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Abstract

This dissertation describes a networking approach to infinite-dimensional systems the-
ory, where there is a minimal distinction between inputs and outputs. We introduce
and study two closely related classes of systems, namely the state/signal systems and
the port-Hamiltonian systems, and describe how they relate to each other. Some basic
theory for these two classes of systems and the interconnections of such systems is pro-
vided. The main emphasis lies on passive and conservative systems, and the theoretical
concepts are illustrated using the example of a lossless transfer line. Much remains to
be done in this field and we point to some directions for future studies as well.

Sammanfattning

I avhandlingen introduceras oändligtdimensionella linjära tillst̊ands/signalsystem i kon-
tinuerlig tid. En av de viktigaste operationerna inom system- och reglerteorin är sam-
mankoppling av tv̊a delsystem till ett större system. Sammankoppling i sin allmännaste
form av tv̊a oändligtdimensionella system har dock visat sig vara ett utmanande prob-
lem. Tillst̊ands/signalsystem är väl lämpade för att kopplas samman, eftersom deras
viktigaste egenskap är att systemets insignal och utsignal behandlas s̊a lika som möjligt.

Ett klassiskt system med förbestämd ing̊ang och utg̊ang kan skrivas om som ett
tillst̊ands/signalsystem genom att insignalen och utsignalen sl̊as samman till en kombi-
nerad yttre signal. En viktig klass av tillst̊ands/signalsystem är de s̊a kallade välställda
systemen, som omvänt kan tolkas som ett system med in- och utsignal genom att
man spjälker den yttre signalen i en ing̊ang och en utg̊ang p̊a ett lämpligt sätt. I
avhandlingen redogörs för de grundläggande egenskaperna för välställda och passiva
tillst̊ands/signalsystem.

Förutom välställda tillst̊ands/signalsystem presenteras ocks̊a de nära besläktade
porthamiltonska systemen. Dessa härstammar fr̊an modellering av konservativa, huvud-
sakligen ickelinjära, fysikaliska system. I motsats till tillst̊ands/signalsystem i konti-
nuerlig tid är allts̊a porthamiltonska system välkända sedan tidigare. Vi beskriver sam-
mankoppling av denna typ av system och hur dessa förh̊aller sig till tillst̊ands/signal-
system. De begrepp som introduceras i avhandlingen illustreras genomg̊aende med hjälp
av transmissionslinjen.
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Chapter 1

Introduction

We study the theory of infinite-dimensional linear systems (distributed-parameter sys-
tems) in continuous time from an input/output free perspective. We do this by combi-
ning the inputs and outputs of traditional control theory into a single external signal
and take a graph approach to modelling linear systems. In this way we obtain a
state/signal system; see Chapter 2 for more details. Considering systems theory from
this point of view has many advantages, in particular when one studies interconnection
of systems.

It is natural to ask the following question as a converse to the above construction:
can one turn a state/signal system Σ into a sensible system with inputs and outputs
by decomposing the external signal in a suitable way? One typically asks that an input
signal should be unrestricted in its appropriate input space and that it, together with a
given initial state, should determine both the state and the output of Σ uniquely. An-
other way of expressing this is to say that an input should be a maximal free component
of the external signals.

In a general interconnection situation the characteristics of the system, which is
the result of an interconnection, determine which signals can be chosen as an input.
It might not be obvious how to choose this input based on the choices of inputs in
the original systems, because interconnection may place additional conditions on the
signals. The choice of output signals for a system is usually more straightforward,
because one commonly takes the output to be the external signals which are not part
of the input.

By decomposing the external signals into inputs and outputs in different ways, one
can obtain different input/output behaviours, although the system itself essentially
stays the same. Consider, for example, an electrical circuit welded onto a circuit board.
The input can often enter the circuit in any of several places and the output can also
be read off in various places. In this way several different input/output behaviours can
be obtained but the electrical circuit is still the same.

It should be emphasised that the types of interconnection that we are interested in
are of a quite general kind. One might for instance need to shrink the state space of
the system obtained through interconnection in order to make it satisfy the common
condition that the admissible initial states lie densely in the state space. This situation
is not covered by the standard feedback theory.

The article [Sta06] considers state/signal systems in discrete time. There Staffans
indicates how seemingly different input/output results can be seen as special cases of an
input/output free state/signal result. In this way, a single unified proof can be given for
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Chapter 2

Models for linear systems

The objective of this chapter is to introduce state/signal systems. We do this by first
introducing the notion of an abstract input/state/output system and then using this
system to explain the ideas behind the state/signal system. We begin by discussing
the lossless transfer line, which will act as the standard example in this dissertation.
The various function spaces that we use are defined in Appendix B.

Example 2.1. An electrical transfer line consists of two parallel electrical wires through
which an electrical current flows. Due to this current a magnetic field emerges around
the wires and this results in the wires behaving like inductors. Therefore the wires
have a characteristic inductance per length unit, which we for simplicity set to one. As
the two cables run parallel to each other, separated by a non-conducting material, they
also act as a capacitor, say with unit capacitance per length unit. By saying that the
line is “lossless”, we mean that the wires have no resistance and that the medium which
insulates the wires from each other has zero conductance, so that no current leaks from
one wire to the other. Thus the transmission line can be modelled by infinitely many
small discrete inductors and capacitors as given in Figure 2.1.

Figure 2.1: A piece of the transmission line modelled with small
discrete inductors and capacitors. We proceed to study the framed
part more closely.

Now consider a transmission line on the interval [0,∞). Zooming in on the framed
part of Figure 2.1, we obtain Figure 2.2, where we have drawn the part of the trans-
mission line which lies between z and z+ l. Here U(z,l) and I(z,l) denote the voltage
and current flowing in the left direction at the point z at time t, respectively. Since the
transmission line was assumed to have unit inductivity and capacitivity, the inductance
of L is l henries and the capacitance of C is l farads.

By standard knowledge of ideal inductors, the voltage over the inductor L at time
t is l ∂

∂tI is the partial derivative of I with respect to the variable t.
The current flowing into the capacitor C at time t is l

∂
∂t U(z,t). Applying Kirchhoff’s
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z z+ l0 ∞

I(0,t)

U(0,t) U(z,t) U(z+ l,t)

I(z,t) I(z+ l,t)L

C

Figure 2.2: Zooming in on a part of the discretely modelled trans-
mission line in Figure 2.1. The current and voltage at the point z
at time t is denoted by I(z,t) and U(z,t), respectively.

laws, we obtain that for all t≥0:

[
I(z+ l,t)
U(z+ l,t)

]
=

[
I(z,t)+ l ∂

∂t
U(z,t)

U(z,t)+ l ∂
∂t

I(z+ l,t)

]
⇐⇒

[
∂
∂t

U(z,t)
∂
∂t

I(z+ l,t)

]
=

1

l

[
I(z+ l,t)−I(z,t)
U(z+ l,t)−U(z,t)

]
.

