
- 

Yann MOREAU Environmental Biology of Fishes 35: 301-309, 1992. 
0 1992 Kluwer Academic Publkhers. Printed in the Nerherlands. 

Diel cycles in Hoplosternum littorale (Teleostei): entrainment of 
feeding activity by low intensity colored light 

Thierry Boujard', Yann Moreau & Pierre Luquet 
INRA Hydrobiologie, B. P. 709,97387 Kourou Cedex, Guyane, France 
' Present address: INRA Hydrobiologie, B. P. 3, 64310 Ascain, France 

Received 19.6.1991 Accepted 15.1.1992 

Key words: Fish, Circadian rhythms, Vision 

Synopsis 
I 

Low intensity colored light is very often used to observe or manipulate fish during the scotophase. According 
to data on fish vision, most species can perceive these wavelengths of light since their cone pigments have 
maximum absorption peaks around 455,530 and 625 nm. To test whether Hoplosternum littorale can detect 
low intensity red or blue light, we attempted to entrain feeding activity, known to be nocturnal and 
synchronized by the circadian lightldark alternation. to such light. Feeding activiry was entrained with either 
red or blue light, indicating that these fish can perceive these lights. In all cases, the fish fed during the darker 
phase of the light cycle. 
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Introduction 

Experimental observations or manipulations of 
fish during the night generally require the use of a 
low intensity background light. To minimize the 
effect of such lighting a red light is typically used 
because this color is supposedly rapidly absorbed 
by water. 

Nevertheless, the visual spectra in most fresh- 
water fishes would allow them to perceive these 
wavelengths. For example, a peak absorption 
around 625 nm has been found in Carassius auratus 
(Cronley-Dillon & Muntz 1965, Yager 1967, Beau- 
champ & Rowe 1977), Scardinius erythrophthal- 
mus (Muntz & Northmore 1970), Perca fzuviatilis 
(Cameron 1982), Hemichromis bimaculatus (Bell 
1982), Oncorhynchus mykiss (Douglas 1983) and 
Hapfochromis burtoni (Allen & Fernald 1985). 
Thus, one might argue that another color should be 
used as a source of low intensity light. However, 
most freshwater fish have trichromatic vision, with 

maximum cone absorption peaks around 455 nm 
(blue), 530nm (green) and 625nm (red) (Marks 
1965, Harosi & MacNicholl974, Loew & Lythgoe 
1978, Beauchamp et al. 1979, Fernald & Liebman 
1980). In addition, a fourth absorption peak in the 
near UV range (361-398 nm) is found in Carassius 
auratus (Hawryshyn & Beauchamp 1985), Rutilus 
rutilus (Avery et al. 1982, Douglas 1986), and Tri- 
bolodon hakonensis (Harosi & Hashimoto 1983). 
As in many invertebrates (Wehner 1976), some 
species can also perceive polarized light: Carassius 
auratus (Kleerekoper et al. 1973, Hawryshyn & 
McFarland 1987), Oncorhynchus nerka (Dill 1971), 
Zenarchopterus dispar (Waterman & Forward 
1972). 

Thus, light that is bright enough to be seen by a 
human observer might also be perceived by the 
fish, and the effect of such light on the fish should 
be tested. 

Fish activity is known to be synchronized by 
circadian oscillations of environmental cues, and 



302 

Table I .  Spectral characteristics of the light, expressed in YO of 
transmission. of Mazda 15 W dark red sphere B22 and Mazda 
15 W dark blue sphere B22. between 400 and 700 nm, according 
to the manufacturer. 

low intensity background red or blue light affects 
the circadian feeding activity of fish. For the study 
we used the catfish locally called atipa, Hoplos- 
tertium littorale Hankock, a nocturnal air-breath- 
ing fish of economic importance in French Guiana 
(Carter & Beadle 1931, Kramer McClure 1982, 
Winemiller 1987, Boujard et al. 1988). 

