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Typology of rainfall fields to improve rainfall estimation 
in the Sahel by the area threshold method 
Abou Amani,l,2 Thierry Lebel,3 Jean Rousselle,l and Jean Denis Taupin4 

Abstract. The stratification of rainfall fields to improve specific rainfall models is a 
subject that has received relatively little attention in the literature. It is shown here that 
objective classification techniques, based on the intensities and spatial distribution of the 
rainfall fields, can produce meaningful results in terms of the area threshold method 
(ATM) model and climatology. Four approaches for rainfall classification, using rain 
gauge data, are proposed in order to improve the average areal rainfall estimation in the 
Sahel by the ATM model. Two of them are based on the structural behavior of the rainy 
area (area where it rains above a given threshold) function against a threshold. Based on 
this function, a new parameter, called the under profile area (UPA), has been proposed 
for the classification of rainfall fields. The groups obtained from the method based on this 
parameter are characterized by different average spatial structures. A significant 
improvement on the ATM model is observed by considering classification based on the 
UPA parameter. An average reduction of 34% of the root-mean-square error is observed 
in a validation term. This improvement is a direct consequence of the fact that the 
optimal thresholds are different from one group to another, which is an important point 
when considering the impact of classification on the ATM model. 

1. Why a Typology of Rainfall Fields? 
For a large majority of the rainfall models presented in the 

literature, all the available rainfall data are used in the mod- 
eling process without any stratification or, at best, with a crude 
separation based on some elementary characteristics of the 
rainfall field (its space-averaged value, for instance). Yet it is 
well known that rainfall data originate from different types of 
rainstorms, and Houze [1981] has shown that a separation 
between stratiform and convective rainfall is possible for many 
different precipitation systems. On a synoptic scale, meteorol- 
ogists have developed the concept of weather type, which has 
proved efficient in relating the rainfall features on a large scale 
with some relevant meteorological variables [e.g., Benichou et 
al., 19881. However, in many cases it is very difficult, if not 
impossible, to identify the meteorological nature of a rainfall 
event in a limited area of study, the more so if only inappro- 
priate meteorological data are available. Furthermore, on 
smaller scales, which are of interest to hydrologists, relation- 
ships between the atmospheric circulation and rainfall charac- 
teristics on the ground are much more difficult to find. This is 
partly due to the lack of proper meteorological data and partly 
due to the complexity of rainfall distribution in time and space 
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when viewed at a resolution of, say, a few kilometers and a few 
hours (or less). On such scales, two events triggered by the 
same meteorological situation may have a different ground 
signature. 

Rainfall stratification is especially useful for satellite-based 
rainfall estimation algorithms and climatology. For instance, 
the lower accuracy in satellite estimates during phase 2 of the 
GARP (Global Atmospheric Research Program) Atmospheric 
Tropical Experiment (GATE) was attributed by Woodley et al. 
[1980] to the presence of a higher proportion of a different 
kind of precipitating convective system as compared to phases 
1 and 3. In their review of the grid-cell approach for satellite 
rain estimation over Florida, Negri arid Adler [1987] felt the 
necessity to group the data into classes. However, the results of 
the proposed stratification technique, based on the mean rain 
rate, were inconsistent, the variability of the mean infrared 
temperature within each rain rate class being often as great as 
the differences between rain classes. The authors implied that 
other classification schemes should be designed. Desbois et al. 
[1988] point out that in the Sahel, a distinction has to be made 
between local convection and mesoscale convection. 

Given the theoretical and practical d5culties of implement- 
ing stratification schemes based on a meteorological analysis, it 
appears appropriate to derive alternate schemes based on the 
rainfall data set only, since these schemes are the most readily 
available to users. Since the possible uses of a rainfall typology 
are numerous, the choice of a proper classification procedure 
will have to be based on the aims of this classification. Strati- 
fication of rainfall events in their stratiform and convective 
parts is considered to be very important in rainfall estimation 
by satellite remote sensing. Also, the separation of rainfall 
events having different statistics (namely mean and variance) is 
necessary when using methods based on these statistics (satel- 
lite rainfall estimation methods). One ,of such methods widely 
used is the area 'threshold method (ATM). The ATM model 
[Short et al., 1993; Roserzfeld et al., 19901, is derived from the 
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area time integral (ATI) model, first proposed by Doizeaud et 
al. [1981] for the estimation of convective rain volume for a 
given rainfall event. In this study we are interested in classifì- 
cation schemes based on rain gauge data in order to (1) im- 
prove the areal rainfall depth estimation by the ATM model 
and (2) improve our understanding of the Sahelian rainfall 
climatology. 

The topics covered in this paper are presented in the fol- 
lowing order: geographical location and data set of the study, 
review of possible classification criteria, classification methods 
relevant to rainfall estimation by the threshold method, appli- 
cations of the classification methods and their contribution for 
improving Sahelian precipitation estimation by the ATM 
model, and the conclusion. 

2. A Sahelian Case Study 
Estimating rainfall over the Sahel (the semiarid region lying 

south of the Sahara), where the networks of measurement 
stations are not highly developed, is necessarily more difficult 
than in a temperate region. This is because of the intermittent 
nature, in time and space, of the data they provide. It is of vital 
importance in this setting therefore to combine direct rainfall 
measurements (ground-based rainfall data) and data obtained 
through remate sensing. However, the performance of the 
algorithms designed to integrate these raw data is a function of 
the homogeneity of the data. In order to test and improve 
these algorithms, the satellite estimation of precipitation, Ni- 
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ger, experiment (EPSAT-NIGER) [Lebel et al., 19921 was con- 
ducted in the Niamey region in which data were obtained 
through very accurate sampling of rainfall systems by means of 
a dense network of rainfall gauges and by radar (Figure 1). At 
this time the area under study, measuring 120 X 110 km, was 
equipped with about 100 static-memory rain gauges. This net- 
work consisted of a basic network of rain gauges installed on a 
regular grid and spaced approximately 12.5 km apart, at the 
center of which was a denser network covering an area of 400 
km2. 

