Nitrous oxide production in the tropical Atlantic Ocean

CLAUDE OUDOT, * CHANTAL ANDRIET and YVES MONTELT

(Received 28 November 1988; in revised form 21 June 1989; accepted 20 July 1989)

Abstract—Atmospheric and oceanic nitrous oxide (N2O) measurements were carried out in 1986 in the tropical Atlantic (5° - 12°N, 20° - 22°W). The average N₂O concentration in the air was 311 ± 6 ppb. Surface waters were found to be supersaturated (123-132%). The N₂O production in highly supersaturated deep waters enabled us to estimate the oceanic source of atmospheric N_2O to 11.3 ml m⁻² y⁻¹. The eddy diffusion coefficient in the upper thermocline is estimated to be 0.2 cm² s⁻¹ to support the vertical transport of N₂O from the deep layers to the sea surface. The chemical environment (oxygen - nitrate) indicates that the nitrification is the most probable process of N₂O formation, but in certain cases assimilatory nitrate reduction may be an additional

INTRODUCTION

In recent years, nitrous oxide (N2O) has received attention from scientists owing to interest generated by the major role this trace gas appears to play in controlling the abundance of stratospheric ozone (CRUTZEN, 1976; WEISS and CRAIG, 1976). Recently interest has grown because of its direct or indirect role in global warming, as with methane (Wang et al., 1976; Donner and Ramanathan, 1980; Wang and Molnar, 1985). The atmospheric concentrations of the two trace gases have been increasing in the last few decades (Weiss and Craig, 1976; Weiss, 1981a; Khalil and Rasmussen, 1983; PEARMAN et al., 1986) owing to increased anthropogenic input (fossil fuel combustion and fertilizer use). It is believed that their contribution to global warming could amount to as much as one-third of that of CO₂ (RAMANATHAN et al., 1985). Weiss (1981a) calculated the greenhouse effect due to N₂O alone is 10–15% that of CO₂.

Both the soil and the aquatic environment have been identified as possible sources of N₂O. Most studies of dissolved N₂O in the aquatic environments have taken place in the open ocean (Craig and Gordon, 1963; Junge and Hahn, 1971; Hahn, 1973, 1974, 1975; YOSHINARI, 1976; WEISS, 1978; ELKINS et al., 1978; SINGH et al., 1979; COHEN and GORDON, 1978, 1979; PIEROTTI and RASMUSSEN, 1980; HASHIMOTO et al., 1983; CODISPOTI and Christensen, 1985; Cline et al., 1987). Other workers have described the distribution of N2O in estuaries, rivers and lakes (McElroy et al., 1978; Cicerone et al., 1978a; LEMON and LEMON, 1981; KNOWLES et al., 1981; WAHLEN and YOSHINARI, 1985; DE

N°: 31216, ex 1 M Cote: B 7 JANV. 1991 P 24

^{*} ORSTOM (Institut Français de Recherche Scientitifique pour le Développement en Coopération), B.P. 1386; Dakar, Sénégal. 70, 29280 PLOUZ MNE, FRANCE † LGI (Laboratoire de Géochimie Isotopique), DLPC, SPP, Centre d'Etudes Nucléaires de Saclay, 91191–Gif sur Yvette, France. Also at ORSTOM-LODYC (Laboratoire d'Océanographie Dynamique et de Climatolgie), Université P. et M. Curie, 4, Place Jussieu, 75230 Paris, France.

[‡] ORSTOM (Institut Français de Recherche Scientifique pour le Développement en Coopération), B.P. A5, Nouméa, Nouvelle Calédonie.

Angelis and Gordon, 1985; Butler et al., 1987). Mostly, surface observations show that N_2O is present in concentrations in excess of saturation with respect to the atmosphere at the temperature and salinity conditions observed. Consequently, the aquatic systems, open ocean or freshwaters, act as a source for atmospheric N_2O . Undersaturation of N_2O in surface waters is rare (Elkins et al., 1978).

In subsurface and deep waters, in general, N₂O is negatively correlated with oxygen and positively correlated with nitrate. HAHN (1974) was the first to point out the inverse correlation between N₂O and O₂ in the deep ocean. This inverse relationship was later confirmed (Yoshinari, 1976; Cohen and Gordon, 1978; Elkins et al., 1978; Cline et al., 1987) in areas of the ocean where O₂ was higher than 0.4–0.5 ml l⁻¹. Junge and Hahn (1971) and later HAHN (1974) suggested that N₂O is generated by denitrification. Yoshinari (1976), Cohen and Gordon (1978, 1979) and Elkins et al. (1978), on the basis of the linear relationship between the excess N₂O in the water and the apparent oxygen utilization (AOU), suggested that nitrification was a more likely source. Although Pierotti and Rasmussen (1980) claimed that N₂O also can be produced during denitrification under non-anoxic conditions ($O_2 = 0.1-0.3 \text{ ml } \Gamma^{-1}$), it is clear today that N_2O arises principally from nitrification as shown recently by the data of CLINE et al. (1987) in the tropical Pacific. For Cohen and Gordon (1978) and Elkins et al. (1978) there is no doubt that denitrification acts only as a sink for N₂O in the ocean. Further measurements of the $^{15}\text{N}/^{14}\text{N}$ and $^{18}\text{O}/^{16}\text{O}$ isotopic composition of $N_2\text{O}$ (Yoshida et al., 1984; Wahlen and Yoshinari, 1985; Yoshida, 1988), along the lines of Bender and Grande's (1987) study on the isotopic composition of O₂, could lead to an indication of the contribution by the different production mechanisms.

Recently CLINE et al. (1987) showed how climatic events, such as the El Niño phenomenon, could change the flux of N_2O to the atmosphere. Their study, which confirms the previous conclusions of Pierotti and Rasmussen (1980), shows the role of the upwelling process on the supersaturation degree of N_2O in the surface waters, and thus the role of the oceans in the global N_2O cycle and the role of N_2O in the global nitrogen cycle. The possibility that N_2O may be a valuable tracer in locating areas of upwelling in the ocean makes it even more interesting to continue taking measurements of N_2O throughout the marine environment. De Angelis and Gordon (1985) and Butler et al. (1987) reported high concentrations of N_2O in incoming seawater in estuaries in association with recently upwelling waters.

The purpose of our investigation is to contribute to the evaluation of marine processes in regulating the N_2O cycle within the ocean. Our study involves measurements of gas concentrations (O_2, N_2, N_2O) and physico-chemical characteristics (temperature, salinity, nutrients) in the northeastern tropical Atlantic.

METHODS

Analytical method for N₂O

The measurement technique for N₂O is derived from that of Weiss *et al.* (1981), employing ultrasonic phaseshift gas chromatography. As with early techniques using thermal conductivity gas chromatography (Swinnerton *et al.*, 1962; Craig and Gordon, 1963; Hahn, 1974), the ultrasonic technique requires enrichment of samples, but this detector type has the advantage of being non-specific and can therefore be employed for the determination of other gases such as argon (Oudot and Montel, 1987). Today most

laboratories use electron-capture gas chromatography (Rasmussen et al., 1976; Cohen, 1977; Weiss, 1981b; Cicerone et al., 1978b; Singh et al., 1979; Elkins, 1980; Lemon and Lemon, 1981; Cline et al., 1987) which offers extremely high sensitivity and does not require enrichment, contrary to helium ionization gas chromatography (Yoshinari, 1976).

Water samples were drawn from 5 liter Niskin bottles into 550 ml volumetric flasks to which was added 0.5 ml of a saturated HgCl₂ solution. The analyses of the samples were performed without delay after collection, but the use of HgCl₂ as a preservative was justified on account of the duration of the analyses (the last sample was generally run 6 h after the first one). The apparatus for collecting dissolved N₂O in seawater samples is shown schematically in Fig. 1 and is derived from the work of Yoshinari (1976) and Cohen (1977).

