L

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Horizon / Pleins textes

Statistics of extremes
through m-component distribution

Carlo COLOSIMO (1) Giuseppe MENDICGINO (1) Guo RENDONG (2)

ABSTRACT

By means of a time series analysis of recorded river floods for 19 rivers in Southern Italy, we present a multi-
ple component probabilistic model. Such a model can vary if outliers are present in the considered sample.

The identification of such outliers is carried out by empirical estimation of two typical thresholds, valid for
Southern Italian rivers. The combination of these thresholds enables the determination of four distribution classes
typified by a number of components (m = 1, 2 and 3) of the probabilistic model under consideration.

Ky woRDS: Extreme floods — Probabilistic model — M-component distribution — Outliers — Southern Italy.

RiEsuME
ETUDE STATISTIQUE DES EXTREMES PAR LA DISTRIBUTION DES M-COMPOSANTES

Cet article présente un modéle probabiliste @ composantes multiples en s'appuyant sur Uanalyse des chro-
niques de crues mesurées sur 19 rivieres du sud de Ultalie. Un tel modéle peut étre modifié si des points aberrants
Jigurent dans ['échantillon considéré.

L'identification de tels points aberrants est menée au moyen d’une estimation empirique de deux seuils appro-
priés, valables pour les rivieres du sud de Ultalie. La combinaison de ces seuils permet de déterminer quatre classes
de distribution caractérisées par le nombre de composantes (m = 1, 2 et 3) du modéle probabiliste.

Morts CLES : Valeurs extrémes — Modéle probabiliste — Loi & composantes multiples — Points aberrants — Sud de
I'Ttalie.

1. INTRODUCTION

In this century there has been a considerable increase in damage caused by river floods, especially in areas
with a large anthropic development. Such an increase depends on both a succession of extraordinary events and
structural causes. Natural rivers, depending upon their flow during floods, excavate their own beds in the alluvial
plains. If a higher than normal flood occurs, high-flow beds beside of the river are systematically flooded. Human
development in these areas is the reason for the continuous growth in damage caused by the floods.

The only effective method of flood-prevention is the realization of passive or active man made protections.
However, in the light of the catastrophic events recorded in the past 50 years, such protections have not been of
overall effectiveness. In fact, passive intervention typified by strengthening and raising of river banks has reduced
the frequency of flooding but is not always capable of solving the problem.

Active structural works, i.e lamination work, are quite effective, but cannot be achieved in areas prone to
flooding where human and industrial development is growing.

Thus we do not have absolute security from floods and it is necessary to introduce a risk factor.

Only some of the methods used to estimate flood flow consider the concept of risk. Only statistical methods,
based upon either the direct elaboration of the series of the yearly maximum value, X, of instaneous flow, or based
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upon a longer and more numerous series of the yearly maximum value of the average daily flow (and also upon the
series of the values of the flow greater than a predetermined threshold), allow one to estimate the probability of risk
corresponding to a particular catastrophic event.

The performance provided by statistical-type procedures varies, however, according to meteorological charac-
teristics which typify a site and, therefore of the corresponding hydrological quantities.

The need to consider a sufficiently uniform methodology for the evaluation of extreme flows is the aim of the
present work, which. given the necessary caution deriving from the empirical nature of the study, represents a metho-
dological approach to be verified in other different natural and environmental situations.

2. PROBABILISTIC MODELS

Several probabilistic models provide an estimate, x¢*. of the theoretical hydrological magnitude, xy, corre-
sponding to a fixed return period, T.

These models must satisfy the following conditions:

— adequate theoretical basis in order to describe the real process;

— reproduction and explanation of the main statistical features shown by the available samples (values of mo-
ments of order greater than one) (VERSACE ef al, 1989).

As far as hydrological extremes are concerned, probabilistic models with a theoretical basis follow essentially
two different approaches. In the first approach only the maximum value occurring in a fixed time interval (typically
one year) is considered, using one value for each year in the series of the yearly maximum values. In the second ap-
proach all the values greater than a predetermined threshold are taken into account. The threshold can be modified
so that a variable number of yearly events can be considered.

