Short Communication

r. [5 1

I

SIMPLIFIED CALCULATION **OF** THE ZERO-PLANE DISPLACEMENT *⁷*FROM WIND-SPEED **PROFILES**

Ch. RIOU*

Mission ORSTOM, 1002 Tunk-Belvidkre (Tunisia) (Received April **6,1983;** accepted for publication May 17, **1983)**

ABSTRACT

Riou, Ch., **1984.** Simplified calculation of the zero-plane displacement from wind-speed profiles. **J.** Hydrol., **69: 351-357.**

A simplified method is proposed to calculate zero-plane displacement from windspeed profiles. This method is applied to a wheat crop; accuracy is discussed and the effects of instability are incorporated to improve the result.

INTRODUCTION

Under neutral atmospheric conditions, the wind-speed profile above vegetation can be described by: *5*

$$
U = (U_*/k) \ln [(z-d)/z_0]
$$
 (1a)

If U is measured at two different heights, this becomes:

If U is measured at two different heights, this becomes:
\n
$$
U_2 - U_1 = (U_*/k) \ln [(z_2 - d)/(z_1 - d)] \qquad (1b)
$$

In these expressions, *U* is wind velocity; *z* height of measurement above the soil surface; U_* the friction velocity; z_0 roughness height; *k* von Karman's constant; and d the zero-level displacement caused by the vegetation.

Atmospheric instability causes deviations in these profiles. If the instability is slight, the wind-speed profile may be described by the formula given by Dyer and Hicks (1970):

$$
U = (U_*/k)[\ln\{(z-d)/z_0\} + 4L^{-1}(z-d)] \tag{2}
$$

where *L* is Monin-Obukhov's length, which is negative in this case.

0022-1694/84/\$03.00

© 1984 Elsevier Science Publishers B.V.
 O.R.S.T.O.M. Fonds Documentaire

 $0705C.1994$

351

^{*} *Present address:* Institut National de la Recherche Agronomique, Station de **Bioclimatologie-Télédétection,** Route de St.-Cyr, 78000 Versailles, France.

Because d also influences evapotranspiration knowledge of this zero-level displacement is of interest in hydrology. Its value, however, is rather difficult to calculate from measured wind-speed profiles. Though a rapid solution could be obtained by using the computer, a simple method is presented to evaluate d from such measurements. It consists of three parts:

f

4

A ,

(1) An initial estimate d_0 is obtained from the vegetation height *h*, using empirical formulae like:

$$
d_0 = 0.64h \qquad \qquad \text{(Cowan, 1968)}
$$

or

log *do* = 0.9793 log *h* - 0.1536 (Stanhill, 1969)

where d_0 and h are both expressed in cm.

atmospheric conditions and using a convenient approximation to eq. lb. (2) Calculation of d from wind-profile measurements, assuming neutral

(3) Correction for atmospheric instability, if necessary.

NEUTRAL CONDITIONS

TABLE **I**

The method is based on the fact that the function $\ln \left[\frac{z_2 - d}{z_1 - d} \right]$ under particular conditions remains close to $A[(z_2 - d)(z_1 - d)]^{-0.5}$, where *A* is a fixed number depending on the known levels z_1 and z_2 and on the unknown value of *d.*

Table I gives the value of A, for $z_1 = 1.5$, $z_2 = 3$, d varying from 0 to 1 (all values expressed in m).

For d-values ranging from O to 1, *A* displays only a variation of 6%.

A simple method for calculating d is thus suggested: an estimated value *do* is assigned a priori to *d,* e.g., obtained from the vegetation height *h.*

By using one of the above-mentioned formulae, *A* can now be calculated.

 V_{α} luga of *A* $f_{\alpha\mu\alpha} = 1.5$, $\alpha = 2$, *d* is variable

352

Fig. 1. $a^2/a_{0.5}^2$ with $z_1 = 1.5$, $z_3 = 4.5$ and three values of z_2 .

and one can write for three levels z_1 , z_2 and z_3 :

and one can write for three levels
$$
z_1
$$
, z_2 and z_3 :
\n
$$
U_2 - U_1 = \Delta U = (U_*/k)A[(z_2 - d)(z_1 - d)]^{-0.5}
$$
\n
$$
U_3 - U_2 = \Delta U' = (U_*/k)A'[(z_3 - d)(z_2 - d)]^{-0.5}
$$
\nand

and
\n
$$
\Delta U/\Delta U' = (A/A')[(z_1 - d)/(z_3 - d)]^{-0.5}
$$
\nand with $A'/A = a$:
\n
$$
d = [a^2(\Delta U/\Delta U')^2 z_1 - z_3]/[a^2(\Delta U/\Delta U')^2 - 1]
$$
\n(3)

For variations of d from O to **1,** Fig. 1 indicates values of *a2* related to $a_{0.5}^2$, the value corresponding to $d = 0.5$, for $z_1 = 1.5$ and $z_3 = 4.5$ and three intermediate levels 2,2.5 and **3.**

Though the variation in a^2 is smallest when the intermediate level $(z_2 - d)$ remains close to $[(z_3 - d)(z_1 - d)]^{0.5}$, it always remains small: an estimation error of \pm 0.1 in d_0 leads to relative deviations in a^2 ranging from 0.5% when *d* is small to **3%** when d is near 1. Calculating d with eq. **³**would result in an absolute error of 0.01 for $d \le 0.2$ and 0.03 for $d \ge 0.8$.

