ETUDE COMPARATIVE DE DEUX

METHODES DE MESURE DES

DENSITES APPARENTES.

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

CENTRE O.R.S.T.O.M. DE DAKAR-

Ĩ.

JUIN 1971

AVANT - PROPOS

Le Laboratoire de Géologie O. R. S. T. O. M. de Dakar a été doté dans le courant de l'année 1969, d'un voluménomètre à mercure AMSLER utilisé pour les mesures de densités apparentes. Auparavant, ces mesures se faisaient par la méthode Melcher, c'est-à-dire par la mesure des volumes d'échantillons préalablement enrobés de paraffine.

Ce rapport a pour but de dresser une comparaison entre les deux méthodes et d'évaluer les avantages ou les inconvénients apportés par l'emploi du voluménomètre. I - VOLUMENOMETRE "AMSLER VM-9"

1 - But :

1

١

!

Cette analyse a été réalisée, afin de définir le domaine de précision et la fidélité de la méthode.

2 - Matériel utilisé :

- une balance électrique "Mettler type H", à lecture immédiate au 1/10 de milligramme.

- un voluménomètre "AMSLER VM-9", pour patites éprouvettes (12 cm³ maximum).

3 - Mode opératoire :

Nous avons sélectionné 5 séries de 30 échantillons, correspondant aux 5 unités pétrographiques suivantes :

- Granite de Kéniéba (Sénégal-Oriental)
- Cipolin de Bandafass (Sénégal-Oriental)
- Gabbro de Kolel (Haute-Volta)
- Amphibolite (Haute-Volta)
- Basanite du Cap-Manuel (Sénégal, Cap-Vert).

Les mesures de densités ont été effectuées d'après le protocole cidessous indiqué :

- Fragmenter chaque roche en 30 óchantillons de 5 cm³ environ.
- Effectuer une première pesée qui servira de vérification (P. hum.)
- Après lavage aussi minutieux que possible, mettre les échantillons à l'étuve à 110° pendant 3 jours.
- Au sortir de l'étuve, déposer le matériel à analyser dans un dessicateur à froid, pendant 1 heure environ.
- Puis procéder une nouvelle pesée (P. sec) ; et onfin à la masure du volume.

Connaissant le poids sec et le volume, on en déduit la densité apparente de chaque échantillon par le simple rapport P/V.

4 - Principe de l'appareil (fig. 1 - planche 1)

La mesure des volumes s'effectue en faisant la différence entre la lecture indiquée sur le tambour gradué, lorsque l'appareil est chargé de l'échantillon à analyser (V) et la lecture indiquée lorsqu'il est vide (o).

ł

Comme chaque division du tambour, correspond à un volume unitaire 0,3 $\rm cm^3$, le volume cherché est :

$$(V - 0) \times 0.3$$
.

Ce principe de mesure différentielle supprime toute erreur que pourrait entraîner l'action d'une variation thermique quelconque sur le mercure.

5 - Méthode de Calcul

١

Pour chacune des séries de 30 échantillons, nous avons procédé à une étude statistique, sur des classes densimétriques de 0,01 g/cm³.

Cette valeur représente approximativement, 0,3 à 0,5 pour 100 de la densité trouvée, pour les 5 roches étudiées.

Nous avons cherché à déterminer deux catégories d'indices :

- caractéristiques d'ordre de grandeux
- caractéristiques de dispersion

(voir tableaux : annexes 1 et 2).

a) Caractéristiques d'ordre de grandeur :

a - Moyenne arithmétique : $m = \frac{\text{Gomme } m}{n} = \frac{\text{Gomme } m}{30}$

b - Mode : (Mo)

Le mode est choisi comme étant le centre de la classe la plus représentée.

c - Médiane : (Me)

La médiane est définie à partir des deux valeurs précédemment citées, m et Mo, selon l'équation : (m - Mo) = 3(m - Me)Me = 2m - Mo

b) Caractéristiques de dispersion :

d - Variance : (V) $v = \frac{(n (x - Mo))^2}{n} - \frac{(n (x - Mo))^2}{n}$

e - Ecart-type : (c)

6 = 🗤

f - Coefficient de variation :

$$v = \frac{\delta}{m} \times 100$$
 (%)

c) Test de la droite de HENRY :

Cette opération est réalisée, afin de déterminer le plus rapidement possible, suivant quelle loi de distribution se répartissent les mesures effectuées.

Pour ce faire, on calcule t :

$$t = \frac{xi - \bar{m}}{\delta^2}$$

xi représente ici, le centre d'une classe densimétrique.

Connaissant cette valeur on trace les points répondant à la fonction $x = f(\pi_1)$.

Si ces points se répartissent linéairement, la loi de distribution cherchée est Gaussienne normale.

