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hk, Locating a Point on a Spherical Surface Relative to a 
Spherical Polygon of Arbitrary Shape' 

Michael Bevis2 and Jean-Luc Chatelain3 

An algorithm for determining if any given point, P ,  on the siirface of a sphere is located inside, 
outside, or along the border of an arbitrary splierical polygon, S ,  is described. nie polygon is 
described by specifling coordinates of its vertices, and coordinates of some point X which is known 
to lie within S. The algorithin is based on the principle that an arc joining X and P will cross the 
border of S an odd number of times if P lies outside S ,  and an even number of times ifP lies within 
S. The algorithm has been implemented as a set of FORTRAN subroutines, and a listing is pro- 
vided. nie algorithm and subroutine package cati be used with spherical polygons containing holes, 
or with coinposited spherical polygons. 
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INTRODUCTION 

Spherical polygons are polygons confined to the surface of a sphere; their sides 
are great circle arcs. Any shape on the surface of a sphere can be approximated 
(to any degree of accuracy) by a spherical polygon, provided that the polygon 
incorporates a sufficient number of vertices (or, equivalently, sides). This paper 
describes an algorithm that locates a point on the surface of a sphere relative to 
a spherical polygon of arbitrary shape (i.e., it determines if a given point lies 
inside, outside, or on the boundary of a given spherical polygon). Many authors 
have discussed "point-in-polygon'' algorithms in the context of plane surface 
or cartesian (x, y )  coordinate systems (e.g., Hall, 1975; Salomon, 1978; Davis 
and David, 1980; or almost any computer graphics textbook). This is, to our 
knowledge, the first extension of this class of algorithms to the spherical envi- 
ronment. 
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The primary application for point-in-spherical-polygon algorithms is the 
sorting of sphere-hased data on the basis of their location. Because Earth's sur- 
face approximates a spherical surface. this includes geographical sorting of geo- 
based data. Point-in-spherical-polygon algorithms also facilitate use of nontri- 
vial boundaries in numerical modeling and computational statistics. For ex- 
ample. a spherical polygon can be used to indicate a domain within which a 

The following discussion begins with a review of temiinology and con- 
ventions. This is followed by a description of the point-in-spherical-polygon 
algorithm. and its implementation as a set of subroutines coded in FORTRAN 
(Appendix A). In the next section. some practical issues that arise during the 
application of the algorithm and subroutines are addressed. The most important 
of these issues is the use of multistage sorting. Finally. the persistent reader is 
presented with a challenge. 

4. ' -- 

geographical trend surface is adequately constrained by the data it characterizes. , *, 

TERhíINOLOGY AND CONVENTIONS 

In the following discussion, a great circle arc joining t\to points on the 
surface of a sphere is referred to in various contexts. This requirez some care 
because usually two great circle arcs are associated with a given pair of p in ts .  
Let P and Q be distinct points on the surface of a sphere. A\wme that P and 
Q are not antipodal (i.e., that they are not wparated by exactly 180"). Then. 
only one great circle passes through both P and Q. but it can be divided into 
two arch each of which has P and Q as its end points. The longer of thew great 
circle arcs is called the major arc, and the shorter is the minor arc. The con- 
vention adopted here is that that any reference to 17 or tlzr great circle arc joining 
any two points such as P and Q. refers to the minor arc unless explicitly \Fated 
othenwse. Note that this convention 1s rendered meminglehs in thc speck1 <I case 
of antipodal points. because two such points can he joined by an infinite number 
of great circle arcs of equal length ( I SO"). In thc intere\t of brevity. a qrcclt 
circle tirc often \vil1 be referred to as an ilrc in the following discussion. The 
word arc refers to a great circle arc unless explicity stated otherwise. Similarly. 
the adjective sphericcrl often is dropped. and a spherical polygon is referred to 
a4 a polygon, etc. * 

An ri-sided spherical polygon can be described completely hy specifying 
location of it4 vertices. One wrtes arbitrarily i3 called Vi and the remaining 
vertices are nunihered ( L'?, il3. . L',,) sequentially around the boundaty from 
Vi (Fig. 1 ) .  An important problem occur< when a spherical polqgon is described 
in this way. A polygonal boundary on the surface of a sphere divides that sur- 
face into two domains both of which are spherical pohgons. Which of these 
complementary polygons is the one under consideration? Be\ is and Cambnreri 
( 1987) used the ilirertiori of vertes enumeration to flag which complementary 
polygon wa\ being described. Here. some point X inside the pnljgon i& 4peci- 
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Fig. 1. The shaded area represents an eight-sided spherical 
polygon, S. Vertices of this polygon are labeled VI, Vz. . - * 

Vs. Some point X is known to lie inside of S. Points PI, P2, 
P3, and P4 are located arbitrarily. An arc joining point X to 
any point lying outside S (e.g., PI and P2) will cross the 
boundary of S an odd number of times, and an arc joining X 
and some point inside S (e.g., P3 and P4) will cross the bound- 
ary of S an even number of times. 

