
Statistics of extremes 
through m-component distribution 

Carlo COLOSIMO (1) Ciuseppe MENDICINO (1) Guo RENDONC (2) 

By means of a time series analysk qf recorded riverfloods for 29 rivers in Sorcthern Ita[y, rue present a multi- 
ple component probabilistic model. Such a mode1 cari vary if outliers are preseru in the considered sarnple. 

The iden.t$îcation of such outliers is carried out by empirical estimation of tu10 @pical thresholds, valid for 
Southern Italian rivers. The combination of these thresholds enables the determination of four distribution classes 
typijîed by a number of components (rn = 1, 2 and .3) of the probabilistic mode1 under consideration. 
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RÉSUb& 
ÉTUDE STATISTIQUE DES EXTRbffiS PAR LA DISTRlB‘LiTIONDES ILI-CO~IPOSANTES 

Cet article présente un modèle probabiliste à composantes multiples en s’appuyant sur l’analyse des chro- 
niques de crues mesurées sur 19 rivières du sud de l’Italie. Un tel modèle peut Ftre modijïé si des points aberrants 

jîgurent dans l’échantillon considéré. 
L’identification de tels points aberrants est menee au moyen d’une estimation empirique de deux seuils appro- 

pries, valables pour les rivières du sud de l’ltalie. La combinaison de ces seuils permet de determiner quatre clasaes 
de distribution caractérisées par le nombre de composantes (m = 1, 2 et *3) du mod$le probabiliste. 

MOTS CLÉS : Valeurs extrêmes - Modèle probabiliste - Loi è composantes multiples - Points aberrants - Sud de 
l’Italie. 

1. INTRODUCTION 

In this century there has been a considerable increase in damage caused by river floods especially in areas 
with a large anthropic development. Such an incrcase depends on bath a succession of extraordinary events ancl 
structural causes. Natural rivers, depending upon their flow during floods, excavate their own beds in the alluvial 
plains. If a higher than normal flood occurs, hi@-flow beds beside of the river are systematically flooded. Human 
development in these areas is the reason for the continuous growth in damage caused by the floods. 

The only effective method of flood-prevention is the realization of passive or active mw made protections. 
However, in the light of the catastrophic events recorded in the past 50 years: such protections have not been of 
overall effectiveness. In fact, passive intervention typified by strengthening and raising of river banks has reduced 
the frequency of flooding but is not always capable of solving tbe problem. 

Active structural works, i.e lamination work: are quite effective, but cannot be achieved in areas prone to 
flooding where h uman and industrial development is growing. 

Thus we do not have absolute security from floods and it is necessary to introduce a risk factor. 
Only some of the methods used to estimate flood flow consider the concept of risk. Only statistical methods, 

based upon either the direct elaboration of the series of the yearly maximum value, X1 of instaneous flow, or based 
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upon a longer ûnd more numerous series of the yearly maximum value of the average daily slow (and also upon the 
series of the values of the flow greater than a predetermincd threshold), allow one to estimate the probability of risk 
çorresponding to a particular catastrophic event. 

The IJerfOrmS3nce provided by statistical-type procedures varies, however, according to meteorological charac- 
teristics which typify a site and, therefore of the corresponding hydrological quantities. 

The need to consider a suf&iently uniform methodology for the evaluation of extreme slows is the aim of the 
fJîeSeIlt work, -which. given the necessq caution derivin, 0‘ from the empirical nature of the study, represents a metho- 
dological approach to be verilied in other different natural and enviromnental situations. 

2. PROHABILISTIC: MODELS 

Several probabilistic moclels provide an estimate, xT’?* of the theoretical hydrological magnitude, x,, corre- 
sponding to a fixed return period, T. 

These models must satisfy the following conditions: 
- adequate theoretical basis in order to describe the real process; 
- reproduction and explanation of the main statistical featnres shown by the available samples (values of mo- 

ments of order greater thon one) (VEKSACE et al., 1989). 
As far as hydrologiral extremes are concerned, probabilistic models with a theoretical basis follow essentially 

two different approaches. In the first approach only the maximum value occurring in a fixed time interval (typically 
one year) is considered, using onc value for each yea.r in the series of the yearly maximum values. In the second ap- 
proach all the values greater than a predetermined threshold Xe taken înto account. The threshold cari be modified 
SO that a variable number of yearly events cari be considered. 

