
Use of Categorical Information and Correspondence Analysis 
in Plant Disease Epidemiology 

S .  SAVARY 

ORSTOM Visiting Scientist at IRRI, PO Box 933, IO99 Manila, 
Philippines 

L.V.  MADDEN 

Department of Plant Pathology, Ohio Agricultural Research and 
Development Center, The Ohio State University, Wooster, Ohio 

44691 -4096, USA 

J.C.  ZADOKS 

Department of Phytopathology, Wageningen Agricultural Univer- 
sity, PO Box 8025, 6700EE Wageningen, The Netherlands 

and H. W. KLEIN-GEBBINCK 

IRRI, Department of Plant Pathology, PO Box 933, 1099 Manila, 
Philippines 

t 

I. Introduction ............................................................................ 
II. Methodology ........................................................................... 

A. Qualitative and Quantitative Attributes of Pathosystems ........... 
B. Categorization of Quantitative Information ............................. 
C. Contingency Table and Chi-square Tests ................................ 
D. Correspondence Analysis: Procedure ...................................... 

III. Examples ................................................................................ 
A. Epidemic Trends in Groundnut Diseases ................................ 
B. Components of Rice Tungro Epidemics ................................. 
C. Relations Between Production Level and Yield Losses .............. 

214 
215 
215 
216 
218 
220 
224 
224 
230 
233 

Advances in Botanical Research Vol. 21 
incorporating Advances in Plant Pathology 
ISBN 0-12-005921-5 

Copyright O 1995 Academic Press Limited 
All rights of reproduction in any form reserved 



214 S. SAVARY et al. 

................................................................................. 
........................ 

................................................. 
235 
235 
236 

237 Pathology ......................................................................... 
References ............................................................................... 238 

IV. Overview 
A. 
B. Usefulness of the Approach 
C. 

Combination and Link with Other Techniques 

The Need to Exploit Categorical Information in Plant 

I. INTRODUCTION 

It has long been recognized that a realistic approach to crop protection should 
consider the various pests, including diseases, that affect a crop (Padwick, 
1956). Cropping practices represent major interactions within the disease 
tetrahedron (Zadoks and Schein, 1979) and, therefore, have to be considered 
when analyzing pathosystems. Systems analysis can provide an adequate set 
of concepts and tools to study the components of pathosystems and their 
interactions (Teng and Bowen, 1985). Since the number of components is large 
and their interactions are complex, a rationale is often needed to delineate the 
limits of the system to be addressed. A survey may provide the necessary over- 
view of the pathosystem; adequate methods for analyzing survey data can pro- 
duce preliminary information on its behaviour including major interactions. 
In this context, surveys can be considered as part of a systems approach. 

Epidemiologists are frequently confronted with large data sets representing 
information on the characterization, the dynamics, or the behavior of a patho- 
system. Examples are a survey data set, including information on disease 
intensity, cropping practices, and environmental data, and a germplasm data- 
base, where cultivars are represented by reaction types, disease intensities in 
field experiments, and quantitative measurements on the disease cycle. A 
range of methods has been developed, or adapted, by plant pathologists 
to analyze such data sets. The objectives of the analyses are as diverse as 
the methods, the first being to compact the information in such a way that 
interpretations can be made, hypotheses presentqd, and new experiments 
conducted. 

A holistic description of a pathosystem should ideally involve characteristics 
as different as disease intensity over time and space, crop management, soil 
type and weather data, and socioeconomic information. Appropriate methods 
are needed by which the various facets of the available information can be 
explored. This paper presents an approach to mobilize and exploit information 
that is diverse in nature, precision, and accuracy. 

We shall attempt to minimize the use of technical jargon. The reader needs 
only to know a few terms (Porkess, 1988): class (a collection of individuals, 
e.g. plots, cultivars, or sites, that share a common characteristic); categoriza- 
tion (the process of grouping individuals into classes according to  numerical 

c 3 
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boundaries); categorical ana!vsis (an analysis that addresses categories and/or 
qualitative data); contingency table (a table that shows a bivariate frequency 
distribution, using quantitative or qualitative classification). The term corres- 
pondence analysis will be introduced later in the text. 

This paper is a practitioner’s view of a set of statistical tools applied to  
phytopathology. Because these tools allow one to handle information in a 
fresh and encompassing way, their use by plant pathologists can offer new 
avenues for research. We have chosen to emphasize a particular, relatively 
simple analytical strategy, which is described in a hypothetical example. This 
strategy is then applied to a set of three very different, actual examples. These 
examples are addressed with dissimilar perspectives, and this may require some 
inflection in the details of the methodology. However, the set covers such a 
large range of issues that we Îeel this demonstrates the general value of the 
methodology. In a final section, an overview is offered where its application 
domain, and the perspectives of combinations with other techniques, are 
briefly discussed. 

. 

II. METHODOLOGY 

A. QLALITATIVE AND QUANTITATIVE ATTRIBUTES OF PATHOSYSTEMS 

Plant pathologists have been concerned primarily with quantifying epidemio- 
logical characteristics of pathosystems (Zadoks, 1978). This effort is illustra- 
ted by the attention paid to  the quality of disease measurement (Large, 1966; 
James, 1974; Daamen, 1986a, b; Kranz, 1988; Campbell and Madden, 1990). 
The ideal disease assessment method should be both precise and accurate 
(Nutter et al., 1991), as well as reproducible and unbiased. However, many 
characteristics of pathosystems, such as cultivars and the physiologicai races 
of the pathogen, are qualitative in nature. Other examples are the cropping 
season, the previous crop, or the soil type. Methods are therefore needed to  
consider these qualitative and quantitative attributes of pathosystems 
simultaneously. 

A hypothetical germplasm database may, for instance, include the following 
information: field assessments using a 5-point grading scale based on disease 
severity and symptom pattern (IRRI, 1988, modified), disease reaction types 
(Chester, 1946; Zadoks and Schein, 1979; Savary et al., 1989), with four 
categories, and quantitative measurements of the infection efficiency, the 
latent period, and the sporulation intensity (Table I). A plant pathologist may 
wish to  analyze the relation of semiquantitative field assessments with quan- 
titative measurements of monocyclic processes, and then check how the 
various categories of reaction types correspond to the monocyclic components 
and epidemic levels. 
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TABLE I 
A hypothetical database on disease reaction of a gerniplastn collection: list of variables 

Symbol Variable" Measurement Unit ~~. 