The various rainfall events observed in the Sahel originate 
mainly from three types of meteorological systems: isolated 
convective systems, organized moving convective systems, and 
squall lines, the latter two being grouped together under the 
heading "mesoscale convective systems" (MCS). The amounts 
of precipitation recorded during a rainfall event, whatever its 
origin, are extremely variable in space, however. The rainfall 
regime includes a dry season (October-April) and then a rainy 
season (May-September). The rainfall events observed during 
the EFSAT-NIGER experiment have been defined as follows: 
(1) a minimum of 30% of operating rain gauges have recorded 
more than 2.5 mm of rainfall, and (2) a minimum of 30 min 
must separate two consecutive events. Respectively, 37,47, and 
49 such events were recorded in 1990,1991, and 1992 [Lebel et 
al., 19951, totaling more than 95% of the seasonal rainfall (the 
remaining rainfall, less than 5%, is produced by isolated show- 
ers at the beginning and end of the rainy season). 
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Another feature of rainfall in this region is that the average 
annual rainfall is strongly correlated to the number of events 
during which rainfall accumulation exceeds a given threshold 
[Taupin et al., 19931. Recently, LeBarbé and Lebel [1996] 
pointed out that seasonal rainfall depth (week, month, or year) 
in the Sahel can be easily estimated by the product of clima- 
tological mean rainfall depth per event and the number of 
recorded events. This observation can be improved if we can 
distinguish between the different contributions in number and 
total rainfall accumulation of the different types of rainfall 
events. Also, a robust method stratifying the Sahelian rainfall 
events cali contribute to the improvement of the climatological 
diagnostics for the rainy season. A major field of interest for 
classification is to improve areal rainfall estimation models 
such as the ATM, widely proposed for rainfall estimation from 
remote-sensing data. Since the Sahelian rainfall is produced by 
a few different precipitation systems, it would be helpful to 
classify rainfall fields with the objective of improving the ATM 
model in the Sahel. An objective meteorological stratification 
of rainfall events in the Sahel is difficult to implement because 
of the lack of pertinent meteorological data and the soft gra- 
dient of Sahelian pressure fields. Therefore classification based 
on rain gauge data is very attractive. Since it is based on rainfall 
characteristics observed at the ground level, the classification 
can also b& useful for other specialists interested in water 
resources in the Sahel. 

3. Stratification Based on Rain Gauge Data: A 
Review of Possible Criteria 

Since no widely accepted stratification method is available, 
several approaches, based on parameters characterizing the 
spatial or spatiotemporal features of the rainfall events, will 
have to be compared. These parameters may be directly con- 
nected to the theoretical assumptions of the estimation mod- 
el(s) of interest, or we can define a priori certain parameters 
characterizing the basic structure of the rainfall field but with 
no direct connection with the estimation model(s). 

For rainfall field estimation models the classification criteria 
must be necessarily linked to the spatial or spatiotemporal 
behavior of the rainfall fields. Taupin et al. [1993] and Lebel et 
al. [1995,1996] have described the high spatialvariability of the 
Sahelian rainfall at the event and annual scales. For hydrolog- 
ical and agronomical studies in the Sahel this variability must 
be considered. Thus a natural classification criterion for rain- 
fall fields can be the spatial structure of the total rainfall depths 
of the event. Various attempts carried out byArnani [1995] to 
stratify the Sahelian rainfields according to such statistical pa- 
rameters as the variogram parameters or the coefficient of 
variation of the rainfields proved to be not very efficient. We 
were thus led to consider alternate approaches. 

Considering the spatiotemporal behavior of rainfall fields, 
the procedure proposed by Kottegoda and Kassim [1991] for 
the classification of temporal rainfall structures (punctual hye- 
tographs) was generalized in space-time (areal hyetographs) by 
Amani et al. [1993]. The classification based on these ap- 
proaches has two main drawbacks: (1) the computation of the 
rainfall hyetograph type depends on the time step duration of 
the hyetograph used for the analysis [Amani et al., 19931, and 
(2) it cannot account for the rainfall distribution in space. An 
extension of these methods to describe the spatial structure of 
the rainfall as measured by a rain gauge network is therefore 
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Figure 2. Event rainfall versus proportion of zero rainfall for 
the events of 1992. Shown are conditional (crosses) and non- 
conditional (triangles) mean areal rainfall of events over the 
whole network area. 

proposed in the next section as a classification scheme directly 
related to the ATM method. 

Two important characteristics to be considered in the clas- 
sification schemes are the intermittent nature and intensity of 
rainfall fields in the Sahel. Even though intermittent rainfall 
events are generally weak events, we can observe from Figure 
2 that moderate events can be nonintermittent events. As we 
can see from this figure, there is a significant difference be- 
tween the conditional and the nonconditional mean areal rain- 
fall depths for very intermittent events. A good classification 
method for Sahelian rainfall must consequently have a sepa- 
ration of events based on their degree of intermittency (pro- 
portion of zero-rain area inside the area of study) or their 
intensity or both. 

. 

4. Selection of Methods Relevant to Rainfall 
Estimation by the ATM Algorithms 

Classification methods capable of improving rainfall field 
estimation by the ATM model must necessarily be based on 
parameters characterizing the spatial structure of rainfall fields 
in terms of rainfall accumulation and/or their areal extent. 
Several classification methods are proposed and compared by 
Amani [1995]. The comparison presented by Amarti [1995] led 
us to select three classification methods which are better and 
more robust than the others. They are method 1, based on the 
clustering analysis of parameters characterizing the rainfall 
event intensity; method 2, based on a crossing analysis of the 
rainy area function (area where it rains above a given thresh- 
old) versus threshold (this is an extension in space of the 
method proposed by Kottegoda and Kassinz [1991] for the clas- 
sification of the liyetograph of rainfall events observed at a 
given rain gauge); and method 3, based on the analysis of the 
cumulative distribution function of the newly introduced under 
profile area (UPA) parameter. The UPA is defined as the area 
under the rainy area function obtained by method 2. Also, the 
two criteria, the UPA parameter and the parameters used in 
method 1, are combined to produce a fourth method. 
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Figure 3. Definition of the rainy area above a threshold (Ci 
is the ith threshold value, and A C j  is the rainy area where it 
rains above Ci). 

