
t 

S 

h 
e 
A 
e 
111 
28 
al 

ds 

Computational Statistics & Data Analysis 18 (1994) 97-119 
Nort h-HoIl and 

The ACT (STATIS method) 

Christine Lavit, Yves Escoufier 
Unité de Biométrie, ENSA.M-INRA- UM II, Montpellier, France 

Y 
Robert Sabatier 
Faculté de Pharmacie, Département Piiarmaceutique de Physique Industrielle, 
Statistique et hiformatique, UM I, Montpellier, France 

97 

Pierrehraissac 
ORSTOM, Montpellier, France 

Abstract: ACT (STATIS method) is a data analysis technique which conipui'es Euclidean distances 
between configurations of the same observations obtained in K different circumstances, and thus 
handles three-way data as a set of K matrices. In this article, the recent developments of the ACT 
technique are fully described - concepts and theorems related to Euclidean scaling being 
discussed in the Appendix - and the software manipulation is illustrated on real data. 
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1. Introduction 

The ACT (STATIS method) is, an exploratory technique of multivariate data 
analysis based on linear algebra and especially Euclidean vector spaces (ACT 
stands for Analyse Conjointe de Tableaux, STATIS stands for Structuration des 
Tableaux A Trois Indices de la Statistique). It has been devised for multiway 
data situations on the basic idea of computing Euclidean distances between 
configurations of points (Escoufier, 1973). 

At the time or writing, ACT (STATIS method) and ACT (dual STATIS 
method) can be obtained from CISIA as executable codes running on a PC 
under DOS. This package encloses also the Fortran 77 code which runs on 
various mainframes. A more general flexible software will be implemented at 
the end of 1993 in SPAD distributed by CISIA too. Besides, writing and running 
the ACT procedure in your own environment is quite simple since only usual 
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routines about matrix computations and eigensystems are required. 
For the time being, the software ACT (STATIS method) handles input data 

of this sort: 
- A set of K matrices X,, . . . , X,, each X ,  of dimension I X Jk is a data matrix 
of J, quantitative variables measured on the same I observations. 
- A set of I weights in1, ..., nz,. 
- Parameters to specify directives of computation and output. 

This program centers obligatorily each variable of each X ,  according to the 
weights m,, . . . , in,. Denoting by W, the scalar products between observations 
at stage k and D the diagonal matrix 

rescaled to obey Emi = 1, we obtain the following results: 
- Euclidean distances between W, and IV,, or, in other words, between configu- 
rations of observations at stages k and k‘. These distances are derived from the 
scalar product 

Tr(W,DWktD) 
Tr(W,DW,,D) or 

J q G G F l { q K q *  
- Trajectories which reflect the contribution of each observation to the Eu- 
clidean distance between the IVk%. 
- A compromise matrix of dummy scalar products between observations, com- 
puted as a weighted sum of the Wk’s. 

The software ACT (dual STATIS method) deals with the following input 
data: 
- A set of K matrices X l , . . . , X K  corresponding to the same J quantitative 
variables measured on K different groups of I,, . . . , I, observations. 
- K sets D, ,  . . . , D ,  of weights and, as before, parameters to specify directives 
of computation and output. 

If V, = XLD, X ,  denotes the covariance matrix at stage k ,  three main results 
are then carried out: 
- Euclidean distances between the covariance matrices V, and V,, derived from 
the scalar product Tr(V,V,,). 
- Trajectories which reflect the contribution of each variable to the Euclidean 
distance between the Vk7s. 
- A compromise covariance matrix computed as a weighted sum of the V,’s. 

The next version of the software will let the user work on centred scalar 
products (as it was the case for W,), non-centred scalar products (as it was the 
case for V,) or scalar products centred on one on the I observations, and 
compute scalar products of the form Tr(W,SWktS), S being any positive definite 
symmetric matrix. 

I 
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In the following chapter, we recall well-known underlying mathematics and 
geometric properties of scalar products derived from usual data matrices. 
Chapter 3 describes the up-to-date developments of the ACT technique. The 
software manipulation is illustrated on real data in chapter 4. The Appendix 
reviews concepts and theorems related to Euclidean scaling methods from an 
algebraic viewpoint. 

To conclude this chapter, it should be noted that, in a recent work, Franc 
pointed out connections between different multiway techniques by rewriting 
them in a multilinear algebra context (Franc, 1992). A n-way data matrix is 
considered as an element of the tensor product of n vector spaces. And 
solutions provided by the 7 different methods (TUCKER, PARAFAC/ 
CANDECOMP, CANDELINK among others) are expressed as sums of tensor 
products of vectors which obey specific constraints. 

2. A few remarks on scalar products between observations 

2.1. Scalar products deriued f rom data matrices 

Let XrXJ be a data matrix which consists of J variables measured on I 
observations. 

Example 1. We describe the set of observations as: 
- Vectors x,, x2, ..., x1 of a real vector space of dimension J ,  on which we 
define the scalar product: (xi I x i , )  = CjXijXitj. The scalar product (xi I x i , )  is the 
element of W=XX’. 
- Points of a metric space since d2(i, i‘) = Cj(X i j  -Xirj)2. 
- A J-dimensional configuration of points M I ,  M2, .  . . , M,. The coordinates of 
Mi are simply the elements Xi,, . . . , Xi,  of X. Thus we have 

IIM,M,:Il = d(i, i’). OMl:.OM,,’= Fit and 

Note that d2(i, i‘) = I I  x i  - x i ,  II 
product (. I .). Then 

where I/ - II is the norm induced by the scalar 

d2(i, i’) = Ki + IVifit - 2w.,, 

which implies that 

= +[d’(O, i )  + d2(0, i‘) - d2(i, i ‘ ) ] .  

