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Abstract 

Some characteristics of tsetse fly population dynamics were investigated using a matrix model. To take into account 
the peculiarities of the tsetse fly life cycle, the classic Leslie model was modified. Our model integrated the 
physiological age group of Glossina females, the pupal and adult survival rate and the pupal life span. The limit of 
the growth rate was studied and the results were satisfactory when compared with data of tsetse fly mass rearing. 
The effect of adult and pupal survival rates on the growth rate was examined and confirmed the importance of 
adult survival. The sensitivity analysis showed that the growth rate was particularly sensitive to change in the 
survival rate of young nulliparous females. This matrix model, directly accessible to the experimenter, enhanced 
our understanding of tsetse population dynamics. 

Introduction 

Several authors have used mathematical modelling to 
study vector populations (Bailey, 1975; Anderson & 
May, 1982; Gettinby, 1989; De Muynck & Rogers, 
1989). These models contribute to a better understand- 
ing of biological and epidemiological processes and 
enable various methods of control to be investigat- 
ed. However, modelling tsetse fly populations is at a 
preliminary stage and few studies have been carried 
out. 

Two main modelling approaches have been pub- 
lished. One uses age groups of the female tsetse flies 
determined by the sequential and alternate ovulation 
of the four ovarioles. The other uses the variations in 
apparent density of the flies estimated from the number 
of flies caught in traps (or previously in hand-nets) per 
unit time. 

The first approach follows studies by Saunders 
(1960, 1962) and Challier (1965) on the physio- 
logical age, using mainly the Euler-Lotka equations 
(Lotka, 1907) to construct life-tables (Deevey, 1947; 
Andrewartha & Birch, 1956). Such studies have been 

carried out by Taylor (1979), Ryan (1981), Allsopp 
(1985) and Williams et al. (1990). Other authors have 
developed original methods for integrating the eight 
age groups. Challier & Turner (1985) used geometric 
means to estimate survival rates and Gouteux (1982) 
used the formula of geometric progression with the 
least squares method. This formula, slightly modified, 
was used later by others (Rogers & Randolph, 1984; 
Rogers et al., 1984). Hargrove (1993) recently pro- 
vided an estimation for mortality using the maximum 
likelihood estimation method. 

The second approach was developed by Rogers 
(1979, 1990) and Dransfield & Brightwell (1989). It 
consists of first using the fluctuation in apparent density 
to estimate the mortality rates by auto regression (so- 
called ‘Moran curves’, Rogers, 1979), then introducing 
these mortality rates in order to model these fluctua- 
tions. This method uses the apparent densities both as 
explicative and explained variables which results in an 
obvious bias (Maelzer, 1970; Ito, 1972). These diffi- 
culties led Lebreton (1982) to write ‘... that currently 
all studies aiming to detect the density-dependence by 
regression are suspect’. The use of biased parameters 
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to interpret data from which these same parameters are 
obtained, raises a further problem of acceptability. 

A third approach consists of using matrix mod- 
els (Caswell, 1989). To date, Hargrove (1988) is the 
only author to have investigated this method, using the 
Leslie model (1945). However, Timischl (1981) did 
implicitly use this model to calculate various demo- 
graphic parameters. Models using projection matrices 
are directly accessible to the experimenter. They have 
already been used to study populations of parasites 
(Gettinby & McClean, 1979). Furthermore, these mod- 
els can easily be adapted for numeric simulation and 
provide clear interpretation. The matrix model was 
developed by Leslie (1945, 1948) for describing the 
growth of populations from one age group to the next. 
Changes in numbers are expressed in terms of survival 
and fecundity rates, and the matrix structure was used 
to predict the dynamic trend to the population. The 
populations studied must, however, have easily identi- 
fiable age groups and be available for periodic follow- 
up as in the case of human populations. This is not the 
case for many plant (Jarry et al., 1995; Khaladi et al., 
1995) or animal species. For the tsetse fly populations, 
as well as the pupal and imaginal stages present in all 
diptera, females can be classified into eight age groups 
by the ovarian dissection method. However, one dif- 
ficulty is the impossibility to distinguish the precise 
ovarian cycles after the first four age groups (Challier, 
1965). 