4.1. Method 1 
For a rainfall event the maximum total rainfall CAIO ob- 

served over the whole rain gauge network for various periods 
0 of accumulation are computed: 

Cb,e = max [R,(i)] i = 1, n (1) 

where RB(i )  is the maximum rainfall accumulation recorded at 
rain gauge i for accumulation period 8. Usually, not all the 
maxima are recorded on the same gauge. This set of maximum 
values is thus a global indicator of the rainfall pattern over the 
area of study. 'Here, five durations 8 were chosen: 5,10,15,30, 
and 60 min. Other meaningful parameters may also be consid- 
ered, such as total event recorded depth, mean recorded depth, 
and event duration. The five parameters (Chle for 0 = 5, 10, 
15, 30, and 60 min) retained here proved to be the most 
significant for application to Sahelian rainfall. 

4.2. Method 2 
With this method, we propose to use the profile of the rainy 

area function as a classification parameter. The rainy area is 
the area over which the rain rate exceeds a given threshold. It 
is scaled by the total area of the study. Figures 3 and 4 illustrate 
the rainy-area approach. Let C be a rainfall threshold; then 
define AC as the percentage of the rainy area where rainfall 
exceeds this threshold C. AC is estimated from the recorded 

Threshold value (mm) 

Figure 4. Rainy area (area where it rains above a given 
threshold) function of the threshold. C, is the maximum rain- 
fall depth and A,  is the total area of the network. 

spatial data using the indic.ator technique, where an indicator 
variable is computed as 

(2) 
I(x, y, t )  = 1 R ( x ,  y, t )  > = c 

, I ( x , y ,  t )  = O otherwise 

The value of AC is then given by 

In practice, A C is calculated for a rainfall field accumulation 
over a time period 0 (0 may be a fixed time step, say 1 hour, or 
the event duration as considered in this study). The corre- 
sponding AC function is denoted by A%, and estimated as 

(4) 

where IB(x,, y,) is the indicator variable associated with gauge 
i for the accumulation period 8. AC, is a decreasing function 
of c. 

The complementary function BC = (1 - AC) is the area 
of rainfall below C. In order to compare the BC functions for 
different events, the threshold axis must be scaled by a scaling 
parameter C,w 

Cu = max [R,(i)] i = 1, n (5) 

C+ = CICM (6) 

The threshold variate then becomes 

BC is a function analogous in time to a mass curve. By follow- 
ing the procedure applied by Kottegodn and Kassina [1991] to 
the hyetograph analysis, it is possible to count the number of 
intersections between the bisector and the observed BC curve, 
which produces a direct classification (Figure 5). The basic 
types of the classification are numbered la, lb ,  2a, 2b, and so 
on. The order number is defined as follows: if x is the number 
of intersections between the mass curve and the bisector ex- 
cluding the two end points, then the order of the mass curve is 
given by (x + 1). If the part of the mass curve before the first 
intersection is under the bisector, then the class of the mass 
curve is a; otherwise it is b .  

4.3. Method 3 
This method is based on the BC function defined above. The 

area under the BC function (UPA) is computed (Figure 6). 
Since both axes are scaled, UPA takes values between O and 1. 
The value O corresponds to a spatial uniform rainfall and the 
value 1 corresponds to a Dirac-like event. It is demonstrated in 
section 4.4 that the UPA parameter is related to the coefficient 
of variation under certain assumptions. It is shown in section 5 
that the cumulative distribution of the UPA values obtained 
from the 133 Sahelian rainfall events leads to a natural classi- 
fication in three groups. The UPA parameter has some inter- 
esting statistical meaning, as will be shown below. 

4.4. Links Between the UPA Parameter and CV 
First, let us consider the relationship between the rainy area 

AC and the threshold C. Studying this relationship for each 
event, it appears that log ( A C )  is linearly correlated with C. In 
1991, only nine events, out of a total of 47, have a coefficient of 
determination R2 under 0.90, and 26 events have an R2 above 
0.95. The results for 1990 and 1992 are even better, with, 
respectively, five events (out of a total of 37) and four events 



AMANI ET AL.: TYPOLOGY OF RAINFALL FIELDS 2411 

(out of a total of 49) with an R2 under 0.90, and 20 events 
(1990) and 37 events (1992) with an R2 above 0.95. For a given 
event j ,  we may thus write 

AC, = exp (-C/u,) (7) 
It should be noted that the empirical justification of the ex- 
pression (7) is backed by the finding of Lebel et al. [1996] that 
the cumulative distribution function (cdf) of the event rainfall 
is exponential. Since there is an obvious, even if not straight- 
forward, relationship between the exceedance probability of a 
given rainfall event value ZJ and the area a, corresponding to 
this value, it is not surprising that the cdf and area distribution 
function are of the same functional type. Using the scaled 
threshold C d ,  defined in expression (6), (7) may be rewritten: 

Y 

e AC,  = exp [-CY(CMla,)l (8) 

where C, is the recorded maximum of R,(x, y) for event j .  
The scaled spatial profile BC, is then expressed as 

BCI = 1 - exp [-C*(C,la,)] ( 9) 

BCJ, C , ,  and a, are all realizations of random variables 
associated with the random process R,(x, y). This process is 
defined by its probability density function, with mean p,, stan- 
dard deviation uT, and coefficient of variation CV. From the 
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Figure 5. Classification of storm structure types by method 
2 (a) types lb  and la, (b) types 2b and 2a, and (c) types 3b and 
3a. Ao and A ,  are the total network area and the area where 
it rains above the threshold value C, respectively, and C,, is 
the maximum rainfall depth recorded through the network. 
Reprinted from Jounzal of Hydrology, vol. 127, no. 1/4, N. T. 
Kottegoda and A. H. M. Kassim, Classification of storm pro- 
files using crossing properties, pp. 37-53, 1991, with kind per- 
mission of Elsevier Science-NL, Sara Burgerhartstraat 25, 
1055 KV Amsterdam, The Netherlands. 
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Figure 6. Illustration of the UPA parameter and spatial 
crossing approach. (a) Rainy area versus' threshold and (b) 
spatial profile of the rainfall event and definition of the under 
profile area (UPA) parameter which is the integral of the 
spatial profile. 

frequency analysis point of view the maximum rainfall re- 
corded by a network of i z  independent gauges is also a random 
variable corresponding to the quantile Q,,. The expected prob- 
ability of nonexceedance of &,,, P,, is given by (II - a ) / ( n  + 
b ) ,  with the a and b parameters taking values between O and 
1 (the values of a and b required to obtain an unbiased esti- 
mate of P, depend on the probability distribution of R,(x, y); 
see Curznane [1978] for a review). Q, may be expressed as 