6 - Etude statistique :

)

a) Répartition des mesures

Les différents graphes dressés indiquent des séries de mesures bien équilibrées de part et d'autre de la ligne médiane, construite à partir des valeurs moyennes trouvées. Les mesures les plus divergentes, présentent un écart à la moyenne inférieur au 1 %.

On note cependant une légère dérive pour les mesures concernant le granite (fig. 2 - planche 2); les dernières densités trouvées augmentent sensiblement. Cette variation correspond vraisemblablement à une prise d'humidité relativement plus importante pour les derniers échantillons analysés.

Les histogrammes de fréquences simples, notamment ceux afférents aux mesures sur granite, amphibolite, et basanite montrent une distribution gaussienne. Par contre les deux autres sont plus irrégulières et présentent une dépression dans les valeurs médianes. Ceci n'est cependant pas significatif et est dû essentiellement en choix de classes densimétriques très fines. En effet si l'on élargit le domaine de ces classes, la forme des courbes se régularise (fig. 3 planche 3).

Pour les cinq cas étudiés, le test de la droite de HENRY s'est révélé positif, démontrant que quel que soit le matériel analysé, on obtient une distribution gaussienne normale, des mesures. Il est d'ailleurs remarqueble de constater que les cinq droites obtenues présentent toutes, approximativement, la même pente. Ce parallélisme atteste de manière indéniable de l'excellente reproductibilité de la méthode (fig. 4 - planche 4).

fig - Graphe de repartition des trente

mesures effectuees sur granite

,

fig 3 - Histogrammes de frequences simples

Roches	Ecart-type	ធ	Coefficient de variation
Granite	0,0125	2,584	0,48 %
Cipolin	0,0133	2,781	0,47 %
Gabbro	0,0131	2,930	0,45 %
Amphibolite	0,0097	2,989	0,32 %
Basanite	0,0128	3,104	0,41 %

7 - Définition du domaine de précision

- Tableau 6 -

On accepte généralement comme seuil limite du coefficient de variation dans une telle analyse, la valeur V ≤ 1 %.

Nous constatons donc, au vue de ces résultats, que cette méthode est tout à fait satisfaisante puisque, pour les cinq analyses effectuées, nous obtenons un coefficient V, dans tous les cas inférieur à 0,5 %.

D'autre part la constance de ce coefficient, démontre une excellente reproductibilité.

II - METHODE DE MELCHER

Méthode décrite par M. Bonifas ("Mémoire nº 17, du service géologique d'Alsace et de Lorraine) d'après le manuel de Krumbein et Petitjohn (1948).

1 - Principe :

Le matériau est consolidé et rendu imperméable par revôtement de paraffine. La détermination du volume se fait ensuite par pesée de l'échantillon, ainsi revêtu, dans l'air puis dans l'eau. Les corrections nécessaires dûes au revêtement sont ensuite apportées.

2 - Matériel nécessaire :

Paraffine-eau distillée - balance de laboratoire adaptée de la façon suivante pour les pesées dans l'eau :

Deux cales plus hautes que la hauteur normale du plateau supportent une tablette qui ne doit en rien gêner les mouvements du plateau. Cotte tablette porte un bécher plein d'eau distillée dans lequel trempe l'échantillon et l'isole ainsi du plateau de la balance. L'échantillon est suspendu directement au crochet de la balance par l'intermédiaire d'un fil métallique. Pour les pesées normales dans l'air, on enlève simplement les cales, les tablettes et le bécher.

3 - Mode opératoire :

- 1°) Peser l'échantillon sec et débarrassé des grains et poussières adhérents. Soit P ce poids.
- 2°) Saisir l'échantillon au moyen d'une pince à points d'impacts aussi petits que possible. Le tremper dans la paraffine fondue juste au point de fusion. L'immersion doit être extrêmement rapide pour empêcher la paraffine de pénétrer dans les pores. Laisser refroidir. Boucher ainsi les pores restés à nu, les bulles et les points d'impacts de la pince avec une goutte de paraffine ou une pointe métallique chaude. Tremper l'échantillon une deuxième fois dans la paraffine si nécessaire. Laisser refroidir et durcir. Peser l'échantillon pour déterminer le poids de paraffine du revêtement. Soit PpI ce poids total.

PpI - P = poids de paraffine. $V_{D} = \frac{PpI - P}{0,906} = volume de paraffine de densité$ ágale à 0,906.

- 3°) Suspendre l'échantillon à un fil métallique extrêmement fin suffisamment long pour l'accrocher à la balance. Peser dans l'eau en marquant la partie du fil qui troupe dans l'eau. Soit Pp2 de poids.
- 4°) Peser le fil immergé dans l'eau dans les mêmes conditions que lorsque l'échantillon y était fixé. Soit Pf ce poids.

