functionality, reliability, efficiency, usability, maintainability and portability.
The first four are associated with the user experience, while the last two are
associated with the evolution of the software product. In our research we
have focused on the evolution aspect of software and more specifically on the
maintainability attribute (see Figure 2.5).

Reliability

User Experience

Maintainability

. Software Evolution
Portability

Figure 2.5: The quality criteria of ISO 9126 mapped to the two perspectives
of software quality.

15

2.4.1 Software Metrics

As software quality has an impact on the user experience, it will naturally
also impact the business success of the software. If comparable software
products are available on the market, the potential customers will look at
the software quality as one of the factors impacting the decision to buy. If a
piece of software is known to be defective or difficult to use, this will probably
be seen as a disadvantage by a potential customer. This is a risk regardless
of whether the customer is an end user or another company interested in
buying components or services. For this reason, it makes sense to try to
measure software quality in order to know how a product will do compared
to the competition. Let us take a look at the characteristics defined by the
ISO 9126 standard and how they can be measured.

Functionality, reliability and efficiency are most easily measured by test-
ing. Experienced testers can systematically use the software to ensure that
the software meets the functional requirements, is reliable and, by looking at
the time and resource consumption, is efficient. By observing the software
over time, metrics in the form of number of defects, uptime and resource
usage can be collected and trends can be analysed.

Usability is more difficult to measure and software companies that have
high usability as a priority may use different techniques for assessing usability
by, e.g., using satisfaction questionnaires or tracking the eye-movement of
test users. Usability metrics may consist of data such as the time spent to
complete a task or ratings from usability surveys.

Maintainability and portability can also be measured in retrospect. Main-
tainability may be measured by looking at defect trends. If we have a growing
trend in the number of defects, the maintainability of the software is proba-
bly poor. Another interesting maintainability metric is the turn-around time
for a defect or a new feature. If defects usually take a long time to correct,
then the code is probably not easy to understand and change, and maintain-
ability is probably poor. Portability can be measured in a similar fashion:
by measuring how long it takes to port the software from one context to
another and how this affects the defect rates.

By collecting metrics such as the examples above, a company can assess
its product’s quality and compare their product to others on the market.
However, this is usually not enough. To have real use for the metrics col-
lected, the company will want to be able to act on them. If the maintain-
ability of a product is poor, the company will want to understand why this
is the case and how to improve it. But when the product is ready enough for
us to measure its maintainability in terms of defect trends and turn-around
times, it is usually too late to act. We want a metric that can be collected
and followed up on during the development of the product.

The examples of metrics given above can be characterised [26] as exter-

16

nal product metrics. They measure characteristics of the product from an
external viewpoint, observing the product interacting with its environment.
In order to get earlier indications of the quality of the software product, one
can collect internal product metrics — looking at the internal workings of the
product, more specifically the code and the design itself.

Quality attribute @ External metrics <:I> Internal metrics
maintainability turnaround time cyclomatic complexity

Figure 2.6: Mapping quality attributes to external and internal metrics.
Italics denote examples

How can we by looking at the code assess, e.g., how expensive it will be
to maintain in the future? As we saw above, we can estimate the cost by
looking at external metrics such as defect rates and turn-around times. But
what in the code will tell us how many defects will be found in that piece of
code, or what the turn-around time for a defect or a new feature will be when
extending or correcting that piece of code? The challenge lies in connecting
the internal product metrics to the external ones. Figure 2.6 illustrates this
mapping from internal metrics to external metrics that quantify the observed
quality attribute. The figure also includes examples of each of the concepts.
In this example, the quality attribute maintainability is measured through
the external attribute turnaround time of defect reports, which in turn is
predicted by measuring the cyclomatic complexity of the code.

Deducing the status of a quality attribute based on internal product
metrics is a challenge, because the code is the end product of a complex
process starting as ideas in the customer’s mind. Figure 2.7 illustrates this
challenge. The quality of the code depends on at least the following factors:

e How well the developers understood the customer’s ideas.

e How well the developers understood the non-functional requirements
of the product.

e The developers’ proficiency in the used technology (tools, languages,
platform.)

e The developers’ proficiency in relevant practices, patterns, idioms and
standards.

e The developers’ proficiency in the problem domain.

e The ability of the developers to predict future needs of the product.

17

public void foo() {
if (bar > 42)

_— this->buy(items(bar);

}

else {

this->sell(items(bar-1));

Figure 2.7: Assessing the quality by looking at the code

e Cost and/or resource constraints limiting the effort spent developing
the product.

e How well the development team works together to achieve its goals.

The design and code is the end result of this complex process, but a lot
of information is lost during the process as to what the reason for possible
quality issues are. When we look at the end product, that is, the code and
documentation to assess, for instance, the maintainability, we are missing
that information, as illustrated by Figure 2.7. Internal product metrics are
invariably simplifications and the connection to external metrics is an as-
sumption, based on historical data in the best case, or on intuition in the
worst case. For this reason, developers are at risk of distrusting the validity
of the metrics collected 74| and simply ignoring them, or even worse: trying
to adjust the metrics to make the team look better.

The problem here stems not only from the metrics themselves, but also
from the way the metrics are used. If the metrics are used to compare the
performance of teams or units, the risk of being penalised for bad perfor-
mance may overshadow the opportunity of being rewarded for good perfor-
mance. The team will feel threatened and the metric collection effort will
have an adverse effect on the project [37, 74]. This type of metrics is called
performance measurements by Austin [8] and is contrasted by information
measurements, which are used to gain transparency into the performance of

18

the product and process in order to provide the team with feedback that
they can use to learn and grow.

It is interesting to note that the two types of measurements, as defined
by Austin, correlate nicely with the often stated difference in values between
traditional and agile methods. Whereas agile methods value ways of working
that support and empower the team (such as information measurements),
traditional methods include ways of working that command and control the
team (such as performance measurements).

In our research, the quality attribute addressed is mainly the maintain-
ability of large software products. We look into the above mentioned two
problem areas of quality metrics: justifying the validity of the internal met-
rics for measuring specific external metrics; and using the collected metrics
in a way that supports the team.

19

2.5 Action Research

The research work presented in this thesis can be classified as the result
of action research. We worked in a specific context not just observing and
analysing it, but also trying to change and improve it. Action research is
considered to be fairly immature, especially in the field of Software Engi-
neering [25] and there is still no consensus on what constitutes a valid and
appropriate methodology for action research.

The term action research was introduced in the 1940s and is credited
to Kurt Lewin [50], a psychologist concerned with raising the self-esteem of
minority groups in the aftermath of World War II. He defined the action re-
search approach as one where the researcher generates new knowledge about
a social system while at the same time trying to change it.

One example of the work Lewin and his students did was an experiment in
in a local factory demonstrating that democratic workplaces promote better
efficiency and morale than autocratic ones [1]. This illustrates the nature
of action research as being highly involved in the practical context of the
researched organisation, trying to help it reach certain goals by evaluating,
changing and learning from the change.

Figure 2.8 depicts the main steps of the cycle that constitutes action
research, as described by Lewin [50]. In the first step, data about the current
state is collected and analysed. The situation is diagnosed and an action plan
is made. This step is called the unfreezing step. The second step is when the
actual change takes place. This step involves action planning, performing
the action as well as learning. The third step is called refreezing. This step
involves collecting facts about the action through measurement and reflective
learning. The process is iterative, with feedback from each of the steps to
the previous ones.

A4

Unfreezing @ Refreezing

Figure 2.8: Action research.

Action research is a research method especially well suited for research
in the field because of the way that it combines theory and practice [10].
The theory is explored in a practical context, thus gathering experience so
that the theory can be revised. There is a feedback loop and emphasis on
investigating and changing what is really done in the organisation.

It may be interesting to note, however, that there are different schools of

20

thought in action research today and, as Morten Levin points out [29], there
is a difference between action research in the US and in Europe. The main
difference is, according to Levin, that action research in the US has “degen-
erated into positivist experimentation” where observation of the relationship
between the researcher and the researched has been left out.

Susman and Evered [72], among others, have refined Lewin’s cycle, de-
scribing a loop of five steps. Figure 2.9 describes these five steps. Depending
on the level of cooperation between the researcher and the organisation,
there are different categories of action research, ranging from diagnostic ac-
tion research, where the researcher only provides the organisation with data
collection for diagnosis, to experimental action research, where there is col-

laboration in all phases.
Specifying learning Action planning
infra-
structure

Action taking

Figure 2.9: Action research, steps according to Susman and Evered.

Develop

These four categories of action research are:

1 Diagnostic action research: researcher collects data for diagnosis and
feeds data back to the system.

2 Empirical action research: researcher evaluates actions and feeds in-
formation back.

3 Participant action research: diagnosing and action planning in coop-
eration with the organisation.

4 FExperimental action research: collaboration in all phases.

According to this definition, our research falls into the fourth category:
experimental action research.

Although Susman and Evered [72| point out that action research does
not fully comply with the criteria established for positivist science, they still

21

argue that action research can generate valuable knowledge in organisational
science. They even argue that action research has more potential than posi-
tivist science when it comes to organisational research, because of its nature
of being more involved in the needs and goals of the organisation.

Kock [44] argues that the dichotomy between positivism and action re-
search is a fallacy, since the two are not comparable. He argues that action
research is a research approach, whereas positivism is epistemology. In his
view, action research can benefit from positivist research approaches.

Kock defines three threats to action research: uncontrollability, contin-
gency and subjectivity [44].

The uncontrollability threat stems from the tight cooperation between
research and industry. There will naturally be a division between the research
goals and organisational problem solving goals. Thus, there is always a risk
that changes in the organisation will result in the research venture being
abandoned before it is completed.

The contingency threat is a risk originating in the large amounts of data
possibly available to a researcher. The data will typically be broad but
shallow and it may be difficult to isolate the individual factors that affect
the outcome of the research.

The subjectivity threat occurs because of the involvement of the re-
searchers in the client organisation. Kock provides an example of the re-
searcher being offended by one of the managers, and for this reason inclining
to data interpretation that puts this manager’s methods in an unfavourable
light.

Kock also proposes three antidotes for these three risks. The first antidote
is related to the unit of analysis. By identifying the unit of analysis at the
beginning of the research project and studying as many instances of the unit
of analysis as possible, the external validity can be better ascertained. This
helps mitigate all three risks, according to Kock.

The second antidote prescribed by Kock is to use grounded theory for
analysis of large bodies of data, using open, axial and selective coding.

The third antidote proposed to alleviate mainly the uncontrollability
threat is to use multiple iterations of the improvement loop. This is pro-
posed for the same reason as in agile methods: frequent partial deliveries
will make sure that the researcher does not leave completely empty-handed
if a project is cut short.

Lau [48] addresses the issue of validity of action research in the field
of Information Systems. He lists the following criteria to consider when
conducting and evaluating action research:

1 Is the research aim authentic and practical?

2 Is the perspective explicit and authentic according to the adopted
stance?

22

10
11
12
13
14
15
16
17
18
19
20
21

22

Is the adopted action research stream consistently described?
Are the theoretical assumptions authentic?

Is there sufficient background information?

Is the intended change appropriate and adequate?

Is the involvement of the research site appropriate and adequate?
Are the participants authentic?

Are the data credible, dependable and confirmable?

Is the study duration adequate for change to occur?

Is the degree of openness appropriate and adequate?

Is the access/exit point appropriate and adequate?

Does the presentation style provide sufficient information?

Is the problem practical and authentic?

Are the interventions authentic, appropriate and effective?

Is the reflective learning trustworthy?

Is the iterative process used appropriate for learning?

Are there general lessons learned that contribute to new knowledge?
Is the researcher role appropriate and effective?

Is the participant role appropriate and effective?

What competency improvement is planned and has it improved?

Are ethical issues addressed satisfactorily?

This concludes the background chapter of this thesis. The key concepts
presented here are used in the next chapter, which gives a detailed overview
of the research work supporting this thesis. The four first sections of this
chapter correspond to the three main research themes of the next chapter:
agile and lean deployment (Sections 2.1 and 2.2); product metrics for deci-
sion support on maintainability (Section 2.4); and tool support for process
knowledge sharing (Section 2.3). Lewin’s action research process along with
Kock’s three threats and Lau’s validity criteria (Section 2.5) are used to
explain the learnings from each of the research papers.

23

24

Chapter 3

Overview of the Research

In this chapter, a detailed overview of the research is presented. Section 3.1
starts by placing the research in context, introducing both the environment
in which the research was performed as well as the timeline on which it was
executed. Section 3.2 introduces the areas of contribution of the research,
detailing the research questions. Section 3.3 gives an overview of the used
research and data collection methods. Then follows one section for each of
the three contribution areas, where each of the papers in that corresponding
area is described in detail (Sections 3.4 — 3.6). Finally the validity of our
research within the action research framework is accounted for in Section 3.7.

3.1 Research Setting

The research for this dissertation was mainly executed in an industrial set-
ting. As such, the original research question was a pragmatic one: how do
we improve the software development practices so as to improve the per-
formance of the software development organisation and the quality of the
software product. The industrial setting is also the main reason behind the
selection of the overall research framework: action research. The researcher
was part of the studied environment, not only observing but also attempting
to change it.

The setting was one software development department of a large telecom-
munications corporation (Ericsson) and a fairly large, international software
company in the areas of wireless telecommunication and automotive solu-
tions (EB).

Ericsson is the largest supplier of mobile systems in the world. At the
time, Ericsson’s customers included the world’s 10 largest mobile operators
and some 40% of all mobile calls were made through its systems. This
international telecommunications company has been active worldwide since
1876 and is currently present in more than 140 countries.

25

EB, Elektrobit Corporation, is a large, geographically distributed com-
pany specialised in demanding embedded software and hardware solutions
for the wireless and automotive industries. The number of employees was
just under 2000 at the time, with development activities mainly in Finland,
Germany, Austria, Switzerland, China and the USA.

The timeline in Figure 3.1 shows how the main research areas were dis-
tributed timewise. The role that the author was appointed in 2003 as Soft-
ware Design Architect, allowed for some more long term process development
work to be initiated. Eventually, this lead to the most of the research pre-
sented here.

Agile methods

(piloting method)])
Quality metrics Qua}llty metrics
(model metrics) Collab. (agile metrics)

authoring

Agile methods
(pair programming)

[2004 | 2005 | 2006 2007 | 2008 2009 | 2010 |
< Ericsson

Figure 3.1: Timeline of the research.

Doing research in an industrial setting is in some ways a two-edged sword.
On the one hand, you are in the midst of the environment you want to study
and affect. There is ample access to real, live data from actual software
projects. The problems and questions that industry projects struggle with
are at your fingertips. On the other hand, you have to respect the economic
reality of the projects. The research questions that you are allowed to study
are limited by the business case they represent. You have to be able to
give clear, business related arguments for the research in terms of return on
investment. In order to get approval for a research project, there has to be
management support and clear risk management so that the real targets of
the company — delivering high-quality products to the customer on time —
are not endangered.

We were fortunate enough to have good management support and, es-
pecially in the case of Ericsson, an organisation with high maturity and a
process culture where metrics collection was standard protocol. This means
we could perform our research and collect data without the need for disrupt-
ing the day-to-day business to any large extent.

