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Summary - Many breeding experiments deal with the mean value of a parameter in a set of genotypes (or 
accessions). The parameter may relate either to the set itself (genetic distances between the genotypes, genetic 
diversity, multiline resistance) or to its offspring after intermating (yield of a synthetic population, heterosis). Most often, 
the mean value is computed with equal frequencies of the genotypes. This paper aims to determine the proportions of 
each genotype that maximize the mean value in the set, in order to increase the efficiency of breeding procedures. The 
interest of this procedure of maximized mean values is illustrated by an application in the management of genetic 
resources and by simulations in marker-assisted recurrent selection. It has drastically reduced redundancies in the 
core collection example while increasing the diversity by 81 %, and it has reduced by 38% the time and money needed 
by the classical marker-assisted selection method in the simulated selection example. It points the way towards 
fQrmulating many breeding problems in terms of maximizing quadratic forms of frequencies. 

- core collection I genetic resource I recurrent selection I marker assisted selection I QTL 

Résumé - La détermination des proportions parentales qui maximisent la valeur moyenne d'un paramètre 
dans une population panmictique peut être utile en amelioration des plantes. De nombreux travaux de sélection 
portent sur la valeur moyenne d'un paramètre dans un ensemble de génotypes (ou d'échantillons). Ce paramètre peut 
caractériser les génotypes eux-mêmes (distances entre génotypes, diversité génétique de l'ensemble, résistance d'un 
mélange de lignées à un ensemble de pathogènes) ou la descendance de ces génotypes par Panmixie (rendement 
d'une variété synthétique, hétérosis moyen). La plupart du temps, la valeur moyenne est calculée avec des fréquences 
égales des génotypes. Le présent article propose de déterminer les proportions des génotypes qui maximisent la 
valeur moyenne dans le mélange panmictique de façon à augmenter l'efficacité des méthodes de sélection. L'intérêt de 
cette procédure est illustré par une application en gestion des ressources génétiques et par des simulations en 
sélection récurrente assistée par marqueurs. La procédure a permis de supprimer toute redondance dans une 
collection resfreinfe (core collection) en augmentant la diversifé moyenne de 81 % et de réduire de 38 % le temps et 
l'argent requis dans une sélection récurrente conventionnelle assistée par marq.ueurs. Elle invite à formuler de 
nombreux problèmes de sélection en termes de maximisation de formes quadratiques. 

collection restreinte /ressources génétiques /sélection récurrente /sélection assistée par marqueurs / QTL 
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INTRODUCTION 

In crop breeding, synthetic cultivars are usually 
produced by intermating a set of selected paren- 
tal genotypes in equal proportions (Allard, 1960). 
It could be rewarding to initiate a synthetic by 
determining the relative contributions of each 
genotype that maximize the mean value of the 
synthetic for a given parameter. The parameter in 
this case could be, for instance, grain yield of the 
parents and of their hybrids. 

Multiline varieties are traditionally developed 
as a mixture in equal proportions in order to sta- 
bilize their performances over a range of environ- 
ments or against a range of pathogen races 
(Marshall and Brown, 1973). The variance in 
yield (V,) of the mixture over the environments is 
taken as an inverse measure of its stabillity: V, = 
ZiZjpipjCii, where pi is the proportion of line i in 
the mixture; Cii is the covariance in yield of the 
ith and jth lines over the environments; Cii is the 
variance of the Rh line. The best mixture would 
be obtained with a vector p that minimizes V, or 
maximizes CiZjpip,{ Vmax-Cii), where V,,, is the 
highest variance. It is hoped that V, is less than 
the variance of the line with the smallest vari- 
ance. 

These two examples show that important 
breeding problems can be defined in terms of 
maximizing mean values which are quadratic 
forms of frequencies (Q(p) = GiXjpipj dii = p'.D.p, 
where p is a vector of frequencies summing up to 
1. The vector p refers to a set of genotypes and 
D is a symmetric matrix of which the elements 
refer to pairs of genotypes in the set. 