In particular, if a continuous random variable Z is considered, the corresponding cumulative distibution func-
tion (CGDF), Fy(z), is the probability that the random variable Z takes a value equal to or smaller than the argu-

ment z:
F,) = P[Z <4| (1)

For the same continuous random variable Z, the probability density function (PDF), f;(z), is a function for
which the probability that Z lies in the interval (z, z+dz) equals f;(z) dz. This function is represented by the follow-
ing equation:

. dF,(z) @)
Z) =
g dz
Obviously the expected value of the continuous random variable Z is defined as:
[+o°
EZ]=n=| zf,)dz 3)
with variance given by:
r oo
VAR[Z]=c®= | (~w*fy(2)dz (4)
J—eo

and skewness equal to:
E{Z-w /o) (5)
Given n random variables Z,, Z,, Zg, ........... Z.,. the maximum is defined as:
X =max Z; with1<i<n (6)

The CDF of X equals by definition:
FX(X)=P[XSX]=P[ZISX.:Z2SX, ....... , Z SX] (7)
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If the random variables Z are independent, then:

B =P|Z, x| P|Z, <] .. P|Z, < 5| = F, ) B, () o By (8 (8)
If the random variables Z are also all identically distributed with the common CDF Fy(z), follows:
R = [ (9)
and if the random variables Z are also continuous with PDF, f,(z), we obtain:
fi(x) =n [FZ(X)]H_IfZ(X) (10)

In accordance with the preceding definitions, in the first case, one evaluates the possible distribution of the
maximum value in a sequence of a large number of independent and identically distributed variables. In the second
case, the flood flow is represented as a marked punctual process, and one evaluates the possible distribution of the
maximum value of a Poisson-number of random, independent, but not identically distributed variables.

The same considerations should be made regarding the assumption that the original variables, from which is
extracted the yearly maximum value, are independent and identically distributed. This hypothesis appears enough
restrictive. In fact, it is well known that the successive flows observed in a river section are interdependent, as a re-~
sult of storage phenomena of the corresponding basin; it is similarly quite rare to have, from one season to another,
any variations in the frequency of flows of constant average intensity (identically distributed variables). The inter-
pretation of the sequence of peak flooding by means of a particular stochastic process (called marked punctual pro-
cess) might indicate a valid alternative to the fundamental problems considered.

If from the chronological diagram of flows {Q(t); t = 0} we extract the peak flooding values above a predeter-
mined threshold, q,, the phenomenon is described by:

~— a basic point process, i.e. the sequence of points, T;, on the time axis, where the flood above the threshold
oceurs;

— a sequence of random variables {Z; = Q(T) — q,; i = 1,2,....} associated with each point i, which represent
the excess above g, and which mark basic punctual process (fig. 1).

Q
A

Wb i

>

-+

Fic. 1. — Marked punctual process.

If the threshold q, is high enough, we can assume that the total number of times, K, that the threshold has
been exceeded in a fixed time interval follows a Poisson distribution:

P[K=k] =4 e-n (11)

where A = E[K] is the Poisson-process parameter. One assumes the probability that q, be exceeded at a specif-
ic instant, t, is independent of the number of times the threshold has been previously exceeded (CUNNANE, 1979; Sa-
LAS et al., 1988; THOM, 1959; Tonorovic, 1978; Toporovic and YEVIEVICH, 1969). As far as floods are concerned,
the process follows a Poisson distribution, since catastrophic events, greater than g, are far apart from each other
in time and so it can be hypothesized their independence.
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For this reason, if the threshold q, is sufficiently high, if K has a Poisson distribution and the random variables
are independent and identically distributed (as well as independent of K), the yearly maximum X = max Z; is dis-
tributed as follows:

Fi(x) = e~All- ] x2q, (12)

with a discontinuity of x = ¢, equal to exp(-A).

Even for q, = 0 it is possibile to define a yearly number, K, of peak flood events, Z, such that K follows a
Poisson distribution and the Z’s are independent, identically distributed and independent of K.

Such distribution law has a form which depends upon Fy(). If F,() is exponentially distributed and g, = 0 we

find:
Ez)=1-¢e""° zz2() (13)
where 6 = E[Z].
Thus one finds:
F(x) = e te" x20 (14)
where 8 and A are respectively 1/c. and ese, typical of GUMBEL’S law (1958):
E(x) =e e a>0 (15)

The time series of the hydrological variable under study, often has several outliers which are considerably dif-
ferent from all the other observed values. Since the number of outliers can be large, we cannot avoid to consider
them when we want to estimate the flood flow (BEARD, 1974). This statement is stressed since the corresponding
probability of exceeding the extremes in n years can be sensibly different from zero.