In particular. if a continuous random variable Z is considered, the corresponding cumulative distribution func- 
tion (C:DF); F,(z): is the probability that the random variable Z takes a value equal to or smaller than the argu- 
ment z: 

(1) 

For the same continuous random variable Z, the probability density function (PDF), fi(z)? is a function for 
which thr probability that Z lies in the interval (z, z+dz) equals f,(z) dz. This function is represented by the follow- 
ing equation: 

Obviously the expected value of the continuous random variable Z is clefined as: 
i-4-=- 

with variante given by: 

and skewness equal to: 

E[Z] =p= 1 zf,(z)dz 
J-m 

vAR[z] = 2 = 
1 

+- (z-p)“fz(z)dz 
-ca 

E [{(Z - 14 / c}‘] 
Given n random variables Z,, Z,, Z,, . . .._...... Z,, the maximum is defined as: 

X=maxZi withl sien 

The C:DF of X equals by detition: 

F,(x) = P [X 4 x] = P [z , 5 x . Z, 2 x , . . . . . . . . Z,, I x] 

(3) 

(4) 

(5) 

(6) 

(7) 
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If the random variables Z are independent, then: 

F,(x) = P [Z1 I x] P k2 I x] . . . . . . . P [Zn I x] = F,,(x) F,,(x) . . . . . . . F,“(x) 

If the random variables Z are also all identically distributed with the common GDF Fz(z), follows: 

F,(-4 = [F&$ 

(8) 

(9) 

and if the random variables Z are also continuous with PDF, f,(z), we obtain: 

f,(x) = n [F,k$‘-’ f,(x) (10) 

In accordance with the preceding definitions, in the 5rst case, one evaluates the possible distribution of the 
maximum value in a sequence of a large number of independent and identically distributed variahles. In the second 
case, the flood flow is represented as a marked punctual process? and one evaluates the possible distribution of the 
maximum value of a Poisson-nimber of random, independent, but not identically distributed variables. 

The same considerations should be made regarding the assumption that the original variables, from which is 
extracted the yearly maximum value, are independent and identically distributed. This hypothesis appears enough 
restrictive. In fact, it is well known tbat the successive flows observed in a river section are interdependent, as a re- 
suit of storage phenomena of the corresponding basin; it is similady quite rare to have, from one season to another, 
any variations in the frequency of flows of constant average intensity (identically distributed variables). The inter- 
pretation of the sequence of peak 5ooding by means of a particular stochastic process (called marked punctual pro- 
cess) might indicate a valid alternative to the fundamental problems considered. 

If fron1 the cbronological diagram of flows {Q(t); t > 0} we extract the peak 5ooding values above a predeter- 
mined threshold, qO? the phenomcnon is described by: 

- a basic point process? i.e. the se.quence of points, zi, on the time axis, where the 5ood above the threshold 
occurs; 

- a sequence of random variables {Zi = Q(T~) - qO; i = 1,2,....} associated ~4th each point i, wbich represent 
the e.xcess above q0 and which mark basic punctual process (fig. 1). 

FIG. 1. - Marked punctual process. 

If the threshold q0 is higl1 enough, we cari assume that the total number of times, K: that the threshold has 
been exceeded in a fixed time interval follows a Poisson distribution: 

where A = E[K] is the Poisson-process parameter. One assumes the probability that q0 be exceeded at a specif- 
ic instant, t, is independent of the number of times the threshold 11as been previously exceeded (CUNNMVE$ 1979; SA- 
LAS et al., 1988; THOM, 1959; TODOROVIC, 1978; T~DOROVIC and YEVJEVICH, 1969). As far as 5oods are concerned? 
the process follows a Poisson distiution, since catastrophic events, greater than q,,> are fa.r apart from each other 
in time and SO it cari be hypothesized their independence. 
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For this reason, if the threshold q0 is suflkiently hi& if K has a Poisson distribution and the random variables 
are independent and identically distributed (as ~~11 as independent of K)? the yearly maximum X = max Zi is dis- 
WibutPd as follows: 