None F Field Rating given to a variety using a 
reaction combination of quantitative and 

qualitative factors, in field experiments, 
using a grading scale, e.g.: 
O: no disease 
1: less than 1 %  severity (apical lesions) 
2: 1-5% severity (apical and some 

3: 6-25% severity (apical and marginal 
marginal lesions) 

lesions) 
4: 51-100% severity (apical and marginal 

lesions) 

I Infection Average proportion of deposited spores Lesion/spore 
that produce lesions; in glasshouse 
experiments 

sporulation in a population of lesions; in 
glasshouse experiments 

S Sporulation Average spore production in a Sporeliesion 
population of lesions; in glasshouse 
experiments 

scale consisting of standardized classes 
characterizing a given level of host-pathogen 
compatibility, e.g.: 
- highly susceptible (HS) 
- susceptible (S) 
- resistant (R) 
- highly resistant (HR) 

a In the example, data are assumed to be available for 78 cultivars. 

efficiency 

Latent period Average delay from inoculation to first Hours L 

intensity 

R Reaction Ranking of the varieties using a typological None 
type 

B. CATEGORIZATION OF QUANTITATIVE INFORMATION I 
Statistical methods applicable to large, complex data sets usually imply a set 
of conditions, such as a linear relationship between the dependent and the 
independent variables for multiple linear regression analysis, and a series of 
prerequisites, among which is the homoscedasticity of the error term of the 
regression model (Butt and Royle, 1974; Teng and Gaunt, 1980; Campbell and 
Madden, 1990). Disease or pest variables usually do not comply with these 
prerequisites (McCool et al., 1986), and data transformation is often needed. 
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Another reason for transforming pest data is to represent mechanisms of 
damage they induce in the crop (Teng and Gaunt, 1980). Although appropriate 
transformation of data may, or may not (h‘IcCool et al., 1986), achieve these 
objectives, the result is often a reduction of the overall clarity of the model 
(Neter and Wassermann, 1974). Relatively complex transformations may, 
however, be considered in the case of simple systems, where a few independent 
variables are involved Wadden er al., 1981; Savary and Zadoks, 1992a). 

Methods that allow the simultaneous handling of the two types of attributes - 
quantitative and qualitative - and that do not imply apriori assumptions on 
the variables, such as a linear relationship, are thus desirable. One way is to  
make quantitative variables compatible with qualitative variables, and encode 
them into classes, i.e. define quantitative boundaries of classes, and encode 
the values of the quantitative variables according to these boundaries. This 
encoding process allows the investigator: (a) to  define the boundaries such that 
they represent the (maximum possible) error made in the measurement of each 
variable (variables with low accuracy would be represented by a few, broad 
classes, while variables with high accuracy would be represented by a larger 
number of classes); and (b) to link the definition of classes with key-values, 
thresholds, or any information that might be available beforehand. The pro- 
cess of converting quantitative data into coded data is flexible, different 
options being available depending on the variable at hand. There is no statisti- 
cal restriction for this process. The further analysis of the resulting coded data 
by means of contingency tables and chi-square tests, however, depends on the 
class-filling, and therefore on the number of classes relative to the size of the 
sample. 

In the above-mentioned example of a germplasm database, five grades (O 
to 3) of disease intensity in the field are considered (Table I). When consider- 
ing this variable, the analyst may take into consideration the facts that: (a) 
the assessments pertain to conventional designs, i.e., contiguous plots with a 
few border rows, resulting in interplot interferences; (b) small plots may not 
be representative of fu!!-scale commercial fields; and (c) declaring complete 
absence of disease might have required a detailed inspection of every plant in 
each plot, a procedure incompatible with large varietal trials. These facts may 
have affected the disease assessment, especially at lower intensities. One may 
decide to  merge grades O and 1 into one class, i.e., class 1, or “very low 
disease” and to consider three other classes, i.e. class 2 (“low”), class 3 
(“medium”), and class 4 (“high disease”), representing the previous grades 2, 
3, and 4, respectively. Classes similar in size are desirable. As the database 
involves 78 cultivars, it is expected that disease intensity in the field, when 
evenly distributed, would be represented by four classes, each containing 
approximately 20 cultivars. In this example, they contain 18, 21, 21, and 18 
cultivars, respectively. 

Infection efficiency (Table 1) can be categorized in three classes: low 
( I  5 0.1; I l ) ,  medium (0.1 < I I 0.2; 12) and high (I > 0.2 lesion/spore; 13). 
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TABLE r u  
A hypothetical dalahase on a disease reaction of a germplasm collection: a contingency 

tablea 

Field reaction 

Latent 
period FI F2 F3 F4 

ií 3 I 7 15 
L2 6 I 11 3 
L3 9 11 3 O 

7 

a Numbers represent cultivars with a particular latent period and field reaction, chi- 
square value: 35.8; d.f. = 6; P < 0.0001. 
See Table I. 

values (assuming independence) should be smaller than 5 .  In practice, major 
disequilibrium among the classes should be avoided, all classes being repre- 
sented by commensurate numbers of individuals. This guideline is the only one 
that is essential to the next step, the analysis of a series of contingency tables 
by means of correspondence analysis. The way the analysis should be pursued 
is essentially dependent on the design of a strategy that adequately addresses 
the problem at hand. 

In the germplasm database example, an important result of the categoriza- 
tion and coding of the data is a limited and consistent number (3 to  4) of 
classes for each variable, with classes being represented by approximately 
balanced numbers of cultivars. Simple contingency tables can, therefore, be 
assembled to analyse the relationships among variables, as, for instance, be- 
tween disease intensity in the field (F) and latent period (L). The [F x LI con- 
tingency table (Table III) is a 4 x 3 matrix that shows that cultivars with very 
low disease (Fl) usually have long latent periods (the profile is: three cultivars 
with short, six with medium, and nine with !ong !alent periods), whereas 
cultivars with high disease (F4) usually have short latent periods (1 5 cultivars 
with short, three with medium, and none with long latent period). Profiles of 
relationships can also be examined row-wise: short latent periods (L 1) are 
predominantly associated with high disease (three cultivars with very low, two 
with low, seven with high, and 15 with very high disease). The distribution 
frequencies of the two categorized attributes, F and L, are not independent 
as can be tested with a chi-square test, where the independence hypothesis is 
rejected (P  < 0.0001). 

Contingency tables can be assembled in the same way for all the variables 
of the database. Questions to be addressed include: (a) what is the relation 
between disease intensity in the field (F) and the monocyclic processes (I, L, 
and S); and (b) how well is R represented in terms of both disease intensity 
and monocyclic processes? The following strategy may be followed: 
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1. contingency tables are assembled using F classes as columns; in other 
words, disease intensity would be used as a “guide” throughout the analysis; 

2. the three tables, [F x I], [F x LI, and [F x SI are put together so that 
the table is of dimension 4 x 9; then 

3. the relationships between these two types of variables, disease intensity 
and monocyclic components, are explored using correspondence analysis; 
finally, 

4. the associations between F, I, L, S, and reaction types (R), are analysed 
using the contingency table [F x RI in the framework developed in the 
previous step. 