This paper will illustrate the interest of determi- 
ning the relative contributions of parents that 
maximize some mean value in a panmictic popu- 
lation by means of two applications: (1) the 
management of genetic resources and creation 
of a core collection (Frankel and Brown, 1984); 
and (2) plant breeding, at a time when it is beco- 
ming possible to predict the value of a plant from 
the knowledge of its genotype at a marker locus 
tightly linked to a quantitative trait locus (QTL) 
(Edwards et al, 1992), recurrent selection for the 
fixation of a set of particular genes. 

METHOD 

The problem is to find the frequencies pi maximizing 
the quadratic form: 

where in matrix notation p' = (p,. . .pn) is the vector of 
parental contributions to the bulk or to the synthetic 
population. Each pi element is subject to the restric- 
tions: 

O<pili andCipi=l 

The matrix D = (dY) is real symmetric. Its elements are 
the values attached to the couples (i, i) of genotypes. 

Many consistent iterative algorithms are available in 
statistical packages for obtaining the maximum of any 
function. They have not been tried and compared in 
the present work. Instead an algorithm found in popu- 
lation genetics has been used that has given good 
results, although it has not been proven so far that this 
is the best one for maximizing quadratic forms of fre- 
quencies. 

With genotypes considered as multiple alleles of a 
locus, the method employs the reasoning elaborated in 
the theory of natural selection acting on a panmictic 
population with distinct generations and constant 
selective values. Population genetics manuals (es, 
Crow and Kimura, 1970) establish the following rela- 
tions between the frequencies pi,n+l of Ai alleles in 
generation (n+l) and frequencies pi," in generation (n): 

du (often noted wu in the manuals) is the selecti,ve 
value of the AiAj genotype. In this context; all the dl 
are positive or null. 

It has been shown that, with these frequency 
changes, the evolution of Q(p) is such that 
Maximum(d$ 2 Q(p,+,) 2 Q(pn) and that Q(pn) tends 
towards a limit which is a local maximum. The exact 
demonstration is probably due to Mulholland and 
Smith (1959) and to Kingman (1961). An approximate 
demonstration is given in Crow and Kimura (1970, 
274). 

The method consists simply of repeated application 
of the algorithm (i), starting with the initial vector pi = 
l /n (n is the number of genotypes in the set), until an 
equilibrium is reached which gives the maximum of 
Q(p). In theory, this maximum may depend on the ini- 
tial vector p, but the vector (pi = i/n) is of the most 
practical concern. Anyway, with high numbers of geno- 
types it would be completely unfeasible to iterate the 
maximization process with several sets of initial p 
values. 

Two other methods may be mentioned. Cox (1988) 
proposed maximizing Q(p) by means of a method 
based on the first eigenvector of the D matrix: this is 
not mathematically justified and is inefficient. A mathe- 
matical solution is proposed in population genetics 
manuals (eg, Elandt-Johnson, 1971) consisting in the 
search for the extremum of Q(p): in practice, this does 
not work, because it gives solutions outside the (Oll) 
interval that are not frequencies. An example of these 
two methods will be given in the application on core 
collections. 
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APPLICATION I. 
DEVELOPMENT OF A CORE COLLECTION 

Managers of genetic resources are interested in 
the creating working collections comprising maxi- 
mum diversity in a minimum size: the so-called 
core collections. The goal of these core collec- 
tions is to facilitate access to and use of existing 
diversity in integral collections to scientists and 
breeders (Frankel and Brown, 1984). 

Brown (1 989) has proposed a two-step proce- 
dure for developing a core collection: 
- determining groups of accessions relatively 
homogeneous for available taxonomic, geogra- 
phic, enzymic, morphological, and agronomical 
information; 
- sampling of about 10% of the integral collection 
by random selection in each group of a number 
of accessions proportional to the logarithm of the 
group size. 

