ESTIMATION DE L'ABONDANCE DES LARVES DE SARDINELLA AURITA (. et V. SUR LA PETITE COTE SÉNÉGALAISE EN 1971 et 1972

F. CONAND

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

PROGRAMME DES NATIONS UNIES POUR LE DEVELOPPEMENT

Gouvernement de la République du Sénégal.

Ministère du Développement Rural.

Direction de l'Océanographie et des Pêches Maritimes

Centre de Recherches Océanographiques de

Dakar - Thiaroye.

ESTIMATION DE L'ABONDANCE DES LARVES DE SARDINELLA AURITA (C. et V.) SUR LA PETITE COTE SENEGALAISE EN1971 ET 1972(1)

par

F. CONAND(2)

- (1) Cette étude, réalisée dans le cadre du Projet "Etude et mise en valeur des ressources en poissons pélagiques", financé par le Fonds Spécial des Nations Unies (PNUD/FS/264 SEN 8), a été exécutée par le Centre de Recherches Océanographiques de Dakar-Thiaroye.
- (2) Océanographe biologiste de l'ORSTOM au CRO de Dakar-Thiaroye, B.P. 2241 Dakar-Sénégal.

DAKAR, MAI 1973

D.S.P. Nº 48

RESUME

L'étude de la répartition géographique et de l'abondance saisonnière des larves de la sardinelle ronde (<u>Sardinella aurita</u>) sur la Petite Côte du Sénégal depuis septembre 1970 a permis de chiffrer le recrutement des larves de 6 à 10 millimètres. Une estimation de la mortalité larvaire a pu être déduite de l'analyse des distributions de fréquence de taille.

SUIMARY

Since September 1970, larvae of <u>Sardinella aurita</u> have been collected off the Senegalese coast, south of Dakar. From the results on their occurrence and abundance, the recruitment has been assessed for the size-class 6-10 millimeters. An estimate of the larval mortality, based on the analysis of the size frequencies distribution has been calculated.

INTRODUCTION

Depuis 1968 des recherches sont poursuivies en vue de mieux connaître la reproduction des sardinelles des côtes sénégalo-mauritaniennes.

Les premiers travaux ont permis de délimiter les zones et les saisons de
reproduction des deux espèces (Sardinella aurita, 8. eba) et de donner une
idée de l'abondance relative des pontes. Le perfectionnement des méthodes
de collecte, depuis 1970, rend possible à l'heure actuelle l'estimation absolue du nombre d'individus. On reprend ici les résultats des observations
de septembre 1970 à août 1971 (CONAND et CREMOUX, 1972) en les complétant
par les données non encore publiées de 1972.

BOELY et al. (1969) ont montré que le stock adulte de Sardinella aurita se déplace entre la Gambie et le Cap Blanc, alors que les larves sont entraînées vers la côte, et que les jeunes se développent dans les eaux côtières pendant leur première année. La région retenue dans cette étude constitue une unité écologique : c'est la Petite Côte sénégalaise. Sa limite nord, le Cap Vert (14°45'N) est une barrière géographique difficilement franchissable par les larves et les jeunes individus. Par contre au sud, la Pointe Sangomar (13°50'N) est choisie d'une manière plus arbitraire, et il faut signaler que les transports de larves de part et d'autre de cette ligne s'ils sont limités par les apports d'eau de la Gambie, ne doivent cependant pas être négligeables.

A partir des résultats des campagnes de collecte de larves, nous avons calculéle nombre absolu d'individus des classes de 6 à 10 millimètres recrutés sur la Petite Côte du Sénégal pendant les grandes saisons de ponte (mai à juillet) de 1971 et 1972. Nous espérons pouvoir relier ultérieurement ces valeurs aux indices de densité du recrutement des sardinelles entrant dans la phase d'exploitation.

D'autre part, nous avons essayé de donner une estimation de la survie des larves.

