Identification of polymorphisms in reference barley genotypes based on the polymerase chain reaction

P. Lashermers¹, T. Blake² and S. Ceccarelli³

¹ ORSTOM, 911 Av. Agropolis, BP 5045, F-34032 Montpellier, France, ² Department of Plant Sciences, Montana State University, Bozeman, MT 59717, USA, and ³ International Center for Agricultural Research in the Dry Areas, ICARDA, PO Box 5466, Aleppo, Syria Received April 28, 1993

ABSTRACT

The polymerase chain reaction (PCR) can be used to detect DNA polymorphism. Four reference barley genotypes were evaluated for variability using primers designed to amplify specific segments of genomic DNA. Segregation of such PCR-based markers in F_5 SSD progeny was also analysed. Suitability of PCR-based markers for use as genetic marker in barley germplasm is discussed.

Key words: Characterization, DNA marker, Germplasm, Hordeum vulgare.

INTRODUCTION

Molecular markers reflecting DNA sequence differences between individuals can constitute useful genetic markers for a variety of genetic and plant breeding applications (TANKSLEY et al., 1989; MELCHINGER, 1990). Several linkage maps based mainly on RFLP have been or are being constructed in barley (SHIN et al., 1990; HEUN et al., 1991; GRANER et al., 1991). The general application of RFLP techniques to barley breeding however, is limited by several factors such as the very significant costs, time required for RFLP assays, and the low level of polymorphism found in barley when compared to maize and other outbreeding species (GRANER et al., 1990; HEUN et al., 1991). With the development of polymerase chain reaction (PCR) technology (SAIKI et al., 1985), some alternative strategies for generating molecular markers have emerged (ERLICH et al., 1989).

The purpose of the present study was to assess the use of PCR-based markers to identify polymorphisms in a barley germplasm of importance in ICARDA's barley breeding program.

MATERIALS AND METHODS

Plant material

•

Four barley lines (Tadmor, *Hordeum spontaneum* 41.1, Er/Apm and Athenaïs) were selected for their wide

genetic variability for adaptation to the dry and cold areas of West Asia and North Africa. Tadmor is a pure-line selection from a Syrian 2-row landrace. *Hordeum spontaneum* 41.1 is a pure line from a population of *Hordeum spontaneum* collected in Israel. Er/Apm is a 2-row cultivar susceptible to cold and drought. Athenaïs is a 6-row cultivar well adapted to dry areas. In addition, a population of 26 F_5 inbred lines derived from the cross Tadmor/Er/Apm through SSD was used.

DNA isolation and PCR markers analysis

Total DNA was isolated from young leaves according to SAGHAI-MOROOF *et al.* (1984). All primer sets used for PCR are shown in Table 1 and were provided by T. Blake (M.S.U., MT, USA). Each primer set is composed of two oligonucleotide primers binding opposite DNA strand and flanking the target sequence. Primers are designed based on sequence information of either barley clones or known genes, obtained after sequencing or directly from genebank database.

Polymerase chain reaction sequence amplification was set up in volume of 35 μ l as described by SHIN *et al.* (1990) using approximately 100 ng of genomic DNA and 20 ng of each primer. The PCR amplification profile consisted of initial denaturation (5 min at 95°C) followed by 32 cycles (1 min at 94°C, 1 min at 52°C, 2 min at 72°C). The amplifications finished with an incubation at 72°C for 7 min. For several primer sets and before analysis, parts of the amplified product were digested with different restriction endonucleases (Table 1). Reaction products were resolved by electrophoresis in 1% agarose or 6% polyacrylamide gels for 2 h. Gels were strained with ethidium bromide and analysed on a UV screen.

> ORSTOM Fonds Documentaire N° ξ 4 λ , λ 6 4 ξ χ λ Cote ξ B

1 6 MARS 1995

TABLE 1

PCR-based markers assayed

Primer set	Gene/Clone (Location)	Enzymes used for restriction fragment analysis of PCR products	
TB 13/14	Thionins	/	
····			
TB 15/16	Ubiquitin	/	
TB 17/18	Hordothionin	Taq I	
KV 1/9	B Hordein (chr. 5)	Ĩ	
KV 5/6	Lectin	/	
KV 7/8	Dehydrin	/	
M 17/19	Adh 2	Taq I	
316 63/64	CSU 316	Msp I, Hae III	
319 63/64	CSU 319	- /	
327 63/64	CSU 327	Msp I, Hae III, Hinf I	
337 63/64	CSU 337	Msp İ	
340 63/64	CSU 340	Msp I, Hae III	
464 63/64	CNL 464 (chr. 4)	- /	
686 63/64	CNL 686 (chr. 1)	Hae III	

CSU: Colorado State University.