When intra-group information is available, in- 
stead of a random selection of accessions as- 
sumed to comprise overall diversity, the method 
proposed here is well adapted to the exact identi- 
fication of the accessions, and their correspon- 
ding proportions, to be included in the core col- 
lection. ’ 

An example is given here of 95 wild millet 
samples (Pennisetum glaucum subsp monodi4 
collected in a vast area of the West African Sahel 
extending between Adrar des Iforas, the Aïr 
mountains and the agricultural part of République 
du Niger, and described for eight enzymic sys- 
tems with 12 loci and 46 alleles (Tostain, 1992). 
These millets comprise a relatively homogeneous 

Table I. Composition of the core collection extracted from th 
maximization of mean Nei’s diversity. 

group in terms of their enzymic diversity, in com- 
parison with other geographical groups. Let us 
determine the selection of accessions using 
maximum Nei’s diversity (Nei, 1973). 

Let xi,/ be the frequency of allele a of locus I in 
accession i. The whole Nei’s diversity Ht of the 
weighted bulk is: 

The maximization of H, is obtained by applying 
the algorithm (1) to the matrix with general term 

A state of equilibrium is practically reached after 
700 iterations: the five most significant figures of 
Q(p) and the three most significant figures of pi 
do not change in the following 200 iterations. 
Table I shows that the initial diversity of the com- 
plete collection before weighting (pi = 1/95) is 
3.58. After maximization, the diversity is 6.48 and 
is obtained with only eight accessions. The most 
important accession represents 27% of the 
genetic material in the core collection of Niger 
wild millets. The current procedure is very effi- 
cient at increasing the diversity and radically eli- 
minating redundancy in this group. The same 
procedure could be applied again to the mean 
allelic frequencies of each group included in the 
core collection to determine the proportions of 
each group that maximize the whole core collec- 
tion diversity. 

The diagonalization method (Cox, 1988) 
applied to the same matrix gave a mean diversity 
of 4.31 and selected all the accessions with 

95 accessions of wild pearl millets collected in Niger by 

Label of selected accession Origin Nei’s diversity Proportion 

B5 
HI 1 
BI 
K9 
DI 6 
H20 
F I  
E9 

Total 

Gourma 
Niger agricole 
Gourma 
Aïr 
Menaka 
Niger agricole 
Burkina Faso 
Adrar des Iforas 

2.476 
3.323 
2.738 
1.726 
3.456 
2.833 
2.449 
3.043 

0.27 
0.20 
0.17 
0.09 
0.09 
0.08 
0.06 
0.04 

1 .o00 

~ ~~ ~~~ 

Diversity of the integral equal frequencies collection = 3.58; diversity of the weighted core collection = 6.48. 



260 L Marchais 

weights between 0.009 and 0.023. This method 
did not find the maximum diversity and did not 
eliminate redundancies. The other method 
searching for an extremum also failed: the extre- 
mum obtained, 0.315, is a minimum and the 
weights are between -5.69 and +6.17. These are 
not frequencies. Clearly, both methods are inap- 
propriate. 

But the procedure proposed here is useful only 
if the core collection diversity is not altered too 
much by modifications of the D matrix due to 
errors in estimating D elements. Ten simulations 
were performed on D matrices randomly modi- 
fied: with equal probabilities, each term was 
either increased or decreased by 10%. Table II 
shows that the core collection determined with 
the initial D matrix keeps a high diversity when 
the D matrix is modified (on average 92% of the 
maximum diversities computed on modified 
matrices). In practice, then, in the case of strong 
redundancies, the value of a core collection 
determined by the present procedure is not very 
sensitive to errors in estimating D elements. 

The present procedure to create core collec- 
tions could be applied simultaneously to qualita- 
tive and quantitative characters, once each quan- 
titative character has been split into classes. But 
this raises the problem of determining the num- 
ber of classes attributed to each character. 