(2.1)

Assume now that ∂
∂z

U(z,t) and ∂
∂z

I(z,t) exist and that ∂
∂t

I(z,t) is continuous at z.
Letting l→0 in the second line of (2.1), we get the “Telegrapher’s equations”:

∂

∂t

[
U(z,t)
I(z,t)

]
=

[
0 ∂

∂z
∂
∂z

0

][
U(z,t)
I(z,t)

]
. (2.2)

We can specify some boundary conditions for the transmission line as well. For
instance, we are free to vary the current entering the transmission line at any given
time. We call this current an input u, so that u(t)=−I(0,t) for t≥0. We can also read

off a part of the system state

[
U(·,t)
I(·,t)

]
at time t through an output y. Here we choose

y to be the voltage over the left end of the transfer line, so that y(t)=U(0,t) for t≥0.
Note that both the input and the output are obtained by evaluating the system state
on the boundary z =0 of the domain Ω=(0,∞), on which we consider the telegrapher’s
equations.

Thus, for a transmission line stretching from z =0 to z =∞ we obtain the following
initial value problem of boundary control and boundary observation type:





∂

∂t
U(z,t)=

∂

∂z
I(z,t)

∂

∂t
I(z,t)=

∂

∂z
U(z,t)

I(0,t)=−u(t)

y(t)=U(0,t)

U(z,0)=U0(z) given

I(z,0)= I0(z) given

, t>0, z >0. (2.3)
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@t

[
U(z,t)
I(z,t)

]
=

[
0 − ∂

∂z

− ∂
∂z

0

][
U(z,t)
I(z,t)

]
.

The difference between the former and the latter convention is that the direction of
the current is reversed. In the latter case positive current flows into the transmission
line. It is also more common to consider a transfer line of finite length, but we use the
infinite transfer line because we need it later, in Chapter 5.

2.1 Abstract input/state/output systems

In this section we give some definitions from the abstract input/state/output system
theory. Although it is not completely obvious, Example 2.1 is a special case of this
theory, as we will see in Section 2.3. Comprehensive expositions of the theory of infinite-
dimensional linear input/state/output systems can be found in [CZ95] and [Sta05].

Definition 2.2. Let X be a Hilbert space. A family t→At, t≥0, of bounded linear
operators on X is a semigroup on X if A0 =1 and As+t =AsAt for all s,t≥0.

The semigroup is strongly continuous, or shorter C0, if limt→0+ Atx0 =x0 for all
x0 ∈X .

The semigroup is a contraction semigroup if ‖At‖L(X )≤1 for all t≥0, where ‖·‖L(X )

denotes the operator norm.
The generator A :X ⊃Dom(A)→X of A is the (in general unbounded) linear op-

erator defined by

Ax0 := lim
t→0+

1

t
(Atx0−x0), (2.4)

with Dom(A) consisting of those x0 ∈X for which the limit (2.4) exists in X . The
domain of A is usually equipped with the inner product

(x1,x2)Dom(A) =(x1,x2)X +(Ax1,Ax2)X . � (2.5)

The generator A of a C0 semigroup on X is closed and Dom(A) is dense in X ;
see [Paz83, Thm 1.2.7]. In particular, Dom(A) is then a Hilbert space with the inner
product (2.5). It follows immediately from (2.5) that A is a bounded operator from
Dom(A) to X . Moreover, Dom(A) is invariant under A: Atx0 ∈Dom(A) for all x0∈
Dom(A) and t≥0; see [Sta05, Thm 3.2.1(iii)].



8 Chapter 2. Models for linear systems

dz
U0)(0)=0, then the initial conditions

U(z,0)=U0(z) and I(z,0)= I0(z), z≥0, determine f ∈C1(R+;R) as

f(z)=






U0(z)+I0(z)

2
, z≥0,

U0(−z)−I0(−z)

2
, z <0.

Substituting this into (2.7), we get

[
U(z,t)
I(z,t)

]
=






1

2

[
1
1

]
(U0(t+z)+I0(t+z))+

1

2

[
1
−1

]
(U0(t−z)+I0(t−z)), 0≤z <t

1

2

[
1
1

]
(U0(t+z)+I0(t+z))+

1

2

[
1
−1

]
(U0(z−t)−I0(z−t)), z≥ t≥0.

Using the operators ρ, τ and Rgiven in Definition B.1, we can express this equation
concisely as [

U(·,t)
I(·,t)

]
=A

t

[
U0(·)
I0(·)

]
, (2.8)

where Dom
(
A

t
)
=

{[
U0

I0

]
∈C1(R+;R2)

∣∣∣∣
(

∂

∂z
U0

)
(0)= I0(0)=0

}
and

A
t :=ρ+τ t 1

2

[
1 1
1 1

]
+ρ[0,t)

[
1 0
0 −1

]
Rτ t 1

2

[
1 1
1 1

]
+τ−tρ+

1

2

[
1 −1
−1 1

]
, t≥0. (2.9)

The map At thus describes how a given initial state

[
U0

I0

]
∈Dom(At) is mapped

into the state

[
U(·,t)
I(·,t)

]
of the system (2.3) at time t≥0 in case the input u is zero.

For every t≥0, the operator At is densely defined and continuous on X :=L2(R+;R2),
and we may therefore extend At uniquely to all of X by continuity for all t≥0. We
now prove that the family t→At, t≥0, is a C0 semigroup on X .
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@z@
@z 0

]
with domain Dom(A)=

[
H1(R+;R)
H1

0 (R+;R)

]
. (2.10)

Note that I0(0)=0 for all I0 such that

[
U0

I0

]
∈Dom(A) for some U0.

The following result has been proved e.g. in [Paz83, Thm 4.1.3].

Lemma 2.3. Let A be a densely defined operator on the Hilbert space X with nonempty
resolvent set and denote ẋ := ∂

@t x. The homogeneous Cauchy problem

ẋ(t)=Ax(t), t>0, x(0)=x0, (2.11)

has a unique solution x∈C1(R+;X ) for every initial value x0 ∈Dom(A) if and only if
A generates a C0 semigroup on X .

According to [Paz83, Thm 1.2.6], a C0 semigroup A is uniquely determined by its
generator A in the following way. For every x0∈Dom(A), the function x : t→A

tx0,
t≥0, is the unique continuously differentiable solution of the initial value problem
ẋ(t)=Ax(t), t≥0, x(0)=x0. Thus (2.8) is the unique solution in C1(R+;X ) of the
system (2.3) with u=0, U0 ∈H1(R+;R) and I0∈H1

0 (R+;R).

Let A be a closed operator on the Banach space X . The resolvent set Res(A) of A is
the set of all λ∈C such that λ−A maps Dom(A) one-to-one onto X . The complement
C\Res(A) of the resolvent set is called the spectrum of A. From [Sta05, Thm 3.2.9(i)]
we know that Res(A) 6=∅ for every C0-semigroup generator.

Let α∈Res(A) and assume that X1 :=Dom(A) with the norm ‖x‖1 :=‖(α−A)x‖X
is dense in X . Denote by X−1 the completion of X with respect to the norm ‖x‖−1 =
‖(α−A)−1x‖X . The operator A can also be considered as a continuous operator which
maps the dense subspace X1 of X into X−1, and we denote the unique continuous
extension of A to an operator X →X−1 by A|X .