I D. CORRESPONDENCE ANALYSIS: PROCEDURE 

Correspondence analysis (Benzécri, 1973; Hill, 1974; Greenacre, 1984) is a 
multivariate statistical method to represent contingency tables in pictorial and 
tabular form. The data handled in the analysis are classes of coded variables, 
as, for example, the columns and rows of the contingency tables shown in 
Table IV. Each class is represented by its profile, either by rows (e.g. I1 is 
represented by its profile in terms of disease intensities: 12, 9, 3, O) or by col- 
umns (FI is represented by its profile in terms of monocyclic processes: 12, 

TABLE IV 
A hypothetical database on a disease reaction of a germplasm collection: contingency 

tables arranged for  the two steps of a corresponding analysisa 

Field reaction 
FI F2 F3 F4 

2 
16 

3 2 7 15 
3 

Variable 

I1 
I2 

12 9 3 O 
6 9 10 

I3 O 3 8 

6 7 11 
9 12 7 3 O 

L1 
L2 
L3 

s1 
s2 
s 3  

RI 
R2 
R3 
R4 

12 9 
4 6 
2 6 

12 7 
3 O 
3 11 
O 3 

3 
8 

10 

1 
11 
3 
6 

a See Tables I and III. 
Variables in bold and italics are used in first and second steps of the analysis, 
respectively (see text for further explanation). 
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6, O; 3, 6, 9; and 12, 4, 2, for I, L, and S, respectively). According to  the 
strategy in the example, the vertical profiles of disease intensities in terms of 
reaction types are not yet considered; the upper part of Table IV, a 4 x 9 
matrix, is first analysed. The associations of several variables belonging to two 
types (disease intensity in the field F, i.e., the result of a polycyclic process, 
and monocyclic attributes of the pathosystem: I, L, and S) are examined 
simultaneously. The procedure is similar io principal component analysis, and 
involves the computation of eigenvalues and eigenvectors (Benzécri, 1973; 
Greenacre, 1984). The sum of the eigenvalues is called the inertia and, with 
correspondence analysis, equals the chi-square statistic divided by the total 
number of observations. Each class contributes a fraction to the total inertia; 
summation of inertia over classes produces the total inertia. Coordinates for 
new axes are defined based on the eigenvalues, unlike principal component 
analysis, where the entries of the data matrix are quantitative, correspondence 
analysis entails computations on a data matris of frequencies. Another dif- 
ference is that classes in the columns and the rows are involved in the same 
way: each eigenvector is made up of weighted combinations of al1 the classes 
that have been selected for the analysis. The reason for this is that cor- 
respondence analysis is based on a chi-square distance d between classes, that 
can be written as (Dervin, 1988): 

where: i and i ‘  are two rows (or columns), 
X,, is the frequency value in the ith row and jth column (e.g. 

Ar,, is the sum of the frequencies along row (or column) i (e.g. 

X,, is the sum of the frequencies along column (or row) j .  

This distance definition, which can be applied to  rows or columns, differs 
from the Euclidian distance used in principal component analysis: 

= lo), 

xz, = 27), 

d( i ,  i ’ )  = (xij - r ”  J =  I 3‘ 
where: i and i’ are two rows (or columns, depending on the type of ordina- 

tion used), representing two individuals (e.g., fields, cultivars, or 
epidemics, not frequencies), 
j is the index for variables (quantitative descriptors), 
Xij is the measure of variable j representing the ith individual. 

Details on the mathematics of correspondence analysis can be found in 

Table V shows the result of correspondence analysis applied to  the matrix 
Benzécri (1973), Greenacre (1984), and Dervin, (1988). 



TABLE V 
Correspondence analysis: relative weights and contributions to axes 

Contribution to axes 

Axis I Axis 2 

Relative Contribution co- Contribution co- 
ordinate Classes Weight ordinate 

To axis Reciprocal To axis Reciprocal 

Columns F1 
F2 
F3 
F4 

Rows LI 
L2 
L3 
s1  
52 
s 3  
I1 
I2 
I3 

Additional 
variables R1 

R2 
R3 
R4 

. 

Inertia accounted 
for by axes 

0.23 1 
0.269 
0.269 
0.231 
0.115 
O. 115 
0.103 
0.103 
0.115 
0.115 
O. 103 
0.1 15 
0.115 

28.7 
13.7 
3.4 

54.2 
17.6 
0.4 

14.2 
16.2 
2.6 
4.8 

16.2 
1.7 

26.2 

86.8% 

89.7 -0.69 
88.6 -0.44 
31.7 +0.22 
95.2 + 0.95 
89.0 f0.77 
10.4 -0.12 
89.5 -0.73 
91.8 , -0.78 
99.4 f0.29 
81.3 f0.40 
91.8 -0.78 
36. I -0.24 
97.7 + 0.93 

79.2 -0.90 
o. I + 0.04 
6.8 +0.14 

97.9 + 0.77 

20.5 
1 .o 

56.6 
21.9 
15.9 
25.3 

I .2 
10.3 
0.0 
8.4 

10.3 
24.8 
3.9 

7.9 -0.21 
0.8 f0.04 

64.9 +0.32 
4.7 -0.21 
9.9 -0.26 

78.0 + 0.32 
1 .O -0.08 
7.2 -0.22 
o. I +0.01 

17.4 +0.19 
7.2 -0.22 

63.9 f0.32 
1.8 -0.13 

17.7 -0.43 
58.8 f0.94 
13.3 -0.20 
o. 1 +0.03 

10.7% 
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of Table IV.  As in principal component analysis, several axes are defined 
(equal to the smaller dimension of the table minus I ) ,  but only the first two 
axes are given. Axes one and two accounted for 86.8 and 10.7070, respectively, 
of the total inertia of the data set. In general, with small contingency tables 
such as the one used in this example, more than two axes are seldom needed 
to account for more than 90% of the inertia. Besides the coordinates in the 
newly defined axes, the classes are represented by their relative weights, con- 
tribution to each axis, and reciprocal contribution to each axis. The relative 
weight (or mass) of each class represents the frequency of individuals in the 
corresponding row (or column). For instance, L1 = 0.115 [ = (3 + 2 + 7 i- 
15)/(3 x 78)]. The contribution to an axis is the proportion (or percentage) 
of inertia of that axis which is derived from a specified class (17.6070 for Ll). 
The reciprocal contribution (or class correlation) represents the proportion of 
inertia of the class (row or column) that is accounted for by the specified axis. 
It is also the correlation between the axis and the class. For LI ,  59% and 
15.9% of the inertia of this class are accounted for by axes one and two, 
respectively (Table V). Finally, the sign of the new coordinate indicates the 
direction that the class deviates from the origin (i.e. marginal frequencies). 