The first study we did was in the area of agile methods. The business
case for this was to improve motivation among the software staff using the
XP practice of pair programming, and some other supporting practices. This
resulted in a technical report and a conference paper. These are presented

26

in more detail in Section 3.4.1.

The results of this first study was successful, but had a limited impact
on the company. We wrote guidelines based on our findings but there was
no champion promoting the way of working. Even though the department
management saw clear benefits of the agile way of working, there was no
active push from management either. The practices used in the study were
allowed and recommended, but not actively promoted.

The result did, however, raise some interest in the corporate level process
development department. As a result, we presented our research also in
internal conferences and helped sow the first seeds of agile thinking in the
company.

The second study was in the area of model metrics. Here, the business
case was to reduce the cost and effort of maintenance of the software prod-
ucts. The study covered a large embedded software product, developed using
both model driven and more traditional techniques. As the model driven area
is less explored in these settings, we focused our efforts on that part of the
problem. The findings resulted in a conference paper and a journal paper.
These are presented in more detail in Section 3.5.1.

The results of the metrics study resulted in much interest in the company.
Model driven development is used in many areas of the company but there
was a lack of integrated support for metrics in the tools used. The limiting
factor here was a practical one. The Turku unit, where the research had been
performed, was sold to another company. So we never had the opportunity
to follow up on the research. Some efforts were still done, but not being part
of the company any longer raised barriers in the practical work.

In the new company, the author was fortunate enough to have a position
in the central process development organisation with the task of deploying
agile methods in the company. Even though this provided a unique opportu-
nity to study the impacts of agile methods, the economic reality of a smaller
company is even more restricting when performing research. In a smaller
company, the margins are smaller and the stakes are higher when interrupt-
ing projects with new methods. The company was a collection of smaller
companies that had recently merged to a larger company, so the company
culture was heterogeneous. The maturity level varied and not all parts of
the company were used to collecting metrics.

One of the main challenges we faced when trying to deploy agile methods
was disbelief and mistrust. We needed to build trust in the methods. This
resulted in two different research areas. The first is related to the setting up
and execution of pilots. We needed to create and communicate success stories
to win people’s trust. As the company was heterogeneous, we needed to be
able to run several pilots in different areas, to show that the method works
not only in certain areas. This resulted in a conference paper that details a
pilot method with two case examples, which is described in Section 3.4.2.

27

The second resulting research area was concerned with supporting the
build-up of a common company culture through knowledge sharing. For
this, we did a survey of process authoring tools to see find what tools best
support collaborative process authoring. This also resulted in a conference
paper that describes the outcome of the survey and gives suggestions on how
the currently available tool can be further developed to better meet these
needs. This paper is described in Section 3.6.1.

The final research area outlined in Figure 3.1 is the area of agile metrics.
This ties together the two main areas of agile methods and model metrics.
This resulted in two papers, which were written in an academic setting and
is outlined in Sections 3.5.2 and 3.5.3.

3.2 Research Questions

The contribution of this thesis lies in the general area of process improve-
ment. More specifically, we address the issue of deploying agile and lean
methods in large, mature organisations with the support of relevant product
metrics and collaborative process authoring. For clarity, the contribution
can be divided into three different areas: agile deployment, product met-
rics for decision support and process authoring. In each of the areas, we
address a number of research questions. The contributions and the associ-
ated research questions are listed below and Table 3.1 shows how each of the
papers addresses the questions.

CI Research related to the deployment of agile methods in large companies.

Q1 Can corporations with well established and rigid, plan-driven pro-
cesses use just a few agile methods and still see significant bene-
fits?

Q2 How does one deploy agile methods in large, diverse organisations?

Q3 How does one systematically implement agile pilots as part of the
overall deployment process in a plan-driven environment?

CII Research aimed at supporting teams with relevant product metrics for
decision support on maintainability and refactoring.

Q4 How do different statechart concepts affect the maintainability of
a system?

Q5 How does one assess the maintainability of code under develop-
ment in order to provide decision support for refactoring deci-
sions?

28

Q6 How does one support decision making in lean and agile teams
with code-based metrics in a manner that does not require a large,
up-front metrics collection effort from the team?

CIII Research related to tool support for process knowledge sharing.

Q7 How well do existing process authoring tools support the needs
of the industry when it comes to collaboratively sharing process
knowledge?

3.3 Research Methods and Data Collection

The overall research framework was implicitly chosen by the setting of the
research. As the researcher was a part of the researched organisations, the
research is most naturally classified as action research. Each of the research
projects were performed using the main steps of the action research process,
as described in Section 2.5, and each project can be seen as one iteration
of the main loop of Figure 2.8 on page 20 (also outlined in more detail in
Figure 2.9 on page 21).

In our research, we mainly used empirical research methods. The only
exception is the paper that suggests kanban guards as a method for decision
support in agile and lean teams, where the approach is clearly constructive
(design) research [38]. The methods used are listed below. The terminol-
ogy used is based on [25]. The abbreviations introduced here are used in
Table 3.1.

CCS Case study; confirmatory single case
CEM Case study; exploratory multiple case
MSE Mixed methods: sequential exploratory
CE Controlled experiment

SR Survey research

CR Constructive research

As the research was mainly empirical and conducted in the field, the col-
lection of data was essential. We used a number of data collection methods,
as we collected both quantitative and qualitative data. The following data
collection methods were used (based on [70], except for the tool survey.) The
abbreviations introduced here are used in Table 3.1.

D1 Brainstorming and focus groups

29

D2 Interviews

D3 Questionnaires

D5 Work diaries

I1 Analysis of electronic databases of work performed
I4 Static and dynamic analysis

TS Tool survey

Table 3.1 gives an overview of the publications. The numbering refers
to the numbering in the initial publication list of this dissertation. For
each publication, its topic, contribution, research question, research method
and data collection methods are listed. The following sections give a more
detailed summary of each of the publications.

Topic Question Method Data Collection
I agile practices CL:Q1 CCS Quant: D5, I1
Qual: D2, D3
IT maintenance metrics CIL:Q4 MSE & CE Qual: D1
Quant: 11, 14
IIT collaborative authoring CIII:Q7 SR Qual: D1, TS
IV kanban guards CII:Q6 CR
V agile piloting CL:Q2, Q3 CEM Qual: D1, D2
VI maintainability index CIL:Q5 MSE Qual: D1
Quant: 11

Table 3.1: The Papers at a Glance

We now proceed to describe the papers that make up this thesis. The
papers are organised by topic rather than time. Section 3.4 describes the
papers in the area of deploying agile methods, while Section 3.5 describes
the papers in the area of quality metrics. Section 3.6 describes the work
done in collaborative process authoring.

The papers are described using the structured abstract format suggested
by [43], but with the Objective section split into two: one for the research
question and one for the business goal that the organisation hoped to achieve.
By this split, we make it easier for the reader to distinguish between the two,
since they are not always the same.

All papers but one present results from action research initiatives. For
these papers we also include sections outlining the conformance to the action
research framework presented in Section 2.5 along with the lessons learned
in the research project. A last addition is a section clarifying the author’s
role in each of the projects.

30

3.4 Agile Deployment Papers

3.4.1 Publication I

Title Software process improvement with agile practices in a large telecom
company (2006) [9].

Business goal Increase the motivation of the developers, while maintaining
the efficiency and quality of the existing way of working. Increase
competence within a team.

Background Besides the promise of rapid and efficient software develop-
ment [41, 65, 68|, agile methods are well-appreciated for boosting
the communication [19] and motivation [54] of development teams.
However, they are not practical without tailoring in large organisa-
tions [14, 51|, especially because of the well-established, rigid processes
in the organisations.

Research question Q1: Can corporations with well established and rigid,
plan-driven processes use just a few agile methods and still see signifi-
cant benefits?

Method We conducted a confirmatory, single case study with a team of
four subjects. Data was collected through work diaries of hours spent
on different categories of tasks, analysis of electronic databases (defect
reports), interviews and questionnaires.

Results There was no measurable change in motivation, but the compe-
tence build-up was clearly measurable. Efficiency and quality were not
compromised.

Limitations Generalisation of the results is limited by the characteristics
of the team: the size (four people), the temporary nature of the team
arrangements and the focus on competence build-up. More detailed
time monitoring than usual may have lead to changed behaviour in
the subjects.

Conclusion We demonstrated that is worthwhile to use pair programming,
the planning game and collective code ownership. The used agile meth-
ods could be refined to suit the existing settings of a large company.

Conformance to research framework The unfreezing and change steps
of Lewin’s action research framework [50] were performed in a con-
trolled manner. The refreezing step was not done properly, however.
As a result, the findings were not as widely used as we would have
wished.

31

Lessons learned Focus needs to be paid to the refreezing phase. Assign
a sponsor that markets the results in the projects and supports wider
adoption. Pilots is a good way of building awareness around a new
concept, such as agile methods. There was a clear change in the way
agile methods were perceived. Before the pilot, agile methods were
seen as completely unsuitable for the company, but after the pilot,
there was a whole new openness.

Future work One interesting topic to investigate in the future is the formal-
isation of task allocation and how it can be used to optimise different
factors such as competence build-up or lead time. This can take into
account attributes of the tasks, such as complexity and estimated com-
pletion time, as well as attributes of the developers, such as competence
and experience.

Author’s role The author, Jussi Auvinen and Rasmus Back constituted
the company part of the research team and contributed in the definition
of the research question and methods, as well as in the execution of the
research project and the concluding analysis and dissemination. The
author also acted as the industry supervisor for Back’s master’s thesis.

3.4.2 Publication V

Title Systematic piloting of agile methods in the large: Two cases in em-
bedded systems development (2010) [34].

Business goal Generate success stories of agile deployment in order to
build experience and to overcome the most common challenges of agile
deployment, such as resistance to change.

Background Despite reportedly high adoption rates of agile methods [3],
deploying agile methods in a large, diverse, geographically distributed
setting is still a challenging task [51]. Some attempts have been made
to tackle this deployment problem [61, 49, 4| but little is available to
provide clear methods and advice with regard to deploying agile meth-
ods and principles. Current research reports do not concentrate on
what often lies at the very beginning of a software process improve-
ment initiative deploying agile methods: a pilot project.

Research question Q2: How does one deploy agile methods in large, di-
verse organisations? Q3: How does one systematically implement agile
pilots as part of the overall deployment process in a plan-driven envi-
ronment?

Method We conducted an exploratory multiple-case study on two live projects
in a large, geographically distributed, embedded systems company.

32

Results A method for piloting agile in a large corporation is defined. The
method is proven successful in the goals of (1) overcoming resistance
to change and (2) ensuring that a pilot project can run agile even if
the rest of the organisation is non-agile.

Limitations It is too early to evaluate the long-term implications of the
method for company-wide deployment. The generalisation to other
companies should be studied further.

Conclusion Piloting agile methods according to the defined method proved
a successful way of overcoming resistance to change.

Conformance to research framework We saw the materialisation of the
uncontrollability risk, as defined by Kock [44]. A major restructuring
of the company and the erstwhile resignation of the main sponsor of
the project (the company’s CEO) cut the overall project short after
the first iteration. We had mitigated this risk by working in short
iterations, and this work is the outcome of the first main iteration.

Lessons learned Always work in very short iterations and make sure there
is outcome defined for each of the iterations. Again we could see that
piloting helps in overcoming fears and changing perceptions.

Future work Future work mainly concerns the limitations of the study and
includes further validation and refinement of the method as it is further
applied to pilots within the company as well as in other companies
struggling with the challenge of agile piloting in the large. Furthermore,
the long-term impacts of piloting on the general deployment of agile
methods still need to be evaluated.

Author’s role The author was the project manager for the research project
in her role as project manager for the company-wide SEP (Software
Engineering Process) team. As such, the author was involved in all
parts of the research undertaking, including planning, execution, anal-
ysis and dissemination. The data collection through interviews was
done by external researchers (Hirkman and Pikkarainen), though.

3.4.3 Research Contributions

The challenge of deploying agile methods in large companies was addressed
in two different studies with different deployment tactics. The first study
introduced a small set of agile practices into one team in a non-agile project.
The main goal of this first study was to improve motivation amongst the
developers. This is in contrast with the second study, where the way of
working of two entire projects where changed with the main goal of over-
coming resistance to change.

33

Interestingly enough, the first study did not result in measurable changes
in motivation. Instead, we could see improvements in competence build-up
and quality. In the second study, we did see an improvement in motivation
through a reduction of resistance to change. On the other hand, we could
also see that motivational factors external to the project, such as a feeling
of insecurity due to the overall financial situation, could not be affected by
the changed way of working.

It is an important observation to make that process improvement cannot
make up for motivation lost due to a feeling of personal insecurity. An exam-
ple illustrating this can be taken from the keynote of the SPICE conference
in 2009, Riku Granat (Vice President, Nokia Application Software) asked for
a process to simplify the knowledge transfer from high-cost countries, such
as Finland, to low-cost countries, such as China. This is not something we
consider should be expected of a software process improvement initiative.
No software process can motivate a developer to work more efficiently at
making themselves redundant.

The conclusion that can be drawn from our studies is that piloting is
a good way of introducing agile methods into a large company. There is
the two-fold benefit of learning by doing while at the same time reducing
the resistance to change. The long-term benefits of the first study can be
seen in the adoption of agile methods in the company in question [60]. The
long-term benefits of the second study remain to be seen.

3.5 Quality Metrics Papers

3.5.1 Publication II

Title Statechart features and pre-release maintenance defects (2008) [35].

Business goal Assess the maintainability of statecharts in order to reduce
the cost of maintenance and further development of systems built using
this technology.

Background Statecharts is a design notation for reactive systems com-
monly used in the automotive and telecommunication software in-
dustry. Statecharts, according to both the original presentation by
Harel [31] and the more recent Unified Modeling Language (UML)
specifications [57] comprise a large set of different modelling concepts.
These make the statecharts more expressive and presumably easier to
understand. We have observed, however, that some of these concepts
can conversely make the system more difficult to understand. Under-
standability and changeability are two important factors of maintain-
ability [42]. Systems that are difficult to understand and change are

34

also difficult to maintain. Although there is a large body of work ad-
dressing ways of measuring the maintainability of software systems |21,
11, 52, 16], it is not clear how this translates to the model driven
paradigm using statecharts. Some related work exists [6, 47]. Genero
et al. [28] come the closest to our needs in that they evaluate statechart
metrics both theoretically and empirically, but they work in an aca-
demic environment with no correlation to defect rates of real software
systems.

Research question Q4: How do different statechart concepts affect the

maintainability of a system?

Method We used a mixed-method sequential exploratory approach, start-

ing with workshops with domain experts and then performing a static
analysis and analysis of electronic databases (defect reports, version
control system). We concluded with a comparative study involving
subjects answering questions on readability and changeability of two
example systems designed to display good and bad design idioms re-
spectively.

Results We see correlations over 0.8 between defect rates and these state-

chart constructs: the number of transitions, choice points and capsule
operations, the ratio of choice points per states, the average visual
cyclomatic complexity, average number of defer and recall commands,
average capsule size. The paired sample t-test of the comparative study
points to a clear difference (sig-value less than 0.1) in the points ratio
for understandability and the difficulty rating for changeability.

