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The fate of inorganic nutrients was studied together with the organic composition 
and chloropigment content of suspended particles in a shallow and well mixed 
estuary (Great Ouse, North Sea, England) from March 1990 to January 1991. 
Monthly sampling was made at high water neap tide yielding comparisons 
during a one year cycle. During early spring and summer phytoplankton devel- 
opment occurred inside the turbid estuary, chlorophyll a concentrations peaking 
above 100 pg 1-I, and nutrients displayed a non conservative behaviour related to 
the biological uptake. During autumn and winter the situation reversed, with low 
chlorophyll a concentration and more conservative behaviour of nutrients in 
the estuary. The  reasons for the occurrence of phytoplankton blooms in turbid 
environment and their relation with turbidity and light-penetration are dis- 
cussed. This study demonstrates that despite a thin euphotic zone and a totally 
mixed water column there is some convincing evidence for primary production 
development in shallow water estuary. It is possible to indeed rationalize the 
phytoplankton behaviour in terms of optical depth mixing approach. Photosyn- 
thetic uptake of nutrient inside estuaries may be of considerable important for 
understanding the fate of anthropogenic nutrients to the offshore waters, in this 
case the North Sea. 

Introduction 

The development of eutrophication events in estuaries and adjacent coastal environments 
in the past decades has emphasized our need for a better understanding of the fate of 
riverine nutrient inputs to the sea. While it is clear that there has been a significant increase 
in the gross nutrient inputs from rivers to the North Sea estuaries (Brock"  et al., 1988; 
Gerlach, 1988), the nature and importance of such an enrichment to the North Sea still has 
to  be clarified (Postma, 1985; Gerlach, 1988; Duursma et al., 1988). 

In estuaries, primary production is influenced by a wide range of direct and indirect 
factors (Boynton et al., 1982). In temperate areas such as the North Sea, temperature 
seems to play a secondary role (Gieskes & Kraay, 1975; Cadée & Hegeman, 1986) and 
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primary production is basically dependent on nutrient inputs and light supply. Many 
studies demonstrate that nitrogen is usually the limiting nutrient for phytoplankton pro- 
duction in estuarine and coastal waters (Ryther & Dunstan, 1972; Thayer, 1974; Boynton 
et al., 1982). However, estuaries generally have high nutrient availability, especially at the 
end of winter and the development of phytoplankton blooms from early spring to summer 
is mainly light dependent. Beside the seasonal fluctuation in daily light exposure, turbidity 
is the main obstacle to the penetration of light in estuarine waters. Therefore, it is often 
assumed that turbid estuaries are unproductive ecosystems and that primary production is 
delayed relative to the clearer marine waters (Cadée & Hegeman, 1974; Milliman &Boyle, 
1975; Parsons et al., 1977; Wolff, 1980; McLusky, 1989). Indeed many studies have 
demonstrated that productivity in turbid estuaries is less than off-shore (Joint & Pomeroy, 
1981; Oertel & Dunstan, 1981; Yoder & Bishop, 1985; Harding et al., 1986; Randall & 
Day, 1987). Yet in almost all these cases, primary production occurs in turbid waters to 
some extent and very high rates of production have also been reported by several authors 
(Pomeroy et al., 1972; Hobbie e t  al., 1975; Oertel & Dunstan, 1981). Algal growth in 
turbid estuaries is related to the critical depth (Sverdrup, 1953; Grobbelaar, 1985) which 
depends on both mixing processes and light penetration. The criteria for net production 
have been considered in terms of a critical depth model (Wofsy, 1983; Cole & Cloern, 
1984) showing that productivity is possible in turbid waters with phytoplankton moving 
rapidly through a fluctuating light regime, photosynthesising in the light and only 
respiring in the dark. The effect of such rapid changes on phytoplankton physiology is 
broadly predictable (Yoder & Bishop, 1985) since there is too little time for the phyto- 
plankton to adapt to a particular light regime and hence the population is rather uniform in 
its adaptation. If the light regime will allow photosynthesis, there are several advantages 
for phytoplankton in such an environment. Clearly nutrient supply is large and also the 
processes that maintain suspended sediment in the turbidity maximum (Postma, 1980; 
McLusky, 1989) may also operate .to maintain the phytoplankton within the estuary, 
hence allowing time for bloom,development. As far as phytoplankton blooms and nutrient 
export are concerned, the retention time in the estuary may be a critical factor. 