In order to build a matrix model which best express- 
es the dynamics of a given population, the key stages 
in the biological cycle must be identified (i.e., the most 
significant stage in the life cycle of the species studied). 
The time-step of the model is of prime importance and 
must correspond to a significant period for both the age 
groups and the stage of the life cycle. Hargrove (1988) 
chose a time-step of one day, and used a matrix with 
large dimensions (200 x 200); this model represents 
a discrete form of the continuous model of Williams 
et al. (1990). Using a time-step of one day, this mod- 
el does not take explicitly into account the specificity 
of the tsetse fly cycle characterised by a 9-11 days 
inter-larval cyclic period (see Fig. I). 

We present here a new matrix model which is a 
modification of the Leslie model, and enables us to 
integrate the eight physiological age groups. In this 
paper, we will particularly use this model to study the 
relationships between some demographic parameters 
and the sensitivity of the growth rate to small change 
in these parameters. The problem of the parameter 

estimation from field data will just be briefly tackled in 
the discussion and will be presented in a later work. 

Materials and methods 

Life cycle and biological rlzythn of the tsetsejy. The 
demographic strategy of Glossina differs from that of 
other fly species. Whereas the latter reproduce by lay- 
ing hundreds of eggs, the tsetse gives birth to a sin- 
gle mature larva (i.e., ready for the pupal stage) after 
gestation of about ten days (Fig. 1). This rhythm of 
reproduction - one larva every ten days - is particu- 
larly slow, resembling the small mammal reproduction 
rate, rather than that of an insect. It thus represents a K- 
strategy (Pianka, 1970), relatively rare in invertebrates 
and exceptional in Diptera (Grassé, 1951). 

The tsetse larva is laid on the soil where it buries 
itself in a few minutes and becomes a pupa. The pupal 
period varies, mainly according to the temperature. 
The extreme values observed in the field by Challier 
(1973) for Glossina palpalis gainbiensis are between 
26 and 50 days (between 30-33 with an average month- 
ly temperature of 25-26°C). 

The newly emerged adults are described as ‘ten- 
eral’ until their first meal because of their soft cuticle 
(from the latin tener = tender, Jackson, 1993). Nearly 
all females are inseminated in the first days of their life. 
The spermatozoa stocked in the female’s spermathecae 
are generally sufficient for her entire life (Glasgow, 
1963). The adult females live one to two months on 
average, but individuals have been found living after 
six months in the forest area (Gouteux, 1985) and even 
nine months in Senegal (Challier, 1973). The partic- 
ular physiology of the females enables their age to 
be estimated by dissecting their ovaries. Both ovaries 
(the right and the left) contain two ovarioles, one on 
the inside and one on the outside of the axis of sym- 
metry of insect (Fig. 1). The regularity of the cycle 
of these four ovarioles enabled four age groups to be 
determined initially (Saunders, 1962). Subsequently, 
with more accurate observations, eight groups were 
determined by Challier (1965). A follicular relic was 
produced after each ovulation, but only one remains 
visible on the ovariole, irrespective of the number of 
ovulations. After four ovulations (i.e., the first ovarian 
cycle) each ovariole presents this relic and subsequent 
ovarian cycle cannot be distinguished. Thus, age class- 
es 4 to 7 cannot be distinguished from age classes 4+4n 
to 7 + 4a, where n is the number of complete ovrian 
cycles. 
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Fig. 1. Uterine and ovarian cycles of GIossina. Determination of physiological age. Uterine cycle: a: egg; bl, bz, and c: first, second and third instar larva; sp: spermatecea. Ovarian 
cycle: ro and lo: right and left ovary; i ov and e ov: intemal and extemal ovariol~; fr: follicular relic. 
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Fig. 2. Graph of the life cycle of Glossinae showing 5 pupal stages 
Po, PI ,  Pz, P3, P4 and 8 adults stages (Ao, A I ,  AZ, A3. A4, AS, 
Ah, A7) corresponding to the physiological ages. The coefficients p ;  
represent the survival rate of pupae in class Pi and the coefficients 
a; the survival rate of adults in class Ai over a period of h days. 
e; is the emergence rate of pupae in stage Pi and f; is the average 
fecundity of females in class Ai. 