Now take X , U and Y to be Banach spaces and let x∈C1(R+;X ), u∈C(R+;U),
and y∈C(R+;Y). We turn our attention to the abstract partial differential equation

[
ẋ(t)
y(t)

]
=S

[
x(t)
u(t)

]
, t≥0, x(0)=x0 given, (2.12)

where the so-called input/state/output system node S is a closed operator, which maps

a dense subset of

[
X
U

]
into

[
X
Y

]
. By projecting S onto

[
X
{0}

]
and

[
{0}
Y

]
, respectively,

we can always write S =

[
S1

S2

]
:

[
X
U

]
⊃Dom(S)→

[
X
Y

]
.
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@t x. The signal u is called the input signal, x is the state trajectory, and y
is the output signal. �
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C
(‖PU

Yw‖p +‖PY
U w‖p)1/p ≤‖w‖W ≤C(‖PU

Yw‖p +‖PY
U w‖p)1/p. (2.20)

Definition 2.9. Let X be a Hilbert space and W a Krĕın space, and let V ⊂K. We
say that (V ;X ,W) is a state/signal node if V has the following properties:

(i) The space V is closed in the norm

∥∥∥∥∥∥




z
x
w





∥∥∥∥∥∥
=

√
‖z‖2

X +‖x‖2
X +‖w‖2

W .

(ii) The space V has the property




z
0
0


∈V =⇒ z =0.

(iii) There exists some T >0 such that

∀




z0

x0

w0



∈V ∃
[

x
w

]
∈V[0,T ] :




ẋ(0)
x(0)
w(0)



=




z0

x0

w0



. �

We are now finally able to define the notion of a state/signal system.

Definition 2.10. Let (V ;X ,W) be a state/signal node and I a subinterval of R with
positive length.

The space W(I) of generalised trajectories generated by V on I is the closure of

V(I) in

[
C(I;X )

L2
loc(I;W)

]
. By this we mean that that

[
x
w

]
∈W(I) if and only if there

exists a sequence

[
xn

wn

]
∈V(I), such that

[
xn

wn

]
→

[
x
w

]
in

[
C(I;X )

L2
loc(I;W)

]
as n→∞.

We abbreviate W[0,∞) by W.
The triple Σs/s =(W;X ,W) is the state/signal system induced by (V ;X ,W). �

In [KS09, Def. 3.1] we define the space Wp of generalised trajectories to be the

closure of V(I) in

[
C(I;X )

Lp
loc(I;W)

]
for an arbitrary finite p≥1, and we call the elements

of Wp “Lp trajectories”. In this summary, however, we restrict us to one p for simplicity,
and the natural choice for passive systems is p=2.

When working with state/signal nodes and systems one needs to make some extra
assumptions on the state/signal node, because Definition 2.9 imposes very little struc-
ture. We have made this choice deliberately in order to keep the state/signal node a
general and flexible object. Typically one assumes the existence of an admissible or
well-posed input/output decomposition of the external signal space W, and we now
proceed to describe what these assumptions mean.
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@z@
@z 0

]
,
[
ϕ0 0

]
,
[
0 −ϕ0

])

of operators defined on Z =H1(R+;R2), where ϕa denotes evaluation at a∈R of a

function which can be evaluated at a. Taking x(t)=

[
U(·,t)
I(·,t)

]
in H1(R+;R2), we can

write the system (2.3) in the form:




ẋ(t)
x(t)
y(t)
u(t)


=




L
1
K
G


x(t), t>0, x(0)=

[
U0

I0

]
∈H1(R+;R2).

Here ∂
@ z U(t) should be interpreted as ( ∂

@ z U)(t).

We only need to verify that
[

L
K
G

]
is closed and G surjective in order to prove that

(L,K,G) is an internally well-posed boundary node on (U ,X ,Y)=(R,L2(R+;R2),R),
because A=L

∣∣
N (G)

generates the C0 semigroup (2.9) on L2(R+;R2).

The operator
[

L
K
G

]
is closed due to the fact that K, G and L are all bounded from

the Hilbert space Z to their respective co-domains; see Definition B.3. The operator

G is also surjective, because for all a∈R the function fa(z) :=

[
0

−a/(1+z)

]
lies in

Z =H1(R+;R2) and Gfa =a.
The system node and the generating subspace induced by (L,K,G) are

[
A&B
C&D

]
=




[
0 ∂

@ z@
@z 0

]

[
ϕ0 0

]







[
1 0
0 1

]

[
0 −ϕ0

]




−1

and V =




[
0 ∂

@ z@
@z 0

]

[
1 0
0 1

]

[
ϕ0 0
0 −ϕ0

]




H1(R+;R2),

respectively. Note that this example is completely very from Example 2.12, although
they both in a sense treat the transfer line. �





Chapter 3

Passive and conservative
state/signal systems

We now proceed to describe passivity in the context of state/signal systems. We do
this by first looking at input/state/output systems. The assumption that a system
is passive essentially means that it has no internal energy sources, and thus it is not
very restrictive. However, it implies a significant amount of useful extra structure. For
instance, it gives us a way to construct a well-posed input/output pair, and this is
essential, because there seems not to exist any general way of finding an admissible
input/output pair for an arbitrary given state/signal node, even if one knows that one
exists.

3.1 Passive input/state/output systems

The following definition agrees with [Sta05, Sec. 6.2]. The definition makes use of the
adjoint of an unbounded operator; see Definition A.4 and the comment thereafter.

Definition 3.1. Let

[
A&B
C&D

]
be an operator node on the Hilbert-space triple (U ,X ,Y).

Then

[
A&B ′

C&D′

]
:=

[
A&B
C&D

]∗
is called the causal dual of

[
A&B
C&D

]
. Moreover, the oper-

ator

[
−A&B ′

C&D′

]
is the anti-causal dual of

[
A&B
C&D

]
. �

The causal dual of a system node is also a system node and the anti-causal dual is
a time-reflected system node; see [Sta05, Lem. 6.2.14].

Definition 3.2. A system node

[
A&B
C&D

]
is scattering passive if it is L2-well-posed

with KT =1, i.e., for some T >0 all classical input/state/output trajectories (u,x,y) of[
A&B
C&D

]
on [0,T ] satisfy

∀t∈ [0,T ] : ‖x(t)‖2
X −‖x(0)‖2

X ≤
∫ t

0

‖u(s)‖2
U ds−

∫ t

0

‖y(s)‖2
Yds. (3.1)
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dt
‖x(t)‖2

X =(ẋ(t),x(t))X +(x(t),ẋ(t))X =[w(t),w(t)]W .

Thus, if

[
x
w

]
∈V is a classical trajectory of some state/signal node and t≥0, then

p(t) :=






ẋ(t)
x(t)
w(t)


 ,




ẋ(t)
x(t)
w(t)






K

=[w(t),w(t)]W−(ẋ(t),x(t))X −(x(t),ẋ(t))X

describes the energy absorbed through the external signals, which is not stored in the
state, per time unit.