FJx) = e-A [ 1 - W] x2 q, (12) 
witli a discontinuity of x = q, equal to exp (-A). 
Even for q, = 0 it is possibile to define a yearly rmmber, K, of peak flood events, Z, su& that K follows a 

Poisson distribution and the Z’s are independent. identically distributed and independent of K. 
Su& distribution la-w has a for-m wltich depends upon Fz(). If Fz() . 1s ex 

fiIl& 
p onentially distributed and q,, = 0 we 

Fz(z) = 1 - e-218 z20 (13) 

where 8 = E[Z]. 
Thus one fmds: 

F,(x) = e-A E- “’ xro (14) 

where 8 and h are respectively l/a and eea, typical of &MBEL’S law (1958): 
Jqx) = e-p-a(x -3 a>0 (13) 

T%e time series of the hydrological variable under study, often has several outliers which are considerably dif- 
fer-em from a11 the other observed values. Since the number of outliers cari be large, we cannot avoid to consider 
them when we riant to estimate the flood flow (BEARD? 1974). This statement is stressed since the corresponding 
probability of exceeding the extremes in n years cari be sansibly different from zero. 

The observecl distribution law? provides a good estimation of the hydrological variables under study, but it 
tloes net give a correct interpretation of these outliers. 

In thr case of Gumbel’s law, the outliers observed in a region in a period of n = 50-60 years, would not be 
performed since the exceeding probability (in n yem-s) is very close to zero (ROSSI and VERSACE, 1982). 

Furtber improvements cari be obtained by means probûbilistic models whirh analyse the series value gt-eater 
than a predeterminecl threshold, for seasonal time periods (hypothesizing that on average extreme events occur in 
the samc time of year). Consequently, the distribution function of the annual maximum, X, cari be expressed as the 
product of the distribution functions of maximums X,, in the period ancl of the maximum, X2, in. the other months 
(TODORC)JX ancl ROUSSELLE, 1971). Also in this case extreme events may occur in different months from the consid- 
ered period, as well as lloods considered extiaordinary in the same period. It cari be assumed, therefore? that the 
two components of random variables {Zi = Q(T~) - qO; i = l,&....) cannot be separated completely according to the 
season: rather. they are mixed opporttmely in each of the seasons (ROSSI et d., 1984). 

Thc mode1 TCEV. or also, the two-component extreme value distribution, represents the distribution of the 
maximum value. in a @en titne interval, of a random variable distributed according to the mixture of two expo- 
nentials: 

- the low component (low iritensity and high frequency); 
- the high component (high intensity and low frequency). 

Fzk) = P F,,(z) + (1 - p)%,(z) zro (W 

in which thr indices 1 and 2 refer respectively to the low component and to the high one, where p represents 
the aeight of thr former çomponent in the mixture. 

Analogously~ the number of annual excesses, K, and K,, relative to the two components follows a Poisson pro- 
cess, with parameters equal to A, = E[K,] and A., = E[K,]. On the basis of the « reproductive properties ‘> of the 
Poisson processes, the comprebensive number of annrral exceedings, K = K, + K,, 
with the panameter A = A, + A,. Then, wtt hnd: 

also follows a Poisson process 

P=hl : 
A, +Ii2 

(1 - p) = -2.L 
A, +Ii, 

Iklinitively, the probability distribution la-w TCEV of the rrmxirn~m value X, in a time interval equal to one 
y-car, with the function Fz() exponentially distributed and q0 = 0, results: 

Fx(x) = e [-A,+ le&] x20 (17) 
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having indicated 8, = E[Z,], 8, = E[Z,], A, e &the distribution parameters, 
With: 

eZ>el>O;hl>O;h~ 2 0 

If the number of outliers present in the sample is increased, or if their extraordinary nature is particularly pro- 
nounced (meteorological conditions typical of Mediterranean regions) it seems evident how advantageous, on the 
one hand, it is to eonsider more components of the random variable within the distribution law and, on the other, 
not to hind the said law to the only product of two exponential functions. Neither should one neglect those ohserved 
value samples typ&ed hy a complete absence of outliers, which therefore would not justify the use of a double-com- 
ponent probability distribution law. 

