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ABSTRACT 
Glossina or tsetse flies, the vectors of sleeping sickqess,.form a unique group of insects with remarkable 

characteristics. They are viviparous with a- slow !hytlynof reppduction (one larva approximately every 10 
days) determined by the regular ovulation df alternate ovaries. This unusual physiology enables the age of 
the females to be estimated by examining the ovaries. 

The resulting ovarian age structure of tsetse fly populations has been used to develop research into the 
demography of $etse flies. Several authors have proposed methods of estimating population growth rates 
from ovarian age distribution data. However, such methods are applicable only when the growth rate (h) 
is equal to 1 (i.e. the intrinsic rate of increase r i s  equal to O). In fact, in this type of estimation, the adult 
survival rate a (or equivalently the mortality rate) cannot be dissociated from the growth rate. 

Other independently determined demographic parameters must be used to remove this lack of 
identifiability. We have built a matrix model of the dynamics of tsetse fly populations which enables the 
growth rate to be calculated from the pupal survival, rate, the pupal period,apd the adult survival rate. 
Assuming that the age-groups of the population studied have reached a stable distribution, it i 
calculate the probabilities for the obsed@ sample of belonging to each of the age-groups, to construct a 
likelihood function and thus to obtain an estimate of the ‘apparent survival rate’ ß = a / h  If the pupal 
survival rate and the pupal period are known, a and h can then be calculated from ß. 

The application of this method to data collected for over two annual cycles in a savannah habitat 
(Burkina-Faso) showed a high overall stability in the populations of Glossinupalpalis gambiensis. Seasonal 
fluctuations could be easily interpreted as being the result of climatic changes between the dry and rainy 
seasons. 

1. INTRODUCTION 
Because of their tendency towards sudden proliferation, insects (e.g. crickets, green fly, 

forest defoliator species) are often taken as examples of species with chaotic population 
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dynamics. This is not however a general rule, and well documented cases of chaos are rare 
[Pierre, 1993). In fact, the most striking feature in the insect world is rather the diversity of the 
population dynamics. Indeed, to use the terminology employed by P i d a  (1970), not all insects 
are r-strategists. In this respect, the insect vector of sleeping sickness, the tsetse fly, could be 
classified with mammals rather than with insects (Glasgow, 1963; Gouteux, 1995). It presents 
a highly developed viviparity with a slow rhythm of reproduction (see 8 2.1) The growth rate 
is thus considerably limited (IHargrove, 1988; Jarry et aL, 1996). 

An age structure consisting of eight age-groups has been identified (Saunders, 1940, 1962; 
Challier, 1965) on the basis of the state of the ovaries. The first four age-groups cai; be 
determined precisely from the first ovarian cycle. Four older age-goups can be identified t&t 
since later cycles cannot he differentiated, these age-groups are imprecise (see $ 2.1). 

The ovarian age structure of female tsetse fly populations has been used by Taylor (1979), 
Ryan (19811, Allsopp (1985a) and Williams et al. (1990) to calculate a mean survival rate using 
the Euler-Lotka equations (Loth, 1907) and classical life tables (Deevey, 1997; Andrewartha 
8.1 Birch, 1956). Various approaches were used to overcome the difficulty with the four older 
age-groups. Saunders (1963, along with many other authors (Okiwelu, 1976; Phelphs & Vale, 
1978; Ryan, 1951), assumed a constant mortality rate. Taylor (1979) and, later, Snow & Tarimo 
(1985) suggested that the four older age-groups could he determined more accurately by the 
wing fray technique described by Jackson (1946). These authors recognised that this method is 
subject to bias since the wear and tear of the wings depends on the activity of the individual fly 
and not on its true age (Challier, 1973; Nlsopp, 198%). However, they consider it preferable 
to assuming a constant mortality rate. 

Other authors have developed different methods to that described by Saunders for estimating 
the survival rate. Challier Sr Turner (1985) used geometric means. Gouteux (1982) and Gouteux 
& E(iCnou (1982) used a geometric progression formula for the four older age-groupa, together 
with least squares fitting. The assumption of a constant mortality rate is first made only for the 
four older age-groups. These four estimated values and the observed values for the first four 
age-groups are then refitted using a negative exponential to determine a mean mortality rate. The 
geometric progression formula was used later by Rogers & Randolph (1984) and Rogers et al. 
(1984). 