Example 2. Suppose now that the columns of XIXJ are centred according to the 
weights m,, . . . , m, with the constraint Cimi = 1. That is to say CimiXij = O for 
j = 1,. . . , J. Therefore we describe the set of variables as: 
- Vectors x,, x2,. . . , xJ of a real vector space of dimension I. If we want the 

j 
I . .  

i 
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scalar product (xjIxjr) to be the covariance between variables j and j ‘ ,  it is 
necessary that: 

( X i  I Xi!) = C’nixijXijL 
I 

The scalar product (xjIxjt) is the element j j ’  of X’DX where D denotes the 
diagonal matrix whose elements are m,, . . . , mr. 
- A different approach is to consider 

as the matrix of xi in an orthogonal but unstandardized basis (eI,...,er) 
assuming 11 ei II = mi for i = 1,. . . , I. Then xj = CiXijei implies (xi I xi,) = 
CiXijXijr (ei I ei) = CimiXijXii,. Since the basis (el,. . . , e,) is unstandardized, 
we do not have any trivial configuration of the variables using the original 
coordinates X, . . . , Xrj.  

2 

Generalization Considering that the columns of XI,, are the rows of the 
transpose X i x r ,  the two former examples are particular cases of the following 
general formulation. Let XIx, be a data matrix. We describe the set of the rows 
as vectors xl , .  . . , xI of a real vector space of dimension J. We define the scalar 
product (xi I xi,> = CjCjt&..IXijX.r.r as the element of W=XQX’, Q being 
a positive definite symmetric matra. Then J’. [ !  

is the matrix of x i  in any basis (el,.. . , e,) obeying (e j  I ej,) = Q,,. The rows of 
XrxJ can be plotted as points M, . . . MI generated by the original coordinates in 
a set of axes neither orthogonal nor standardized. Actually this representation is 
unsatisfactory for our perception used to classic Euclidean geometry in which 
axes are assumed to be rectangular and to have unit length. It is the reason why 
methods based on the spectral decomposition of W calculate coordinates of the 
points M,, . . . , M I  in a new suitable set of axes. 

2.2. Configuration of points 

Let us consider the matrix W,,, of scalar products between I elements, 
forgetting the way it has been calculated. The problem is to plot the I elements 
in a set of orthonormal axes. We briefly note a few results, more or less known, 
which are detailed in the Appendix. 
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W is a positive semi-definite symmetrix matrix. From the spectral decomposi- 
tion of W :  

W y  PIxrArxrP,!xI with P’P = I r x r  (Identity matrix), 

r denoting the rank of W ,  we obtain an Euclidean configuration M , ,  . . . , Ml in a 
r-dimensional space. The r coordinates of Mi are the elements of the ith row of 
PA’/2. Consequently, the scalar products and the distances d(i, i’) can be 
calculated in a classical Euclidean context since 

OMl;.OM,,’= and I[M,M,:/I = d(i ,  i’). 

The spectral decomposition of W is a particular singular value decomposition 
as it is defined in the Appendix. Let S be any I X I positive definite symmetric 
matrix. It will be shown that W can be written as 

W =  PlxrXrxrP,!xI with P‘SP = I rxr  (Identity matrix). 

The columns of P are the eigenvectors of the self adjoint matrix WS, and 2 is 
the diagonal matrix whose elements are the corresponding eigenvalues. If we 
denote by r the rank of W (or WS), we obtain another set of r coordinates of 
Mi by taking the elements of the i th row of P2:’I2. Similarly the scalar products 
W;.i, and the distances d(i, i’) can be calculated in an usual Euclidean context 
since 

OMf.OM,,’= and llMiMi~ll = d(i ,  i’). 

Remark. If the scalar products have been derived from a data matrix X I x J ,  and 
hence from J coordinates, the rank of WIx,  is less than the minimum of I and 
J. 

2.3. Centred scalar products 

Let us consider again a matrix of I observations on J variables and suppose 
now that the mean of the I observations is significant. Then we can deal with 
the centred matrix X obeying CiXij  = O, or more generally CimiXij = O if the 
observations are weighted, in order to shift the mean to the origin. This 

1 

! 

! 
i 

derivation is equivalent to the transformation of the original W in W u  detined 
by ! 

i 

The singular value decomposition of Wc,  or WGS,  S being any positive 
1 P. e. . .  . .  1 .  C. .. . I  .I - 1 .  aerinite symmetric matrix, proviaes a conriguration lu1,. . . , lu, in a r-aimen- 

sional space in which the origin O is the centroid G of M I , .  . . , MI weighted by 
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in,,. . . , inI. The rank r of W G  (or W G S )  is less than the minimum of I - 1 and 
J. Note that the case 

S = D =  [ i ?z '  . . .  ) 
112 I 

with the constraint &mi = 1 gives the principal components of the PCA of the 
centred data matrix XIXI when the eigenvalues of WGD are ordered in the 
usual way. This choise leads to the agreeable interpretation of eigenvalues as 
variances of principal components. 

2.4. Scalar product-like derived from dissiinilarity matrices 

If the data are available in the form of an 1x1 matrix A of dissimilarities 
between pairs of observations, some results are still valid: 
- Choosing the observation i,, as origin, we can calculate the scaIar product-like 
matrix WMio of dimension I- 1, defined by 

And reciprocally, given W we deduce 

= W;., + W;...,, - 2 U 5 .  

- On the other hand, if we suppose that the mean of the I observations is 
significant, we can deal with the so-called Torgerson symmetric matrix W G  
defined by 

= f [ A:.+ AT,.- A:it - A ? . ]  

where A,.= CitmjtAjit/Cjmj and A . . =  G,C,,m,mi,Aij,/(C,rni)2, m,, . . , , tn, being 
the weights of the observations. 
- It is well known that WMiu (or W G )  is positive semi-definite if the dissimilari- 
ties are Euclidean distances and reciprocally. In this particular case, the singular 
value decomposition of W or WS provides a configuration M,, ..., M, of the 
observations in a r-dimensional space whether W is centred or not. In both 
cases, the rank Y of W (or WS) is less than I- 1. 