Q,, = P + Au ( 10) 

where A is a statistic which depends on P,, and on the proba- 
bility distribution of R T ( x ,  y). For a given realization (rain 
event) j ,  this expression yields 

CMj = mi + lisj (11) 
where nij and sj are the computed mean and standard devia- 
tion of the rainfall recorded by the network for the event j ;  li 

1 2 3 4 5 6  
Frequency factor value 

Figure 7. Histogram of the frequency factor ( I )  values cor- 
responding to the event maximum rainfall depth CM (3 years 
combined). 
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is the frequency factor of the maximum cumulated rainfall and 
it is linked to the return period of C,  recorded during event j .  
Substituting (11) into (9) yields 

BC,  = 1 - exp [-C*(mj t l jsj)/aj] , (12) 

For the area under the scaled spatial profile, UPA,, being the 
integral of B C  for C* varying from O to 1, we get 

. UPA, = \o1 1 - exp [ - C i ; ( m j  + l js j ) /a j ]  dC* (13) 

Defining 

Ki = (ni, + l j s j ) /a j  

UPA, = 1 - [-l/Kj exp (-KjC*)]A 

UPAj = 1 - l/Kj i- exp (-Kj)IKj 

(14) 

(15) 

(16) 

leads to 

or 

Computing the values ai and mj for all the available events j 
shows that mj may be used as an estimate of ai, which means 
that (14) may be written simply as 

Kj = 1 t ljCT/;: (17) 

Furthermore, the values of CV, and 1, show that ljCVi is 
almost always greater than 1 and most often greater than 2. 
Figure 7 presenti the histogram of the frequency factor values 
1. 

Consequently, exp ( -Kj) is small compared to 1, and the 
third term in the summation of (16) may be neglected, so that 
(16) becomes 

UPAj = l jCq / ( l  + ljCV,) (18) 

Using a Taylor second-order development, (18) may be written 
as 

Table 1. 
Against 1 / C V  and (l/CV)' 

Parameters of the Linear Regression of UPA 

~ 

Year R2 flo fll f 1 2  I, I, il 

'1990 0.753 1.10 -0.35 0.036 2.8 3.7 37 
1991 0.873 1.02 -0.34 0.046 2.8 3.3 47 
1992 0.813 1.01 -0.29 0.036 3.5 3.7 49 

UPA = a,, f allCV i- n,/(CV)'; 1, and 1, are the estimates of 1 
computed respectively as I = l /a ,  and I = 1 / ( 2 ~ , ) ~ ' ~  (see expression 
(19)). R2 is the coefficient of determination and n is the sample size 
(number of rainfall events). 

I 
1 

UPA, = 1 - - ljCv, t i 2(ljCVj)' 

It is possible to verify the theoretical expression (19) by re- 
gressing UPA on l l C V  and (l/CV)*. The results are given in 
Table 1 for all 3 years. It can be seen that depending on the 
year considered, between 75 and 90% of the variance of UPA 
is explained by the variance of CY. Thus the UPA distribution 
is related primarily to that of CV, which is a measure of the 
global spatial variability of a given rainfield, and also to that of 
the variable I, which appears to be related to the overall 9 

strength of a rainfall event. This explains (at least partly) two 
findings of our comparison between classification methods: 
one, not presented here, is that differences were found be- 
tween the UPA classification and a classification based on the 
CV only [Ailmani, 19951, the UPA classification performing 
better; the other (presented below) is that the combination 
between methods 1 and 2 did not improve the performances 
obtained with method 3 alone (the information provided by 
method 1 is essentially related to the strength of a rainfall 
event). 

5. Stratification of Sahelian Event Rain Fields 
In order to evaluate the impact of classification on the spa- 

tial estimation of rainfall by the ATM model, rainfall data 

. . ....... .......,.. " ................................. 

P 

'I 

i 

UPA 

Figure 8. Histogram of the UPA values (3 years combined). 
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Table 2. Parameters and Group Size for Each Significant 
Group Obtained From Each of the Four Methods for 
Seasons 1990,1991, and 1992 

Group Size 

Methods .Group 1990 1991 1992 Parameters 

1 1 15 
2 19 

2 lb  32 
2a, 2b 5 

3 1 6 
2 13 
3 18 

4 1 21 
i, 2 10 L' 

t 

15 24 
15 22 
39 35 
8 12 

10 5 
21 21 
16 23 
23 29 
20 12 

rainfall 
intensities 

rainy area 
function 

UPA defined 
from rainy 
area 
function 

UPA and 
rainfall 1 
intensities 

collected in connection with the EPSAT-NIGER experiment 
during the years 1990, 1991, and 1992 are used. The four 
classification schemes presented in section 3; methods 1, 2, 3, 
and 4 are applied to the stratification of each of the three event 
rainfall samples of 1990, 1991, and 1992; samples of 1990 and 
1991 combined; and the 3 years are combined. The histogram 
of the UPA values (133 events recorded during the EPSAT- 
NIGER experiment) is presented in Figure 8. This figure 
clearly leads to a natural classification of rainfall fields into 
three distinct groups: group 1, with UPA values less than 0.66; 
group 2, with UPA values between 0.66 and 0.81; and group 3, 
with UPA values greater than 0.81. This systematic classifica- 
tion is called the distribution of the UPA parameter (DUPA), 
or method 3. Thus two methods are systematic (methods 2 and 
3)) and the other two (methods 1 and 4) are based on a 
clustering analysis. The commercial software Statistical Analy- 
sis System (SAS) [1982], version 5.18, was used to perform the 
clustering. A review of clustering techniques may be found in 
work by MacQueen [1967] and Andevberg [1973]. 

Table 2 presents the size of the significant groups for each 
method. Method 1 leads to two groups having similar sizes. 
Group 1 is made of the stronger events, while group 2 is made 
of the less intense events. For method 2, spatial crossing, the 
grouping of the event is given by the order of its spatial profile 
function (rainy area against threshold) when the crossing tech- 
nique is applied. The majority of the events belong to group lb. 
The other events, belonging to the other orders (2a or 2b), are 
characterized by a large spatial extension. The three groups 
given by method 3 are characterized by different degrees of 
intermittency. The events of group 1 are large spatial events, 
while those of group 3 are highly intermittent. 