If p(t)>0, then the trajectory

[
x
w

]
dissipates energy at a rate of p(t) per time

unit at time t. If p(t)<0, then

[
x
w

]
accumulates energy at a rate of |p(t)| per time

unit and if p(t)=0 then

[
x
w

]
preserves energy at time t. This motivates the following

definition.

Definition 3.6. An ordinary state/signal node (V ;X ,W) is dissipative if V ≥0. The
state/signal node is energy preserving if V is neutral: [v,v]K=0 for all v∈V .

A state/signal node is passive if V is a maximally nonnegative subspace of K. The
state/signal node is conservative if V is a Lagrangian subspace of K.

According to Proposition 4.3 and Corollary 4.4 of [Kur10], dissipativity and energy
preservation can be characterised in terms of the system trajectories. A state/signal
node is dissipative if there exists a T >0 such that

∀t∈ [0,T ] : ‖x(t)‖2
X −‖x(0)‖2

X ≤
∫ t

0

[w(s),w(s)]W ds (3.10)

for all generalised trajectories

[
x
w

]
∈W[0,T ]. A dissipative state/signal node (V ;X ,W)

is passive if its state/signal dual (V [⊥];X ,W) is dissipative in the time-reflected sense
that

∀t∈ [T,0] : ‖xd(0)‖2
X −‖xd(t)‖2

X ≥
∫ 0

t

[wd(s),wd(s)]W ds (3.11)

for some T <0 and all

[
xd

wd

]
∈Wd[T,0].

The intuitive interpretation of (3.10) is that the energy ‖x(t)‖2 stored in the state
at time t∈ [0,T ] never exceeds the energy of the initial state ‖x(0)‖2 plus the total
energy

∫ t

0
[w(s),w(s)]W ds absorbed from the environment.

The following theorem was proved as Theorem 4.5 of [Kur10]. The theorem is
of fundamental importance for the theory of passive state/signal systems, because
it establishes that every fundamental input/output pair is admissible for a passive
state/signal node.
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√
2Reα




1 α 0
−1 α 0

0 0
√

2Reα


 is Krĕın uni-

tary from K given in (2.19) to Kd given in (3.18). Moreover, the bounded inverse of Cα

is C−1
α = 1√

2Reα




α −α 0
1 1 0

0 0
√

2Reα



.

The proof is straightforward and therefore omitted.

Definition 3.12. The operator Cα in Lemma 3.11 is the Cayley transformation with
parameter α∈C+.

Given any continuous-time state/signal node (V ;X ,W) and α∈C+, we call the
triple (CαV ;X ,W) the Cayley transform with parameter α of (V ;X ,W). �

The Cayley transformation commutes with the operation of taking state/signal
node adjoints, i.e.,

Cα(V [⊥])=(CαV )[⊥]d,

where [⊥] denotes the orthogonal companion in K and [⊥]d denotes the orthogonal
companion in Kd. This is a direct consequence of the Krĕın-unitarity of Cα.

Theorem 3.13. Let Σop =

([
A&B
C&D

]
;X ,U ,Y

)
be an operator node representation of

a continuous-time state/signal node, and assume that α∈Res(A)∩C+. Then

CαV =




A B
1X 0
C D+1U




[
X
U

]
, (3.19)

where [
A B
C D

]
=

[
(α+A)(α−A)−1

√
2Reα(α−A|X )−1B√

2ReαC(α−A)−1 D̂(α)

]
. (3.20)

The operator 1+A is injective with range dense in X .
The triple (CαV ;X ,W) is a discrete state/signal node. Moreover, (CαV ;X ,W) is

passive (conservative) if and only if (V ;X ,W) is passive (conservative).
If (V;X ,W) is a passive discrete-time state/signal node with the property that[−x

x
0

]
∈V=⇒x=0, then (C−1

α V;X ,W) is a passive continuous-time state/signal node

for all α∈C+.

We omit the straightforward proof because it requires a significant amount of space.

Remark 3.14. The condition
[−x

x
0

]
∈CαV =⇒x=0 is equivalent to the condition

[
x
0
0

]
∈

V =⇒x=0. If (V ;X ,W) is passive and (3.19) holds, then the condition is also equiv-
alent to the injectivity of 1+A.

Also note that A=(α+A)(α−A)−1 in (3.20) is the standard operator Cayley trans-
formation which maps a dissipative (skew-adjoint) operator A into a contractive (uni-
tary) operator A. �





Chapter 4

Port-Hamiltonian systems

In this chapter Dirac structures and port-Hamiltonian systems defined on Hilbert
spaces are presented. We investigate how port-Hamiltonian systems relate to the
previously-discussed state/signal systems. The notions and notation in this chapter
are a bit different from the preceding chapters, because the historical background is
different, as port-Hamiltonian systems originate from modelling of nonlinear physical
systems using differential forms and geometrical methods; see [MvdS05].

One of the technical differences between this chapter and the previous chapters is
that we consider Hilbert spaces over the real field in this chapter, whereas we usually
assume that the field which underlies X and W is complex when we study state/signal
systems. This difference, however, does not change anything conceptual and, in fact,
many of the proofs in [Kur10] and [KZvdSB09] make no assumptions on the underlying
field. Some proofs, however, might differ slightly between the real and the complex
cases. The following simple lemma exposes another essential connection between the
real and the complex cases.

Lemma 4.1. Let B be a real Krĕın space with inner product [·,·]B. Define K :=B+ iB
with inner product

[
b1 + ib2,b3 + ib4

]
K
:= [b1,b3]B +[b2,b4]B + i[b2,b3]B− i[b1,b4]B, bk ∈B. (4.1)

Then K is a complex Krĕın space and [b1,b2]K=[b1,b2]B for all b1,b2 ∈B.
Let D⊂B and define V :=D+ iD. The orthogonal companion V [⊥] of V in K is

V [⊥] =D[⊥]
B + iD[⊥]

B , (4.2)

where D[⊥]
B is the orthogonal companion of D in B.

Moreover, D is a neutral subspace of B if and only if V is a neutral subspace of K.
In particular, the space D is Lagrangian if and only if V is Lagrangian.

Proof. Let B=B+ ∔B− be a fundamental decomposition of B. We now show that
K=K+∔K−, where K± :=B±+ iB±, is a fundamental decomposition of K. Obviously,
K+ +K− =(B+ +B−)+ i(B+ +B−)=K and, moreover, k∈K+∩K− implies k = b1 + ib2,
where bk ∈B+∩B− ={0}. Thus K=K+∔K−. From (4.1) we have that

[b1 + ib2,b1 + ib2]K=[b1,b1]B +[b2,b2]B (4.3)

and therefore K+ is a Hilbert space whenever B+ is a Hilbert space. Analogously,
K− is an anti-Hilbert space if B− is an anti-Hilbert space. Moreover, (4.1) is zero if
b1 + ib2 ∈K+ and b3 + ib4 ∈K−, because B+[⊥]B−.
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Lemma 4.1 is not as limited as it might seem at first, due to the fact that the deriva-
tives of the real and imaginary parts of a complex-valued functionf(z,t)= g(z,t)+
ih(z,t), with real arguments, t>0 and z∈R

n, are computed separately: ∂f
∂t

(z,t)=
∂g
∂t

(z,t)+ i∂h
∂t

(z,t), g(z,t) and h(z,t)∈R. Therefore many complex Lagrangian sub-
spaces V can be decomposed into a direct sum V =D∔ iD, where D is a real Lagrangian
subspace.