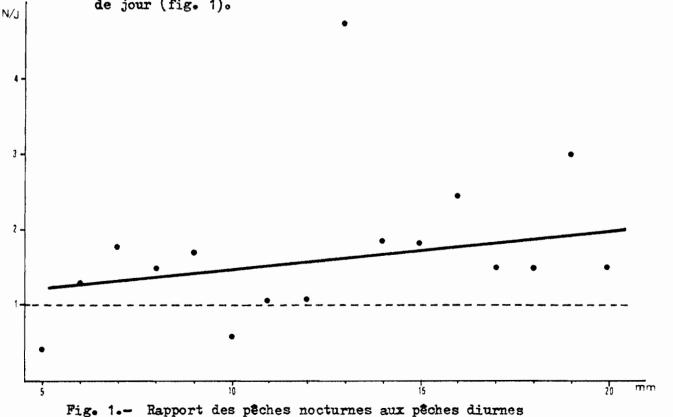
1. PROBLEMES POSES PAR LA RECOLTE DES LARVES DE POISSONS

Le matériel est récolté avec un filet Bongo de 60 cm de diamètre et de 360 microns de vide de maille. Un débitmètre permet d'évaluer le volume filtré, et le nombre de larves pêchées au cours des traits obliques est rapporté à un mètre carré de colonne d'eau. Le détail des méthodes de collecte est donné dans le rapport de CONAND et CREMOUX (1972).

Deux biais dûs à la sélectivité peuvent affecter le nombre et la composition en taille des larves. Ce sont l'échappement des petits individus à travers les mailles du filet, et l'évitement des plus gros qui fuient à l'approche de l'engin.

1.1. L'échappement

Ce facteur est lié principalement à la taille des mailles du filet, et n'affecte que les individus de petite taille. N'ayant pas encore réalisé d'étude personnelle sur ce sujet, nous nous référerons à une analyse de l'échappement des <u>Sagitta</u> (organismes de forme voisine des larves de sardinelle), réalisée par HARDING <u>et al.</u>, (1969). On peut résumer les conclusions de ces auteurs dans le tableau suivant.


% do capture	Sagitt	a sp.	Sardinella aurita		
// de dapture	Longueur	Diamètre	(Longueur équivalente)		
Filet 310 µ					
50 %	7 mm	0,45 mm	5 mm		
90 %	10 mm	0,70 mm	7 ·mm		
100 %	14 mm	1,00 mm	10,5 mm		

Avec le filet de 360 microns utilisé dans notre étude, dont le vide de maille réel, mesuré à la loupe binoculaire, est compris entre 285 et 350 microns, on peut estimer que le filet retient 50 % des larves d'une taille de 5 mm; 90 % vers 7 mm; 100 % à 11 mm.

1.2. L'évitement

Les organismes tendent à fuir à l'approche du filet, soit parce qu'ils le voient arriver, soit parce qu'ils perçoivent les vibrations et les turbulences créees par l'engin. Le phénomène cependant, affecte très peu les petits individus à faible pouvoir natatoire. AHLSTROM (1954) a noté les différences de rendement entre les pêches diurnes et nocturnes effectuées avec un filet conique de type classique. Il observe une régression linéaire des rendements qui sont plus de dix fois supérieurs la nuit pour les grosses larves de 15 à 20 mm.

Nous avons comparé les pêches diurnes et nocturnes de 156 stations (78 de jour et 78 de nuit) où 26684 larves de sardinelles ont été récoltées entre 5 et 20 mm (cf. Annexe I). Le test du χ^2 montre que la différence des captures diurnes et nocturnes de chaque classe de taille est significative au seuil de 95 %. On a ensuite représenté pour chaque classe, le rapport du nombre de larves des pêches de nuit à celle de jour (fig. 1).

On constate que les pêches nocturnes ont un rendement légèrement supérieur et que celui-ci augmente un peu avec la taille des larves. L'équation de la droite de régression a été calculée :

$$y = 0.052 x + 0.99$$

et l'on a pour : $x = 5$ $y = 1.24$
 $x = 10$ $y = 1.51$
 $x = 15$ $y = 1.77$
 $x = 20$ $y = 2.03$

On peut donc conclure que le phénomène d'évitement des grands individus bons nageurs est peu important jusque vers 15 mm.

2. ESTIMATION DE L'ABONDANCE EN 1971 ET 1972

2.1. Calcul du nombre d'individus présents dans la région pendant une campagne.

Pour chaque campagne, il a été possible de tracer des cartes de densité et d'évaluer par planimétrie les aires d'abondance. Puis, afin de tenir compte de la composition en taille des larves, on a calculé le nombre total d'individus par classe de 1 millimètre. A titre d'exemple, le détail des calculs pour une campagne est donné dans l'annexe I. Les résultats des deux années sont donnés dans l'annexe II.