3. Strategy for ACT: Scalar products between configurations 

The central idea of the ACT technique is to compare configurations of the same 
observations obtained in different circumstances. Thus we need to introduce a 
measure of similarity between two configurations. This is equivalent to define a 
distance between the corresponding scalar product matrices. We can use the 
classic Euclidean norm 

IIW,-W, I l2= C [ ( ~ ~ - W , ) j j . ] 2 = T r [ ( W ~ - W , ) Z ] ,  
i i' 
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MPUTATION OF THE Wk s 

I elements - 
1 Y 

I 
Which elements do you want to compare ? 
According to which configuration ? 

wk non centred ? w k o  centred on 
element i, ? W f centred on centroid G ? 
or weighted centroid G ? 

i 

Which scalar products 

INTERSTRUCTURE 
K - m W re uired to be p.s.d. 

K I  I L I COMPROMISE 1 
I I 

I 

w = c o l w k  
k I 

I .  
Wr; 
of the WLs 

I TRAJECTORIES I 
Decomposition of d w k , W k ,  ) element by element 

Figure 1. The ACT procedure 

or a weighted version 

II W, - w, II = ~ S , , S , y [ ( W 1  - W,) i i l ]2 ,  
i i‘ 

or, mor,e g.enerally 

lec& the maioritv 
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for any positive definite symmetric matrix S. Although distances between 
symmetric matrices have been studied for a long time, it is more convenient to 
argue their properties as a particular case of distances between linear mappings. 
Definitions and algebraic derivations are discussed in the Appendix. 

According to the data and the objectives of the analysis, we have first to 
decide which elements have to be compared. Then, it is necessary to specify 
from which origin we compute the scalar products Wk’s (whereas this question 
does not arise when we compute distances). We will illustrate these decisive 
choices and their consequences on a few examples in the last section. 

I 



104 C. Larit et al. / The ACT (STATIS Method) 

3.1. Interstructure 

First step: which distance between the W,'s? Properties of these distances are 
discussed in the Appendix. We will simply list the different choices. 
- d2(W,, W,,) = CiCit[(Wk - Wkl)ii,]2 deduced from the scalar product 
(W, I Wkt)  = Tr(WkWkt) = Tr(W,SW,,S) with S equal to the identity matrix. 
- d2(Wk, W,,) = CiCitSiiSitit[(Wk - Wkl)iit]2 deduced from (W, I W,,) = 
Tr(W,SW,,S) with S diagonal. Note that for W f  centred on a weighted 
centroid G with weights m,, . . . , m,, the matrix S can be any diagonal matrix 
and not necessarily 

1"l . 

- d2(Wk, Wk,)  = Tr[(W,S - W,tS>2] deduced from the scalar product (W, I Wkt)  
= Tr(W,SW,,S) where S is any positive definite symmetric matrix. 

Second step: do we compare the Wk's or the normed W,'s? A large distance 
d(W,, Wk,) points out a strong difference between Wk and Wkt. Difference in 
shape or difference in size? To eliminate the second effect, we can compare the 
normed scalar products 

Wk W, 

and thus calculate 
W, Wkt Tr(W,SW,,S) 

( m h " = / ~ { ~ *  
Graphical representation of the interstructure. Let W,,, be the interstructure 
matrix whose elements are the scalar products (W, I W,,). To plot the K stages 
in a two or three-dimensional space, say a h-dimensional space, we use the least 
squares approximation W,z of W ,  equal to the h first elements of the spectral 
decomposition a , p , p ;  + * +a,p,p; = P2P '  of W ,  with P'P = I. Stage k is 
plotted as point M, whose coordinates are the Iz first elements of the kth row 
of PZ1/2. The points M I , .  . . , M, satisfy m, m,, = And the loss 
function is 

I l  w- w;, II = c [ ( W -  w/l),,42 = k a?. 
k k' I = h +  1 

On this graph, scalar products are not easily readable, except for the norm 
II W, II approximated by the length of vector m,, and for the scalar product 

between normed W, and normed W,, approximated by the cosine of 

Distances d(W,, W,,) can also be readable on a graph using the first elements 
of the spectral decomposition of the interstructure matrix W G ,  centred on the 

(OIUr, ,m, 1 ) .  
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centroid G of the K stages, in a similar way. On these two graphs, the projected 
distance induced by least squares approximation is systematically lower than 
d(W,, W,,). Besides, it is possible to distort Euclidean distances d(Wk, Wkr)  into 
ultrametric distances and build a dendrogram, or use another technique of 
visual information. 

3.2. Compromise 

In this section, the Wkys are required to be positive semi-definite whereas this 
restrictive assumption was not necessary in the interstructure derivations. 

Property 1. Let W, = u1 p 1  p i  be the first element of the spectral decomposition of 
the interstructure matrix W. Components of p can be chosen positive. 

Y 

To establish this particular case of the Frobenius theorem, see Property 8 in the 
Appendix which implies that all the elements of W are positive. Consequently, 
in the configuration of the K stages, cosines are positive and angles ( ~ k , ~ k t )  

acute. Thus the points Mk are situated inside a convex cone. 

Definition 1. The I X I compromise matrix W is defined as a weighted sum 
CkakWk. The coefficient ak is the coordinate of stage k in the one-dimensional 
plot deduced from the first element W, of the spectral decomposition of W. 

Property 2. As the WLs are positive semi-definite and the ais are positive, the 
compromise matrix W is positive semi-definite. Thus ' W will be considered as a 
scalar product matrix which induces a compromise configuration of the I elements. 