V, 

'1 

V6 

fied, and this resolves any potential ambiguity about which of the complemen- 
tary polygons is under study. The user of the algorithm presented below is free 
to number vertices in either direction. 

The location of a point on the surface of a sphere is specified in terms of 
its latitude (A) and longitude ( 4 ) .  Thus, the ith. vertex is assigned coordi- 
nates ( X i ,  4i), and point X has coordinates (A,, 4,). 

By convention, the spherical polygon under consideration is produced by 
joining each neighboring pair of vertices by a minor great circle arc. A spherical 
polygon which has one or more major arcs for a side can be described by break- 
ing each major arc into two minor arcs by introducing a pseudovertex some- 
where along that major arc. Note that for purposes of description, neighboring 
vertices may never be antipodal (separated by exactly 180"), because the pol- 
ygon would not be uniquely defined. A spherical polygon which includes one 
side (or more) whose length is exactly 180" is handled by introducing a pseu- 
dovertex which breaks that side into two minor arcs. (A pseudovertex has in- 
terior and exterior angles of 180", unlike a true vertex.) 

One restriction exists on the user's choice of the point X inside the polygon 
under consideration. Point X must not lie on any great circle that passes through 
two neighboring vertices. The significance of this restriction will become ap- 
parent later. Because this condition can be tested in any code that implements 
the algorithm, it will not burden the user unduly. 

THE POINT-IN-SPHERICAL-POLYGON ALGORITHM 

The basis of the algorithm is a simple extension to the spherical environ- 
ment of an algorithm frequently used with plane polygons. Assume a spherical 
polygon S and some point X located therein (described in the manner explained 
above) are given. Consider any point P which is not antipodal to point X .  The 
problem is to determine if P lies inside or outside of S, or on its border. The 
key to this problem is that X P  (the minor arc joining X and P )  will cross the 
boundary of S an even number of times if P is inside S, and an odd number of 
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times if P is outside S. For example (Fig. 11, points P I  and P ,  lay outside of 
polygon S. and minor arcs ,Pl and XP, cross the boundaries of S one time and 
three times, respectively: whereas points P ,  and P4 lie inside S. and arcs XP? 
and AY4 cross the boundaries of S not at all and twice. respectively. The kernel 
of the problem is to determine if any arc XP crosses any given side of the 
spherical polygon. This determination is made for each side in tum, and the 
total number of crossings is counted. The algorithm must recognize in addition 
the special case when P lies on the boundary of S.  

The problem is illustrated in Fig. 2 .  Does minor arc XP cross the side 
whose vertices are A and B? First. determine if the strike (azimuth) of arc X P  
at point Xis intermediate between (or equal to) that of arcs ,U and XB. This is 
a necessary (hut not sufficient) condition for arc XP to intersect arc AB (the 
polygon side). This test is implemented by transforming (Bevis and Cambereri. 
1987) into a new coordinate system ( h r .  4' 1 in which point Xacts as the north 
pole ( A '  = 90" ). The prime meridian in this new system passes through the 
north pole ( N I  in the original system. In this new coordinate system, i t  is de- 
termined if the longitude of P (i.e.. 6;) lies in the range 4: ++ 6;. Thih range 
is shaded (Fig. 2). (THO ranges of longitude have 6; and 4; as end values: the 
range of interest is that which spans less than IXO".) If this condition is not 
met. arc XP cannot possihly cross side AB. and no further consideration of this 
side is necessarq. If this condition is met. arc X P  may cross bide AB. However 
this is not necessarily the case: the condition (if necessary strike is met by point 
P ,  (Fig. 2 ) .  but XP, does not cross side ,4B. Therefore, another test is neces- 
sary . 

Fig. 2. A schematic illuhtrcition of the kernel pmlh- 
lern: does arc Xf' cross the bide with verti 
und R? A necessar) (hut not hutiicientr con 
that arc .YP must lie uithin the diaded regim. Ttik 
i:. called the condition ot necessary strike. (T'hi, 
condition is not ii sufficient condition hecauie Xl'; 
satisfie5 the cnnditinn of necessar)- atrihe. but YP; 
does not c'rnss side AB. I To test i t  the ccindition a t  
necessar) atrihe IS satisfied. the system i\ trms- 
formed to o new spherical coordinate system in 
which point 8 acta a s  the "north pole," and in 
which the p r im meridian Fasses through the nnrth 
pole, N, of the original coordinate system. In this 
coordinate sg\tem. arc\ .YA. 8 P .  ctnd SB tall along 
meridiam with longitudes 91, $I;.. and db. respec- 
tiwlg. The condition of necessaq \tribe is natished 
it and nnl) if bj, talls in the range 