CNL: Cornell University.

Goodness-of-fit to the 1:1 pattern of segregation for marker DNA bands, as predicted for Mendelian characters in a SSD progeny, was determined using the chi-square test.

RESULTS AND DISCUSSION

A total of 14 primer sets were used to detect PCR-based polymorphisms between barley genotypes. Only the primer sets KV1/9 and TB 13/14 revealed length polymorphism between the genotypes analysed (Figure 1). For several primer sets, the poss⁻⁻. y of polymorphism after restriction of the amplified product was assayed. Different four-

TABLE 2

Analysis	of reference barley genotypes for	
-	PCR-based markers	

Informative PCR-based markers		Marker patterns of genotypes				
Primer set	Enzyme	H. spontaneum 41.1	Tadmor	Er/Apm	Athenaïs	
TB 17/18	Taq I	А	Α	в	в	
KV 1/9	Ĩ	Α	А	в	Α	
327 63/64	Hae III	Α	В	В	Α	
TB 13/14	1	Α	Α	А	В	

bases recognition restriction enzymes were used (Table 1). The amplified product of two additional primer sets, TB17/18 and 327 63/64, were found polymorphic using acrylamide gel electrophoresis. Combinations of the four informative PCR-based markers allow unambiguous identification of barley genotypes (Table 2).

¢

1

د

Segregation of three PCR-based markers in F_5 SSD progeny from an individual cross between Tadmor and Er/Apm was analysed (Table 3). All the F_5 inbred lines appeared homozygous for the regions assayed by the primers and showed either alleles from Tadmor or Er/Apm (Figure 2). The distributions observed at each locus were tested for conformance to Mendelian expectation. PCR-based polymorphism appeared as valuable genetic marker, although one segregation ratio was significantly different from 1:1. The small progeny size as well as differential survival or competitiveness of gamete or plant may be implicated as a possible explanation for such deviation. Similar phenomenon seemed to be of a common occurence in both

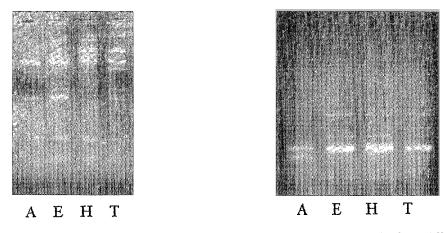


FIGURE 1 - Examples of PCR-based markers: agarose gel electrophoresis of amplified DNA samples from different barley genotypes (A:Athenaïs, E:Er/Apm, H: Hor. spon. 41.1, T:Tadmor) using primer sets TB 17/18 (left) and TB 13/14 (right).

Chi-square analysis for goodness of fit to a 1:1 ratio of PCR-based markers in a population of inbred lines derived from the cross Tadmor Er/Apm

PCR-based marker		Lines with allele from	Lines with allele from	γ ²	
Primer set	Enzyme	Tadmor	Er/Apm	х 	
TB 17/18	Taq I	18	7	4.84*	
KV 1/9	/	4	13	3.24	
327 63/64	Hae III	9	15	1.50	

* Significant at 5% level.

ļ

isozyme and RFLP analysis in barley (SCHÖN et al., 1990; HEUN et al., 1991).

The results obtained in this study demonstrate the value of the PCR technique using specific primer sets of target known sequences in detecting polymorphisms in barley. Sufficient polymorphisms were observed to discriminate between all four barley genotypes. The method is rapid, simple, technically less demanding to use than RFLP's, requires low amount and crude quality of DNA and does not involve radioactivity.