Property 3. The compromise matrix W is the linear combination of the Wis the 
most related to each W,. In other words, W maximizes 

( p k W k  I W,)l/c.:. k 

Recalling that W,, equals (W, I W,), we develop the numerator into 

In the spectral decomposition of W,  p 1  is the eigenvector of WW* = W 2  
associated to the largest eigenvalue (see Property 7 of the Appendix). Thus the 
quotient can be written as the Rayleigh quotient 

which is maximum for x = p ,  



. 
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Constraints on the ak's. If the WLs are centred on a centroid G, or a particular 
element i,, the compromise matrix W will obviously be centred in the same way, 
Similarly, if the origin is equidistant from the I elements at each stage k, this 
property holds for W. However when the WLs are correlation matrices, it is 
necessary to rescale the aLs with the constraint C k a k  = 1 in order to obtain a 
compromise of the same nature. If the WLs are normed, the compromise will be 
rescaled to be normed too. 

Interpreting the compromise. If W, and W,, correspond to similar configura- 
tions in shape and size, the angle (On/r,,m,,) is small and the lenghts ]Imk I), IIÕ@k, )I are nearly the same. This case leads to identical values for ak 
and a,,. On the other hand, a large difference between the two configurations 
induces either a large angle (m,,m,,) or unequal lenghts for OM, and m,,, and different values for a, and a,! in both cases. Consequently W gives 
relatively less weight to outliers, and leads to a compromise configuration which 
reflects the inter-element distances as they are seen by the majority. 

Graphical representation of the compromise. To plot' the I elements according 
to the compromise in a 12-dimensional space, we use the least squares approxi- 
mation W,* of W, equal to the h first elements of the singular value decomposi- 
tion alp, p i  + - * - +arprp:  = PCP' of W,  with P'SP = I .  Element i is plotted 
as point Mi whose coordinates are the 12 first elements of the ith row of PZ'''. 

The points MI,. . . , MI satisfy mi - mi, = and the loss function is 
r 

[ I  W -  W, I I  = Tr[(WS - W,S)2]  = a;. 
[=il + 1 

Note that it is logical, but not necessary, to take the same matrix S as the one 
used in the computation of the distances-.d(W,, W,,). Think, for example, to the 
case where S is not diagonal. 

3.3. Trajectories 

In this section, S is required to be diagonal. Then d2(Wk, W,,) can be written 
element by element, as the sum CiS,,(CitSitjt[(Wk - Wkt)iit]2) and split into 
contributions of the different elements. This decomposition leads to an 
I X ['K( K - 111 matrix from which we can detect which elements are strongly 
perturbed from one configuration to another. 

However knowing the direction of the perturbation needs further investiga- 
tions. We consider the Wk's and the compromise W as matrices of linear 
mappings between an Euclidean vector space F and its dual F *  (see Appendix, 
Section 6). 
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is a vector of F "  which appears in the decomposition of d2(W,, W,,) = 

Cisii II w; - w;. II '. It is now of interest to know the direction of the different 
vectors IV; - IV$. Eigenvectors p l , .  . ., p ,  of WS which occur in the singular 
value decomposition a , p , p ;  + + +a,.p,p,! of W ,  can be completed to form a 
s-orthonormal basis of F " .  The idea is to express w; in this new basis. 

Graphical representation of the trajectories. Unfortunately, if we want to plot 
the I elements as they are seen by the different stages in a unique two-dimen- 
sional space, it is obvious that none of the subspaces spanned by p,,, . . . ,p,.  
corresponds to the best choice. Nevertheless, we decide to restrict w; to its 
projection on the two-dimensiohal space spanned by p 1  and p z .  

In this space, we know that a least squares approximation of the compromise 
configuration is provided by the points M,, . . . , M, whose coordinates are the 
components of p 1  = a,'/2WSp1 (namely the projections on p ,  rescaled by 
C J - ~ - ~ / ~ )  and a;/ 'p2 = a;1/2WSp2. In order to draw the trajectory of element i 
around its compromise position Mi, we rescale the projections of the wk's for 
k = 1,. . ., K ,  in the sanie way. More precisely, we plot the I elements, as they 
are seen by stage k ,  by the points Mf, . . . , MF whose coordinates are the I 
components of cri1/2WkSp1 on the first axis and a;1/2WkSp2 on the second 
axis. In spite of this obvious lack of optimality, numerous examples show that, in 
practice, the vector MFMf'' gives a good idea of the importance and the 
direction of the change of position of element i between the stages k and k' .  

3.4. Some applications of the ACT technique 

Example 1. The first set of data, fully discussed in Chapter 4 consists of K 
matrices X,, , . . , X, of I rows and J columns, corresponding to the judgment of 
K students on I of their professors according to J criteria. In this particular 
case, we decide to work on the matrices W p  =X,XL after having centred each 
column of X,. In other words we compare the configurations of the I professors 
as they are seen by each student, after having standardized severe and generous 
students to the same level of notation. Distances d(W,, W,,) are interpreted as 
disagreements between judgments. The compromise matrix W provides a con- 
figuration of the I professors reflecting the majority opinion. And the trajecto- 
ries point out who are the professors on which students are not in agreement. 

On the other hand we can decide to study the correlation matrices V,= 
( l / I ) X ; X ,  (the columns of X, being standardized to have mean O and unit 
variance). The objectives are then different. Forgetting the configurations of 
professors, we are now interested in associations or oppositions between crite- 
ria. Are they different from one student to another? Which criteria make the 
difference? Answers are given by the interstructure and the trajectories, whereas 
the compromise correlation matrix summarizes the Y,'s. 

Example 2. Let us consider a set of five sociological data matrices X54, X62, x687 
X75, x 8 2  describing the evolution of the working population of I communes 

i. 

! 
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around Montpellier in the last forty’ years. It happens that the definition of 
occupation groups changed from 1975 to 1982. Thus, the population has been 
classified into nine occupation groups for the four first census returns and only 
eight groups for the last one. Nevertheless the five configurations of the I 
communes can be compared through the matrices W f  (where the centroid G, 
weighted or not, represents a dummy average commune) or through W,$ (if we 
take Montpellier, indexed by i,, as a reference). 