4.1 The abstract Hamiltonian system

We need two ingredients in order to define a Hamiltonian system. The first one is a so-
called Dirac structure, which describes how the system behaves under interconnection.
The second ingredient is a Hamiltonian, which measures the total energy of the system
at any given state; see Sections 4.2 and 4.4 of [MvdS05].

The Dirac structure was first introduced by Courant [Cou90] and Dorfman, see e.g.
[Dor93], and they were adapted to the Hilbert-space context by Parsian and Shafei
Deh Abad in [PSDA99]. Infinite-dimensional Dirac structures have later been studied
in e.g. [PSDA99, GIZvdS04, LGZM05, ISG05, KZvdSB09].

In the set-up of Courant and Dorfman one starts with a linear space E and a
duality pairing 〈·,·〉〈F ,E〉 between the so-called space E of efforts and its dual, the so-
called space F =E ′ of flows. These efforts and flows should be “power conjugated”, so
that 〈e,f〉〈E,F〉 can be interpreted as power. One then defines the bond space as the

product B :=F×E =

[
F
E

]
equipped with the bi-linear power product

〈[
f 1

e1

]
,

[
f 2

e2

]〉
:= 〈e1,f 2〉〈E,F〉+〈e2,f 1〉〈E,F〉. (4.4)

We denote the orthogonal companion of D⊂B with respect to the power product
(4.4) by D〈⊥〉, so that

D〈⊥〉 :=

{[
f ′

e′

]
∈B

∣∣∀
[
f
e

]
∈D :

〈[
f ′

e′

]
,

[
f
e

]〉
=0

}
.
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δx
, which is given by:

∀ξ∈E :

(
δH
δx

(x),ξ

)

E
= lim

h→0

H(x+hξ)−H(x)

h
, (4.6)

where it is essential that h∈R.
In the linear setting, a natural choice of Hamiltonian is the quadratic form

H(x)=
1

2
‖x‖2

E , that has
δH
δx

(x)=x, because

∀ξ∈X : lim
h→0

H(x+hξ)−H(x)

h
= lim

h→0

(x+hξ,x+hξ)X −(x,x)X
2h

=(x,ξ)E .
(4.7)

In the distributed-parameter case, the Hamiltonian is usually of the form

H(x)=

∫

Ω

H(x,z)dz,

where Ω is the domain on which the partial differential equation is considered; see
[MvdS05, Sect. 4.4].



32 Chapter 4. Port-Hamiltonian systems

dt
H(x(t))=

1

2

d

dt
(x(t),x(t))E =

1

2
( _ x(t),x(t))E +

1

2
( x(t),ẋ(t))E =(x(t),ẋ(t))E . (4.8)

Using the chain rule of the Gâteaux differential, one can show that (4.8) more generally
has the form

d

dt
H(x(t))=

(
δH
δx

(x(t)),ẋ(t)

)

E
(4.9)

for nonquadratic Hamiltonians. A system which preserves the total energy should
satisfy d

dt
H(x(t))=0 for all trajectories x and all t≥0. This agrees with the following

definition of an abstract Hamiltonian system.

Definition 4.3. Let D⊂F×E be a Dirac structure and assume that H :E→R has a
variational derivative. Let x : t→E , t≥0, be a differentiable trajectory taken by the
energy storing elements of some physical system.

The internal flows at time t≥0 are given by fx(t)= rE,F ẋ(t) and the internal efforts
are ex(t)= δH

δx
(x(t)). The Hamiltonian system associated with the Dirac structure D

and the Hamiltonian H is the set of internal flow/effort pairs (fx,ex) for which the
inclusion [

fx(t)
ex(t)

]
∈D, t≥0, (4.10)

makes sense and is satisfied. �

In order to connect the Hamiltonian system in Definition 4.3 to other systems, we
need to open up ports to the world outside of the system. This is the topic of the next
section.

4.2 Hamiltonian systems with external ports

We now introduce the external efforts e∂ and flows f∂, which take values in the Hilbert
spaces E∂ and F∂, respectively. These external signals are assumed to be power conju-
gated, so that the amount of energy flowing into the system through the external ports
per time unit is given by (r∂e∂,f∂)F∂

, where r∂ :E∂ →F∂ is some given unitary operator.
In particular we must demand that E∂ and F∂ are of the same cardinality. All energy
exchange is assumed to take place through the external ports and we thus arrive at the
condition

d

dt
H(x(t))=(x(t),ẋ(t))E =(r∂e∂(t),f∂(t))F∂

, (4.11)

which should be satisfied for all system signals

[
fx
ex

f∂
e∂

]
.

We remark that the notation f∂, e∂ originates from Dirac structures of boundary
control type, where the external ports are given by the internal efforts evaluated at the
boundary; see e.g. [MvdS05] or [LGZM05].
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2‖x‖2
E , is the set of all quadruples

[
rxẋ
x
f∂
e∂

]
of functions, such that

x∈C1(R+;Ex), f∂ ∈C(R+;F∂), e∂ ∈C(R+;E∂), for which the following inclusion holds:




rxẋ(t)
f∂(t)
x(t)
e∂(t)


∈D, t≥0. � (4.12)

In the case of an electrical circuit, the port effort e∂ has the interpretation of
voltage over the port, whereas the port flow f∂ is the electrical current flowing into
the system. An abstract port-Hamiltonian system is illustrated graphically in Figure
4.1. We will later expand this figure to illustrate the interconnection of two port-
Hamiltonian systems in the next section.

x

f∂

e∂
D
H

Figure 4.1: The abstract port-Hamiltonian system induced by the
Dirac structure D and the Hamiltonian H.

Remark 4.5. We sometimes need to consider systems which are of port-Hamiltonian
type, i.e., a system described by a subspace D⊂B, a Hamiltonian H and the inclusion
(4.12), but where D is not necessarily a Dirac structure. In this case we refer to D as
the interconnection structure of Σ. �

Evaluating the power product [·,·]B for a trajectory

[
rxẋ
f∂
x
e∂

]
at time t we obtain







rxẋ(t)
f∂(t)
x(t)
e∂(t)


,




rxẋ(t)
f∂(t)
x(t)
e∂(t)







B

=2

([
rxẋ(t)
f∂(t)

]
,

[
rxx(t)

−r∂e∂(t)

])

Fx⊕F∂

=2(ẋ(t),x(t))Ex
−2(f∂(t),r∂e∂(t))F∂

.

(4.13)
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@z@
@z 0
0 −ϕ0

ϕ0 0




[
eU

eI

]
, eU ,eI ∈H1(R+;R)





. (4.14)

Then e∂ represents the voltage at the left end of the transfer line and f∂ is the
current flowing into the transfer line at the left end, because eI(0,t) is the current
flowing out from the transfer line, according to Figure 2.2. It is rather straightforward
to prove that D is a Dirac structure, e.g. using [KZvdSB09, Thm 4.3].

