WORKSHOP ON STOCK ASSESSMENT OF YELLOWEIN TUNA IN THE INDIAN OCEAN
(Colombo, Sri Lanka 7-12 October, 1991)

YELLOWFIN EENGTH-WEIGHT RELATIONSHIPS EROM WESTERN INDIAN OCEAN PURSE SEINE FISHERIES

by J.P. HALLIER*

RESUME : Les derniers résultats sur les relations longueurs-poids pour 1'albacore (Thunnus albacares) avaient été présentés en 1990 lors du comité d'expert qui s"était tenu à Bangkok en juillet 1990. L'échantillonnage était alors insuffisant pour les petits albacores (poissons inférieurs à 22 cm de LD1). La serie de données a été complétée et les analyses ont conduit à plusieurs relations qui sont données ici avec les tableaux correspondants longueurs-poids.

SUMMARY: The last informations on yellowfin length-weight relationships (Thunnus albacares) have been issued during the Expert Committee which took place in Bangkok in July'1990. At that time, sampling data on small yellowfin (fish less than 22 cm in FLD) were insufficient. Since then, data have been updated and new relationships are given thereafter with the corresponding length-weight tables:

1. DATA AYAIIABLE

To data previously collected at the Victoria cannery we added data collected in Port during transhipment operations and a few more made at the cannery. They all were collected on small yellowfin in order to complete the series already in hands.

Altogether the samples reach now 2393 yellowfins for Fork Length (FL) and First Dorsal Length (FDL); 2242 for FL and Weight (WT) and 2228 for FDL and WT.

A: :

* ORSTOM biologist, SEA BP 449, Victoria, SEYCHELLES

2. STATISTICAL METHODS

Relationships are calculated using linear regression (least square method), and different models are tested (exponential, logarithmic, power), after having converted data. In order to detect uncertain plots, an analysis of standardized residual was made. If data fit properly with the model, standardized residual values must be approximately between -2 and +2 . Every plot beyond these values can be suspected and has to be checked and then be deleted from the sample. Residuals are reported in accordance with independant variable and if they show a particular tendency structure, that means there is a link between residuals and independant variable, therefore, regression equation must be rectified (Sherrer, 1984). Regression lines are compared by using a covariance analysis.

3. RESULTS AND DISCUSSIONS

3.1 Analysis of. data collected

Among the different relationships. calculated, the best correlation was obtained with an equation of the type $y=a x+b$ after a log to log transformation of the variables. However, as previously noted (de MONTAUDOUIN etmal, 1991) relationships are more properly described when samples are separated between small size fish on one side and medium size and large size fish on the other side.
3.2 Relationships FL - FDL

The general relationship, described by figure 1 , responds to the equation:

$$
\begin{aligned}
Y & =1.1477 x+0.3135 \quad(n=2393) \\
y & =\text { LOg FL in } \mathrm{cm} \\
x & =\text { Log FDL in } \mathrm{cm}
\end{aligned}
$$

When data are i separated in the two data groupg easily recognizable...from figure 1 , we obtain the two foilowing equations:
(1) $y_{1}=0.9899 x_{1}+0.5113(n=679)$
$\mathrm{yI}_{\mathrm{I}}=\mathrm{Log} \mathrm{FL}$ in cm
$\mathrm{XI}=\mathrm{LO}$ EDL for $\mathrm{EDL} \leq 17.5 \mathrm{~cm}$
Figure 2 shows these results.
(2) $\mathrm{yz}=1.1647 \times 2+0.2942 \quad(n=1714)$
y2 : $=\log$ FL. in cm
$x_{2}=$ LOg FDL for $\mathrm{FDL} \geq 17.5 \mathrm{~cm}$
These results are illustrated in figure 3

FDL of 17.5 cm is the crossing point of the two regression lines.
3.3. Relationship FL-WT

A general relationship taking into account all available data (n $=2242$) is shown.in figure 4 and the equation given below :

$$
\begin{aligned}
& y=2.9773 x-4.6607 \\
& y=\log \text { WT in } \mathrm{kg} . \\
& x=\text { LOg } E L \text { in } \mathrm{cm} .
\end{aligned}
$$

These data have been divided into two groups on both sides of 64 $\mathrm{cm} F \mathrm{~F}$, the crossing point of the two regression lines:
(1) $y i=2.7537 \times 1-4.2747(n=716)$
$\mathrm{yi}_{1}=\log$ WT in kg.
$\mathrm{XI}_{\mathrm{Fi}}=\mathrm{LOG} \mathrm{FL}$ for $\mathrm{FL} \leq 64 \mathrm{~cm}$
Figure 5
(2) $\mathrm{y}_{2}=3.0450 \times 2-4.8001$ $\mathrm{y}_{2}=\mathrm{Log} W \mathrm{~T}$ in kg . $x_{2}=\log F L$ for $F L \geq 64 \mathrm{~cm}$ Eigure 6
3.4. Relationship FDL-WT

A general relationship with all data available ($n=2228$) is shown in figure 7 and the equation is as follows:

$$
\begin{aligned}
& \mathrm{y}=3.4157 \mathrm{x}-3.7086 \\
& \mathrm{y}=\log \text { WT in } \mathrm{kg} . \\
& \mathrm{x}=\mathrm{Log} \mathrm{FDL} \text { in } \mathrm{cm} .
\end{aligned}
$$

As for other relationships, two data groups have been identified on both sides of 19.0 cm EDL :
(1) $y_{1}=2.7641 x_{1}-2.9131(n=692)$ $y_{1}=\mathrm{LOg}$ WT in kg .
$x_{i}=\log \mathrm{EDL}$ for $\mathrm{FDL} \leq 19.0 \mathrm{~cm}$, Figure 8
(2) $y_{2}=3.5837 \times 2-3.9612(n=1536)$ $\mathrm{y}_{2}=\mathrm{LOg}$ WT in kg.
$\mathrm{x}_{2}=\mathrm{Log}$ FDL for $\mathrm{FDL} \geq 19.0 \mathrm{~cm}$
Figure 9.
4. CONCLUSIONS

All relationships used for Western Indian Ocean purse seine fisheries are listed in tables 1.
Tables 2,3 and 4 are giving the yellowfin relationships respectively for EDL-EL, EDL-WT and FL, WT.