, 

i-t $;l. 
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If the condition of necessary strike is met, determine next if W crosses 
side AB. This issue is resolved by determining if points X and P lie on the same 
side or on opposite sides of arc AB. This is achieved by transforming into a 
third coordinate system ( A ” ,  4 f f )  in which point A acts as the north pole ( A ”  
= 90’). Then simply compute the signed angles ct and ß (Fig. 3) and determine 
whether or not they have different signs. In this case, one of the points, P or 
X ,  lies “east” of arc AB and the other point lies “west” of this arc; hence arc 
X P  must cross side AB. In the special case ß = O, point P lies on side AB (on 
A,  or on B ,  or on the intervening arc). For example, arc X P  (Fig. 3) must cross 
polygon side AB because points X and P lie on different sides of arc AB, whereas 
arc XP2 cannot cross side AB because points X and P2 both lie on one side of 
AB (Le., to the west). 

The two tests described above resolve the problem of whether or not arc 
X P  crosses any given side of the polygon, or if point P lies on that side. All 

, *: 
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?, 

Fig. 3. Once the condition of necessary strike (Fig. 2) 
is known to have been satisfied, arc XP must cross side 
AB if points X and P lie on opposite sides of a great 
circle passing through A and B.  This condition is tested 
by transforming into a coordinate system in which point 
A acts as the north pole, and in which the prime merid- 
ian passes through the north pole, N, of the original 
coordinate system. Points X and P lie one to the east 
of B ,  and the other to the west of B ,  if and only if arc 
X P  crosses arc AB. In the case that point P lies neither 
east nor west of B ,  then P lies on arc AB. 
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that is necessary is to apply these tests (the second test is applied only if the 
first test for necessary strike is passed) to each side of the polygon in tum. This 
is achieved by identifying each neighboring pair of vertices in turn with the 
generic vertices A and B (i.e.. let A = Vi and B = Vi+,, for i = 1 ,  7. . . . . 
H - 1. then let A = V, and B = V , ) .  If at any stage point P is found to lie on 
a vertex or a side, then the procedure can terminate immediately (without con- 
sideration of any remaining sides) and conclude that P lies on the boundary of 
the polygon. Otherwise. each and every side of the polygon must be considered 
in turn, and the number of times that arc XP crosses the boundary of the polygon 
must be counted. 

Several subtleties must be ohsenred when implementing this algorithm. 
First, the entire approach breaks down if the arbitrary point P happens to be 
antipodal to point X .  In this special case. a unique minor arc XP does not exist. 
Instead. an infinite number of great circle arcs join X and P .  This condition can 
be recognized and trapped: nevertheless. the location of P relative to S will 
remain undetermined. In most cases, the fact that the algorithm cannot handle 
one particular location for P will be of no practical importance (as long as this 
fact is signified). By providing a second point X ,  known to be located inside S. 
and reapplying the algorithm to the problem point. this shortcoming is circum- 
vented. ( P  cannot he antipodal to both X and X,.  ) 

A second suhtlety concerns the special case where arc X P  passes exactly 
through a vertex. The algorithm must recognize that arc XP can be considered 
to have crossed either. but not hoth. of the sides sharing that vertex: othenvibe. 
the total crossing count will bt: in error. This provision can be taken into account 
during the test for necessary strike: the test is passed if 4;. equals @.i or lies in 
the range of longitudes hetween A and B. hut not including @h. Consider a case 
in which arc XP passes through vertex V j .  When the side between V, - I and Ifj 
is being examined. and vertes Vi is identified with E ,  the condition of necessary 
strike is not satisfied, and arc XP is found not to cross this side. However. on 
examining the next side. that joining vertices Vi and V, +, . vertex r/, \vil1 be 
identified with -4, and this time the necessary strike condition will be satistied. 
The second test will then go into effect and a crossing will be detected. Thus. 
one crossing is counted when both bides have been considered. 

The algorithm hreaks down when side ,4B lies along arc XP. In this situ- 
ation, the concept of arc XP crossing arc AB becomes poorly defined. This 
problematic configuration can occur only if point X lies on the great circle pass- 
ing through both A and B. The problem is avoided easily if X is forbidden to 
lie on any great circle that passes through any neighboring pair of vertices. In 
practice, this restriction on the location of X within S rarely will inconvenience 
the uscr. Of course. any computer code implementing this algorithm must check 
that this restriction has becn met. Detecting a violation of this restriction is 
simple in the coordinate system utilized for the test of necessaq strike. If. in a 
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coordinate system in which point X acts as the north pole (A’ = 90” ), vertices 
A and B have the same longitude (4; = +A). then points X ,  A ,  and B must lie 
on a single great circle. 

A FORTRAN IMPLEMENTATION OF THE ALGORITHM 

The algorithm described above has been implemented as a set of subrou- 
tines coded in FORTRAN (Appendix A). The code conforms to the FOR- 
TRAN-77 standard, except that one or two common extensions to this language 
(such as END DO) are used. These extensions are supported by most FOR- 
TRAN-77 compilers. The subroutine package consists of four subroutines. The 
first pair of subroutines (DefSPolyBndry and LctPtRelBndry) are called by the 
user from his main or driver program. The remaining subroutines (TmsfmLon 
and EastOrWest) are called by subroutines DefSPolyBndry and LctPtRelBndry , 
and should not be referenced by the user’s main program. 