Le poids de l'eau déplacé par l'échantillon enrobé est :

PpI - (Pp2 - Pf)

Le volume de l'échantillon est :

 $V = \frac{PpI - (Pp2 - Pf)}{Dt} - Vp$

Dt étant la densité de l'eau à la température de l'empérience. D à $20^\circ = 0,998$.

La densité apparente de l'échantillon est :

$$D = \frac{P}{V}$$

4 - Répartition des mesures

La distribution des différentes séries de mesures, s'est révélée assez mal équilibrée, puisque certaines d'entre elles s'écartent de plus de 2 % de la valeur moyenne. Leur répartition obéit cependant à une loi gaussienne ; le test de HENRY le prouve (fig. 5 - planche 5). Si l'on groupe les cinq droites obtenues en effectuant ce test, on obtient, contrairement à la méthode précédente, une faisceau assez divergent ce qui indique que la précision des résultats est davantage fonction de la nature du matériel analysé.

5 - Définition du domaine de précision

Echantillon	Densité	Ecart-type	Coefficient de variation	
Granite	2,484	0,0326	1,31 %	
Cipolin	2,707	0,0269	0,99 %	
Gabbro	2,867	0,0495	1,72 %	
Amphibolite	2,926	0,0148	0,51 %	
Basanite	3,028	0,0546	1,80 %	

Résultats :

Il suffit d'observer les variations des différents écarts-types pour se rendre compte que cette méthode est soumise à trop d'aléas de manipulation, l'opération de paraffinage notamment, pour être très précise.

Le coefficient de variation moyen, qui est de 1,26 % est cependant encore acceptable, bien que pour deux séries de mesure il atteint 1,80 %.

~

Echantillon	Densité m	noyenne	Coefficient	de variation
	*	2	1	2
Granite	2,584	2,484	0,48 %	1,31 %
Cipolin	2,781	. 2,707	0,47 %	0,99%
Gabbro	2,930	2,867	0,45 %	1,72 %
Amphibolite	2,989	2,926	0,32 %	0,51 %
Basanite	3,104	3,028	0,41 %	1,80 %
c	oefficient moy	0,42 %	1,25 %	

- 1 : méthode du voluménomètre
- 2 : méthode de Melcher.

Un coefficient de variation moyen de 0,42 %, c'est-à-dire trois fois moindre que celui donné par la soconde méthode, ajouté à une memarquable constance de la valeur de ce coefficient, définiesent le domaine de précision du voluménomètre AMSLER, par rapport aux valeurs obtenues par la méthode de Melcher.

Nous remarquons que systématiquement les valeurs données par la méthode dite de "paraffinage" sont inférieures à celles données par l'autre méthode. A cela il y a deux explications, qui sont d'ailleurs complémentaires ;

- la technique du paraffinage ne saurait être parfaite et inévitablement l "on retient de petites bulles d'air qui augmentent le volume concerné, et, par conséquent diminuent la valeur trouvée pour la densité.
- d'autre part, le mercure sous pression a un pouvoir de "pénétration" supérieur à la paraffine liquéfiée, qui se solidifie trop rapidement pour pouvoir enrober les plus petites infractuosités.

A toutes ces considérations techniques vien s'ajouter le gain de temps considérable obtenu. En effet, on s'est aperçu que l'emploi du voluménomètre a permis de multiplier le rendement des analyses densimétriques par cinq.

CONCLUSION

Facilité d'emploi, rapidité d'exécution, grande précision des mesures, remarquable constance dans les résultats, at prix de revient pratiquement nul, sont autant d'atouts qui font du voluménomètre à mercure, un outil indispensable pour la mesure des densités apparentes. Ceci, en égard à la méthode de Melcher, qui est néanmoins encore la plus employée. Le seul avantage reconnu à cette dernière réside dans la simplicité du matériel requis pour effectuer les analyses, puisque seuls une balance de précision et un bécher suffisent.

- 4. nneme 1 -

L

)

Résultats concernant le voluménomètre

.

