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related to a forced anomalous upper level anti- 
cyclone couplet straddling the equator. The 
SST anomalies produce the SO signal of sea 
level pressure. 

The extratropical results are not nearly so 
clear. There is a strong extratropical response, 
although it varies greatly with both time and 
initial conditions. The first couple of weeks of 
the 1982-83 experiment did show a PNA-like 
pattern in the 300 mb geopotential height dif- 
ference field. The lack of recognition of much 
of the difference patterns is perhaps not unex- 
pected, as the 1982-83 tropical heating ano- 
maly is of unprecedented magnitude and ex- 
tent. 
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Cote: B F A ~ ~ S  EX: On the Seasonal Variations ,.-- 
of the Atlantic North Equatorial Countercurrent 

The seasonal variations of the North 
Equatorial Countercunent (NECC) have been 
extensively studied. Garzoli and Katz (1983) 
recently inferred the NECC seasonal varia- 
tions from the depth of the thermocline, de- 
fined as the depth of the maximum vertical 
temperature gradient. 

Using a composite data set formed by 
combining Nansen, MBT, and XBT tempera- 
ture measurements, and deriving the dynamic 
height from an extended temperature field 
through a temperature-salinity relation, we de- 
scribe the seasonal variability of the surface 
dynamic topography of the tropical Atlantic 
Ocean from 16"s to 30"N and from the west 
African coast to 8O"W (Merle and Arnault, 
1983). Our result concerning the NECC dif- 
fers slightly from that obtained by Garzoli and 
Katz (1983). The two estimates of the geo- 
strophic NECC are in phase and vary with a 
similar amplitude, but with a different mean 
value. 

The slope of the thermocline, which inte- 
grates the NECC from the depth of the thermo- 
cline to the surface, indicates a large reversal 
of the current from March to June (Garzoli and 
Katz, 1983). Direct estimates of the variability 
of the NECC obtained recently from ship drift 
observations (Garzoli and Richardson, 1983) 
confirm this result. We did not observe such a 
large reversal in the surface meridional pres- 
sure gradient. 

Figure 1 shows the time-longitude varia- 
tion of the surface dynamic height difference 
between the northern trough at about IO-12"N 
and the north equatorial crest at about 2-4"N. 
In May-June the geostrophic current is at its 
minimum everywhere from Africa to Brazil. 
Between 40 and 44"W it slightly reverses di- 
rection. The NECC intensity peaks in Septem- 

ber-October between 30 and 40"W. East of 
30"W a secondary maximum with a bimodal 
seasonal signal appears in January, but this 
amplitude of variation is smaller than in the 
west. 

Busalacchi and Picaut (1983). using a nu- 
merical model with a single baroclinic mode 
and a realistic coastline geometry, analyzed 
the dynamic response of the pycnocline to the 
seasonal wind field. They found a surprisingly 
good agreement with our result. In particular, 
their theoretical model result contained a 
seasonal variation of the NECC with a maxi- 
mum intensity in July-October and a near-zero 
value in April. In contrast to the Garzoli and 
Katz (1983) result determined from the ther- 
mocline topography, Busalacchi and Picaut 
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FIGURE 1 (Arnault andMerle) 
Time-longitude diagram of the dynamic height dq- 
ference (relative to 500 db) ~ e ~ i ~ ë e ñ - l O - l 2 ~ N n n d  2- 
dod.  This d$terence is proportional to ¡he geo- I 
strophic zonal velocir?, of the North Equatorial I 

Countercurrent. . I  

(1983) did not find a reversal of the NECC. 

slope of the thermocline seems to better repre- 
sent the observed NECC than the meridional 
dynamic slope of the sea surface. Further stud- 
ies comparing dynamic height, heat content, 
and depth of the thermocline (defined either as 
the depth of maximum vertical temperature 
gradient or as the depth of the 20°C isotherm) 
will help solve this problem. 

The question remains why the meridional . 
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