Limitations This study is performed in a specific setting of large, embedded

telecommunications systems using model-driven development. Gener-
alisation to other contexts may not follow.

Conformance to research framework We saw the materialisation of the

uncontrollability risk, as defined by Kock [44]. We had learned from our
previous attempts that the refreezing step of Lewin’s framework [50]
should be carefully considered. However, part of the company was sold
to another company as the project was about to move into the refreez-
ing phase. Unfortunately, all the research staff was then outsourced,
and had no influence over the project any longer.

Lessons learned A thorough study such as this helped put the concept

of refactoring in a financial context. We could clearly see a change
in perception of refactoring from “if it ain’t broke, don’t fix it” to an
efficient and necessary practice for maintaining code quality.

35

Conclusion We present evidence that suggests that the use of different
statechart features during the design of a subsystem may affect the
number of defects introduced in posterior maintenance actions. We
also conjecture about possible causes for this and we provide recom-
mendations on how to design statecharts in a way that is less likely to
result in defects.

Future work In order to generalise the results, a series of controlled exper-
iments with public materials should be carried out and replicated in
different sites. It would also be beneficial to factor out different de-
sign idioms and statechart features in order to study them individually.
Furthermore, some features of the used modelling toolset were inten-
tionally excluded from this study. Inheritance of classes and capsules
is one such feature which we would like to study further. Orthogonal
regions is another feature which we would like to study, but could not
since the toolset did not support it. Another important future work
is to develop a complete predictor model for defects in maintenance
actions for statecharts.

Author’s role The author together with Jussi Auvinen and Andreas Nals
constituted the industrial part of the research team, performing the
planning and execution of the research. She also held the main re-
sponsibility for the analysis and reporting phase and acted as industry
supervisor for Nals’ master’s thesis.

3.5.2 Publication IV

Title Metrics functions for kanban guards (2010) [36].
Business goal Improve work prioritization.

Background Agile and lean approaches favour self-organising teams that
use low-tech solutions for communicating and negotiating project con-
tent and scope in software projects [18]. We consider this approach
to have many benefits, but we also recognise that there is informa-
tion in software projects that does not readily lend itself to low-tech
types of visualisation. Different characteristics of the code base is one
such example. Good solutions for collecting metrics on the code base
exist [58, 39| but they are not integrated with the standard way of
working of lean and agile teams.

Research question Q6: How does one support decision making in lean
and agile teams with code-based metrics in a manner that does not
require a large, up-front metrics collection effort from the team?

36

Method We use a constructive approach in devising a method for support-
ing lean teams with metrics.

Results We outline metrics functions, called kanban guards, which consist
of three parts and can take advantage of more advanced information
of the development artifacts.

Limitations The constructed method has not been validated in real projects.
Conformance to research framework This report is not action research.

Conclusion We demonstrate that kanban guards can provide lean and agile
teams with decision support in order to optimise the quality of the
software product, while at the same time reducing waste.

Future work We would like to see a series of controlled experiments imple-
menting the kanban guard concept in lean software projects in order to
measure its real impact on the quality and performance of the project.
This implementation would include the integration of the complete
tool chain, but also the adoption of lean working practices and their
interaction with the kanban guard concept.

Author’s role The author was the main author of the paper.

3.5.3 Publication VI
Title Maintainability index for decision support on refactoring (2010) [33]

Business goal Facilitate communication between technical and business
stake-holders regarding refactoring decisions.

Background Maintainability is a software attribute that needs to be con-
tinuously addressed during the entire development life-cycle. Failure
to do so will result in deteriorating software quality and the build-up
of so called technical debt [23]. The state of the practice for fight-
ing technical debt is the agile practice of refactoring [27]. In a large
corporation the business expertise and technical expertise is usually
represented by different people, often in different organisations, work-
ing towards different goals and using different vocabularies. A lack of
trust between the two is not uncommon. Furthermore, there may not
exist consensus among the technical staff as to what constitutes good
software design. For these reasons, reaching a decision to refactor may
not be a trivial task. There is a large body of work dealing with the
detection of technical debt for the purpose of improving maintainabil-
ity [15, 53, 52, 11, 21, 56, 7]. The main difference between the existing
studies and our needs is the fact that most studies are performed in

37

a small setting with small example software systems and students as
subjects, whereas our study was performed in an industry setting with
real systems and experienced software industry professionals as sub-
jects. Coleman et al. [21] and Asthana et al. [7] are two exceptions.
The main difference between our work and theirs is that our focus
lies more on early diagnostics and actionable product metrics, whereas
their approach partly relies on after-the-fact metrics such as effort, in
the case of Coleman and quantitative process metrics in the case of
Asthana. None of the referenced work addresses the issue of building
consensus around maintainability metrics, which is one of our areas of
interest.

Research question Q5: How does one assess the maintainability of code
under development in order to provide decision support for refactoring
decisions?

Method We use a mixed-method sequential exploratory approach start-
ing with workshops collecting the intuition of experts and continuing
by static analysis and analysis of electronic databases (defect reports,
version control system).

Results The constructed maintainability index corresponds well to the in-
tuition of the experts. It is also successfully validated against a refac-
toring effort.

Limitations This work was performed in the context of a large software
system in the telecommunications industry and with the help of experts
from the industry. The studied subsystems were written using IBM
Rational Rose RealTime and C++-.

Conformance to research framework This report is based on the same
research as Publication II, so the risks are the same.

Lessons learned In an industrial setting it may be more difficult for the
domain experts to reach consensus on what constitutes a smell and
how to measure it by voting, since the most experienced experts are
most likely to have some attachment to the system, either by having
been involved in the development of the system or at least by knowing
they will be involved in it in the future. This type of approach helps
build consensus by showing the experts how their intuition corresponds
to metrics.

Conclusion The suggested approach to assess the maintainability of soft-
ware systems and their need for refactoring based on the collection of
internal product metrics is validated in the context of a large, mature
telecommunications product.

38

Future work A long-term evaluation of the impact on software maintain-
ability of methods such as the one defined here should be studied,
including the evolution of the model itself. The process paradigm in
the context of this study was an iterative, incremental one. It would
be interesting to see the impact of this method in other contexts.

Author’s role See Publication II.

3.5.4 Research Contributions

The challenge of supporting agile teams with relevant product metrics for
decision support was addressed in three studies. The first study dealt with
the question of how to measure design quality. The second and third studies
dealt with different aspects of the question of how to incorporate metrics in
the work methods of the team.

The result of the first study showed us that it is possible to use statistical
methods in order to find what constitutes good and less good design. The
specific idioms identified are quite contextual for the programming paradigm
and problem domain in question, though.

In order for metrics to be of support for the team, they need to be in-
tegrated in the way of working, the tool sets used and the minds of the
developers. The second study constructs a way of integrating metric func-
tions, which we call kanban guards, with the lean and agile daily planning
and follow-up procedures. The third study builds on the first by matching
the results found with the intuition of experts in the development organisa-
tion, and thus aims at convincing developers that the metrics can be of use
to them. This is again a question of building motivation.

Software product metrics for decision support is a research topic that
is interesting both to the research community and the industry. Since our
work was done, there has been some other interesting work published. One in
particular is the SQUALE [13] project, which bears similarities to ours. They
base their measurements on a bespoke quality model, called the Qualixo
model. This is a work in progress which focuses on community building.
Participating software houses help create a base of metrics data that is used
for continuously improving the quality model. They offer different viewpoints
for different roles in the organisation and also attempt cost prediction based
on intrinsic software quality.

3.6 Collaborative Methods Papers

3.6.1 Publication IIT

Title Tool support for collaborative software process authoring in large or-
ganisations [32]

39

Business goal Decide what tool to buy for the company’s process authoring
needs.

Background Contrary to traditional practices, we consider that software
processes should emerge and evolve collaboratively within an organi-
sation. At the time of the study, there was no clear candidate for tool
support for collaborative process authoring, nor any good definition
of requirements on such a tool. Although wiki-based solutions have
been used for this purpose [22], it is our experience that free-form wiki
discussions cannot replace a structured software description, even if at-
tempts to remedy this situation have been suggested by Wongboonsin
and Limpiyakorn |77].

Research question Q7: How well do existing process authoring tools sup-
port the needs of the industry when it comes to collaboratively sharing
process knowledge?

Method We conducted a tool survey based on requirements collected from
a focus group.

Results None of the commercially available tools fully met our require-
ments.

Conformance to research framework We saw the materialisation of the
uncontrollability risk, as defined by Kock [44] The same financial cut-
backs that troubled Publication V also affected this study. The re-
search was finished but the adoption of the tool suggested by the study
did not take place, due to tool budget cuts.

Lessons learned Collecting requirements from key users and using them
as a basis for comparing tools proved to be an efficient way to build
consensus around which tool to buy.

Conclusion Although none of the commercially available evaluated tools
completely filled our needs, IRIS Process Author (IPA) stands out due
to its innovative way of handling collaborative process development.

Future work It would be interesting to follow up on the usage of the sug-
gested tool in a large, collaborative setting by means of an empirical
study investigating the adoption rate and developer satisfaction with
the tool.

Author’s role The author was the project manager for the research project
and as such was responsible for the planning, analysis and dissemina-
tion of the research project. The actual execution, i.e., the testing of
the tools against the requirements was performed by Petter Holmstrém

40

as a part of his master’s thesis. The author acted as Holmstréom’s in-
dustrial supervisor for his thesis work.

3.7 Validity of Our Research within the Action Re-
search Framework

In Section 2.5, two approaches to assessing the validity of action research
were accounted for. Kock defines three threats to action research: uncon-
trollability, contingency and subjectivity [44]. Lau [48] lists 22 criteria to
consider when conducting and evaluating action research.

First, we consider Kock’s approach. In our research, the uncontrollability
risk was the one that we mainly saw materialised. The software industry of
today is rather unstable, and organisations respond to a fluctuating econ-
omy with reorganisation, outsourcing and cutbacks. We consider ourselves
fortunate to have been able to perform research at all in these challenging
times, but the financial situation did clearly exacerbate the uncontrollability
risk. In one project, the refreezing suffered because half of the researched
department, including the researchers, was sold to another company. As
the refreezing was cut short, general adoption of the proposed actions was
not enforced and the change did not happen. In a later project, we tried
to mitigate the uncontrollability risk by planning for short iterations, but
unfortunately, the studied project was cancelled and the development team
was dispersed before we even finished the first iteration.

Next, we consider Lau’s approach. The numbers in brackets below refer
to the criteria listed on page 22. The question of authenticity of research aim
(1), perspective (2), theoretical assumptions (4), participants (8), problem
(14) and interventions (15) is clear in our research, as it in all cases has been
initiated by the studied organisation as an issue to be solved. The theoretical
stance (2) is not explicitly stated, but when looking at the chosen methods,
it is clear that we adopt a positivist stance. We do not use the term action
research stream (3), but in all cases, we aim to change the practice of the
organisation. We strive to provide sufficient background information (5). In
some cases, the appropriateness and adequacy of the intended change (6)
is actually the issue to be studied. The involvement of the research site
(7) and the degree of openness (11) from the researcher’s point of view has
also been good, but we had to respect the subjects’ and organisation’s need
for privacy (22), so some data could not be openly reported to the research
community. We have invested a significant effort into collecting good quality
data (9). The duration (10) of the study has in general been sufficient, but
as mentioned before, some of our studies were cut short. The entry and exit
points for the researcher (12) have been clear, as the research projects have
been projects with a well-defined project plan, including start date and end

41

date. Whether the presentation (13) is adequate in all cases can be debated,
but the work here has been published in refereed conferences and a journal.
We have not explicitly reported on the reflective learning (16) and iterative
process (17) in all cases, so this is sometimes a short-coming of our research.
We do think that our research contributes (18) also on a general level. The
roles of the researcher (19) and participants (20) is not always explicitly
stated, but in most cases they are clear from the description of the method
used. In the cases where competency improvement (21) was a goal, we have
made an effort to measure it.

This concludes the overview part of the dissertation. The first chapter
of the overview was an introduction, while the second chapter introduced
essential background concepts of the thesis. In this final chapter of the
overview, I have given a detailed overview of the research, placing it in
context (Section 3.1), detailing the research questions (Section 3.2) as well as
the used methods (Section 3.3). Some effort was made to describe each of the
research papers in the context of their respective research area (Sections 3.4
—3.6). This last chapter was closed with a look at the validity of our research
within the action research framework (Section 3.7). Part two of the thesis
consists of the original publications and begins after the bibliography.

42

Bibliography

1]

2l
3]

4]

[5]

(6]

7]

8]

19]

C. Adelman. Kurt Lewin and the origins of action research. In Educa-
tional Action Research, volume 1, pages 7-24. Routledge, 1003.

Agile Alliance. Agile manifesto. agilemanifesto.org/.

S. W. Ambler. Survey Says: Agile Works in Practice. Dr. Dobb’s Portal:
Architecture € Design, September 2006.

S. W. Ambler. Scaling agile software development through lean gover-
nance. In SDG ’09: Proceedings of the 2009 ICSE Workshop on Software
Development Governance, pages 1-2. IEEE Computer Society, Washing-
ton, DC, USA, 2009.

D. Anderson, S. Augustine, C. Avery, A. Cockburn, M. Cohn, D. De-
Carlo, D. Fitzgerald, J. Highsmith, O. Jepsen, L. Lindstrom, T. Little,
K. McDonald, P. Pixton, P. Smith, and R. Wysocki. Declaration of
interdependence. pmdoi.org/.

E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche. The impact of
UML documentation on software maintenance: An experimental evalu-
ation. IEEE Transactions on Software Engineering, 32:365—-381, 2006.

A. Asthana and J. Olivieri. Quantifying software reliability and readi-
ness. In Communications Quality and Reliability, 2009. CQR 2009.
IEEE International Workshop Technical Committee on, pages 1-6. May
2009.

R. D. Austin. Measuring and Managing Performance in Organizations.
Dorset Publishing House, USA, 1996.

J. Auvinen, R. Back, J. Heidenberg, P. Hirkman, and L. Milovanov.
Software process improvement with agile practices in a large telecom
company. In Product-Focused Software Process Improvement, volume
4034 of Lecture Notes in Computer Science, pages 79-93. Springer Berlin
/ Heidelberg, 2006.

43

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen. Action research.
Commun. ACM, 42(1):94-97, 1999.

V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Trans. Softw. Eng.,
22(10):751-761, 1996.

K. Beck and C. Andres. Eztreme Programming Ezplained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

A. Bergel, S. Denier, S. Ducasse, J. Laval, F. Bellingard, P. Vaillergues,
F. Balmas, and K. Mordal-Manet. SQUALE. Software Maintenance
and Reengineering, Furopean Conference on, 0:285-288, 2009.

B. Boehm and R. Turner. Using risk to balance agile and plan-driven
methods. Computer, 36(6):57 — 66, june 2003.

L. C. Briand, C. Bunse, and J. W. Daly. A controlled experiment for
evaluating quality guidelines on the maintainability of object-oriented
designs. IEEE Trans. Software Eng., 27(6):513-530, 2001.