Tableau I Granite de Kenieba

	Nо	P, hum,	P. sec	V	0	V- 0	x 3	densité
	1	17,6625	17,6463	27,98	5,39	22,59	67,77	2,603
	2	11,5215	11,5118	20,17		14,78	44,34	2,620
	3 ,	10,7750	10,7651	19,17	11	13,78	41,34	2,604
	4	20,5164	20,4938	31,71	5,36	26,35	79,05	2,592
	5	17,3848	17,3648	27,70	11	22,34	67,02	2,590
	6	9,5665	9,5555	17,73	**	12,37	37,11	2,574
	7	8,3907	8,3849	16,17	5,34	10,83	32,49	2,580
	8	7,2343	7,2275	14,74	**	9,40	28,21	2,562
,	9	9,3989	9,3908	.17,47	11	12,13	36,39	2,580
ĸ	10	8,3121	8,3038	16,07	11	10,75	32,25	2,574
Ì	11	8,3330	8,3272	16,02	**	10,70	32,10	2,594
	12	9,5274	9,5187	17,59	5,32	12,27	36,81	2,585
	13	13,3102	13,2945	22,52	11	17,20	51,60	2,576
	14	7,1140	7,1080	14,56	n	9,24	27,72	2,564
	15	14,8909	14,8745	24,59	11	19,27	57,81	2,572
,	16	10,7996	10,7906	19,26	11	13,94	41,82	2,580
	17	14,1497	14,1300	23,66	11	18,34	55,02	2,568
	18	23,2940	23,2720	35,28	"	29 ,96	89,88	2,589
	19	8,5761	8 ,569 3	16,44	11	11,12	33,36	2,568
	20	11,4185	11,4093	19,99	11	14,67	44,01	2,592
	21	10,8220	10,8133	19,26	11	13,94	41,82	2,585
	22	5,4542	5,4509	12,33	11	7,01	21,03	2,591
÷	23	7,5334	7,5156	15,02	11	9,70	29,10	2,582
	24	16,4051	16,3867	26,46	11	21,14	63,42	2,583
-	25	9,1600	9,1496	17,09	11	11,77	35,31	2,591
Ì	26	9,1693	9,1596	17,09	11	11,77	35,31	2,594
	27	8,7608	8,7524	16,62		11,30	33,90	2,531
	2 8	8,8154	8,8070	16,68	11	11,36	34,08	2,584
	29	5,9359	5,9292	12,96	11	8,64	22,92	2,586
	30	10,3649	10,3546	18,62		13,30	39,90	2,595

Tableau 2 Cipolin de Bandafassi

	No	P. hum.	P. sec.	v	0	V-0	x3	densité
	1	16,2720	16,2696	24,82	5,24	19,40	58,20	2,795
	2	15,9520	15,9493	24,39	11	19,15	57,45	2.776
	3	18,1917	18 1887	27,04	17	21,80	65,40	2.781
	4	12,5879	12,5857	20,48		15,25	45,15	2.751
	5	16,4404	16,4363	24,87	5,23	19,64	58,92	2,789
	6	13,3302	13,3286	21,10	"	15,87	47,61	2,799
	7	16,6316	16,6286	25,25	5,21	20,04	60,12	2,765
	8	20,4629	20,4578	29,68	71	24,47	73,41	2,786
1	9	14,4338	14,4311	22,49	**	17,28	51,84	2,784
	10	12,3192	12,3174	19,82	**	14,61	43,83	2,810
	11	17,7351	17,7310	26,42	11	21,21	63,63	2,786
	12	13,6949	13,6919	21,61	11	16,40	49,20	2,783
1	13	20,1865	20,1828	29,40	11	24,19	72,57	2,781
1	14	21,9734	21,9697	31,46	11	26,25	78,75	2,789
	15	17,3500	17,3468	26,09	"	20,88	62,64	2,769
	16	19,5700	19,5646	28,78	:1	23,58	70,74	2,765
	17	20,2619	20,2561	29,30	11	24,10	72,30	2,802
	18	13,5482	13,5438	21,50	11	16,30	48,90	2,769
	19	16,4432	16,4375	24,88	5,18	19 ,7 0	59,10	2,781
	20	21,8720	21,8666	31,36	**	26,18	78,54	2,784
	21	13,2353	13,2316	20,93	11	15,75	47,25	2,800
	22	13,8300	13,8266	21,91	"	16,73	50,19	2,755
	23	15,6079	15,6038	24,02		18,84	56,52	2,761
	24	20,9155	20,9102	30,20	11	25,02	75,06	2,785
	25	11,7601	11,7578	19,34	"	14,16	42,48	2,767
	26	23,1863	23,1817	32,82	**	27,64	82,92	2,795
	27	23,1785	23,1732	32,95	*1	27,77	83,31	2,782
	28	19,3114	19,3061	28,35		23,17	69,51	2,777
	29	15,2097	15,2063	23,35	11	18,15	54,45	2 ,7 93
	30	14,6908	14,6894	22,79	11	17,61	52,83	2,781
ļ								