Most applications that call for a point-in-spherical-polygon algorithm in- 
volve establishing a small number of polygonal boundaries (often just one), and 
then processing large numbers of points to find which points are inside those 
boundaries. Given this pattem of usage, any quantities that depend only on the 
position of the polygon and interior point X should be computed just once, and 
not repeated each time a new point P is considered. For this reason, two sub- 
routines are provided to the user to solve the point-in-spherical-polygon prob- 
lem. First, the user’s program calls subroutine DefSPolyBndry to define the 
spherical polygonal boundary and to specify the location of the interior point 
X .  The user’s program then calls subroutine LctPtRelBndry to determine the 
location of any point (P) relative to the boundary. Normally, DefSPolyBndry 
will be called once, and subsequently LctPtRelBndry will be called many times. 

Subroutine DefSPolyBndry performs several functions. It computes “lon- 
gitudes” of each of the polygon’s vertices in a coordinate system in which point 
X acts as the north pole (A‘ = go”), and stores this information, together with 
coordinates of the vertices and point X in the original coordinate system, in a 
named common block. This information is available to subroutine LctPtRel- 
Bndry which shares this named common block. DefSPolyBndry also checks for 
several possible error conditions. First, it ensures that sufficient storage is avail- 
able to solve the problem. (The maximum allowable number of polygon sides 
can be adjusted by editing the value assigned to parameter ~itxnv.) It checks that 
all neighboring vertices are distinct (including the first and last vertices). It 
checks that no neighboring pair of vertices are antipodal, and that point X does 
not lie on the great circle projection of any polygon side. DefSPolyBndry also 
sets a flag in the named common block to indicate that it has been called (at 
least once). 
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The user's main program calls subroutine LctPtRelBndry to determine if 
some point P. whose coordinates are passed through the argument list. is inside. 
outside. or on the boundary of the polygon previously defined. LctPtRelBndry 
obtains any necessary information about the location of the polygon and point 
X through the common block named spolybndry. LctPtRelBndry first checks 
that a polygon has been defined by a previous call to DefSPolyBndry. It then 
checks that points P and X are not antipodal. (If they are. it flags this problem 
and retums control to the main program without solving the problem of P's  
location relative to S . )  LctPtRelBndry then processes each polygon side in tum. 
Each side is tested for the condition of necessary strike. In the event that this 
test is passed. it determines if points X and P lie on the same side of the polygon 
side (no crossing). on different sides (a crossing). or neither ( P  lies on the pol- 
ygon side). If P is determined to lie on a side of S .  the problem is solved and 
the subroutine terminates. Otherwise, all polygon sides are considered. and the 
total numher of crossings is determined. The problem is solved, and the suh- 
routine retums control to the main program. 

Subroutines TmsfmLon and EastOrWest are also listed (Appendix A).  
Subroutine TmsfmLon is required by subroutines DefSPolyBndry and LctPt- 
RelBndry to perform the coordinate transformation produced by moving the 
location of the north pole. This transformation is discussed in Brvih and Cam- 
bareri ( 1987). Subroutine EastOrWest is required hy subroutine LctPtRelBndry . 
Given the longitudes of two points. it determines if the second point lies east, 
west, or neither east nor west of the first point. 

USING COMPOIJND POLYGONS 

A polygon containing one or more holes can be defined as a single entity 
(Fig. 3a). For ewmple, this situation might arise when large islands such as 
Sicily are excluded from a polygon that represents the Mediterranean Sea. Sim- 
ilarly. a suite of polygons can he defined as a single entity (Fig. 3b). For ex- 
ample, a chain of islands can be represented as a single polygon. Entities of 
this kind (Fig. l a .  b) are called compound polygons (Bevis and Cambareri. 
1987). In order to describe a polygon containing a hole (Fig. 4a), the inner and 
outer boundaries are joined by a corridor of zero width: by treating both of 
these boundaries a h  parts of a single and continuous boundary, the shaded pol- 
ygon (Fig. l a )  is described as a polygon with 14 vertices and sides. Vertices 3 
and 11 are coincident. as are vertices 5 and 10. A similar device is used to 
reprehent a suite of polygons as a single polygon (Fig. l b ) .  In this way, a chain 
of islands is defined as a single geographical entity in a single call to Def- 
SPolyBndry. and subsequently a single call to LctPtRelBndry will determine if 
any point P lies within the island chain. 
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Fig. 4. Examples of compound polygons, showing how they are described for use with the point- 
in-spherical-polygon algorithm. (A) This polygon contains a hole. The inner and outer walls of the 
(shaded) polygon are joined by a comdor of zero width. One of the sides of this comdor joins 
vertices 4 and 5, the other joins vertices 10 and 11. Vertices 4 and 11 are coincident, as are vertices 
5 and 10. Although sides 4-5 and 10-1 1 touch, they do not cmss. Note that the compound polygon 
has 14 sides, none of which cross each other. (B) By a similar device, a suite of polygons may be 
treated as a single polygon. The composite polygon shown can be treated as a single spherical 
polygon with 13 sides, although in reality it consists of two separate (shaded) areas. These areas 
are joined by a comdor of zero width. 