The extraction of dissolved N_2O is carried out in the sampling flask after removing a small volume in order to allow a gas dispersion tube to be introduced. A correction is made for the quantity of the atmospheric N_2O in the small head space reserved above the liquid in the flask and carried with dissolved gases stripped by the helium flow. The helium, spread in tiny bubbles at a flow rate of 120 ml min⁻¹, removes the dissolved gases from the sample in 15 min while the sample is stirred magnetically. Water vapor and CO_2 are removed in P_4O_{10} and Ascarite columns, while all the other gases pass through a 6.35 mm o.d. stainless steel tube (length 25 cm) packed with a 13X Molecular Sieve. During the collection of N_2O , the Molecular Sieve trap is immersed in an ice-water bath. After 15 min, N_2O adsorbed on the Molecular Sieve is transferred to the gas chromatograph by switching the 6-port rotary valve B and immediately heating the trap to 250°C

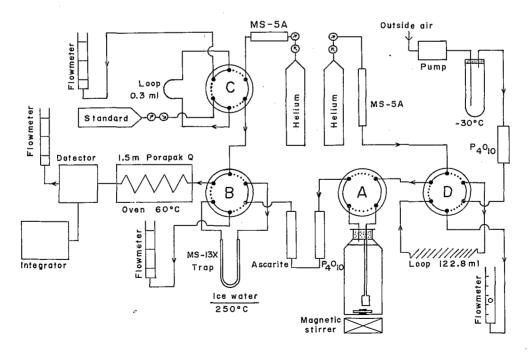


Fig. 1. Gas chromatographic apparatus for the measurement of N_2O in seawater (valve A) and in air (valve D).

with an electrically heated aluminium block. The carrier gas, helium at a flow rate of 50 ml min^{-1} , sweeps N_2O and small amounts of oxygen and nitrogen into the chromatographic column made of 1.5 m stainless-steel tube (6.35 mm o.d.) and packed with Porapak Q held at $60^{\circ}C$ in the oven of the chomatograph. The N_2O retention time is about 6 min. At the end of integration of the peak, the heating of the trap is stopped and the valve B turned back to its original position.

The detector is a Tacor model U-90 ultrasonic phase-shift detector, identical to that employed by Weiss *et al.* (1981). The detector cell is operated with a back pressure of 0.7 bar above ambient. The detector output was integrated by a Hewlett-Packard model 3380 S integrator.

Routine calibration of the output signal of the detector is by injection of a commercial standard gas mixing containing 225 ± 6 ppb N_2O in helium (prepared by Air Liquide, France) via a gas sampling valve C with a 0.3 ml sample loop. In the absence of a more accurate standard gas related to a definite scale (e.g. Scripps' standard), the standardization of the measurements is checked against the analysis of tropospheric air.

The air analysis is done by carrying an air sample, taken in a nylon tubing loop (volume = 122.8 ml) via a sampling valve D, on the Molecular Sieve trap, by the same procedure used for seawater analysis. The stripping time is reduced to 10 min. Replicate analysis of air samples in the land laboratory indicates a precision of about \pm 3%, i.e. \pm 9 ppb.

The oceanic N_2O values are compared to the expected equilibrium concentrations from N_2O solubility in seawater (Weiss and Price, 1980) and average air content of 300 ppb that is the current partial pressure of N_2O in dry air (Weiss *et al.*, 1981).

Measuring equilibrated seawater in the land laboratory produced a supersaturation of 8% and the standard error of four replicates of that water was about 4%.

Temperature, salinity, dissolved gases and nutrients

Temperature and salinity were routinely determined with a Neil-Brown CTD system. Dissolved O_2 was titrated according to the Winkler method with a precision of 0.1% (Oudot et al., 1988). The apparent oxygen utilization (AOU) was calculated from the oxygen solubility given by Weiss' (1970) polynomial relationship.

Dissolved molecular nitrogen was measured by gas chromatography according to the method described in Oudor (1982). The precision of the results is 0.4%. The solubility of nitrogen was calculated by Weiss' (1970) polynomial relationship.

The nutrient analyses (nitrate) were performed using an Auto-Analyzer Technicon II according to the method of Wood et al. (1967). The analytical precision was about 1%.

Site of measurements and sampling

The hydrological and chemical data presented in this paper come from the PIRAL cruise (June–August 1986) carried out aboard the R.V. *Noroit* (France) in the northeastern tropical Atlantic (Fig. 2). The N₂O measurements, in air and seawater, were taken at three sites during three time series of observations: the first, over a 12-day period, in the north equatorial convergence zone (4°–6°N, 17°–20°W), the second (8 days) and the third (10 days) in the Guinea Dome area, respectively, at the exact center of the dome (11°50N, 22°W) and then at a short distance away from it (12°N, 21°W). The thermal domes are well known because of the associated enhanced primary production.

The seawater samples were taken with a rosette (General Oceanics) of 12 Niskin PVC

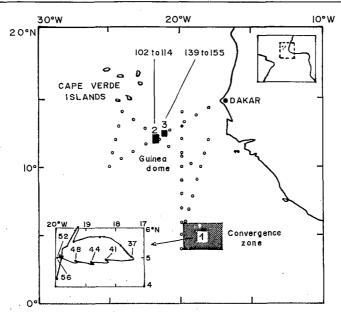


Fig. 2. Locations of stations in the convergence zone (37-56) and in the Guinea Dome area (102-114 and 139-155) during PIRAL cruise (June-August 1986).

5 liter bottles associated with the Neil-Brown CTD system. The sampling for oceanic N_2O was made from 0 to 500 m at 07.30 h (local time), six times at the first site, four and five times at the second and third ones. For dissolved gases solubilities to be calculated, temperature and salinity were measured when the bottles were closed as the CTD probe came up (elimination of the effects of the internal waves).

The air for tropospheric N_2O measurement was pumped at about 5 m above sea level and dried successively on a cold trap at $-30^{\circ}C$ and on P_4O_{10} column before injection into the sampling loop (Fig. 1).

All analytical measurements, on seawater as well as on air, were performed immediately after collection of samples.

RESULTS

N₂O concentrations in air

The average N_2O concentrations in dry air are, respectively, 318 ± 9 , 308 ± 2 and 308 ± 9 ppb (ppb = 10^{-9} v/v) at the three sites (Table 1). The combined average is 311 ± 6 ppb.

By comparing our average tropospheric value with those of other laboratories we can judge the validity of the calibration of our measurements. The range of atmospheric N_2O concentrations reported in the literature is wide because they depend on different calibrations, and concentrations are calculated either in wet air or in dry air. The most reproducible results are probably those of Weiss (1978) and Weiss *et al.* (1981), who reported a mean value of 299.7 ppb (in dry air) along a 34,000 km ship's track extending in both hemispheres during 1977–1978 and a mean tropospheric dry air mole fraction of N_2O in the northern hemisphere as of 1 January 1978 fixed at 300.2 \pm 0.6 ppb. The

Table 1.	Atmospheric	N ₂ O	measurements

5	1st Site 5°N, 17° to 20°	W		2nd Site 11°50N, 22°W	7		3rd Site 12°N, 21°W	
Sta.	Date (1986)	N ₂ O (ppb)	Sta.	Date (1986)	N ₂ O (ppb)	Sta. no.	Date (1986)	N ₂ O (ppb)
37	28 Jun.	331	102	19 Jul.	309	139	03 Aug.	309
41	29 Jun.	318	106	20 Jul.	306	143	04 Aug.	312
44	30 Jun.	313	110	21 Jul.	309	147	05 Aug.	310
48	01 Jul.	315	114	22 Jul.	306	151	06 Aug.	293
52	02 Jul.	304				155	07 Aug.	315
56	03 Jul.	325					ŭ	
Mean		318	Mean		308	Mean		308
S.D.		± 9	S.D.		± 2	S.D.		± 9

atmospheric measurements conducted by Young and Cline in the North Pacific in April 1979 indicate a value of 297 \pm 4 ppb (Cline et al., 1987). Khalil and Rasmussen (1983) reviewed current studies on the increase in N₂O: the observed rates of increase range from 0.2 to 0.4% (y)⁻¹. Taking as a reference the value (300 ppb) of Weiss et al. (1981) in 1978, our measurements made 8 years later should be within the range 305–310 ppb expected from the annual increase. Lately, Khalil and Rasmussen (1988) measured a concentration of 310 ppb during January 1986 over the western Atlantic Ocean. Our combined average (311 \pm 6 ppb) is in fair agreement with the work of other laboratories and adds some confidence to our standardization.