Graphs can be generated with correspondence analysis where (newly 
defined) coordinates of classes, rather than the frequencies, are plotted along 
the axes. The graph in Fig. IA ,  where axis 1 is horizontal, and axis 2 vertical, 
illustrates the relations among classes. Proximity of points representing classes 
indicates correspondences that can be checked using chi-square tests. When 
a series of classes representing successive levels of a coded quantitative or of 
a semiquantitative variable that reflects a logical increase (as, for example, 
disease intensity, FI-F4) is considered, a path linking the successive classes 
can be drawn, and the movement along this path may be examined in relation 
with positions of other classes, paths, and axes. Fig. IA shows the relation- 
ships among F, I, L, and S. High disease intensity (F4) is graphically associa- 
ted with (close to) high infection efficiency (13) and short latent period (LI); 
low disease intensity (Fl) is associated \\ith low infection efficiency (Il), long 
latent period (L3), and low sporulation (SI). The shapes of the paths of 
increasing disease intensity (FI -F4), increasing infection efficiency (11-13), 
and decreasing latent period (L3-LI) are similar, indicating strong correspon- 
dences. The relation between disease intensity and sporulation intensity 
(Sl-S3) is not as strong. The two paths, although sharing the same movement 
along the direction of the horizontal axis, and starting in the same area of the 
graph, diverge in their later part, and do not have the same length. The graph 
therefore suggests that, whereas low sporulation is closely associated with low 
disease intensity, medium (S2) to high (S3) sporulation corresponds to similar 
disease intensity levels, predominantly medium (F3) and high (F4); this inter- 
pretation of the graph adequately describes the corresponding contingency 
table (Table IV, [F x SI). 

The next step of the analysis, the evaluation of representativeness of 
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reaction types, is addressed in the second part of Table V (see “Additional 
variables”). In the case of this additional variable, no contribution to axes is 
computed, since it was not involved in the computation of eigenvalues and 
eigenvectors. What is actually done is that the axes defined in the first step 
of the analysis are used as a framework, on which the new variable, repre- 
sented by its four classes is superimposed. Reciprocal contributions to  axes 
are computed, which allows an assessment of how well the additional classes 
fit in with the framework. This is measured by the relative contribution values: 
79.2 + 17.7 = 96.9% of the inertia represented by RI is accounted for by the 
two first axes. Similarly, 58.9, 20.1, and 98.0% of the inertias represented by 
R2, R3, and R4, respectively, are accounted for. It can, therefore, be con- 
cluded that R1, R2, and R4 are mostly represented by the two first axes, 
whereas the representation of R3 is poor. A further inspection of computation 
results would indicate that 79.9% of the inertia of this reaction type is 
accounted for by axis 3, which in turn accounts for only 2.4% of the total 
information represented by the upper part of Table IV. 

The four reaction types can be plotted onto the previous graph (Fig. IB). 
As expected, R1 is closely associated with low infection efficiency, long latent 
period, low sporulation, and low disease intensity; R4 is associated with high 
infection efficiency, short latent period, medium to high sporulation, and high 
disease intensity. R2 and R3 occupy intermediate positions. 

The overall conclusion of the analysis of this hypothetical example would 
therefore be that a close association between disease intensity and monocyclic 
processes, especially infection efficiency and latency period, exists. Very sus- 
ceptible (R4) and highly resistant (RI) reaction types adequately predict 
epidemic levels; but caution is needed when considering the epidemiological 
effect of R2 and, especially, R3. 

III. EXAMPLES 

A. EPIDEMIC TRENDS IN GROUNDNUT DISEASES 

A survey was conducted in Ivory Coast on  the main diseases of groundnut 
(Savary, 1987). In West Africa, several diseases affect groundnut crops, and 
the aim of the survey was to assess the part taken. in this multiple pathosystem 
by a new component, groundnut rust (Puccinia arachidis Speg., Savary et al., 
1988). The survey was conducted during three consecutive years, yielding 
information on various components of the pathosystem, especially foliar 
diseases, in a population of 309 fields. The fields were visited at various stages 
in the crop development, and the analysis considered each field at each visit 
as a unique observation. One of the analyses performed on these data was 
aimed at obtaining a simplified, overall picture of a typical farmer’s field, 
in terms of dynamics of the main diseases. Three disease variables were 
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c 
c axis 2 

I A  
Ln I 

Y. I l I I .?.i CJ -0 5 Û O  0 5  1 c  

O F disease intensity 
I infection eff lciency 

* L latent period 
A S sporulation intensity 

c I. 

l B  /R2 
3 4 

I l I 

.z 5 O û  o 5  1 0  9 
- 1  o . R reactiontype 

Fig. 1. A correspondence analysis of a theoretical germplasm database on disease 
reaction. [A) First step of the analysis, involving disease intensity (F), infection effi- 
ciency (I), latent period (L), and sporulation intensity (S). The graph is drawn using 
the first (horizontal) and second (vertical) axes of the analysis. The successive classes 
are indicated and linked into paths. (B) Second step of the analysis. Four reaction types 
(R) were superimposed on the graph. 
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T, 
Contingency tables and rdntinnshiDs i 

sL.-,-- 

ABLE VI 
I . __I_._.._ ~ imong rust, late leaf spot and earl-v leaf spot 
OlrPrifies, and peanut development stages 

Rust severity 

2 

AO 
Al  
A2 
A3 
A4 

O 9 3 
6 

11 
20 
9 

4 
22 
4 

12 

19 
13 
36 
20 

26 
33 
6 
9 

9 
5 
6 3 12 12 .~ 

O 2 O 
2 
5 

11 
31 

a RO-R4: classes of rust severities; PO-P4: classes of late leaf spot severities; AO-A4: 
classes of early leaf spot severities; DVI-D V5: crop development stages. Entries 
are number of fields. Each contingency table shows the bivariate frequency 
distribution of the sample (309 fields) for each pair of variables. 