The idea of using a more general law of probability distribution (MCEV) type: 

Fx(x) = e[-;W$] (18) 

which, for m = 1 coincides with Gumbel’s Law, for m = 2 represents the TCEV model, and for increasing m 
values provides a more flexible mode1 for the statistical reproduction of the extraordinary events present in the sam- 
ple. It would represent a possible alternative to the need to identify a valid distribution law, by means of a ~miform 
model, for samples typiiied both by the presence and absence of outliers. 

3. MCEV MODEL 

The multiple-component probability distribution law expressed by equation (18), presents 2m parameters 
whose cakulation cari be obtained by the method of maximum likelihood (FIORENTINO and GABRIELE, 1984). Such a 
method presents a system of equations which are solved by means of an iterative scheme. 

In particular, density of probability function is considered: 

f&) = &M%(x) (19) 

where F,(x) is expressed by the equation (18), while Yx(x) is obtained by means of the equation: 

YJX) = 8 f ë; 
I 1 j 

the natural logarithm of the funrtion of likelihood, L, becomes: 

or : 

whose partial derivatives with respect to the parameters of distribution, equalized to zero, are: 

xi 
e-xi/Oi (1 - -) 

9 

yX(xi) 1 = 0 

j = 1,2, ...... . m 

j = 1,2,. ..... . m 

(21) 

(22) 

(23) 

Multiplying both the members of equations (22) for and solving in function of ej the equations (23) we ob- 
tained by means of an iterative convergent for successive stitutions scheme, the following parameters: 
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i 1 

e xi e-dej 

i=l Yx(X,) 

ej= n 

z Xi eexi”, + 2 $j$j 

j = 1,2 ,......, m 

Tbrough the use of a computer code in C language, based upon the following iterative scheme: 

ej(S + 1) = f(ei(S),Ai(S)) 

hj (S -t 1) = f(ei(s + 1) ?Ai(S)) 

j = 1,2 ,......., m ; i = 1,2, . . . . . . . . m 

m-5) 

(26) 

the parameter values for m = 1, 2 and 3 are determined. 
This scheme has supplied convergent solutions in the totality of examined cases. 
The use of equation (18) implies the knowledge of a number of components, m, hypothesized in the distribu- 

tion law. Such a value, obviousIy becomes more consistent when the nature of the elements of the considered set-ies 
is extraordinary. 

4. OUTLIERS ESTIMATES 

The estimation of outliers present within a sample of observed data7 or those data points that depart signifi- 
cantly from the trend of the remainin, g data, has always represented a controversial problem owing to the need to 
consider them, or otherwise, in the elaboration of a time series. It therefore implies the need to understand whether 
su& extraordinary values represent anomalous values and should hence be disregarded in probabilistic elaborations 
of a time series or whether they could be considered, instead, as representative e1ement.s of the behaviour of the se- 
ries and as su&, considered in the data analysis. 

A valid response to this question has been provided by BEARD (1974) who, by means of a study carried out on 
300 annual peak flow series in the USA, has shown the need to consider ah the extraordiuary values in data analy- 
sis, since their exclusion would produce less accurate results than those in the presence of outliers. 

The need to take into account outliers in data analysis is conhrmed. In fact, one should consider what happens 
in Southern Italy where the maximum rainfall and the. maximum slow values signihcantly grcate.r than all otber val- 
ues observed at the same measurement station usually correspond to great downpours which have occurred in tbe 
last Sfty years. 

Obviously such extreme events carmot he considered as isolated and exceptional, but rather, owing to their fre- 
quency. should be introduced into the statistical analysis of maximum flows. 

The absence of objective criteria for treating outliers, requires empirical evaluations based on both mathematical 
and hydrological considerations. 

In this sense the most used method in the USA and proposed by the Water Resources Council (1981), recom- 
mencls chat if the station skew is greater than 0.4 the following frequency equation cari be used to detect high outliers: 

YH=Ynl+KSy (27) 

where yn is the high outlier threshold in log unit, y, is the mean of log-transformed X values. s,, is the stan- 
dard deviation sud K,, is a coefficient tabled for sample size n. The l&, values are used in one-sided tests that detect 
outliers at the lO-percent level of significance in normally distributed data (CHOW et. al., 1988). 

