
Mathematical Geology, Vol. 21, No. 8, 1989

It

hk, Locating a Point on a Spherical Surface Relative to a
Spherical Polygon of Arbitrary Shape'

Michael Bevis2 and Jean-Luc Chatelain3

An algorithm for determining if any given point, P , on the siirface of a sphere is located inside,
outside, or along the border of an arbitrary splierical polygon, S , is described. nie polygon is
described by specifling coordinates of its vertices, and coordinates of some point X which is known
to lie within S. The algorithin is based on the principle that an arc joining X and P will cross the
border of S an odd number of times if P lies outside S , and an even number of times ifP lies within
S. The algorithm has been implemented as a set of FORTRAN subroutines, and a listing is pro-
vided. nie algorithm and subroutine package cati be used with spherical polygons containing holes,
or with coinposited spherical polygons.

KEY WORDS: Spherical, polygon, locate, sort, algorithm, FORTRAN, subroutine.

INTRODUCTION

Spherical polygons are polygons confined to the surface of a sphere; their sides
are great circle arcs. Any shape on the surface of a sphere can be approximated
(to any degree of accuracy) by a spherical polygon, provided that the polygon
incorporates a sufficient number of vertices (or, equivalently, sides). This paper
describes an algorithm that locates a point on the surface of a sphere relative to
a spherical polygon of arbitrary shape (i.e., it determines if a given point lies
inside, outside, or on the boundary of a given spherical polygon). Many authors
have discussed "point-in-polygon'' algorithms in the context of plane surface
or cartesian (x, y) coordinate systems (e.g., Hall, 1975; Salomon, 1978; Davis
and David, 1980; or almost any computer graphics textbook). This is, to our
knowledge, the first extension of this class of algorithms to the spherical envi-
ronment.

'Manuscript received 6 October 1988; accepted 12 January 1989.
'Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Ra-
leigh, North Camlina 27695-8208.

31nstitut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM),
Nouméa, New Caledonia.

811
0882-812118911 l00-0811$06.0011 8 1989 Intemational Association for Mathematical Geology

812 Bevis and Chatelain

The primary application for point-in-spherical-polygon algorithms is the
sorting of sphere-hased data on the basis of their location. Because Earth's sur-
face approximates a spherical surface. this includes geographical sorting of geo-
based data. Point-in-spherical-polygon algorithms also facilitate use of nontri-
vial boundaries in numerical modeling and computational statistics. For ex-
ample. a spherical polygon can be used to indicate a domain within which a

The following discussion begins with a review of temiinology and con-
ventions. This is followed by a description of the point-in-spherical-polygon
algorithm. and its implementation as a set of subroutines coded in FORTRAN
(Appendix A). In the next section. some practical issues that arise during the
application of the algorithm and subroutines are addressed. The most important
of these issues is the use of multistage sorting. Finally. the persistent reader is
presented with a challenge.

4. ' --

geographical trend surface is adequately constrained by the data it characterizes. , *,

TERhíINOLOGY AND CONVENTIONS

In the following discussion, a great circle arc joining t\to points on the
surface of a sphere is referred to in various contexts. This requirez some care
because usually two great circle arcs are associated with a given pair of p in ts .
Let P and Q be distinct points on the surface of a sphere. A\wme that P and
Q are not antipodal (i.e., that they are not wparated by exactly 180"). Then.
only one great circle passes through both P and Q. but it can be divided into
two arch each of which has P and Q as its end points. The longer of thew great
circle arcs is called the major arc, and the shorter is the minor arc. The con-
vention adopted here is that that any reference to 17 or tlzr great circle arc joining
any two points such as P and Q. refers to the minor arc unless explicitly \Fated
othenwse. Note that this convention 1s rendered meminglehs in thc speck1 <I case
of antipodal points. because two such points can he joined by an infinite number
of great circle arcs of equal length (I SO"). In thc intere\t of brevity. a qrcclt
circle tirc often \vil1 be referred to as an ilrc in the following discussion. The
word arc refers to a great circle arc unless explicity stated otherwise. Similarly.
the adjective sphericcrl often is dropped. and a spherical polygon is referred to
a4 a polygon, etc. *

An ri-sided spherical polygon can be described completely hy specifying
location of it4 vertices. One wrtes arbitrarily i3 called Vi and the remaining
vertices are nunihered (L'?, il3. . L',,) sequentially around the boundaty from
Vi (Fig. 1) . An important problem occur< when a spherical polqgon is described
in this way. A polygonal boundary on the surface of a sphere divides that sur-
face into two domains both of which are spherical pohgons. Which of these
complementary polygons is the one under consideration? Be\ is and Cambnreri
(1987) used the ilirertiori of vertes enumeration to flag which complementary
polygon wa\ being described. Here. some point X inside the pnljgon i& 4peci-

a

I I

2

.