Gabbro de Kolel

N°	P. hum.	P. sec	v	0	V-0	хЗ	densité
1	12,1997	12,1817	19,2 8	5,48	13,80	41,41	2,941
2	7,7462	7,7335	14,31	"	8,83	26,49	2,919
3	7,4520	7,4387	13,94	11	8,46	25,38	2,931
4	6,2540	6 2426	12,61	11	7,13	21,39	2,918
5	10,1924	10,1764	17,01	11	11,53	34,59	2,942
6	13 2956	13,2731	20,48	11	15,00	45,00	2,949
7	9,6386	9,6229	16,41	**	10,93	32,79	2,934
8	9,8015	9,7874	16,56	11	11,08	33,24	2,944
9	10,1689	10 1582	17,01	11	11,53	34,59	2,936
10	9,7212	9,7112	16,51	**	11,03	33,09	2,934
11	7,0698	7,0665	13,55	11	8,07	24,21	2,918
12	5,3230	5,3212	11,54	11	6,06	18,18	2,92 6
13	7,5044	7,5018	14,05	н	8,57	25,17	2,917
14	6,6640	6,6595	13,08	"	7,60	22,80	2,920
15	6,4769	6,4739	12,88	11	7,40	22,20	2,916
16	17,7616	17,7415	25,62	11	20,14	60,42	2,935
17	12,4645	12,4500	19,64	11	14,16	42,48	2,930
18	8,6072	8,6019	15,23	11	9,75	29,25	2,941
19	8,8758	8,8694	15,58	11	10,10	30,30	2,927
20	7,3314	7,3257	13,86	5,48	8,38	25,14	2,914
21	9,8663	9,8562	16,67	11	11 ,19	33,57	2,936
22	9,3077	9,3000	16,03	**	10,55	31,65	2,938
23	8,0219	8,0188	14,67	11	9,19	27,57	2,908
24	5,9138	5,9105	12,19	11	6,71	20,13	2,930
2.5	10,3267	10,3169	17,21	**	11,73	35,19	2,932
26	6,5573	6,5561	12,97	**	7,49	22,47	2,917
27	11,6372	11,6254	18,65	**	13,17	39,51	2,942
28	7,7919	7,7856	14,39		8,91	26,73	2,913
29	15,2926	15,2772	22,77	5,48	13,17	39,51	2,945
30	17,2447	17,2241	24,90	11	19,42	58,26	2,956

Tablea**u** 4 Amphibolite

	N°	P. hum.	P. sec	v	0	V-0	х3	densité
	1	12,1844	12,1810	19,10	5,52	13.58	40.74	2,990
	2	10,7586	10,7553	17,57	- 11	12,05	36,15	2,975
	3	13,9462	13,9419	21,09	11	15,57	46,71	2,984
	4	10,5730	10,5695	17,36	11	11,84	35,52	2,975
	5	13,0600	13,0557	20,07	11	14,55	43,65	2,991
	6	11,7891	11,7861	18,67	11	13,15	39,45	2,988
	7	5,7193	5,7177	11,88	11	6,36	19,08	2,997
	8	9,6199	9,6165	16,30	**	10,78	32,34	2,973
	9	15,5508	15,5463	22,84	"	17,31	51,93	2,994
¥.	10	11,0700	11,0665	17,83	"	12,31	36,93	2,997
	11	15,3246	15,3203	22,67	11	17,15	51,45	2,978
	12	13,3421	13,3385	20,36	*1	14,84	44,52	2,996
	13	12,1737	12,1700	19,03	11	13,51	40,53	3,003
	14	14,8495	14,8457	22,01	11	16,49	49,47	3,001
	15	10,3325	10,3298	17,02	81	11,50	34,50	2,904
	16	10,5055	10,5034	17,25	5,52	11,73	35,19	2,985
	17	12,5590	12,5543	19,47	**	<u>1</u> 3,96	41,88	2,998
	18	10,8117	10,8091	17,59	*1	12,07	36,21	2,985
	19	7,5355	7,5335	13,88	11	8 ,3 6	25,08	3,004
	20	10,8390	10,8358	17,66	"	12,14	36,42	2,975
	21	21,2179	21,2106	29,15	11	23,63	70,89	2,992
	22	11,6050	11,6022	18,41	11	12,89	38,67	3,000
	23	12,1796	12,1763	19,09	"	13,57	40,71	2,991
	24	14,0480	14,0443	21,13	"	15,61	46,83	2,999
İ	25	13,8953	13,8914	21,C2	15	15,50	46,50	2,987
	26	13,6823	13,6798	20,78	11	15,26	45,78	2,988
	27	7,066 3	7,0649	13,44	5,52	7,92	23,76	2,973
	28	11,6430	11,6402	18,47	11	12,95	38,85	2,996
	29	9,5705	9,5689	16,21		10,69	32,07	2,984
	30	11,3255	11,3229	18,16	"	12,64	37,92	2,986