The matrix model. This model has been designed to 
study the dynamics of the female population. It is struc- 
tured in stages of the life cycle determined according to 
data obtained in the field. Each stage in the model has 
an equal duration of h days. So that the stages would 
correspond to the physiological ages described above, 
the chosen step h corresponds to the average period 
between two ovulations (i.e., about 10 days). 

Since the free life of the larva is short, this was 
not taken into account in the model. The pupal varies 
between 2h and 5h days depending on the temperature, 
and thus showing cyclic seasonal variations. Accord- 
ing to the matrix model, the pupal period was divided 
into five classes: PO, Pl, Pz, P3 and P4 (Fig. 2). The 
coefficient p; represents the survival rate of pupae of 
class Pi over a period of h days and e; is the emergence 
rate of Pi pupae. By modifying the rates of survival and 
emergence it is thus possible to model the variability 
of the pupal period. 

The first four physiologically definite adult classes 
with precise age groups are represented as Ao, AI,  AZ, 
A3 and the four following stages with indefinite ovarian 
cycles are A4, As, Ag, A7. Let ai be the probability 
of survival of the class Ai fly for a period of li days. 
The path from A7 to A4 indicates logically that females 
of class A7 will return to class A4 after h days. The 
average fecundity of Ai female is noted as fi. 

The matrix of projection A corresponding to the 
graph of Fig. 2 is as follows: 

A =  

0 0 0 0 0 0 fi f2 f 3  f4 f 5  f6 f7 
O Po 0 . . . . . . . . . . 

0 PI * O 
0 0 P 2 ’  
0 o 0 P 3 ’  
O O e2 e3 e4 . 
o * * * o a o ‘  

. U ]  . 
* U Z O  * * . o 

u 3 0  o o u7 
+ u 4 0  o o 

* u50 o 
0 . . . . . * . . * 0 u 6 0  

and the corresponding model is: 

X ( t  + 1) = A * X ( t ) ,  

where X ( t )  is a vector of dimension 13, each compo- 
nent of which represents the number of flies at a given 
stage at date t ,  with a time-step of h days. 

The parameterization of the model (how to calcu- 
late the constant coefficients of matrix A from demo- 
graphic parameters) is presented in Appendix 1. 

Results 

Limits to the growth rate. The matrix A is non- 
negative and primitive and thus allows an eigenvalue A, 
real, positive, simple and dominant (Péron-Frobenius 
theorem, Caswell, 1989), which represents the growth 
rate by unit of time (h  days). 

Under the best conditions (survival rate of adults 
ai = 1; survival rate of pupae B = 1; larviposi- 
tion of a potentially female larva by a female every 
h days, which leads to fi = OS), tde maximum poten- 
tial growth rate approximately linearly decreases when 
pupal period D increases, from 1.22 for 4 = 25 days to 
1.18 for 4 = 45 days. With an inter-larval period (h)  
of 10 days, these rates correspond to the production of 
457 and 1566 females per female per year, respective- 
ly. 