L. C. Briand, J. Wiist, J. W. Daly, and D. V. Porter. Exploring the
relationships between design measures and software quality in object-
oriented systems. Journal of Systems and Software, 51(3):245 — 273,
2000.

A. Cockburn. Crystal clear a human-powered methodology for small
teams. Addison-Wesley Professional, 2004.

A. Cockburn. Agile Software Development: The Cooperative Game (2nd
Edition) (Agile Software Development Series). Addison-Wesley Profes-
sional, 2006.

A. Cockburn and J. Highsmith. Agile software development, the people
factor. Computer, 34(11):131 —133, November 2001.

M. Cohn and D. Ford. Introducing an agile process to an organization.
Computer, 36(6):74-78, 2003.

D. M. Coleman, D. Ash, B. Lowther, and P. W. Oman. Using metrics to
evaluate software system maintainability. IEEE Computer, 27(8):44-49,
1994.

W. Cunningham. Cunningham & Cunninghamn Wiki. http://c2.
com/.

44

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

W. Cunningham. The WyCash portfolio management system. In OOP-
SLA ’92: Addendum to the proceedings on Object-oriented programming
systems, languages, and applications (Addendum), pages 29-30. ACM,
New York, NY, USA, 1992.

T. Dyba and T. Dingsgyr. Empirical studies of agile software devel-
opment: A systematic review. Inf. Softw. Technol., 50(9-10):833-859,
2008.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting
empirical methods for software engineering research. Guide to Advanced
Empirical Software Engineering, Jan 2008.

N. Fenton and S. L. Pfleeger. Software metrics (2nd ed.): a rigorous
and practical approach. PWS Publishing Co., Boston, MA, USA, 1997.

M. Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

M. Genero, D. Miranda, and M. Piattini. Defining metrics for UML
statechart diagrams in a methodological way. In Conceptual Modeling
for Novel Application Domains, volume 2814 of Lecture Notes in Com-
puter Science, pages 118-128. Springer Berlin / Heidelberg, 2003.

D. J. Greenwod, editor. Action Research. John Benjamins Publishing
Company, 1999.

J. Grenning. Launching extreme programming at a process-intensive
company. [EEE Softw., 18(6):27-33, 2001.

D. Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8(3):231 — 274, 1987.

J. Heidenberg, P. Holmstrém, and 1. Porres. Tool support for collabora-
tive software process authoring in large organizations. In European Sys-
tems € Software Process Improvement and Innovation Industrial Pro-
ceedings. DELTA, Denmark, 2009.

J. Heidenberg, J. Katajala, and I. Porres. Maintainability index for
decision support on refactoring. Technical Report 992, Turku Centre
for Computer Science, November 2010.

J. Heidenberg, M. Matinlassi, M. Pikkarainen, P. Hirkman, and J. Par-
tanen. Systematic piloting of agile methods in the large: Two cases in
embedded systems development. In Product-Focused Software Process
Improvement, volume 6156 of Lecture Notes in Computer Science, pages
47-61. Springer Berlin / Heidelberg, 2010.

45

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

J. Heidenberg, A. Nals, and I. Porres. Statechart features and pre-release
maintenance defects. J. Vis. Lang. Comput., 19(4):456-467, 2008.

J. Heidenberg and I. Porres. Metrics functions for kanban guards.
In IEEE International Conference and Workshops on Engineering of
Computer-Based Systems. 2010.

J. D. Herbsleb and R. E. Grinter. Conceptual simplicity meets orga-
nizational complexity: case study of a corporate metrics program. In
ICSE °98: Proceedings of the 20th international conference on Software
engineering, pages 271-280. IEEE Computer Society, Washington, DC,
USA, 1998.

A. Hevner, S. March, J. Park, and S. Ram. Design science in information
systems research. MIS Quarterly, 28(1):75-105, Jan 2004.

M. R. Hoffmann. EclEmma Java code coverage for Eclipse. www.
eclemma.org.

IBM Rational Software. IBM Rational Jazz. jazz.net.

S. Ilieva, P. Ivanov, and E. Stefanova. Analyses of an agile methodol-
ogy implementation. In Euromicro Conference, 2004. Proceedings. 30th,
pages 326 — 333. Aug.-3 Sept. 2004.

International Standards Organization. ISO 9126: Software engineering
— product quality. Technical report, International Standards Organiza-
tion, 2001.

A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in
software engineering. Guide to Advanced Empirical Software Engineer-
ing, Jan 2008.

N. Kock. The three threats of action research: a discussion of method-
ological antidotes in the context of an information systems study. Decis.
Support Syst., 37(2):265-286, 2004.

C. Ladas. Scrumban - Essays on Kanban Systems for Lean Software
Development. Modus Cooperandi Press, USA, 2009.

Lakeworks. Scrum process. http://en.wikipedia.org/wiki/File:
Scrum_process.svg/.

C. F. J. Lange and M. R. V. Chaudron. Effects of defects in UML
models: an experimental investigation. In Proceedings of the 28th inter-

national conference on Software engineering, ICSE ’06, pages 401-411.
ACM, New York, NY, USA, 2006.

46

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

F. Lau. A review on the use of action research in information systems
studies. In Proceedings of the IFIP TC8 WG 8.2 international con-
ference on Information systems and qualitative research, pages 31-68.
Chapman & Hall, Ltd., London, UK, 1997.

D. Leffingwell. Scaling Software Agility: Best Practices for Large Enter-
prises (The Agile Software Development Series). Addison-Wesley Pro-
fessional, 2007.

K. Lewin. Action research and minority problems. In Resolving Social
Conflicts, pages 201-216. Harper & Row, New York, 1946.

M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich,
D. Kiefer, J. May, and T. Kédhkoénen. Agile software development in
large organizations. Computer, 37:26-34, 2004.

M. V. Méntyld and C. Lassenius. Drivers for software refactoring deci-
sions. In ISESE °06: Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, pages 297-306. ACM,
New York, NY, USA, 2006.

M. V. Mintyld and C. Lassenius. Subjective evaluation of software
evolvability using code smells: An empirical study. FEmpirical Softw.
Engg., 11(3):395-431, 2006.

G. Melnik and F. Maurer. Comparative analysis of job satisfaction
in agile and non-agile software development teams. In Fxtreme Pro-
gramming and Agile Processes in Software Engineering, volume 4044
of Lecture Notes in Computer Science, pages 32-42. Springer Berlin /
Heidelberg, 2006.

Microsoft. Sharepoint 2010 - the business collaboration platform for the
enterprise and the internet. sharepoint.microsoft.com.

N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur. Decor: A
method for the specification and detection of code and design smells.
IEEFE Trans. Softw. Eng., 36(1):20-36, 2010.

Object Management Group. UML 2.0 Superstructure Specification.
Technical report, OMG, August 2003. Document ptc/03-08-02, avail-
able at http://www.omg.org/.

Odysseus Software GmbH. Stan structure analysis for java. www.
stan4j.com.

T. Ohno. Toyota Production System: Beyond Large-Scale Production.
Productivity Press, 1988.

47

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

K. Petersen and C. Wohlin. A comparison of issues and advantages
in agile and incremental development between state of the art and an
industrial case. Journal of System Software, 82(9):1479-1490, 2009.

M. Pikkarainen, O. Salo, and J. Still. Deploying agile practices in orga-
nizations: A case study. In Software Process Improvement, volume 3792
of Lecture Notes in Computer Science, pages 16-27. Springer Berlin /
Heidelberg, 2005.

M. Poppendieck and T. Poppendieck. Lean Software Development: An
Agile Toolkit. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

M. Poppendieck and T. Poppendieck. Implementing Lean Software De-
velopment: From Concept to Cash (The Addison-Wesley Signature Se-
ries). Addison-Wesley Professional, 2006.

J. Rasmusson. Introducing XP into greenfield projects: Lessons learned.
IEEFE Softw., 20(3):21-28, 2003.

D. J. Reifer. How good are agile methods? Software, IEEE, 19(4):16 —
18, jul/aug 2002.

L. Rising and N. S. Janoff. The Scrum software development process
for small teams. IEEE Softw., 17(4):26-32, 2000.

W. W. Royce. Managing the development of large software systems:
concepts and techniques. In ICSE ’87: Proceedings of the 9th interna-
tional conference on Software Engineering, pages 328-338. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1987.

O. Salo and P. Abrahamsson. Empirical evaluation of agile software
development: The controlled case study approach. In Product Focused
Software Process Improvement, volume 3009 of Lecture Notes in Com-
puter Science, pages 408-423. Springer Berlin / Heidelberg, 2004.

K. Schwaber and M. Beedle. Agile Software Development with Scrum.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

J. Singer, S. E. Sim, and T. C. Lethbridge. Software engineering data
collection for field studies. Guide to Advanced Empirical Software En-
gineering, Jan 2008.

P. Straub. Sample burndown chart. http://en.wikipedia.org/wiki/
File:SampleBurndownChart.png/.

G. I. Susman and R. D. Evered. An assessment of the scientific merits of
action research. Administrative Science Quarterly, 23(4):582-603, 1978.

48

73]

[74]

[75]
[76]

7]

R. Turner and A. Jain. Agile meets CMMI: Culture clash or com-
mon cause? In Proceedings of the Second XP Universe and First Ag-
ile Universe Conference on Extreme Programming and Agile Methods -
XP/Agile Universe 2002, pages 153-165. Springer-Verlag, London, UK,
2002.

M. Umarji and C. Seaman. Why do programmers avoid metrics? In
ESEM °08: Proceedings of the Second ACM-IEEE international sympo-
stum on Empirical software engineering and measurement, pages 129—

138. ACM, New York, NY, USA, 2008.
Wikimedia Foundation. Mediawiki. www.mediawiki.org.

J. Womack, D. Jones, and D. Roos. The Machine That Changed the
World. Rawson Associates, 1990.

J. Wongboonsin and Y. Limpiyakorn. Wikipedia customization for or-
ganization. Advanced Computer Theory and Engineering, International
Conference on, 0:467-471, 2008.

49

50

Part 11

Original Publications

51

3.8 Publication I

Software process improvement with agile practices
in a large telecom company

Jussi Auvinen, Rasmus Back, Jeanette Heidenberg, Piia
Hirkman, and Luka Milovanov

Originally published in Product-Focused Software Process Improvement,
volume 4084 of Lecture Notes in Computer Science, pages 79-93. Jiirgen
Miinch and Matias Vierimaa, editors. Springer Berlin / Heidelberg.
PROFES 2006.

(© Springer-Verlag Berlin Heidelberg 2006. Reprinted with kind permission
of Springer Science and Business Media.

3.9 Publication 11

Statechart features and pre-release maintenance
defects

Jeanette Heidenberg, Andreas Nals, and Ivan Porres

Originally published in Journal of Visual Languages and Computing, 19(4),
pages 456-467. Philip Cox and John Hosking, editors. Elsevier Ltd 2008.

© Elsevier Ltd 2008. Reprinted with permission.

3.10 Publication III

Tool support for collaborative software process
authoring in large organizations

Jeanette Heidenberg, Petter Holmstrom, and Ivan Porres

Originally published in European Systems € Software Process Improvement
and Innovation Industrial Proceedings. Jorn Johansen, Mads Christiansen,
editors. DELTA, Denmark. 16th EuroSPI Conference 2009.

(© Delta 2009. Reprinted with permission.

Tool Support for Collaborative
Software Process Authoring in
Large Organizations

Jeanette Heidenberg (EB, Elektrobit Corporation)
Petter Holmstrom (Abo Akademi University)
Ilvan Porres (Abo Akademi University)

Abstract

Contrary to traditional practices, we consider that software processes should emerge and
evolve collaboratively within an organization. In this article we present our vision of collabora-
tive process authoring, we evaluate and discuss how existing process authoring tools suit this
vision and we suggest a number of improvements to these tools to facilitate the deployment of
a collaborative process authoring method in a large and geographically distributed organiza-
tion.

Keywords

Software process authoring, software process improvement

EuroSPI 2009 —12.1

Session 12: SPI1 and Processes

1 Introduction

As the corporate world is growing increasingly aware of knowledge as an invaluable asset, the soft-
ware process development follows suit. In large organizations, the software processes may grow into
large and complex descriptions of the method know-how of the organization. This holds especially true
if the products developed are large and complex, such as telecommunications or automotive systems
in our case. A geographically distributed development environment further exacerbates the complex-
ity. Process descriptions may be created and maintained using standard productivity software, but in
our experience, specialized software process authoring tools are needed for maintaining complex,
dynamic software process descriptions.

Contrary to traditional practices, we consider that software processes should emerge and evolve col-
laboratively within an organization. The time of the process developer in the ivory tower is coming to
an end. The software process of the future should be the result of a collaborative effort of the software
professionals of the company, sharing their best practices, methods and learnings.

However, we have found challenges implementing this tenet in practice, especially due to the lack of
proper tool support. In this article we present our vision of collaborative process authoring, we evalu-
ate and discuss how existing process authoring tools suit this vision. Finally, we suggest a number of
improvements to these tools that would facilitate the deployment of a collaborative software process
authoring method in a large and geographically distributed organization.

2 Collaborative Process Authoring

The main purpose of a software process is to support the people involved in the development of soft-
ware products. There may be other, secondary purposes as well, such as proving the maturity of the
company to a potential customer, or producing a paper trail for legal purposes. In the best case, these
secondary purposes will automatically follow from a good process description. To the extent that they
do place additional requirements on process descriptions, however, we address this issue when nec-
essary.

In this section, we discuss our vision of good software process descriptions and the implication of our
vision on the required features of process authoring tools.

We consider that a good software process description performs the following three tasks: communi-
cate, remind and learn. The first task of a process description is simply to communicate the process to
the project staff. Whenever a new member joins the team, you can point to the process description
and say: “This is how we have agreed to work.” In order to serve this purpose, a process description
will not consist of only work instructions, but also include guidance in the form of instructions, tem-
plates and examples.

The second task is to serve as a reminder for the project members, allowing them to check the proc-
ess during the execution of the project. This differs from the first task in the way in which the process
is presented. When serving as a reminder, the process description needs to display the specific infor-
mation the reader needs now, rather than present the reader with the entire process.

The third task is different from the others in the direction of information flow. The process description
should be able to learn from the experience of the projects. The process description can then evolve
over time based on the experience and feedback provided by the projects using the process. As such,
the process description can serve as a means for organizational learning as defined in [9].

In order for a software process description to fulfill its tasks of communicating, reminding and learning,
it needs powerful tool support. Although it is possible to edit and maintain short process description
documents using standard productivity software such as a word processor, this approach does not
scale up to large processes. Process authoring tools such as Eclipse Process Framework Composer
[3] and IRIS Process Author [4] simplify greatly the task of creating and maintaining large process
descriptions.

12.2 — EuroSPI 2009

Session 12: SP1 and Processes

In the following, we discuss the three tasks of a software process description separately. We argue for
the necessity of each of them and provide a set of requirements we propose for process authoring
tools pertaining to support software process descriptions in their task of communicating, reminding
and learning.