Basanite du Cap-Manuel

No	P, hum,	P. sec.	v	0	V-0	х0,3	densité
1	18,1672	18,1073	24,78	5,36	19,42	58,26	3,108
2	16,4008	16,3492	22,86	11	17,50	5,250	3,114
3	11,5650	11,5267	17,67	11	12,33	3,699	3,126
4	16,9460	16,8674	23,50	11	18,16	5,448	3,096
5	20,7081	20,6411	27,38		22,04	6,612	3,122
6	10,5465	10,4977	16,61		11,27	3,388	3,105
7	12 ,342 6	12,2869	18,65	5,34	1,331	3,993	3,077
8	30 ,072 0	30,0056	37,27	11	31,93	9,579	3,132
9	18,9769	18,8918	25,71	11	20,37	6,111	3,091
10	23,3053	23,2172	30,21		24,87	7,461	3,112
11	19,5812	19,5024	26,23	11	20,89	6,267	3,112
12	12,4070	12,3652	18,56	71	13,22	3,966	3,118
13	17,9552	17,9060	24,44	ŦŤ	19,10	5,730	3,123
14	23,2800	23,1920	30,27	5,33	24,94	7,482	3,100
15	13,3951	13,538	19,64	11	14,31	4,293	3,110
16	11,2421	11,2052	17,40	11	12,07	3,621	3,094
17	14,5375	14,4848	20,88	11	15,55	4,665	3,105
18	19,6432	19,5622	26,39	11	21,06	6,318	3,096
19	13,8191	13,7659	20,11	58	14,78	4,434	3,106
20	14,6563	14,6030	21,04	"	15,71	4,713	3,098
21	15,8598	15 ,7 936	22,36		17,03	5,109	3,091
22	20,3144	20,2625	26,94	11	21,61	6,483	3,125
23	12,3251	12,2817	18,50	"	13,17	3,951	3,108
24	19,2283	19,1596	25,95	11	20,62	6,186	3,097
25	12,5447	12,4907	18,84	"	13,51	4,053	3,081
26	17,6622	17,5928	24,30	11	18,97	5,691	3,091
27	23,4335	23,3590	30,35	ti -	25,02	7,506	3,112
28	15,9933	15,9341	22,46	11	17,13	5,139	3,101
29	24,5434	24,4510	31,60	î T	26,27	7,881	3,102
30	18,0487	17,9760	24,69	11	19,36	5,808	3,095
4					1		

Basanite du Cap-Manuel

Centre des classe : x _i	Effectifs ⁿ i	×i-Mo	n _i (:: _i -M _o)	(x ₁ -M ₀) ²	$n_i(x_i-M_o)^2$	t
3,080 3,090 3,100 3,110 3,120 3,130	2 5 10 7 4 2	-2.10^{-2} -1.10^{-2} 0 $+1.10^{-2}$ $+2.10^{-2}$ $+3.10^{-2}$	-4.10^{-2} -5.10 ⁻² 0 +7.10 ⁻² +8.10 ⁻² +6.10 ⁻²	4.10^{-4} 1.10^{-4} 0 1.10^{-4} 4.10^{-4} 9.10^{-4}	8.10^{-4} 5.10^{-4} 0 7.10^{-4} 16.10^{-4} 18.10^{-4}	-1,854 -1,082 -0,309 +0,464 +1,236 +2,009
<u>Total</u> :	30		^T I +12.10 ⁻²		T2 54.10 ⁻⁴	· . :

ł

ĩ.

I) Caractéristiques d'ordre de grandeur :

a-Moyenne arithmétique : $\bar{m} = 3,104$ b-Mode : $M_0 = 3,100$ c-Médiane : $M_e = 3,102$ 2) <u>Caractéristiques de dispersion</u> : d-Variance : V = 0,000164e-Ecart-type : $\alpha = 0,0128$

Tableau 7 Amphibolite

Centre des classes : x ₁	Effectifs ⁿ 1	ж _і -Мо	n _i (:: _i -11 ₀)	(:: ₁ -M _o) ²	n _i -(x _i -M _o) ²	t
2,975 2,985 2,995 3,005	6 9 12 3	-2.10^{-2} -1.10^{-2} 0 $+1.10^{-2}$	-12.10^{-2} - 9.10 ⁻⁴ 0 + 3.10 ⁻²	4.10 ⁻⁴ 1.10 ⁻⁴ 0 1.10 ⁻⁴	24.10 ⁻⁴ 9.10 ⁻⁴ 0 3.10 ⁻⁴	-1,526 -0, 4 36 +0,654 +1,744
Total :	30		T _I -10.10 ⁻²	T' 2-4 6.10	^T 2 36.10 ⁻⁴	

د دهم

1) Caractéristiques d'ordre de grandeur :

a-Moyenne arithmétique :

 $\bar{m} = 2,989$

b-Node :

c-Mediane :

2) Caractéristiques de dispersion :

d-Variance :

v = 0,000024

e-Ecart-type :