Most of these methods, however, raise another problem. As pointed out by Van Sickle 
(1988), the authors assume, explicitly or implicitly, that the populations are stationary 
(asymptotic growth rate A. = 1, or intrinsic rate of increase r = 0). In fact, in this type of 
estimation, the adult survival rate a a m o t  he dissociated from the growth rate. Hargrove (1993) 
therefore obtained, by a maximum likelihood method, an estimate of a parmeter depending on 
the mortality and on the gowrth rate. 

The method proposed in the present paper assumes a constant adult survival rate as a first 
approximation. We first present a matrix model depending on only three demographic 
parameters: pupal survival rate, pupal period and adult survival rate. Assuming that the age 
structure of the population is stahle, this model enables us to calculate the theoretical distribution 
of the ovarian age-goups. We show that an apparent adult survival rate (ß = a h )  can then be 
estimated by a maximum likelihood method. Given the pupal survival rate and the pupal period, 
a and A. can then be calculated from ß n  
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This model has then been applied to field data and the various factors likely to regulate the 
tsetse fly populations discussed. Finally, the potential developments offered by this approach are 
discussed, in particular the possibility of taking into account an agedependent adult survival 
rate. 

2. TSETSE FLY DEMOGRAPHIC DATA 

2.1 Biological Cycle 
The tsetse fly belongs to the Glossinidae family which comprises about thirty African 

species (Moloo, 1993). The female ‘delivers’ a mature larva (ready for the pupal stage) after a 
gestation period of about ten days during which it is nourished in the uterus by maternal 
secretion. Once the larva is deposited it embeds itself in the ground and pupates almost 
immediately. The duration of the pupal stage varies according to the temperature (Jackson, 1949; 
Harley, 1968). For GZossina pulpalis gumbkmk, Challier (1973) observed a range of 26 to 50 
days (mean 30-33 days at a mean monthly temperature of 25-26 OC). The newly emerged adults 
are called tenerals until they begin to feed (Jackson, 1933). Nearly all the females are fertilized 
in the first few days of life. The quantity of spermatozoa stored in the female’s spermathecae 
is sufficient for her entire life (Glasgow, 1963). 

The adults live for an average of 1 to 2 months, but flies marked six months previously in 
C6te d’Ivoire (Gouteux, 1985) and even nine months previously in Senegal (Challier, 1973) 
have been captured. The unusual physiology of the females enables their age to be estimated 
by examining the ovaries. The two ovaries (left and right) each comprise two ovarioles which 
are situated symmetrically on either side of the ovary. Ovulation occurs at regular intervals in 

Fig. 1. The tsetse fly life cycle; the stages and the rates of passage from one stage to the next are 
described in the text. 



320 

the ovarioles of alternate ovaries. The initial observation of the regularity of the cycle of the 
four ovarioles (including the identification of the pre-reproductive phase and the three stages of 
larval development) enabled four age-groups (4, A,, A, and A3) to be determined (Saunders, 
1960, 1962). Challier (1965) observed that each ovulation leaves a trace (follicular relic) and 
that only one relic persists, corresponding to the most recent ovulation. This enabled a further 
four age-groups (A4, A,, & and A,) to be determined. However, after the first four ovulations 
(i.e. a complete ovarian cycle) all four ovarioles present a follicular relic. It is therefore not 
possible to differentiate between later cycles, and these four age-groups remain imprecise. 

The graph of the life cycle of the females is given in Figure 1. Each stage was assumed to 
be of equal duration of h days, where h corresponds to the mean interval between two 
ovulations (i.e. about 10 days). Since the free life of the larva is very short, this was not taken 
into account in the model. Since the pupal stage varies between 20 and 50 days according to 
the temperature (cyclic seasonal variations), it was subdivided into five fictitious stages (Po9 Pl, 
P,, P, and P,) to maintain a homogenous discrete representation. The coefficient pi represents 
the survival rate of a pupa at stage Pi over a period of h days and ei the emergence rate of 
pupae in stage Pi. 

The adult stages 4, A,, && and A, correspond to the first four ovarian age-groups and 
stages A4, 4, A, and A, correspond to the older age-groups. The path from A, to A, represents 
the indistinguishable cycle of the four older age-groups. The survival rate of a female in stage 
A, over a period of h days is noted by ai, and the fecundity by A. 