REFERENCES
MONTAUDOUIN (de) X., J.P. HALLIER and S. HASSANI. 1991. Lengthweight relationships for. yellowiin (Thunnus alvacares.) and skipjack (Katsuwonus pelamis) from Western Indian ocean. IPTP Collective Volume of Working Documents, Vol 4, TWS/90/48 : pp 4765.

Table $1:$ YELIOWEIN LENGTH-WEIGHT RELATIONSHIPS

FDL $\leq 17.5 \mathrm{~cm}$	LOg FL $=0.9899$ LOg FDL +0.5113
FDL $\geq 17.5 \mathrm{~cm}$	LOg FL $a 1.1647$ LOg FDL +0.2942
FDL $\leq 19.0 \mathrm{~cm}$	LOg WT $=2.7641$ LOg FDL -2.9131
FDL $\geq 19.0 \mathrm{~cm}$	Log WT $=3.5837$ LOg FDL -3.9612
FDL $\leq 64.0 \mathrm{~cm}$	Log WT $=2.7537$ LOg FL -4.2747
FDL $\geq 64.0 \mathrm{~cm}$	LOg WT $=3.0450$ LOg FL -4.8001

FDL $\leq 17.5 \mathrm{~cm}$	$\therefore \mathrm{FL}=3.2456$ EDLO.9893
FDL $\geq 17.5 \mathrm{~cm}$	FL $=1.9688 \mathrm{FDL}+1647$.
FDL $\leq 19.0 \mathrm{~cm}$. WT $=1.2215 \times 10^{-3}$ EDL2.7841
FDL $\geq 19.0 \mathrm{~cm}$	$W T=1.0935 \times 10-4 \mathrm{FDL}^{3.5837}$
FDL $\leq 64.0 . \mathrm{cm}$	$W T=5.3125 \times 10^{-5} \mathrm{EL} 2.7537$
FDL $\geq .64 .0{ }^{\circ} \mathrm{cm}$	$W T=1.5845 \times 10^{-5} \mathrm{EL} 3.0450$

-...

Table 2: YELLOWFIN FIRST DORSAL LENGTH.- FORK LENGTH RELATIONSHIP

FDL cm	FL cm
10.0	32
10.5	33
11.0	35
11.5	36
12.0	38
12.5	40
13.0	41
13.5	43
14.0	44
14.5	46
15.0	47
15.5	49
16.0	50
16.5	52
17.0	54
17.5	55
18.0	57
18.5	59
19.0	61
19.5	63
20.0	64
20.5	66
21.0	68
21.5	70
22.0	72
22.5	74
23.0	76
23.5	78
24.0	80
24.5	82
25.0	84
25.5	86
26.0	88
26.5	90
27.0	91
27.5	93
28.0	95
28.5	97
29.0	99
29.5	101
30.0	103
30.5	105

FDL cm	FL cm
31.0	107
31.5	109
32.0	.111
32.5	114
33.0	116
33.5	118
34.0	120
34.5	122
35.0	124
35.5	126
36.0	.128
36.5	130
37.0	132
37.5	134
38.0	136
38.5	138
39.0	140
39.5	142
40.0	145
40.5	147
41.0	149
41.5	151
42.0	153
42.5	155
43.0	$:$
43.5	157
44.0	159
44.5	162
45.0	164
45.5	166
46.0	168
46.5	170
47.0	172
47.5	174
48.0	177
48.5	179
49.0	181
49.5	183
50.0	185.

FDL cm	WT kg
10.0	0.7
10.5	0.8
11.0	0.9
11.5	1.0
12.0	1.2
12.5	1.3
13.0	1.5
13.5	1.6
14.0	1.8
14.5	2.0
15.0	2.2
15.5	2.4
16.0	2.6
16.5	2.8
17.0	3.1
17.5	3.3
18.0	3.6
18.5	3.9
19.0	4.2
19.5	4.6
20.0	5.0
20.5	5.5
21.0	6.0
21.5	6.5
22.0	7.1
22.5	7.7
23.0	8.3
23.5	8.9
24.0	9.6
24.5	10.4
25.0.	11.2
25.5	12.0
26.0	12.9
26.5	13.8.
27.0	14.7
27.5	15.7
28.0	16.8
28.5	17.9
29.0	19.0
29.5	20.2
30.0	21.5
30.5	22.8

FDL cm	WT kg
31.0	24.1
31.5	25.6
32.0	27.1
32.5	28.6
33.0	30.2
33.5	31.9
34.0	33.6
34.5	35.4
35.0	37.3
35.5	39.2
36.0	41.3
36.5	43.3
37.0	45.5
37.5	47.8
38.0	50.1
38.5	52.5
39.0	55.0
39.5	57.5
40.0	60.2
40.5	62.9
41.0	65.8
41.5	68.7
42.0	71.7
42.5	74.8
43.0	78.0
43.5	81.3
44.0	84.7
44.5	88.2
45.0	91.8
45.5	95.5
46.0	99.3
46.5	103.2
47.0	107.3
47.5	111.4
48.0	115.7
48.5	120.0
49.0	124.5
49.5	129.2
50.0	133.9