Point Location on Spherical Surface 813

,
P-Miib c ',

G
v ,

Fig. 1. The shaded area represents an eight-sided spherical
polygon, S. Vertices of this polygon are labeled VI, Vz. . - *

Vs. Some point X is known to lie inside of S. Points PI, P2,
P3, and P4 are located arbitrarily. An arc joining point X to
any point lying outside S (e.g., PI and P2) will cross the
boundary of S an odd number of times, and an arc joining X
and some point inside S (e.g., P3 and P4) will cross the bound-
ary of S an even number of times.

V,

'1

V6

fied, and this resolves any potential ambiguity about which of the complemen-
tary polygons is under study. The user of the algorithm presented below is free
to number vertices in either direction.

The location of a point on the surface of a sphere is specified in terms of
its latitude (A) and longitude (4) . Thus, the ith. vertex is assigned coordi-
nates (X i , 4i), and point X has coordinates (A,, 4,).

By convention, the spherical polygon under consideration is produced by
joining each neighboring pair of vertices by a minor great circle arc. A spherical
polygon which has one or more major arcs for a side can be described by break-
ing each major arc into two minor arcs by introducing a pseudovertex some-
where along that major arc. Note that for purposes of description, neighboring
vertices may never be antipodal (separated by exactly 180"), because the pol-
ygon would not be uniquely defined. A spherical polygon which includes one
side (or more) whose length is exactly 180" is handled by introducing a pseu-
dovertex which breaks that side into two minor arcs. (A pseudovertex has in-
terior and exterior angles of 180", unlike a true vertex.)

One restriction exists on the user's choice of the point X inside the polygon
under consideration. Point X must not lie on any great circle that passes through
two neighboring vertices. The significance of this restriction will become ap-
parent later. Because this condition can be tested in any code that implements
the algorithm, it will not burden the user unduly.

THE POINT-IN-SPHERICAL-POLYGON ALGORITHM

The basis of the algorithm is a simple extension to the spherical environ-
ment of an algorithm frequently used with plane polygons. Assume a spherical
polygon S and some point X located therein (described in the manner explained
above) are given. Consider any point P which is not antipodal to point X . The
problem is to determine if P lies inside or outside of S, or on its border. The
key to this problem is that X P (the minor arc joining X and P) will cross the
boundary of S an even number of times if P is inside S, and an odd number of

814 ReFis and Chatelain

times if P is outside S. For example (Fig. 11, points P I and P , lay outside of
polygon S. and minor arcs ,Pl and XP, cross the boundaries of S one time and
three times, respectively: whereas points P , and P4 lie inside S. and arcs XP?
and AY4 cross the boundaries of S not at all and twice. respectively. The kernel
of the problem is to determine if any arc XP crosses any given side of the
spherical polygon. This determination is made for each side in tum, and the
total number of crossings is counted. The algorithm must recognize in addition
the special case when P lies on the boundary of S.

The problem is illustrated in Fig. 2 . Does minor arc XP cross the side
whose vertices are A and B? First. determine if the strike (azimuth) of arc X P
at point Xis intermediate between (or equal to) that of arcs ,U and XB. This is
a necessary (hut not sufficient) condition for arc XP to intersect arc AB (the
polygon side). This test is implemented by transforming (Bevis and Cambereri.
1987) into a new coordinate system (h r . 4' 1 in which point Xacts as the north
pole (A ' = 90"). The prime meridian in this new system passes through the
north pole (N I in the original system. In this new coordinate system, i t is de-
termined if the longitude of P (i.e.. 6;) lies in the range 4: ++ 6;. Thih range
is shaded (Fig. 2). (THO ranges of longitude have 6; and 4; as end values: the
range of interest is that which spans less than IXO".) If this condition is not
met. arc XP cannot possihly cross side AB. and no further consideration of this
side is necessarq. If this condition is met. arc X P may cross bide AB. However
this is not necessarily the case: the condition (if necessary strike is met by point
P , (Fig. 2) . but XP, does not cross side ,4B. Therefore, another test is neces-
sary .

Fig. 2. A schematic illuhtrcition of the kernel pmlh-
lern: does arc Xf' cross the bide with verti
und R? A necessar) (hut not hutiicientr con
that arc .YP must lie uithin the diaded regim. Ttik
i:. called the condition ot necessary strike. (T'hi,
condition is not ii sufficient condition hecauie Xl';
satisfie5 the cnnditinn of necessar)- atrihe. but YP;
does not c'rnss side AB. I To test i t the ccindition a t
necessar) atrihe IS satisfied. the system i\ trms-
formed to o new spherical coordinate system in
which point 8 acta a s the "north pole," and in
which the p r im meridian Fasses through the nnrth
pole, N, of the original coordinate system. In this
coordinate sg\tem. arc\ .YA. 8 P . ctnd SB tall along
meridiam with longitudes 91, $I;.. and db. respec-
tiwlg. The condition of necessaq \tribe is natished
it and nnl) if bj, talls in the range

,

i-t $;l.