If the logarithms of the values in a sample are greater than yn, then they are considered high outliers. This 

procedme, however, provided for Southern Italian rivers. time series without outliers. 
Since these results do not agree 6th the greater part of the hydrological studies carried out on the rivers under 

rxamination, a different method to single out the outhers should be searched. 
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According to KOTTEGODA (1984, 1985), if a sample of n flood observations at a particular station, ranked in 
order beginning with the lowest, is generated by a mode1 with a specified probabilistic distribution, and assuming 
such distribution as normal (or when the variable ca.n be transferred to normal), the studentized deviate provides a 
robust statistic for detecting one or more outliers in a sample. In fact, for every observation of the rtied sample it 
is possible to determine a parameter, Bi, given by: 

X n-j+1 -X 

Bi= s 
n-j+1 

n-j+ 1 
(28) 

are the mean and standard deviation, respectively, for: 

j = n-l ,........., ,1 and x(1) < x(2) < ..,. < x(n-j+l) 

such as shown iu fig. 2. 
For the rivers of Southern Italy it lias been empirically observed that the difference (Bj - Bj-i) produces useful 

information on the quantitative characterization of the outliers. In that sense, (j-1)th element of the series, with an 
associated value of Bjel, cari represent the threshold value, past which the outliers in the sample are registered, if the 
difference (Bj - BjW1) > 1 is maximum. 

1 Strong evidence of outliers 
Bj - 

-=F 

q 

3- q 

l3 

2- 

0 
o”oooo 

ooo OO Ooo 000 
1- o 

0 

0 I , 
0 10 20 30 

Rank 
FIG. 2. - Bj’s distribution tith evidence of outliers. 

5. DETERMINATION OF THE M VALUE 

Through analysis of the time series of Southern Italian rivers, it is observed that the threshold, (Bj - B,,) > l? 
if considered apart, dœs not allow the determination of the optimum number of components in the probabky dis- 
tribution law. In fact, it is observed that some samples, although not containing outliers, are better explained as 
functions of double component distribution. For each of these samples however, it is observed that the slope of the 
regression line between the values assumed by B. (not classihed as outliers) and the corresponding rank, presented 
high values compared with the average of the i s ope of all the time series analysed. The introduction of a second 
threshold based on the value assumed by the slope of the regression line between Bj and the corresponding rank, 
has enabled the dehnition of an optimum value to be attributed to m for the rivers of Southern Italy. 

With regard to the threshold value relative to the slope of the line of regression, this one emerges from the ob- 
servation of some samples (Sinui River and Coscile River) respectively characterized by values of the slope of the re- 
gression curve equal to 0.041 and 0.044. For su& a serie if a value of m = 2 is hypothesized, the iterative scheme 
represented by the equations (26) h s ows quite a long convergence time. It would seem, therefore, that the value as- 
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smned by the slope of the regression curve, equal to 0.045, is a critical value between low distribution characterized 
by m = 1. and the bigh one represented by values of m 2 2. 

For a given sample hypothesizing to cronsider, on the one hand, the nuxcimum differençe (Bj - BjW1) and on the 
other, the slope of the regression curve between the B. values (unclassifkl as outliers) and the correeponding rank, 
then four classes cari be determined each of which is c h aracterised by a specific rrr value. 

ln particular we have: 
- Low distribution, characterised by the maximum difference (Bj - B.-i) < 1, and the slope of the regression 

curve lcss than the thresbold value, fixed equal to 0.045. The sample wluc 4 satrs es suc 1 con bons does not pre- ‘fi. .l 6’ 
sent outliers and, therefore, cari be explained by an MCEV mode1 characterized by a value of m = 1. 

- Low distribution with outliers, characterized by the maximum difference. (Bj - Bjel) > 1, and the slope of 
the regression curve less than 0.045. In such comlitions, the presence of outliers is ascertained, an MCEV mode1 cari 

be hypothesized characterized by a value of m = 2. 
- Hi& distribution, characterized by the maximum difference (Bi - Bj.,) < 1 and the slope of the regression 

curve greater than 0.045. In this case the sample whicli satisfies such conditions. although not presenting outliers, is 
characterized by a value of m = 2. 

