Maurice Raimbault

. st. 175 .

4

Production of L-lactic acid by *Rhizopus* species

C.R. Soccol,* V.I. Stonoga and M. Raimbault

Of 19 *Rhizopus* spp. only four produced L-lactic acid in shake-flask culture. Aerobically and in the presence of a neutralizing agent, *Rhizopus oryzae* NRRL 395 produced the highest concentration of L-lactic acid (65 g/l) but with O₂-limited growth ethanol was produced instead.

Key words: Ethanol, fumaric acid, L-lactic acid, metabolism, Rhizopus.

Lactic acid can be produced by humans, other animals, plants and microorganisms. From the nutritional point of view, the L form is the most interesting for the food industry; the human body is only adapted to assimilate this form and only produces L-lactate dehydrogenase (Soccol 1992). Certain types of *Rhizopus* spp. are capable of producing only L-lactic acid in high concentrations (Lockwood *et al.* 1979; Hang *et al.* 1989). The present study was of the production of L-lactic acid by *Rhizopus* spp. under different cultural conditions.

Materials and Methods

Nineteen strains of *Rhizopus* from various international collections (Table 1), were grown at 30°C in 50-ml volumes of culture medium containing (g/l): glucose, 100; (NH₄)₂SO₄, 3.2; KH₂PO₄, 0.6; MgSO₄.7H₂O, 0.75; and ZnSO₄.7H₂O, 0.04. The medium, in Erlenmeyer flasks, was adjusted to pH 6.0 and incubated, with shaking at 140 rev/min, after inoculation with 2×10^7 sporangiospores/flask. Cultures were run under aerobic and O₂-limited conditions. The O₂-limited conditions were obtained by sealing the flasks. After 24 h, 4 g sterilized CaCO₃ was added to half the flasks and shaking was increased to 220 rev/min. After a further 48 h the fermented medium was strained through a 200- μ m pore nylon mesh and the filtrate was centrifuged (6000 × *g*, 10 min). Lactic acid, ethanol, and fumaric acid were determined

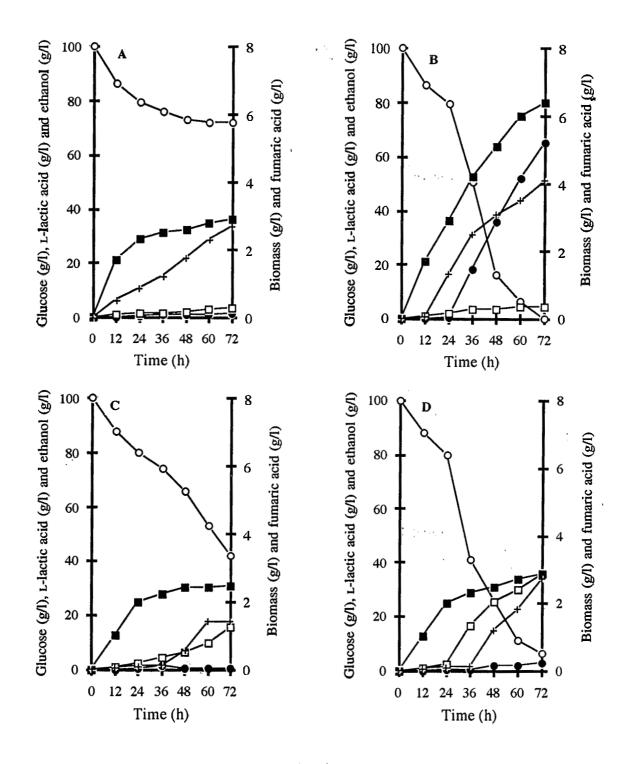
C.R. Soccol and V.I. Stonoga are with the Laboratório de Processos Biotecnológicos, Departamento de Engenharia Química da Universidade Federal do Paraná, 81531-970 Curitiba, PR, Brazil; fax: 1955 41 266 02 22. M. Raimbault is with the Centre ORSTOM, Laboratoire de Biotecnologie, Physiologie et Métabolisme Cellulaires, 911, Avenue Agropolis, 34032 Montpellier, Cedex 1, France. *Corresponding author.

© 1994 Rapid Communications of Oxford Ltd

in the supernatant by HPLC using an Aminex HPX 87H column (Bio-Rad). A commercial kit (139.084; Boeringer) was used to determine the lactic acid isomers. The biomass retained by the sieve was washed with $2 \times HCl$ and its dry weight determined. Glucose concentrations during the fermentation were determined using the dinitrosalicylic acid method.

Results and Discussion

- 9 MARS 1995


All 19 strains produced fumaric acid (Table 1) but particularly high concentrations were produced by *Rhizopus arrhizus* 16179, *R. delemar* 34612 and *R. microsporus* 46436, confirming the studies of Rhodes *et al.* (1959). *Rhizopus oryzae* 2710 and *R. oryzae* 28627 produced the highest concentrations of ethanol (25 and 16 g/l, respectively) (Table 1). Fujio *et al.* (1984) demonstrated that certain *Rhizopus* strains could also produce ethanol from raw cassava starch.