2.2. Variations annuelles

De septembre 1970 à 1971 on a pu suivre l'évolution de la reproduction de <u>Sardinella aurita</u> sur la Petite Côte. La figure 2 représente la variation du nombre total de larves de 6 à 10 millimètres, au cours de ce cycle d'un an. On note que la principale période de ponte se situe pendant le mois de juin, au cours duquel deux campagnes consécutives ont fourni plus de 10¹¹ larves dans les classes de 6 à 10 millimètres. Deux autres pics moins importants apparaissent sur la courbe. Le premier correspond à la ponte d'automne que l'on observe chaque année, probablement due à un autre stock de reproducteurs, d'origine guinéenne (BOELY et <u>al</u>. 1969). L'autre au début du mois de mars semble être du à une des petites pontes sporadiques que l'on observe en saison froide.

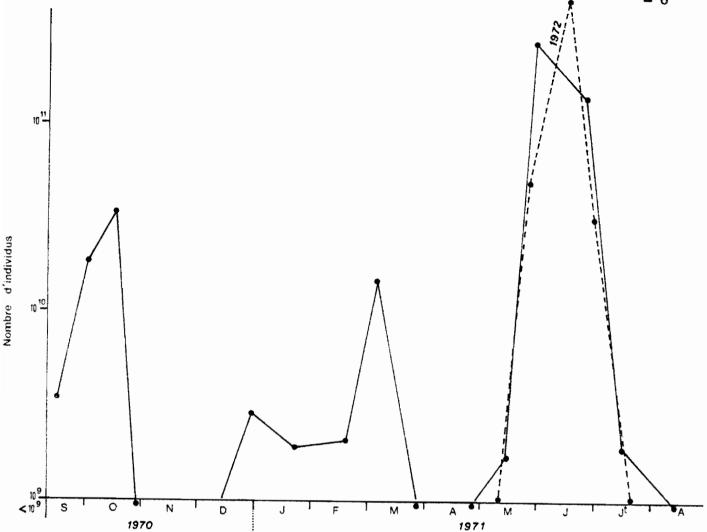


Fig. 2.- Variation annuelle du nombre de <u>S</u>. <u>aurita</u> des classes 6 à 10 mm sur la Petite Côte sénégalaise.

2.3. Comparaison des deux principales saisons de reproduction des années 1971 et 1972.

Pendant les mois de mai, juin et juillet nous avons effectué chaque année quatre ou cinq missions de collecte de plancton. Les courbes de variation annuelle du nombre des larves de 6 à 10 mm. sont très comparables d'une année à l'autre. Pendant la première quinzaine de mai, le taux de reproduction est faible, et ce n'est qu'à la fin du mois qu'il subit une augmentation brutale. Elevé pendant tout le mois de juin, il diminue rapidement au début de juillet.

Estimation de la durée de vic dans les classes de 6 à 10 mm.

Pour calculer le nombre total d'individus recrutés dans une classe de taille au cours d'une saison de reproduction, il est nécessaire de savoir pendant combien de temps, une larve appartient à cette classe. Ne possédant aucune donnée sur la vitesse de croissance de Sardinella aurita, nous nous sommes référés à des études faites sur des espèces voisines. KRAMER et ZWEIFEL (1970), en élevant au laboratoire des Engraulis mordax (poisson de 10 cm à 1 an) observent qu'à 17°C la durée de la vie dans les classes 6 à 10 est de 9 jours, et qu'à 22° elle est de 6 à 7 jours. KIMURA (1970) élève vers 19°C Sardinops coerulea (15 cm à 1 an) et trace la courbe de croissance sur laquelle on note que les larves mettent 5 à 6 jours pour passer de 6 à 11 mm. On peut donc estimer que S. aurita (20 cm à 1 an) vit pendant 4 ou 5 jours dans ces classes de taille. On retiendra cette valeur pour les calculs.

Périodicité des campagnes. Nous considérons que le nombre de la vers récoltées au cours d'une campagne est représentatif de la période qui s'étend de la date du milieu de l'intercampagne précédent jusqu'à celle du milieu de l'intercampagne suivant. Par ailleurs, on admet que le nombre de jours précédant la première campagne est égal à la moitié de la période comprise entre les deux premières campagnes; de même, le nombre de jours suivant la dernière campagne est supposé égal à la demipériode séparant les deux dernières.