The observed distribution law, provides a good estimation of the hydrological variables under study, but it
does not give a correct interpretation of these outliers.

In the case of Gumbel’s law, the outliers observed in a region in a period of n = 50-60 years, would not be
performed since the exceeding probability (in n years) is very close to zero (RossI and VERSACE, 1982).

Further improvements can be obtained by means probabilistic models which analyse the series value greater
than a predetermined threshold, for seasonal time periods (hypothesizing that on average extreme events occur in
the same time of year). Consequently, the distribution function of the annual maximum, X, can be expressed as the
product of the distribution functions of maximum, X;, in the period and of the maximum, Xy, in the other months
(TopOROVIC and ROUSSELLE, 1971). Also in this case extreme events may occur in different months from the consid-
ered period, as well as floods considered extraordinary in the same period. It can be assumed, therefore, that the
two components of random variables {Z; = Q(t;) — q: i = 1,2,....} cannot be separated completely according to the
season: rather, they are mixed opportunely in each of the seasons (Rossi et al., 1984).

The model TCEV. or also, the two-component extreme value distribution, represents the distribution of the
maximum value, in a given time interval, of a random variable distributed according to the mixture of two expo-
nentials:

— the low component (low intensity and high frequency);

— the high component (high intensity and low frequency).

E@ =pE,(2) + (1-pF, (2) z20 (16)

in which the indices 1 and 2 refer respectively to the low component and to the high one, where p represents
the weight of the former component in the mixture.

Analogously. the number of annual excesses, K; and Ky, relative to the two components follows a Poisson pro-
cess, with parameters equal to A; = E[K;] and Ay = E[K;]. On the basis of the « reproductive properties » of the
Poisson processes, the comprehensive number of annual exceedings, K = K; + K,, also follows a Poisson process
with the parameter, A = A + A,. Then, we find:

A, 1 Aqy
P Ay + A, | - Ay + A

Definitively, the probability distribution law TCEV of the maximum value X, in a time interval equal o one

year, with the function F,() exponentially distributed and q, = 0, results:

Fy(x) = e[-Aed - Ase x20 (17)
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having indicated 0, = E[Z,], 8, = E[Z,], A, e A, the distribution parameters,
with:
0,>0,>0:A,>0;A, 20

If the number of outliers present in the sample is increased, or if their extraordinary nature is particularly pro-
nounced (meteorological conditions typical of Mediterranean regions) it seems evident how advantageous, on the
one hand, it is to consider more components of the random variable within the distribution law and, on the other,
not to bind the said law to the only product of two exponential functions. Neither should one neglect those observed
value samples typified by a complete absence of outliers, which therefore would not justify the use of a double-com-
ponent probability distribution law.

The idea of using a more general law of probability distribution (MCEV) type:

Kix) = e[gr," Aie‘ei,] xz20 _ (18)

which, for m = 1 coincides with Gumbel’s Law, for m = 2 represents the TCEV model, and for increasing m
values provides a more flexible model for the statistical reproduction of the extraordinary events present in the sam-
ple. It would represent a possible alternative to the need to identify a valid distribution law, by means of a uniform
model, for samples typified both by the presence and absence of outliers.

3. MCEV MODEL

The multiple-component probability distribution law expressed by equation (18), presents 2m parameters
whose calculation can be obtained by the method of maximum likelihood (FIORENTINO and GABRIELE, 1984). Such a
method presents a system of equations which are solved by means of an iterative scheme.