Example 3. The third set of data consists of J variables characterizing different 
stages of the sleep, collected on I, narcoleptics and I2 persons in good health, 
after 16 hours, 20 hours and 24 hours of wakefulness. .Comparing the six 
correlation matrices by means of the interstructure and the trajectories can be a 
first approach to understand how this disease disturbs the distribution of the 
different stages of the sleep, whereas the compromise matrix is not of interest 
here. 

Example 4. The last set of data concerns I sites described by three specialists: a 
botanist, a pedologist and a biologist. The botanist describes the floristic 
composition of the sites by an IXJ, presence-absence data matrix. The 
pedologist provides an 1 X J2 data matrix of chemical characteristics of the soil, 
and the biologist gives an IXJ, data matrix concerning the abundance of 
various earthworms. 

If two sites are claimed simiIar by the biologist, are they found similar by the 
pedologist or the botanist? To deal with such a situation, we have to discuss with 
each specialist which dissimilarity or distance is appropriate, then derive scalar 
product-like matrices W,, W2 and W3 centred on a reference site i,, and 
compare them by means of the interstructure for which the positivity of the Wk’s 
is not required. Further information can be extracted from the decomposition of 
the squared distance d2(Wp, WLv) between specialists into contributions of the 
different sites. 

Suppose now that the data are available in the form of K dissimilarity matrices, 
each matrix corresponding to a dissimilarity coefficient 6, whose square root is 
an Euclidean distance as Rogers and Tanimoto, Russel and Rao or Ochiai 
coefficients (Fichet and Le Calvé, 1984). In this case, instead of performing only 
the first step of ACT on the scalar product-like matrices straightforward derived 
from the Sis, we can operate the whole procedure on the positive semi-definite 
Wk’s derived from the square roots fi as follows: 

(w;(l),i,= +[¿$,(i,, i) +6,(i,, i’) -6& i‘)]. 

The compromise matrix W induces Euclidean distances between sites which 
satisfy d2(i, i‘) = C,a,G,(i, i ’ ) .  And, all things considered, as 6 is a monotonic 
function of 6, performing ACT on 6 instead of 6 turns out to be a useful 
insight into the structure of the original dissimilarity matrices. 
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4. Input and output of the 01.90 version of ACT (STATIS method) 

Input. K = 8 students judge I=  11 professors by means of J = 7 criteria: 
competence, lucid explanation, pedagogy, cheerfulness, is the professor dy- 
namic? accessible? does the student find the subject interesting? The data are 
given in Table 1. 

“Practice” having missing values, is considered as a supplementary row and 
ignored when we compute the Wk7s and the compromise. The other active rows 
have identical weights ini = 1/10. Practice has weight O. The preprocessing of 
the data consists of centeringyeach column of each X, according to those 
weights. Thus we compare the 10 X 10 matrices W f  centred on the centroid G 
of the ten active rows, W4G being derived from only six criteria. 

Interstructure output. The norms of the Wk’s are derived from the scalar 
product (W, 1 wkt) = Tr(W,SWktS) where S is diagonal and equal to 

These norms are equal to 119, 151, 87, 78, 101,117, 137 and 102. Since they are 
different, we decide to compute the Euclidean distances between the normed 
Wk’s deduced from the RV-coefficients (Definition 9 of the Appendix). We note 
that the opinion of judges no. 2 and no. 8 fairly differs from the others. 

Compromise output. The compromise matrix W is defined as the linear combi- 
nation CkakWk of normed Wk’S with (Yk equal to the coordinate of judge k on 
the first axis of Figure 2. W gives relatively less weight to judges nr. 2 and nr. 8, 
and leads to a configuration of the professors which reflects principally the 
opinion of the six judges left. 

ffk 0.18 0.08 0.17 0.17 0.22 0.20 0.21 0.11 

d2(W, W k )  0.46 1.32 0.60 0.61 0.19 0.33 0.27 1.06 

Since the Wk’s are centred on the centroid G of the active rows, the 
compromise W is centred in the same way. In addition, as the data are available 
in the form of observations x variables matrices, we have J ,  + . . . +J, variables 
at our disposal. We can then compute their correlations with the coordinates of 
the compromise points in order to explain the position of the different profes- 
sors. 

Trajectories output. In the interstructure output, we noted that the distances 
between judge no. 2 and the others were quite important. It is interesting to 

I .  



Table 1 

computer science 
architecture 
theory 
languagcs 
practice 

economics 
accounting 
management 
information system design 
statistics 
operations research 
English 

computer science 
architecture 
theory 
languages 
practice 

economics 
accounting 
management 
information system design 
statistics 
operations research 
English 

judge nr. 1 
13 18 8 113  3 20 
1210 5 3 9 5 7 
410 6 6 610 2 

17 16 17 17 17 18 18 
15 12 13 14 13 18 9 
16 18 15 11 13 15 15 
12 12 9 111 7 9 
10 18 O 2 12 2 17 
17 12 16 19 20 19 13 

17 18 15 10 13 15 15 

judge nr. 5 

1 1 8 5 1 8 1 1 5  .t 

14 15 O O 7 O 15 
12 8 8 8 15 16 9 
5 2 0 0 2 8 0  

16 15 16 14 10 14 16 
12 10 15 15 10 15 7 
16 15 15 12 14 13 14 
814  9 215  8 3 

12 7 5 7 5 10 14 
18 10 18 14 15 15 8 
10 8 5 2 11 8 10 
14 13 15 5 10 10 12 

judge nr. 2 
18 18 10 2 14 12 18 
6 4 8 2 41216 
2 2 2 4 22010 

18 20 18 12 14 18 18 
14 16 14 12 10 18 10 
18 18 18 12 16 16 18 
18 20 18 10 12 18 14 
16 18 18 16 14 18 16 
18 16 18 12 12 18 14 
18 16 14 O 14 6 16 
10 4 2 O 4 4 8 

judge nr. 6 
19 18 5 3 15 118  
11 14 13 8 17 15 17 
8 4 1 2 1 1 1  

14 12 13 15 17 18 17 
9 12 15 17 16 14 15 

19 17 18 15 17 3 15 
15 13 15 12 17 5 15 
12 5 3 2 10 15 13 
12 15 15 10 18 17 15 
14 10 10 5 12 10 17 
18 15 17 15 17 12 17 