In the approximation of the transfer line by discrete capacitors and inductors, which
was presented in Figure 2.2, the energy-storing elements are the inductors and the
capacitors. The energy stored in the inductor L is 1

2
|I(z+ l)|2 and the energy in the

capacitor C is 1
2
|U(z)|2. Therefore, letting l→0+, we obtain that the inductance and

capacitance distributed along the whole transfer line store the energy. The total energy
of the transfer line is then given by

H
([

U
I

])
=

∫ ∞

0

1

2
(|U(z)|2 + |I(z)|2)dz (4.15)

and the Hamiltonian density can be read out from (4.15) as H

([
u
i

]
,z

)
= 1

2
(|u(z)|2 +

|i(z)|2), z∈Ω=(0,∞).
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@t
U(z,t)=

∂

@z
I(z,t)

∂

@t
I(z,t)=

∂

@z
U(z,t)

f∂ =−I(0,t)

e∂ =U(0,t)

, t>0, z >0. (4.16)

Note that this is the same system as (2.3), with f∂ =u and e∂ =y. In (2.3), however,
u and y are regarded as the input and output, respectively, of the system, whereas in
(4.16), there is neither input nor output. The signals e∂ and f∂ are rather considered
to be general port variables and the input and output of (4.16) should be chosen as
appropriate functions of these port variables; see [LGZM05, Sect. 4]. �

It seems to be common not to prove the existence of solutions of port-Hamiltonian
systems mathematically. Often physical reasons are considered to imply existence of
these solutions.

Remark 4.7. Assume that Ψ is a unitary operator from E∂ to F∂. Applying (4.1)
to (4.13) in the case Ex =Fx =X ,E∂ =U ,F∂ =Y ,rx =1,r∂ =Ψ, we obtain (3.14) but
with a change of sign. Lemma 4.1 then yields that a subspace D of B is Lagrangian
with respect to [·,·]B if and only D+ iD⊂K is Lagrangian with respect to [·,·]

K
. This

further shows how closely Dirac structures are connected to impedance representations
of conservative state/signal systems. �

We conclude that the terminology and notation of port-Hamiltonian systems dif-
fers from that of state/signal systems, but that the idea is essentially the same. How-
ever, neither approach can be considered a special case of the other, because port-
Hamiltonian systems are usually allowed to be nonlinear, whereas state/signal systems
allow more general forms of energy exchange through the external ports.

4.3 Interconnection of port-Hamiltonian systems

and composition of Dirac structures

In order to be able to interconnect two port-Hamiltonian systems, we have to split the
efforts and flows into two parts. One part is reserved for interconnection and the other
part contains the rest of the variables. In the most general case we split both the port
variables and the internal efforts and flows.

For the internal effort and flow spaces, the splitting is done by setting Ex =Ex,1⊕Ex,2

and Fx =Fx,1⊕Fx,2, where e.g. Ex,2 is the part of the internal effort which is dedicated
to interconnection and Ex,1 contains the “remaining” internal efforts. Similarly we set
E∂ =E∂,1⊕E∂,2 and F∂ =F∂,1⊕F∂,2 for the external efforts and flows. Then we group
the interconnection and remaining signals together by setting E1 :=Ex,1⊕E∂,1, F1 :=
Fx,1⊕F∂,1, E2 :=Ex,2⊕E∂,2, and F2 :=Fx,2⊕F∂,2. These splittings should be performed
in such a way that there exist unitary operators r1 :E1→F1 and r2 :E2→F2.
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fA
x,2

fA
∂,2

eA
x,1

eA
∂,1

eA
x,2

eA
∂,2




∈DA and




fB
3

fB
2

eB
3

eB
2


=




fB
x,3

fB
∂,3

fB
x,2

fB
∂,2

eB
x,3

eB
∂,3

eB
x,2

eB
∂,2




∈DB

we immediately see that the flows and the efforts of the interconnected system live
on the so-called composition D◦ =DA◦DB of DA and DB, which we describe in the
following definition.

Definition 4.9. Let Fi and Ei, i=1,2,3, be Hilbert spaces and let

DA ⊂ (F1⊕F2)×(E1⊕E2) and DB ⊂ (F3⊕F2)×(E3⊕E2) (4.17)

be split Dirac structures. Then the composition DA ◦DB of DA and DB (through
F2×E2) is defined as

DA ◦ DB =









f1

f3

e1

e3




∣∣∣∣∃f2,e2 :




f1

f2

e1

e2


∈DA and




f3

−f2

e3

e2


∈DB





.

The bond space of the composition is the space B◦ := (F1⊕F3)×(E1⊕E3) equipped
with the power product







f 1
1

f 1
3

e1
1

e1
3


 ,




f 2
1

f 2
3

e2
1

e2
3







B◦

=

([
f 1

1

f 1
3

]
,

[
r1 0
0 r3

][
e2
1

e2
3

])

F1⊕F3

+

([
r1 0
0 r3

][
e1
1

e1
3

]
,

[
f 2

1

f 2
3

])

F1⊕F3

. �

It is readily verified that the power product on B◦ is obtained as the sum of the power
products on BA and BB in the sense that (f1,f2,e1,e2)∈DA and (f3,−f2,e3,e2)∈DB

imply that







f1

f2

e1

e2


,




f1

f2

e1

e2







BA

+







f3

−f2

e3

e2


 ,




f3

−f2

e3

e2







BB

=







f1

f3

e1

e3


 ,




f1

f3

e1

e3







B◦

. (4.18)

Therefore the composition of two Dirac structures always satisfies [d,d]B◦
=0 for all

d∈DA ◦DB. In the case where E2 and F2 have finite dimension, DA ◦DB is always a
Dirac structure, as can be seen from [KZvdSB09, Cor. 3.8]. However, in the Hilbert-
space case it is not always true that [d,d]B◦

=0 for all d∈ (DA ◦DB)[⊥], so that D is not
a Dirac structure. For a counterexample see [Gol02, Ex. 5.2.23].
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Chapter 5

A motivating example

We now continue Example 4.6 and at the same time we further connect the state/signal
framework to that of the Dirac structures by treating Example 3.9 from [KZvdSB09]
within the state/signal framework. The function spaces which appear in this chapter
have complex scalar fields.

We will use Theorem [Kur10, Thm 4.11] and for the convenience of the reader
we include the relevant parts of that theorem here. Recall from Corollary 3.5 that if
the input/output pair (U ,Y) is admissible for the subspace V ⊂K, then (U [⊥],Y [⊥]) is
admissible for the orthogonal companion V [⊥].

Theorem 5.1. Assume that V ⊂K has the property that
[

z
0
0

]
∈V =⇒ z =0.

Then (V ;X ,W) is a conservative state/signal node if and only if V =V [⊥]. This
holds if and only if V satisfies the following three conditions:

(i) The space V is neutral: [v,v]
K
=0 for all v∈V .