- Hi@ distribution u~ith ozrtZiersl characterizecl by the maximum difference, (B. - Bj-,) > 1, and the slope of 
the regression curve greater tlmn 0.045. For this last class, 
triple component (ru = 3). 

&ially, an MCEV mode1 cari be hypothesized with a 

6. AVAIL.ABLE DATA 

The data used regard flood rat,es of 19 hydrometric stations, rtm by the S.I.1 (Servizio Idrografico Italiano) in 
tbe periotl 1925-1984 (fig. 3). 

The observed samples, with variable dimensions between 19 sud 50 vears, have been de-dimensionalized with 
respect to the corresponding average rates, h, (table 1). Tbe probability distribution law of the extreme value with 
multiple components used, therefore, gave: 

where: 

,-+- 
m 

0; =g 
m 

TABLE 1 
Dimension of obsemed series and corresponding average rates 

Hyclrometric stations Dimension xm (ms/s) 

1. Bradano, P.C. 30 184.15 

2. Tacina, R. 25 81.16 

3. Bradano, T.P. 19 506.11 

4. Alaco, M. 19 13.61 

5. Amato, M. 26 79.19 

6. Coraœ, G. 38 151.65 

7. Basento, P. 28 36.87 

8. Basento, G. 39 361.00 

9. Basento, M. 24 405.63 

10. Agri, T. 31 186.64 

Hydrometric stations Dimension xm (msk) 

11. Sinni, V. 27 500.93 

12. Esaro, La M. 19 328.84 

13. Crati, C. 31 441.42 

14. A!i, 0. 47 16.66 

15. An&ale, R. 50 82.35 

16. Lao, P. di B. 24 214.31 

17. Agri, Le T. 27 64.80 

18. Sinni, P. 34 234.24 

19. Coscile, C. 29 78.28 

(29) 
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1. Bradano,P.C. 
2. Tacha, R. 
3. Bradano, T.P. 
4. A1aco.M. 
5. Amato,M. 
6. Corace,G. 
7. Basento, P. 
8. Basento, G. 
9. Basento, M. 
10. A@,T. 
11. SiMi, v. 
12. Esam, La M. 
13. crati, c. 
14. Aui, 0. 
15. Ancinale, R. 
16. Lao, P. di B. 
17. A@, Le T. 
18. Simi, P. 
19. Coscite C. 

FIG. 3. - Hydrometric stations under examination. 

7. RESULTS 

For the samples corresponding to tbe 19 hydrometric stations considered in this paper, we obtained the results 
in table II. 

In particular. in table II the maximum differences (Bj - BjM1) are shown, the slope of the regression curve, 3s 

well as the classes to which each of the 19 examined series belong. 
A representative sample (18. Sinni, P.) which satisfies the required conditions for the class defked as « Low 

Distribution (m = 1) », is shown in figures 1 and 5. In detail, figure 5 shows a comparison between the accumulated 
frequencies suggested by Tlazen, (i-0.5)/ n, of the observed samples and the distribution of probability MCEV for 
m = 1 

3 
18.Simi,P. 

Bj - q Bj 

Bj = 0.955 + 0.041n ; R = 0.86 
0 1 1 1 

0 10 20 30 40 

Rank 
FIG. 4. - Sample which satisfies the required conditions for the class defined as « Low Distribution n. 
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TABLE II 
Classification of samples observed and corresponding to the value of m 