” 

2.2 An Example of Demographic Data 
The data presented are from a population of Glossina palpalis gambiensis studied in the 

forest of Kou (Burkina Faso) from 1964 to 1967 (Challier, 1973 and personal communication). 
The pupal survival rate (S) and the pupal period (2) were determined by observing the 
emergence of adults from batches of young larvae distributed in small metal cases buried in the 
ground. When the normal emergence period was considered to have elapsed, the cages were 
unearthed and the number of empty, parasitized, hatched pupae were counted [Challier, 1973). 

The ovarian age-group distributions were obtained from flies caught in a hand net. Since this 
method overestimates the nulliparous flies (A,,), the numbers of flies were adjusted using the 
results from a comparative study on the effectiveness of capturing by nets and biconical traps 
(Gouteux & Dagnogo, 1986). Such data were available from September 1964 to April 1967 at 
a rate of about one sample a month. 

Table 1 provides an example of the data available for a complete annual cycle. Missing data 
on survival rates and the pupal period have been completed with data from the previous year. 
The pupal period reached a maximum in January (the middle of the dry season) and decreased 
rapidly in February-March to stabilise at around 30 days from March (beginning of the rainy 
season) to June (the middle of the rainy season). Overall, pupal survival appeared to be better 

Fig. 2 Opposite page. Distribution of the ovarian age-groups of G. palpalis gantbiensis females caught 
by hand-net from September 1964 to April 1967 in the Forest of Kou, Burkina Paso (Challier, 
1973). The numbzrs are presented as frequencies in order to normalise the data. 
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Table 1. Pupal survival rates (i), pupal period (2 , in days) and distribution of ovarian age-groups (no ... n7 
are the number of females of ovarian age & ... A,,; n is the size of the sample) of G. palgalis gambiensis 
females caught in a hand-net from Septembee 1964 to August 1965 in the Forest of Kou, Burkina Faso 
(Challier, 1973). 
* Missing data, replamd by weighted means of the values obtained in November and January. I 

Month s X "o "1 "2 % "4 "5 "6 9 N 

September 
October 
November 
December 
January 
February 
March 
April 

Sune 
Magr 

July 
August 

.74 

.74 

.74 
.83* 
.91 
.91 
.86 
.96 
.73 
.82 
.82 
.82 

30.3 60 32 22 25 43 24 5 8 216 
33.5 26 17 18 18 21 17 2 2 121 
36.1 47 23 21 28 23 21 11 2 176 

38.9* 20 8 19 14 13 9 2 1 86 
4.0 16 2 10 o 2 5 2 o 38 
34.8 53 17 21 14 11 10 8 5 139 
30.9 14 9 9 2 7 3 3 1 4s 
29.8 21 20 8 5 12 6 8 8 88 
29.7 20 § 5 2 3 3 4 3 45 
30.0 56 12 12 13 20 16 25 4 158 
31.2 §5 56 23' 9 11 32 22 10 198 
31.4 67 30 25 11 19 29 19 17 217 

from January to April (dry season and beginning of the rainy season) but the differences were 
not significant 

Figure 2 summarizes the trend in age structure during an annual cycle. Over the three annual 
cycles, the period of January-February (dry season) was characterized by a high proportion 
(40 % and over) of flies in the nulliparous stage (A,,). This occurred earlier in 196546, lasting 
from December to March. From July to November (rainy season), on average, the samples 
mmprised older adults. The intermediate period (from March to June, the beginning of the rainy 
season) was less characteristic and varied acmrding to the year, with, however, a new 
emergence of young flies in May 1965, MayJune 1966 and April 1967. 

= 7.44 ; P = 0.19, @hallier, 1973). 

3. BUILDING 
A discrete model, with time s t e p  h days, can be derived from the life cycle diagram (Figure 

1). It concerns only the female population and is expressed as: 

whereX(i) is a vector whose components represent the numbers of females in each stage at time 
i and M is the transition matrix associated with the life cycle: -i 
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The matrix M is non-negative, irreducible and primitive. Under these conditions, it possesses 
a strictly positive and strictly dominant real eigenvalue h (peron-Frobenius theorem; Caswell, 
1989), which can be interpreted as the asymptotic growth rate of the population. The right 
eigenvector corresponding to the eigenvalue h gives ,the asymptotic stable distribution of the 
stages. When the asymptotic state is reached, we thus have: 

M w = h w .  (2) 