blue spheres - red spheres 

Materials and methods 
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light is generally thought to be the main factor (Ali 
1964, Stickney 1972, Richardson & McCleave 
1974, Varanelli & McLeave 1974, Katz 1978, Man- 
teifel et al. 1978, Müller 1978, Bachman et al. 1979, 
Steele 1984, 1985). Entrainment of activity by red 
light has already been shown for one fish species, 
Salmo (rutta (Molina-Borja et al. 1990). Much less 
is known about the entrainment of feeding by light 
in fish, but most authors report strong circadian 
patterns of feeding (Hoar 1942, Landless 1976, 
Eriksson & Van Veen 1980, Boujard et al. 1990, 
1991, Boujard & Leatherland 1992a, b). 

In this study we attempt to determine whether a 

Table 2. Presentation of the experiments. 

The experiment was carried out in French Guiana 
(5' N 52' 30 W). For each series of observations, 
fish were siblings reared in ponds and transferred 
to the laboratory where they were fasted for some 
days prior to the trials. These trials were performed 
in recirculated water in 200 1 tanks held in a light- 
tight room. Water temperature ranged from 28 to 
30" C, the oxygen content ranged from 7 to 8 mg I-' 
and neither of those two parameters was cycled. 

The photoperiod, mimicking the natural photo- 
period. was 13.5 h light and 10.5 h dark, artificial 
dawn being at 05 h 45 min and artificial dusk at 19 h 
15 min. The light intensity was 2.1 p E  m-? s-l at the 
surface of the water and was provided by 4 1-luo- 
rescent tubes (50 W philips. 1.5 m above the surface 
of the water), andlor 4 low intensity dark red or 
dark blue lights (the light intensity was, respec- 
tively, 0.17pE m-'s-l and 0.12pE m-2 sbl at the 
surface of the water when dark red or dark blue 
lights were used alone; spectral characteristics of 
these lights are given in Table 1). 

Each tank was equipped with demand feeders 
which delivered l g  of food each time the fish 

Experiments 1 2 3 4 5 
Groups (Control 1) (Red 1) (Red 2) (Blue) (Control 2) 

1 2 3 1 2 1 2 1 2 1 2 3 I 

Colour of low intensity 

Number of fish 30 30 30 4 8  5 5 5 5 10 10 10 10 
Mean weight (g) 49 41 45 101 99 48 51 50 49 46 50 57 48 
Start date 26. 5.1988 27. 7.1989 20.11.1989 25. 9.1989 18. 1.1990 

End date 15. 8.1988 24. 8.1989 18.12.1989 28.10.1989 30. 1.1990 

background light red red red blue - 

Day D 2.  7.1988 16. 8.1989 7.12.1989 17.10.1989 - 
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Fig. 1. Diel changes in the pattern of feeding demand in Hoplosrernum litrorafe during the experiment 1 (redrawn fromBoujard et al. 
1990): a - before day D, the white lights are switched on between 5 h 45 min and 19 h 15 min, and a red light is switched on all the time 
(average from the 5 days preceeding day D); b - after day D,  the lighting remains the same, but dawn and dusk are advanced by 9 h 
(average from the 5 days following day D). 

pushed a rod. Except for experiment 1, in which 
the demand feeders were weighed every 3 hours, 
these devices were connected to a computer re- 
cording the time, the day and the number of the 
tank from which each food demand originated. 

' 

Five experiments were performed with two, three 
or four tanks each time (Table 2). 

Experiment 1 (control 1): The red lights were left 
on continuously. The white lights were turned on to 