Point Location on Spherical Surface 815

If the condition of necessary strike is met, determine next if W crosses
side AB. This issue is resolved by determining if points X and P lie on the same
side or on opposite sides of arc AB. This is achieved by transforming into a
third coordinate system (A ” , 4 f f) in which point A acts as the north pole (A ”
= 90’). Then simply compute the signed angles ct and ß (Fig. 3) and determine
whether or not they have different signs. In this case, one of the points, P or
X , lies “east” of arc AB and the other point lies “west” of this arc; hence arc
X P must cross side AB. In the special case ß = O, point P lies on side AB (on
A, or on B , or on the intervening arc). For example, arc X P (Fig. 3) must cross
polygon side AB because points X and P lie on different sides of arc AB, whereas
arc XP2 cannot cross side AB because points X and P2 both lie on one side of
AB (Le., to the west).

The two tests described above resolve the problem of whether or not arc
X P crosses any given side of the polygon, or if point P lies on that side. All

, *:

2

*
- \ ’
?,

Fig. 3. Once the condition of necessary strike (Fig. 2)
is known to have been satisfied, arc XP must cross side
AB if points X and P lie on opposite sides of a great
circle passing through A and B. This condition is tested
by transforming into a coordinate system in which point
A acts as the north pole, and in which the prime merid-
ian passes through the north pole, N, of the original
coordinate system. Points X and P lie one to the east
of B , and the other to the west of B , if and only if arc
X P crosses arc AB. In the case that point P lies neither
east nor west of B , then P lies on arc AB.

816 Bevis and Chatelain

that is necessary is to apply these tests (the second test is applied only if the
first test for necessary strike is passed) to each side of the polygon in tum. This
is achieved by identifying each neighboring pair of vertices in turn with the
generic vertices A and B (i.e.. let A = Vi and B = Vi+,, for i = 1 , 7.
H - 1. then let A = V, and B = V ,) . If at any stage point P is found to lie on
a vertex or a side, then the procedure can terminate immediately (without con-
sideration of any remaining sides) and conclude that P lies on the boundary of
the polygon. Otherwise. each and every side of the polygon must be considered
in turn, and the number of times that arc XP crosses the boundary of the polygon
must be counted.

Several subtleties must be ohsenred when implementing this algorithm.
First, the entire approach breaks down if the arbitrary point P happens to be
antipodal to point X . In this special case. a unique minor arc XP does not exist.
Instead. an infinite number of great circle arcs join X and P . This condition can
be recognized and trapped: nevertheless. the location of P relative to S will
remain undetermined. In most cases, the fact that the algorithm cannot handle
one particular location for P will be of no practical importance (as long as this
fact is signified). By providing a second point X , known to be located inside S.
and reapplying the algorithm to the problem point. this shortcoming is circum-
vented. (P cannot he antipodal to both X and X,.)

A second suhtlety concerns the special case where arc X P passes exactly
through a vertex. The algorithm must recognize that arc XP can be considered
to have crossed either. but not hoth. of the sides sharing that vertex: othenvibe.
the total crossing count will bt: in error. This provision can be taken into account
during the test for necessary strike: the test is passed if 4;. equals @.i or lies in
the range of longitudes hetween A and B. hut not including @h. Consider a case
in which arc XP passes through vertex V j . When the side between V, - I and Ifj
is being examined. and vertes Vi is identified with E , the condition of necessary
strike is not satisfied, and arc XP is found not to cross this side. However. on
examining the next side. that joining vertices Vi and V, +, . vertex r/, \vil1 be
identified with -4, and this time the necessary strike condition will be satistied.
The second test will then go into effect and a crossing will be detected. Thus.
one crossing is counted when both bides have been considered.

The algorithm hreaks down when side ,4B lies along arc XP. In this situ-
ation, the concept of arc XP crossing arc AB becomes poorly defined. This
problematic configuration can occur only if point X lies on the great circle pass-
ing through both A and B. The problem is avoided easily if X is forbidden to
lie on any great circle that passes through any neighboring pair of vertices. In
practice, this restriction on the location of X within S rarely will inconvenience
the uscr. Of course. any computer code implementing this algorithm must check
that this restriction has becn met. Detecting a violation of this restriction is
simple in the coordinate system utilized for the test of necessaq strike. If. in a

Point Location on Spherical Surface 817

Ø

?

.
b.

b

J

coordinate system in which point X acts as the north pole (A’ = 90”), vertices
A and B have the same longitude (4; = +A). then points X , A , and B must lie
on a single great circle.

A FORTRAN IMPLEMENTATION OF THE ALGORITHM

The algorithm described above has been implemented as a set of subrou-
tines coded in FORTRAN (Appendix A). The code conforms to the FOR-
TRAN-77 standard, except that one or two common extensions to this language
(such as END DO) are used. These extensions are supported by most FOR-
TRAN-77 compilers. The subroutine package consists of four subroutines. The
first pair of subroutines (DefSPolyBndry and LctPtRelBndry) are called by the
user from his main or driver program. The remaining subroutines (TmsfmLon
and EastOrWest) are called by subroutines DefSPolyBndry and LctPtRelBndry ,
and should not be referenced by the user’s main program.