The values of the coefficients eì and pi can be derived from the pupal survival rate (i) and 
the pupal period (i?) (Jarry et al., 1996). The values fi are calculated from the potential fecundity 
of the females ('fp) by applying a continuity correction (Caswell, 1989), since, for this species, 
there is no specific reproduction period during the year. Under the additional hypothesis of a 
constant survival rate among the adult females (ai = a) and assuming& to be constant and equal 
to 0.5, if we suppose a balanced sex ratio, we obtain a model which depends on only three 
parameters (i, Y and a). The dominant eigenvalue of the matrix M cannot be expressed 
analytically, but can be calculated for fixed values of the demographic parameters. A study of 
the properties of this model can be found in Jarry et al. (1996). 
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4. ESTIMATION OF THE DEMOGRAPHIC PARFMETERS 

4.1 Maximum Likelihood Estimation of the 
Apparent Survival Rate of the Females 

In this section, we consider only the adult female tsetse flies. Following the notation adopted 
for the ovarian age-groups, let N,,(t), N,(t), ..., Nit ) ,  ..., N7(t) be the number of adults in 
age-group A,,, A,, ..., A ,  ..., A,. In terms of the matrix model Ndt) = Xi+,(t). Once the steady 
state is reached (asymptotic regime), the evolution of the numbers of adults in each stage can 
be described, using equation (11, in two ways: 

N,(t+l) = hN,(t) for i = O, 1 ... 7 (3) 

and 

N i ( t + I )  =  UN^-^(^) for t = 1...7 ; i 

N,( t+ l )  = aN3(t) + a N 7 ( t )  

4 (41 i 
These equations describe the passage of the females flies from one age-group to another with 
a constant survival rate a, taking into account the uncertainty in the last four age-groups (see 

Figure 1 and the form of the matrix M above). From (319 we have NAP) = q(tt1). Substituting 

on the right-hand side of equations (4), we therefore obtain: 

Since equations (5) are timeindependent, we can now write, for all time t ,  
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N4 and substituting into equation (5) gives: a Putthg N7 = xNs = 

a N4 = xN3 + (ip4 and finally 

r 1 

The numbers Ni in each stage can thus finally be expressed in terms of No: 

i 
Ni = (f.) No for i = 0...3 1 

It may be noted that the case i = 1 cannot occur in practical applications since this would imply 

N4 = N7 and hence, from equation (S), N3 = O. From equation (6), this would imply IV:= O, 
corresponding to the case of no females in the population. 

The parameter ß = a h  which appears clearly in equations (6) will be called the ‘apparent 
survival rate’ and may be estimated by maximum likelihood as follows. 

Consider a simple random sample of size n with ovarian age distribution no, nl, ..., ni, ..., n7. 
Using equations (6), the probability of belonging to age-group i is given by : 

p(x=i) = ß‘( l -ß)  for i = 0...3 I 
P ( X = { )  = - ß “ W  for i = 4...7 

1 - 8 4  

l 

i=O 
The likelihood function L ( ß )  = II P(x = i ; ß)”i can thus be constructed, giving 

(7) 

with w1 = i ni and w2 = ni. 
i=l i4 
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Fig. 3. Examples of functional relationships between ‘apparent’ survival rates of the females (‘ß = Wa) 
and ‘real’ survival rate a for various values of pupal survival rate and pupal period (2 = 0.7 : ... 
; 5 = 0 . 8 :  --;S=0.9:--;2 = 3 0 d a y s : F i g . 3 a ; f  =40days:Fig.3b) .  



Differentiating partially with respect to ß gives: 

with ß * 1 (see above). 
= O. 

The software Mathematic8 was used and the goodness of the fit to the observed data tested by 
the x2 test. 

For each sample, ß can be estimated by solving numerically the equation 

4.2 Deducing the Survival Rate of Females and the Growth Rate 
A knowledge of the age structure of the females is not sufficient to estimate directly the 

survival rate, a, unless h = 1, in which case ß = a. This, a priori very strong condition of 
numerical equilibrium of the population, is not necessary if information is available concerning 
the pupal stages, namely the pupal period and survival rate. In this case, equation (1) provides 
a functional relationship between ß and a, which is illustrated in Figure 3 for selected values 
of i and i. This function is monotonically increasing in the region of interest (0.1 s a < 1); to 
each value of ß corresponds one and only one value of a and hence a single value of the 
growth rate h. Estimation of these values is obtained by numerical computation. 