Major points to consider when estimating areal rainfall are 
the continuity and stationarity of the field. If the field may be 
assumed. to be continuous and stationary in space, several 
statistical methods, most notably those of the best linear un- 
biased estimator (BLUE) family, are available. On the other 
hand, when the intermittency becomes a significant aspect of 
the field under consideration, it has to be taken into account, 
as proposed by Braud et al. [1993], for instance. In such cases, 
two parameters play a key role in the areal estimation process: 
the mean areal rainfall (AR) over the rainy areas, which is a 
characteristic of the event magnitude, and the percentage of 
gauges affected by rainfall (PGA), which characterizes the spa- 
tial extension of the event. Methods 2 and 3, based on the 

P 

I 

spatial behavior of the events, tend to classify the rainfall 
events according to their PGA and their AR, whereas method 
1 does so principally according to their AR [Amani, 19951. 

Three important statistics of the obtained groups can be 
used to analyze the potential of the classification methods to 
improve rainfall estimation by the ATM model. They are the 
mean average areal rainfall, the mean standard deviation, and 
the mean coefficient of variation. These statistics are presented 
for the three groups obtained by method 3 (DUPA) in Table 3 
as an example. It appears that both the nonconditional and 
conditional statistics are significantly different from one group 
to another. The probability of nonzero rainfall may be esti- 
mated as the ratio between the nonconditional average (in- 
cluding zero rainfall) and the conditional nonzero average, 
that is, 97% for group 1, 85% for group 2, and 63% for group 
3. Since both CV and the probability of nonzero rainfall are 
very different from one group to the other, this necessarily has 
an effect on the ATM model where, usually, a unique condi- 
tional distribution function of rain rate is considered. 

Also, to point out the possible positive impact of these clas- 
sification methods on improving the ATM model, the variance 
of the conditional mean rainfall depth for each group is com- 
puted and compared with the variance of the conditional mean 
rainfall depth (conditional to the threshold considered) of the 
sample for each year. A reduction in the variance of the con- 
ditional average rainfall depth is observed for the majority of 
groups. Figure 9a illustrates the reduction in the variance of 
the conditional rain depth against the threshold for method 3 
for the 1990 sample: The conditional mean rain depth is also 
given as a function of the threshold in Figure 9b. Table 3 and 
Figure 9 display significant differences between the statistics of 
each group of method 3. Similar results were obtained with the 
other methods, which leads one to expect an improvement in 
the ATM model by considering the classification procedure. 

6. Comparison of Performance of the ATM 
Event Rain Depth Estimates With and Without 
Stratification 

The four classification methods are considered now in order 
to evaluate their impact on the ATM estimates of areal rainfall 
depth. The ATM model is therefore applied before and after 
classification, and the resulting errors are compared. These 
errors are evaluated by considering the optimal ATM model 
for each group. 

6.1. Review of the ATM 
The ATM model, initially developed in the meteorological 

domain for estimating average rainfall based on satellite im- 
ages and radar, is applied here to the EPSAT-NIGER data to 
estimate average event rainfall. The ATM model is based on 
the existence of a strong linear correlation between the average 
rainfall over an area and the fractional area wheLe the rainfall 
amounts exceed a given threshold. This relation was first ob- 
served empirically by Doneaiid et al. [1981, 19841. Thus for a 
threshold rainfall C the mean rainfall m(t )  at time t on the 
surface under study is given by 

I72(t) S (C)F( t ,  C) + b ( C )  (20) 

where P ( t ,  c )  is the fractional area where the rainfall recorded 
at time t exceeds threshold C. The parameters S(c) and b ( c )  
are coefficients obtained through linear regression between the 



Table 3. Statistics and Contributions of the Different Grouus of Method 3 to the Total Rainfall Accumulation in 1990, 1991, and 1992 

Group 

1 2 3 

Average Average Statistics Average Average Statistics Average Average Statistics 
Rainfall Standard Average Defining the Rainfall Standard Average Defining the Rainfall Standard Average Defining the 
Depth, Deviation, Coefficient Importance of Depth, Deviation, Coefficient Importance of Depth, Deviation, Coefficient Importance of 

Sample mm mm of Variation Each Group* mm mm of Variation Each Group* mm mm of Variation Each Group* 

Nonconditional 
statistics 

Conditional 
statistics 

Nonconditional 
statistics 

Conditional 
statistics 

Nonconditional 
statistics 

Conditional 
statistics 

Nonconditional 
statistics 

Conditional 
statistics 

22.8 12.8 

23.6 12.5 

... ... 

22.0 12.8 

22.9 12.3 , 

... ... 

21.4 12.7 

21.9 12.5 

... ... 

26.6 13.0 

27.7 12.6 

... ... 

0.60 

0.56 

... 

0.58 

0.54 

... 

0.65 

0.61 

... 

0.55 

0.49 

... 

... 

... 

21, 15.8, 34.7 

... 

... 
6, 16.0, 35.0 

... 

... 

10, 21.3, 41.0 

... 

... 
5, 10.2, 26.6 

3 Years 
11.1 10.2 

13.1 10.4 

1990 
12.1 12.5 

14.2 12.6 

1991 
10.9 10.2 

12.3 10.1 

... 
1992 

10.8 8.8 

13.1 9.2 

... ... 

1.15 

0.84 

... 

1.12 

0.91 

... 

1.01 

0.83 

... 

1.30 

0.79 

... 

... 
55, 41.4, 43.7 

... 

... 
13, 35.0, 42.0 

... 

... 
‘21, 44.6, 43.9 

... 

... 
21, 42.9, 45.4 

5.3 

8,4 

... 

4.8 

8.3 

... 

4.9 

8.2 

... 

6.1 

8.6 

8.4 

9.6 

... 

8.4 

9.8 

... 

8.3 

9.6 

... 

8.5 

9.5 

... 

1.79 

1.16 

... 

1.89 

1.18 

... 

1.83 

1.17 

... 

1.67 

1.14 

... 

... 

57, 42.8, 21.6 

... 

... 
18, 49.0, 23.0 

... 

... 
16, 34.0, 15.1 

... 

... 
23, 46.9, 28.0 

*Sample size, percentage represented by the group’s events, and percentage of the group’s events’ contribution to the total rainfall accumulation. 



AMANI ET AL.: TYPOLOGY OF RAINFALL FIELDS 

5 

2481 

I I I I I I 

160 , 

.................. .- ............... ".l"" .. ....... 