(ii) There exists an admissible input/output pair (U ,Y) for V such that also the dual
pair (U [⊥],Y [⊥]) is an admissible input/output pair for V .

(iii) The main operators of the operator node representations A× and Ad of V and
V [⊥], see Definitions 2.4 and 2.11, corresponding to the dual input/output pair
(U [⊥],Y [⊥]) have non-disjoint resolvent sets:

Res
(
A×)

∩Res
(
Ad

)
6=∅. (5.1)

Let Ex,1 =Fx,1 =E2 =F2 =L2(R+;C) and E∂,1 =F∂,1 =C, and let the bond space be

B=F×E =(Fx,1⊕F∂,1⊕F2)×(Ex,1⊕E∂,1⊕E2)

with power product (4.5), where rE,F is the identity operator on E =F .
By Lemma 4.1, (4.14) is a real Dirac structure if and only if

DA :=








fx,1

f∂,1

f2

ex,1

e∂,1

e2




∣∣∣∣




fx,1

f2

f∂,1

e∂,1


=




0 ∂

∂z
0

0 −ϕ0

ϕ0 0




[
ex,1

e2

]
, ex,1,e2 ∈H1(R+;C)





(5.2)
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@z@
@z i
0 −ϕ0

ϕ0 0




[
ex,1

e2

]
, ex,1,e2 ∈H1(R+;C)





=




0 ∂
@ z

0 −ϕ0

1 0
ϕ0 0




{[
ex,1

e2

] ∣∣∣∣ e2 = i
∂

∂z
ex,1, ex,1,e2 ∈H1(R+;C)

}

=




i ∂2

@ z 2

−iϕ0
∂
@ z

1
ϕ0


H2(R+;C).

(5.3)

Denote L := i ∂2

@ z 2 , K :=−iϕ0
∂
@ z and G :=ϕ0, all defined on Dom(L) :=H2(R+;C). Let

X :=L2(R+;C) and let W :=C2 with

[[
f 1

∂

e1
∂

]
,

[
f 2

∂

e2
∂

]]

W
=f 1

∂e2
∂ +e1

∂f
2
∂ .

Note that U =

[
{0}
E∂,1

]
and Y =

[
F∂,1

{0}

]
satisfy U [⊥] =U and Y [⊥] =Y in W, i.e., that

the input/output pair (U ,Y) is Lagrangian. If this input/output pair is admissible
for V :=DA ◦DB, then the corresponding main operators A and A× in Theorem 5.1
coincide.

Moreover, the composition DA ◦DB is a neutral or Lagrangian subspace of the
complex bond space B if and only if it is neutral or Lagrangian, respectively, in the

node space K, because [·,·]
K
=−[·,·]B, cf. Remark 4.7. Obviously V :=

[
L
1

G+K

]
Dom(L)

satisfies the condition
[

z
0
0

]
∈V =⇒ z =0. Theorem 5.1 therefore yields that DA ◦DB is

a Dirac structure if and only if (DA ◦DB;X ,W) is a conservative state/signal node.
The composition DA ◦DB satisfies condition (i) of Theorem 5.1 due to (4.18). We

now show that (U ,Y) is an admissible input/output pair for DA ◦DB by showing that
(L,K,G) is a boundary node on (U ,X ,Y)=(C,L2(R+;C),C) and applying [MS06, Thm
2.3]; see Section 2.3.
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1+z
lies in H2(R+;C) and

Gf =a. We are done proving that (L,K,G) is a boundary node if we manage to prove
that

A :=L
∣∣
N (ϕ0)

= i
∂2

∂z2

∣∣∣∣
{x∈H2(R+;C)|x(0)=0}

(5.4)

generates a C0 semigroup on X . According to Stone’s Theorem [Paz83, Thm 1.10.8],
every skew-adjoint operator A, i.e. every operator which satisfies A∗ =−A, generates
a C0 semigroup of unitary operators.

The spectrum of a skew adjoint operator lies on the imaginary axis. Indeed, if
A∗ =−A then (iA)∗ = iA, and it is well-known that the spectrum of a self-adjoint
operator is real. This means that C+∪C−⊂Res(A), which obviously implies (5.1)
when we take into account that A× =A. We now proceed to prove that A in (5.4) is
skew-adjoint on X =L2(R+;C).

Firstly, A is skew-symmetric, because for all x∈Dom(A)=N (G):








Lx
x

Kx



 ,




Lx
x

Kx









K

=−(x,Ax)X −(Ax,x)X =0.

By Definition A.4, this implies that Ax=−A∗x for all x∈Dom(A), and we still need
to show that Dom(A∗)⊂Dom(A).

Therefore assume that y∈Dom(A∗). Integrating twice by parts, we get for all
x∈Dom(A) that:

(Ax,y)X =

∫ ∞

0

i
∂2x

∂z2
(z)y(z)dz = i

[
∂x

∂z
(z)y(z)

]∞

0

− i

∫ ∞

0

∂x

∂z
(z)

∂y

∂z
(z)dz

=−i
∂x

∂z
(0)y(0)− i

[
x(z)

∂y

∂z
(z)

]∞

0

+ i

∫ ∞

0

x(z)
∂2y

∂z2
(z)dz

=−i
∂x

∂z
(0)y(0)−

(
x,i

∂2

∂z2
y

)

X
=(x,A∗y)X .

(5.5)

The space of all x∈H2(R+;C), such that x(0)=0 and ∂x
@ z (0)= i, is well-known to be

dense in L2(R+;C). We can therefore find a sequence xn ∈H2(R+;C) which tends to
zero in L2(R+;C) and satisfies xn(0)=0 and ∂xn

@ z (0)= i. Then the last line of (5.5)
yields that (

xn,i
∂2

∂z2
y

)

X
+(xn,A∗y)X =y(0),

where the left-hand side tends to zero by the Cauchy-Schwarz inequality. This proves
that y(0)=0 for all y∈Dom(A∗), which means that Dom(A∗)⊂Dom(A) and we are
finished proving that A is skew-adjoint. Thus (DA ◦DB)[⊥] =DA◦DB. �
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Chapter 6

Summaries of the included articles
and their contributions

This chapter contains short summaries of the three articles included in this dissertation.
Accounts of their relevance for the research field of infinite-dimensional linear systems
are also provided.

6.1 Article I: Well-posed state/signal systems in

continuous time

We introduce the class of Lp-well-posed state/signal systems for 1≤p<∞ and present
their basic properties. This paper is mostly a technical exposition of how to represent
these systems and how to work with their trajectories, but we also give Examples
6.8 and 6.9, which indicate how systems that behave badly in the input/state/output
setting can be modelled within the state/signal framework.

In Article I we characterise the well-posed input/output pairs of a given well-
posed state/signal system in various ways and show how to obtain the correspond-
ing input/state/output representations; see Definition 2.7, Theorem 4.13 and The-
orem 6.6 of [KS09]. A comparison of classical and generalised trajectories of the
state/signal node and how they relate to the classical and generalised trajectories of
an input/state/output representation is also an essential part of this article; also see
Section 5 of the article.