simulate the natural photoperiod. To test whether 
the feeding demand is synchronized by lightldark 
alternation, after a 5 week adaptation period the 
onset of dusk (and dawn) was advanced by9 hours. 
In this paper, and for all the experiments this day 
will be called day D. The results of these control 
trials are already published (Boujard et al. 1990), 
but are referred to here to clarify the findings of the 
other experiments. 
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Fig. 2. Diel changes in the pattern of feeding demand in Hoplosternum litforale during the experiment 2 (Red l), 3 (Red 2) and 4 (Blue); 
the 2 tanks used in each experiment being pooled together: a- before day D, the white lights are switched on between5 h 45 min and 19 h 
15 min, and a red (or blue) light is switched on all the time (average from the 5 days preceeding day D); b- data from the 1" and 20d day 
following day D, the white lights are switched off, and a red (or blue) light is switched on between 20 h 45 min and 10 h 15 min, i.e. the 
schedule of the lighting is the same as in experiment 1, after the day D, but a IOW intensity colored light is replacing the white light; c-  
data from the 4Ih and 5th day following day D, the lighting remain the same as in B; d-  data from the 7h and SIk day following day D, the 
lighting remain the same as in B and C. 

Experiments 2 and 3 (Red 1 and Red 2): Before 
day D, the red lights were left on continuously, and 
the white lights were turned on to similate the 
natural photoperiod as in experiment 1. At day D, 
the white light was switched off. Thereafter, the 
red light was switched off at 10h 15min, and 

switched on at 20h 45min, i.e., as in the first ex- 
periment, the onset of dusk (and dawn) was ad- 
vanced by 9 hours at day D, but the photophase was 
produced by low intensity red lights and during the 
scotophase the fish were maintained in total dark- 
ness. 
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Fig. 2. Continued. 

Experiment 4 (Blue): This trial was the same as 
Red 1 and Red 2, but it was carried out with blue 
instead of red low intensity bulbs. 

Experiment 5 (Control 2): The red lights were 
permanently switched off. The white lights were 
switched on to simulate the natural photoperiod. 

Results 

showed a nocturnal pattern of demand feeding. 
When the lighting simulated the natural photope- 
riod, i.e., before day D (Fig. la), 60% of the daily 
feeding demand took place during the 6 last hours 
of the scotophase. During the photophase feeding 
activity was erratic. A slight peak also occurred at 
dusk, but it was not clearly defined since the feed- 
ers were weighed only once every 3 hours. At day 
D,  an immediate shift of the feeding rhythm oc- 
curred when dawn was advanced by 9 hours, and 

During experiment 1, the three groups of catfishes 
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Fig. 3. Diel changes in the pattern of feeding demand in Hoplosternum littorale during experiment 5 .  The white lights only are switched 
on, between 5 h 45 min and 19 h 15 min (average from the 5 last days of the experiment). 

the fish still fed mainly during the second part of the 
scotophase (Fig. lb). 

During experiments 2, 3 and 4, the fish also 
showed a strong circadian pattern of feeding activ- 
ity before day D (Fig. 2a), with an average of 44% 
of their daily food demand occurring during the last 
6 hours of the scotophase, a marked peak at dusk 
(29% of the daily food demand within the first 1.5 
hours of darkness), and almost no feeding activity 
during the photophase. After day D (Fig. 2b), all 
fish still behaved in a similar way to that of fish in 

experiment 1. When the light/‘low intensity colored 
light’ alternation was replaced by a ‘low intensity 
colored light’/dark alternation the food demand 
was entrained by the shift of dawn, and occurred 
mainly during the second part of the dark phase, 
when the fish were held in total darkness. How- 
ever, under this light regime the circadian pattern 
of feeding demand became less marked 4 days after 
day D (Fig. 2c), with a progressive increase of food 
demand during the period of low intensity coloured 

Table3. Comparison between the daily food demand during the 5 days before and after the day D (mean C SD; expressed in % of live 
weigh). 

Before day D After day D Student-Fisher test 
lo> 0.01) - I  

4 .9C 3.5 n s .  Experiment 1 (Control 1) 5 .2k  3.8 
2 (Red 1) 7.2& 5.1 26.3+ 15.1 * c *  

3 (Red 2) 2 .6C 2.0 15.9C 10.6 ***  
4 (Blue) 3.1+ 1.8 11.2+ 8.4 * * e  

2 , 3 & 4  4 . 3 2  7.2 17.8C 12.9 * c *  

5 (Control 2) 3 .9C 2.6 - - 
Student-Fisher test n.s. c * *  

(p> 0.01) (between control 1 and red 1, red 2, blue) 
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light. The circadian pattern disappeared entirely 7 
days after day D (Fig. 2d). 