Regarding the construction of genetic maps, limitations may appeared. The level of polymorphism detected was relatively low when compared with RFLP's revealed by genomic DNA clones for the same set of barley lines (LASHERMES et al., 1991). Although many plant sequences have been published, there are too few available to allow the generation of large number of markers. Alternative PCR procedures as the RAPD-technology (WILLIAMS et al. 1990) or the use of primers that target a range of genes such as the consensus sequence for intron splice junctions (WEINING and LANDGRIDGE, 1991) have been proposed, but they may present limitations as well. Devos et al. (1992) using RAPDmarker technology (random amplified polymorphic DNA) in wheat have shown that amplified products originate mostly from repeated DNA sequences. RAPD markers behave as dominant markers. Moreover, results of amplification using RAPD-primer (short oligonucleotide) are often difficult to transfer from one laboratory to the next. In comparaison, the DNA sequences amplified with primers of known sequences are more specific, reliable and repeatable, probably due to the longer primer and the more stringent conditions during PCR cycling. With a given primer set, alleles of the same gene or DNA sequence will be amplified in different barley genotypes.

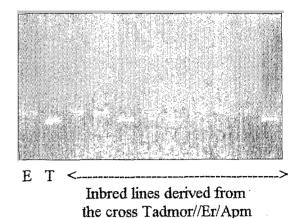


FIGURE 2 - Segregation of a PCR-based marker produced with primer set KV 1/9. The first lines contain amplified DNA from the parental lines Er/Apm (E) and Tadmor (T).

Evidence from this study indicates that the PCR technique using specific primer sets of target known sequences provide a method of choice for genotype identification.

REFERENCES

- DEVOS, K.M. and GALE, M.D., 1992. The use of random amplified polymorphic DNA markers in wheat. *Theor.* Appl. Genet., 84: 567-572.
- ERLICH, H.A., 1989. PCR technology: principles and applications for DNA amplification. Stockton press, New York.
- GRANER, A., SIEDLER, H., JAHOOR, A. and WENZEL, G., 1990. Assessment of the degree and the type of restriction fragment length polymorphism in barley. *Theor. Appl. Genet.*, 80: 826-832.
- GRANER, A., JAHOOR, A., SCHONDELMAIER, J., SIEDLER, H., PILLEN, K., FISCHBECK, G. and WENZEL, G., 1991. Construction of an RFLP map of barley. *Theor. Appl. Genet.*, 83: 250-256.
- HEUN, M., KENNEDY, A.E., ANDERSON, J.A., LAPITAN, N.L.V., SORRELS, M.E. and TANKSLEY, S.D., 1991. Construction of a restriction fragment length polymorphism map for barley. *Genome*, 34: 437-447.
- LASHERMES, P., BLAKE, T., and CECCARELLI, S., 1991. First step towards development and assessment of molecular marker for barley breeding in low rainfall environment. *Barley Genetics*, 6: p. 558-560.
- MELCHINGER, A.E., 1990. Use of molecular markers in breeding for oligogenic disease resistance. *Plant Breeding*, **104:** 1-19.
- SAGHAI-MAROOF, M.A., SOLIMAN, K.M., JORGENSEN, R.A. and ALLARD, R.W., 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and propulation dynamics. *Proc. Natl. Acad. Sci.* USA, 81: 8014-8018.
- SAIKI, R.K., SCHARF, S., FALOONA, F., MULLIS, K.B., HORN, G.T., ERLICH, H.A. and ARNHEIM, N., 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site

210

analysis for diagnosis of sickle-cel anaemia. *Science*, 230: 1350-1354.

- SHIN, J.S., CHAO, S., CORPUZ, L. nd BLAKE, T., 1990. A partial map of the barley genome incorporating restriction fragment length polymorphism, polymerase chain reaction, isozyme, and morphological marker loci. *Genome*, 33: 803-810.
- SCHÖN, C., SANCHEZ, M., BLAKE, T., HAYES, P.M., 1990. Segretation of mendelian markers in doubled haploid and F_2 progeny of a barley cross. *Hereditas*, 113: 69-72.
- TANKSLEY, S.D., YOUNG, N.D., PATERSON, A.H. and BONIERBALE, M.D., 1989. RFLP mapping in plant breeding: new tools for an old science. *Bio/Technology*, 7: 257-264.
- WEINING, S. and LANDGRIDGE, P., 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. *Theor. Appl. Genet.*, **82:** 209-216.
- WILLIAMS, J.G.K., KUBELIK, A.R., LIVAK, K.J., RAFALSKI, J.A., TINGEY, S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Res.*, 18: 6531-6535.

đ

∲ 1

c

ŗ.