6 
20 
13 
10 

I 
25 
33 
30 

44 D VI 5 
24 

5 
3 

D V2 11 
D V3 10 
D V4 1 5 6 D V5 

considered: rust, early leaf spot (Cercospora arachidicola Hori), and late leaf 
spot (Phaeoisariopsis personata (Berk. & Curt.) Deighton) severities. An addi- 
tional variable, the crop development stage, was incorporated into the analysis 
in order to provide a physiological time reference, The frequency distributions 
of all three diseases were strongly asymmetrical, a large number of fields 
(especially those at early crop development) being unaffected, and a small 
number showing high severities. 

Severity variables for the three diseases were encoded by use of the following 
boundaries: absent [OVO]; very low [O, O.OlVo]; low [0.01, lVo]; medium [ l ,  
20%]; and high [20, 100%). For each disease, five severity classes were thus 
defined, labeled ROY R1, R2, R3, and R4 for rust, PO, P l ,  P2, P3, and P4 
for late leaf spot, and AO, A l ,  A2, A3, and A4 fvr early leaf spot. Using these 
boundaries, we represented all classes by an adequate number of fields 
(30-100). Five development stages were considered: seedling to fourth 
tetrafoliate (DVl), flowering to beginning peg (DV2), beginning pod to begin- 
ning seed (DV3), full pod to full seed (DV4), and harvest maturity (DV5). 

Three contingency tables were built (Table VI), by use of the the quan- 
titative coded variables and the qualitative variable: [R x PI, [R x A], and 
[R x DV]. Examination of the contingency tables provides indications on the 

P 
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relations among diseases, and between rust and physiological time. In the first 
contingency table, most of the fields were distributed along the first diagonal: 
there was an overall increase of late leaf spot with increasing rust severity. In 
the second table, most of the fields at low rust and early leaf spot levels were 
also concentrated along or adjacent to the first diagonal: RO corresponded to 
AO (26 fields) or Al  (33 fields); R1 corresponded to Al (22 fields). But very 
high rust (R4) did not correspond to high early leaf spot (A4, 9 fields), but 
to medium early leaf spot (A3, 20 fields). The third table, [R x DV], 
represents the increase of rust with the increasing development of the crop: 
mosî of the fields were distributed, again, along the first diagonal. It is worth 
noting, however, that the highest frequency (mode) of rust severity at DVI 
(44 fields), as well as at DV2 (741, was RO; at DV3, the mode reached R3 
(251, where it remained at DV4 (33); and at DV5, the mode was at the highest 
rust severity, R5 (31 fields). This third table indicates that the increase of rust 
over development stages involves two lag phases, at epidemic onset, and at 
the end of the epidemic. All three tables can be submitted to  chi-square tests 
(Table VI), where independence of the distributions of the four variables was 
rejected (P  < 0.0001). 

A correspondence analysis was conducted using the disease variables to 
generate a system of ases, and the development of the crop was superimposed 
on these ases. In other uords, a framework representing interaction among 
diseases was first computed, onto which a scale of development stages was 
projected. 

A series of axes was generated (Table VII), but only the first two axes are 
given, as they represented a total of 95.5070 of the inertia of the analysed con- 
tingency table. The first axis represents a contrast between absence of rust (ROY 
in the negative direction, with a very strong contribution) and R3 and R4 (in 
the positive direction). It also represents a contrast between absence of late 
leaf spot (PO, in the negative direction) with P3 and P4. As for early leaf spot, 
it primarily accounts for an opposition between no or low disease severity (AO 
and, to a lesser degree, Al),  and other disease levels. A x i s  1 essentially repre- 
sents a contrast between unaffected or little diseased fields, and higher 
diseased fields. Axis 2 represents contrasts between low rust and late leaf spot 
levels (RI,  PI , and E), and high disease levels (R3 and P4); the contributions 
to this axis of early leaf spot (A) variables are small. As a summary, the first 
axis can be interpreted as representing appearance of diseases, and the second 
axis, intensification of diseases (at least, rust and late leaf spot) in the fields. 
The reciprocal contributions for the variables that were involved in asis 
generation are high; the proportion of inertia of R4 accounted for by the two 
first axes is, for instance: 64.5 -I- 33.0 = 97.5%. The large proportion of total 
inertia accounted for by axes reflects these large reciprocd contributions. It 
is worth noting that the reciprocal contributions for the categories of develop- 
ment stage (which were not involved in axis generation, and thus have no 
weight nor contributions to axes) were also large: the resulting axes account, 



TABLE VI1 
Peanut disease severities: relative weights and contributions to axes 

Contribution to axes 
___-- 

Axis I Axis 2 
_ _ ~  .- - co- Contribution co- Contribution 

Relative - ordinate ordinate 
To axis Reciprocal To axis Reciprocal Classes Weight 

__- 

Columns RO 
R1 

Rows 

R2 
R3 
R4 
PO 
PI 
P2 
P3 
P4 
AO 

2:. 
A3 
A4 

Additional 
variables DV 1 

DV2 
DV3 
DV4 
DV5 

0.249 
O. 175 
O. 104 
0.3 14 
0.159 
0.100 
0.104 
0.061 
0.110 
O. 125 
0.068 
0.144 
0.063 
0.134 
0.091 

O 
O 
O 
O 
O 

64.3 
0.7 
2.8 

14.3 
17.9 
47.3 
0.4 
0.2 
8.7 

18.1 
10.4 
5.0 
1.6 
4.8 
3.5 

- 
- 
- 
- 
- 

76.1 Vo 

96.3 
5.3 

36. I 
87.2 
64.5 
95.2 
5.1 
3.9 

84.9 
70.4 
81.8 
81 .O 
62.1 
80.7 
54.7 

94.1 
65.6 
33.3 
79.7 
70.6 

- 1 .O3 9.5 
-0.13 45.0 
+0.34 9.3 
f0.43 o. 1 
+0.68 36.1 
- 1.39 9.0 
-0.12 26.4 
-0.1 I 13.0 
f0.57 0.6 
+ 0.77 27.8 
-0.79 7.0 
-0.37 4.1 
+0.33 2.9 
t-0.38 1.5 
+ 0.40 7.2 

- 1.36 
-0.57 

- 
- 

+0.29 
+ 0.48 
+0.77 

- 
- 
- 

3.6 
91.2 
30.0 
o. 1 

33.0 
4.6 

90.1 
77.5 

1.5 
27.6 
14.0 
16.9 
28.3 
6.6 

28.9 

5.8 
22.5 
52.7 
5.6 

25.4 

+ 0.20 
-0.52 
-0.31 
-0.02 
+ 0.49 
+0.31 
-0.52 
-0.47 
-0.08 
+0.48 
+0.33 
-0.17 
+0.22 
+O.Il 
-0.29 