Calcul du nombre total d'individus. On a vu précédemment les facteurs utilisés dans le calcul du nombre total d'individus. On les représentera par les symboles :

- n ⇒ nombre d'individus présents dans la région pendant une campagne
- d = durée de la vic des larves dans les classes d'âge considérées.
- P = période de temps représentée par une campagne.

Le nombre total de larves des classes de 6 à 10 millimètres recrutées sur la Petite Côte pendant une saison de reproduction est égal à $\sum (\underline{\mathbf{n} \cdot \mathbf{P}})$. Ce qui donne pour les deux saisons principales des années 1971 et 1972 :

Date	n	P	$\frac{n}{d}$
14-15/5/71	2.10 ⁹	14	5,6.10 ⁹
28-29/5/71	259 • 10 ⁹	20	1036 •10 ⁹
24 – 25/6/71	135•10 ⁹	24	648 . 1 0 ⁹
15-18/6/71	2.10 ⁹	24	9,6.10 ⁹
	$\sum \frac{n}{n}$	P pour 1971	1699,2.109
	•	u	
9 - 10/5/72	1.10 ⁹	15	3 •10 ⁹
2 4- 25/5/72	47•10 ⁹	17,5	164 , 5.10 ⁹
14 – 15/6/72	447•10 ⁹	17 , 5	1564 , 5.10 ⁹
29 – 30/6/72	32•10 ⁹	17,5	112 •10 ⁹
18 – 19/7/72	0 , 2 . 10 ⁹	21	0,8.109
	$\sum \frac{n}{r}$	<u>P</u> pour 1972	1844 , 8.10 ⁹

On retiendra donc les valeurs suivantes :

1971 : 1,7.10¹² individus des classes de 6 à 10 mm.

1972 : 1,8.10¹² individus des classes de 6 à 10 mm.

recrutés sur la Petite Côte pendant la grande saison de reproduction.

Un calcul du recrutement au cours de la saison d'automne de 1970 a donné 0,17.10¹² individus soit le dixième de la saison principale et le petit pic observé en mars 1971 indique un recrutement de 0,08.10¹² larves. Ces résultats montrent que <u>S. aurita</u> peut pondre toute l'année, mais que la reproduction de mai-juin est beaucoup plus importante quantitativement.

3. ESTIMATION DE LA SURVIE

En pays tempéré où la croissance est lente, on calcule le taux de survie en suivant au cours de campagnes successives la diminution du nombre d'individus présents dans une région de reproduction. Dans les mers chaudes où la ponte est étalée dans le temps et la croissance des larves est très rapide (environ 1 mm par jour pour les sardinelles);

celles-ci échappent aux engins de collecte planctonique après dix à quinze jours de vie. Les méthodes employées dans les mers froides ou tempérées, y sont donc difficilement applicables.

On peut alors estimer la survie en analysant la composition en taille des larves. En reprenant les résultats du calcul du nombre d'individus de chaque classe présents dans la région pendant une campagne puis en faisant la somme des données des saisons principales de reproduction pour 1971 et 1972, il est possible d'établir les courbes de fréquence de taille des larves (fig. 3). On constate que pour les

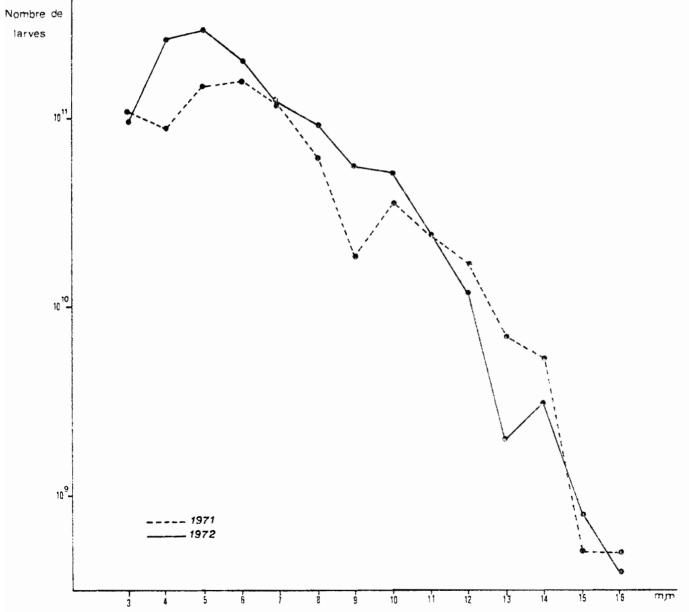


Fig. 3.- Survie des larves de <u>Sardinella aurita</u>, pendant la saison principale de reproduction, en 1971 et en 1972.

deux années les courbes sont très semblables. La faiblesse des classes 3 et 4 est due à l'échappement qui est supérieur à 50 % pour les très petits individus. Par contre entre 7 et 15 millimètres, nous savons que l'action de la sélectivité de l'engin de collecte est faible.