2.1 Communicate: Disseminate Process to All Interested Parties

The software process of an organization encompasses the method know-how of that organization.
This know-how needs to be efficiently disseminated to the project staff in order to be of use.

In our experience, processes are often considered to be an extra burden on top of the “real” work of
developing software, so few software developers make an extra effort to observe the software process
if it is not easily accessible and clearly communicated. For this reason, we often see traditional proc-
ess descriptions, consisting of a large set of documents either in paper form or represented, e.g., as a
set of PowerPoint slides, failing to be observed by the project staff.

Kellner [11] defines a set of basic requirements on process modeling tools, which we consider to cover
the task of communication well. These include requirements on visualization, support for different
viewpoints, multiple levels of abstraction, the use of a formal syntax, handling of multiple variants and
versions as well as various analysis capabilities. As Kellner formulated his requirements already in
1988, most of them are already well addressed by existing tools. For this reason, we do not specifi-
cally list requirements for communicating software process descriptions, but rather focus on the more
difficult tasks of learning and reminding. For further details, we refer the reader to Kellner [11].

2.2 Learn: Collaboration and Tailoring

Ideally, the process description embodies the best practices and lessons learned in the organization,
in order for future projects to learn from the successes and mistakes of earlier ones [8]. The evolution
of the process then becomes a collaborative effort of the company’s method experts, i.e., the project
staff. A process description can in that way be a dynamic knowledge base encompassing the process
experience of the entire organization. As such a knowledge base can grow quite large, it is also impor-
tant to have the possibility to tailor the process for the specific needs of each project. In this section,
we discuss the needs of collaborative process development and process tailoring.

In order for a process description to be collaborative, it should be possible to comment on and anno-
tate it in a distributed manner by anyone using the process. This is quite a large step away from previ-
ous paradigms, where a small group of process experts held the exclusive responsibility for updating
the process description [14]. This requirement does not only have a significant impact on usability, but
also on synchronization mechanisms in order to avoid inconsistencies arising from concurrent up-
dates. Furthermore, there is often a need to make a distinction between parts of the process that are
normative and officially released on the one hand and parts of the process that constitute guidance
and are fully collaborative on the other hand. One example of such a need is if the software process is
required to be appraised with regards to process maturity models or standards such as CMMI [1] or
SPICE [5].

We summarize our collaboration issues in the following three requirements.

Learn 1 Comments and annotations possible for any user.

Learn 2 Support synchronized updates.

Learn 3 Differentiate between normative and collaborative versions of the process.

Every software project is unique. Over the years, many process models have been proposed as solu-
tions for the software crisis and the ever increasing need for efficiency and productivity in software
development projects. But no one process model has yet provided the perfect solution. In the end,
there are no silver bullets that can make every project succeed. In our experience, the specific proc-
ess needs of a project arise from parameters such as context, criticality, problem domain, size, busi-
ness model and the experience and personality of the people involved. The agile [12] and lean [16]

EuroSPI 2009 —12.3

Session 12: SPI1 and Processes

communities today emphasize the need for the process to be defined by the team itself. It would be
inefficient to always start your process definition from scratch, though. For this reason, process engi-
neering today often consists of tailoring the contents of an existing process repository to the needs of
your specific setting [15]. In this way you combine the need for uniqueness with the power of reuse.
The success of a process description then comes to depend on how easy it is to tailor.

In order for a process description to be tailorable there has to be a clear mechanism for extending,
narrowing and redefining process content. When this is done, the need for version handling of both the
original process description and the tailored process description becomes evident. We need to be able
to state what version of the normative process the tailored one is based on. Furthermore, if you con-
sider this feature in combination with the collaborative feature, it becomes clear that the connection
from a tailored version of the process description to its original version needs to be maintained. If this
is not the case, the collaborative work will be in the context of the process instance of the project in
guestion only, and the lessons learned will be limited to the project in question, thus defeating the
original purpose of organizational learning. Fig. 1 depicts these dependencies between the normative,
the tailored and the collaborative versions of the process description.

Normative
Released

]

A..@

Collaborative
Evolving

Customizred
Project-specific

Fig. 1. The relations between normative, collaborative and customized process descriptions.

We summarize these issues with software process tailoring in the following requirements.
e Learn 4 Support version hand ling of the process description.

e Learn 5 Maintain traceability between original and tailored process descriptions.

2.3 Remind: Providing the Information the Reader Needs Now

In order for a software process description to serve as an efficient reminder, the content has to be
adapted to the specific needs of the reader. A software tester will not want to read 40 pages on re-
quirements engineering and software implementation before finding the parts relevant to testing. So
the reader has to be given the possibility to access the process differently depending on his or her
current role. On the other hand, the tester may be interested to know what other roles he or she
should collaborate with on the activity currently under way or on the artifact under development. So
the reader also has to be given the possibility to access the process differently depending on his or
her current activity and artifact.

12.4 — EuroSPI1 2009

Session 12: SP1 and Processes

The possibility to access the software process description from different viewpoints was listed as a
requirement already by Kellner [11] and has been further developed since. Today, it is a common fea-
ture in process authoring tools, due to the fact that many tools implement the standard meta-model for
software and systems process engineering (SPEM) [13] as published by the Object Management
Group. A meta-model describes the structure of the repository used by a process authoring tool to
store process descriptions. We consider this to be a positive development that, however, does bring
with it some drawbacks.

The standard meta-model is quite complex, which may lead to situations where the software process
description itself gets unnecessarily complex. This in turn may necessitate the creation of company
specific tool usage guidelines, which specify what parts of the meta-model should be used. These
issues encumber the creation of process descriptions that may serve as efficient reminders, since it
becomes difficult for the readers to find the information they need.

For this reason, we consider that process authoring tools should provide a way of easily customizing
the meta-model to meet the needs of the users. The GUI itself may also need to be customized in
order to better present the customized meta-model. Since usage guidelines may still be needed, it
would be beneficial if companies could integrate their usage guidelines closely with the tool.

We summarize these aspects of a software process description serving as an efficient tool for remind-
ing in the following requirements.

e Remind 1 Enable access to the process through different views based on the need of the user.
e Remind 2 Support customization of the meta-model.
e Remind 3 Support integration of company specific usage guidelines in the tool.

e Remind 4 Support customization of the GUI.

3 Issues with the Current Process Authoring Tools

With the requirements outlined in Section 2 in mind, we have evaluated some of the most popular
open source and commercial process authoring tools available today, namely Eclipse Process
Framework Composerl (EPC) [3], Rational Method Composer2 (RMC) [6] and IRIS Process Author
(IPA) [4]. In addition, we also included an in-house process authoring tool in the evaluation. The re-
sults are summarized in Table 1. We have found that that these tools have some inconveniences that
prevent them from fully meeting all our requirements. In the following, we are going to discuss the
problems encountered.

Table 1. Tool evaluation results (C=Compliant, PC=Partially compliant, NC=Not Compliant)

Req. In-house EPC RMC IPA
Learn 1 C PC PC C
Learn 2 PC PC PC C
Learn 3 C NC NC C
Learn 4 C C C C
Learn 5 NC NC NC NC
Remind 1 C C C C

! Version 1.2

% Version 7.2

EuroSPI 2009 - 12.5

Session 12: SPI1 and Processes

Remind 2 C NC NC PC
Remind 3 NC NC NC NC
Remind 4 C NC NC NC

3.1 Learn: Collaboration and Version Handling

In the first requirement related to the task of learning (Learn 1), we suggest that collaboration between
process authors and process users demands that any user should be able to comment and annotate
the process. We now proceed to present our findings in respect to this requirement.

Many tools are still designed around the traditional process engineering principle, where the proc-
esses are designed by a dedicated process engineering team and then exported to the software engi-
neering teams for adoption.

Of the evaluated tools, IPA has the best support for collaboration through its Process Central and Wiki
features. Close behind follows the in-house tool that generates links to the company wiki from every
process entity. Thus, anyone with access to the company wiki can contribute to the process. However,
the changes are not automatically propagated from the wiki to the process authoring tool — they have
to be imported manually (as is the case with IPA as well). EPC/RMC can be configured to provide a
single link for collecting user feedback. It is not possible to specify different feedback links for different
entities within the process.

In Section 2.2 we listed four more requirements which support a process description’s task of learning.
These are related to various aspects of version handling (Learn 4). When it comes to authoring and
documenting process descriptions, a good version control system is important for two reasons: syn-
chronization (Learn 2) and version tracing (Learn 5). Version handling also helps differentiate between
normative and collaborative versions of the process (Learn 3). We now proceed to present our find-
ings in respect to these requirements.

Synchronization becomes an issue in all situations where several actors compete for a limited number
of resources. In this case, several users must be able to work on the process simultaneously without
having to worry about overwriting each other’s changes. This issue is normally resolved by using a
locking mechanism. Two popular locking mechanisms are “Lock-Modify-Unlock” and “Copy-Modify-
Merge” (examples of both mechanisms are presented in Chap. 1 in [7]).

Lock-Madify-Unlock prevents other users from editing a locked entity until the lock is released. This is
acceptable if the size of the lock area is small enough. However, if the lock spans large areas of the
process description, it effectively blocks collaboration, as only one user can work on the process de-
scription at a time.

Copy-Modify-Merge detects conflicts instead of preventing them. When a conflict is detected, the
slower author has to merge his or her version with the one currently in the repository before it can be
committed. However, if a general revision control system such as Subversion, CVS or ClearCase is
used, this becomes a problem as these systems work with ordinary files. The slower author either has
to revert his or her changes, update the working copy and re-add the modifications manually, or exit
the tool and merge the changes on a raw code level (e.g. if the tool stores its data in XML-files). In
either case, it is a time consuming and error prone process.

IPA has tried to address the synchronization issue by using a built-in Lock-Modify-Unlock mechanism
that works on the process library level. Thus, it is impossible for two users to work on the same proc-
ess library simultaneously, causing a possible block to collaboration. This problem can be worked
around by making sure the libraries are small enough, which is a good idea in any case as it makes
reuse easier as well. IPA handles version tracing by dumping the process descriptions to XML and
storing them in external revision control systems. The XML dumps can then be re-imported into IPA as
necessary.

The other evaluated tools all rely on external revision control systems for both synchronization and

12.6 — EuroSPI 2009

Session 12: SP1 and Processes

version tracing. Thus, they all suffer from the problems mentioned previously in this section.

3.2 Remind: User Interface Issues

As we outline in Section 2.3, a process description’s function as a reminder relies on how efficiently
the user finds the specific information needed at that particular point in time (Remind 1). This in turn
depends on the suitability of the user interface on the one hand (Remind 4) and the suitability of the
underlying meta-model on the other hand (Remind 2). In situations when the user interface and meta-
model are overly complex, the user will need easy access to usage guidelines (Remind 3). We now
proceed to present our findings in respect to these requirements.

Most tools use a standardized meta-model such as SPEM [13]. This has the benefit or reducing ven-
dor lock-in and increasing portability between different process authoring tools. However, it has also
led to vendors including in their tools all possible concepts that might be needed to model a process,
resulting in overly detailed process descriptions and complex user interfaces. Few users will actually
need all the functionality, which forces companies to introduce usage guidelines. This in turn makes
the tools harder to use and scare off casual users whose feedback and opinions would otherwise have
been very valuable.

The meta-model in most tools is fixed, i.e. the users cannot define custom entities or attributes. Even
in cases where the meta-model allows customization in principle, the user interface does not support
this in practice. Consequently, the users are forced to model their processes using the predefined
process elements.

Of the evaluated tools, only the in-house tool supports scaling of the user interface, thanks to its cus-
tomizable meta-model. IPA supports user-defined attributes, making it possible to make some cus-
tomizations to the meta-model.

4 A Pleafor a New Collaborative Process Authoring Tool

In Section 3 we listed issues with many modern process authoring tools. In this section, we are going
to present proposals and ideas to resolve these issues, thereby improving the state of the practice.

4.1 Learn: Integrate Authoring, Publishing and Peer-Review in a
Web-Based System

We believe that the key to continuous process improvement is collaborative process review and edit-
ing. To simplify this task we propose to integrate process publishing and authoring tools in the same
web-based system. A clear precedent for this is the wiki, which has lead to massive collaborative ef-
forts such as the Wikipedia. A wiki allows a user to switch from a reader to a contributor role simply by
clicking a button placed next to the contribution to be edited or expanded. There are usually few (if
any) limitations on when or by whom the wiki contents can be modified. However, contributions are
reviewed afterwards by an editor and they can be edited or even discarded if they are not considered
suitable.

In the context of authoring software process descriptions, we propose to use one single web-based
application tool to author, communicate, comment and review software processes within an organiza-
tion. Although it is possible to use a dedicated desktop-based process authoring tool in conjunction
with a standard wiki to allow free-form discussions in an organization, we believe that an integrated
web-based solution would really foster a collaborative effort where each user of a process description
also becomes a contributor.

One of the main challenges when improving a process description collaboratively is reviewing and
merging multiple contributions from different sources. Although it is possible to use text-based differ-
ence, merge and version control tools designed for source code (such as diff, patch and git) or text
documents (such as the revision facilities in Microsoft Word), this may easily lead to inconsistent proc-

EuroSPI 2009 —12.7

Session 12: SPI1 and Processes

ess descriptions. The underlying problem is that a software process has a graph structure, while it is
often represented as a text (string). Also, complex process descriptions are often split into different
files or pages.

Based on this and in response to the issues presented in Section 3.1, we consider that web-based
process authoring and reviewing systems should implement a model aware diff-and-merge compo-
nent. This component would allow a user to compare the differences between the two graphs repre-
senting two versions of the process description the model level rather than two text strings. The com-
ponent would also allow a user to merge the two versions using a graphical user interface.

4.2 Remind: Scalable User Interface

We propose that every process also comes bundled with an embedded user interface configuration for
the tool. The configuration would contain information about the attributes and entities that are to be
used for the process, as well as specific usage guidelines as an optional element. That is, instead of
having a complex user interface and a separate usage guideline document that instructs the users
what to fill in and what to leave blank, the tool would only display the fields that are to be filled in and
provide optional corresponding instructions inside the tool, as the user navigates the user interface
(see Fig. 2).

Ul Scaling Ul Filtering

User Type

Fig 2. Scaling and filtering of the user interface.

In addition, we propose that the user interface is filterable depending on the needs of the user as de-
scribed in Section 2.3 (see Fig. 2). A software engineer and a process engineer do not need access to
the same information. This feature is already available in many of the tools3, but only in the exported
process description. We propose that this feature is applied to the user interface as well.

The tool could come with a set of predefined user interface configurations for different types and sizes
of projects. However, it should also be possible to customize these configurations in an easy way, e.g.
similar to the content variability mechanisms of SPEM (see Sect. 6.3.4 in [13]).

® This feature is called Views in EPC/RMC.

12.8 — EuroSP1 2009

Session 12: SP1 and Processes

5 Conclusions and Related Work

In this article we have discussed the importance of a collaborative effort in process authoring and what
we consider are the main challenges in deploying this in practice and how these challenges could be
overcome with proper tool support.

In order to meet the challenges of an industry that requires increased efficiency, agility and streamlin-
ing of the software development operations, we consider collaborative process authoring to be of vital
importance.