☞ = 0,0097

Tableau 8

Gabbro de Kolel

Ce cl	ntre des asses : x ₁	Effectifs ⁿ i	×1-M0	n _i (:: _i -1: ₀)	(x _i -M _o) ²	n _i (x ₁ -M _o) ²	t
	2,905	1	-3.10 ⁻²	-3.10 ⁻²	9.10-4	9.10-4	-1,903
	2,915	\$	-2.10 ⁻²	-13,10 ⁻²	4.10-4	36.10-4	-1,145
	2,925	3	-1. 10 ⁻²	- 3.10 ⁻²	1.10-4	3.10-4	-0,382
	2,935	9	0	0	0	C	+0,382
:	2,945	7	+1.10 ⁻²	+ 7.10 ⁻²	1.10-4	7.10-4	+1,145
	2,955	1	+2.10 ⁻²	+ 2.10 ⁻²	4.10-4	4.10-4	+1,908
	Fotal :	30		^T I -15.10 ⁻²		T ₂ 59.10 ⁻⁴	

1) Caractéristiques d'ordre de grandeur :

a-Moyonne arithmétique :

$$\bar{n} = 2,930$$

b-Mode :

 $li_0 = 2,935$

c-Médinne :

2) Caractéristiques de dispersion :

d-Variance :

-Ecart-type :

= 0,0131

Cipolin de Bandafassi

Centre des classes : x _i	Effectifs ⁿ i	×1- ^M o	n _i (r _i -M _o)	(x ₂ -M ₀) ²	n _i (x _i -N _o) ²	ĉ
2,755	2	-3.10 ⁻²	- 6.10-2	9.10-4	18.10-4	-2,290
2,765	6	-2.10 ⁻²	-12.10 ⁻²	4.10-4	24.10-4	-1,410
2,775	2	-1.10 ⁻²	- 2.10 ⁻²	1.10-4	2.10-4	-0,529
2,785	13	0	0	0	0	+0,352
2,795	5	+1.10 ⁻²	+5.10 ⁻²	1.10-4	5.10-4	+1,233
2,805	2	+2.10 ⁻²	+4.10 ⁻²	4.10-4	8.10-4	+2,114
<u>Total</u> :	30		^T I -11.10 ⁻²	¥	57.10 ⁻⁴	

ı.

1) Caractéristiques d'ordre de grandeur :

a-Moyenne arithmétique :

$$\bar{m} = 2.781$$

b-Mode :

c-Médiane :

$$M_{\odot} = 2,781 = \bar{m}$$

2) Caractéristiques de dispersion :

d-Variance :

$$V = 0,000177$$

e-Ecart-type :

= 0,0133

Granite de Kenieba

Centre des classes : x	Effectifs n _i	ж - М _о	n(x - M ₀)	(x - M ₀) ²	n(x -M ₀) ²	t
2,565 2,575 2,585 2,595 2,605 2,610	4 7 9 7 2 1	-2.10^{-2} -1.10^{-2} 0 $+1.10^{-2}$ $+2.10^{-2}$ $+3.10^{-2}$	-8.10^{-2} -7.10^{-2} 0 $+7.10^{-2}$ $+4.10^{-2}$ $+3.10^{-2}$	4.10^{-4} 1.10^{-4} 0 1.10^{-4} 4.10^{-4} 9.10^{-4}	15.10^{-4} 7.10 ⁻⁴ 0 7.10 ⁻⁴ 8.10 ⁻⁴ 9.10 ⁻⁴	-1,520 -0,720 +0,089 +0,880 +1,680 +2,480
<u>Total</u> :	30		T ₁ -1.10 ⁻²		T2 47.10 ⁻⁴	

1) Caractéristiques d'ordre de grandeur :

a-Moyenne arithmétique :

$$\bar{m} = 2,584$$

b-Mode :

c-Médinne :

$$M_{2} = 2,584 = \bar{m}$$

2) Caractéristiques de dispersion :

d- Variance :

$$V = 0,000156$$

e-Ecart-type :

= 0,0125

- Annexe 2 -

Résultats concernant la méthode

de Melcher

.z.