A PRACTICAL EXAMPLE 

The application that initially prompted development of the algorithm pre- 
sented here was that of sorting earthquakes in a seismicity catalog on the basis 
of their location. The case study described in this section was the first practical 
application undertaken, after initial debugging and testing of the computer codes. 
A network of 19 seismograph stations was established in the central New He- 
brides island arc (Vanuatu) in 1978-1979, as part of a joint project of Come11 
University and ORSTOM. By mid 1987 this network had been used to locate 
over 17,000 local earthquakes. Chatelain et al. (1986), in a study of the space 
and time distribution of seismicity in this area, identified four regions of large 
“background” seismicity (Fig. 5b). The precise significance of these bounda- 
ries, and the manner in which they were determined, need not concern the 
reader. In 1987, as part of an ongoing program of data analysis, all events 
located in the four previously identified zones were desired to be extracted. The 
boundaries had been digitized in the earlier study and were readily available. 

These boundaries were concatenated, as described in the previous section, 
so as to form a single compound polygon. Corridors of zero width joining the 
four simple polygons are visible (Fig. 5b). This compound polygon contains 
1071 vertices. The data set to be sorted consisted of 17,087 hypocenters (Fig. 
5a). The application program defined the boundary by a single call to Def- 
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Fig. 5. ( A l  A map \hoQing epicenters of 17.087 earthquakes located hy the OR- 
STOhliCornell network in Vanuatu. ( B I  A composite spherical pnlygtin cunsisting of 
fnur arras of interest to wismnlogista managing this data set. This poljgori has 1071 
sides. ,411 the earthquakes in ( A )  are sorted accwding to whether or not they kill within 
the houndar)- shown i n  I B I .  

SPolyBndry, and then called LctPtRelBndry 17,087 times to determine the lo- 
cation of each epicenter in tum. Epicenters that were found to lie exactly on 
the boundary were treated as “outside” points so as not to admit data that 
happened to lie along the corridors. The sorted data indicate 6.160 hypocenters 
are inside the boundary (Fig. 6b). whereas the remaining 10.927 hypocenters 
(Fig. 6a) are outbide. 

hIULTISTAGE SORTING 

Because the babic algorithm examines every side of the polygonal bound- 
ary each time some point P is located relative to the boundarq. sorting large 
numbers of points using a polygon containing many side\ is time-consuming. 
For example. the h o r t  described above took just over 64 min to perform on a 
VAX-l1/750 running VMS (with a moderate user load). Sorting times can be 
reduced by more than an order of magnitude in situations of this kind by im- 
plementing a multistage sort. Multistage sorting is utilized commonly in the 
context of spatial sorting relative to plane polygonal boundaries (Davis and 
David. 1980: or almost any computer graphics textbook). and this strategy is 
carried over easily to the spherical environment. Suppose a large number of 
points must be sorted relative to some polygon S that contains a large number 
of sides (Fig. 7). Tuo new polygons. I and O (Fig. 7). each containing a small 
number of sides compared to S .  are chosen such that I lies close to but every- 

- -  
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Fig. 6. Maps showing epicenters that fall (A) outside, and (B) inside, the composite 
spherical polygon shown in the previous figure. 

where within S ,  and O lies close to and everywhere outside of S. The goal is 
to have O completely surround S and I to be completely contained by S, and to 
minimize the area between O and I ,  but keeping the number of vertices in O 
and I small compared to the number in S. 

The principle of the multistage sort is straightforward. Given some point 
P ,  one first checks to see if it lies outside O. This is a computationally inex- 
pensive task because O has few vertices. If P lies outside O, then clearly it must 
lie outside S, and the problem is solved. If P is found to lie inside O, a second 
test is performed to determine if P lies inside I .  Again this is computationally 
inexpensive. If P lies inside I ,  then it must lie inside S ,  and the problem is 

Fig. 7. The spherical polygon S has a large 
number of sides. Boundaries O and I have fewer 
sides. O lies completely outside S, and I lies 
completely inside S. Clearly any point lying 
outside O also lies outside S, and any point lying 
inside I also lies inside S. 

16 
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solved. In a small number of cases, P lies inside U but outside I .  and so whether 
or not P lies inside S has not been determined. In this case, the point-in-spher- 
ical-polygon algorithm is employed directly to solve for the location of P rel- 
ative to S. An expensive computation is performed only in the event that this 
third test is necessary. 