The main objection to the present procedure is 
that, in most cases, accessions are not analysed 
before creating a core collection. But this proce- 
dure could be considered, after analysis of a pre- 

liminary selection of accessions made according 
to the principles of Brown (1989). 

A treatment of the problem created by a lack 
of data on some accessions remains to be stud- 
ied when using the present procedure, especially 
in terms of robustness. 

APPLICATION 2. 
RECURRENT SELECTION FOR 
A PARTICULAR GENOTYPE 

The identification of loci acting on quantitative 
traits (QTL) is now possible thanks to the esta- 
blishment of plant genetic maps with molecular 
markers. It is possible to determine the genotype 
of a plant at a set of marker loci tightly linked to 
QTLs controlling the expression of different cha- 
racters. The phenotypes of a set of plants and of 
their crosses can therefore be predicted 
(Edwards et al, 1992; Goldman et al, 1993). 

Marker assisted selection raises a lot of hopes 
but has not yet produced real results (Dudley, 
1993). Beforehand, a detailed and expensive 
analysis of the material to be improved is requi- 
red: to identify the different QTLs of 'interest, 
especially when they are borne on the same seg- 
ment of a chromosome, to find a marker tightly 
linked to each QTL, to evaluate the effects of 
epistasis and genotype x environment interac- 
tions (Gallais and Rives, 1993). 

Table II. Comparison of the diversities of the core collection determined on the original D matrix with the maximum 
diversities computed with ten randomly-modified matrices. 

Matrix D Mean diversity 

Initial collection Maximum Core collection Core/maximum 

Original 

Modified 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3.58 

3.58 
3.58 
3.58 
3.57 
3.59 
3.58 
3.58 
3.59 
3.59 
3.58 

6.48 6.48 1 .o 

6.88 
6.92 
6.94 
6.80 
6.98 
6.96 
7.00 
6.96 
7.00 
6.91 

6.37 
6.14 
6.45 
6.30 
6.29 
6.62 
6.40 
6.47 
6.61 
6.44 

0.92 
0.88 
0.92 
0.92 
0.90 
0.95 
0.91 
0.92 
0.94 
0.93 

Mean 0.91 9 
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We shall suppose here that all these difficul- 
ties have been resolved, and that the breeder 
works on an F2 generation from two parents 
each possessing some favourable QI and some 
unfavourable Q2 alleles at QTLs tightly linked to 
segregating molecular marker alleles, respective- 
ly Mj  and M,. 

Recurrent selection has been simulated in 
order to bring together in a single plant all the 
favourable marker alleles (designated MI) at 20 
unlinked loci. Unfavourable alleles are designa- 
ted (M2). The initial population comprises 100 
individuals each created by random sampling of 
40 alleles from a pool of equifrequent alleles 

Genotypes are described with the O variable 
(1/2M1, 1/2M2). 

of Hayman (1954): 

O = 1 for MIM1 O = O for MIM2 O = -1 for M2M2 

The variable O for the offspring of the cross bet- 
ween two individuals i and j is: 

O! = (Oj + Oj)/2 

The allele M, frequency in this offspring is 1/2 + 

In the simulation, the selective value dd of the 
(Oj + 0y4. 

cross i x j is chosen such that: 

1 Oil+Ojl 1 Oi2+0j2 1 O;20+0j20 
) dJ= (-+- ) * (-+- )*.. .*(-+ 

2 4  2 4  2 4 

It is the product of favourable allelic frequencies 
at the 20 loci. Thus, in the case of two individuals 
having the genotype (M,M,) at the same locus, 
their selective values and that of their cross are 
null. Only one maximum is possible, ¡e, unity. All 

the favourable alleles are constrained to reach 
fixation. 