Stations Slope Max (Bi -Bi,) Class (l-4) m 

17. Agri, Le T. 0.036 0.61 1 1 

18. Sinni. P. 0.041 0.80 1 1 

19. Coscile. C. 0.044 0.52 1 1 

15. Ancinale R. 0.021 1.54 2 2 

9 Basento. M. 0.028 1.57 2 2 

14. AK. 0. 0.034 1.25 2 2 

11. Sinni. V. 0.039 2.06 2 2 

6. Coraœ. G. 0.043 1.15 2 2 

6. Basento. G. 0.061 0.49 3 2 

13. Crati. C. 0.063 0.70 3 2 

7. Basento. P. 0.066 0.95 3 2 

10. Agri.T. 0.071 0.77 3 2 

16. Lao. P. di B. 0.081 0.46 3 2 

3. Bradano. T.P. 0.094 0.77 3 2 

1. Alaco. M. 0.102 0.74 3 2 

12. Esaro. La M. 0.117 0.84 3 2 

5. Amato. M. 0.077 1.17 4 3 

1. Bradano P.C. 0.046 1.61 4 3 

!. Tacina. Fi. 0.061 1.01 4 3 

0 1 2 3 4 m = 1 --->A1 =5.271 ; 91 = 0.438 

Y m = 2 ---> A1 = 3.953 ; 81 = 0.438 

A2 = 1.318 ; 82 = 0.438 

FIG. 5. - MCEV mode1 for values of m equal to 1 (with m = 1 = 2). 
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A brief consideration must be stressed regarding the qua.lity of the m value proposed. This, if is increased (m = Z), 
does not tut into the probability distribution, rather only produces an increase in tbe number of parameters. 

Analogous considerations cari be made for the other classes. For the representative sample (9. Basento, M.) 
whiçh satisfies the required conditions for the class defined as « Low distribution with outliers (m = 2) »? the results 
are shown in figures 6 and 7. 

,-s Bj = 0.981+ 0.028 n ; R = 0.67 

0 10 20 
Rank 

3 

FIG. 6, - Sample which satisfies the required conditions for the class defined as « Low distribution with outliers » 

10-l 

m = 1 ---> Al = 6.507 ; 01 = 0.396 

10-2 m=2 -->A1 = 10.324 ; 01 = 0.268 

0 1 2 3 4 A2 = 0.429 ; 02 = 1.081 

Y m = 3 ---> Al = 7.316 ; 81 = 0.2681 

A2 = 3.001 ; 82 = 0.268; 

A3 = 0.429 ; e3 = 1.0811 

FIG. 7. - MCEV mode1 for values of m equal to 1 and 2 (with m = 2 = 3). 

Even in this case, if the m value is increased (m = 3)? the probability distribution will not be modified. 
For the representative sample (8. Basento, G.) which satisfies the required conditions for the class defked as 

« High distribution (m = 2) », the results are shown in figures 8 and 9. 
For the representative sample (1. Bradano, P.G.) which satisfies the required conditions for the class defined as 

« High distribution with outliers (m = 3) », the results are shown in figures 10 and 11. 
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01 Bj = 0.431+ 0.061 n ; R = 0.90 
I # I 

0 10 20 30 40 

FI~:. 8. - Sample which satisfies the conditions required by the class de&ed as « High distribution ». 

logwww)-l 
101 

] 8. Basento, G. 
: + (i-OS)/n 

10° 7 

10-l -i 

m 3 1 --> AI L 5.306 ; 01 = 0.428 

m=2 --> Al = 11.305 ; 01 =0.211 

0 1 2 3 4 112 = 0.932 ; 02 = 0.880 
Y 

m = 3 --> Al = 6.897 ; 01 =0.211 

A2 = 4.408 ; 82 = 0.211 

Ag = 0.932 ; 83 = 0.880 

FIG. 9. - MCEV mode1 for values of m equal to 1 and 2 (tith m = 2 = 3). 

0 10 20 30 40 
Rank 

FIG. 10. - Sample which satisfies the required conditions of the class defined as a High distribution with outliers ». 
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Extremes through-component distribution 

10° 

m = 1 ---> A1 = 3.379 ; 01 = 0.528 

10-l m=2 --> Al =9.789 ; 01 = 0.123 

A2 = 1.537 ; 02 = 0.806 

m =3 ---> Al =21.155 ; 01 =0.065 

1o-2 + hz= 2.850 ; 82 0.314 = 
0 1 2 3 4 

Y 
A3 = 0.725 ; 03 = 1.100 

m =4 ---> A1 = 21.155 ; 01 = 0.065 

A2 = 1.558 ; 82 =0.314 

A3 = 1.291 ; e3 = 0.314 

A4 = 0.725 ; e4 = 1.100 

FIG. 11. - RICEV mode1 for values of m ecpd to 1, 2 and 3 (with m = 3 = 4). 

8. CONCLUSIONS 

By means of a general exponential law, a distribution function of extreme values with multiple components, 
MCEV, is proposed. Such a mode1 appears particularly flexible to probabilistic interpretation of outliers present in 
the sample. 