Most applications that call for a point-in-spherical-polygon algorithm in-
volve establishing a small number of polygonal boundaries (often just one), and
then processing large numbers of points to find which points are inside those
boundaries. Given this pattem of usage, any quantities that depend only on the
position of the polygon and interior point X should be computed just once, and
not repeated each time a new point P is considered. For this reason, two sub-
routines are provided to the user to solve the point-in-spherical-polygon prob-
lem. First, the user’s program calls subroutine DefSPolyBndry to define the
spherical polygonal boundary and to specify the location of the interior point
X . The user’s program then calls subroutine LctPtRelBndry to determine the
location of any point (P) relative to the boundary. Normally, DefSPolyBndry
will be called once, and subsequently LctPtRelBndry will be called many times.

Subroutine DefSPolyBndry performs several functions. It computes “lon-
gitudes” of each of the polygon’s vertices in a coordinate system in which point
X acts as the north pole (A‘ = go”), and stores this information, together with
coordinates of the vertices and point X in the original coordinate system, in a
named common block. This information is available to subroutine LctPtRel-
Bndry which shares this named common block. DefSPolyBndry also checks for
several possible error conditions. First, it ensures that sufficient storage is avail-
able to solve the problem. (The maximum allowable number of polygon sides
can be adjusted by editing the value assigned to parameter ~itxnv.) It checks that
all neighboring vertices are distinct (including the first and last vertices). It
checks that no neighboring pair of vertices are antipodal, and that point X does
not lie on the great circle projection of any polygon side. DefSPolyBndry also
sets a flag in the named common block to indicate that it has been called (at
least once).

818 Revis and Chatelain

The user's main program calls subroutine LctPtRelBndry to determine if
some point P. whose coordinates are passed through the argument list. is inside.
outside. or on the boundary of the polygon previously defined. LctPtRelBndry
obtains any necessary information about the location of the polygon and point
X through the common block named spolybndry. LctPtRelBndry first checks
that a polygon has been defined by a previous call to DefSPolyBndry. It then
checks that points P and X are not antipodal. (If they are. it flags this problem
and retums control to the main program without solving the problem of P's
location relative to S .) LctPtRelBndry then processes each polygon side in tum.
Each side is tested for the condition of necessary strike. In the event that this
test is passed. it determines if points X and P lie on the same side of the polygon
side (no crossing). on different sides (a crossing). or neither (P lies on the pol-
ygon side). If P is determined to lie on a side of S . the problem is solved and
the subroutine terminates. Otherwise, all polygon sides are considered. and the
total numher of crossings is determined. The problem is solved, and the suh-
routine retums control to the main program.

Subroutines TmsfmLon and EastOrWest are also listed (Appendix A).
Subroutine TmsfmLon is required by subroutines DefSPolyBndry and LctPt-
RelBndry to perform the coordinate transformation produced by moving the
location of the north pole. This transformation is discussed in Brvih and Cam-
bareri (1987). Subroutine EastOrWest is required hy subroutine LctPtRelBndry .
Given the longitudes of two points. it determines if the second point lies east,
west, or neither east nor west of the first point.

USING COMPOIJND POLYGONS

A polygon containing one or more holes can be defined as a single entity
(Fig. 3a). For ewmple, this situation might arise when large islands such as
Sicily are excluded from a polygon that represents the Mediterranean Sea. Sim-
ilarly. a suite of polygons can he defined as a single entity (Fig. 3b). For ex-
ample, a chain of islands can be represented as a single polygon. Entities of
this kind (Fig. l a . b) are called compound polygons (Bevis and Cambareri.
1987). In order to describe a polygon containing a hole (Fig. 4a), the inner and
outer boundaries are joined by a corridor of zero width: by treating both of
these boundaries a h parts of a single and continuous boundary, the shaded pol-
ygon (Fig. l a) is described as a polygon with 14 vertices and sides. Vertices 3
and 11 are coincident. as are vertices 5 and 10. A similar device is used to
reprehent a suite of polygons as a single polygon (Fig. l b) . In this way, a chain
of islands is defined as a single geographical entity in a single call to Def-
SPolyBndry. and subsequently a single call to LctPtRelBndry will determine if
any point P lies within the island chain.

4

t

g

Point Location on Spherical Surface 819

,

v

c

I

‘ e !

I

Fig. 4. Examples of compound polygons, showing how they are described for use with the point-
in-spherical-polygon algorithm. (A) This polygon contains a hole. The inner and outer walls of the
(shaded) polygon are joined by a comdor of zero width. One of the sides of this comdor joins
vertices 4 and 5, the other joins vertices 10 and 11. Vertices 4 and 11 are coincident, as are vertices
5 and 10. Although sides 4-5 and 10-1 1 touch, they do not cmss. Note that the compound polygon
has 14 sides, none of which cross each other. (B) By a similar device, a suite of polygons may be
treated as a single polygon. The composite polygon shown can be treated as a single spherical
polygon with 13 sides, although in reality it consists of two separate (shaded) areas. These areas
are joined by a comdor of zero width.