Implementation of the multistage sort has to be modified slightly from that 
described above in order to use codes provided (Appendix A). This is because 
the codes are structured so as to be most effective when a polygon is defined 
once (using DefSpolyBndry ) and many points are subsequently located against 
that polygon (using LctPtRelBndry). A sequence of steps. such as define O. 
locate P relative to U. define I .  locate P relative to I .  read next P. define U 
again, locate P relative to U, ctc., is undesirable because U and I (and perhaps 
S )  would be defined many times. In this case. the computations performed by 
DefSPolyBndry would be performed repetetively and redundantly. HoRever. 
the multistage sort can be reorganized so as to ensure that each polygon is 
defined only once. The application program reads the coordinates of all points 
into memory, and establishes a flag for each point that can be set to one of three 
values, signifying (i) P inside S. (ii) P outside S, and ( i i i )  location of P relative 
to S not yet determined. The polygon O is defined (once). and the program 
loops over all points and determines the location of each point relative to U. 
The results are stored in the flag array. If a point is outside of O ,  it is flagged 
as lying outside of S; otherwise. its location relative to S is undetermined. Then 
polygon I is defined and a second loop is executed in which all points as yet 
not located relative to S are located relative to I .  If any such point is inside I .  
its flag is reset to indicate that it is inside S. These tasks are performed rapidly 
because the number of sides in U and I are small. Finally. polygon S is defined. 
The program then loops over each point. checks the flags to identify every point 
as yet unlocated relative to S .  and applies the point-in-polygon-algorithm di- 
rectly. explicitly determining the location of the point relative to S. 

The procedure discussed above. in which all points are located relative to 
U, and subsequently a subset of these points are located relative to I ,  and finally 
a subset of these points are located relative to S ,  reflects the structure of the 
subroutines as listed (Appendix A). The codes could be modified so that each 
point could be located relative to U, and if necessary relative to I .  and if nec- 
essary relative to S, prior to consideration of the next point. This approach 
would minimize the use of program storage. However. all information currently 
passed (from DefPolyBndry to LctPtRelBndry) through the named common 

so that points could be located against polygons O. 1. or S in any sequence. 
without the need to define U. I ,  or S more than once. The subroutines presented 
here are not structured this way because the expanded argument list is cumber- 
some to use, and results in a rather ugly code. 

2 

7 

- *  

block, would have to be passed through LctPtRelBndry 's argument list instead, 7 
L 



Point Location on Spherical Surface 823 

DISCUSSION 

Subroutines presented here have been employed in several real-world con- 
texts and, from a practical point of view, their performance has been satisfac- 
tory. The requirements that point X not lie on a great circle joining any neigh- 

P, have only once forced a change in the position initially assigned to point X. 
Nevertheless, from the viewpoint of the geomathematician , these limitations 
manifest a certain inelegance inherent to the algorithm. Indeed, nearly all awk- 
ward aspects of this algorithm largely derive from the choice of point X and its 
relationship to other points in the problem. This suggests an avenue for the 
future improvement of point-in-spherical-polygon algorithms. 

of arbitrary shape. Algorithms can be devised that solve this problem with ref- 
erence to some point X that lies within the boundary under consideration. How- 
ever, this problem can be solved without reference to any point lying within the 
polygon. Bevis and Cambareri (1987) presented an algorithm for computing the 
area of a spherical polygon that requires as input only the coordinates of the 
vertices of the polygon. They adopted a convention whereby the direction of 
vertex enumeration flagged which of the spherical polygons enclosed by the 
boundary was the one under consideration. Their algorithm is leaner and more 
elegant than the one presented here. Undoubtedly, a point-in-spherical-polygon 
algorithm could be developed that requires only coordinates of the polygon's 
vertices (and not the location of some point X lying with the polygon); an al- 
gorithm in this class would eliminate the restrictions (and much of the special 
case handling) associated with the algorithm presented here. The reader is in- 
vited to develop this new class of algorithm. 

w boring vertices of the polygonal boundary, and that X not be antipodal to point 

-? 

4 
r Consider the related problem of computing the area of a spherical polygon 

1 - 

I 
p' 

APPENDIX A 

c Given some spherical polygon S and some point X known to be located inside S, these routines 
c will determine if an arbitrary point P lies inside S, outside S, or on its boundary.The calling 
c program must first call DefSPolyBndry to define the boundary of S and the point X. Any 
c subsequent call to subroutine LctPtRelBndry will determine if some point P lies inside or 
c outside S; or on its boundary. (Usually DefSPolyBndry is called once, then LctPrRelBndry is 
c called many times). 

c REFERENCE: Bevis, M. and Chatelain, J.-L. (1989) 
C Mathematical Geology, vol 21. 

c VERSION 1.0 

c***********************************************~*************************** 
c****************************************************************************** 
c This main entry point is used to defime the spherical polygon S and the point X. 