Only four of the strains studied, *R. oryzae* 395, *R. arrhizus* 16179, *R. delemar* 34612 and *R. arrhizus* 24425, produced significant amounts of L-lactic acid. Of these strains, *R. oryzae* 395 gave the highest acid concentration (65 g/l), confirming the observations of Hang *et al.* (1989).

The effect of different culture conditions on the metabolism of *Rhizopus oryzae* NRRL 395 is shown in Figure 1. In air and without $CaCO_3$ (Figure 1A) there was a little consumption of glucose because the accumulation of fumaric and lactic acids caused a rapid decrease in pH. When $CaCO_3$ was added to aerobic cultures (Figure 1B) glucose was completely consumed, a high concentration of L-lactic acid (65 g/l) was produced, and biomass was substantially increased. Other

> World Journal of Microbiology & Piotechnology, Vol 10, 1994 433 ORSTOM Fonds Documentaire N° & 4005 LX A

> > Cote :

Figure 1. Effect of different culture conditions on *Rhizopus oryzae* NRRL 395. (A) Aeorobiosis without $CaCO_3$ addition. (B) Aerobiosis with $CaCO_3$ addition. (C) O_2 -limited without $CaCO_3$ addition. (D) O_2 -limited with $CaCO_3$ addition.

۰.

٥

Strain [†]	Residual glucose (g/l)	Biomass (g/l)	L-Lactic acid (g/l)	Fumaric acid (g/i)	Ethanol (g/l)	Final pH
R. arrhizus MUCL 16179	0 .	4	40	30 .	3	4.9
R. arrhizus MUCL 28425	18	4.9	33	24	5	4.9
R. arrhizus NRRL 1526	15	7.9	0	22	6	4.5
R. circicans NRRL 1475	31	8.6	0	12	0	4.9
9. delemar ATCC 34612	3	7.4	38	28	0	5
R. delemar NRRL 1472	18	6.5	0	17	8	4.6
R. formosa MUCL 28422	11	7.6	0	21	10	4.8
9. microsporus ATCC 46436	14	3.7	0	25	9	4.9
R. microsporus MUCL 9667	47	3.5	1	3	13	6.1
R. <i>oryzae</i> ATCC 22580	54	4.4	0	16	0	4.4
R. oligosporus ATCC 6203	19	3	0	20	8	4.7
R. oligosporus NRRL 2710	18	9.7	1	5	25	5.7
R. <i>oryzae</i> MUCL 28168	6	7.8	0	20	7	4.8
R. <i>oryzae</i> MUCL 28627	5	4.8	0	24	16	4.6
R. <i>oryzae</i> NRRL 395	0	6.4	65	4	4	5
R. <i>oryzae</i> NRRL 25976	21	7.9	0	21	8	4.6
R. sp. NRRL 25975	11	5.6	0	16	10	4.6
R. stolonifer MUCL 28169	6	5	0	15	13	4.9
R. stolonifer MUCL 28181	58	7.1	0	27	1	5.7

• Cultures were incubated at 30°C in aerobiosis with shaking at 140 rev/min for 24 h and then 220 rev/min for 48 h with CaCO₃ (80 g/l) in all flasks. All determinations were made in triplicate.

* ATCC-American Type Culture Collection, Rockville, Maryland, USA; MUCL-Mycology Collection, Catholic University of Leuven, Belgium; NRRL-Northern Regional Research Laboratory, U.S. Department of Agriculture, Peoria, Illinois, USA.

metabolites, such as ethanol and fumaric acid, were also present but in relatively low concentrations (Figure 1B).

In O₂-limited conditions and without CaCO₃ (Figure 1C) glucose consumption and metabolite production were again limited due to a rapid reduction in pH. A metabolic diversion to ethanol production was also noticed (Figure 1C). When CaCO₃ was added to O₂-limited cultures the microorganism was capable of consuming practically all the glucose present and its metabolism was directed exclusively to ethanol production (36 g/l). However, final biomass was considerably lower in the presence of CaCO₃ (Figure 1D) than in aerobic cultures (Figure 1B).

koji without cooking. Biotechnology and Bioengineering 26, 315-319.

- Hang, Y.D., Hamanci, H. & Woodans, E.E. 1989 Production of L(+) lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnology Letters 11, 119-120.
- Lockwood, L.B. 1979 Production of organic acids by fermentation. In Microbial Technology, Vol. 1, eds Peppler, H.J. & Perlam, D. pp. 373-376. New York: Academic Press.
- Rhodes, R.A., Moyer, A.J. Smith, M.L. & Sinah, E.K. 1959 Production of fumaric acid by Rhizopus arrhizus. Applied Microbiology 7, 74-80.
- Soccol, C.R. 1992 Physiologie et métabolisme de Rhizopus en culture solide et submergée en relation avec la dégradation d'amidon cru et la production d'acide L(+) lactique. PhD Thesis. Université de Technologie de Compiègne, France.

References

Fujio, Y., Suyanadona, P., Attasampunna, P. & Veda, S. 1984 Alcoholic fermentation of raw cassava starch by Rhizopus (Received in revised form 14 February 1994; accepted 14 February 1994)