In experiment 5 (Fig. 3), i.e., without any back- 
ground light, the feeding activity was nocturnal, 
with 61% of the demand during the 6 last hours of 
darkness, and 18% during the 1.5 h following dusk. 
There was almost no food demand during the pho- 
tophase. 

During all experiments the average self-distrib- 
uted food per day ranged between 2.6 and 7.2% of 
live weight (Table 3) when the lighting mimicked 
the natural photoperiod and was not significantly 
different (p > 0.01, Student-Fisher test) for back- 
ground red or blue light or no background light. 
After day D, a significant increase in food demand 
was observed in experiments 2 ,3  and 4, i.e., when a 
colored light was the only source of light, but not in 
experiment 1, i.e., when the white light was still 
used after the day D. 

- .  

Discussion 

The circadian pattern of food demand was the same 
in all the experiments, when the lightldark alterna- 
tion simulated the natural photoperiod, whether or 
not a background red or blue light was used. The 
fish were eating during the darker phase of the 
cycle, with a first peak at dusk and a second peak 
during the second half of the scotophase, and it has 
to be emphasized here that atipa, like most catfish, 
have a strongly developed tactile sense which they 
might use to find food in dark conditione (Boujard 
et al. 1988). The use of a low intensity colored light 
did not change the feeding pattern at all, because 
regardless of the source of light used, the darker 
phase was perceived as the scotophase by the fish. 
The entrainment of feeding demand in Hoplos- 
ternum littorale, by shifting the time of artificial 

the synchronization of feeding in fish. The entrain- 
ment of feeding demand, by a red or a blue low 
intensity light show that as for the activity rhythm 
(Gibson & Keenleyside 1966, Chaston 1968, Hes- 
thagen 1980, Molina-Borja et al. 1990), the differ- 
ence in intensity between the scotophase and the 

t, dawn and dusk confirms the major role of light on 

.. 

photophase is more important than the intensity or 
the spectral characteristics of the light used. 

The exception was experiment 1, in which the 
feeding demand was not negligible during the pho- 
tophase and in which the peak associated with dusk 
was less marked. These two apparent discrepencies 
can readily be explained. The level of feeding de- 
mand during the scotophase could be a conse- 
quence of the higher number of fish maintained in 
each tank, which was much higher during the first 
experiment (N = 30) than during the other experi- 
ments (N = 5-10). Quite likely the chance of unin- 
tentional contact with the feeding trigger rod would 
increase with the number offish per tank. The peak 
associated with dusk could be masked in experi- 
ment 1, since the feeders were not connected to a 
computer, but were weighed every 3 hours. The 
time for weighing the feeders around dusk was 17 h 
15 min and 20 h 15 min, dusk being at 19 h 15 min. 
Consequently, this interval of time pooled 2 hours 
of light with 1 hour of dark. 

The increase of the food demand observed when 
the light/'low intensity colored light' alternation 
was replaced by the 'low intensity colored light'/ 
dark alternation can be interpreted as a stress effect 
due to the drastic change in the lighting regime on 
day D, rather than a depressive effect of the white 
light. Indeed, this hypothesis is supported by some 
direct observations: when the food demand in- 
creased, a large part of the food remained uneaten 
by the fish. Furthermore, in experiment 5 ,  when no 
background light was used, the amount of daily 
food demand did not differ from that observed in 
the first part of the other experiments. 

According to the results of the present experi- 
ments, a low intensity colored light can be used for 
nocturnal observations of this fish. But the results 
also show that red or blue light were perceived by 
the fish, and are capable of entraining the feeding 
activity. Thus, when an experiment needs constant 
darkness, a low intensity colored light should not 
be used since the fish might perceive this luminous 
environment as a long scotophase or a long pho- 
tophase. 
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