I 

judge nr. 3 
15 18 10 4 10 O 18 
12 5 4 8 10 8 10 
1012 5 G 5 310 
14 13 15 12 12 10 13 
13121212121111 
17 15 15 14 12 14 14 
19 16 18 13 15 12 16 
16 2 2 2 2 212  
15 6 14 12 15 10 5 
1513 8 2 2 210 
15 10 10 O 12 5 4 

judge nr. 7 
15 15 O O 11 5 13 
12 15 12 11 14 15 13 
1 0 0 5 5 1 5 1  
20 15 14 13 16 14 18 
15 12 15 16 15 18 14 
16 13 15 11 14 14 14 
1215121012 618 
1510 015121510 
20202020202020 
101113 4 2 512  
1717151214 1415 

judge nr. 4 
14 17 7 12 2 10 
6 5 7 510  7 
3 2 3  2 4 3  

14 12 14 10 15 13 
7 6 7 416 5 

16 16 14 12 12 13 
16 14 10 7 312  
5 5 5  2 6 9  

10 11 10 5 1412 
13 13 7 10 3 14 
17 13 10 13 10 9 

judgenr.8 , 

18 14 11 17 15 15 16 
18 18 17 12 17 18 15 
17 18 18 10 12 14 15 

16 15 15 12 17 18 17 
16 16 12 5 10 14 16 
14 10 11 9 14 10 16 
19 18 19 17 17 14 12 
1 2 4 2 2 9 2  

151112 7141416 
13 1510 11121017 
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Table 2 
RV-coefficients 

111 

1 
0.17 1 
0.45 0.28 1 
0.43 0.30 0.42 1 
0.69 0.22 0.53 0.54 1 
0.48 0.16 0.54 0.63 0.76 1 
0.63 0.18 0.49 0.41 0.87 0.73 1 
0.42 0.11 0.31 0.23 0.29 0.19 0.40 1 

Table 3 
d2(k, k')=2(1-RV) 

O 
1.65 O 
1.10 1.44 O 
1.15 1.39 1.16 O 

1.04 1.68 0.92 0.74 0.48 0 ,  
0.75 1.64 1.03 1.17 0.26 0.54 0 
1.17 1.78 1.39 1.55 1.42 1.62 1.20 0 

0.62 1.56 0.94 0.92 0 

! 

.. 
i 
i 

Fig. 2. Graphical representation of the interstucture. LOSS function: I I  W - ct;, I I  * = c r j  + * * + 02 
= 1.77 
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i n t e r e s c  

l u c i d  rxplanacion 
Archilecture 

Fig. 3. Graphical representation of the compromise. Loss function: I I  W -  W, I I  = Tr((W- W,>S>2 
= (&)2Tr(W- W,,)2 = c r j  + . . . + CT$ = 0.09 

split those distances into contributions I (  wi - wi I (  of the different elements 
i to detect who are the professors on which the opinion of judge no. 2 differs 
from the others. Table 4 shows that the difference comes essentially from 
languages, English, statistics and information system design. 

For sake of readibility, only three trajectories are drawn on Figure 4: 
languages, architecture and the supplementary element practice. The star corre- 
sponds to the compromise point. Recall that the vector between judges no. 2 
and no. 6 is the projection of wi - w; on the two-dimensional space spanned by 
eigenvectors p 1  and p 2  of the compromise. (For practice, we compute the 
centred scalar products between this supplementary row and the active ones and 

Table 4 
decomposition of the squared distance between judge no. 2 and judge no. k in parts &II wi - 
w: II 2/d2(2, k )  explained by professor i 

squared distance d2(2, k )  
betweenjudgeno.2and no. 1 no.3 no.4 no.5 no.6 no. 7 no.8 

1.65 1.44 1.39 1.56 1.68 1.64 1.78 

contributioiis (percentage) 
architecture 2.51 3.01 3.36 9.47 2.41 5.70 2.56 
theory 7.97 7.56 9.51 9.61 10.48 9.50 8.06 
languages 10.41 14.53 16.94 18.62 27.26 22.84 12.48 
economics 6.24 2.58 7.07 4.70 3.36 2.84 3.64 
accounting 8.41 9.38 11.64 8.08 8.69 5.47 5.53 
management 6.94 11.41 7.09 7.20 4.62 4.22 .? :4 
inf. sys. design 12.85 27.80 15.87 8.93 14.35 6.71 "2.47 
statistics 16.66 6.65 3.37 10.78 4.93 16.89 .?7.07 
operations research 6.82 6.68 1.14 3.99 2.57 6.21 1.55 
English 21.19 10.39 24.01 18.64 21.31 19.41 12.9' 
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Fig. 4. Graphical representation of the trajectories. 

project this vector in the same way). Keeping this distortion in mind, we note 
that all the vectors w; - wir, have significant norms for languages. It means that 
languages contributes for a large part to any distances d2(k, k' )  between judges 
(and not only between judge no. 2 and the others), and between judges and the 
compromise. It seems on the contrary, that disagreements between judgments 
are less crucial for architecture and practice. 

Appendix: Euclidean distances between scalar product matrices 

We review definitions and properties of linear mappings associated with Eu- 
clidean scaling methods. See Rao (1973, 19SO), Robert and Escoufier (19761, 
Sabatier (1987) and Lavit (1988) for proofs and complements. 