A PRACTICAL EXAMPLE

The application that initially prompted development of the algorithm pre-
sented here was that of sorting earthquakes in a seismicity catalog on the basis
of their location. The case study described in this section was the first practical
application undertaken, after initial debugging and testing of the computer codes.
A network of 19 seismograph stations was established in the central New He-
brides island arc (Vanuatu) in 1978-1979, as part of a joint project of Come11
University and ORSTOM. By mid 1987 this network had been used to locate
over 17,000 local earthquakes. Chatelain et al. (1986), in a study of the space
and time distribution of seismicity in this area, identified four regions of large
“background” seismicity (Fig. 5b). The precise significance of these bounda-
ries, and the manner in which they were determined, need not concern the
reader. In 1987, as part of an ongoing program of data analysis, all events
located in the four previously identified zones were desired to be extracted. The
boundaries had been digitized in the earlier study and were readily available.

These boundaries were concatenated, as described in the previous section,
so as to form a single compound polygon. Corridors of zero width joining the
four simple polygons are visible (Fig. 5b). This compound polygon contains
1071 vertices. The data set to be sorted consisted of 17,087 hypocenters (Fig.
5a). The application program defined the boundary by a single call to Def-

820 Bevis and Chatelain

I
187 E 16R

Fig. 5. (A l A map \hoQing epicenters of 17.087 earthquakes located hy the OR-
STOhliCornell network in Vanuatu. (B I A composite spherical pnlygtin cunsisting of
fnur arras of interest to wismnlogista managing this data set. This poljgori has 1071
sides. ,411 the earthquakes in (A) are sorted accwding to whether or not they kill within
the houndar)- shown i n I B I .

SPolyBndry, and then called LctPtRelBndry 17,087 times to determine the lo-
cation of each epicenter in tum. Epicenters that were found to lie exactly on
the boundary were treated as “outside” points so as not to admit data that
happened to lie along the corridors. The sorted data indicate 6.160 hypocenters
are inside the boundary (Fig. 6b). whereas the remaining 10.927 hypocenters
(Fig. 6a) are outbide.

hIULTISTAGE SORTING

Because the babic algorithm examines every side of the polygonal bound-
ary each time some point P is located relative to the boundarq. sorting large
numbers of points using a polygon containing many side\ is time-consuming.
For example. the h o r t described above took just over 64 min to perform on a
VAX-l1/750 running VMS (with a moderate user load). Sorting times can be
reduced by more than an order of magnitude in situations of this kind by im-
plementing a multistage sort. Multistage sorting is utilized commonly in the
context of spatial sorting relative to plane polygonal boundaries (Davis and
David. 1980: or almost any computer graphics textbook). and this strategy is
carried over easily to the spherical environment. Suppose a large number of
points must be sorted relative to some polygon S that contains a large number
of sides (Fig. 7). Tuo new polygons. I and O (Fig. 7). each containing a small
number of sides compared to S . are chosen such that I lies close to but every-

- -

3

Point Location on Spherical Surface 82 1

Y

Fig. 6. Maps showing epicenters that fall (A) outside, and (B) inside, the composite
spherical polygon shown in the previous figure.

where within S , and O lies close to and everywhere outside of S. The goal is
to have O completely surround S and I to be completely contained by S, and to
minimize the area between O and I , but keeping the number of vertices in O
and I small compared to the number in S.

The principle of the multistage sort is straightforward. Given some point
P , one first checks to see if it lies outside O. This is a computationally inex-
pensive task because O has few vertices. If P lies outside O, then clearly it must
lie outside S, and the problem is solved. If P is found to lie inside O, a second
test is performed to determine if P lies inside I . Again this is computationally
inexpensive. If P lies inside I , then it must lie inside S , and the problem is

Fig. 7. The spherical polygon S has a large
number of sides. Boundaries O and I have fewer
sides. O lies completely outside S, and I lies
completely inside S. Clearly any point lying
outside O also lies outside S, and any point lying
inside I also lies inside S.

16
s E

18 -

I
167 E 168

822 &vis and Chatelain

solved. In a small number of cases, P lies inside U but outside I . and so whether
or not P lies inside S has not been determined. In this case, the point-in-spher-
ical-polygon algorithm is employed directly to solve for the location of P rel-
ative to S. An expensive computation is performed only in the event that this
third test is necessary.