Afin de donner une estimation moyenne de la survie des larves de sardinelles, on a fait la somme de tous les résultats des campagnes de 1971 et 1972. Le taux de survie est de l'ordre de 1/10 pour un accroissement de 5 millimètres (fig. 3).

RESUME ET CONCLUSION

Cette étude a permis de définir un certain nombre de facteurs concernant la biologie de <u>Sardinella aurita</u> au cours de ses premiers stades de développement.

- 1.- Les premières observations ayant montré que les larves se développent dans la région de ponte, et que les jeunes passent leur première année dans les eaux côtières, alors que le stock des adultes se déplace vers le nord, il est possible de connaître le recrutement dans des régions bien délimitées géographiquement comme la Petite Côte sénégalaise. Le recrutement au cours des deux grandes saisons de reproduction de 1971 et 1972 est à peu près identique, respectivement 1,7. 10¹² et 1,8. 10¹² larves de la classe 6 à 10 millimètres.
- 2.- Cette méthode appliquée régulièrement au cours de la principale saison de reproduction (15 mai-15 juillet) permettrait semble-t-il de surveiller le potentiel de reproduction du stock sénégalo-mauritanien au niveau de la Petite Côte.
- 3.- Une estimation de la survie au cours de la phase de vie planctonique peut être obtenue en analysant la composition des tailles des individus. Elle est de l'ordre de 1/10 pour un accroissement de 5 milli-mètres.

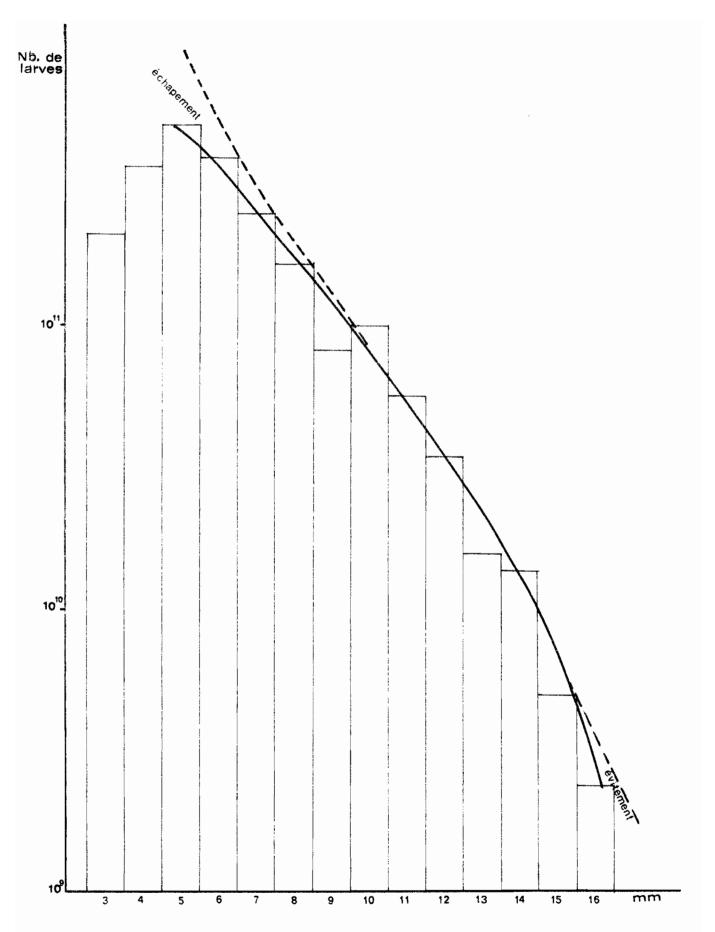


Figure 4. - Courbe movenne de survie des <u>Sardinella aurita</u> de la Petite Côte du Sénégal.

