(Reprinted from Nature, Vol. 212, No. 5063, pp. 707-708, November 12, 1966) Pedo

Minerals in the Livers of Protein Deficient Rats

SPECIFIC protein deficiencies can be induced in animals kept on a strict diet lacking protein but otherwise complete. There is little information in the literature about the mineral content of the organs of such animals, especially concerning trace elements. The present work compares the mineral content of the liver of protein deficient rats with that of control rats fed a non-deficient diet.

Mineral analyses were conducted as follows. Samples. of liver from animals on normal and experimental diets were decomposed by boiling with sulphuric acid and nitric acid in a reflux apparatus. The extracts were evaporated. A reagent blank was prepared using a known volume of potassium sulphate which was spectrographic-Trace elements were estimated by a semially pure. quantitative spectrographic method using external standards¹. The dried extracts were mixed with powdered graphite and placed in a graphite electrode which was placed in a continuous arc of 10 Å. The spectrum was photographed in the regions from 2500 Å to 4000 Å with a Hilger spectrograph with quartz optics, and from 4000 Å to 9000 Å using a Huet spectrograph with glass optics. Samples were compared with appropriate standards.

Potassium and sodium were estimated by flame spectrometry. A Hilger medium spectrograph with an electron photomultiplier receiver was used.

In the first experiment, which lasted 50 days, the animals were separated in ordinary metallic cages. Three animals received the protein deficient diet and three were fed one of the control diets². Liver analyses showed a higher content of rubidium and molybdenum in animals fed the control diet. A second experiment was carried out on a larger scale; ten rats were given the deficient diet and nine the control diet, while four were allowed to eat as much as they could. In addition, they were kept in individual glass and hard plastic cages to avoid any contact with metal. After 50 days the mean body weight of the deficient rats fell from 163 to 103 g, the haemoglobin concentration from 84.4 to 66.1 per cent, and the total protein serum from 65.6 g/l. to 42.7 g/l. The livers were analysed for mineral content and the results are given in Tables 1 and 2.

Only three results show a statistically significant difference between the animals on protein deficient and control diets with regard to sodium molybdenum and rubidium content. Analyses of the diets showed that the differences

3 FEMP

'O. R. S. T. O. M.

nº 11257

Collection de Référence

	The second secon	THE TRANSPORT OF ANTICIDE T	D DDOMNIN DEFICIENCE	AND	CONTROL.	DITENS (D	nm)
Table 1.	TRACE ELEMENTS	IN LIVERS OF ANIMALS F	D PROTEIN DEFICIENT	AND	CONTROL	DIETS (P	.p.m.)

2.5		umber			2 N 1	Vanad-	Tra	ace elements	•	Chrom-		Rubid-	
	Experimental diet	of nimals	Man- ganese	Molyb- denum	Tin	ium	Copper	Silver Nickel	Cobalt	ium	Lithium	ium	
.;	No protein Control, fed to the first nine rats of deficient,	10 9	3.70 3.76	-`0•57* 0•79	0·74 0·57	<0.05 <0.05	3•88 ∖ 3•98	<0.05 \ 0.31 <0.05 0.33	<0.07 <0.06	0·49 0·46	<0.05 <0.05	0·38* 1·48	
	group Control, fed freely as much as they wanted	4	3-63	0.84	0.51	<0.05	3.96	< 0.05 0.27	< 0.02	0.59	< 0.02	1.12	

• Average statistically different from that of animals on control diet (variance analysis). The method used is not sensitive enough for the determination of caesium. Table 2. ALKALI ELEMENTS IN LIVERS OF RATS FED DEFICIENT AND CONTROL DIETS

	· Sodium		. P	otassiun	a · ·	R	ubidiun		•		
Fr	resh Total	In liver/	\mathbf{Fresh}	\mathbf{Total}	In liver/	\mathbf{Fresh}	Total	In liver/			
Experimental diet No. of liv	ver liver	100 g of	liver	liver	100 g of	liver	liver			potassium	
animals (%)	2/00) (mg)	animal	(°/₀₀)	(mg)	animal	(p.p.m.)	(7)	animal	sodium	×1,000	
No protein 10 0.	088* 3.55	3.44	0.298	12.00	11.65	0.38*	1.60	1.55 -	3.3	0.12	
	079 3.76	2.29	0.311	14.65	8.93	1.48	6.82	4.17	3.9	0.42	
deficient group	<u></u>	· .	4							*	
Control, fed freely as much as they wanted 4 4 0.	093 7.92	2.63	0.317	25.39	8.43	1.12	8∙90	2.96	3.2	0.35	

* Average statistically different from that of animals on control diet.

in molybdenum and rubidium were not due to a different intake of these elements. The minerals were estimated in whole fresh liver and so we cannot deduce the relationship between sodium and water content. The small but significant difference in molybdenum content is easily explained by the decrease in xanthine oxidase concentration, which is known to accompany the protein deficiency³. The differences in rubidium concentration are important; there is about four times as much in the livers of control rats as in those of protein deficient ones, and the potassium content remains about the same.

The observed differences are difficult to interpret. Relman⁴ and other workers have noticed in their experiments a preferential retention of rubidium compared with potassium. In the present work the turnover in protein deficient animals is likely to be slower than in controls, which could explain, assuming the hypothesis of preferential retention of rubidium, the lower level of rubidium compared with potassium in protein deficient animals.

> F. GAUDIN-HARDING D. Robin

Centre de Recherches sur la Nutrition C.N.R.S., Bellevue 78.

M. PINTA

Office Recherche Scientifique et Technique, Outre Mer. Bondy 75.

¹ Pinta, M., Recherche et Dosage des Éléments Traces, 382 (Dunod, Paris, 1982).

^a Gaudin-Harding, F., and Jacquot, R., Ann. Nutrit. Aliment., 19, 1 (1965). ^a Litwak, G., Williams, J. N., Feigelson, P., and Elvehjem, C. A., J. Biol. Chem., 187, 605 (1950).

Relman, A. S., Lambie, A. T., and Burrows, B. A., J. Clin. Invest., 26, 1249 (1957).