Each cycle of selection comprises three steps 
in one generation: (i) for the 1 O0 individuals inclu- 
ded in the generation, estimating the selective 
values of their offspring in crosses (do) and self- 
ings (dji); (i¡) determining the proportions pi maxi- 
mizing the mean selective value of the panmictic 
offspring by iterative application of algorithm (1); 
and (iii) random sampling of 1 O0 individuals 
generated by weighted panmixia: each individual 
is generated by random sampling of two parents 
with probabilities pi. To select a parent, the inter- 
val (O, 1) is segmented in successive intervals of 
lengths p1, p2 .. , plo0. A pseudo-random number 
with a uniform distribution between O and 1 is 
drawn. An individual is chosen as parent if the 
random value falls in its segment pi. In both 
parents, at each locus there is random sampling 
of an allele with probability (1 + O)/2 for Ml and 
(1 - O)/2 for M,. Thus, the 20 loci are considered 
independent, but any linkage disequilibrium in the 
parents is taken into account. 

In the 32 simulations performed, several geno- 
types homozygous for MIM1 at all 20 loci were 
obtained after two, three or four cycles of selec- 
tion. The examples shown in table III prompt the 
following practical comments. 

In each generation, the number of parents 
selected was low: from one to three, rarely four. 
Consequently, it would be easy to make all the 
required crosses manually and to compose the 
weighted bulk: the proportions p,2 for selfs and 
2pjpj for the crosses, although this low number 
can cause some undesired effects of inbreeding 
in allogamous crops. In such a case, the proce- 
dure should be convenient for preparing inbred 
lines in view of breeding hybrids. Considering 

Table 111. Examples of simulations MASMAX showing the number and proportions of the parents selected in each 
cycle; the number of individuals fixed for the M1 alleles obtained at last cycle of selection is indicated. 

Simula tion Parental proportions pi Number 
MASMAX of fixed 
no Cycle I Cycle 2 Cycle 3 Cycle 4 individuals 

I 0.50 0.50 I .o0 1 
2 0.43 0.43 0.1 4 1 .o0 1 .o0 23 
3 0.50 0.50 1 .o0 1 .o0 6 
4 0.50 0.50 0.89 0.1 1 1 .o0 4 
5 0.47 0.45 0.08 0.46 0.34 0.20 0.50 0.50 0.50 0.50 28 
6 0.50 0.50 0.68 0.32 0.40 0.30 0.30 1 .o0 5 
7 0.41 0.35 0.24 0.37 0.37 0.26 0.73 0.27 0.27 0.25 0.25 0.23 9 
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that at each generation 100 individuals are gene- 
rated from a low number of different crosses, it 
can be presumed that the realized mean value in 
the offspring should not be too far from the 
expected one. Thus, selection should not be dis- 
turbed by random drift. However this point has 
not been checked. The choice of the progenitors 
and the determination of their relative proportions 
would not be easy to make by hand, especially in 
case of unequal proportions. 

This method of selection, which will be labelled 
MASMAX, has been compared to the classical 
marker assisted recurrent selection method, 
labelled MAS, such as set out for instance by 
Edwards and Page (1994), as follows. In each 
generation, the 10 individuals with the highest 
score di = CI Oil (summing over the 20 loci) are 
chosen among 100 individuals as parents of the 
next generation and intercrossed with equal 
probabilities. With MAS method, the fixation of 
Mi alleles is obtained after four or five cycles. As 
an average, MASMAX needs 3.41 cycles for 
fixing MI alleles instead of 4.72 cycles with MAS 
(table IV). That means that MASMAX is 38% fas- 
ter than MAS and consequently 38% cheaper in 
expenses of field cultures and laboratory anal- 
yses. Another slight advantage of MASMAX over 
MAS is a higher number of fixed lines when both 
methods need four cycles for fixation, which can 
facilitate further breeding work. 