REFERENCES

- AHLSTROM (E.), 1954.- Distribution and abundance of egg and larval populations of the Pacific sardine. Fish. Bull. U.S. Fish Wildl. Serv. 56, (93) pp 83-140.
- BOELY (T.), CHAMPAGNAT (C.), CONAND (F.), 1969.— Reproduction et cycle biologique de <u>Sardinella aurita</u> (C. et V.) des côtes sénégalaises. <u>Doc. Sci. Provis. Cent. Rech. Océanogr. Dakar-</u>Thiaroye (21).
- CONAND (F.), CREMOUX (J.L), 1971.— Distribution et abondance des larves de sardinelles dans la région du Cap Vert de septembre 1970 à août 1971. Doc. Sci. Provis. Cent. Rech. Océanogr.

 Dakar-Thiaroye (36).
- HARDING (D.), NICHOLS (J.M.), TUNGATE (D.S.), 1969.— Comparative tests with high-speed plankton samplers. Cons. int. Explor. Mer, C.M. 1969/L: 19, (mimeo).
- KIMURA (N.), 1970. Formation of false annulus on scales of Pacific sardines of known age. Cal. coop. ocean. Fish.invest.Rept. 14, pp 73-75.
- KRAMER (D.), ZWEIFEL (J.R.), 1970.- Growth of anchovy larvae (Engraulis mordax Girard) in the laboratory as influenced by temperature. Cal.coop.ocean. Fish. invest. Rept. 14, pp 84-87.

ANNEXE I : Analyse de la taille des captures au cours des pêches diurnes et nocturnes pour 156 stations (78 de jour et 78 de nuit)

Classe en mm.	Pêches diurnes	Pēches nocturnes	TOTAL	Nuit jour
5	3464	1433	4897	0,41
6	2908	3734	66:12	1,30
7	1913	3412	5325	1,78
8	1612	2372	3984	1,49
9	742	1252	1994	1,69
10	966	562	1528	0,58
11	325	336	661	1,04
12	310	343	653	1,11
13	88	413	501	4,76
14	107	197	304	1,85
15	42	76	118	1,82
16	12	29	41	2,44
17	6	6	12	1,00
18	0	0	0	
19	4	12	16	3,00
20	4	4	8	1,00
TOTAL	12503	14181	2668/	

ANNEXE II : Méthode de calcul du nombre de larves récoltées au cours d'une campagne

					PLANCTON III	28-29 mai	1972	
1178 km ²	à	plus	de	100 larves/n	12	stations	E ₂ , D ₃	
2660 km ²	à	10	à	100 larves/m	_n 2	stations	B ₂ , B ₃ , D ₂ , E ₃	
3000 km ²	à	1	à	10 larves/n	₁ 2	stations	C ₂ , C ₃	
3000 km^2	à	0	à	1 larve /r	_n 2	stations	C1, D1, E1	