Studies were conducted at the University of East Anglia on the four estuaries (Great 
Ouse, Nene, Welland, Witham) draining to the Wash embayment that opens to the North 
Sea (Figure 1). This paper mainly focuses on the nutrients and chloropigments results 
from the Great Ouse estuary, the largest of the four estuaries, but mention of the other 
three estuaries (Witham, Welland, Nene) will be made where appropriate. Our study 
aimed at determining the influence of the turbidity and high water mixing rates on the 
nutrient uptake and the development of phytoplankton blooms. 

Description of study area. 

The Great Ouse estuary (Figure 1) receives its main freshwater supplies from the Bedford 
Ouse and the Ely Ouse rivers and to a lesser extent from a few agricultural drains directly 
discharged to the estuary. The  total catchment of the system is 8380 km2 with an average 
freshwater flow of 38.5 m3 s-' (Gould et al., 1986). Downstream of Denver Sluice, which 
forms a total barrier to upstream salt penetration, the tidal estuary is a 25 km long narrow 
( < 70 m) and shallow (1 to 7 m at low water) channel opening to the marine embayment 
known as the Wash; we subsequently refer to the narrow region upstream of Kings Lynn 
as the canalised section of the estuary. A freshwater ditch follows the estuary from Denver 
Sluice to the vicinity of Kings Lynn where it is discharged into the estuary. The aim of this 
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Figure 1. Location of the study site and of the sampling stations on the Great Ouse 
estuary, stations are numbered from 11 (river) to 1 (sea) and quoted as TO1 1 to TO1 in 
the text (TO standing for Trans-Ouse). 

ditch is to regulate the flow at Denver Sluice, its effect being noticeable during high river 
flow regimes when a significant part of the fresh water can then be directly released in the 
middle estuary. 

The river Ouse drains freshwater from the agricultural lands and discharges at Denver 
Sluice which is the major input of nutrient to the estuary. Effluents located in the vicinity 
of Kings Lynn (middle estuary) are discharged during the ebbing tide, and thus have little 
impact on the canalised region of the estuary (Gould e t  al., 1986). 

Water was sampled at 1 m depth and at 11 fixed sampling points (TO1-11) on a 50 km 
transect across the estuary from Denver Sluice to the Roaring Middle buoy in the middle 
of the Wash. Sampling was done monthly close to high neap tide from March 1990 to 
February 1991. To keep close to the high tide it was necessary to shorten the sampling 
time, thus the 50 km transect was divided in two 25 km long complementary transects. 
Additional sampling was carried out during two tidal cycles (May, November) close to 
station TO2 in the Wash. On 3 occasions, JONUS (Joint Nutrient Study) cruises yielded 
more detailed surveys of the canalised estuary with water samples collected by boat. at 
salinity intervals of approximately 2 PSU. 
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Materials and methods 

Water temperature and salinity were measured directly at each sampling point. Water 
samples were filtered in the laboratory on pre-ignited (4 h, 450 OC) Whatman GF.C glass 
fibre filters under moderate vacuum within a few hours of collection. Filter treatment and 
storage prior to suspended solids, particulate C and N and chlorophyll pigments analysis 
have been described in previous papers (Fichez, 1990; 1991). 