+0.34 
-0.33 
-0.37 
-0.13 
+ 0.44 

Inertia accounted 
for by axes 

19.4% 

Rust severity (RO-R4), and late (PO-P4) and early (AO-A4) leaf spot severity were invoIved in generation of axes. 
Development stage was used as an additional variable. 
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.-3 Late leaf spot 
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Fig.2. A correspondence analysis of rust, late leaf spot, and early leaf spot of 
groundnut in farmer’s fields in the Ivory Coast. Axes 1 and 2 are represented horizon- 
tally and vertically, respectively. The axes are defined using classes of rust (R), early 
(A) and late (P) leaf spot intensities. The successive development stages of the crop 
(DV) were superimposed on the graph. 

to a very large extent, for the development of the crop. 
Fig. 2 illustrates the associations indicated by the two axes. The graph indi- 

cates a very strong association between the paths of increasing rust and late 
leaf spot severities: the two paths show the same movement in the same direc- 
tion. The association between the increase of rust and late leaf spot is also 
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strongly corresponding to the development of the crop. The path representing 
early leaf spot initially corresponds to the paths of rust and late leaf spot (the 
movement from AO to A l ,  and A2 parallels that of RO to R3, and that of 
PO to P3), but then shows a different movement (the increase from A2 to A3 
and A4 corresponds to a direction opposite to the increase of rust from R3 
to R4, and P3 to P4). This second phase of increase in early leaf spot intensity 
is also opposed in direction to the development of the crop (DV4 to DV.5). 
As a result, maximum early leaf spot corresponds to beginning pod-beginning 
seed (DV3), not to harvest maturity. Therefore the graph indicates that the 
increase in rust and late leaf spot intensity corresponds to the overall increase 
in physiological age of the crop, whereas change in early leaf spot intensity 
consists of two phases: an initial increase, and a further decrease when the 
crop approaches maturity. 

Additional details in the description of variation in rust intensity over 
groundnut development are also indicated by the graph. RO is close to DVI 
(seedling to fourth tetrafoliate), and R1 is positioned between DV2 (flowering 
to first tetrafoliate) and DV3 (beginning pod to beginning seed); the delay to 
reach RI is long. R2 is very close to DV3; the delay between RI and R2 is, 
in contrast, short. R3 is close to DV4 (full pod to full seed), indicating an 
increased delay in disease increase from R2 to R3, which seems equivalent to 
the delay between R3 and R4. Based on this development scale, the progress 
of groundnut rust appears sigmoid: slow at the early crop development, then 
fast, and finally slower. The increase of late leaf spot is very similar except 
for the proximity of P I  and P2, suggesting an extremely fast disease increase 
in this phase of disease intensification. It is worth noting that A l  is very close 
to DV2, i.e., corresponds to an earlier development stage than P I  or RI .  As 
a conclusion, this graph summarizes the appearance and further intensifica- 
tion of three groundnut diseases in an average farmer’s field in Ivory Coast 
as follows: early leaf spot appears first, followed by rust and late leaf spot; 
the latter diseases have regular, sigmoidal progress throughout the cropping 
season, whereas early leaf spot reaches its maximum severity at V3 (beginning 
pod to beginning seed), after which severity decreases. 

? 

B. COMPONENTS OF RICE TUNGRO EPIDEMICS 

Tungro is a major virus disease of rice in south and south-east Asia (Sogawa, 
1976). The pathosystem involves several components: the spherical and bacilli- 
form virus particles, vectors (among which Nephotettix virescens Distant plays 
a pre-eminent role), and the rice host plant (Ou, 1987). In some areas in south- 
east Asia, the disease appears to be present in every cropping season, whereas 
in some others, sporadic, and sometimes most damaging outbreaks occur. One 
major challenge in the understanding of rice tungro epidemics lies in the 
explanation of the polyetic processes which account for the endemicity of the 
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disease in some areas, and for irregular, explosive epidemics in some others. 
Analyses on components of the tungro pathosystem were carried out from 
historical survey data conducted in the Philippines (Savary et al., 1993). 

The data were collected by the Philippines Department of Agriculture at 
several sites. In one province of the southern Philippines, North Cotabato, 
130 fields were visited at the tillering phase during nine consecutive cropping 
seasons. The data included: cropping season (CS), planting date (PD), tungro 
incidence (IN), total vector population (V), and proportion of viruliferous vec- 
tors (VV). The disease is known to be endemic to the site. During the observa- 
tion period, the disease was present in all years and cropping seasons, and had 
an overall disease prevalence (percentage of fields with infection) of 84.6%. 

An analysis of these data was conducted to provide an overall description 
of the relationships between some components of the pathosystem, and assess 
the possibility of adequately characterizing tungro epidemics with a small set 
of variables that might be useful in tungro management. 

Three quantitative variables, IN, V, and VV, were measured with low preci- 
sion. Incidence (IN) was defined as the proportion of field area affected, and 
was assessed using an approximate grading scale with higher detail at low 
disease level (i.e., O, 1, 3, 5, 10, 15, 20, 30, . . . 100% field area affected). 
Disease incidence was encoded into disease classes: absence of disease (IN = O: 
INO), low incidence (O < IN I 2Vo: INl) , average (2 < IN I 5Vo: IN2), and 
high incidence (5 < IN I 100%: IN3). Estimates of the vector population (V) 
were obtained by counting individuals caught in ten sweepnet strokes above 
the canopy. Total vector counts were encoded as: low (O I V I 5: Vl),  
medium ( 5  < Y I 10: W), high (10 < V I 15: V3), and very high (V > 15 
vectors: V4). The proportion of viruliferous vectors (VV) was encoded using 
four classes: none (VV = O: W O ) ,  low (O < VV 5 5 :  VVl), medium 
(5 < VV I 15: VV21, and high (VV > 1590 of the vectors inducing a positive 
reaction in the transmission test: VV3). The planting dates were classified from 
very early (PD1) to very late (PD5) in each cropping season, and the two crop- 
ping seasons were categorized as rainy (RS) or dry (DS). 

Using these five categorized variables, we built four contingency tables: 
I N  x V, IN x VV, IN x PD, and IN x CS. From these contingency tables, 
chi-square values were computed, which indicated a significant association 
( P  < 0.05) between variables in all cases. For instance, the IN x PD con- 
tingency table indicated lower disease incidence in off-season plantings and the 
hypothesis of independence of the two variables was rejected (P < 0.01) on 
the basis of the chi-square value (58.7). 