5. APPLICATIONS TO FIELD DATA 
The estimates of the female survival rate a and the growth rate h corresponding to the 31 

monthly recordings obtained by Challier (1973) for a population of G. palpalis gambiensis are 
presented in Figure 4. The close relationship between these two demographic parameters has 
already been shown (Jarry et aZ., 1996). The fluctuations in the pupal survival rate seem to be 
less marked in this data set. A relatively low rate (October-November) did not prevent a growth 
rate of 1 or more. The effect of the duration of the pupal stage is more difficult to appreciate, 
since a shortening of this stage favours population growth when adult survival is high, but also 
increases the risk of extinction when adult survival is low (Jarry et aZ., 1996). However, these 
effects only occur with extreme values which are beyond the fluctuations recorded for the 
population in this study. 

Throughout the whole study period, the growth rate varied between 0.84 and 1.1 and 
generally fluctuated around 1. An unfavourable period of population growth was observed in 
each annual cycle from January to March (and, in 1967, even in April). During this 
unfavourable period (end of the dry season and beginning of the rainy season) the maximum 
temperature range was recorded. The following period (the rainy season) shows a less consistent 
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Fig. 4. Estimates of the survival rate u of G. palpulis gambiensis females and the growth rate h of the 
population (Forest of Kou, Burkina Faso). Variations over more than two annual cycles from 
September 1964 to April 1967. 
* Acceptable fit to obsewed data (x2 test at a threshold a = 0.05) 

growth rate, fluctuating rather strongly with fluctuations varying according to the year. The 
growth rate increased at the end of rainy season and at the heginning of the dry season, in 
particular in 1965 and 15366. 

6. DISCUSSION 
Using a maximum likelihood method, Hargrove (1993) estimated the quantity 

(J = exp(-(p+L)), where p is the adult mortality rate and h is the growth rate, by solving the 
equation: 

X2(1-p) p x1(1t4$t4$7-t4$3) t 4.x34l4 = o (lo> 
7 l I 

1=1 r = l  i4 
with x1 = 2 ni9 x2 = 2 i ni and x3 = 

author, 'they are judged to be severely underrepresented in field sample'. 
Our approach leads to the same result. Indeed, the implicit Hargrove's model is probably 

a continuous one, with p and h being instantaneous rates. Denoting r the growth rate of 
Hargrove (1993), the correspondence with our discrete model can he expressed as: 

ni, the A,, flies being excluded since, according to this . 

c 

(11) r = I n A .  
L 

-4 I p = -In a 
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We can write 4 = exp( -p)/exp(r) = a h  = ß. If A, flies are excluded, we obtain a new 
estimation of ß by solving the equation: 

wl(1-p4) - n(itßtp2tp3) t 4w3ß4 = o (12) 
l I 7 

i=l r=l i=l 
with n = Eni, w1 = zì ni and Eni. It is clear that equations (10) and (12) are the same. 

The method presented here provides estimates of the adult survival and growth rates if the 
pupal survival rate and the pupal period are known. The results are coherent and easily 
interpreted in terms of the variations in climatic conditions in the studied area. However, the fit 
of the model to the data, tested by x2, was acceptable in only 13 cases out of 31 (Figure 3). The 
poor fits may be due to several causes, for example: 

- It is assumed that the age-groups have reached a stable distribution for all sampling dates 
which are at intervals of approximately one month. This assumption is certainly not respected 
when major changes occur in the dynamics of the population. Certain samples probably 
correspond to a transitory phase. This is a major criticism which applies to most methods based 
on age structures. Our model should enable this point to be approached by studying the time 
required to retum to a stationary phase after disturbance. 

- Certain features of the biology of the tsetse flies, which are known but difficult to quantify, 
are not taken into account. For example, during the rainy season, strong storms may destroy the 
breeding grounds resulting in a sudden high larval mortality which is not taken into account in 
the field experiments since this type of situation is specifically avoided. This may result in gaps 
in the pyramid of ages which would spread over several months and delay the establishment of 
an asymptotic phase. Such ‘empty’ age-groups are quite visible in the raw data (Figure 2). 
Furthermore, field experiments take into account parasitism but not predation which can be quite 
considerable (Chorley, 1929; Kemps, 1951; Rogers, 1974). 

- Several authors consider that the assumption of a constant adult mortality rate is not valid 
(Jordan & Curtis, 1972; Gouteux & Kienou, 1982; Hargrove, 1990,1991; amongst others). Our 
model would be improved by introducing an age dependent mortality by distinguishing in the 
first instance the nulliparous flies (Ao), the young parous flies (Al to A3) and the old parous 
flies (A4 to 4). 