Particulate carbon and nitrogen were measured on a Carlo Erba CHN/S analyser. Prior 
to analysis, filters were decarbonated by exposure to HCl vapours for 2 h and then dried 
overnight; the remaining amounts of carbon and nitrogen are considered to be organic 
(Dame et al., 1986). Chloropigments were extracted in 90% acetone and analysed by 
spectrophotometry (Lorenzen & Jeffrey, 1980), or fluorimetry (Yentsch & Menzel, 1963) 
when concentrations were low (winter). The fluorimeter and the spectrophotometer were 
intercalibrated using a pure chlorophyll a standard. 

Water samples for nutrient analyses were frozen within a few hours of collection and 
filtration. Samples were subsequently thawed thoroughly and analysed by standard auto- 
analyser techniques (Edmunds, 1991). Sampling conditions did not permit immediate 
analysis of samples and thus some form of preservation was necessary. Freezing is 
reported to adequately preserve samples for nutrient analysis (Strickland & Parsons, 
1968) and we believe this to be the case for the Great Ouse estuary wherenutrient concen- 
trations are relatively high. Samples stored for varying length of time did not vary in 
concentration and this together with the internal consistency of our data (see later) led us 
to believe that sample collection, storage and analysis procedures were satisfactory. 

During the course of this work, the need for measuring light penetration and its relation 
to SPM concentration arose in order 'to determine if phytoplankton development was 
possible in the natural light conditions encountered. The secchi disk depth was measured 
and multiplied by 2 to obtain 1 % light penetration depth (euphotic depth); the use of 2 as a 
conversion factor may be considered as a minimum value, especially in turbid waters 
(Holmes, 1970). 

The  nutrient data from the estuary are presented as plots of concentrations against 
salinity to determine whether mixing is conservative or not (Liss, 1976). Turbidity maxi- 
mum however is located close to the upstream limit of salt intrusion and the study of the 
behaviour of particulate matter must therefore be extended to the freshwater tidal reach. 
In this region salinity is not a useful tracer of mixing and data can only be reported against 
length along the estuary. This complexity of the processes occurring along an estuarine 
transect have required that we report some results plotted against salinity and some 
against distance. 

Results and discussion 

Temperature and salinity 
Temperature in the river (Table 1) ranged between 21 "C in August and 3 "C in January. 
In the Wash, variations were slightly smaller, from 20 "C in August to 4 "C in December. 
Salinities within the estuary were highly variable (Figure 2). Fresh water extended 
through most of the canalized estuary in March-April, with the salinity then sharply 
increasing at the mouth of the estuary (Stations TO5 and TO4). The  spring-summer low 
flow period showed a strong intrusion of marine water inside the tidal river with salinity of 
11 PSU recorded in August at TO9,7 km downstream Denver Sluice. This trend reversed 
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TABLE 1. Water temperature ("C) in the Great Ouse estuary for the March 1990 to 
January 1991 survey and for each sampling station as defmed in Figure 1 