Subroutine DefSPolyBndry(vlat,vlon,nv,xlat,xlon) 
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c ARGUMENTS: 
c vlat,vlon (sent) ... vectors containing the latitude and longitude of each vertex of the spherical 

c nv 
c xlat,xlon (sent) ... latitude and longitude of some point X located inside S. X must not be 

C polygon S .  The ith. vertex is located at [vlitt(i),vlon(i)]. 

located on any great circle that includes two vertices of S. 

(sent) ... the number of vertices and sides in the spherical polygon S 

C 

c UNlTS AND SIGN CONVENTION: 
c Latitudes and longitudes are specified in degrees. 
c Latitudes are positive to the north and negative to the south. 
L' Lnngitudes are positive to the east and negative to the west. 

c VERTEX ENUMERATION: 
c The vertices of S should be numbered sequentially around the horder nf the spherical polygon. 
c Vertex 1 lies between vertex nv and vertex 2. Neighhounng vertices must be seperated by less 
c than 180 degrees. (In order to genente a polygon side whose are length equals 
c or exceeds 180 degrees simply inunduce an additional (pseudohertex ). 
c Having chosen vertex 1. the user may number the remaining vertices in either direction. 
c However if the user wishes to use the suhroutine SPA to determine the area of the polygon S 
c (Bevis Cy; Cambaren, 1987, Math. Geol., v.19, p. 335-346) then he or she must follow the 
c convention whereby in moving around the polygon border in  the direction of increasing 
c vertex numher clockwise hrnds occur at salient vertices. A vertex is salient if the interior angle 
c is less than 180 degrees. (In the ciise of a convex polygon this convention implies that vertices 
c are numbered in clockwise sequence). 

implicit none 
integer mxnv,nv 

c....................................................................................... 
c Edit next statement to inmase m;tuimum number of vertices that may lx 
c used to define the spherical polygon S 

parameter (mxnvdOOi 
c The value of parameter mxnv in suhroutine LctPtRelBndry must match that 
c nf parameter mxnv in this subroutine, its assigned ahove. 

. . . r . . . 
re:il*8 vlatinv~.vlon(nv~.xl~t,.;lon,iiellon 
real*8 tlonv(mxnv).vlat_c(rnxnv~,vlon_c(mxnv).xlat_c.slon_c 
integer i,ihndry.nv-c,ip 
data ihndry /O/ 

common /spolyhndry/vlat_c,vlun_c.nv_c,xlat-c,slnn_c.tlonr-.~hnd~ 

ifinv.gt,mxnv)then 
print *,'nv exceeds maximum alloued value' 
print *,':tdjust parameter mxnv in subroutine DefSPolyBntlry' 
stop 

end if 

ibndry=] 

nv-c=nv 
xlat-c=xlat ! " " 

xlon-c=xlon ! " " 

do i=l .nv 

! houndary defined at least once (fltg) 

! copy for named common 

vlat-c(ii=vlnt(i) ! " " 

vlon-cii)=slon(i) ! " " 

call TmsfmLon~slat.~lon,vlatlii,vlon(ji,rlonfi ) )  
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if(i.gt. 1)then 

else 

end if 

if(vlat(i).eq.vlat(ip) .and. vlon(i).eq.vlon(ip))then 
print *,'DefSPolyBndry detects user error:' 
print *,'vertices ',i,' and ',ip,' are not distinct' 
stop 

end if 

if(tlonv(i).eq.tlonv(ip))then 

i p s -  1 

ip=nv 

print *,'DefSPolyBndry detects user error:' 
print *,'vertices ',i,' & ',ip,' on same gt. circle as X 
stop 

end if 

if(vlat(i).eq.-vlat(ip))then 
dellon=vlon(i)-vlon(ip) 
if(dellon.gt.+l80.)dellon=dellon-360. 
if(dellon.lt.-l80.)dellon=dellon-36. 
if(dellon.eq.+l80.0 .or. dellon.eq.-l80.0)then 
print *,PefSPolyBndry detects user error:' 
print *,'vertices ',i,' and ',ip,' are antipodal' 

stop 
end if 

end if 

end do 

c***************************************************************************** 
............................................................................. 
c This routine is used to see if some point P is located inside, outside or on the boundary of the 
c spherical polygon S previously defied by a call to subroutine DefSPolyBndry. There. is a 
c single restriction on point P it must not be antipodal to the point X defined in the call to 
c DefSPolyBndry (ie.P andX cannot be seperated by exactly 180 degrees). 

c ARGUMENTS: 
c plat,plon (sent) ... the latitude and longitude of point P 
c location (returned) ... specifies the location of P 

Subroutine LctPtRelBndry@lat,plon,location) 

C 
C 
C 
C 

location4 implies P is outside of S 
location=l implies P is inside of S 
location=2 implies P on boundary of S 
location=3 implies user error (P is antipodal to X) 

c UNITS AND SIGN CONVENTION 
c Latitudes and longitudes are specified in degrees. 
c Latitudes are positive to the north and negative to the south. 
c Longitudes are positive to the east and negative to the west. 