- The sampling was camed out by hand-netting which, despite correction, is biased by 
several uncontrollable human factors. It would be interesting to use data obtained by trapping 
which is a much more reliable method (Gouteux & Dagnogo, 1986). 

Despite these limitations, the present study suggests that the tsetse fly natural populations 
have a growth rate remarkably close to 1. The stability of the tsetse fly populations, which is 
one of the basic assumptions of epidemiological model of sleeping sickness (Artmuni & 
Gouteux, 1996), finds a preliminary confirmation here. It should also be noted that this stability 
is deduced from a linear matrix model which therefore does not include any regulation such as 
density dependence. A relatively simple interpretation of the present results can be proposed as 
follows: 

1. Given the characteristics of their reproduction, the maximum growth rate in tsetse fly 
populations is not very high. For an ideal survival rate of 1, the growth rate varies from 1.18 
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to 1.22 according to the pupal period, which corresponds to a production ranging from 457 to 
1566 females per female per year (Jarry et aZ., 1996). Hargrove (1988) gave values of the same 
order of magnitude, but slightly higher. By rearing tsetse flies, Curtis & Jordan (1968) obtained 
productions of 308-552 females per female per year for G. au5tent and Jordan 6( Curtis (1972) 
obtained 400-500 females per female per year for G. mrsitans morsituns. 

2. The growth rate becomes less than 1 during unfavourable periods since the tsetse flies are 
sensitive to major changes in temperature and to drought. This affects mainly the adult survival 
rate. 

3. These unfavourable periods do not last, and the ppulation is able to recover as adult 
survival improves. 

4. Over an annual cycle, favourable and unfavourable periods compensate each other and 
the overall situation remains in equilibrium. 

This explanation is obviously too simplistic but provides a falsifiable explanatory model. It 
makes the assumption that the fly populations show extremely stable spatial patterns. This 
stability does exist to a certain extent (Gouteux $r hvassikre, 1982) but population movements 
related to - amongst other factors - inter specific competition do occur (Gouteux, 199'9). 

From a practical p i n t  of view, this approach enables the growth rate of a population to be 
estimated fiom W o  demographic parameters related to the pupal stage and sample female age 
structures. Data on the p u p l  stage arc relatively rare, but the example used shows that, far 
population dynamics, the fluctuations in the parameters related to this stage have less influence 
than those in the adult survival rate. If studies on the sensitivity of the model confirm this point, 
it would be possible to estimate the growth rate of the tsetse fly natural populations by using 
only the ovarian age distributions, assuming "reasonable" a priori values for the pupal survival 
rate and pupal period. Models describing the relationships between the pupal period and the 
temperature could also be used (see, for example, Potts, 1933; Buton 6( Lewis, 1934; Jack, 
1939; Glasgow, 1963; Harley, 1968). 

Our approach emphasizes the usefulness of determining the ovarian age of the females 
during control c a m p i g m  It would enable the effectiveness of the protocol used in control 
campaigns to be tested. Trapping, which provides both a means of control and sampling, 
presents an unquestionable practical advantage. 

A c m o m E D G E M E N T s  
The authors thank A. Challier for permission to use his data and for his interest in this work. 

These studies were supported by G D R - W S  no G 1107 (Outils et Modbles de 1"Automatique 
dans ]'Etude de la Dynamique des Ecosystbmes et du Contr8le des Ressources Renouvelables) 
and ORSTOM (Va 41, Maladies infectieuses et parasitaires). rl 

. 



33 1 

REFERENCES 
Allsopp, R. (1985a). Variation in the rates of increase of Glossina morsituns centrulis and their relevance 

Allsopp, R. (1985b). Wing fray in Glossina morsitum centrulis Machado (Diptera: Glossinidae). Bulletin 

Andrewartha, H.G. and L.C. Birch (1956). The Distribution and Abundance of Animals. Chicago, 

Arkouni, M. and J.P. Gouteux (1996). A compartmental model of sleeping sickness in Central Africa. 

Buxton, P.A. and D.J. Lewis (1934). Climate and tsetse flies; laboratory studies upon G. morsitans and G. 

Caswell, H. (1989). Matrix Population Models. Sinauer Associates Inc., Sunderland. 
Challier, A. (1965). Amélioration de la méthode de détermination de I’âge physiologique des glossines. 

Etudes faites sur Glossinapalpalk gambiensis Vanderplank, 1949. Bulletin de la Société de Pathologie 
Exotique 58: 250-259. 