Date TO11 TOlO TO9 TO8 TO7 TO6 TO5 TO4 TO3 TO2 TO1 

20/03/90 

17/05/90 
14/06/90 
18/07/90 
28/08/90 
26/09/90 

26/11/90 
08/12/90 
13/01/91 

1 17/04/90 

1 

24/10/90 

11.40 
10.04 
14.79 
16.76 
19.12 
20.88 
10.31 
12.66 
5.81 
4.25 
3.21 

11.40 
10.01 
14.45 
16.66 
19.10 
20.82 
11.91 
11.90 
5.02 
3.74 
2.87 

11.39 
9.97 

13.74 
1652 
18.98 
20.44 
11.36 
11.74 
5.00 
4.03 
2.86 

11.33 
9.90 

12.85 
16.20 
18.22 
20.50 
11.40 
11.93 
5.41 
4.34 
2.94 

11.30 
9.84 

12.00 
15.97 
17.84 
20.56 
11.65 
11.98 
5.49 
4.48 
2.89 

11.28 
9.40 

11.34 
15.56 
17.63 
20.29 
11.58 
11.46 
5.90 
4.73 
3.06 

10.61 
9.18 

15.05 
17.43 
20.52 
12.30 
11.67 
551 
4.82 
3.43 

9.42 
8.93 

14.23 
17.21 
20.46 
12.35 
11.85 
6.12 

3.57 

9.03 
8.76 

14.04 
17.12 
20.37 
13.01 
12.13 
7.20 

4.1 1 

8.52 
8.50 

13.92 
16.68 
19.87 
13.21 
12.48 
7.50 

4.53 

8.49 
8.45 

13.84 
16.63 
19.30 
13.84 

7.01 

4.90 

in September the freshwater progressively invading most of the tidal river. However, the 
location of the saltwater-freshwater interface moved upstream in December due to 
reduced rainfall and river flow (Gould et al., 1986; NRA, unpublished data). The 
estuarine waters were well mixed even during the high river flow as the changes in the 
vertical salinity profiles were less than 2 PSU for salinity and insignificant for temperature. 

Suspendedparticulate matter ( S P M )  
SPM concentrations (Figure 2) were always less than 20 mg 1-' in the river peaked in the 
canalised estuary where the turbidity maximum occurred and decreased below 40 mg 1-' 
in the Wash. In March and April a low turbidity maximum (40 to 50 mg 1-') extended 
from TOlO to T06 .  From May to August SPM concentrations increased in the upper 
estuary, the maximum values being always located at TOlO and peaking at 141 mg 1-' in 
July. SPM load increased and the SPM maximum receded downstream in September 
(126 mg 1-' at TO9 and TOS) and October (370 mg 1-' at TOS). A bimodal SPM profile 
was displayed in October with a second peak in SPM concentration located at TO5 and 
reaching 129 mg 1-'. The SPM maximum moved upstream in November (335 mg 1-' at 
T 0 9 )  and December (399 mg 1-' at T010) and downstream in January (337 mg I-' at 
T08). The location of the turbidity maximum was related to the freshwater inputs, 
moving downstream when the river flow was high. Suspended load values in the Wash 
were maximum in January (- 40 mg I-'). 

Chloropigments 
Chlorophyll a concentrations (Figure 3) in the river end member, above Denver Sluice, 
were 10 to 70 pg 1-' from March to July and below 2 pg I-' in winter. The chlorophyll a 
maximum was always located in the canalised estuary, except for August when the maxi- 
mum recorded value for chlorophyll a concentrations was located in the river. Concen- 
trations in the chlorophyll a maximum were high from March to August (70-156 pg I-' 
except for June (45 pg 1-'), decreased in September and were less than 20 pg I-' during the 
following four months. In  the Wash (TOI) concentrations were low (1 pg 1-') in March- 
April and increased markedly in May (12.6 pg 1-') when a phytoplankton bloom occurred 
in the whole Wash embayment. From late summer to January concentrations were low 
(0.5 pg 1-') and almost steady in the Wash. 

IF 

' i  'L 
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Figure 2. Time evolution of ( A )  salinity (PSU) and (+) SPM (mg 1-') along the estuary 
from the sluice to the sea and for the period March 1990 to January 1991. 
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Figure 3. As figure 2 for (A) chlorophyll a (pg 1-') and (*) phaeopigments (% of total 
chloropigments). 
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TABLE 2. POC vs. PON ratio (weight:weight) in the Great Ouse estuary for the March 
1990 to January 1991 survey and for each sampling station as defined in Figure 1 

Date T O l l  TO10 TO9 TO8 TO7 TO6 

20/03/90 
17/04/90 
17/05/90 
14/06/90 
18/07/90 
28/08/90 
26/09/90 
24/10/90 
26/11/90 
08/12/90 
13/01/91 