The stringency of the selective formula chosen 
in MASMAX (defining the du) was such that with a 
probability of [1-(3/4)20]1°0 = 0.728 the 100 initial 
F2 genotypes had a null selective value (di¡= O), 
but this could not hamper the selection process 
because the expected number of non-null du 
values is 100.99./2.(15/16)20 = 1 361 (a count in a 
simulation gave 1 314 non-null di.) and the risk 
that all du are null is (1-(15/16)2¿)4950 = O. So, 
MASMAX exerts an intensity of selection adjusted 

at each cycle for the maximum efficiency but 
always close to the maximum (from one to three 
parents) based mainly on the offspring values 
when MAS exerts a constant lower intensity of 
selection (ten parents) based only on parental 
values. If MAS exerted a more severe intensity of 
selection, the risk of losing some Ml alleles would 
become high. Furthermore, MAS has no means 
to choose among parents having an equal score. 
Finally, the selective formula chosen for MASMAX 
could perhaps be improved: provided that M2 has 
not reached fixation in the selected parents, it 
might be useful to keep as a selected parent an 
individual with MIMi genotypes at every other 
loci, even if it is M2M2 at some locus. 

The efficiencies of the MASMAX and MAS 
methods were compared when some degree of 
recombination occurs between QTLs and mar- 
kers. The Appendix shows how to compute the 
probability of drawing a gamete MiQl at the end 
of the selection procedure for each pair of loci 
(M,Q), if parental genotypes at marker loci are 
known in each generation. The expected number 
of favourable alleles QI, and its standard devia- 
tion, can then be estimated. 

Calculations have shown that the expected 
probability, m, of a non recombina!t gamete 
MiQ1 in an individual fixed for the 40 Mi alleles is 
practically the same in both methods. For in- 
stance, with a 10% recombination, a MASMAX 
simulation achieved in three cycles gave m = 
0.833 instead of 0.824 with a MAS simulation 
achieved in five cycles. As a matter of fact, in both 
methods the initial probability of a recombination 
is the same, ¡e, 1 O%, and cannot by reduced. 

According to the simulations of Edwards and 
Page (1994) with additive characters, when 
recombination between markers and QTLs is 
above 1 O%, flanking markers become necessary 
to keep the efficiency of MAS (and MASMAX) 

.Table IV. Percentage of the simulations MAS and MASMAX fixing M I  alleles after two, three, four and five cycles of 
selection. The number of fixed genotypes is indicated in brackets. 

Method Total number 
of simulations 

Number of cycles needed for fixation 

2 3 4 5 

MAS 32 

MASMAX 32 

Mean time of fixation for MAS = 4.72 cycles, for MASMAX = 3.41 cycles. 
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superior to that of conventional phenotypic recur- 
rent selection (PRS) at least for a rapid response 
early in the selection process. When all markers 
are fixed, PRS remains necessary to achieve fur- 
ther responses and reach the maximum potential. 

But MASMAX and MAS seem preferable, even 
with some M-Q recombination, in two situations 
where PRS is not efficient: (1) when the tests of 
selective values are difficult to operate at each 
generation (es, drought or disease resistance 
ratings and (2) when creating genotypically 
constrasted inbred lines in view of breeding 
hybrid varieties, in the case of superdominant, 
epistatic characters. 

CONCLUSION 

The results obtained here are encouraging. The 
proposed breeding procedure should be usefully 
employed in the management of genetic 
resources to create core collections. The method 
seems to be adequate in recurrent selection in 
dealing rationally with the information provided by 
molecular markers on QTLs. It should increase 
the rapidity of recurrent selection, reduce its cost 
and advance the time of earnings. 

The two applications shown in the present 
article have endeavoured to point the way to for- 
mulating many breeding problems in terms of 
maximizing quadratic forms of frequencies. Apart 
from the attempt of Cox (1 988), breeders have so 
far curiously not considered that possibility. 
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APPENDIX 

Effect of recombinations between a QTL Q and 
its marker M on the number of favourable alleles 
Q1 obtained in the recurrent selection procedure 
reported here. 