The effect of adult survival. This demographic 
parameter is important for the determination of u; and 
fi (see Appendix 1). In the first instance, we shall 
assume a constant survival (ui = u; Vz). Figure 3 rep- 
resents the trend in growth rate according to u for three 
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Adult survival rate 

Fig. 3. Influence of the adult survival rate ( u )  on the growth rate 
(A) for three pupal life span: short (9 = 25 days I-]), medium (5 = 
35 days [- - -3) and long (9 = 55 days [...I) when the larval survival 
rate is maximal (s = 1). 

pupal periods (short, medium, long) without pupal 
mortality (3 = 1) and with a constant potential fecun- 
dity m = 0.5 (see Appendix 1 for calculation of fi), 

When adult survival is low, an increase in the pupal 
period increases the growth rate of the population. On 
the contrary, when the adult survival is high, the rela- 
tionship is inverted and the maximum value of X is 
obtained for the shortest pupal period (2 = 25 days). 
The reason is that long pupal development slows down 
both population growth (for high adult survival) and 
population extinction (for low adult survival). As a 
result, long pupal development decreases the slope of 
the lines in Fig. 3, bringing the lines to cross exactly 
for A = 1. 

It can be seen that the value a corresponding to 
A = 1 (population numerically stable) does not depend 
on the pupal period. In this case, a is equal to 0.70, 
which corresponds to a daily survival of 0.965 (with 
h = 10 days). Near this equilibrium, the pupal period 
does not have much effect on íhe growth rate. 

This global effect of adult survival is conserved 
for values of m and 3 inferior to the maximum values 
(m = 0.5 and S = l ) ,  but the influence of pupal period 
is less when m and 3 decrease. 

Relationships between average pupal survival (a) and 
adult survival (a )  for various valiies ofpotentialfecun- 
dity over h days (m). Figure 4 summarizes the rela- 
tionship between the various parameters to obtain a 
growth rate X = 1, with the pupal period fixed at 35 

0.6 0.65 0.7 0.75 0.8 0.65 0.9 0.95 1 

Adult survival rate 

Fig. 4. Values of pupal and adult survival rates giving ademographic 
equilibrium (growth rate X = 1) with different values of potential 
female fecundity by unit of time (h days) and pupal life span of 35 
days. The mows illustrate an example of change in the population 
dynamics from Eo to El (decrease in the adult survival rate of 0.1) 
or from Eo to E2 (decrease in the pupal survival rate of 0.1). Note 
that only the situation El corresponds to a clearly negative growth 
rate. 

days. The area enabling demographic growth ( A  > 1, 
part above the graphs X(a) = 1 for each given value of 
m) is relative limited even if m is at its maximum vdue 
(0.5). For example, for S = 0.80 and m = 0.5, a must 
be larger than 0.75 to get a population growth. This 
value of a represents a daily survival of over 0.971. 
This daily survival must be over 0.976 form = 0.4 to 
maintain X > 1. 

Sensitivity analysis of the growth rate A. The calcula- 
tion of the sensitivity of the growth rate X to changes in 
the coefficients of matrix A is given in Appendix 2. 

The global sensitivity to a constant survival rate 
of adults a (see equation A.9) is equal to 0.77 in the 
theoretical case of maximal growth (3 = 1; 1 = 25; 
a = 1) and equal to 0.69 with estimations of Challier 
(1973; S = 0.82; !E = 31.4; a = 0.776). 

Global sensitivity of X to pupal survival rate is 
more complex because of the variability of pupal dura- 
tion and the relationships between pi  and e;. However, 
equation A.8 can be used for classes PO and Pl, where 
they are not emergences. The sensitivity of A to these 
two classes is about 0.18-0.19 and 0.12-0.13 for the 
two data sets considered (Fig. 5). 

Figure 5 also shows the changes in the sensitivity 
of X according to the age classes. The overall pattern 
of the curves is the same for the two data sets. It clear- 
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Fig 5. Sensitivity of the growth rate X to fluctuations in survival 
rates of various physiological stages. 0: maximal growth (Z = 1; 
Z = 25; a = 1; X = 1.2233) o: estimations of Challier, 1973 
(S = 0.82; Z = 31.4; a = 0.776; X = 1.0232). 

ly shows the importance of the Ao class (nulliparous 
females) and increase in class A4 which corresponds to 
an accumulation of females of different ages (4 + 4n) 
in this class (see Materials and methods). 