N2O concentrations in surface water

In Table 2 we report the average N_2O concentrations in the surface mixed layer and also N_2O saturations. In all instances a supersaturation of N_2O is observed, ranging from 112 to 136%. Thus it has been verified that the ocean is a source of N_2O to the atmosphere. From our results we cannot distinguish significant differences between the average saturations at each site and we retain a combined average saturation of $126 \pm 8\%$ for surface oceanic water in an eastern tropical area (5°-12°N, 20°-22°W) during the summer season.

At first sight, such an average saturation is in agreement with previous measurements in similar areas. Elkins *et al.* (1978) reported that surface waters in the central tropical Pacific are, on average, supersaturated with respect to the atmosphere by $25 \pm 10\%$. Pierotti and Rasmussen (1980) in the eastern tropical Pacific, for the same latitude band (5°-12°N) as ours, found an average N₂O saturation of 123 \pm 15%. Nevertheless these measurements depend largely on chosen solubilities and partial pressure of N₂O in dry air and they probably need to be revised.

According to the last research work (Weiss, personal communication), outside of the equatorial belt, where, because of upwelling, supersaturation of N₂O might reach about 30%, the surface water should be generally nearer equilibrium with respect to the atmosphere. In roughly the same region as ours, Weiss (personal communication) reports that N₂O data from TTO/TAS indicate lower supersaturation, about 3–7%. But it is not impossible that the PIRAL data, taken in summer and nearer the African coast, are larger than those of Weiss. Our measurements of oceanic CO₂ show a summer increase in the partial pressure of CO₂ in the surface layer in the Guinea Dome area (Oudot and Andrie, 1986; Oudot et al., 1987).

Table 2.	Average N2O	in the surface	mixed laver
----------	-------------	----------------	-------------

Sta.	Position	Depth (m)	Temp.	N ₂ O conc. (μl l ⁻¹)	N ₂ O sat. (%)	ΔN ₂ O (μl l ⁻¹)
37	4°59N, 17°24W	30	27.31	0.156	124	0.030
41	4°55N, 18°19W	50	27.15	0.141	112	0.015
44	4°50N, 18°50W	55	27.26	0.143	113	0.016
48	4°52N, 19°22W	35	27.48	0.167	132	0.040
52	5°01N, 19°56W	30	27.25	0.163	129	0.037
56	5°01N, 19°57W	30	27.26	0.157	125	0.031
Mean		38	27.29	0.155	123	0.028
S.D.		± 11	± 0.11	± 0.011	± 8	± 0.011
102	11°50N, 22°01W	15	26.45	0.155	120	0.026
106	11°52N, 22°05W	20	26.43	0.170	133	0.042
110	11°50N, 22°00W	10	26.82	0.159	125	0.032
114	11°50N, 22°01W	12	26.85	0.157	124	0.030
Mean		14	26.64	0.160	126	0.033
S.D.		± 4	± 0.23	$\pm \ 0.007$	± 5	± 0.007
139	11°59N, 21°01W	24	27.36	0.170	136	0.045
143	12°00N, 21°00W	25	27.36	0.161	129	0.036
147	12°00N, 21°00W	22	27.17	0.155	123	0.029
151	12°01N, 21°01W	25	27.31	0.169	135	0.044
155	11°58N, 21°01W	25	27.20	0.171	136	0.045
Mean		24	27.28	0.165	132	0.040
S.D.		± 1	± 0.09	± 0.007	± 6	± 0.007

N₂O saturation (%) is the N₂O saturation relative to an average atmospheric concentration of 300 ppb (v/v) in dry air.

 ΔN_2O is the apparent N_2O production defined by Yoshinari (1976) as $\Delta N_2O = N_2O$ concentration measured – N_2O concentration in equilibrium with the atmosphere (average N_2O of 300 ppb) at T and S observed.

Vertical profiles of N2O

In almost all the marine environments where N₂O measurements have been made, its distribution appears to be inversely correlated with that of dissolved oxygen (Hahn, 1974, 1975; Yoshinari, 1976; Elkins et al., 1978; Cohen and Gordon, 1979; Cline et al., 1987). Our observations in all three locations (Figs 3–5) confirm such distributions: we observed typical vertical profiles of N₂O in comparison with the oxygen and nitrate ones. In Fig. 3, the N₂O profile is roughly a mirror image of the O₂ profile. The lower the O₂ concentration at depth, the higher the N₂O concentration. At 11°50N, 22°W (Fig. 4), where the O₂ concentration is the lowest (approximately 1.0 ml l⁻¹), the N₂O saturation exceeds 700% at a depth of 60 m. Such large supersaturations of N₂O are not exceptional, and Pierotti and Rasmussen (1980) reported a saturation level exceeding 1000% at 75 m in the eastern tropical Pacific Ocean.

Nitrous oxide concentrations are supersaturated at all depths, with saturation values ranging from about 120–130% at the surface to 350–500% on average below the thermocline (Figs 3–5).

The distribution pattern for N_2O is quite similar from one site to the other: N_2O concentration increases rapidly from the bottom of the mixed layer to the depth of the subsurface O_2 minimum and then remains relatively constant down to the maximum sampling depth (500 m). Nevertheless, a particular feature occurs at the end of the observations period at 12°N, 21°W: a small N_2O maximum appears at the top of the thermocline, at the level of the subsurface O_2 maximum (Fig. 5). This feature, the

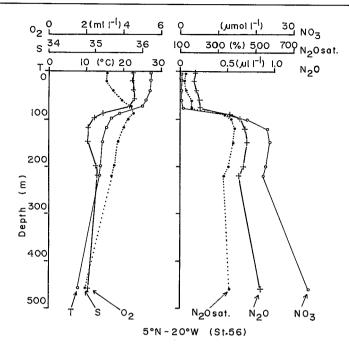


Fig. 3. Vertical profiles of temperature (T), salinity (S), oxygen (O_2) , nitrous oxide (N_2O) , nitrous oxide saturation (N_2O) and nitrate (NO_3) in the convergence zone.

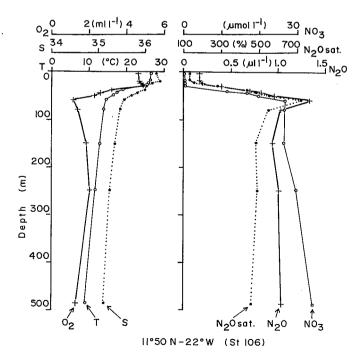


Fig. 4. Vertical profiles of temperature (T), salinity (S), oxygen (O_2) , nitrous oxide (N_2O) , nitrous oxide saturation (N_2O) sat.) and nitrate (NO_3) at the exact center of the Guinea Dome.