In particular, density of probability function is considered:

fi(x) = K(x) ¥x(x) (19)

where Fy(x) is expressed by the equation (18), while Wx(x) is obtained by means of the equation:

m | A, x
¥ (x) = 1=Zl —e-]l €7, (20)
the natural logarithm of the funetion of likelihood, L, becomes:
L-$nt, 0
or:
L=2XInF(x)+ 2 n %(x) (21)
whose partial derivatives with respect to the parameters of distribution, equalized to zero, are:
oL _ i PR B o ot .
— =2, e n/% 4+ = ——l=0 =1,2,...,m (22)
oA =1 ' 05 =1 ¥ (x,) )
(1-3)
e-%;/6; J—
aL_ M ey HN . (23)
%, = o i=Elxie i ,+i§{ i) =0 ji=12....m

Multiplying both the members of equations (22) for A. and solving in function of 8; the equations (23) we ob-
tained by means of an iterative convergent for successive substitutions scheme, the following parameters:
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- e-x5:/9;

i=1 \FX(Xi) .
A= a2 i=1,2...m (24)

j n
Gl. 21 e—xi/ej
1=

n Xie-xilei
=1 ¥(x;) 25
0 = - j=1,20m (25)
e—x;/0;
2w emn 4 2 s
=1 =1 W (x;)

Through the use of a computer code in C language, based upon the following iterative scheme:
8;(s + 1) = £(8:(s), Ai(s))
Aj(s + 1) = £8ils + 1),44(5)) (26)

the parameter values for m = 1, 2 and 3 are determined.

This scheme has supplied convergent solutions in the totality of examined cases.

The use of equation (18) implies the knowledge of a number of components, m, hypothesized in the distribu-
tion law. Such a value, obviously becomes more consistent when the nature of the elements of the considered series
is extraordinary.

4. OUTLIERS ESTIMATES

The estimation of outliers present within a sample of observed data, or those data points that depart signifi-
cantly from the trend of the remaining data, has always represented a controversial problem owing to the need to
consider them, or otherwise, in the elaboration of a time series. It therefore implies the need to understand whether
such extraordinary values represent anomalous values and should hence be disregarded in probabilistic elaborations
of a time series, or whether they could be considered, instead, as representative elements of the behaviour of the se-
ries and as such, considered in the data analysis.

A valid response to this question has been provided by BEARD (1974) who, by means of a study carried out on
300 annual peak flow series in the USA, has shown the need to consider all the extraordinary values in data analy-
sis, since their exclusion would produce less accurate results than those in the presence of outliers.

The need to take into account outliers in data analysis is confirmed. In fact, one should consider what happens
in Southern Italy where the maximum rainfall and the maximum flow values significantly greater than all other val-
ues observed at the same measurement station usually correspond to great downpours which have occurred in the
last fifty years.

Obviously such extreme events cannot be considered as isolated and exceptional, but rather, owing to their fre-
quency. should be introduced into the statistical analysis of maximum flows.

The absence of objective criteria for treating outliers, requires empirical evaluations based on both mathematical
and hydrological considerations.

In this sense the most used method in the USA and proposed by the Water Resources Council (1981), recom-
mends that if the station skew is greater than 0.4 the following frequency equation can be used to detect high outliers:

Vi = Vm + K5y (27)

where yy is the high outlier threshold in log unit, y,, is the mean of log-transformed X values, s, is the stan-
dard deviation and K, is a coefficient tabled for sample size n. The K values are used in one-sided tests that detect
outliers at the 10-percent level of significance in normally distributed data (CHOW ez al., 1988).

If the logarithms of the values in a sample are greater than yy, then they are considered high outliers. This
procedure, however, provided for Southern Italian rivers, time series without outliers.

Since these results do not agree with the greater part of the hydrological studies carried out on the rivers under
examination, a different method to single out the outliers should be searched.
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According to KOTTEGODA (1984, 1985), if a sample of n flood observations at a particular station, ranked in
order beginning with the lowest, is generated by a model with a specified probabilistic distribution, and assuming
such distribution as normal (or when the variable can be transferred to normal), the studentized deviate provides a
robust statistic for detecting one or more outliers in a sample. In fact, for every observation of the ranked sample it
is possible to determine a parameter, B;, given by:

B Xn-j-a-l - Xn—-j-fl (28)
i~ sn—j-f-l
in which:
n—-j+1 n—j+1

2

=1 Xy 12-‘4 Xn- 1+1)
X, i = —— : T——
n-j+1 11—]+1 kl n-j+1 _]

are the mean and standard deviation, respectively, for:
j=n-"T, ... ,1 and x(1) < x(2) < .... < x(n—j+1)
such as shown in fig. 2.
For the rivers of Southern Italy it has been empirically observed that the difference (B; - B;;) produces useful
information on the quantitative characterization of the outliers. In that sense, (j-1)th element of the series, with an

associated value of B;.;, can represent the threshold value, past which the outliers in the sample are registered, if the
difference (B; — B;.;) > 1 is maximum.