Let us call: 
r the recombination rate between a QTL and its 
marker locus 
ag, bg, cg, dg the probabilities of gametes MIQ1, 
M1Q2, M2Q1, M2Q2 produced by parents selec- 

ted in generation g-1 to make by panmixia the 
generation g 
mlg = ag + bg is the observed frequency of allele 
M1 in parents selected in generation g-1 and 
also the probability of Ml in generation g before 
selection 
m2, = cg + dg has the same meaning as mlg but 
for allele M, 

(MIMl)g, (M1M2)g, (M2M2)g the observed fre- 
quencies of the respective genotypes in the 
parents selected in generation g. 

Let us note Dg = agdg-bgcg 

The following recursion formulas can be esta- 
blished: 

These formulas are reduced to: 

The final value of ag is computed recursively, 
knowing the parental genotypes at each genera- 
tion and the initial values al = (1 - 4/2, D1 = (1 - 
2r)/4, mll = 0.5. With selection, mlg  tends 
towards 1 and Dl towards O. 

The 20 final ag values computed in a particular 
simulation can be used to estimate the expected 
value, m, and the variance, v, of as at loci (M,Q) 
in all possible selection experiments. All the ag 
values are thus considered as independent ran- 
dom variables with the same expectations and 
variances. 

Consequently, the number n of favourable 
alleles Q1 obtained at the end of a selection pro- 
cedure has an expected value: 

E(n) = 40m 

and a variance: 

V(n) = 40( v + m( 1 -m)) 



264 L Marchais 

REFERENCES 

Allard RW (1960) Principles of Plant Breeding. Wiley 
and Sons, New York, 483 p 

Brown AHD (1989) Core collections: a practical 
approach to genetic resources management. 
Genome 31, 81 8-824 

Cox TS (1 988) Adjustment of parental frequencies to 
maximize the diversity of a synthetic population. 
Theor Appl Genet 75, 61 7-620 

Crow JF, Kimura M (1970) An lntroduction to 
Population Genetics Theory. Harper and Row, New 
York, 591 p 

Dudley JW (1 993) Molecular markers in plant improve- 
ment: manipulation of genes affecting quantitative 
traits. Crop Sci 33, 660-668 

Edwards MD, Helentjaris T, Wright S, Stuber CW 
(1 992) Molecular marker facilitated investigations of 
quantitative trait loci in maize. Theor Appl Genet 83, 

Edwards MD, Page NJ (1994) Evaluation of marker- 
assisted selection through computer simulation. 
Theor Appl Genet 88,376-382 

Elandt-Johnson R (1971) Probability models and sta- 
tistical methods in genetics. John Wiley, New York, 
592 p 

765-774 

I Frankel OH, Brown AHD (1984) Current plant genetic 
resources - a critical appraisal. In: Genetics: New 
Frontiers 4, p 3-13. Proc XV Int Congress of 
Genetics, Oxford & IBH Publishing Co 

Gallais A, Rives M (1993) Detection, number and 
effects of QTLs for a complex character. agronomie 

Goldman IL, Rocheford TR, Dudley JW (1993) 
Quantitative trait loci influencing protein and starch 
concentration in the Illinois long-term selection 
maize strains. Theor Appl Genet 87,217-224 

Hayman BI (1954) The theory and analysis of diallel 
crosses. Genetics 39,789-809 

13,723-738 

I 

t 

'I 
Il 

Kingman JF (1961) On an inequality in partial aver- ;i' 
ages. Quarter J Math 12,78-80 

Marshall DR, Brown AHD (1973) Stability of perfor- 
mance of mixtures and multilines. Euphytica 22, 

Mulholland HP, SMith CA (1959) An inequality arising 
in genetical theory. Amer Math Monthly 66, 673-683 

Nei M (1973) Analysis of gene diversity in subdivided 
populations. Proc Nat Acad Sci USA 70,3321 -3323 

Tostain S (1992) Enzyme diversity in pearl millet 
(Pennisetum glaucum L) 3. Wild millet. Theor Appl 
Genet 83,733-742 

i 

405-41 2 

6 
I 

f ; 