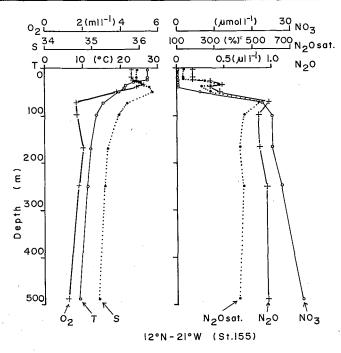


Fig. 5. Vertical profiles of temperature (T), salinity (S), oxygen (O_2) , nitrous oxide (N_2O) , nitrous oxide saturation $(N_2O \text{ sat.})$ and nitrate (NO_3) a short distance from the center of the Guinea Dome.

possible origin of which will be discussed later, was found on three successive occasions (Stas 147, 151 and 155).

Apparent O2 utilization and N2O

Following the approach of several investigators, we used the negative correlation between dissolved O_2 and N_2O to plot the apparent production of nitrous oxide $\triangle N_2O$ (Yoshinari, 1976) vs the apparent oxygen utilization, AOU. $\triangle N_2O$ and AOU are computed from respective solubilities by the following equations:

$$\Delta N_2 O = N_2 O - N_2 O^* \tag{1}$$

$$AOU = O_2^* - O_2 \tag{2}$$

in which N_2O^* and O_2^* are the expected equilibrium concentrations as previously noted in the paragraph describing methods.

At 5°N (Fig. 6), a linear trend between $\triangle N_2O$ and AOU is observed for all the groups of points, except those corresponding to the 500 m level. The slope of the regression line, which means the ratio of N_2O production to O_2 consumption $\triangle N_2O/AOU$ (" N_2O oxidative ratio", Cohen and Gordon, 1979), is 0.129 μ l ml⁻¹ (Table 3). To the north, in the Guinea Dome areas, the situation is more complicated, because the $\triangle N_2O/AOU$ ratio changes with depth (Fig. 7) and, moreover, at the top of the thermocline we observe a N_2O production without O_2 consumption (Figs 7 and 8). In the Guinea Dome area, the N_2O oxidative ratios for the different groups of samples vary from 0.160 to

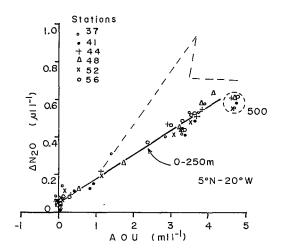


Fig. 6. Plot of apparent N_2O production ($\triangle N_2O$) vs apparent oxygen utilization (AOU) for all stations in the convergence zone. The equation of the regression line fitted to the 0–250 m data is given in Table 3. The dashed line shows $\triangle N_2O$ calculated by equation (3) reported in Elkins *et al.* (1978).

Table 3. Regression equations of $\triangle N_2O$ (μl^{-1}) vs AOU ($m l^{-1}$) for the three sites

Location	Depth range (m)	Regression equation	r	n
5°N,17°-20°W	0-250	$\Delta N_2 O = (0.129 \pm 0.003) \text{ AOU} + 0.047$	0.989	63
11°50N,22°W	0-20/40-70	$\Delta N_2^{\circ}O = (0.219 \pm 0.004) \text{ AOU} + 0.049$	0.996	22
	0-20/150-250	$\Delta N_2O = (0.160 \pm 0.003) \text{ AOU} + 0.044$	0.996	22
12°N, 21°W	0-20/50-250	$\Delta N_2O = (0.162 \pm 0.003) \text{ AOU} + 0.052$	0.993	43

At 11°50N and 12°N, the samples within the upper part of the thermocline (20-40 or 50 m) are not included.

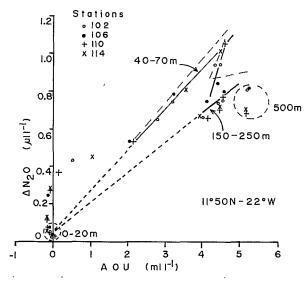


Fig. 7. Plot of apparent N_2O production (ΔN_2O) vs apparent oxygen utilization (AOU) for all stations at the exact center of the Guinea Dome. The regression lines fitted to the 40–70 m data and the 150–250 m data are forced through the surface data (0–20 m): the equations of regression lines are given in Table 3. Note the 20–40 m data apart from the regression lines. The long-dashed line shows ΔN_2O calculated by equation (3) reported in ELKINS *et al.* (1978).

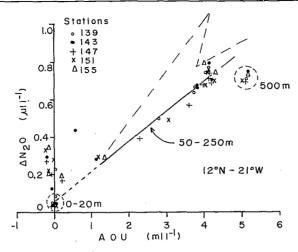


Fig. 8. Plot of apparent N_2O production ($\triangle N_2O$) vs apparent oxygen utilization (AOU) for all stations a short distance from the center of the Guinea Dome. The regression line fitted to the 50–250 m data is forced through the surface data (0–20 m): the equation of the regression line is given in Table 3. Note the 20–50 m data apart from the regression line. The long-dashed line shows $\triangle N_2O$ calculated by equation (3) reported in ELKINs et al. (1978).

0.219 μ l ml⁻¹ (Table 3): at 11°50N, i.e. the exact center of the dome, the $\Delta N_2 O/AOU$ ratio is largest in the layer of the smallest O_2 concentrations (Fig. 7). These variations of the $\Delta N_2 O/AOU$ ratio are not surprising if we remember that the dome area is a biologically active region, where the primary production is enhanced with respect to the surrounding area (Voituriez and Dandonneau, 1974). The observations of Elkins *et al.* (1978) in the tropical central Pacific showed a ratio equal to about 0.36 μ l ml⁻¹ in the "active" regions against 0.17 μ l ml⁻¹ elsewhere. Our results are in the range of the values reported in other works: the $\Delta N_2 O/AOU$ ratios of Cohen and Gordon (1979) for different marine regions vary from 0.076 to 0.218 μ l ml⁻¹, and Cline *et al.* (1987) measured 0.085 and 0.186 μ l ml⁻¹ on both sides of the Pacific Equatorial Undercurrent (150–200 m).

ELKINS et al. (1978) discussed the differences in the slopes of the linear regressions of $\triangle N_2O$ vs AOU. Various factors may explain these variations: differences in the composition of organic material to be oxidized; differences in the yield for production of N_2O ; mixing of different water masses; additional sources of N_2O in "active" regions associated with assimilatory reduction of nitrate. They considered that $\triangle N_2O$ might be an increasing function of temperature:

$$\Delta N_2 O = (0.18 + 0.0277 T) \text{ AOU} - 0.46$$
 (3)

with $\triangle N_2O$ and AOU measured in $\mu g \ l^{-1}$ and $m \ l^{-1}$ and T in °C. As did CLINE et al. (1987), we calculated $\triangle N_2O$ from this regression function. As the latter authors observed, we find that equation (3) (dashed lines in Figs 6-8) does not fit our observations in the layer of the rapid increase of N_2O concentrations except at 11°50N (Fig. 7). Only in the exact center of the dome is the yield for production of N_2O consistent with temperature sensitivity as described by ELKINS et al. (1978). Thus, this relationship of temperature dependence may be only applicable in the biologically active region, which is in complete contradiction with the results of Elkins and co-workers,

according to whom the equation (3) provides an excellent fit to all the data except results from the "active" region.