Larv	res/m²	²	Larves		La	rves/i	_m 2		Larves	La	rves/r	_n 2	Larves		Larve	s/m^2	i	Larves
\mathbb{E}_2	D3 ,	ñ	x1178.16	B ₂	B ₃	D_2	E ₃ _	m	x2660.10 ⁶	c ₂	c ₃	m	x3000.10 ⁶	C ₁	D ₁	\mathbb{E}_1	m	x3000.110 ⁶
14,6 7,3 40,3 298,9 84,0 29,0 14,6 11,0	0 2,2 22,4 12,6	7,3 4,7 31,3 70,7 56,6 20,1 2,2 9,5 7,7 5,5	8,6.10 ⁹ 5,5." 36,9." 83,3." 66,7." 23,7." 2,6." 11,2." 9,1."	40,2 7,2 0,6 1,2 0	0 0 2,5 1,7 3,4 0,8 1,7	0,0 3,6 14,8 26,5 16,2 6,7 2,2	0 0 1,4 4,3 2,1 4,3 1,4 7,8 7,8 6,4 5,7	2,7 4,8 8,4 5,4 2,9 1,5 3,3 2,8 2,7 2,0	7,2." 12,8." 22,4." 14,4." 7,8." 3,9." 8,7." 7,6." 7,2." 5,3."	0 0,2 2,0 4,1 1,0 1,2 0,5 0,7 0,2 0,2 0,3	0 0 0 0 1,9 0 0 3,7 1,0	1,0 2,0 1,4 0,6 0,2 0,3 1,9 0,6 0,2	3,0." 6,0." 4,3." 1,8." 0,7." 1,0." 5,8." 1,8."	0,2 0,1 0,1 0 0 0 0	000000000000000000000000000000000000000	0 0,1 0,1	0,03 0,07 0,03	0,3:10 ⁹ 0,1." 0,2." 0,1." 0,2." 0 0 0
	E ₂ 14,6 7,3 40,3 98,9 84,0 29,0 14,6 11,0 11,0	14,6 0 7,3 2,2 40,3 22,4 98,9 42,6 84,0 29,2 29,0 11,2 0 4,4 14,6 4,4 11,0 4,4 11,0 0	E ₂ D ₃ m 14,6 0 7,3 7,3 2,2 4,7 40,3 22,4 31,3 98,9 42,6 70,7 84,0 29,2 56,6 29,0 11,2 20,1 0 4,4 2,2 14,6 4,4 9,5 11,0 4,4 7,7 11,0 0 5,5 0 0	E_2 D_3 \hat{m} $x1178.16$ 14,6 0 7,3 8,6.10 7,3 2,2 4,7 5,5 " 40,3 22,4 31,3 36,9 " 98,9 42,6 70,7 83,3 " 84,0 29,2 56,6 66,7 " 29,0 11,2 20,1 23,7 " 0 4,4 2,2 2,6 " 14,6 4,4 9,5 11,2 " 11,0 4,4 7,7 9,1 " 11,0 0 5,5 6,5 " 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Classe	3 : 4 5	35,5.10 ⁹ 13,1.10 ⁹ 52,9.10 ⁹	
	6 7 8 9 10	111,8.109 85,6.109 33,3.109 7,2.109 20,9.109	258 , 8.10
	11 12 13 14 15	22,5.109 15,5.109 6,0.109 5,3.109	
Total		409,6 . 10 ⁹	

ANNEXE III : Nombre de larves de S. aurita (en millions) de chaque classe de taille, pendant les campagnes de collecte de plancton

1970-71	15/8	30/9	16/10	30/10	29/12	21/1	18/2	4/3	25/3	28/4	13/5	28/5	24/6	15/7	18/8
Classe 3	460	0	10195	0	0	0	60	0	540	0	0	35500	72900	0	0
4	460	0	15855	150	330	0	250	0	770	0	0	13100	77300	70	0
5	390	0	62135	0	210	0	60	1010	0	590	0	52900	94300	900	0
6	190	475	24675	0	0	0	0	450	0	80	160	111800	45400	70	0
7	460	9180	4390	150	360	320	0	2660	0	590	2 2 0	85600	35800	690	0
8	890	7055	2080	0	480	20	60	2860	0	0	1290	3 3 300		70	0
9	540	2125	520	0	1090	1350	810	4760	0	0	220	7200	11100	870	0
10	1080	0	1700	0	960	740	1190	4160	0	0	40	20900	16100	290	0
11	1080	0	1 040	0	1210	1180	25 0	3540	940	80	0	2 2 5 00	0	1380	0
12	350	0	2790	0	0	1980	20	2080	0	0	0	15500	100	1420	0
13	190	0	3710	0	210	45	0	1010	0	0	0	6000	0	960	0
14	0	0	3710	0	120	0	0	490	1000	0	0	5300	0	290	0
15	0	0	920	0	240	0	750	1620	0	0	0	O	0	490	0
	ĺ	Ì							l				į I		
Total	6590	18835	133720	300	5210	5635	3450	14890	3250	1340	1930	409600	380100	7500	0
Total 6à1 0	3160	18835	33365	300	2890	1690	2060	24640	0	670	1930	258800	135500	1990	0

1972	22/4	8/5	23/5	14/6	29/6	18/7
Classe 3 4 5 6 7 8 9 10 11 12 13 14	0 0 0 0 0 0 400 0 0	0 0 210 210 450 570 180 0 270 360 90	0 6260 8510 13530 8390 7425 8440 4020 2110 1790 1695 450	96300 256000 288600 192200 101300 78300 39200 35800 20700 9700 0	160 220 1350 5500 5440 5860 5850 8955 1540 350 0	0 0 150 100 30 30 30 30 100 0
15	0	72 0	385	400	0	0
Total	400	1 410	63005	1120000		500
Total 6à10	400	3060	41805	446800	31605	220