Challier, A. (1973). Ecologie de Glossina palpulis gambiensis Vanderplank, 1949 (Diptera - Muscidae) en 
savane d’Afrique occidentale. Mémoire ORSTOM 11’64, Paris. 

Challier, A. and D.A. Turner (1985). Methods to calculate survival rate in tsetse fly (Glossina) populations. 
Annales de la Société belge de Médecine Tropicale 65: 191-197. 

Chorley, J.K. (1929). The bionomics of Glossina morsituns in the Umniati fly belt, Southern Rhodesia, 
1922-23. Bulletin of Entomological Research 20: 93-97. 

Curtis, C.F. and A.M. Jordan (1968). Calculations of the productivity of Glossina uusteni Newst., maintened 
on goats and on lop-eared rabbits. Bulletin of Entomological Research 59: 651458. 

Deevey, ES. (1947). Life tables for natural populations of animals. Quarterly Review of Biology 22 

Glasgow, J.P. (1963). The Distribution and Abundance of Tsetse. International Serie Monography of Pure 
and Applied Biology, Division of Zoology, 20. Oxford, Pergamon Press. 

Gouteux, J.P. (1982). Analyse des groupes d’âge physiologique des femelles de glossines. Calcul de la 
courbe de survie, du taux de mortalité, des âges maximale et moyen. Cahiers de I’ORSTOM, Série 
Entomologie Médicale et Parasitologie 2 0  189-197. 

Gouteux, J.P. (1985). Ecologie des glossines en secteurs pré-forestier de Côte d’Ivoire. Annales de 
Parasitologie Humaine Comparée 60: 329-347. 

Gouteux, J.P. (1995). La tsé-tsé, une mouche pas comme les autres. Insectes 99(4): 2-5. 
Gouteux, J.P. and J.P. Kiénou (1982). Observations sur les glossines d’un foyer forestier de trypanosomiase 

humaine en Côte d’Ivoire. 5. Peuplement de quelques biotopes caractéristiques: plantations, forêt et 
galerie forestière, en saison des pluies. Cahiers de I’ORSTOM, Série Entomologie Mddicale et 
Parasitologie 2 0  41-61. 

Gouteux, J.P. and M. Dagnogo (1986). Ecologie des glossines en secteur pré-forestier de Côte d’Ivoire. 11. 
Comparaison des captures au piège biconique et au filet. Agressivité pour l’homme. Cahiers de 
I’ORSTOM, Série Entomologie Médicale et Parasitologie 24: 99-110. 

Hargrove, J.W. (1988). Tsetse: the limits to population growth. Medical and veterinary Entomology 2: 

Hargrove, J.W. (1990). Age-dependent changes in the probabilities of survival and capture of the tsetse fly 

Hargrove, J.W. (1991). Ovarian ages of tsetse flies (Diptera: Glosinidae) caught from mobile and stationary 

to control. Journal of Applied Ecology 33 91-104. 

of Entomological Research 751-11. 

University of Chicago Press. 

Journal of Biological Systems, in press. 

tachinoides. Philos. Trans. 224: 175-240. 

283-314. 

203-217. 

Glossina morsitans morsitans Westwood. Insect Science and its Application 11: 323-330. 

baits in the presence and absence of humans. Bulletin of Entomological Research 81: 43-50. 



332 

Hargrove, J.W. (1993). Age dependent sampling biases in tsetse flies (Glossina). Problems associated with 
estimating mortality from sample age distributions. In: Management of Insect Pests: Nuclear and 
Related Molecular and Genetic Techniques, International Atomic Energy Agency, Vienna, pp. 549-556. 

Harleyy, J.B.M. (1968). The influence of the temperature on reproduction and development in four species 
of GZossina (Diptera: Muscidae). Proceedings of the Royal Entomological Society of London 43(10-12): 

Jack, R.W. (1939). Studies in the physiology and behaviour of Glossina morsitans Westwood. Memoirs of 

Jackson, C.H.N. (1933). The causes and implications of hunger in tsetse flies. Bulletin of Entomological 

Jackson, C.H.W. (1946). An artificially isolated generation of tsetse flies (Diptera). Bulletin of 

Jackson, C.H.N. (1949). The biology of Be-tse flies. Biological Reviews 24: 174-199. 
Jarry, M., M. Khaladi and J.P. Gouteux (1996). A matrix model for studying tsetse fly populations. 