.................. 

" "" " .......................... " 

---- 
I I I I I I 

O 5 10 15 20 25 30 35 
THRESHOLD (MM) 

45 I 

40 ........).......II ...._ .......................... "..(̂...̂ L 

s b !  .............. " .......... " - ............ ~ " 35 " 

4 " " I  
" ............... 

......... "_ ......... " ........ .............. .......... " .................... 

." ........................ ".....__............__I ." .......... l_,. ...... .................. .............. ................ 

gro,up 1 

group 2 r group 3 

I j/.:..- ~ "..".......1...11._......._1-."1̂-.............--11............"...........".....1.....1.. ~ 

O 5 10 15 20 25 30 35 

THRESHOLD (MM) 

Figure 9. Conditional mean and variance of the areal rainfall depth for the events of 1991 before classifi- 
cation and after classification by the distribution under profile area (DUPA) method (all three groups 
together) against the threshold considered. (a) Variance and (b) average conditional rain depth. 

average rainfall amounts for the various fields and the corre- 
sponding fractional rainfall area. These coefficients are a func- 
tion of the threshold, while the average rainfall is independent 
of it. The threshold method is characterized by the fact that as 
the threshold value increases, so does the coefficient of deter- 
mination R 2  between m(t)  and F ( t ,  c) until a maximumvalue 
for a certain threshold (optimum threshold) is reached, and 
then it decreases. 

The theoretical framework of the threshold method has 
been recently revisited by several authors [Kedenz et al., 1990; 
Atlas et al., 1990; Rosenfeld et al., 19901. Kedem and Pavlopoulos 
[1991] have proposed a statistical method for determining the 
optimum threshold, and Bruzid et al. [1993] have shown that 
under certain hypotheses, the theoretical correlation coeffi- 
cient between m(t )  and F ( t ,  c) is a function of the spatial 
structure of the rainfall depth amounts. 

The evaluation of the impact of classification is based on the 
calculation of a criterion measuring the error between the 

,~ 

\ '' 

average rainfall estimated by the model over the whole area 
under study and the average rainfall recorded by the rain gauge 
network. The criterion selected here is the root-mean-square 
error (RMSE). In addition, the improvement brought about by 
the model is tested in calibration and validation mudes. Given 
a classification method, the RMSE for each group and a global 
RMSE are computed. 

6.2. Relation Between the Rainfall Surface and the Average 
Accumulated Rainfall for the Event 

The method is applied here to estimate average rainfall 
accumulations during an event over the area under study 
(13,200 km'). First, the method is applied without classification 
of rainfall fields. It is then applied separately for each of the 
significant groups obtained using the four classification meth- 
ods. The following nine basic threshold values are considered: 
0.5, 2, 5, 7.5, 10, 12.5, 15, 17.5, and 20 mm. For some groups, 
to reach the optimum threshold, additional threshold values 
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Figure 10. Coefficient of determination (R2)  of the ATM model for various thresholds for each year and 
cokbination of years. 

are considered. For each of these values and for each rainfall 
field the fractional rainfall area (an area where the rainfall 
amounts exceed the fixed threshold value) is calculated using 
the indicator method. Let C be the value of the threshold and 
R ( i )  the total amount of rainfall recorded at station i. 

The indicator variable I ( i )  is defined as 

(21) 
](i) = 1 
I ( i )  = O otherwise 

R(i )  > = e 

The fractional rainfall area for rainfall event k is estimated by 

i=n 

The average rainfall nz(k) of field k over the surface under 
study is calculated by the arithmetic mean, taking into account 
nullvalues. For each set of rainfall events the estimation model 
is obtained by carrying out, for a given value of threshold C, a 
linear regression between the average rainfall values m ( k )  and 
the values of the fractional rainfall area F ( c ,  IC). Basic models 
are determined first, without classification, by calculating the 
correlations for each year separately (1990,37 values; 1991,47 
values; and 1992, 49 values). More substantial samples are 
formed subsequently by adding the values for 1990 and 1991 
(84 values) and then by including values for all 3 years (133 
values). The evolution of the coefficient of determination R' as 
a function of the threshold for each sample is given in Figure 
10. From the values of R2, we see that the optimum threshold 
for each year is in the neighborhood of 17.5 mm. 

6.3. ATM Model and Classification 
The ATM is applied to each of the groups obtained by the 

four classification methods for each of the 3 years, for the years 
1990 and 1991 combined, and for the 3 years combined. The 

most important point in the application of the ATM model for 
each group is that the optimum threshold and the coefficient of 
determination R' are different from one group to another for 
all the samples and classification methods considered. As an 
example, Figure 11 illustrates the variation in the coefficient of 
determination (regression equation characterizing the ATM 
model) versus the threshold for the three classification meth- 
ods (methods 1, 2, and 3) when all 3 years are combined. This 
result can be expected from the analysis given in section 4, 
where it was pointed out that the statistics (mean, standard 
deviation, and coefficient of variation) of the various groups 
are different. The parameters of the optimal ATM model for 
methods 1, 2, and 3 are given in Table 4. Figure 12a illustrates 
the threshold model for the 3-year sample (1990-1992) before 
classification at the optimal threshold (17.5 mm). For method 
3, Figures 12b, 12c, and 12d present also the optimal threshold 
models for the groups 1, 2, and 3, respectively. 

Before stratification, the RMSE value of the optimal ATM 
model for the 1990-1992 sample was 2.24. After classification, 
by considering the optimal model for each group, the RMSE 
values are 1.93, 1.68, and 1.54 for methods 1,2, and 3, respec- 
tively. In terms of percentages this corresponds to RMSE value 
reductions of 13.8%, 25%, and 31.3%, respectively, for the 
three methods. Thus flassification improves significantly the 
ATM estimates in the calibration phase, particularly for 
method 3. However, the effect of the classification has to be 
evaluated in a validation mode, especially since the model 
before classification has a smaller number of parameters (two) 
than the models after classification (2 times the number of 
groups). 

Two cases are considered for validation purposes. In the first 
case the mean areal rainfall of the 1992 events is reconstituted 
from the optimal ATM models calibrated by combining the 
1990 and 1991 events. A fourth classification scheme combin- 

1 

1 
i 
r, 
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Figure 11. Coefficient of determination (R') versus thresh- 
old for the ATM models after classification for the different 
groups. (a) Method 1, (b) method 2, and (c) method 3. 