Strong evidence of outliers

Bj D
3. al
1 a

*]
%o

1 ooo o°° o°°ooo
14 o 0500

-‘ <
0 T T

0 10 20 30

Rank

Fig. 2. — Bj's distribution with evidence of outliers.

5. DETERMINATION OF THE M VALUE

Through analysis of the time series of Southern Italian rivers, it is observed that the threshold, 0> 1,
if considered apart, dees not allow the determination of the optimum number of components in the probabljlty dis-
tribution law. In fact, it is observed that some samples, although not containing outliers, are better explained as
functions of double component distribution. For each of these samples however, it is observed that the slope of the
regression line between the values assumed by B, (not classified as outliers) and the corresponding rank, presented
high values compared with the average of the Qiope of all the time series analysed. The introduction of a second
threshold based on the value assumed by the slope of the regression line between B; and the corresponding rank,
has enabled the definition of an optimum value to be attributed to m for the rivers of Southern Italy.

With regard to the threshold value relative to the slope of the line of regression, this one emerges from the ob-
servation of some samples (Sinni River and Coscile River) respectively characterized by values of the slope of the re-
gression curve equal to 0.041 and 0.044. For such a serie if a value of m = 2 is hypothesized, the iterative scheme
represented by the equations (26) shows quite a long convergence time. It would seem, therefore, that the value as-
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sumed hv the slope of the regression curve, equal to 0.045, is a critical value between low distribution characterized

the s10D St on Ciir equ

bym= 1 and the high one represented by values of m = 2

For a given sample hypothesm_ng to consider, on the one hand, the maximum difference (B; — B, ;) and on the
other, the slope of the regression curve between the B; values (unclassmed as outliers) and the correspondmg rank,
then four classes can be detcrmj_ned each of which is characterised by a specific m value.

In nartienlar we have-
m particaiar we nave:

— Low distribution, characterised by the maximum difference (B; — < 1, and the slope of the regression
curve less than the threshold value, fixed equal to 0.045. The sample Wthi’l sauqﬁes such conditions does not pre-
sent outliers and, therefore, can be explained by an MCEV model characterized by a value ofm=1.

— Low distribution with outliers, characterized by the maximu_m difference, ( .

i — By B. ) > 1, and the slope of
e N nac A T cmn RUUI TSN ¥ 7ot il NN P I
L[l(:' l(“BI(“"SI()Il curve chs L.U.d.[l V.Ut Lll bll(.ll LUllU_lLlUllb l..ll(. lJlt'/b(:‘U.(_C UJ. outliers l ascertained 1, 1 VIV Y 10ael can

be hypothesized characterized by a value of m = 2.

— High distribution, characterized by the maximum difference (B; — B;.;) < 1 and the slope of the regression
curve greater than 0.045. In this case the sample which satisfies such conditions, although not presenting outliers, is
characterized by a value of m = 2.

— High distribution with outliers, characterized by the maximum difference, (B, — 15] 1) > 1, and the siope of
the regression curve greater than 0.045. For this last class, finally, an MCEV modei can be hypothesized with a

trinle ¢

e

nonent (n\ = 5{\

armponctit

6. AVAILABLE DATA

The data used regard flood rates of 19 hydrometric stations, run by the 8.1I (Servizio Idrografico Italiano) in

Oor _10¢ F & s
the period 1925-1984 (fig. 3).