Entomologia Experimentalis and Applicata 78: 51-60. 
Jordan, A.M. and @.F.@urtis (1972). Productivity of Glossina morsitans Westwood maintained in the 

laboratory, with particular reference to the sterile-insect release control. Bulletin of World Health 
Organisation 46: 33-38. 

Kemp, P.E. (1951). Field observations on the activity of Pheidoles. Bulletin of Entomological Research 4 2  

Lotka, A.J. (1907). Relation between birth rates and death rates. Science 26: 21-22. 
Moloo, S.K (1993). The distribution of Glossina species in Africa and their natural hosts. Insect Science 

and its Application 14: 511-527. 
Okiwelu, S.N. (1976). Seasonal variations in age-composition and survival of a natural population of female 

GZossina morsitams ï“ihm Westwood at the Chakwenga Game Reserve, Republic of Zambia. 
Zambia Journal of Science and Technology 1: 48-58. 

Phelphs, R.J. and @.A. Vale (1978). Studies on populations of Glossina mrsitans morsihzns and G. 
paZZidipes (Diptera: Glossinidae) in Rhodesia. Journal of Applied Ecology 15: 743-760. 

Pianka, E.R. (1970). On r- and K- selection. American Naturalist 104 592-597. 
Pierre, J.S. (1993). Modtles de dynamique des populations d’invert6brb terrestres: acquis et problh“ 

ouverts. In: J.D. Lebreton and B. Asselain, ds., Biometrie et Environnement, p. 241-270. Paris, 
Masson. 

Potts, W.H. (1933). Observations on Glossina mrsitans Westwood in East Africa. Bulletin of 
Entomological Research 24: 293-300. 

Rogers, D.J. (9974). Ecology of Glossina. Natural regulation and movement of tsetse fly populations. Revue 
d’êlevage et de medecine vktérinaire des pays tropicaux (Supplêment). Les moyens de lutte contre les 
trypanosomes et leurs vecteurs. Actes du Colloque, Paris, 35-38. 

Rogers, DJ. and S.E. Randolph (1984). From a case study to a theoretical basis for tsetse control. Insect. 
Science Application 5: 419-423. 

Rogers, D.J., S.E. Randolph and F.A.S. Kwoe (1984). Local variation in the population dynamics of 
GZossinapZpaZispaZpalk (Robineau-Desvoidy) (Diptera: Glossinidae]. I. Natural population regulation. 
Bulletin of Entomological Research 7 4  403-423. 

Ryan, L. [198l>. GZossina (Diptera: Glossinidae) growth rates. Bulletin of Entomological Research 71: 

170-177. 

Department of Agriculture of South Rodhesia, 1, 203 p. 

Research 24: 443-482. 

Entomological Research 37: 291-299. 

201 -206. 

519-531. 



333 

Saunders, D.S. (1960). 'Ihe ovulation cycle in Glossina morsitans Westwood (Diptera: Muscidae) and a 
possible method of age determination for female tsetse flies by examination of their ovaries. 

~ Transaction of the Royal Entomological Society of London 112 221-238. 
Saunders D.S. (1962). Age determination for female tsetse flies and the age composition of samples of 

s Glossina pallidipes Amt, G. palpalis fuscipes Newst. and G. brevialis Newst. Bulletin of 
Entomological Research 53: 579-595. 

Saunders D.S. (1967). Survival and reproduction in a natural population of tsetse fly, Glossina palpalis 
palpalis (Robineau-Desvoidy). Proceedings of the Royal Entomological Society of London (A) 42 

Snow, W.F. and S.A. Tarimo (1985). Observations on age-grouping the tsetse fly, Glossinapallidipes, by 
wing-fray and ovarian dissection, on the south Kenya coast. Bulletin of Entomological Research 79: 

Taylor, P. (1979). 'lhe construction of a life-table for Glossina morsitans morsitans Westwood (Dipetera: 
Glossinidae) from seasonal age-measurements of a wild population. Bulletin of Entomological Research 

Van Sickle, J. (1988). Invalid estimates of the rate of population increase from Glossina (Diptera 
Glossinidae) age distributions. Bulletin of Entomological Research 78: 155-161. 

Williams, B.G., R.D. Dransfield and R. Brightwell (1990). Tsetse fly (Diptera: Glossinidae) population 
dynamics and the estimation of mortality rates from life-table data. Bulletin of Entomological Research 
80: 479-485. 

R 

129-137. 

w 457-461. 
# 

6 
69: 553-560. 

b 
G 