Table 4. Parameters of the Optimal ATM Model for the 
Different Groups Obtained by Methods 1, 2, and 3 for the 
Combined Rainfall Events of 1990, 1991, and 1992 

Optimum 
Sample Size Threshold, 

Method R' N mm B ,  mm S t ,  mm 

1 0.93 
0.94 

2 0.88 
0.94 

3 0.91 
0.96 
0.91 

Total 0.94 

56 
50 
26 

107 
21 
55 
57 

133 

20 
12.5 
30 
17,5 
30 
20 
15 
17.5' 

3.5 0.377 
1.5 0.253 

10.4 0.436 
1.8 0.393 
9.2 0.454 
2.6 0.436 
1.3 0.361 
2.1 0.361 

R', coefficient of determination; St ,  slope of the regression; B ,  the 
ordinate at the origin. 

ing methods 1 and 3 is considered here in order to see if 
improvement can be observed by stratification based on pa- 
rameters related to the strength and the intermittence of the 
event rainfall. The parameters of the optimal ATM model are 
given in Table 5 for the four methods. On the basis of the 
reduction of the RMSE criterion after classification, the four 
methods can be ranked as follows: method 3 (23.6%), method 
2 (20.8%), method 1 (13.5%), and method 4 (7.6%). 

To check for possible bias linked to 1992 being a nonrepre- 
sentative year, a second validation procedure was designed. 
For a given classification method, events are considered in a 
chronological order inside each group produced by the 
method. Then, one, out of two events is put into a validation 
sample. This leads us to obtain a calibration and a validation 
samples of identical size (plus or minus one unit) for each 
group. The overall calibration and validation samples are the 
raddition of the calibration and validation samples of each 
group. 

The results of this second validation procedure are similar to 
those obtained with the first one. That is, method 3 produces 

Table 5. Calibration Error of the 1992 Mean Areal 
Rainfall Events Estimated by the ATM Models Before and 
After Classification 

Optimum 
Threshold, B ,  RMSEb, RMSEa', 

Method mm R' S t ,  mm mm mm mm 
... ... 3 

30 ' 0.94 
20 0.96 
15 0.88 

30 0.95 
17.5 0.95 

20 0.93 
15 0.94 

20 0.88 
15 0.92 

Total 17.5 0.94 

... ... 2 

... ... 1 

... ... 4 

... 
0.430 
0.441 
0.338 

0.432 
0.398 

0.417 
0.304 

0.349 
0.308 
0.335 

... 

... 

... 

... 2.50 
10.43 5.84 
2.83 2.28 
1.21 1.07 

2.50 
12.94 4.39 
1.68 1.24 

2.67 
2.70 3.48 . 
1.90 1.15 ... 2.50 
5.05 4.00 
1.70 1.22 
2.28 2.50 

... 

1.91 
2.99 
2.20 
1.17 
1.98 
3.24 
1.27 
2.31 
2.92 
1.40 
2.31 
3.61 
1.27 ... 

R', coefficient of determination; S t ,  slope of the regression; B ,  the 
ordinate at the origin; RMSEb, the error before classification; RM- 
SEa, the error after .classification. For method 1, only the events 
belonging to the significant groups 1 and 2 are considered; this is why 
the RMSEb is 2.67 and not 2.50. 

. 



2484 AMANI ET AL,.: TYPOLOGY OF RAINFALL FIELDS 

...................................... ". ................ ." .................... .................................................. -- 

III I 

/- I 

..... .. 

20.0 40.0 60.0 80.0 100.0 
PERCENTAGE OF AREA ABOVE THRESHOLD 

0.0 

50 I I 

-I 
-I ._ I .I..I .,I .................... 2 35 

2 30 ..................................... - - " .......................... - 

4 
a 

- ................ - . - _- ....I-" ........................ L... 

z 
-I 

w 2 5 -  - ...................................... - _" __ ........................................... .- -. _I ................................ 

.- 
0.0 20.0 40.0 60.0 80.0 100.0 

PERCENTAGE OF AREA ABOVE 30 MM 

Figure 12. Optimal ATM models for the 3 years combined for the groups of method 3 (solid line represents 
the regression equation). (a) Total sample, (b) group 1, (c) group 2, and (d) group 3. 

the largest improvement of the ATM model performances 
(Table 6). A reduction of the RMSE criterion after classifica- 
tion of 31.3% is obtained when sample 1 is estimated from 
sample 2, and a reduction of 36.5% is obtained when sample 2 
is estimated from sample 1, that is, an average reduction of 
34%. Group 1, composed of major events, contributes greatly 
to the performance of the method 3. For this group a reduction 
in RMSE validation values of 52% is obtained. 

The good results in validation case 1 reveal the robustness of 
the classification combined with the ATM model, since the 
event statistics of the 1992 season were somewhat different 
from those of 1990 and 1991 (see statistics in Table 3). Clas- 
sification method 4 does not perform as well as method 3. Thus 
there is no advantage in combining methods 1 and 3. The 
impact of the classification is very small for medium events and 
is sometimes negative for small or very intermittent rainfall 
events. 

Analysis of the optimal ATM models and the statistics of the 
various samples considered (each year, the 1990-1991 combi- 

nation, the 3 years together, and their corresponding groups 
for method 3) leads to the following four observations. 

For each sample before classification the optimal 
threshold is around 17.5 mm. This means that the 3 years of 
EPSAT-NIGER data can be considered homogeneous. Thus 
the threshold method can be used in the Sahel as a climato- 
logical approach for areal rainfall estimation over large do- 
mains (over 10,000 km2 in this case). Of course, this is by no 
way the best model when direct measurement (rain gauges) are 
available, but it may constitute a reasonable trade-off when 
only indirect measurements such as satellite infrared temper- 
atures are available. 

2. On the other hand, it is observed that for each sample 
considered, the three groups obtained from the DUPA classi- 
fication (method 3) have different optimal thresholds and that 
these optimal thresholds are identical for all the samples. Their 
values are 30,20, and 15 mm, respectively, for groups 1,2, and 
3. 