Implementation of the multistage sort has to be modified slightly from that
described above in order to use codes provided (Appendix A). This is because
the codes are structured so as to be most effective when a polygon is defined
once (using DefSpolyBndry) and many points are subsequently located against
that polygon (using LctPtRelBndry). A sequence of steps. such as define O.
locate P relative to U. define I . locate P relative to I . read next P. define U
again, locate P relative to U, ctc., is undesirable because U and I (and perhaps
S) would be defined many times. In this case. the computations performed by
DefSPolyBndry would be performed repetetively and redundantly. HoRever.
the multistage sort can be reorganized so as to ensure that each polygon is
defined only once. The application program reads the coordinates of all points
into memory, and establishes a flag for each point that can be set to one of three
values, signifying (i) P inside S. (ii) P outside S, and (i i i) location of P relative
to S not yet determined. The polygon O is defined (once). and the program
loops over all points and determines the location of each point relative to U.
The results are stored in the flag array. If a point is outside of O , it is flagged
as lying outside of S; otherwise. its location relative to S is undetermined. Then
polygon I is defined and a second loop is executed in which all points as yet
not located relative to S are located relative to I . If any such point is inside I .
its flag is reset to indicate that it is inside S. These tasks are performed rapidly
because the number of sides in U and I are small. Finally. polygon S is defined.
The program then loops over each point. checks the flags to identify every point
as yet unlocated relative to S . and applies the point-in-polygon-algorithm di-
rectly. explicitly determining the location of the point relative to S.

The procedure discussed above. in which all points are located relative to
U, and subsequently a subset of these points are located relative to I , and finally
a subset of these points are located relative to S , reflects the structure of the
subroutines as listed (Appendix A). The codes could be modified so that each
point could be located relative to U, and if necessary relative to I . and if nec-
essary relative to S, prior to consideration of the next point. This approach
would minimize the use of program storage. However. all information currently
passed (from DefPolyBndry to LctPtRelBndry) through the named common

so that points could be located against polygons O. 1. or S in any sequence.
without the need to define U. I , or S more than once. The subroutines presented
here are not structured this way because the expanded argument list is cumber-
some to use, and results in a rather ugly code.

2

7

- *

block, would have to be passed through LctPtRelBndry 's argument list instead, 7
L

Point Location on Spherical Surface 823

DISCUSSION

Subroutines presented here have been employed in several real-world con-
texts and, from a practical point of view, their performance has been satisfac-
tory. The requirements that point X not lie on a great circle joining any neigh-

P, have only once forced a change in the position initially assigned to point X.
Nevertheless, from the viewpoint of the geomathematician , these limitations
manifest a certain inelegance inherent to the algorithm. Indeed, nearly all awk-
ward aspects of this algorithm largely derive from the choice of point X and its
relationship to other points in the problem. This suggests an avenue for the
future improvement of point-in-spherical-polygon algorithms.

of arbitrary shape. Algorithms can be devised that solve this problem with ref-
erence to some point X that lies within the boundary under consideration. How-
ever, this problem can be solved without reference to any point lying within the
polygon. Bevis and Cambareri (1987) presented an algorithm for computing the
area of a spherical polygon that requires as input only the coordinates of the
vertices of the polygon. They adopted a convention whereby the direction of
vertex enumeration flagged which of the spherical polygons enclosed by the
boundary was the one under consideration. Their algorithm is leaner and more
elegant than the one presented here. Undoubtedly, a point-in-spherical-polygon
algorithm could be developed that requires only coordinates of the polygon's
vertices (and not the location of some point X lying with the polygon); an al-
gorithm in this class would eliminate the restrictions (and much of the special
case handling) associated with the algorithm presented here. The reader is in-
vited to develop this new class of algorithm.

w boring vertices of the polygonal boundary, and that X not be antipodal to point

-?

4
r Consider the related problem of computing the area of a spherical polygon

1 -

I
p'

APPENDIX A

c Given some spherical polygon S and some point X known to be located inside S, these routines
c will determine if an arbitrary point P lies inside S, outside S, or on its boundary.The calling
c program must first call DefSPolyBndry to define the boundary of S and the point X. Any
c subsequent call to subroutine LctPtRelBndry will determine if some point P lies inside or
c outside S; or on its boundary. (Usually DefSPolyBndry is called once, then LctPrRelBndry is
c called many times).

c REFERENCE: Bevis, M. and Chatelain, J.-L. (1989)
C Mathematical Geology, vol 21.

c VERSION 1.0

c***~***************************
c**
c This main entry point is used to defime the spherical polygon S and the point X.

Subroutine DefSPolyBndry(vlat,vlon,nv,xlat,xlon)

824 Revis and Chatelain

c ARGUMENTS:
c vlat,vlon (sent) ... vectors containing the latitude and longitude of each vertex of the spherical

c nv
c xlat,xlon (sent) ... latitude and longitude of some point X located inside S. X must not be

C polygon S . The ith. vertex is located at [vlitt(i),vlon(i)].

located on any great circle that includes two vertices of S.