N₂O production and nitrate

As a consequence of the relationship between ΔN_2O and AOU, there follows, of course, a positive correlation between N_2O production and nitrate concentration, since nitrate regeneration is linearly related to O_2 consumption (Redfield *et al.*, 1963). This relation is illustrated in Figs 9–11. The ratio of N_2O formation to nitrate formation varies according to the site of observations and the depth. Expressed as a percentage on an atom-N basis, the values of this ratio range from 0.18 to 0.36% (Figs 9–11). Cohen and Gordon (1979) found that the ratio of N_2O to nitrate production calculated from the Redfield *et al.* (1963) plankton model varied from 0.13 to 0.37% in different marine environments. Yoshinari (1973), in the Sargasso Sea, estimated N_2O production to be only 0.12% of nitrate formation.

In the Guinea Dome area (Figs 10 and 11) we observe some samples that do not fit the regression line of $\triangle N_2O$ vs NO_3 . For these samples, located at the top of the thermocline, a production of N_2O occurs without the appearance of nitrate. This feature is most apparent at 12°N (Fig. 11) for depths less than 50 m. At this level the process responsible for N_2O production is undoubtedly different from what happens at a deeper level and which leads to nitrate regeneration. This process sometimes leads to the creation of a secondary upper maximum of N_2O .

Secondary upper N2O maximum

A secondary upper N_2O maximum was found in the last three successive days of continuous observations in the Guinea Dome area (Fig. 12: Stas 147, 151 and 155). It is located at 30–35 m depth in the upper layer of the thermocline and corresponds to the level of the subsurface O_2 maximum. Moreover, together with the small N_2O maximum there appears a small N_2 maximum (Stas 151–155).

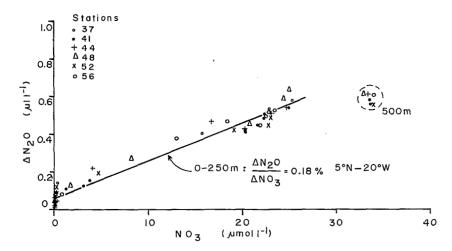


Fig. 9. Plot of apparent N_2O production ($\triangle N_2O$) vs nitrate concentration (NO_3) for all stations in the convergence zone. The slope regression line fitted to the 0-250 m data (r=0.986 for n=62) shows the apparent ratio of N_2O to nitrate production.

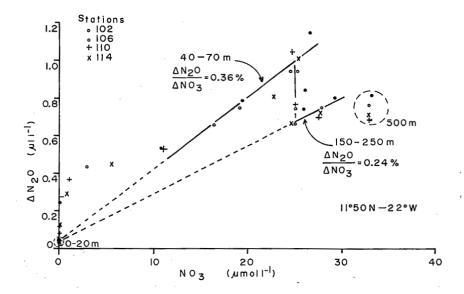


Fig. 10. Plot of apparent N_2O production (ΔN_2O) vs nitrate concentration (NO_3) for all stations at the exact center of the Guinea Dome. The regression lines fitted to the 40–70 m data and 150–250 m data are forced through the surface data (0–20 m): the slopes of these regression lines show the apparent ratio of N_2O to nitrate production. Note the 20–40 m data apart from the regression lines. In the 150–250 m range the ratio is identical to that in the 50–250 m range a short distance from the center of the Guinea Dome (Fig. 11).

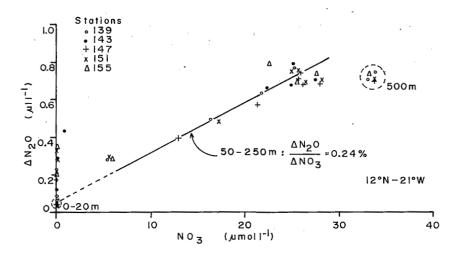


Fig. 11. Plot of apparent N_2O production ($\triangle N_2O$) vs nitrate concentration (NO_3) for all stations a short distance from the center of the Guinea Dome. The regression line fitted to the 50–250 m data is forced through the surface data (0–20 m): the slope of the regression line shows the apparent ratio of N_2O to nitrate production. Note the 20–50 m data apart from the regression line.

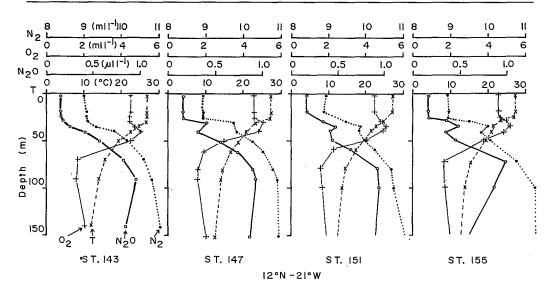


Fig. 12. Vertical profiles of temperature (T), nitrous oxide (N_2O) , oxygen (O_2) and molecular nitrogen (N_2) for stations a short distance from the center of the Guinea Dome. Note the appearance of a small N_2O maximum from Sta. 147 and a small N_2 maximum from Sta. 151.

DISCUSSION

Nitrification, denitrification and assimilatory nitrate reduction

The actual mechanism by which N_2O is produced in specific ecosystems is a subject of current debate. Hahn and Junge (1977) have suggested that three processes are apt to produce N_2O in the oceans: nitrification, denitrification and assimilatory nitrate reduction. Our results exhibit two of the three mechanisms of N_2O formation.

The first (nitrification) is the main source of N₂O in the open ocean. Through nitrification, the ammonium ion is oxidized step-wise to nitrite and nitrate by microbially mediated reactions and a small amount of N2O is released into the water column. The amount of N₂O released is, in general, proportional to the amount of O₂ consumed, i.e. the AOU. Yoshinari (1976) was the first to suggest that nitrification was a major source of N₂O in the Atlantic Ocean. The inverse correlation between N₂O and O₂ in the water column was, for Yoshinari, proof that production of N₂O is closely related to biological activity in the sea. The linear relationship between excess N_2O in the water ($\triangle N_2O$) and AOU, confirmed on several occasions (Cohen and Gordon, 1978; Elkins et al., 1978; CLINE et al., 1987, this study), is the main argument in support of nitrification. The linear relationship between ΔN_2O and nitrate concentration could be a further illustration of nitrification. Our results show that for any given value of AOU, the concentration of N₂O is spatially variable (Figs 6-8). It is the same for the ratio of N₂O to nitrate production (Figs 9-11). These variations of the N₂O yield may represent some differences in biological activity in the water column (Elkins et al., 1978). The Guinea Dome area is well known as an area of enhanced primary production, and it is not surprising that the $\triangle N_2O/\triangle OU$ and $\triangle N_2O/\triangle NO_3$ ratios are higher here than in the oligotrophic convergence zone at 5°N. A different composition of organic material to be oxidized and

a different yield for production of N₂O (ELKINS et al., 1978) may be at the origin of the increase of the $\triangle N_2O/AOU$ ratio in the dome area. Cline et al. (1987) remind us that the N₂O production rate increases when concentrations of O₂ decrease, which is what happens in the exact center of the dome. On the other hand, N₂O being an intermediary step in nitrate regeneration from ammonia and organic nitrogen, the N₂O concentration depends on equilibrium between the production rate of N₂O from ammonia and the oxidation rate of N₂O into nitrite then nitrate. Thus the excess N₂O proportion (percentage of nitrate production) can be more or less high according to the state of progress of the nitrification process. A high excess N₂O proportion can be synonymous with a young water mass in which the oxidation of organic nitrogen (or ammonia) is at an early step, while a low $\triangle N_2O$ proportion corresponds with an older water mass in which the oxidation is nearly at the final step (nitrate). Measurements of helium 3-tritium (Andrie and Oudor, in preparation) give us information about the "age" of water masses: the "age" of the layer of maximum N₂O concentrations at 5°N, 11°50N and 12°N is estimated at 20, 12 and 17 years, respectively, where the ratio of N₂O to nitrate production is 0.18, 0.36 and 0.24%.