Tungro incidence may be seen as the outcome of the interactions among V, 
VV, PD, and CS. Thus, the four contingency tables were consolidated, using 
the classes of the variable to be explained, IN, as columns, and the different 
classes of the other variables as rows. This set of contingency tables was sub- 
mitted to correspondence analysis. 

Twa main axes, accounting for 72.2 and 25.31% of total inertia, were 
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found. The first (horizontal) axis opposes absence of tungro (INO) to  presence 
(IN1, IN2, and IN3), whereas the second (vertical) axis opposes low (INl) to  
high (IN3) incidence. As in the previous example, the two axes may therefore 
be interpreted as representing disease appearance and intensification. The 
axes, of course, also incorporate contribution of the row-variables. On the 
first axis, absence of tungro is associated with absence of viruliferous vectors 
and off-season (PDl and PD5) plantings. The second axis involves a contrast 
between cropping seasons, and a strong contribution of early-intermediate 
plantings, associated with a very high incidence of tungro. 

Fig. 3 shows the overall association among variables: absence of tungro 
(INO, on right hand-side) is associated with absence of viruliferous vector and 
off-season plantings (PD1 and PD5); low tungro (bottom) is associated with 
late plantings (PD4), medium to high population of vector (V2 and V3), low 
to medium proportion of viruliferous vectors (VVl and VV2), and dry season 
(DS). High tungro incidence (top) is associated with early or intermediate plan- 
tings (PD2 and PD3), large population of vector (V4), very high proportion 
of viruliferous vectors (VV3), and rainy season (RS). The path of increasing 
tungro incidence corresponds to  that of increasing proportion of viruliferous 
vectors in a stepwise pattern. Whereas the path of increasing tungro incidence 
can be projected on both axes with two phases, disease appearance (INO-IN1, 
horizontal axis) and disease intensification (IN1-IN2-IN3, vertical axis), the 
variation in total vector population (V) is almost entirely associated with axis 
2. This suggests that the increase ín vector population is primarily associated 

- 
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Fig. 3. Characterization of rice tungro epidemics in one ‘hot spot’ in the Philip- 
pines. The graph represents data from a total of 130 fields visited during 9 consecutive 
cropping seasons at the tillering stage. Intensity of tungro (IN), total vector population 
(V), proportion of viruliferous vectors (VV), planting period (PD), and cropping 
season (RS or DS) were considered in the analysis. The classes that can be described 

I by a natural increase (e.g. IN0 to IN3) were linked to show paths. 
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with disease intensification, not disease appearance. On the other hand, there 
is a close, stepwise correspondence between increasing proportion of viruli- 
ferous vectors, and tungro incidence. Hence, the analysis indicates that any 
increment of the proportion of viruliferous vectors is associated with a cor- 
responding disease increase. This analysis was compared to  those representing 
different endemic or non-endemic sites in the Philippines (Savary et al., 1993), 
and was interpreted as a typical endemic situation. 

C. RELATIONS BETWEEW PRODUCTION LEVEL AND YIELD LOSSES 

A database for the pathosystem of groundnut was established from a series 
of six independent experiments (Savary and Zadoks, 1992a). Each experiment 
involved one main factor with three levels and three blocks. The main factors 
were water management, weed control, fertilizer input (two experiments), 
seeding rate, and cultivar potential yield. In addition, different disease treat- 
ments were used. Treatments were established within each block, representing 
combinations of manipulated levels of rust (low or high) and leafspot (low or 
high), with one control plot (C; no disease). The two diseases were indepen- 
dently manipulated by means of inoculations and sprays with a protectant 
fungicide. Each experiment included one reference block where inputs were 
set to default values, representing the production level of an average farmer's 
field: suboptimal water management and weed control, no fertilizer, low 
seeding rate, and cultivar with low potential yield. In each experiment, three 
types of yield were obtained. Actual yield (Y) was obtained from plots with 
different combinations of diseases and the main (input) factor. Attainable 
yield (Ya) was obtained from the control plots for each level of input factor. 
The attainable yield from the reference block was the reference yield (Yref) 
of an experiment. 

Because the experiments were conducted over different seasons, and in a 
range of soil fertility, a large variation in reference yield was observed. The 
variation of actual yield was attributable to the superimposed effect of 
diseases. The overall reiationships between ì'ref, Y, and presence or absence 
of diseases (D) was studied. The variable to be explained was Y, and two 
explanatory variables were considered: Yref and D. Only two categories of 
plots were therefore considered with respect to diseases: nearly disease-free, 
or affected by any of the two diseases. Variation of both yield variables was 
categorized in five classes, using the following boundaries: O, 850, 1400, 2300, 
3000, and 4500 kg/ha. Because plots used to  estimate the reference yield were 
protected against diseases, no Yref values were found in the lowest class. 
Two contingency tables were built: Y x Yref and Y x D. Both indicated a 
significant association among variables (P < 0.01), and were submitted 
to correspondence analysis. 

The two axes shown in Fig. 4 account for 62.6% (horizontal axis) and 21.8% 

. 





*r L 

PLANT DISEASE EPIDEMIOLOGY 235 

data indicated that the two diseases differ in their harmful effects, and had 
less than additive effects on yield reduction (Savary and Zadoks, 1992~).  

IV. OVERVIEW 

.4. COMBINATION AND LINK WITH OTHER TECHNlQUES 

Many multivariate methods have been used by epidemiologists, and have been 
reviewed by Madden (19833, Hau and Kranz (1990), and James and 
hlcCulloch (1  990). One area where rhese methods have been particularly 
useful is the analysis of survey data. 

Examples of holistic pest surveys, which generated a better knowledge of 
multiple pests systems, include the analysis of bean constraints in Colombia 
(Pinstrup-Andersen er al., 1976), of yield-determining factors in pea in Idaho 
(Wiese, 19801, of wheat constraints in South Australia (Stynes, 1980) and in 
Germany (Kranz and Jörg, 1989). Numerous of methods were used to  analyse 
the survey data. including regression analysis (Pinstrup-Andersen el al., 1976; 
Wiese, 1980), canonical correlation, principal component analysis (Stynes, 
1980), and path coefficient analysis (Kranz and JÖrg, 1989). Techniques invol- 
ved in the comparison of epidemics are similar in the methodological approach 
(Kranz, 1973). 

As mentioned earlier, correspondence analysis shares common features with 
principal component analysis on the computational aspects. Principal com- 
ponent analysis was used, for instance, to characterize tomato early blight epi- 
demics (Madden and Pennypacker, 1979). The analysis yielded three major, 
independent, components representing masimum disease severity, rate of 
disease increase, and shape of the disease progress curves. Its result was to 
highlight, on the basis of a sample of epidemics, the value of key epidemi- 
ological attributes for characterizing epidemics. 