(sent) ... the number of vertices and sides in the spherical polygon S

C

c UNlTS AND SIGN CONVENTION:
c Latitudes and longitudes are specified in degrees.
c Latitudes are positive to the north and negative to the south.
L' Lnngitudes are positive to the east and negative to the west.

c VERTEX ENUMERATION:
c The vertices of S should be numbered sequentially around the horder nf the spherical polygon.
c Vertex 1 lies between vertex nv and vertex 2. Neighhounng vertices must be seperated by less
c than 180 degrees. (In order to genente a polygon side whose are length equals
c or exceeds 180 degrees simply inunduce an additional (pseudohertex).
c Having chosen vertex 1. the user may number the remaining vertices in either direction.
c However if the user wishes to use the suhroutine SPA to determine the area of the polygon S
c (Bevis Cy; Cambaren, 1987, Math. Geol., v.19, p. 335-346) then he or she must follow the
c convention whereby in moving around the polygon border in the direction of increasing
c vertex numher clockwise hrnds occur at salient vertices. A vertex is salient if the interior angle
c is less than 180 degrees. (In the ciise of a convex polygon this convention implies that vertices
c are numbered in clockwise sequence).

implicit none
integer mxnv,nv

c...
c Edit next statement to inmase m;tuimum number of vertices that may lx
c used to define the spherical polygon S

parameter (mxnvdOOi
c The value of parameter mxnv in suhroutine LctPtRelBndry must match that
c nf parameter mxnv in this subroutine, its assigned ahove.

. . . r . . .
re:il*8 vlatinv~.vlon(nv~.xl~t,.;lon,iiellon
real*8 tlonv(mxnv).vlat_c(rnxnv~,vlon_c(mxnv).xlat_c.slon_c
integer i,ihndry.nv-c,ip
data ihndry /O/

common /spolyhndry/vlat_c,vlun_c.nv_c,xlat-c,slnn_c.tlonr-.~hnd~

ifinv.gt,mxnv)then
print *,'nv exceeds maximum alloued value'
print *,':tdjust parameter mxnv in subroutine DefSPolyBntlry'
stop

end if

ibndry=]

nv-c=nv
xlat-c=xlat ! " "

xlon-c=xlon ! " "

do i=l .nv

! houndary defined at least once (fltg)

! copy for named common

vlat-c(ii=vlnt(i) ! " "

vlon-cii)=slon(i) ! " "

call TmsfmLon~slat.~lon,vlatlii,vlon(ji,rlonfi))

Point Location on Spherical Surface 825

k,

8 . ,.

F'

r

if(i.gt. 1)then

else

end if

if(vlat(i).eq.vlat(ip) .and. vlon(i).eq.vlon(ip))then
print *,'DefSPolyBndry detects user error:'
print *,'vertices ',i,' and ',ip,' are not distinct'
stop

end if

if(tlonv(i).eq.tlonv(ip))then

i p s - 1

ip=nv

print *,'DefSPolyBndry detects user error:'
print *,'vertices ',i,' & ',ip,' on same gt. circle as X
stop

end if

if(vlat(i).eq.-vlat(ip))then
dellon=vlon(i)-vlon(ip)
if(dellon.gt.+l80.)dellon=dellon-360.
if(dellon.lt.-l80.)dellon=dellon-36.
if(dellon.eq.+l80.0 .or. dellon.eq.-l80.0)then
print *,PefSPolyBndry detects user error:'
print *,'vertices ',i,' and ',ip,' are antipodal'

stop
end if

end if

end do

c***
...
c This routine is used to see if some point P is located inside, outside or on the boundary of the
c spherical polygon S previously defied by a call to subroutine DefSPolyBndry. There. is a
c single restriction on point P it must not be antipodal to the point X defined in the call to
c DefSPolyBndry (ie.P andX cannot be seperated by exactly 180 degrees).

c ARGUMENTS:
c plat,plon (sent) ... the latitude and longitude of point P
c location (returned) ... specifies the location of P

Subroutine LctPtRelBndry@lat,plon,location)

C
C
C
C

location4 implies P is outside of S
location=l implies P is inside of S
location=2 implies P on boundary of S
location=3 implies user error (P is antipodal to X)

c UNITS AND SIGN CONVENTION
c Latitudes and longitudes are specified in degrees.
c Latitudes are positive to the north and negative to the south.
c Longitudes are positive to the east and negative to the west.

implicit none
integer mxnv

826 Bevis and Chatelain

c ..
c The statement below must match that in suhroutine DefSPolyBndry

parameter h"Xn=500)
c. ...