8.16 
13.52 
8.40 
8.27 

11.89 
5.69 
7.90 
6.69 
7.89 
7.86 
7.98 

9.68 
8.74 
7.30 
7.50 

11.87 
7.11 
9.59 

11.68 
9.14 

10.59 
9.50 

9.23 
11.00 
7.71 
9.41 
8.52 
8.70 

10.08 
16.54 
9.66 
9.22 

10.64 

8.33 8.06 9.63 
9.33 8.00 7.59 

11.00 11.46 6.99 
8.52 10.80 7.53 
6.89 8.34 7.06 
9.33 5.96 5.73 

13.57 7.53 5.84 
14.97 8.13 7.51 
8.87 7.48 6.39 
7.77 6.45 6.16 

10.14 9.51 8.91 

TO5 

6.25 
12.55 
8.99 
5.16 

12.19 
8.32 
5.08 

11.29 
7.03 
6.53 
7.79 

TO4 

5.27 
5.49 

11.77 
5.12 
7.09 
7.70 
4.55 
8.70 
6.83 

TO3 

8.87 
5.38 

10.04 
5.21 
4.79 
6.45 
4.08 
7.25 
6.71 

TO2 

13.57 
5.43 
9.82 
4.56 
5.62 
5.90 
5.43 
9.79 
7.67 

TO 1 

13.69 
5.14 
8.03 
4.65 
5.29 
6.57 
4.62 

6.24 

5.91 8.25 7.88 8.04 

In  both the river and the chlorophyll a maximum phaeopigments (Figure 3) were absent 
in March and below 39% of the total amount of chloropigments until August (12%). This 
ratio increased progressively up to 67% in November, stabilizing at 50-60% in December 
and January. Downstream of the chlorophyll a maximum, large variations appeared, the 
highest values being reached in January with degraded pigments accounting for 70% of 
total chloropigment concentration. 

The most significant observation is the presence of high chlorophyll a concentrations 
with low degraded pigment contribution in the upper estuary despite relatively high SPM 
concentrations ( < 50 mg 1-'). This pattern was emphasized by the development of a large 
phytoplankton bloom in March. 

Particulate organic carbon (POC) and nitrogen (PON)  
Particulate organic carbon 'US. particulate organic nitrogen (P0C:PON) ratio (Table 2) 
ranged from 4.0 to 16.5. In  the river, values were - 8.0 for most of the year, peaking at 13.5 
in April and 11 e9 in July and decreasing to 5.7 in August. In  the upper estuary the values of 
the ratio were around 10.0 except for October when high values (11.7 to 16.5) were 
recorded. In  the chlorophyll a maximum, P0C:PON ratio ranged from 5.7 (TOll, 
August) to 15.0 (TOS, October). Despite the occurrence of high active chlorophyll a 
concentration in March and May in the upper as well as in the middle estuary, high POC: 
PON ratios were recorded. Such ratios, corresponding with degraded organic material 
(Cauwet, 19Sl), may be related to the significant contribution of the river-borne complex 
organic matter to the bulk organic matter. 

The process that concentrates particles forming the so-called turbidity maximum may 

turbidity maximum is associated with an increase of the residence time of particles. 
Assuming the primary production to be inhibited by lack of light, the consequences would 
be the death and the degradation of the phytoplankton originating from the river, result- 
ing in an increase in the relative importance of the degraded forms of chloropigments and 
in the P0C:PON ratio. Such a pattern was actually observed during the autumn-winter 
period but during the spring-summer period degraded chloropigments were low and the 
P0C:PON ratio decreased in the turbidity maximum. 

T 

result in a similar concentration of suspended chloropigments. The formation of the 'r 
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H W  Time GMT ( h )  

Figure 4. Tidal cycle for chlorophyll a, -0- and SPM -0- at station T02. (a) 
16 May 1990, (b) 16 July 1990. Arrows show low water (LW) and high water (HW) time. 