It is clear that every state/signal node determines a state/signal system uniquely
through Definitions 2.9 and 2.10, but the converse still remains an open question.
We prove in [KS09, Section 6] that there always exists a unique maximal state/signal
node Vmax, which generates a well-posed state/signal system. Here maximality means
that if Vmax is maximal and V ′ generates the same space of generalised trajectories as
Vmax, then V ′⊂Vmax. The maximal generating state/signal node of an Lp-well-posed
state/signal node is Lp-well-posed. The converse of the above question, however, is
still open; I do not know if a well-posed state/signal system (W;X ,W) determines a
generating well-posed state/signal node (V ;X ,W) uniquely if the maximality condition
is dropped.



44 Chapter 6. Summaries of the included articles



6.3 Article III: Dirac structures and their composition 45
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Chapter 7

A few ideas for the future

The study of state/signal systems and irregular interconnection of infinite-dimensional
systems has merely been started and much remains to be done. Many questions remain
to be answered in connection with stability, the properties of the state/signal dual and
the properties of impedance representations. The articles by Arov and Staffans on
discrete-time state/signal systems contain a large number of results, which should be
considered in continuous time as well. In particular the frequency-domain behaviour
of state/signal systems should be worked out.

Also regarding interconnection there is much work undone. The results presented
in [KZvdSB09] should be generalised to more general types of interconnection. One
may also ask when an interconnection of two state/signal systems is a regular feed-
back interconnection of two input/state/output systems and which system behaviours
can be achieved through interconnection with a controller. The finite-dimensional
formulations of these problems can be found in [JWBT05]. A study in which cases
well-posedness is preserved by interconnection also remains to be done.

Finally, the state/signal framework needs to be tested on more complicated physical
examples. This will surely open up many new interesting questions, which will give
directions for future research.





Appendix A

Brief background on Krĕın spaces

In this appendix we collect some standard terminology and results from the theory of
Krĕın spaces. More background can be found e.g. in [AS07a] and [Bog74]. The claims
we make here were proved in the appendix of [Kur10].

Definition A.1. The vector space (W;[·,·]W), where [·,·]W is an indefinite sesquilinear
product, is an anti-Hilbert space if −W := (W;−[·,·]W) is a Hilbert space. In this case
we for clarity denote the Hilbert space −W by |W|.

The space (W;[·,·]W) is a Krĕın space if it admits a direct-sum decomposition
W =W+ ∔W−, such that:

(i) the spaces W+ and W− are [·,·]W -orthogonal, i.e., [w+,w−]W =0 for all w+∈W+

and w−∈W−, and

(ii) the space W+ is a Hilbert space and W− is an anti-Hilbert space.

In this case we call the decomposition W =W+ ∔W− a fundamental decomposition of
W and we always denote it by W =(W+,W−), so that the second space in the pair is
the anti-Hilbert space. �

Let U and Y be subspaces of the Krĕın space W. By writing U [⊥]Y we mean that
U and Y are orthogonal to each other with respect to [·,·]W . The orthogonal companion
of U is the space

U [⊥] :={w∈W |∀u∈U : [u,w]W =0} . (A.1)

Proposition A.2. Let α∈C+ and let W be a Krĕın space with fundamental decompo-
sition W =(W+,W−). Then the node space K in Definition 2.7 is a Krĕın space with
fundamental decomposition K=(K+,K−), where

K+ =




[
−
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U , we have that (U [⊥])[⊥] =U .
The following definition makes use of the continuous dual U ′ of a Banach space U .

Recall that this continuous dual is the space of all continuous linear functionals on U .

Definition A.4. Let W =U∔Y be a direct-sum decomposition of a Krĕın space.
According to [AS07c, Lemma 2.3], we can identify the continuous duals of U and Y
with Y [⊥] and U [⊥], respectively, using the following restrictions of [·,·]W as duality
pairings:

〈u,u′〉〈U ,U ′〉 =[u,u′]W , u∈U , u′∈Y [⊥] and

〈y,y′〉〈Y ,Y ′〉 =[y,y′]W , y∈Y , y′∈U [⊥].

Let T map a dense subspace of U linearly into Y . By T † we denote the (possibly
unbounded) adjoint of T computed with respect to these duality pairings, so that
T † :Y ′→U ′ is the maximally defined operator that satisfies

∀u∈Dom(T ),y′∈Dom
(
T †) : 〈Tu,y′〉〈Y ,Y ′〉 = 〈u,T †y′〉〈U ,U ′〉. (A.4)

Here Dom
(
T †) is the subspace consisting of those y′∈Y ′, for which there exists some

u′∈U ′, such that 〈Tu,y′〉〈Y ,Y ′〉 = 〈u,u′〉〈U ,U ′〉 for all u∈Dom(T ). �

The condition (A.4) can also be written

∀u∈Dom(T ),y′∈Dom
(
T †) : [Tu,y′]W =[u,T †y′]W , (A.5)

but note that T is not densely defined on W in general, and therefore (A.5) does
not determine T † as an operator on W uniquely. However, if U =Y =W and this
is a Hilbert space with inner product (·,·)W , then the construction in Definition A.4
leads to an identification W ′ =W, using the standard Hilbert-space duality pairing
〈w,w′〉〈W ,W ′〉 =(w,w′)W . In this case we denote the adjoint T † of T by T ∗ in order to
emphasise that the adjoint is computed with respect to a Hilbert-space inner product.
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Appendix B

Useful function spaces

Here we define the spaces of functions which we need in this dissertation. We also
introduce some operators for manipulating these functions.

Definition B.1. Let I and I ′ be subsets of R and let U be a Banach space.

(i) The vector space of functions defined everywhere on I with values in U is denoted
by U I .

(ii) For f ∈U I and a∈ I we define the point-evaluation operator ϕa through ϕaf :=
f(a).

(iii) The reflection operator Rabout zero is defined as

( Rf)(v)=f(−v), f ∈U I , −v∈ I.

(iv) For all t∈R we define the shift operator τ t, which maps functions in U I into
functions in U I−t, by (τ tf)(v)=f(v+ t) for f ∈U I and v+ t∈ I. If t>0 then τ t

is a left shift by the amount t.

(v) The operator πI :U I →UR is defined by

(πIf)(v) :=

{
f(v), v∈ I

0, v∈R\I
.

(vi) For I ′⊃ I, the restriction operator ρI :U I′ →U I is given by

(ρIf)(v)=f(v), v∈ I, i.e. ρIf =f |I , f ∈U I′.

We briefly write π+ :=π[0,∞) and ρ+ :=ρ[0,∞). �

We note that τ 0 =1 and that for all s,t∈R we have τ sτ t = τ s+t. Thus, the shift
operators t→ τ t form a group on UR. If s,t≥0 then ρ+τ sρ+τ t =ρ+τ s+t, i.e. ρ+τ is a
semigroup on UR+

.

Definition B.2. Let U be a Banach space and let −∞<a<b<∞.

(i) The space of continuous U-valued functions with domain [a,b] is denoted by
C([a,b];U). This space is equipped with the supremum norm

‖f‖C([a,b];U) := sup
t∈[a,b]

‖f(t)‖U .
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