real*8 tlonv(mxnv),vlat-c(mv),vlon-c(mxnv),xlat-c,don-c
real*8 plat,plon,vAlat,vAlon,vBlat,vBlon,tlonA,tlonB,tlonP
real*8 tlon-X,tlon-P,tlonB,dellon
integer i,ibndry,nv-c,location,icross,ibmgAB,ihmgAP,ihmgPB
integer ihmgBX,ibmg-BP,iste

common /spolybndry/vlat-c.vlon-c,nv_c,xlat-c,xlon-c,tlonv,ibndry

if(ibndry.eq.0)then ! user has never defined the bndry
print *,'Subroutine LctPtRelRndry detects user ennr:'
print *,'Subroutine DefSPoIyRndry must be called before'
print *,'subroutine LctPtReIBndry can be called'
stop

end if

iffplat.eq.-xlat-c)then
dellon=plon-xlon-c
if(dellon.lt.-l8~).)dellon=dellon+3~.
if(dellon.gt.+l XO.idellon=dellon-360.
if(dellon.eq.+ 1 80.0 .or. dellon.eq.- 1 XO.)then

print *,'Warning: LctPtRelBndry detects case P antipodal to X'
print *,'location of P relative to S is undetermined'
location=3
return

end if
end if

locationdl
i cmss4 ! initialize counter

if(plat.eq.xlat-c .and. plon.eq.xlon-c)then

! default (P i$ outside S)

location=l
return

end if

call TmsfmLndxlat-c,xlon-c.plat.plon.tlonP)

do i=l,nv-c ! start of loop over sides of S

vAlat=vlat-c(i)
vAlon=vlnn-c(i)
tlonA=tlonv(i)

if(i.lt.nv-c)then
vBlat=vlat-cti+l)
vBlon=vlon-c(i+l)
tlonB=tlonv(i+l)

vBlat=vlat-c(l)
vBlon=vlon-c(1)
tlonB=tlonv(l)

else

end if

istrike4

Point Location on Spherical Surface 827

t
h.'

I

4
F

r

r

if(tlonP.eq.tlonA)then

else
istrike=l

call EastOrWest(tlonA,tlonB,ibmgAB)
call EastOrWest(tlonA,tlonP,ibmgAF')
call EastOrWest(tlonP,tlonB,ibmgPB)
if(ibmgAP.eq.ibmgAB .and. ibrngPB.eq.ibmgAB)istrike=l

end if

if(istrike.eq. 1)then

if(plat.eq.vAlat .and. plon.eq.vAlon)then
location=2
retum

! P lies on a vertex of S

end if

call TmsfmLon(vAlat,vAlon,xlat-c,xlon-c,tlon-X)
call TmsfmLon(vAlat.vAlon,vBlat,vBlon,tlon-B)
call TmsfmLon(vAlat,vAlon,plat,plon,tlon-P)

if(tlon-P.eq.tlon-B)then
location=2
return

call EastOrWest(tlonB,tlon-X,ibmg-BX)
call EastOrWest(tlon-B,tlon-P,ibmg_BP)
if(ibmg_BX.eq.(-ibmg_BP))imss=icross+l

! P lies on side of S

else

end if

end if

end do ! end of loop over the sides of S

c if the arc XP crosses the boundary S an even number of times then P
c i s i n s

if(jmod(icross,2).eq.O)location=l

rem
end

c--
subroutine TmsfmLon(plat,plon,qlat,qlon,tranlon)

c This subroutine is required by subroutines DefSPolyBndry & LctPtRelBndry. It finds the
c 'longitude' of point Qin a geographic coordinate system for which point P acts as a 'north
c pole'. SENT: plat,plon,qlat,qlon, in degrees. RETURNED: tranlon, in degrees.

implicit none
real*8 pi,dtr,plat,plon,qlat,qlon,tranlon,t,b
parameter (pi=3.141592654dO,dtr=pi/l8O.OdO)
if(plat.eq.gO.)then

else
tranlon=qlon

t=dsin((qlon-plon)*dtr)*dcos(qlat*dtr)
b=dsin(dtr*qlat)*dcos(plat*da)-dcos(qlat*dtr)*dsin(plat*dtr)*

& dcos((q1on-plon)*dtr)
tranlon=datan2(t,b)/dtr
end if

retum
end

828 Bevis and Chatelain

REFERENCES

Bevii. hl. , and C m h " . G.. 1987, Computing the Area of a Spherical Polygan of Arbitrar)
Shape: Math. Geol.. v . lq. p. 335-316.

Chatelain, J. L., Isacks. ß. L.. Cardwell. R. K.. Prtivilt, R., and Revi,. hl.. 1986. Pattems of
Seismicity Associated nith Asperities in the Central Nen Hebrides Island Arc: J. GenphFs.

Davis. M. IV.. and David. h.I.. 1980. A n Algorithm for Finding the Position of a Point Relative

Hall, J . K.. 1975. PTLOC: A FORTRAIì Submutine for Determining the Positiun of a Pnint

Res.. V. 91. p. 12197-12539.

ti l a Fixed Polygonal Bnundaq: Math. Geol., \ . 12. p. hl-68.

RelatiLe to a C h i d Roundar): hirith. Genl.. v . 7. p. 75-71>.
Salomon, K. B . . 1')7S. An Efficient Point-in-pdygiin .Algorithin: Cnmput. Grohci.. i. 4, p. 173-

178.

1