We have presented three tasks for a software process: communicate, learn and remind. We consider
that the existing authoring tools perform the communicate task well. However, when we consider the
learn and remind tasks, they fall short. The reasons for this are that first, they have been designed
with the traditional process engineering principle in mind, where the processes are designed by a
dedicated process engineering team and then exported to the software engineering teams for adop-
tion; and second, their vendors have included all possible process modeling concepts into them with-
out proper filtering and scaling capabilities. We suggest that the tool vendors shift focus and concen-
trate on making their tools more collaborative, customizable and scalable to different process sizes.

Among the commercially available evaluated tools, IRIS Process Author (IPA) [4] stands out due to its
innovative way of handling collaborative process development. Its Process Central and Wiki features
come close to the needs we have outlined. The original assumption, however, still seems to be that
process development is driven by a team of process engineers, whereas we propose a completely
decentralized way of working where everyone is a potential process engineer. The linkage between
the normative version and the Wiki version is limited in IPA to a top level link. We would prefer a link
for each process entity. We have been informed, however, that this feature is included in the roadmap
of IPA. It is still unclear how well this feature will interact with process tailoring, as outlined in Section
2.2. The feedback loop from the collaborative version to the normative one is also still unclear.

We can consider that the Cunningham & Cunningham wiki [2] has been used as a collaborative proc-
ess authoring tool. Many software development approaches have been discussed and criticized in that
web site, and this has been highly influential in the current thinking in agile software development.
However, we consider that free wiki discussions do not replace a structured software process descrip-
tion, although attempts to remedy this situation have been suggested by Wongboonsin and Limpiya-
korn [17]. Also, there are no distinctions between the normative version of the processes and the col-
laborative versions under discussion and review.

In their article “Enough Process - Let's do Practices” [10], Jacobson et al. present similar concerns to
those presented in this article. They suggest “a shift of focus from the definition of complete processes
to the capture of reusable practices” and that “teams should be able to mix-and-match practices and
ideas from many different sources to create effective ways of working”. In their article, they list some
common problems that many software processes struggle with and provide some interesting ideas on
how to solve them. We think that in addition to the ideas presented in this article, the ideas of Jacob-
son et al. should be taken into account when the next generation of process authoring tools is de-
signed.

In conclusion, we believe that software process authoring in large organizations is moving in a collabo-
rative direction. In order to support this positive development, we propose that the tool development
effort needs to focus on collaborative authoring, on integrated process presentation and authoring as
well as on more flexible tailoring of the process presentation.

6 Acknowledgements

This work was partly funded by the EB Flexi project and the Flexi EU-project of ITEA framework. The
authors wish to thank Jari Partanen for his support and Martin Dusch and the members of the process
authoring tool user group at EB for their input and support.

EuroSPI 2009 - 12.9

Session 12: SPI1 and Processes

7 Literature

. Carnegie Mellon Software Engineering Institute. http://www.sei.cmu.edu/cmmi/.
. Cunningham & Cunningham Wiki. http://c2.com.

. Eclipse Process Framework Web site. http://www.eclipse.org/epf.

1

2

3

4. IRIS Process Author Web site. http://www.osellus.com/IRIS-PA.

5. ISO/IEC 15504 (SPICE). http://www.isospice.com/categories/ISO%7B47%7DIEC-15504-Standard/.
6. Rational Method Composer Web site. http://www.ibm.com/software/awdtools/rmc/index.html.

7

. B. Collins-Sussman, B.W. Fitzpatrick and C.M. Pilato. Version Control with Subversion. Published online,
http://chestofbooks.com/computers/revision-control/subversion-svn/index.html, 2008.

fec}

. Victor R. Basili and Gianluigi Caldiera. The experience factory: strategy and practice. Technical report, College
Park, MD, USA, 1995.

9. Nancy M. Dixon. Organizational learning cycle : How we can learn collectively. Gower Publishing Limited,
1999.

10. I. Jacobson, Pan Wei Ng and I. Spence. Enough Process - Let's Do Practices. Journal of Object Technology,
6(6):41-66, July-August 2007.

11. M.I. Kellner. Representation formalisms for software process modelling. In Proceedings of the 4th interna-
tional Software Process Workshop on Representing and Enacting the Software Process, pages 93-96, De-
von, United Kingdom, 1988.

12. Robert C. Martin. Agile Software Development: Principles, Patterns and Practices. Prentice Hall, 2003.

13. OMG. Software & Systems Process Engineering Meta-Model Specification Version 2.0. Specification, Object
Management Group, Inc., April 2008. OMG Document Number formal/2008-04-01.

14. P. Fowler, S. Rifkin. Software Engineering Process Group Guide. Technical report, SEl, September 1990.
CMU/SEI-90-TR-024.

15. Oscar Pedreira, Mario Piattini, Miguel R. Luaces, and Nieves R. Brisaboa. A systematic review of software
process tailoring. SIGSOFT Softw. Eng. Notes, 32(3):1-6, 2007.

16. Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile Toolkit. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

17. Jenjira Wongboonsin and Yachai Limpiyakorn. Wikipedia Customization for Organization's Process Asset
Management. International Conference on Advanced Computer Theory and Engineering, pages 467-471,
2008.

12.10 — EuroSPI1 2009

Session 12: SP1 and Processes

8 Author CVs

Jeanette Heidenberg

Jeanette Heidenberg received her M.Sc. degree in Computer Science in 1999 at Abo Akademi
University. She has since worked as Software Designer and Architect for Ericsson (2000-
2006) and Software Specialist for EB (2006-2009) in Finland. Since 2003, her main task has
been process development, focusing on model driven and agile methods. She is currently pur-
suing her Ph.D. in Computer Science at Abo Akademi University.

Petter Holmstrom

Petter Holmstrom is a master’s student in Computer Engineering who will receive his degree
in 2009. In his master’s thesis, he investigated how well current software process authoring
tools are able to conform to the requirements of a large organization. He currently works as a
research assistant at Abo Akademi University.

Ivan Porres

Ivan Porres received his M.Sc. degree in Computer Science in 1997 at the Polytechnic Uni-
versity of Valencia, Spain and in 2001 his Ph.D. in Computer Engineering at Abo Akademi
University in Turku, Finland. He is currently professor of Software Engineering at Abo Akademi
University where he performs his is research on software design languages and supporting
tools, engineering software services and software process improvement.

EuroSPI 2009 —12.11

3.11 Publication IV

Metrics functions for kanban guards
Jeanette Heidenberg, and Ivan Porres

Originally published in 17th IEEE International Conference and Workshops
on Engineering of Computer-Based Systems. Roy Sterrit, Brandon Eames
and Jonathan Sprinkle, editors. IEEE ECBS 2010.

(© IEEE 2010. Reprinted with permission.

3.12 Publication V

Systematic piloting of agile methods in the large:
Two cases in embedded systems development

Jeanette Heidenberg, Piia Hirkman, Mari Matinlassi, Jari
Partanen, and Minna Pikkarainen

Originally published in Product-Focused Software Process Improvement,
volume 6156 of Lecture Notes in Computer Science, pages 47-61. M. Ali
Babar, Matias Vierimaa, and Markku Oivo, editors. Springer Berlin /
Heidelberg. PROFES 2010.

(© Springer-Verlag Berlin Heidelberg 2010. Reprinted with kind permission
of Springer Science and Business Media.

3.13 Publication VI

Maintainability Index for Decision Support on
Refactoring

Jeanette Heidenberg, Jussi Katajala, and Ivan Porres

(©Turku Centre for Computer Science 2010

“1

Maintainability Index for Decision Support on
Refactoring

Jeanette Heidenberg
TUCS Turku Centre for Computer Science
Abo Akademi University
Joukahaisenkatu 3-5, FI-20520 Turku, Finland
jeanette.heidenberg@abo.fi

Jussi Katajala
OY LM Ericsson Ab
Hirsalantie 11, FI-02420 Jorvas, Finland
jussi.katajala@ericsson.com

Ivan Porres
TUCS Turku Centre for Computer Science

Abo Akademi University
Joukahaisenkatu 3-5, FI-20520 Turku, Finland
ivan.porres@abo.fi

TUCS Technical Report
No 992, November 2010

Abstract

Maintainability is a software attribute that needs to be continuously ad-
dressed during the entire development life-cycle. But the decision to refactor
in order to keep the software product maintainable is not always an easy one.
In this paper, we present a metrics-based approach for assessing the main-
tainability of code under development with the purpose of providing decision
support for refactoring decisions. Our approach is developed and validated
in the context of a large, mature telecommunications product.

Keywords: software maintenance, software quality

TUCS Laboratory
Software Engineering Lab

1 Introduction

According to the IEEE standard glossary [1] maintenance is “the process of
modifying a software system or component after delivery.” As such, main-
tenance is usually associated with the last stages of the development cycle.
This may not necessarily be the case in an iterative development process
such as the Rational Unified Process [16] or Scrum [22], where the software
is effectively under maintenance already after the first iteration. The cost of
maintaining and further developing a poorly designed system can be high.
This cost increases the longer the technological shortcomings go uncorrected,
until the code becomes unmanageable and essentially has to be completely
rewritten. This escalating problem is often called technical debt, or design
debt [7]. In order to ensure that the technical debt does not escalate out
of control, the maintainability of the product under development should be
addressed in all stages of the software process.

Refactoring [11] is the state of the practice for fighting the build-up of
technical debt. The design and architecture of the product should be un-
der constant improvement in order to accommodate new constraints and
requirements. Looking for code and design “smells” (code or design patterns
indicating bad design) and amending these should be an integral part of the
development work.

In reality the development team often has a difficult choice to make.
Whereas smaller refactoring efforts can usually be easily included in the
implementation effort, larger changes may require a greater effort and have
to be planned for. The project will face situations where they have to weigh
the cost of refactoring against the cost of cutting features from the delivery.
This decision is essentially a business decision, but it cannot be made without
a clear insight into its technical merits. In a large corporation the business
expertise and technical expertise is usually represented by different people,
often in different organizations, working towards different goals and using
different vocabularies. A lack of trust between the two is not uncommon.
For these reasons, reaching a decision to refactor may not be a trivial task.

In this paper, we present a metrics-based approach for assessing the main-
tainability of code under development with the purpose of providing decision
support for refactoring decisions. Our goal is to provide development teams
with a method for assessing and visualizing the technical debt in a way that
supports decision making and facilitates prioritization of refactoring efforts.

Our approach is developed in the context of a large, mature telecommu-
nications product. The product in question has been under development for
several years and has seen a development effort comprising hundreds of per-
son years, using several programming languages. Metrics from a number of
subsystems developed using IBM Rational Rose RealTime are collected. A
model for quantifying the maintainability of the subsystems is created and

calibrated against the technical experts’ intuition of the maintainability of
the subsystems in question. We also validate the metrics against the before
and after states of a large refactoring effort (of one person year) known to
have had a positive effect of maintainability.

2 Background

2.1 Software Metrics

Software metrics are usually classified [9] as either product metrics or process
metrics. A software product metric is a function that quantifies a property
of the measured software. Lines of code (LOC) is an example of a software
product metric. In contrast, a software process metric is a function that
quantifies a property of the process used to develop software. Average LOC
per person-month is an example of a process metric.

In this paper we suggest the usage of metrics in order to assess the main-
tainability of code under development. The purpose of this assessment is to
provide the project with decision support for refactoring. We believe that
a good collection of trusted metrics can facilitate communication between
business stake-holders and technical experts to this end. We issue a strong
warning against the temptation to use these metrics to draw conclusions
regarding the skill or professionalism of the developers. It is essential to un-
derstand that a subsystem’s maintainability is not necessarily a reflection of
the competence of the development team. Many other factors influence this
attribute. These include the complexity of the implemented features, the
maturity of the product itself, the maturity of the used interfaces, clarity of
the requirements, and time pressure to mention but a few. For this reason,
the metrics proposed here should be used as information measurements only
and never for comparing the “goodness” of teams or individual developers.

2.2 Measuring Maintainability

We strive to measure the maintainability of software. Intuitively, we de-
fine maintainability as the ease of which a software system or component
can be modified to add or remove features, correct defects, improve quality
attributes such as performance, or adapt to changes in its environment.

We base our definition on standards such as the ISO 9126 [14]. Maintain-
ability is one of the six quality attributes listed in the ISO 9126 standard,
alongside functionality, reliability, usability, efficiency, and portability. As we
are addressing maintainability from the point of view of the developer, we are
interested in the internal aspects of this attribute, as opposed to the external
ones observed by, e.g., the customer. More specifically, we are interested in
the sub-attributes analyzability and changeability.

In [12] we demonstrated by means of analysis of historical data as well as
a controlled experiment, that the use of certain design constructs can indicate
low maintainability in Rational Rose RT models. Briand et. al. have reached
similar conclusions [4] for object oriented software. Studies provide sets of
OO metrics for Java [17] and C++ [5] that can be used for decision support
for refactoring. Mantyld and Lassenius show that such metrics can indeed be
used to predict refactoring needs [18], especially if complemented by manual
reviews of critical parts of the code [19]. It is even possible to estimate
the cost of maintenance based on complexity metrics, as demonstrated by
Fioravanti [10]. In contrast, Yu et. al. argue that it is not possible to
measure maintainability. However, their results make use of process metrics
only and are restricted to open-source contexts.

Coleman et.al. [6] present a number of methods for deriving a maintain-
ability index based on internal product metrics. We loosely follow their
approach, especially with regards to taking advantage of the intuition of the
developers in order to calibrate their index.

Moha et.al. [20] present a complete method for identifying code and de-
sign smells, starting from the identification and definition of smells, continu-
ing with processing the definition into executable algorithms, actual detection
of smells, and ending with the manual validation of the found smells.

2.3 M-MGw Software

This study was performed in the context of the Ericsson Media Gateway for
Mobile Networks (M-MGw) [8], which is a part of the softswitch solution
for Ericsson’s Mobile Core Network. The M-MGw was first commercially
launched in early 2003 and has since then been under development and main-
tenance with more than 100 people working actively in the projects at any
one time. The M-MGw is a mature and industrialized product, with an
install base of several hundred units in customer networks around the world.

The M-MGw is developed using 3 different languages and environments:
C, Java, and C++ in IBM Rational Rose RealTime. C is used to implement
low-level code running on digital signal processors (DSP). The C code in-
cludes strict resource and real-time constraints. Java is used to implement
monitoring and configuration facilities, including their user interfaces. The
Java code has no special resource or performance constraints. IBM Ratio-
nal Rose RealTime is used to describe reactive software using statecharts and
C++. The Rational Rose RealTime models contain performance constraints,
but no real-time constraints. The models contain action code in C++ and
are compiled to executable software with no separate step where the gener-
ated code would be modified. This study was performed in the context of
the subsystems developed using C++ in IBM Rational Rose RealTime.

2.4 IBM Rational Rose RealTime

IBM Rational Rose RealTime is a modelling tool for reactive systems, used
for model-driven development with a subset of the UML 2.0 [21] standard
called UM RealTime.