1. Euclidean vector space 

Definition 1. An Euclidean vector space ( E ,  sJ) is the association of a J-dimen- 
sional real vector space E and a scalar (or inner) product sJ.  (x I Y ) ,  denotes 
the scalar product of x and y. 

. '  

Definition 2 (Dual of an euclidean vector space). The dual E" of an euclidean 
vector space E is the set L( E ,  R) of linear mappings between E and the set of 

i 
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real numbers. Note that elements of E* correspond simply to vectors of E 
written as row matrices. 

This supplementary mathematical concept will appear to be an appropriate tool 
later. 

Property 1. It is concenient to consider the scalar product on E as an one to one 
linear correspoizderzce 9 between E and E * (which implies that Y-' does exist). 
Vx E E ,  9 ( x )  E E * is defined as the row vector which, applied to y ,  gives 

( Y ( X ) > ( Y >  = (,y I Y > 3 .  

Definition 3. s* is defined as follows: 

V U  V U  € E *  ( u ~ c ) , * = v ( ~ - ' ( u ) )  
is a scalar product on E*,  called dual scalar product of s. 

2. Adjoint of a linear impping 

Notation. E and F being two vector spaces, L( E, F )  denotes the vector space 
of linear mappings between E and F. 

Definition 4 (Transpose of a linear mapping). Let d be any element of 
L(E ,  F).  The transpose of d is the element d' of L(F*, E * )  defined as: 

Vx E E  Vu E F" ( d ' ( v ) ) ( x )  = v ( d ( x ) ) .  

Definition 5 (Adjoint of a linear mapping). Let B? be any'linear mapping 
between ( E ,  sJ) and ( F ,  sI). The adjoint of d is the element d* 'of L ( F ,  E )  
defined as: 

V X E E  VY  E F  ( x I d * ( ~ ) ) ~ , = ( d ( x ) I ~ ) ~ ,  

or M *  =Y;'~'Y[. 

3. Self adjoint operator 

Definition 6. An element of L( E, E )  is called operator of E. 

Definition 7. An operator of ( E ,  s) is self adjoint if d =d*, or =d'Y. 

Property 2 (Spectral decomposition of a self adjoint operator d of ( E ,  s)). x is 
an eigenvector of d if there exists a real number u such that d (x) = u x .  It can 
be shown that there exists a s-orthonormal basis of eigenvectors. I n  other words, 
the matrix A can be written as A = PZP' with P'SP =I.  C is diagonal and its 
elements are the eigenvalues of A ,  the columns of P are the corresponding 
eigenvectors, S is the matrix of s and I is the identity matrix. 
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4. Singular valite decoinposition 

Property 3. Let d be any linear mapping between ( E ,  s,) and ( F ,  sr). Then d *d 
aiid dd * satisfy the following statements: 
- d *d is a self adjoint operator of E,  and it is positive, that is to say: 

b'x E E ( d * d ( x )  I x ) ~ , >  O. 
dd* is a positice self adjoint operator of F ,  as well. 
- Ker (d*d) = Ker (d). 
- d*d and d.@* have the same eigenvalues. If x is an eigenvector of d*d 
obeying II x I I  = 1, and u the çorresponding eigenvaltie, then y = u-'/2 d (x) is 
the corresponding eigenvector of Md* obeying II y I I  = 1. 
- d ,  d*, dd" and d*d have identical rank. 

Property 4 (Singular value decomposition of d). Let r be the rank of d. The 

The square roots uly . . . , u, are called singular values of d. Let p l ,  . . . , p ,  be a set 
or s,-ortlzoizornzal eigenvectors of da'*, and ql, .  . . , q, a set of s,-orthonormal 
eigenvectors of d*d, corresponding to the eigenvalues u;, . . . , q?. Then, the 
matrix AIX,  can be written as the sunz 

or as the matrix product 

operator d *.@ being self adjoint and positive, have positive eigenvalues u;, . . . , u, 2 . 

A=@,p,q;SJ+ * * *  f'rp,q:SJ, 

A = PCQ'S, with P'S,P = I and Q'SjQ = I 
C,, is a diagonal matrix whose elements are the singular values ul, . . . , u, and the 
coluniizs of (respectively QJxr)  are the eigenvectors p l ,  . . . , p ,  (respectively 
ql , .  . . , 4,) of dd* (respectively d*d). 

5. Euclidean distances between linear mappings 

Definition 8 (Scalar product on L(E ,  F ) .  Let d and B two linear mappings 
between ( E ,  s,) and ( F ,  sl). Then 

(d 193) = Tr(dS '*)  = T r ( d 9 Y 1 B ' 9 , )  

defines a scalar product on L(E, F). The induced norm is d 2 ( d ,  9') = I I  d - 
9 II = Tr( (d  -B)Y; ' (d -B)'9',). 

Property 5 (Approximation of a linear mapping). Let d be any linear mapping of 
rank r between E and F.  Let us consider its singular value decomposition with 
singular values ul,.. . , ur in decreasing order. Then 

I 

where dil is the sum of the h first elements of the singular value decomposition of 
d. 
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6. Embedding W into an Euclidean vector space 

Let us consider again a matrix W,, of scalar products (or scalar product-like) 
between I elements. 

(a) W can be viewed as an element of L ( F ,  F "1. Let F be an I-dimensional 
vector space, and (f,, . , . , f,) a basis of F ,  each vector fi being associated to one 
of the I elements. The symmetric matrix W can be regarded as the matrix of a 
bilinear mapping w between F X F and the set of real numbers R, defined on 
the basis vectors by w ( f i ,  fi,) = q.it. 

Now, as it has been done for a scalar product in Property 1, we associate to w 
the following element W of L ( F ,  F*) .  For any vector x of F ,  W ( x )  is the 
element of F *, which, applied to any vector y of F ,  gives 

( T ( X ) ) ( Y )  = w ( x ,  Y ) .  