Tidal cycles 
Two tidal cycle surveys were conducted in May and July (Figure 4) in the Wash embay- 
ment at the entrance of the Great Ouse channel (T02). High concentrations of both SPM 
and chlorophyll a occurred close to low water while low concentrations occurred close to 
high water. However, beside this general trend, discrepancies between SPM and chloro- 
phyll a profiles have to be emphasized. High SPM concentrations occurred before and 
after high water corresponding with water current velocities of 25-64 cm s-'. At low tide 
SPM decreased and chlorophyll a increased concurrently with lowering of the water 
current velocity (< 15 cm s-I). SPM was clearly related to current speed through 
resuspension process while chlorophyll a was more related to tidal movement of water 
bodies. 

Inorganic nutrients 
Nitrate, silicate and phosphate in the river above the sluice (Figure 5) showed marked 
seasonality, though the pattern was different for each one. Nitrate had a maximum in 
winter, presumably after the soils had become sufficiently wet to allow wash out of soil 
nitrate. The decline in summer probably reflected biological uptake. Denitrification is an 
alternative explanation, but ammonium levels remained low ( < 35 +UM) when nitrate 
levels were low suggesting bio-chemical reduction processes were not of great signifi- 
cance. Silicate concentrations peaked earlier in the year than nitrate and then declined to 
very low levels in the spring before increasing from July onwards. We suggest that the 
spring decline results from a diatom bloom in the river system with a subsequent recovery 

i 
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Figure 5. Seasonality of riverine (TO1 1) concentrations for silicates, nitrates and 
phosphates (pM 1-I ) .  Results from the three JONUS cruises are circled. 

of silicate concentrations as this bloom declined. Phosphate showed a somewhat more 
complex picture but was in general the inverse of nitrate. We suggest the phosphate 
seasonality reflects the dilution of fixed inputs to the river (possibly sewage) by varying 
river flows. These seasonal cycles and their interpretation are consistent with studies on 
the nearby river Yare (Edwards 1973a,b, 1974). 

The results from the three JONUS cruises had a good precision because sampling was 
made as a function of the salinity gradient (Figure 6) .  We therefore selected these data to 
illustrate the different trends in nutrient behaviour. 

In  winter (JONUS 4), nitrate, silicate and phosphate behaviour was relatively con- 
servative. Ammonium and nitrite were minor species in terms of the fixed nitrogen 
balance, but showed non conservative behaviour; ammonium was approximately constant 
along the estuary while nitrite showed a clear mid estuarine maximum. In autumn (JONUS 
3), all nutrients showed somewhat more complex behaviour. Silicate was approximately 
conservative as was nitrate below while phosphate showed clear complex and non- 
conservative behaviour. Nitrite and ammonium behaved similarly to the survey described 
above. In  summer (JONUS 2), marked and consistent non-conservative behaviour was 
observed, with substantial estuarine removal of silicate and phosphate, and to a lesser 
extent nitrate plus nitrite (nitrite was not measured separately on this occasion). There 
was a marked mid-estuarine maximum for ammonium. 

The fixed point sampling strategy employed for the monthly survey, even if it gave less 
detailed information on the behaviour of nutrients, showed the evolution through the year. 
There was a relatively smooth transition between the different behaviours in the different 
seasons (datanon-presented). Nitrate was non-conservative on afew occasions, phosphate 
generally non-conservative and silicate relatively conservative in the September to January 
period but not during the rest of the year. 

The non-conservative behaviour of nutrients indicated significant nutrient uptake in 
the estuary. Denitrification in estuaries may be responsible for an important uptake of 
nitrate (Nixon, 1981; Smith et al., 1985; Kemp et al., 1990) but phosphate and silicate also 
displayed a non-conservative behaviour, demonstrating that another uptake process is 
involved. Furthermore, the calculated atomic N:P ratio for nutrient uptake in the estuary 
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Figure 6 .  Nutrient concentration (pM 1-') vs. salinity (PSU) on (O) JONUS 2 (July 
1990), ( x )  JONUS 3 (October 1990), and (A) JONUS 4 (January 1991) cruises. NO2 
was not analysed during the JONUS 2 cruise. 