The second process, denitrification or dissimilatory nitrate reduction, has little chance of occurring here, because the O_2 concentrations are significantly above the required conditions ($O_2 < 0.1$ ml I^{-1}) for the appearance of denitrification (Codisport and Christensen, 1985). The smallest O_2 concentration, observed at 11°50N, is 0.86 ml I^{-1} .

The last process, assimilatory nitrate reduction, seems to us to be the explanation for the large N₂O anomalies and the secondary upper N₂O maximum at the top of the thermocline. This process, proposed by several investigators (Hahn, 1975; Elkins et al., 1978; Pierotti and Rasmussen, 1980), has never been really demonstrated. It has been principally put forward to explain the high surface concentrations of N₂O in the waters of upwelling areas, since nitrate is the major source of nitrogen primary productivity in regions of upwelling. The fact that we found the upper N₂O anomalies at the top of the thermocline only in the Guinea Dome area, a zone where nitrate in the euphotic layer is elevated and thus primary productivity enhanced, and not in the convergence region, which is less rich, argues in favor of assimilatory nitrate reduction.

Another exciting feature is the small N_2 maximum sometimes observed (Fig. 12) at the same depth as the upper N_2O maximum. Within oxygenated waters, no biological process is known to create a detectable change in N_2 concentrations (SCRANTON, 1983). Several physical processes (air injection and temperature change after gas equilibration), in the absence of biological activity, can create significant gaseous saturation anomalies (Kester, 1975) but never to the extent that inversions occur in the vertical distribution of these gases. Thus we cannot explain the occurrence of such an anomaly of N_2 distributions which occurred several times in succession.

 N_2O exchange across the air–sea interface and vertical diffusion of N_2O

The N₂O exchange across the air-sea interface is governed by the equation:

$$F(N_2O)_{atm} = V_t \times (N_2O - N_2O^*)$$
, (4)

where $F(N_2O)_{atm}$ is the N_2O flux across the air-sea interface, V_t the transfer velocity and N_2O and N_2O^* the average surface concentration and the equilibrium concentration. The transfer velocity is an empirical function of wind speed and temperature through the Schmidt number, Sc, dependency (Liss and Merlivat, 1986). V_t varies with the kind of

gas through its molecular diffusivity D (Sc is the ratio of the kinematic viscosity of the water to the molecular diffusivity of the gas). The N_2O transfer velocity is derived from that computed for CO_2 (Oudot and Andrie, 1989) according to the equation:

$$\frac{V_t(N_2O)}{V_t(CO_2)} = \frac{D(N_2O)^{1/2}}{D(CO_2)^{1/2}},$$
(5)

where $D(N_2O)$ and $D(CO_2)$ are the molecular diffusivity of N_2O and CO_2 . Between 25 and 30°C, $D(N_2O)/D(CO_2) = 1.27$ (Broecker and Peng, 1974). For an average wind speed of 5.1 m s⁻¹, the CO_2 transfer velocity was estimated at 1.6 \pm 1.3 m d⁻¹ (Oudot and Andrie, 1989). The N_2O transfer velocity corresponding to this wind speed is 1.8 \pm 1.5 m d⁻¹. The measured N_2O saturation anomaly is 0.028 \pm 0.011 μ l l⁻¹ (Table 2 : ΔN_2O). The N_2O flux escaping into the atmosphere across the air–sea interface, which is generated by N_2O supersaturation, should be equal to 18.4 \pm 22.5 ml m⁻² v⁻¹.

Assuming a steady state of N_2O distribution, the N_2O escape into the atmosphere ("air–sea" flux) must be balanced by the N_2O production in the underlying layers corrected by its biochemical consumption in oxygen-deficient and anoxic waters and a possible assimilatory N_2O consumption in nitrate-starved surface waters. Such oxygen-depleted conditions not being observed in the eastern tropical Atlantic, transport across the air–sea interface and photosynthetic N_2O assimilation in the mixed layer, if it exists, must balance N_2O production in the surface column.

Jenkins (1982) estimated the oxygen utilization rate (OUR) by associating the idea of "age" of a water mass with AOU. In the same way we have evaluated the rate of N_2O production by using the data of helium 3-tritium collected during the PIRAL cruise (Andrie and Oudot, in preparation). Figure 13 shows apparent N_2O production vs "age" for Sta. 56 (5°N, 20°W): the slope of the regression line (r = 0.98 for n = 11) is an average rate of N_2O production $(0.027 \pm 0.002 \, \mu l^{-1} \, y^{-1})$ over about 420 m.

Assuming this rate remains constant over the thickness of the water column (80–500 m), the N_2O flux, called "age" flux, is 0.027 ± 0.002 µl l^{-1} y⁻¹ × 420 m = 11.3 ± 0.8 ml m⁻² v⁻¹.

Most of the investigators who have studied N₂O distribution within the ocean have estimated N₂O production in the ocean and the N₂O flux escaping into the atmosphere. CLINE et al. (1987), by means of eddy coefficients, evaluated the average flux of N₂O into the mixed layer in the equatorial Pacific at 7.4 \pm 5.7 ml m⁻² y⁻¹ in an abnormal year (1982-1983 El Niño event) without upwelling. Other estimates of the annual global flux of N_2O from the ocean to the atmosphere were previously reported; ELKINS et al. (1978). using data from surface ocean waters between latitudes $\pm 20^{\circ}$ in the central Pacific, gave a marine source for atmospheric N₂O of 7×10^6 tons N y⁻¹, i.e. 15.3 ml m⁻² y⁻¹, by dividing by the whole ocean surface ($366 \times 10^{12} \text{ m}^2$); Cohen and Gordon (1979), from the ratio of N₂O to nitrate production during nitrate regeneration and estimates of the overall regeneration of nitrate in the ocean, concluded that the oceanic source of atmospheric N₂O ranged from 6 to 16×10^{12} g N₂O y⁻¹, i.e. 8.3 - 22.2 ml m⁻² y⁻¹; PIEROTTI and RASMUSSEN (1980) conducted measurements in coastal and equatorial upwelling regions of the Pacific Ocean, and calculated an average flux of N₂O of 80 ml m^{-2} y⁻¹. Our estimates, 18.4 \pm 22.5 ml m⁻² y⁻¹ for the "air-sea" flux and 11.3 \pm 0.8 ml m⁻² y⁻¹ for the "age" flux, representative of non-upwelling areas, agree well with the measurements of Elkins et al. (1978), that encompassed oligotrophic areas of the subtropical Pacific.

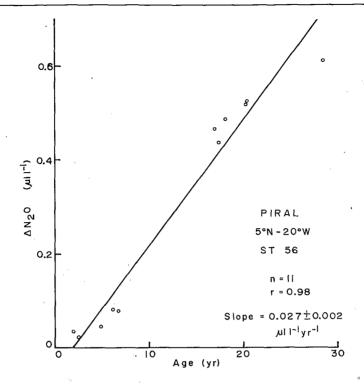


Fig. 13. Plot of apparent N_2O production ($\triangle N_2O$) vs the "age" determined by the helium 3-tritium method (ANDRIE and OUDOT, in preparation) for a station in the convergence zone. The slope of the regression line fitted to the data shows the apparent rate of N_2O production.