The observed samples, with variable dimensions between 19 and 50 years, have been de-dimensionalized with
respect to the corresponding average rates, x,,, (table I). The probability distribution law of the extreme value with

multiple components used, therefore, gave:

fe 1 - 1501
by(y =e|4 2-Aje Q,J yz2U (£9)
where
0,
_ X * . x _ 3
YT, : A=A 5 o =%
TaBLe I

Dimension of observed series and corresponding average rates

Hydrometric stations |Dimension| xm (m3/s) Hydrometric stations | Dimension| xm {(m3s)
1. Bradano, P.C. 30 184.15 11. Sinni, V. 27 500.93
2. Tacina, R. 25 81.16 12. Esaro,LaM. 19 328.84
3. Bradano, T.P. 19 506.11 13. Crati, C. 31 44142
4. Alaco, M. i9 13.61 14. Alii, O. 47 16.66
5. Amato, M. 26 79.19 15. Ancinale, R. 50 82.35
6. Corace, G. 38 151.65 16. Lao, P.diB. 24 214.31
7. Basenio, P. 28 36.87 i7. Agri, Le T. 27 84.80
8. Basento, G. 39 361.00 18. Sinni, P. 34 234.24
9. Basento, M. 24 405.63 19. Coscile, C. 29 78.28
10. Agri, T. 31 186.64
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0
¥

. Bradano, P.C.
. Tacina, R.
Bradano, T.P.
Alaco, M.
Amato, M.

. Corace, G.

. Basento, P.

. Basento, G.

. Basento, M.
10. Agr, T.

11, Sinni, V.

12. Esaro, La M.
13, Crati, C.

14. Alli, O.

15. Ancinale, R.
16. Lao, P. di B.
17. Agri,Le T.
18. Sinni, P.

19. Coscile C.

R T N

FIG. 3. — Hydrometric stations under examination.

7. RESULTS

For the samples corresponding to the 19 hydrometric stations considered in this paper, we obtained the results
in table IL.

In particular, in table Il the maximum differences (B; — B;.,) are shown, the slope of the regression curve, as
well as the classes to which each of the 19 examined series belong.

A representative sample (18. Sinni, P.) which satisfies the required conditions for the class defined as « Low
Distribution (m = 1) », is shown in figures 4 and 5. In detail, figure 5 shows a comparison between the accumulated
frequencies suggested by Hazen, (i-0.5)/n, of the observed samples and the distribution of probability MCEV for
m=1

18. Sinni, P. o
a Bj B

Bj=0.955+0.041n ; R=0.86
0 i 1 1 T i

0 10 20 30 40
Rank

F1c. 4. — Sample which satisfies the required conditions for the class defined as « Low Distribution ».
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TaBLE IT
Classification of samples observed and corresponding to the value of m
Stations Slope Max (B;-B;4) | Class (1-4) m
17. Agri,LeT. 0.036 0.61 1 1
18. Sinni. P. 0.041 0.80 1 1
19. Coscile. C. 0.044 0.52 1 1
15. Ancinale R. 0.021 1.54 2 2
9 Basento. M. 0.028 1.57 2 2
14. Alfi. O. 0.034 1.25 2 2
11. Sinni. V. 0.039 2.06 2 2
6. Corace. G. 0.043 1.15 2 2
8. Basento. G. 0.061 0.49 3 2
13. Crati. C. 0.063 0.70 3 2
7. Basento. P. 0.066 0.95 3 2
10. Agri. T. 0.071 0.77 3 2
16. Lao. P. diB. 0.081 0.46 3 2
3. Bradano. T.P.|] 0.094 0.77 3 2
4. Alaco. M. 0.102 0.74 3 2
12, Esaro.LaM. | 0.117 0.84 3 2
5. Amato. M. 0.077 1.17 4 3
1. Bradano P.C.| 0.046 1.61 4 3
2. Tacina. R. 0.061 1.01 4 3
log(1/(1-£(y)))
10! 5
18. Sinni, P.
+  (-0.5)n

4 m=1-—>A1=5271; 0;=0438
y m=2 —>A; =3.953 ; 0y =0.438
Az =1318 ; 0y =0.438

Fic. 5. — MCEV model for values of m equal to 1 (withm = 1 = 2).
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A brief consideration must be stressed regarding the quality of the m value proposed. This, if is increased (m = 2),
does not cut into the probability distribution, rather only produces an increase in the number of parameters.
Analogous considerations can be made for the other classes. For the representative sample (9. Basento, M.)

which satisfies the required conditions for the class defined as « Low distribution with outliers (m = 2) », the results
are shown in figures 6 and 7.