(b) Euclidean structure of F. To calculate euclidean distances between the w's 
as we did in Section 5 between linear mappings, we need to enrich the structure 
of F with a scalar product denoted 9-' instead of the straightforward 
designation 9 for a simple question of notation. Thus, the dual scalar product 
on F* corresponds to 9' and the adjoint mapping of W is simply 9WY (and 
not 9- ' ). 
(c) Euclidean structure of L( F ,  F *). Suppose that W, and W, are two matrices 
of scalar products (or scalar product-like) between the same I elements. We 
associate to W, and W, the corresponding linear mappings W, and Y/, 
between ( F ,  s- l )  and ( F " ,  s). Then the scalar product 

I W,) = Tr(TIW:) = Tr(W,$W,S) 

d2( W, , W,) = Tr[ (W, - W,)S( W, - W2)S]. 

induces the Euclidean distance 

This general formulation includes two usual distances: 
- If S is the identity matrix I, then d2 (W,, W,) = CiCi,[(W, - W2)jif]2.  The 
basis ( f l y . .  . , f,) is required to be s-orthonormal. 
- If S is diagonal, then d2(W,, W,) = CiCilSiiSitit[(W, - W2)ii,]2. The basis 
( f,, . . . , f,) is required to be s-orthogonal but not necessarily standardized. In 
other words, weights of the elements are taken into account in the calculation of 

The more general case where S is not diagonal can be interpreted as some 
exogenous constraint of contiguity between elements, which should be taken 
into consideration in the calculation of d(Wl, W,). 

d(W1, W2). 

7. Special case of positive semi-definite W 'S. 

Property 6. If  W is p.s.d., then W3' is a positice serf adjoint operator of F *. 



_.. . 

C. Laoìt et al. / The ACT (STATIS Method) 117 

Property 7 (Singular value decomposition of 7f). If 7% is p.s.d., the singular 
ualue decoinposition of 7f is deduced fi-om the spectral decomposition of the 
self-adjoint operator 7Y9. Namely W = u, p ,  p i  + * +cr,.p,p; = PZIP' with 
P'SP = I ,  where the singular values a,, . . . , ur are the eigenvalues of 7 f 9 ,  and 
p , . . . , pr are eigenvectors of 7 f9 .  i 

It can be shown that eigenvectors y, ,  . . . , pr of 7/7 f*  are eigenvectors of W 9  
and q1 = 9 ( p 1 ) ,  . . . , 4,. = 9 ( p r )  are eigenvectors of 7f"W. Then the singular 
value decomposition of W =  PZIQ'S-' turns out to PZIP'. 

If S is the identity matrix, the singular value decomposition of W is simply 
designated as spectral decom$osition of W :  PZIP' with P'P  =I. 

Property 8. If 7fl is p.s.d., (TI I 7Y2) = Tr(W,Wi*) is a positive real number. 

Property 9. Suppose that 7f1 p.s.d. has rank r aiid 7f2 p.s.d. has rank It less 
than r. If u,,. . . , u,. denote the singular values of 72, in decreasing order, then the 
scalar product between 7f1/ I I  7f1 I /  and 7f2/ I I  7f2 I I  verify 

L ai2 

2 i u ;  * 

l = h  -c 1 

1=1 

To establish this inequality, apply Property 5 to a'=Wl/llWl II and B= 
Wz/ I I  W2 II recalling that (d I 9) = i( I I  a' II + II 9 II - II LX' -9 II 2 ) .  This 
property must be kept in mind while interpreting the ACT'S results on Example 
4 of Chapter 3, as the number of flower species might be five times greater than 
the number of variables measured by the pedologist. 

8. Special case of matrices W = XQX'.  

Let X, be an I xJ, matrix of I observations on J, variables, and X 2  an I XJ, 
matrix of the same observations on J2  variables. The J, columns of X ,  are 
centred according to weights m,,  . . . , inI, with the constraint Emi = 1, and J, 
columns of X 2  are likewise centred according to the same weights. 

Thus W, =X,Q,X;  and W' = X 2 Q 2 X ;  are two matrices, obtained in two 
different circumstances, of centred scalar products between the I elements. If, 
in addition, we choose S equal to the diagonal matrix 

i 

usually denoted Dy the scalar product Tr(W,W$) = Tr(W,DW,D) have the 
following interesting statistical interpretation. 
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Property 10. Tr( W, D W, D )  is the sunz of the squared covariances between each 
variable of X ,  aizd each variable of X,. If each column of X ,  arid X 2  is 
standardized to liave uizit variarzce, Tr(W,DW2D) is the suin of tlie squared 

* correlations. 

Definition 9. The scalar product between normed W’s 

Tr ( W, D W, O) 

{Tr( W, O ) ,  {Tr( W, O) ,  

is known as Rv-coefficient [Robert and Escoufier, 19761. 

Remark. Whether S is equal to D with in, = 

matrix, the scalar product 
= inI or equal to the identity 

Tr( W,SW,S) 

I/=/* 
has the same value. 
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Distributor: CISIA, 1, Avenue Herbillon, 94160 Saint Mandé France. Tel.: (1) 
43 74 20 20. Fax: (1) 43 74 17 29 
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Author: Christine Lavit, Unité de Biométrie, ENSA.M.-INRA-UM II, Place 
Viala - 34060 Montpellier, France. 

Release for IBM-compatible micro-computers: User's guide + executable code 
for ACT (STATIS method) and ACT (dual STATIS method)+source code 
written in portable FORTRAN 77 on floppy disks. Minimal hardware required 
to run the executable code: 512 K RAM. 

Other computers: The source code is available for implementing the software on 
other kind of computers, work stations under UNIX and mainframes as IBM, 
VAX, UNIVAC . . . 5 

Cost: 1500 FF. 
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