Nevertheless, there needs to be some discussion of the difference between our flux estimates. Firstly the "age" flux, referring to a water column of only 420 m, is probably underestimated. Another possible explanation is the recognition that the two different methods measure different "average" quantities. The "age" method, a long-term integrated production estimate, is really needed for global flux calculations. The air-sea exchange flux is extremely sensitive to short-term changes at the sea surface and in the thermocline structure; it is characterized by high-frequency and high-amplitude variations. Moreover, the "air-sea" method is dependent upon uncertainties about determinations of absolute supersaturations and transfer velocity. To obtain an accurate picture of the gradient flux it is necessary to make numerous local measurements of the N2O gradient and wind speed over a long period of time. The "age" method probably gives a better measure for a global flux. The "age" flux of 11.3 ml m⁻² y⁻¹, i.e. 0.18 Tmol y⁻¹, corresponds better to the Weiss' (personal communication) estimation of 0.1 Tmol y⁻¹ than the "air-sea" flux, which would reach 0.3 Tmol y⁻¹. Nevertheless, our "age" flux has to be considered with caution when speaking about global flux, because there is no evidence for no N2O consumption in the mixed layer and the PIRAL station is not representative of the whole ocean. The conservative behavior of N₂O in well-oxygenated waters never has been demonstrated in the literature, and it seems to some authors (CLINE and WEISS, personal communications) that phytoplankton may well possess the capability of assimilating N2O in the absence of nitrate and ammonium ions, which is just the case in oligotrophic tropical areas.

In the convergence zone ($5^{\circ}N$), the flux of N_2O into the mixed layer, supported by the N_2O production in the underlying layers, depends on the N_2O gradient and the local eddy diffusivity:

$$F(N_2O)_{ml} = K_z \times \frac{dN_2O}{dz}, \qquad (6)$$

where $F(N_2O)_{ml}$ is the N_2O flux across the base of the mixed layer, K_z is the eddy diffusion coefficient and dN_2O/dz the N_2O gradient corresponding to the thermocline. Assuming $F(N_2O)_{ml}$ identical with the "age" flux (11.3 ml m⁻² y⁻¹) and taking the N_2O gradient as equal to 0.018 ml m⁻⁴ (Fig. 3), K_z would be 0.20 cm² s⁻¹. This value is consistent with what is known of eddy diffusivity at the top of the thermocline in tropical areas through the radioactive or stable tracer distributions (Roether et al., 1970; Roth and Ostlund, 1972; Peng et al., 1974; King and Devol, 1979). The independent estimate of K_z , based on the surface heat flux of Haney (1971) (in Cline et al., 1987), would have led in the case of PIRAL (5°N, 20°W) to a result of 0.17 cm² s⁻¹. The agreement between these different values is acceptable and suggests that the N_2O saturation of surface waters is related to turbulent fluxes across the base of the mixed layer, as noted by Cline et al. (1987).

Acknowledgements—This study has been carried out thanks to the financial support of the Institut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM) and the Centre National de la Recherche Scientifique (Contrat ATP A1-5018/1979). We are grateful for the assistance given by J. L. Cremoux, P. Morin, G. Lefranc and I. Gringue in the chemical analyses and J. Grelet, J. Citeau, D. Touré and J. Pagès in the collection of the water samples and the CTD data management. We are also grateful to J. D. Cline and R. F. Weiss, who accepted to review this manuscript and to improve it by their constructive comments. Finally we would like to thank the captains, and all the crew of the R.V. Noroit (Institut Français pour la Recherche et l'Exploitation de la Mer, IFREMER).

REFERENCES

BENDER M. and K. D. Grande (1987) Production, respiration, and the isotope geochemistry of O₂ in the upper water column. *Global Biogeochemical Cycles*, 1, 49-59.

BROECKER W. S. and T. H. PENG (1974) Gas exchange rates between air and sea. Tellus, 29, 21-35.

BUTLER J. H., R. D. JONES, J. H. GARBER and L. I. GORDON (1987) Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon. *Geochimica et Cosmochimica Acta*, 51, 697-706.

CICERONE R. J., J. D. SHETTER and S. C. LIU (1978a) Nitrous oxide in Michigan waters and in US municipal waters. Geophysical Research Letters, 5, 173-176.

CICERONE R. J., J. D. SHETTER, D. H. STEDMAN, T. J. KELLY and S. C. LIU (1978b) Atmospheric N₂O: measurements to determine its sources, sinks, and variations. *Journal of Geophysical Research*, 83, 3042–3050.

CLINE J. D., D. P. WISEGARVER and K. KELLY-HANSEN (1987) Nitrous oxide and vertical mixing in the equatorial Pacific during the 1982–1983 El Niño. Deep-Sea Research, 34, 857–873.

Codisport L. A. and J. P. Christensen (1985) Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific Ocean. *Marine Chemistry*, 16, 277-300.

COHEN Y. (1977) Shipboard measurement of dissolved nitrous oxide in seawater by electron capture gas chromatography. *Analytical Chemistry*, **49**, 1238–1240.

COHEN Y. and L. I. GORDON (1978) Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. *Deep-Sea Research*, 25, 509-524.

COHEN Y. and L. I. GORDON (1979) Nitrous oxide production in the ocean. *Journal of Geophysical Research*, 84, 347–353.

Craig H. and L. I. Gordon (1963) Nitrous oxide in the ocean and marine atmosphere. Geochimica et Cosmochimica Acta, 27, 949-955.

CRUTZEN P. J. (1976) Upper limits on atmospheric ozone reduction following increased applications of fixed nitrogen to the soil. *Geophysical Research Letters*, 3, 169–172.

DE ANGELIS M. A. and L. I. GORDON (1985) Upwelling and river runoff as sources of dissolved nitrous oxide to the Alsea Estuary, Oregon. Estuarine, Coastal and Shelf Science, 20, 375-386.

DONNER L. and V. RAMANATHAN (1980) Methane and nitrous oxide; their effects on the terrestrial climate. Journal of Atmospheric Sciences, 37, 119-124.

ELKINS J. W. (1980) Determination of dissolved nitrous oxide in aquatic systems by gas chromatography using electron-capture detection and multiple phase equilibration. *Analytical Chemistry*, **52**, 263–267.

ELKINS J. W., S. C. WOFSY, M. B. McELROY, C. E. KOLB and W. A. KAPLAN (1978) Aquatic sources and sinks for nitrous oxide. *Nature*, 275, 602-606.

Hann J. (1973) Nitrous oxide in air and seawater over the Iceland Foeroe ridge. *Meteor-Forschungsergebnisse*, *Reihe A*, 13, 43–49.

HAHN J. (1974) The North Atlantic Ocean as a source of atmospheric N₂O. Tellus, 26, 160-168.

HAHN J. (1975) N₂O measurements in the Northeast Atlantic Ocean. *Meteor-Forschungsergebnisse*, Reihe A, 16, 1-14.

HAHN J. and C. Junge (1977) Atmospheric nitrous oxide: a critical review. Zeitung Naturforschung, 32, 190-214.

HASHIMOTO L. K., W. A. KAPLAN, S. C. WOFSY and M. B. McElroy (1983) Transformations of fixed nitrogen and N₂O in the Cariaco Trench. *Deep-Sea Research*, 30, 575-590.

Jenkins W. J. (1982) Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. *Nature*, 300, 246–248.

JUNGE C. and J. HAHN (1971) N₂O measurements in the North Atlantic. *Journal of Geophysical Research*, 76, 8143–8146.

Kester D. R. (1975) Dissolved gases other than CO₂. In: *Chemical oceanography*, J. P. Riley and G. Skirrow, editors, Academic Press, London, pp. 497–556.

KHALIL M. A. K. and R. A. RASMUSSEN (1983) Increase and seasonal cycles of nitrous oxide in the earth's atmosphere. *Tellus*, 35, 161–169.

KHALIL M. A. K. and R. A. RASMUSSEN (1988) Trace gases over the western Atlantic Ocean: fluxes from the eastern United States and distributions in and above the planetary boundary layer. Global Biogeochemical Cycles, 2, 63-71.