was about 10: 1 in July (based on deviations from conservative mixing), being close to the 
Redfield ratio of 16:l (Redfield, 1958) and in the 10:l to 20:l range given for phyto- 
plankton uptake (Parsons e t  al., 1961; Rhee, 1978). All this evidence is consistent with 
phytoplankton development taking place in the turbid estuary resulting in a significant 
photosynthetic transformation of inorganic nutrient to particulate organic material. 
Because of the anthropogenic enrichment of river waters with nitrate and to a lesser extent 
phosphorus, but not with silica, the biological removal is seen most clearly for phosphate 
and silica. The occurrence of an extensive bloom in May can explain the general decrease 
in chlorophyll a concentrations in June as a consequence of the exhaustion of nutrient 
silicate, assuming that the estuarine algal blooms were dominated by diatoms. We do not 
have detailed photoplankton information but preliminary sampling in September 
suggested a mixed algal culture including diatoms (Malin Pers. CO".). 

P 
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Figure 7. Light penetration vs. SPM (log scale) for two sampling occasions. Light 
penetration was calculated as 2 times the Secchi depth (see text). O, 18 December 1990; 
O, 13 January 1991. 

Light penetration 
Euphotic depth (2 Secchi depth) was plotted against SPM concentration for the last two 
months of sampling (Figure 7). The  resulting exponential relationship showed that a 
dramatic increase in light penetration (> 100 cm) corresponded with SPM concentrations 
decreasing below 25 mg l-', such a situation being mainly encountered in the river or in 
the marine end member during spring and summer. In  the estuary, SPM concentrations 
above 100 mg 1-' reduced light penetration to depth less than 20 cm. While these 
measurements were only conducted in the winter of 1990/1991, in the absence of other 
data we assumed that the relationship in Figure 6 applies throughout the year. This is an 
unsatisfactory assumption because light penetration will vary seasonally as a consequence 
of the solar angle and the light scattering. SPM is mainly responsible for such light 
scattering but dissolved coloured substances may also play a significant role and show 
wide seasonal variations (Randall & Day, 1987; Grobbelaar, 1989; Gallegos et al., 1990), 
especially in estuarine waters where dissolved humic substances abound (Ewald, 1985; 
Gough & Mantoura, 1990). However, we estimated that the approximation we made was 
not weakening our final conclusions, especially as the increase in the solar angle from 
January to June would increase light penetration. 

Estuarine waters are characterized by a thin euphotic zone (> 1 % of surface irradiance) 
and a thick aphotic zone. The determinant factor for phytoplankton development in 
natural environment is the time alternatively spent in the dark and in the light by the algae 
and the subsequent balance between respiration and photosynthesis. If water mixing 
exceeds a critical mixing depth (Sverdrup, 1953; Talling, 1957) photosynthesis cannot 
compensate for respiration losses and algal population degenerates. Due to the relative 
thinness of the euphotic zone, mixing depth was assumed to be the main factor influencing 
phytoplankton production in turbid systems (Grobbelaar, 1985). Production processes in 
these environments depends on sequential exposure to the light due to the turbulent 
mixing (tidei-freshwater flow) that carries algal cells up and down the water column. In 
the case of the Great Ouse estuary the absence of stratification demonstrated that, in the 
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canalised estuary, the whole water column was well mixed, the mixing depth being there- 
fore equal to the water depth. Consequently, phytoplankton development is possible if the 
critical depth is more than the water depth. Critical depth can be calculated as a simple 
function of the euphotic layer. According to various authors the minimum ratio for the 
critical depth compared to the euphotic zone ranges from 6 (Cole & Cloern, 1984; 
Grobbelaar, 1985) to 10 (Wofsy, 1983). More recently, Grobbelaar (1990) modelling 
productivity in turbid waters found the critical mixing depth to be 20 time the euphotic 
depth. Assuming an average depth of 5 m at high tide for the canalised estuary and a 
critical depth vs. euphotic depth ratio of 10 it is possible to broadly estimate a threshold 
SPM concentration of 70 mg 1-' to correspond with a light penetration depth of 50-60 cm 
which would then allow phytoplankton growth. At low tide the increase in SPM concen- 
tration which will result in decreasing light penetration could be compensated by the 
concurrent decrease in water depth (average 2 m). 