Example: wheat crop in Beauce

This method was applied to wind-speed measurements performed above a dense wheat crop with a mean height $h = 1.10 \text{ m}$, in Voves, France (48°30'N, 1°E), during observation of lower atmospheric layers in July 1977 by B. Itier (pers. commun., **I.N.R.A.).**

Seven profiles of wind speed measured over 10 min. were selected because they corresponded to near-neutral conditions.

Heights of wind-speed measurement were 1.2, 1.6, 2.0, 2.5, 3.0, 5.2, 7.2 and 10.2m. The constants *A* and *A'* were calculated from an a priori speed. estimate $d_0 = 0.7$ m and d was calculated from the mean differences in wind

HOMOGENEITY TEST

For given levels z_1 and z_3 , z_2 being variable, eq. 3 shows that the product $b^2 = a^2 (\Delta U/\Delta U')^2$ must remain constant. With this test, one can detect a level z_2 of faulty measurements where the corresponding b^2 -value systematically deviates from other values; in the present case, level 1.6 had to be eliminated.

J

CALCULATING d

The value of *d* was calculated for various values of z_1 and z_3 while taking intermediate levels of $z₂$ into consideration each time and avoiding levels near z_1 and z_3 . The value z_1 was selected successively equal to 1.2, 2.0 and 2.5 and **23** equal to 5.2, 7 and 10.2 m.

Eq. 1 can be also written:
\n
$$
z_3/(b^2 - 1) = [b^2 z_1/(b^2 - 1)] - d
$$
\nwhere $b^2 = a^2 (\Delta U/\Delta U')^2 = (z_3 - d)/(z_1 - d)$

Putting $y = z_3/(b^2 - 1)$ and $x = z_1 b^2/(b^2 - 1)$, \overline{d} is obtained by:

Putting $y = z_3/(b$
 $\overline{d} = (\Sigma x - \Sigma y)/n$

n being the number of couples x, y .

With 16 such couples, we obtain:

$$
\overline{d} = 0.79 \qquad \text{and} \qquad \overline{d}/\overline{h} = 0.72
$$

where *d* varies from 0.64 to 0.97 and its standard deviation is 0.10.

Fig. 2 shows the relationship between *x* and *y.*

SLIGHTLY UNSTABLE CONDITIONS

Let $\lambda = (z_3 - d)/(z_1 - d)$, which is equivalent to b^2 for neutral stability; the error of d as caused by deviations in the wind speeds can now be estimated by:

354

x *

Fig. 2. Application of the method to the case of a wheat crop $(h = 1.1)$ **.**

 $\delta d \approx [2\lambda(z_1 - d)/(\lambda - 1)] [\delta (\Delta U/\Delta U')/(\Delta U/\Delta U')]$

In cases of slight instability, such deviations are described by the second term in eq. 2.

Let:

Let:
\n
$$
\phi = \delta(\Delta U/\Delta U')/(\Delta U/\Delta U') = \delta(\Delta U)/(\Delta U) - \delta(\Delta U')/\Delta U'
$$

where **6** denotes deviations caused by instability and where the values themselves refer to the "neutral" case.

From eq. 2:

From eq. 2:
\n
$$
\delta(\Delta U)/\Delta U \cong (4/L)(z_2 - z_1)/\ln [(z_2 - d)/(z_1 - d)]
$$

and

and
\n
$$
\delta(\Delta U')/\Delta U \cong (4/L)(z_3 - z_2)/\ln [(z_3 - d)/(z_2 - d)]
$$
\nwith $c = (z_2 - d)/(z_1 - d)$, hence:
\n $c - 1 = (z_2 - z_1)/(z_1 - d)$ and $c - \lambda = (z_2 - z_3)/(z_1 - d)$

and

$$
F(c,\lambda) = (c-1)/\ln c - (c-\lambda)/\ln (c/\lambda)
$$

This finally yields: ,

 $\phi = (4/L)(z, -d)F(c, \lambda)$

For the correction in d to be applied to account for instability, we find: *^I*

$$
\delta d = 8\lambda (z_1 - d)^2 F(c, \lambda)/(\lambda - 1)L
$$

 $F(c, \lambda)$ can be calculated for several values of c and λ ; it is always ≤ 0 and $|F(c, \lambda)|$ increases with c when λ is given, and also with λ , when c is given.

for any value of **c.** Then, δd is always > 0 and, finally, it is smallest when $(z_1 - d)$ is small, *j*

For $L = -200$, the Table II gives the values of δd .

TABLE II

Values of δd **for** $L = -200$

In general, the smallest corrections, and hence the best estimate of d are obtained with the lowest levels of z_1 .

In the foregoing example, one can see on Fig. 2 the effect of instability; when z_1 (and also x) increases, δd increases.

During the measurements, *L* was about -200 m. The corrections δd from Table II can be used, and a new estimate of d gives the improved result:

$$
\overline{d} = 0.69 \qquad \text{and} \qquad \overline{d}/\overline{h} = 0.63
$$

Now the standard deviation of d is only 0.06.

The value of *d* is actually very close to value $d_0 = 0.7$, chosen a priori from Cowan's (1968) and Stanhill's (1969) estimates.

REFERENCES

fi

Cowan, I.R., 1968. Mass, heat and momentum exchange between stands of plants and their atmospheric environment. *Q.* **J. R. Meteorol.** *Soc.,* **94: 524-544.**

Dyer, A.J. and Hicks, B.B., 1970. Flux gradient relationship in the constant flux layer. Q. J. R. Meteorol. *Soc.,* **96: 715-721.**

Stanhill, *G.,* **1969. A simple instrument for the field measurement of turbulent diffusion flux. J. Appl. Meteorol., 8: 509-513.**

¥