The Rational Rose RealTime modeling approach is based on the concept
of a capsule. A capsule is an active component with its own thread of control.
It can communicate with other capsules via ports. A port may require or
realize an interface and an interface is defined as a set of signals. Capsule
communication is asynchronous. The main behavior of a capsule is specified
using a statechart diagram. In the M-MGw product, the guards and actions
of a statechart are defined using the C++ programming language. A capsule
may contain other capsules and passive objects, which are instances of C++
classes.

The execution of a transition is triggered by the reception of a signal on
one of the capsule’s ports. The triggered transition decides whether it deals
with the signal immediately or defers it until later. A deferred signal may
be recalled at any time during execution. When a transition is triggered, the
currently active state may change. If the previously active state contained an
exit action, the code within this action will be executed before the transition
code is executed. If the target state contains an entry action, the code
within this action will be executed after the transition code is executed.
Transitions may be composed of multiple transitions, either through nesting
of states or by choice points. A choice point contains a boolean expression,
and depending on the value of this expression the next transition in the chain
is selected.

2.5 The Challenges of Technical Debt

This work is part of a larger body of work instigated by the studied organ-
isation as the answer to a specific need. As the model driven approach of
IBM Rational Rose RealTime was rather new to the industry at the point in
time of the study, there was a lack of consensus among the developers as to
what constitutes good statechart design heuristics.

Partly as a consequence of this lack of consensus, the organisation did
not properly address technical debt. The business stakeholders and technical
staff did not have a good way of discussing technical debt. The business
stakeholders suspected the developers of being overzealous in perfecting the
technical details of the system, while the technical staff felt they were not
given enough time to restructure and refactor code that had deteriorated
over time.

The technical debt of one subsystem eventually reached a limit where it
could not be properly maintained any longer. A major restructuring effort

4

was carried out with good results, and the organisation decided to learn more
about maintainability of IBM Rational Rose RealTime models and how to,
properly and in a timely fashion, address technical debt.

The question of what constitutes good statechart design was studied using
statistical methods and a controlled experiment and was reported in [12]. The
question of how to address technical debt is discussed in this paper.

3 Towards a Maintainability Index

This study was performed in a specific context with a specific goal of im-
proving the practices of the researched organization. This mainly affects the
study in the fact that the approach is pragmatic. The metrics need to be
easy to collect, in order for the organization to be able to deploy this practice
without encumbering the daily work of the developers. The metrics presenta-
tion should be easy to understand, in order for it to serve as a good decision
support system for both technical and business staff. The metrics should be
trustworthy, in order for it to be effective as a negotiation tool.

In order to serve the pragmatic needs of the organization, the metrics
collected are summarized in a maintainability index (MI). The purpose of
the maintainability index is to give an estimate of the technical debt of the
system in order to provide the projects with decision support on when and
where to intensify the refactoring efforts.

The M-MGw product is implemented in an incremental, iterative manner.
Small, internal deliveries are built and delivered for internal quality assurance
following a regular cadence. A number of such internal deliveries constitute
a formal delivery of the product. Quality assurance is a continuous effort on
different integration levels and a significant effort is invested in ensuring that
the formal delivery is of high quality.

In building a model of the maintainability of the IBM Rational Rose Re-
alTime models of the system under study, we collected metrics from seven
subsystems of one delivery of the M-MGw product. This we calibrate against
the intuition of subsystem experts regarding the maintainability of the sub-
systems in question. In the following, we account for the way these data were
collected and how they were used to evolve a model. This model was finally
validated by checking it against three deliveries of the same subsystem: a
version known to have poor maintainability, a restructured version known
to have significantly improved maintainability, and the version which was
current at the time of the study, and which was known to have deteriorated
somewhat since the restructuring effort.

Sysl Sys2 Sys3 Sysd Sysb Sys6 Sys7
Rating: M H L H H M L

Table 1: Maintainability Rating per Subsystem

3.1 Expert Intuition

For model calibration, we used the intuitive perception of a group of experts
regarding the maintainability of seven subsystems of the embedded system
developed by the organization in question. These experts were seasoned
developers and architects with extensive experience in working with the spe-
cific subsystems. They were either the technical owner of the subsystem in
question or held the role of software design architect or system architect.

This group of experts had formed with the objective to evaluate the qual-
ity of the architecture of one specifically problematic subsystem. During this
effort, one of the conclusions they reached was that they did not always agree
on what constitutes good design and whether a certain solution would be a
smell or an acceptable solution. This is an issue that is somewhat overlooked
in approaches such as the one proposed by Moha et. al. [20], but that in our
experience is not uncommon in the industry.

What the experts did agree on, however, was the relative maintainablitiy
of the subsystems, when compared to each other. This was based on their
vast experience in working with the different subsystems, systematic archi-
tectural reviews of the systems as well as experience of the defect trends in
the subsystems over serveral years. Table 1 depicts this intuitive evaluation
of the maintainability of the subsystems on a a three-point ordinal scale,
where one (L) signifies low maintainability and a clear need for refactoring,
two (M) signifies medium maintainability and possible need for refactoring
and three (H) signifies high maintainability and no need for refactoring.

It is worth noting that the evaluation was not explicitly collected for this
study, but was rather a by-product of the architectural evaluation effort.
Given more time and resources, we would have asked the experts to make
a more detailed rating. As we were limited in this respect, we chose to use
three-point scale, since a more detailed scale would have required a larger
evaluation effort by the experts.

3.2 Metrics Collection

The data points were gathered from three internal deliveries of the Rational
Rose RealTime subsystems of the product. First, we looked at the (then)
current internal delivery which would best match the experts’ intuition. We
refer to this delivery as d,,. We also looked at historical data for one of
the subsystems, Sys6. This subsystem underwent major restructuring at an
earlier point in the lifetime of the product, since it had been determined that

its technical debt had lead to an increasing maintenance effort. We look at
the delivery before (d,_1) and just after (d,.) the refactoring of this subsystem.

Ericsson as a company values process maturity and as such has a high
standard of adherence to good software development practices. Good tools
and practices for configuration management are used. The software reposi-
tory contains ample information on what version of the code was delivered
in which delivery, thus enabling us to easily extract the relevant data from
the repository.

As there were no commercial tools available for collecting metrics on
systems designed using IBM Rational Rose RealTime, we collected metrics
using an in-house tool designed specifically for the purpose.

As a part of the earlier effort to clarify what constitutes good design of
statecharts [12] we had a studied a vast collection of metrics, and ended up
with a list of problematic design idioms to look for. Based on this study,
we also have a set of threshold values (or “trigger points” according to the
terminology used by Coleman et.al. [6]) for when these design idioms should
raise a warning flag. Furthermore, we used simple size and complexity metrics
to evaluate the maintainability of the action code in transitions, methods and
choice points.

Below follows a list of the selected metrics. Some of the selected metrics
are related purely to the visual aspects (V) of the state machines, while
others are related to the action code (C) in C++. The thresholds values were
selected based on the experience of our expert group, and were appropriate
for the context in question at the time of the study. The intention is for the
thresholds to be evaluated and updated periodically to reflect the current
state of the system as it evolves.

(V) Ratio Choice Points / State This metric calculates the ratio of choice
points per state in the statechart. A large number indicates that there
are many different paths through the statechart. This may indicate the
antipattern commonly known as “flag jungle” among the organisation’s
developers. In this antipattern, the statechart depends on too many
attributes for decision making and some form of abstraction should be
considered, either by splitting the offending capsule or by turning some
of the attributes into states. The suggested threshold for this metric
is 1.

(V) Visual Cyclomatic Complexity This metric calculates the cyclo-
matic complexity of the statechart as the number of transitions plus two
minus the sum of the number of states and choice points: Y transitions—
(3 states+Y- choicepoints)+2. The suggested threshold for this metric
is 100.

(V) Visual Size This metric calculates the number of visual elements in

7

the statechart (ports, operations, attributes, states, choice points, tran-
sitions.) The suggested threshold for this metric is 300.

(C) Method and Transition LOC This metric calculates the number of
efficient lines of code in methods and transitions. The suggested thresh-
old for this metric is 80.

(C) Method and Transition Cyclomatic Complexity This metric cal-
culates McCabe’s cyclomatic complexity for action code in methods and
transitions. The suggested threshold for this metric is 10.

(C) Choice Point LOC This metric calculates the number of efficient lines
of code in choice points. The suggested threshold for this metric is 20.
Note that this is much lower than the threshold for methods and tran-
sitions. This is due to the findings in our previous study, where choice
points seem to have a higher impact on the defect rate.

(C) Choice Point Cyclomatic Complexity This metric calculates Mec-
Cabe’s cyclomatic complexity for action code in choice points. The
suggested threshold fro this metric is 5. Please note that this is much
lower than the threshold for methods and transitions, for the same
reason as the LOC metric.

(C) Entry / Exit Actions This metric indicates whether there are entry
or exit actions in the statechart. (Warning)

(C) Defer / Recall This metric indicates whether there are calls to defer
or recall in the action code of the statechart. (Warning)

We use the term design flaw to denote a location in a subsystem where the
measurement for one of the metrics listed above falls outside of the trigger.
We do not attempt to measure the degree of fit, i.e., much the design flaw
deviates from the trigger point range. Please note that we do not consider a
design flaw to be a defect. Although a design flaw may make the subsystem
more difficult to maintain, it does not necessarily degrade the functionality of
the subsystem. We also make this distinction for the reason that, although
the aim usually is to deliver a product without defects, it is not always
economically feasible to deliver a flawless product.

3.3 Definition of a Maintainability Index (MI)

Based on the metrics collected and with the calibration the intuition of the
developers we proceed to construct a model for assessing the maintainability.
We call this model a maintainability index (MI). We divide our MI into two
parts: the MI for action code (MI.)and the MI for visual elements (MIL,).

8

Our MI is based on the total number of design flaws, both visual and code
based. The count of design flaws found for the visual part of the measured
subsystem is denoted fl,. The count of design flaws found for the action code
is denoted fl..

The maintainability index is not normalized over size, as the intention is
first and foremost to help the developers understand the size of the technical
debt by finding and flagging indications of problematic design. Normalization
over size would hide the true extent of the technical debt in large subsystems.

It may be difficult to understand the maintainability of a subsystem given
just on a number, though. If a subsystem has the a visual MI of 46 and code
MI of 2, should that subsystem be improved or not? In order to simplify
evaluation, the maintainability index is translated to a number between 0
and 1, where 1 indicates very good maintainability and 0 indicates very poor
maintainability.

The first step in this translation is to consider the relative weight of
the two parts: the code flaws (fl.) and visual flaws (fl,). Looking at the
collected data from delivery d,,, we observe that the difference is in an order
of magnitude of 10 (see Figure 1). Further evaluation places the median for
the ratio fl./fl, at about 20 (see Figure 2. The outlier is the reworked Sys6,
which had exceptionally few visual flaws due to the improvement work it had
seen some deliveries earlier.

Code
100 200 300 400 500 600

0

Visual

Figure 1: The number of code flaws and visual flaws for each subsystem.

We continue to plotting the subsystems of delivery d,, together with the
expert rating of the subsystems. The rating is translated to numeric val-
ues between 0 and 1, so that low maintainability (L) corresponds to value
0, medium (M) to value 0.5 and high (H) to value 1. When looking at the

9

T T T T T I
20 40 60 80 100 120

Figure 2: Boxplot of code flaws divided by visual flaws.

resulting graph (see Figure 3) , we notice that Sys3 seems to be an out-
lier. This was known to be an especially problematic subsystem, and the
experience was that the maintainability of this subsystem was much lower
than that of the others. The figure also shows a linear fit of the subsystems,
excluding outlier Sys3.

1.0

Intuition

0.0 05

0 4 8 13 18 23 28 33 38 43 48 53 58

Visual flaws + Code flaws/20

Figure 3: A plot of fl, + l,/20 of the sybsystems of delivery d,.

Using this linear fit, we define the overall maintainability index for our
IBM Rational Rose RealTime subsystems. The index is limited to the interval
[0..1] and defined a follows:

19 fl./20 +1,
MI(fl,, fl,) = min(max(—g - L,O

1
16 16)1

Figure 4 depicts this function. In order to make the maintainability index
more easily accessible for non-technical staff, we define five color coded levels
ranging from red (for very poor maintainability) to green (for very good
maintainability). The thresholds for these five levels can be seen in the figure

10

and were derived by dividing the interval [3..19] (representing the minimum
and maximum of the function) in equally sized sections.

: <
— @
= | 2 o —~
= uc): ° z
e 5 3
6 3 o
I I
12345678910 12 14 16 18 20 22 24

isual flaws + Code flaws/20

< 9

Figure 4: Maintainability function for IBM Rational Rose RealTime Models

For transparency reasons, MI can be split up into its components (MI,
and MI.). This way it is easier to see whether a subsystem needs code
improvements or improvements in the visual elements. Using the fact that
we have constructed our MI as MI, + MI./20 we deduce the following two
functions for MI. and MI,,, where fl, and fl. are the number of design flaws

for visual elements and action code respectively.

1 fl.
MI.(fl,) = min(maw(l—z ~ 160" 0),1)

19 f
ML, (f,) — mm(max(l% — 2,0, 1)

Figures 5 and 6 depict these functions.

Green (5)
Light green/(4)
Red (1)

20 40 60 80 100 120 140 160 180 200 220 240
Code flaws

Figure 5: Maintainability function for code flaws.

11

N B B R B B B R
4 5 6 7 8 9 10 11 12
Visual Flaws

(I —
i 2 3

Figure 6: Maintainability function for visual flaws

3.4 Data Presentation and Evaluation

Table 2 lists the metrics gathered for delivery d,, of each of the subsystems,
and also for deliveries d,_; and d, in the case of subsystem Sys6. The
table also shows the calculated values for MI., MI, and ML,,; together with
their corresponding color levels, as well as the expert rating for each of the
subsystems.

3.5 Validation against a Refactoring Effort

Figure 7 highlights the different values for MI for the three deliveries of
Sys6. The first (d,._1) is the last delivery before the refactoring; the second
(d,) is the first delivery after the refactoring; the third (d,) is the current
delivery. As we can see, the maintainability index increases substantially
after the refactoring. During this refactoring, both the code and the visual
design were improved. As a result, the project could measure a significant
decrease in defect reports and many of the defects that were found in earlier
deliveries and mapped to the current delivery could be discarded, since the
fault just simply did not exist any more due to the refactoring. The size of
this refactoring effort was approximately one person year.

It is also interesting to note that Sys6 has seen a slight degradation
in maintainability between d, and d,, when no refactoring has been done.
The experts have noticed this degradation, and we can also measure a lower
maintainability index.

4 Suggestions for Deployment Practices

In this section we give some suggestions on how to deploy a software main-
tainability index in an organization.