It must be emphasized that light penetration is not the only influencing factor, daily 
time of sunlight exposure, salinity stress and nutrient availability also significantly affect 
production. Nevertheless, this simple assessment confirms that important phytoplankton 
development is possible in turbid and well-mixed shallow water ecosystems as long as 
critical depth is more than water depth. The processes observed in the Ouse are probably 
not unique to this estuary in this year. In  July, a survey of all four estuaries draining to the 
Wash revealed non conservative behaviour of nitrate, phosphate and silicate and oxygen 
supersaturation, consistent with algal blooms. 

7 

,I 

Conclusions 

The biogeochemical cycling in the Great Ouse estuary can be broadly separated into two 
periods. During the first period (September-January), phytoplankton development was 
inhibited by high SPM loads (> 100 mg 1-I) which were presumably responsible for a 
decrease in light penetration. This is consistent with the low values of chlorophyll a, the 
increase in P0C:PON ratio and the conservative pattern of nitrate and silicate in the 
canalised estuary and corresponds with a classical pattern of phytoplankton inhibition in 
estuaries with turbid well mixed waters (Cloernetal., 1985; Pennock & Sharp, 1986; Fisher 
et al., 1988; Garcia-Soto et al., 1990). During the second period (March-August) phyto- 
plankton bloom events occurred. Clear evidence for the March-bloom arose from the high 
level of chlorophyll a and the absence of degraded pigments. The bloom extended through 
the whole estuary length, maximum chlorophyll a concentration together with minimum 
P0C:PON ratio occurring at T07,  14km downstream the tidal sluice. Chlorophyll a 
concentrations dramatically decreased in the Wash part of the transect together with an 

to the estuary. 
The  present work identified large scale blooms in the relatively turbid waters of the 

shallow Great Ouse estuary. The  occurrence of significant primary production in this 
environment can be explained reasonably well in terms of a critical depth model. The 
productivity of non stratified estuarine waters cannot be neglected on the sole account of 
turbidity because of the possible dependence of algal cells to the sequential exposure to the 
light. 

The  occurrence of significant primary production at the continent-ocean boundary will 
have a major effect on the cycling and the flux of nutrients. Environmental conditions 
specific to estuaries have certainly been neglected in most of the studies on primary 

r increase of P0C:PON ratio demonstrating the phytoplankton development to be confined 

L 
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production, especially the problems of fluctuating light regimes. This conclusion agrees 
with recent studies which emphasized the importance of the tidal freshwater reaches as 
potential location for significant primary production and biogeochemical reactions 
(Anderson, 1986; Schuchardt & Schrimer, 1991). 

Our results suggest that algal developments in shallow water estuaries can play a signifi- 
cant role in the regulation of the release of anthropogenic nutrients to the sea and in the 
eutrophication of coastal waters. In particular it seems the riverine and estuarine blooms 
pre-date the offshore blooms and thus the estuarine input to the North Sea is depleted in 
nutrients, particularly silica, during the offshore spring bloom. This may act to select 
against diatom blooms in such offshore waters. The transformation of a large fraction of 
the pool of dissolved inorganic nutrient to organic particulate material in the estuary 
certainly may significantly influence the export of nutrients, although the subsequent fate 
of this algal material is uncertain. However, the phytoplankton activity in the freshwater 
reach of estuaries should be considered in modelling the biogeochemical cycle of nutrients 
in the North Sea. 
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