implicit none 
integer mxnv 
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c ................................................................................................................ 
c The statement below must match that in suhroutine DefSPolyBndry 

parameter h"Xn=500) 
c. ................................................................................................................. 

real*8 tlonv(mxnv),vlat-c(mv),vlon-c(mxnv),xlat-c,don-c 
real*8 plat,plon,vAlat,vAlon,vBlat,vBlon,tlonA,tlonB,tlonP 
real*8 tlon-X,tlon-P,tlonB,dellon 
integer i,ibndry,nv-c,location,icross,ibmgAB,ihmgAP,ihmgPB 
integer ihmgBX,ibmg-BP,iste 

common /spolybndry/vlat-c.vlon-c,nv_c,xlat-c,xlon-c,tlonv,ibndry 

if(ibndry.eq.0)then ! user has never defined the bndry 
print *,'Subroutine LctPtRelRndry detects user ennr:' 
print *,'Subroutine DefSPoIyRndry must be called before' 
print *,'subroutine LctPtReIBndry can be called' 
stop 

end if 

iffplat.eq.-xlat-c)then 
dellon=plon-xlon-c 
if(dellon.lt.-l8~).)dellon=dellon+3~. 
if(dellon.gt.+l XO.idellon=dellon-360. 
if(dellon.eq.+ 1 80.0 .or. dellon.eq.- 1 XO.)then 

print *,'Warning: LctPtRelBndry detects case P antipodal to X' 
print *,'location of P relative to S is undetermined' 
location=3 
return 

end if 
end if 

locationdl 
i cmss4  ! initialize counter 

if(plat.eq.xlat-c .and. plon.eq.xlon-c)then 

! default ( P i$ outside S) 

location=l 
return 

end if 

call TmsfmLndxlat-c,xlon-c.plat.plon.tlonP) 

do i=l,nv-c ! start of loop over sides of S 

vAlat=vlat-c(i) 
vAlon=vlnn-c(i) 
tlonA=tlonv(i) 

if(i.lt.nv-c)then 
vBlat=vlat-cti+l) 
vBlon=vlon-c(i+l ) 
tlonB=tlonv(i+l) 

vBlat=vlat-c(l) 
vBlon=vlon-c( 1) 
tlonB=tlonv(l) 

else 

end if 

istrike4 
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if(tlonP.eq.tlonA)then 

else 
istrike=l 

call EastOrWest(tlonA,tlonB,ibmgAB) 
call EastOrWest(tlonA,tlonP,ibmgAF') 
call EastOrWest(tlonP,tlonB,ibmgPB) 
if(ibmgAP.eq.ibmgAB .and. ibrngPB.eq.ibmgAB)istrike=l 

end if 

if(istrike.eq. 1)then 

if(plat.eq.vAlat .and. plon.eq.vAlon)then 
location=2 
retum 

! P lies on a vertex of S 

end if 

call TmsfmLon(vAlat,vAlon,xlat-c,xlon-c,tlon-X) 
call TmsfmLon(vAlat.vAlon,vBlat,vBlon,tlon-B) 
call TmsfmLon(vAlat,vAlon,plat,plon,tlon-P) 

if(tlon-P.eq.tlon-B)then 
location=2 
return 

call EastOrWest(tlonB,tlon-X,ibmg-BX) 
call EastOrWest(tlon-B,tlon-P,ibmg_BP) 
if(ibmg_BX.eq.(-ibmg_BP))imss=icross+l 

! P lies on side of S 

else 

end if 

end if 

end do ! end of loop over the sides of S 

c if the arc XP crosses the boundary S an even number of times then P 
c i s i n s  

if( jmod(icross,2).eq.O )location=l 

rem 
end 

c------------------------------------------------------------------------------------------------------------------ 
subroutine TmsfmLon(plat,plon,qlat,qlon,tranlon) 

c This subroutine is required by subroutines DefSPolyBndry & LctPtRelBndry. It finds the 
c 'longitude' of point Qin a geographic coordinate system for which point P acts as a 'north 
c pole'. SENT: plat,plon,qlat,qlon, in degrees. RETURNED: tranlon, in degrees. 

implicit none 
real*8 pi,dtr,plat,plon,qlat,qlon,tranlon,t,b 
parameter (pi=3.141592654dO,dtr=pi/l8O.OdO) 
if(plat.eq.gO.)then 

else 
tranlon=qlon 

t=dsin((qlon-plon)*dtr)*dcos(qlat*dtr) 
b=dsin(dtr*qlat)*dcos(plat*da)-dcos(qlat*dtr)*dsin(plat*dtr)* 

& dcos((q1on-plon)*dtr) 
tranlon=datan2(t,b)/dtr 
end if 

retum 
end 
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