3. Further confirmation of the stability and robustness of 

1. 
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Figure 12. 

classification method 3 is given by the contribution of the 
different groups in terms of total rainfall accumulation for each 
sample. Analyzing Table 3 (third row for each sample) reveals 
that the events in group 1 contribute greatly to the total rainfall 
relative to their number. It is also seen from this table that the 
ratio of the contribution of the events in each group relative to 
the total rainfall (as a percentage) to their number (as a per- 
centage) is relatively constant from sample to sample. These 
ratios are approximately equal to 2, 1, and 0.5 for groups 1, 2, 
and 3, respectively. 

4. Even though some further work is needed on that point, 
it is of particular interest to link the three groups of method 3 
with the types of precipitation systems listed in section 2, 
namely, isolated convective systems, organized moving convec- 
tive systems, and fully developed squall lines. As far as isolated 
convective systems could be identified to group 3 and fully 
developed squall lines to group 1, it can be concluded then that 
1992 was markedly different from 1990 and 1991 in that the 

(continued) 
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Table 6. Optimal ATM Model Parameters and the 
Validation Errors for Validation Case 2 for Method 3 

Optimum 
Threshold, B ,  RMSEb, RMSEa, 

Group mm R2 St,mm mm mm mm 

Suinple 1 
17.5 0.94 0.352 2.28 2.11 1.45 

1 30 0.91 0.404 11.0 3.91 1.84 
2 20 0.96 0.440 2.63 1.80 1.63 
3 15 0.90 0.351 1.34 1.18 1.07 

Sample 2 
17.5 0.94 0.380 1.99 2.55 1.62 

1 30 0.93 0.429 10.2 4.77 2.34 
2 20 0.96 0.433 2.52 2.39 1.86 
3 15 0.93 0.373 1.19 1.22 0.87 

R', coefficient of determination; St,  slope of the regression; B ,  the 
ordinate at the origin; RMSEb, the error before classification; RM- 
SEa, the error after classification. 
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isolated convective systems produced a larger proportion of 
the seasonal rainfall than usual. More generally, studying the 
contribution of each group of the UPA stratification to the 
seasonal rainfall could provide meaningful insights for hydro- 
logical and agronomic applications. 

7. Conclusion 
The impact of classification on the average estimation of 

rainfall over an area has been evaluated on the ATM model. 
Four methods of classification have been proposed and tested. 
These methods are method 1, based o the maximum rainfall 
accumulation over an array of time ste s; method 3, based on 
the crossing analysis of the rainy area fu ction against a thresh- 
old; and method 3, based on a new p rameter, called UPA. 

should be noted that the UPA parameter is directly linked to 
the distribution of the area where it rains above a given thresh- 
old and that it is a scaled parameter. 

A consequence of the application of these methods is that 
the nonconditional and conditional statistics (means of average 
rainfall, standard deviation, and coefficient of variation) for 
each obtained group differ from one group to another. Also, a 
reduction in the variance of the average conditional mean 
rainfall depth is observed for the majority of groups. 

These methods were applied to the estimation of mean areal 
rainfall on the EPSAT-NIGER study area by the ATM model. 
For every method the optimal threshold of the ATM model is 
different from one group to another, which points up the im- 
portance of classification in improving e performances of the 
ATM model. At the calibration or val dation level, classifica- 
tion methods 2 and 3 are the best in ter s of RMSE reduction. 
The impact of classification is best f r groups composed of 
large events (as in the case of group 1 1 I or method 3). For this 
group the reduction in validation error are 52% and 48.8%) 
respectively, for the two validation cases. Natural classification 
based on the three groups from the UPA distribution analysis 
(method 3) is the best for the Sahelian rainfall events. A 
combination of method 1, which characterizes the intensity of 
the event, and method 3, which characterizes the spatial orga- 
nization of the event, does not challenge method 3. This means 
that the spatial organization of the rainfall event is more im- 
portant than rainfall intensity for estimation with a global 
model such as the ATM model. 

The excellent results of classification applied to the ATM 
model, combined with the fact that the optimal threshold is 
different from one group to another, have a major conse- 
quence. The hypothesis of one probabi ity distribution function 
of the conditional rain rate for the ample assumed by the 
ATM model has to be reconsidered. ore specifically, it ap- 
pears that separating between differ nt types of convective 
events may prove to be as rewarding as separating between 

Finally, it was pointed out that the classification method 
based on the UPA parameter is climatologically stable and 
robust. Thus this method can be used to stratify the various 
events observed during a rainy season in the Sahel based only 
on rain gauge data and can contribute to the improvement of 
our understanding of the interannual rainfall fluctuation in this 
region. 

The fourth method is a combination 1 f methods 1 and 3. It 

stratiform and convective rainfall. 1 

percentage of area where it rains above a 
rainfall threshold. 
value of A C  for event j (k"). 
percentage of area where it rains below a 
rainfall threshold. 
value ofBC for event j (km'). 
ordinate at the origin of the linear regression 
between m ( f )  and F ( t ,  c)  (mm). 
Rainfall threshold (mm). 
standardized rainfall threshold by C,. 
maximum rainfall recorded through the rain 
gauge network (mm). 
value of C, for eventj  (mm). 
maximum rainfall recorded through the 
raingauge network for a particular period 0 of 
accumulation (mm). 
coefficient of variation (dimensionless). 
expectation operator. 
fraction area where rain depth exceeds 
threshold C for event k (dimensionless). 
fraction area where it rains above a threshold at 
time t (dimensionless). 
value of I ( x ,  y,  t )  for gauge i and a given 
event (dimensionless). 
indicator variable at ( x ,  y)  for time t 
(dimensionless). 
frequency factor of the maximum cumulated 
rainfall for event j (dimensionless). 
mean of the rainfall recorded by the network 
for event j' (mm). 
mean areal rainfall at time on the surface of 
study (mm). 
probability of nonexceedance of Qn 
(dimensionless). 
quantile corresponding to the maximum rain 
depth recorded (mm). 
coefficient of determination (dimensionless). 
rain depth recorded at gauge i for a particular 
event (mm). 
rainfall depth recorded at location ( x ,  y)  at 
time t (mm). 
slope of the linear regression between m(t )  and 

standard deviation of rain depth recorded by 
the raingauge network for event j (mm). 
period of rainfall accumulation (h). 
mean of the random process RT(x, y) (mm). 
standard deviation of the random process RT 

, 

F ( t ,  c) ("1. 

( x ,  Y ) .  
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