ŧ

Granite de Kéniéba

1) Résultats bruts :

No	P	PpI	Pp	פי2	v	densité
1	11,8095	13,3665	1,5570	8,750	4,6908	2,529
2	16,1858	18,3755	2,1897	11,200	6,5565	2,475
З	13,2716	20,0661	1,7945	12,600	7,2839	2,514
4	17,7496	20,0337	2,2841	12,050	7,2622	2,450
5	13,7821	16,0583	2,2767	9,700	5,6422	2,450

2) Etude statistique :

No	m	(::-m)	(x-m) ²
4	2,529	0,045	0,002025
2	2,475	0,009	0,000081
3	2,514	0,030	0,000900
4	2,450	0,034	0,001156
5	2,450	0,034	0,001156
			0,005318

- Moyenno arithuátique :

$$m = 2,484$$

- Variance : $v = \frac{0.005318}{5} = 0.001064$ - Beart-type : $\leq = VV = 0.0320$

- Coefficient de variation : $V = \frac{2}{m} \times 100 = 1,31 \%$

Cipolin de Bandafassi

1) Résultats bruts :

No	Р	PpI	р	Pp2	v	densité
1	10,8756	11,9266	1,0510	8,450	4,0970	2,657
2	9,0924	9,9172	0,8248	7,450	3,336 6	2,725
3	12,2560	13,6562	1,4002	9,360	4,5307	2,705
4	13,1721	14,5472	1,3751	9,960	4,8492	2,716
5	14,8491	16,1908	1,3417	11,050	5,4301	2,734

2) Etude statistique :

No	m	(x-m)	(x-m) ²
1	2,657	0,050	0,002500
2	2,725	0,018	0,000324
3	2,705	0,002	0,000004
4	2,716	0,009	0,000081
5	2,734	0,027	0,000729
			0,003638

- Noyenne arithmétique :

$$\bar{m} = 2,707$$

- Variance :

 $v = \frac{0,003638}{5} = 0,000727$

- Ecart-type :

 $5 = \sqrt{v} = 0,02695$

- Coefficient de variation : $V = \frac{5}{m} \times 100 = 0,995 \%$

Gabbro de Kolel

1) Résultats bruts :

N°	P	PpI	Рр	Pp2	v	densité
1	8,5650	9,9840	1,4190	7,150	3,0780	2,782
2	8,5717	9,2400	0,6683	7,350	2,9324	2,923
3	4,6594	5,2500	C,5906	4,750	1,6281	2,862
4	8,2842	9,2237	0,9395	7,120	2 ,8467	2,910
5	6,1802	6,9503	0,7701	5,720	2,1603	2,861

2) Etude statistique :

No	m	(x-m)	(x-m) ²
1	2,782	0,085	C,007225
2	2,923	0,056	0,003136
3	2,862	0,005	0,000025
4	2,910	0,043	0,001849
5	2,861	0,005	0,000036
			G,0 12271

1 - Moyenne arithmétique :

$$m = 2,867$$

2 - Variance : 0.012271

$$v = \frac{0,012271}{5} = 0,002454$$

3 - Ecart-type :

$$c = Vv = 0,0495$$

4 - Coefficient de variation : $v = \frac{s}{m} \ge 100 = 1,72 \ \%$

Tablegu	1	4
Amphicoli	t	e

1) Résultats bruts :

Иг	Р	۲œ۲	מַץ	Pp2	V	Jensité
1	6,4 404	7,2433	0,80 2 9	5,920	2,2233	2,905
2	8,1975	9,1527	0,9652	7,060	2,8152	2,916
3	7,7708	8,6316	0,8608	6,810	2,6587	2,930
4	7,8312	8,3763	0,5451	٥,900	2,6612	2,949
5	8,2791	9,0815	0 ,8 024	7,150	2,8833	2,929

2) Etude statistique :

Ho	m	(::-m)	(x-m) ²
1	2,905	0,021	0,000441
2	2,916	0,010	0,000100
3	2,930	0,004	0,000016
4	2,949	0,023	0,000529
5	2,929	0,003	0,000009
<u> </u>	*	Azt ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,001095

- moyenne arithmétique :

$$m = 2,926$$

- variance :

$$v = 0,001095 = 0,000219$$

- ecart-type :

$$5 = Vv = 0,0148$$

- coefficient de variation :

$$v = \frac{5}{m} \times 100 = 0,506 \%$$

Basanite du Cap-Manuel

1) Résultats bruts :

N°	P	PpI	Pp	Pp2	v	densité
1	16,8572	18,1748	1,3176	12,980	5,5345	3,053
2	11,5104	12,3607	0,8500	\$,430	3,7318	3,092
3	10 ,12 24	10,8570	0,7346	8,550	3,2844	3,089
4	8,3582	9,5462	1,1880	7,200	2,8232	2,969
						•

2) Etude statistique :

No	ĩa	(::-=)	(x-m) ²
1	3,053	0,025	0,000625
2	3,092	0,064	0,004096
3	3,089	0,061	0,003721
4	2,969	0,059	0,003481
	[·
			0,011923

- moyenne arithmétique :

m = 3,028

- variance :

$$v = \frac{0.011923}{4} = 0.002980$$

- acart-type :

 $\Im = Vv = 0,0546$

- coefficient de variation :

$$v = \frac{3}{m} \times 100 = 1,80 \%$$