Furthermore, it dces not reveal potential errors (for excess) in the estimation of values atiutable to the num- 
ber of components, m, of the random variables considered. In fact, in the latter case. hi& values of m would in- 
valve only an increase in the number of parameters, without affecting the quality of the law of distribution. 

For the 19 water courses of Southern Italy, in particular, an empitical procedure to classify both the outliers in 
the samples and the observed samples in homogenous classes charac.terized by a fixed value of m has been carried 
out. Finally, for the cases examined, it is demonstiated that the value of m7 associated with the generic class is that 
extxemity, going beyond which, the law of distribution dces not vary. 

The use of su& a mode& in conclusion, should allow a better prediction of zones at hydrological disk. Suc.h 
identification need not be exc.lusively aimed at a more suitable definition of flood protection, rather it should also 
look at the extreme variability of the rate with regard to risk, with the scope of taking the necessary precautions in 
the c.orrect hydraulic projection of works. 

REFERENCES 

BEUD (L. R.), 1974 - Flood Flou~ Frequerzcv Techniques, Technical Report 129, Center for Research in Water Resource, 
Austin, Texas. University of Texas. 

CHOW (V. T.), MAID~~ENT (D. R.) and &VS (L.W.), 1988 - Applied Hydrology, McGraw Hill. 
CUNNANE (CI.), 1979 - A Note on the Poisson Assumption in Partial Duration Models: Wuter Resour. Res., vol. 15 (2): 

489-497. 
FIOFLENTINO (M.) and GMRIELE (S.); 1984 - Distrihuzione TCEV: Metodi di Stima dei Parametri e Proprietà Statistiche 

de@ Stimatori. Geodata, no 25, Cosenza. 
GUMESEL (E. J.)? 3958 - Statistic of Extremes; New York, Columbia University Press. 
KOTTEGODA (N. T.)? 1984 - Investigation of outliers in annual maximum flow series, J Jfydrology, 58(1/2): 47-62. 
KOTTEGODA (N. T.); 1985 - Extreme Flood ELTents and their Effect on EngineerirL 

ing, Edited by University of Birmiqham UK. 
g Des&. Advances in Water Engineer- 

ROSSI (F.), FIOFSNTINO (M.) and VERSACE (P.)? 1984 - Two Component Extreme Value Distribution for Flood Frequency 
Analysis, LKzter Resour. Res., vol. 20 (7): 847-856. 

Hydrol. continent., vol. 8, n,O 2, 1993 : 79-92 91 



C’. COLOSIMO, G. MïX%!DICrNO, G. REWONG 

ROSSI (F.) and VERSACE (P.)> 1982 - < Criteri e Metodi per I’Analisi Statistica delle Piene »? til Thlutazione delle Piene, 
CNR P.F. Conservazione del S~olo, S.P. Dinamica Fluviale: 63-130. 

SALAS (1. D.). DELLEUR (1. W.), YEVJEVICH (J.) and LANE (W. L.), 1988 - Applied Modeling of Hydrologie Time Series, 
Littleton. Colorado, Water Resources Publications. 

?$fOhf (Ii. C. s.), 1959 - A Time Interval Distribution for Excessive Rainfall, Proc. Soc. Cizj. Er~g., vol. 85, no Hy7: 83- 
91. 

TODOROVIC (P.); 1978 - Stochastic Models of Floods, E’uter Resoztr. Res., vol. 14 (2): 45-356. 
TOIIORW-K: (P.) and ROUSSELLE (V.), 1971 - Some Problems of Flood Analysis, @‘ater Resour. Res.? vol. 7 (5): 1144- 

1150. 
TODOROVIC (P.) and YEVJEVIÇH (J.): 1969 - Stochastic Process of Precipitation, Hydrolop Paper, no 35. 
LIS. WATER RESOURCES COIJNCIL, 1981 - Guidelines for determiningflood jlow frequency, Bulletin 17B, U.S. Geological 

Sm-vey, Reston, VA 22092. 
VERSACE (P.). FEFLRARI (E.), GABRIELE (S.) and ROSSI (F.), 1989 - Valutazione delle Piene in Calabria, CNR-IRAI, G~O- 

data. Cosenza. 

92 Hydrol. continent., vol. 8, no 2, 199.3 : 79-92 