We suggest that the MI metrics should be collected at least at delivery
and the resulting list should be stored. For every warning, an action should

12

Sysl Sys2 Sys3 Sys4 Sysb Sys6 Sys6 Sys6 Sys7
dn dn dn dn dn dr—1 dr dn dn
Visual size warnings: 0 0 3 0 2 0 0 0 0
Visual cyclomatic complexity warnings: 1 2 4 0 1 2 0 1 2
Visual choice points/states warnings: 2 1 4 0 0 0 0 0 5
Number of entry actions (warnings): 0 0 11 1 1 3 2 0 4
Number of exit actions (warnings): 0 0 7 2 0 3 0 0 0
Class operation amount warnings: 3 4 2 0 1 2 2 2 6
Number of defers (warnings): 15 0 48 8 3 45 19 30 28
Number of recalls (warnings): 4 0 19 7 4 32 14 20 23
Class operation LOC warnings: 27 1 49 0 5 2 5 14 16
Capsule operation LOC warnings: 11 1 44 2 0 0 0 1 5
Transition LOC warnings: 19 6 28 2 11 2 2 6 3
Choice point LOC warnings: 0 3 36 1 0 0 0 0 1
Class operation CC warnings: 38 0 160 0 12 5 17 29 42
Capsule operation CC warnings: 26 1 96 4 0 11 1 9 18
Transition CC warnings: 27 1 60 3 10 11 5 11 11
Choice point CC warnings: 0 2 44 1 0 0 0 0 1
SUMMARY:
Total number of code warnings: 170 19 586 28 46 110 65 122 154
Total number of visual warnings: 3 3 29 3 2 10 2 1 11
MIe: 0.13 1.00 0.00 1.00 0.90 0.50 0.78 0.43 0.22
Color level: (2) (5) (1) (5) (4) 3) (4) 3) (2)
MI,: 0.81 0.81 0.00 0.81 0.94 0.00 0.94 1.00 0.00
Color level: (4) (4) (1) (4) (4) (1) (4) (5) (1)
MI: 0.47 0.94 0.00 0.91 0.92 0.21 0.85 0.74 0.02
Color level: 3) (4) (1) (4) (4) (1) (4) (4) (2)
Expert rating: M H L H H L H M L

Table 2: Metrics per Subsystem

13

0.9
08 /"\\.
0.7 /
0.6 /
= 05
s /
0.4 /
0.3 /
0.2 \g
0.1
0 r r
Before (r-1) After (r) Latest (n)
Delivery of Sys6

Figure 7: MI for Sys6 Before and After Refactoring

be proposed. This action may be modified by the designer to describe the
solution in more detail. Each warning should have a status field, where it
can be noted whether it has been fixed or not. Figure 8 is an example of how
this could be documented.

As we would rather have the tool find false positives than miss real prob-
lems, all the findings that are not easily amended should be manually checked.
If a finding is a false positive it should be possible to exclude it from the index.
To avoid discarding real findings, a system expert should always approve the
discarding of a finding. We consider human intervention to be important in
this analysis, as there may be special circumstances that require exceptional
coding practices.

Class/capsule | Warning Action Status
MyCapsule Method size Split method Corrected
YourCapsule Cyclomqtlc Split capsule, Pla‘nned for
complexity use active class [delivery 65
. Choice points | Split capsule, Planned for
HisCapsule N X
per state use active class | delivery 67
HerCansule Uses defer/ No action, used | No action
P recall safely (approved by JK)

Figure 8: Maintainability Index Actions

We also strongly suggest that the organization defines a process for main-
taining the model, including the definition of the MI function as well as its
thresholds. The model should be evaluated regularly and adjusted when
necessary. Both the overall maturity of the product and the business goals
of the project may be taken into account when defining the model. When
a product reaches high maturity, it may be more appropriate with stricter
thresholds than when the first versions of the product are created and the
business priority may be to hit a market window. The type of product and

14

the estimated time it needs to be under maintenance also affect this deci-
sion. A safety critical system with a total life time of several decades needs
to display better maintainability than a mobile phone application, which is
in use for only a couple of years. The model should be adjusted to reflect
these circumstances.

4.1 MI Deployment Level (MDL)

As with any process improvement initiative, the deployment of the new
method may take time and need gradual introduction efforts. In order to
ensure that the level to which the maintainability index has been analyzed
and acted upon is clear to both the team and the project, we suggest a main-
tainability index deployment level (MDL) to be measured. These are the
suggested levels.

Lvl 1: the metrics have been collected.

Lvl 2: the metrics have been collected. Actions for the findings have been
suggested.

Lvl 3: the metrics have been collected. Actions for the findings have been
suggested and the minor ones implemented.

Lvl 4: the metrics have been collected. Actions for the findings have been
implemented or planned for later implementation, including project
approval.

Lvl 5: the metrics have been collected. Actions for all the findings have
been taken.

Targets for when the subsystems should have reached the certain levels
should be agreed upon.

4.2 Visualization

The MI and MDL can be visualized using a graphical visualization method
familiar from, e.g., the balanced score card approach [15]. An example for
two subsystems is displayed in Figure 9. For each subsystem, a gauge and a
progress bar shows the current status of the subsystem. The cost to improve
the MI by one step can be estimated, e.g., by looking at how much the
measurements deviate from the threshold and based on historical data of the
cost of similar changes. Initially, this number can be based on cost estimates
given by the developers.

It should be possible to drill down into the subsystem to see exactly where
the problem is located. In the example in Figure 10, we have drilled down

15

Subsystem Maintainability Idx | Deployment Level
O |m=—m
System 1
MI: 3 MDL: 4
Cost: 100 ph
£ m=m
System 7
MI: 2 MDL: 3
Cost: 1200 ph

Figure 9: Maintainability Index Visualization

into the System 1 subsystem and are looking at the visual and code indexes
and the number of warnings that are the cause for the index.

Index Type Warnings Maintainability Idx

MI: 4
Cost: 90 ph

@0

MI: 2
Cost: 10 ph

Visual 3

Code 170

Figure 10: Maintainability Index Drilldown

We should be able to further drill down into the two different index types
to see the individual capsules and warnings. For an example of this, see
Figure 11.

5 Related Work

Different methods for measuring maintainability have been proposed and val-
idated through empirical methods before. Many use an approach similar to
ours, including a qualitative element, where subjects evaluate the design or
code based on their experience and knowledge of good design [4, 19, 18, 3, 6].
The main difference is the fact that most studies are performed in a small
setting with small example software systems (or “toy code application[s]”
to quote Méntyld and Lassenius [18]) and students as subjects, whereas

16

Warning Value [Thrshid
Visual Warnings 3
- Visual Size Warnings: 0
- Visual Cyclomatic Complexity Warnings: 1
- Capsule1C 11 100
- Choice Points/States Warnings: 2
- Capsule2C 1.125 1
- Capsule3C 1.083 1
- Number of Entry Actions (Warning): [o]
- Number of Exit Actions (Warning): 0

Figure 11: Maintainability Index Drilldown

our study was performed in an industry setting with real systems and ex-
perienced software industry professionals as subjects. Although academic
studies are invaluable for furthering the state of the art, there are issues that
arise specifically when the trying to apply the results in an industrial setting.

Coleman et.al. [6] provide methods for deriving a maintainability index
for the purpose of decision support. They also calibrate their models using
expert intuition. One difference between their approach and ours is the fact
that our focus is more on early diagnostics and actionable metrics, whereas
their approach partly relies on after-the-fact metrics such as effort. Although
this can be estimated for diagnostic purposes, we chose to focus on a purely
internal product metric for our purposes. As an effect our approach provides
specific detailed improvement proposal support.

Moha et.al. [20] present a very complete method for specification and
detection of smells. They rely on domain experts to identify and specify
smells and how they are mesured in the specific context. In academic settings
this can be rather easily acieved by, e.g., majority rule. It is our experience,
however, that in an industrial setting it may be more difficult for the domain
experts to reach consensus by voting, since the most experienced experts are
most likely to have some attachment to the system, either by having been
involved in the development of the system or at least by knowing they will
be involved in it in the future.

Asthana and Olivieri [2] have done similar work in an industry context.
Their “Software Readiness Index” has a very different purpose than ours,
though. They look at the entire life-cycle of the software system and mea-
sure whether it is ready for release. Their focus is more on process metrics,
whereas we are more interested in internal product metrics. Furthermore,
they use quantitative data only and do not evaluate their results formally.
There are many similarities between our approaches, especially due to our
wish to provide an organization with decision support.

Our recommendation is to use an approach such as ours to help the orga-
nization understand what constitutes maintainability in their domain, cap-
turing the experience of the domain experts and providing the organization

17

with decision support on where to focus their refactoring efforts.

6 Conclusions and Future Work

In this paper we present an approach to assess the maintainability of software
systems and their need for refactoring. It is based on the collection of internal
product metrics. This work was performed in the context of a large software
system in the telecommunications industry and with the help of experts from
the industry. The studied subsystems were written using IBM Rational Rose
RealTime and C++.

The historic data on one subsystem gave us data points just before and
after a major refactoring. It was clear that the maintainability of the sub-
system had improved substantially due to this refactoring. This observation
was confirmed by our model. Through our model, we could also observe that
this subsystem had later seen a slight degradation in maintainability. This
confirms the accepted fact that continuous refactoring is needed in order to
preserve the maintainability of a software system.

Future work includes long-term evaluation of the impact on software
maintainability of methods such as the one defined here, including the evo-
lution of the model itself. The process paradigm in the context of this study
was an iterative, incremental one. It would be interesting to see the impact
of this method in other contexts. Heidenberg and Porres have presented a
method for adopting this approach in an agile and lean context [13] as well.

Acknowledgments

Besides Jeanette Heidenberg and Ivan Porres, the project team also consisted
of Jussi Auvinen and Andreas Nals. Marko Toivonen assisted the team with
his enthusiastic CLISP coding, which provided us with the tool that we used
to collect metrics for our study. We wish to thank the following people in
M-MGw management: Stefan Blomqvist, Harri Oikarinen, Seppo Korhonen,
Heli Hirvo, Marko Koskinen, Teppo Salminen, Hannu Ylinen.

References

[1] ANSI/IEEE. Std-729-1991: Standard glossary of software engineering
terminology. Technical report, IEEE, 1991.

[2] A. Asthana and J. Olivieri. Quantifying software reliability and readi-
ness. In Communications Quality and Reliability, 2009. CQR 2009.
IEEFE International Workshop Technical Committee on, pages 1-6, May
2009.

18

13

4]

[5]

(6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE Trans. Softw.
FEng., 22(10):751-761, 1996.

Lionel C. Briand, Christian Bunse, and John W. Daly. A controlled
experiment for evaluating quality guidelines on the maintainability of
object-oriented designs. IEFEE Trans. Software Eng., 27(6):513-530,
2001.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEFE Trans. Softw. Eng., 20(6):476-493, 1994.

Don M. Coleman, Dan Ash, Bruce Lowther, and Paul W. Oman. Using
metrics to evaluate software system maintainability. IEEE Computer,
27(8):44-49, 1994.

Ward Cunningham. The wycash portfolio management system. In OOP-
SLA ’92: Addendum to the proceedings on Object-oriented programming
systems, languages, and applications (Addendum), pages 29-30, New
York, NY, USA, 1992. ACM.

Ericsson. Ericsson media gateway for mobile networks (m-mgw). Avail-
able at http://www.ericsson.com/products/hp/Ericsson_Media_
Gateway_for_Mobile_Networks__M_MGw__pa.shtml, 2006.

Norman Fenton and Shari Lawrence Pfleeger. Software metrics (2nd
ed.): a rigorous and practical approach. PWS Publishing Co., Boston,
MA, USA, 1997.

F. Fioravanti and P. Nesi. Estimation and prediction metrics for adap-
tive maintenance effort of object-oriented systems. IEEE Trans. Softw.
FEng., 27(12):1062-1084, 2001.

Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Jeanette Heidenberg, Andreas Nals, and Ivan Porres. Statechart features
and pre-release maintenance defects. J. Vis. Lang. Comput., 19(4):456—
467, 2008.

Jeanette Heidenberg and Ivan Porres. Metrics functions for kanban
guards. In IEEE International Conference and Workshops on Engi-
neering of Computer-Based Systems, 2010.

International Standards Organization. Iso 9126: Software engineering —
product quality. Technical report, International Standards Organization,
2001.

19

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

R. S. Kaplan and D. P. Norton. The balanced scorecard-measures that
drive performance. Harvard Business Review, pages 71-79, Jan-Feb
1993.

P. Kruchten. Rational Unified Process. Addison-Wesley, 1998.

Martin Kunz, Reiner R. Dumke, and Andreas Schmietendorf. How to
measure agile software development. pages 95-101, 2008.

Mika V. Mantyld and Casper Lassenius. Drivers for software refactoring
decisions. In ISESE '06: Proceedings of the 2006 ACM/IEEE inter-
national symposium on Empirical software engineering, pages 297-306,
New York, NY, USA, 2006. ACM.

Mika V. Mantyld and Casper Lassenius. Subjective evaluation of soft-
ware evolvability using code smells: An empirical study. Empirical
Softw. Engg., 11(3):395-431, 2006.

Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-
Francoise Le Meur. Decor: A method for the specification and detection
of code and design smells. IEEE Trans. Softw. Eng., 36(1):20-36, 2010.

Object Management Group. UML 2.0 Superstructure Specification.
Technical report, OMG, August 2003. Document ptc/03-08-02, available
at http://www.omg.org/.

Ken Schwaber and Mike Beedle. Agile Software Development with
Scrum. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

20

101.

102.
103.

104.
105.
106.
107.
108.

109.
110.

111.

112.
113.

114.
115.

116.
117.

118.
119.

120.
121.
122,
123.
124,
125.
126.
127.
128.
129.
130.
131.
132.

133.

Turku Centre for Computer Science
TUCS Dissertations

Anne-Maria Ernvall-Hytonen, On Short Exponential Sums Involving Fourier
Coefficients of Holomorphic Cusp Forms

Chang Li, Parallelism and Complexity in Gene Assembly

Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data
Mining

Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
Anna Sell, Mobile Digital Calendars in Knowledge Work

Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data
Mining Tasks

Tero Santti, A Co-Processor Approach for Efficient Java Execution in Embedded
Systems

Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
Pontus Bostrom, Formal Design and Verification of Systems Using Domain-
Specific Languages

Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric
and Asymmetric Designs

Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption
Estimation

Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods

Petri Salmela, On Commutation and Conjugacy of Rational Languages and the
Fixed Point Method

Siamak Taati, Conservation Laws in Cellular Automata

Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary
Operations, Parallelism and Computation

Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems

Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic
Vowels

Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
Johanna Tuominen, Formal Power Analysis of Systems-on-Chip

Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip

Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass
Forms

Linda Mannila, Teaching Mathematics and Programming — New Approaches with
Empirical Evaluation

Hanna Suominen, Machine Learning and Clinical Text: Supporting Health
Information Flow

Tuomo Saarni, Segmental Durations of Speech

Johannes Eriksson, Tool-Supported Invariant-Based Programming

Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

TURKU

CENTRE for

COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

V1] —
é ‘4 niversity of Turku '
? -\‘- ® Department of Information Technology
%]” “\% ® Department of Mathematics
O

Abo Akademi University
® Department of Information Technologies

Turku School of Economics
® Institute of Information Systems Sciences

ISBN 978-952-12-2534-5
ISSN 1239-1883

Towards Increased Productivity and Quality in Software Development
Using Agile, Lean and Collaborative Approaches

Jeanette Heidenberg

