Bothe/de Bruijn/Newton (eds.), Nitrogen Fixation: Hundred Years After Gustav Fischer \cdot Stuttgart \cdot New York \cdot 1988

Photodependent acetylene reducing activity (ARA) in ricefields under various fertilizer and biofertilizer management

P. A. Roger, P. M. Reddy and R. Remulla-Jimenez

The international Rice Research Institute, P.O. Box 933, Manila, Philippines

ARA and rice yield were measured for 3 seasons in 65 plots (4 x 4 m) receiving 13 partial combinations of: 1) urea (0, 30 + 25 kg N/ha broadcast, 55 kg/ha basal deep-placed); 2) P_2O_5 (0, 30 kg/ha basal or split); 3) Algal inoculation (0, 20 kg/ha); and 4) <u>Azadirachta indica</u> crushed seeds applied to control algal grazers (0, 100 kg/ha). To measure ARA, 8 core samples (2 cm \emptyset) including floodwater and the 3 first cm of soil were collected per plot. Floodwater was then removed. Incubation was made under 10% C_2H_2 in air for 1 h at 30 klux and 26-28°C. Acetylene/¹⁵N ratio was 4.7 ± 0.7.

o Average ARA per plot ranged from values equivalent to 2 to 38 kg N fixed/ha per crop and averaging 10.5 kg N/ha per crop.

o BGA inoculation and neem application had no statistically significant effect (p = 0.05) on ARA and yield, partly because of the development of indigenous mucilaginous BGA resistant to grazing.

o Split P application increased BNF over basal application by 72%. In 1987, applying 13 kg P/ha increased ARA by a value equivalent to 10 kg N/ha which partly explains a yield increase of 0.5 t/ha.

o BNF by BGA was almost completely inhibited by broadcast urea in 1985-86, but not in 1987, when it was 63% of the control. In 1987, broadcast urea caused a rapid blooming of green algae, leading to a water pH of 10 at noon 4 days after transplanting and high N losses by NH₄ volatilisation, reflected in the absence of yield response to broadcast urea. N losses and reinoculation of the plots by an irrigation water rich in BGA may explain the growth of N₂-fixing BGA after urea broadcasting, but the development of a significant ARA seems to be an index of low fertilizer efficiency as shown by negative correlations between ARA and yield in such plots.

o In 1985-86, ARA was decreased by 75% in plots where usea was deep-placed but, in 1987, it was similar to that in the control, confirming the potential of N deep placement for promoting photodependant BNF in N fertilized fields. Differences observed might result from the method of placement and water management.

o No correlation was found between BNF and yield in control plots and in plots where urea was deep placed. This may indicate that N fixed was little utilized by the crop. Promoting N_2 -fixation by BGA in wetland rice does not ensure that fixed N is made available to the crop.

1 4 SEP. 1990

ORSTOM Fonds Documentaire N°: 30.617 ex1Cote: B III PF M

5