4

. | 9.Basento, M. 8
Bj 1o Bjcout)

34+ Bj g

3]
2.
<
Oo o ° < ° 5o
1 . () [+ ° (X
<
0 Bj=0.981 +0.028n ; R=0.67
0 10 20 30

Rank
F1c. 6. — Sample which satisfies the required conditions for the class defined as « Low distribution with outliers ».

log(/(1-£(y)))
1
10" 7
i 9. Basento, M. m=1
1+ G0.5)m /
10° -

&

m=2=3
107! E
] m=1 -—>A; =6507 ; 01 =0.396
2 m=2 —>A;=10324 ; 61 =0.268
102 4 ——— —
0 1 2 3 4 Ag= 0429 ; 07 = 1.081
y m=3 > A1 =7316 ; 01 =0.268

Ag = 3.001 ; 687 =0.268
Az = 0429 ; 03 =1.081
Fic. 7. — MCEV model for values of m equal to 1 and 2 (withm =2 = 3).

Even in this case, if the m value is increased (m = 3), the probability distribution will not be modified.

For the representative sample (8. Basento, G.) which satisfies the required conditions for the class defined as
« High distribution (m = 2) », the results are shown in figures 8 and 9.

For the representative sample (1. Bradano, P.C.) which satisfies the required conditions for the class defined as
« High distribution with outliers (m = 3) », the results are shown in figures 10 and 11.
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8. Basento, G.
1o Bj s

Bj=0431+0.061n ; R=090

0 10 20 30 40
Rank

FIc. 8. — Sample which satisfies the conditions required by the class defined as « High distribution ».

log(1/(1-£(y)))
101 3
] 8. Basento, G. m=1
1 + (@-0.5)n /
10°
3
J
1
107! E
] m=1 > A;=5306 ; 0;=0428
1072 T : ~ m=2 —> A1 =11.305 ; 8; =0.211
0 1 ; 3 4 Ay= 0932 ; 67 =0.880

m=3 --> A1 =6897 ; 8] =0211
Az = 4408 ; 8 =0211
A3z = 0932 ; 03 =0.880
F1c. 9. — MCEV model for values of m equal to 1 and 2 (withm = 2 = 3).

4
Bj - L B.radano, P.C. .
o Bj(out.) a
34 o Bj @

Bj=0908 +0.047n ; R=0.78

0 10 20 30 40

Rank
Fic. 10. — Sample which satisfies the required conditions of the class defined as « High distribution with outliers ».
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Extremes through-component distribution

log(1/(1-1(y)))
lO1 E
3 1.Bradano, P.C. m=2
1+ (-0.5)n
10° - m=l———10u p - “‘/1
3 +
1
1 m=3=4 m=1 > A;=3379 ; 61=0528
107! A m=2 —> A1=9789 ; 6;=0.123
1 Az =1537 ; 95 =0.806
1 m=3 -—> Ay =21155 ; 01 =0.065
10 PR y " ' T " Ap= 2850 ; 0, =0.314
0 1 2 3 4 Az= 0725 ; 63 =1.100

m=4 > A} =21.155 ; 61 =0.065
Ao = 1558 ; 62 =0.314
Az = 1291 ; 683 =0314
Ag=0725 ; 64 =1.100
Fic. 11. — MCEYV model for values of m equal to 1, 2 and 3 (with m = 3 = 4).

8. CONCLUSIONS

By means of a general exponential law, a distribution function of extreme values with multiple components,
MCEYV, is proposed. Such a model appears particularly flexible to probabilistic interpretation of outliers present in
the sample.

Furthermore, it dees not reveal potential errors (for excess) in the estimation of values atiributable to the num-
ber of components, m, of the random variables considered. In fact, in the latter case, high values of m would in-
volve only an increase in the number of parameters, without affecting the quality of the law of distribution.

For the 19 water courses of Southern Italy, in particular, an empirical procedure to classify both the outliers in
the samples and the observed samples in homogenous classes characterized by a fixed value of m has been carried
out. Finally, for the cases examined, it is demonsirated that the value of m, associated with the generic class is that
extremity, going beyond which, the law of distribution dees not vary.

The use of such a model, in conclusion, should allow a better prediction of zones at hydrological risk. Such
identification need not be exclusively aimed at a more suitable definition of flood protection, rather it should also
look at the extreme variability of the rate with regard to risk, with the scope of taking the necessary precautions in
the correct hydraulic projection of works.
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