KING F. D. and A. H. DEVOL (1979) Estimates of vertical eddy diffusion through the thermocline from phytoplankton nitrate uptake rates in the mixed layer of the eastern tropical Pacific. Limnology and Oceanography, 24, 645-651.

KNOWLES R., D. R. S. LEAN and Y. K. CHAN (1981) Nitrous oxide concentrations in lakes: variations with depth and time. *Limnology and Oceanography*, 26, 855–866.

LEMON E. and D. LEMON (1981) Nitrous oxide in freshwaters of the Great Lakes Basin. Limnology and Oceanography, 26, 867-879.

Liss P. and L. Merlivat (1986) Air-sea gas exchange rates: introduction and synthesis. In: *The role of air-sea exchange in geochemical cycling, NATO ASI Series,* Vol. 185, P. Buat-Menard, editor, D. Reidel, Hingham, Mass. pp. 113-127.

Hingham, Mass. pp. 113-127.

McElroy M. B., J. W. Elkins, S. C. Wofsy, C. E. Kolb, A. P. Duran and W. A. Kaplan (1978)

Production and release of N₂O from the Potomac Estuary. *Limnology and Oceanography*, 23, 1168-1182.

OUDOT C. (1982) La distribution de l'azote moléculaire N₂ dans l'Atlantique équatorial oriental. *Marine Chemistry*, 11, 573-588.

OUDOT C. and C. ANDRIE (1986) Variabilité des pressions partielles de N₂O océanique et atmosphérique dans l'Atlantique tropical. Oceanologica Acta, 9, 169-177.

OUDOT C. and Y. MONTEL (1987) Anomalies de saturation d'argon dans l'Atlantique équatorial — Comparaison avec l'azote moléculaire. *Marine Chemistry*, 21, 1–14.

OUDOT C. and C. ANDRIE (1989) Short-term changes in the partial pressure of CO₂ in eastern tropical Atlantic

Surface seawater and in atmospheric CO₂ mole fraction. Tellus, in press.

OUDOT C., C. ANDRIE and Y. MONTEL (1987) Evolution du CO₂ océanique et atmosphérique sur la période 1982-1984 dans l'Atlantique tropical. *Deep-Sea Research*, 34, 1107-1137.

OUDOT C., R. GERARD, P. MORIN and I. GNINGUE (1988) Precise shipboard determination of dissolved oxygen (Winkler procedure) with a commercial system for productivity studies. *Limnology and Oceanography*, 33, 146-155.

PEARMAN G. I., D. ETHERIDGE, F. DE SILVA and P. J. FRASER (1986) Evidence of changing concentrations of atmospheric CO₂, N₂O and CH₄ from air bubbles in Antarctic ice. Nature, 320, 248-250.

PENG T. H., T. TAKAHASHI and W. S. BROECKER (1974) Surface radon measurements in the North Pacific Ocean station Papa. *Journal of Geophysical Research*, 79, 1172-1780.

PIEROTTI D. and R. A. RASMUSSEN (1980) Nitrous oxide measurements in the eastern tropical Pacific Ocean. Tellus, 32, 56-72.

RAMANATHAN V., R. J. CICERONE, H. B. SINGH and J. T. KIEHL (1985) Trace gas trends and their potential role in climate change. *Journal of Geophysical Research*, 90, 5547-5566.

- RASMUSSEN R. A., J. Krasnec and D. Pierotti (1976) N₂O analysis in the atmosphere via electron capture gas chromatography. *Geophysical Research Letters*, 3, 615–618.
- REDFIELD A. C., B. H. KETCHUM and F. A. RICHARDS (1963) The influence of organisms on the composition of sea water. In: *The sea*, Vol. 2, M. N. HILL, editor, Interscience, New York, pp. 26-77.
- ROETHER W., K. O. MUNNICH and H. G. OSTLUNG (1970) Tritium profile at the North Pacific (1969) Geosecs intercalibration station. *Journal of Geophysical Research*, 75, 7672–7675.
- ROOTH C. G. and H. G. OSTLUND (1972) Penetration of tritium into the Atlantic thermocline. Deep-Sea Research, 19, 481-492.
- SCRANTON M. (1983) Gaseous nitrogen compounds in the marine environment. In: Nitrogen in the marine environment, E. J. CARPENTER and D. G. CAPONE, editors, Academic Press, New York, pp. 37-64.
- Singh H. B., L. J. Salas and H. Shigeishi (1979) The distribution of nitrous oxide (N₂O) in the global atmosphere and the Pacific Ocean. *Tellus*, 31, 313–320.
- SWINNERTON J. W., V. J. LINNENBOM and C. H. CHEEK (1962) Determination of dissolved gases in aqueous solutions by gas chromatography. *Analytical Chemistry*, 34, 483–485.
- VOITURIEZ B. and Y. DANDONNEAU (1974) Relations entre la structure thermique, la production primaire et la régénération des sels nutritifs dans le Dôme de Guinée. Cahiers ORSTOM, série Océanographie, 12, 241-255.
- Wahlen M. and T. Yoshinari (1985) Oxygen isotope ratios in N₂O from different environments. *Nature*, 313, 780-782.
- WANG W. C. and G. Molnar (1985) A model study of the greenhouse effects due to increasing atmospheric CH₄, N₂O, CF₂Cl₂ and CFCl₃. *Journal of Geophysical Research*, 90, 12971–12980.
- WANG W. C., Y. L. YUNG, A. A. LACIS, T. Mo and J. E. HANSEN (1976) Greenhouse effects due to man-made perturbations of trace gases. *Science*, 194, 685–690.
- Weiss R. F. (1970) The solubility of nitrogen, oxygen and argon in water and sea water. *Deep-Sea Research*, 17, 721-735.
- WEISS R. F. (1978) Nitrous oxide in the surface water and marine atmosphere of the North Atlantic and Indian oceans. *Transactions of the American Geophysical Union.* **59**, 1101–1102.
- Weiss R. F. (1981a) The temporal and spatial distribution of tropospheric nitrous oxide. *Journal of Geophysical Research*, **86**, 7185–7195.
- Weiss R. F. (1981b) Determinations of carbon dioxide and methane by dual-catalyst flame ionization chromatography and of nitrous oxide by electron capture chromatography. *Journal of Chromatographic Science*, 19, 611-616.
- WEISS R. F. and H. CRAIG (1976) Production of atmospheric nitrous oxide by combustion. *Geophysical Research Letters*, 3, 751-753.
- Weiss R. F. and B. A. Price (1980) Nitrous oxide solubility in water and seawater. *Marine Chemistry*, 8, 347–359.
- WEISS R. F., C. D. KEELING and H. CRAIG (1981) The determination of tropospheric nitrous oxide. *Journal of Geophysical Research*, **86**, 7197–7202.
- Wood E. D., F. A. J. Armstrong and F. A. Richards (1967) Determination of nitrate in seawater by cadmium-copper reduction to nitrite. *Journal of the Marine Biological Association of the United Kingdom*, 47, 23-31
- YOSHIDA N. (1988) ¹⁵N-depleted N₂O as a product of nitrification. *Nature*, 335, 528-529.
- YOSHIDA N., A. HATTORI, T. SAINO, S. MATSUO and E. WADA (1984) ¹⁵N/¹⁴N ratio of dissolved N₂O in the eastern tropical Pacific Ocean. *Nature*, **307**, 442–444.
- YOSHINARI T. (1973) Nitrous oxide in the sea. Ph.D. Thesis, Dalhousie University, 112 pp.
- YOSHINARI T. (1976) Nitrous oxide in the sea. Marine Chemistry, 4, 189-202.