Because it involves the use of qualitative information, correspondence 
analysis, as an analytical tool, can also be related to  two other techniques, 
discriminant analysis and multiple regression. The main aim of discriminant 
analysis is to characterize separate groups in a population, by mezas of one 
or several discriminant functions (h4adden et al., 1983; Hau and Kranz, 1990). 
Population densities of Verticillium dahliae and Pratylenchus penetram at 
planting were, for instance, used to classify potato yields as being above or 
below 9OVo of the control (uninoculated) yield (Franc1 et al,, 1987). Multiple 
regression involving qualitative (“dummy”) variables (Chatterjee and Price, 
1977) have seldom been used in plant pathology. Daamen (1986a) used this 
technique to analyse wheat mildew populations, and tested the effect of years, 
growth stages, and cultivars. Regression can also be used to  evaluate the 
results of correspondence analyses. In the case of yield losses of groundnut, 
a backward, stepwise regression analysis yielded an equation of the following 
form (Savary and Zadoks, 1992a): 
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Y =  a +  b l  Ya x R I  + b2Ya x SI + b3Rl  x SI 

where Y and Ya are the individual plot and attainable yields, respectively, and 
RI and SI are log-transformed areas under disease progress curves for rust 
and leaf spot, respectively. This equation describes yield variation as a 
response surface to interactions between attainable yield and disease injuries. 
Such a relationship is in agreement with the conclusion of the third example 
of correspondence analysis - the reference yield being the attainable yield 
associated with given climatic and soil conditions at a reference level of inputs. 
Further examination of the relationship indicated a less than additive effect 
of the two diseases on yield, which was confirmed by correspondence analysis 
on the same data set (Savary and Zadoks, 1992c), and independent factorial 
experiments (Savary and Zadoks, 1992b). 

Another multivariate tool that can be associated with correspondence 
analysis is cluster analysis. Clusters can be considered as qualitative variables, 
among which relationships can be analysed. For instance, eight patterns of 
cropping practices, and eight pest (insects, diseases, and weeds) profiles were 
identified from the data resulting from a survey on rice crops in Central 
Luzon, Philippines (Elazegui et al. , 1990), using two separate cluster analyses. 
These patterns of cropping practices and types of pest profiles were then 
related to categorized levels of yields (Savary et al., 1994). 

B. USEFULNESS OF THE APPROACH 

I .  Precision of the data 
Categorization of quantitative information representing components of a 
pathosystem is one means to take into account the level of precision of the 
data. This is particularly well exemplified in our second example on tungro 
epidemics. When numerous, precise data are available, a range of categories 
can be devised; when data with only low precision are available, a few, broad 
categories can be defined. This flexibility in handling data may be a critical 
advantage to enable the analysis of large, extremely valuable, sometimes 
heterogeneous data sets, such as those generated by plant protection or 
extension services. 

2. Normalization 
Categorization is also a means to normalize the variables (a) along their range, 
since each category should contain equivalent (commensurate) numbers of 
individuals (e.g., fields or epidemics), and (b) across data sets (e.g., surveys 
in different areas or years), so that comparisons are facilitated. Our third 
example on crop losses illustrates how a series of experiments, each of them 
representing a valuable fraction of the information needed for an overall inter- 
pretation, can be combined together without loss of vital information such as 
a variation in production situation, represented by the attainable yield. 

r 
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3. Refations among VQriQbkS 
One strong advantage of dealing with categorized quantitative data is the rapid 
detection of complex, non-linear relations among several variables. This is best 
shown in our first example on groundnut diseases: all three disease variables 
are correlated with crop development, but with differing patterns, including 
lag phases, and disease decline. This can be detected with conventional non- 
linear regressions (Savary, 1987), at the cost of the choice of specific models. 
Correspondence analysis allows one to forward and test similar hypotheses, 
without specifying a functional relationship between development stage and 
disease intensity, thus providing an overall and neutral framework of relation- 
ships. These may further be explored more explicitly using regression techniques. 

3. Thresholds 
Finally, in the process of devising the boundaries and the categories, it is possi- 
ble to introduce key or threshold values, the relevance of which might be 
revealed in the analyses. A domain where this approach might be particularly 
relevant is the development of strategies for tropical crop protection. Damage 
functions (Zadoks, 1985) are needed to define thresholds, which in turn are 
necessary to outline pest management strategies. These thresholds vary with 
production situations (De Wit and Penning de Vries, 1982) and are influenced 
by interactions between pests (Zadoks, 1985; Johnson et al., 1986; Savary and 
Zadoks, 1992a, b). An approach that consists of quantifying thresholds that 
are specific to each separate pest, in a range of production situations, will 
often be impracticable. Besides, yield estimates in the field are usually dif- 
ficult, and involve high errors (Poate, 1988). So are yield loss estimates. 
Farmers often have a good perception of what the yield of their crop may be, 
or what the desirable yield of a crop is; they also have their o u n  classification 
of yields, from very poor, over regular, to very good. Similarly, the farmer's 
input to the crop may be categorized as low, medium, or high. Such classifica- 
tions are particularly relevant and convenient in the context of tropical small- 
scale farming. Decision-making in agriculture, either strategic (e.g., the choice 
of a cultivar), or tactical (e.g., to  spray, not to spray, or to wait) is, by nature, 
categorical. Analogously, levels of hazard due to pests could be defined that 
would be conceptually compatible with decision-making. 

C. THE NEED TO EXPLOIT CATEGORICAL INFORMATION IN PLANT 
PATHOLOGY 

Correspondence analysis appears to be a robust technique that basically 
requires a conceptualization of a framework of relationships among com- 
ponents in the studied system. One might see it as just another multivariate 
tool where these components are represented in the form of classes, frequen- 
cies of classes, and then related in contingency tables. There are, however, 
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solid reasons to consider correspondence analysis (and methods for analysing 
qualitative and categorical data in general) if plant pathologists are taking 
seriously the challenge of analysing the interactions that are at work within 
the disease tetrahedron. These interactions involve variables that are hetero- 
geneous, and the approach outlined here is one means to analyze them. 

In many pathosystems, patterns of cropping practices are driving variables 
of epidemics; whether a farmer’s field belongs to a cluster representing inten- 
sive or extensive agriculture is a key to explain levels of a disease, or disease 
combinations (Savary et al., 1994). The pattern of cropping practice is, by 
essence, a qualitative attribute. Its introduction into analyses provides scope 
for a novel approach of the data, so that new hypotheses can be constructed. 
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