Discussion 

Our results do not differ significantly from those 
obtained by Hargrove (1988). This author found that 
in the absence of pupal mortality and with the highest 
possible fecundity, the adult daily survival was 0.96. 
The results obtained with this model are 0.965. This 
slight difference probably occurs from the approxima- 
tion made on the fecundity (see Appendix 1, equation 
A.l) which Hargrove (1988) did not carry out. Indeed, 
if the correction is not done, our model provides exactly 
the same value as that obtained by Hargrove (1988). 

The correction on fecundity also affects the esti- 
mates of the annual production of females per female, 
which is important information for assessing the levels 
obtained in mass production of tsetse fly (mass rearing 
for control by the sterile-male technique, for exam- 
ple). Our estimations (between 457 and 1566 females 
per female per year depending on the pupal period) 
are lower than those given by Hargrove (1988) but 
are comparable to the data of mass rearing (400-550 
females per female per year for G. inorsitaiis inorsitans 
Westwood (Jordan & Curtis, 1972); 308-552 females 
per female per year for G. austeni Newstead (Curtis & 
Jordan, 1968)). 

The possibilities of strong growth of Glossina pop- 
ulations seem therefore relatively limited as shown in 
Fig. 4. This figure also suggests that it is more effec- 
tive to modify adult mortality than pupal mortality, but 
this impression is biased by the fact that adult sur- 
vival is established over about ten days whereas pupal 
survival represents the whole precise information. An 
equal decrease of adult survival rate in all the age class- 
es can effectively limit the growth rate. For example, 
with the field data of Challier (1973), a decrease of 
survival rate a from 0.776 to 0.740 is enough to obtain 
a growth rate lower than 1. 

However, Fig. 5 shows that the growth rate X is 
particularly sensitive to changes in the survival rate ao 
of young nulliparous females in relation to older ones. 
If this age class escapes a given method of control, the 
effectiveness of the method will be strongly reduced. 
Gouteux (1987) pointed out that the spatial occupa- 
tion of females varies according to their age; so, the 
effectiveness of trapping control will depend on the 
precise location of the traps (Gouteux et al., 1986). 
For example, in the pre-forested area of Ivory Coast 
during the rainy season, Gouteux & Laveissière (1982) 
showed that nulliparous females represented 4% of the 
total number of females of G. p. palpalis caught by 
biconical traps in sunny sites. In shaded sites near 
water holes, this proportion reached 22%. During the 
dry season, these proportions were respectively 20 and 
40%. Nevertheless, traps and targets catching pattern 
are generally biased against young females (see Har- 
grove 1990, 1991 and 1993), for savannah species G. 
m. niorsitans and G. pallidipes). 

Concerning the control of tsetse pupae, Hargrove 
(1988) states: ‘At inter-larval periods of 10 days, a 
tsetse population could still have a positive growth 
rate with 60% pre-adult losses as the adult mortality 
is kept at not more than about 1.5% per day ..,’ and 
concluded: ‘Tsetse control by way of killing the pre- 
adult phases, for instance by reIease of IarvaVpupal 
parasites, would thus seem to be a very difficult propo- 
sition’. Our theoretical results (Fig. 5) nevertheless 
show that pupal control could be envisaged if most 
young females escape trapping. Indeed, the sensitivi- 
ty of X for PO and PI classes is of the same order as 
for young females classes (Ao and AI). The question 
remains, how to kill the pupae. 

This model is currently being developed as a tool 
for the prediction and control of Glossina and the pre- 
liminary conclusions need to be confirmed. Its use- 
fulness is  not limited to the theoretical study of the 
possibility of growth of a tsetse fly population. Subject 
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to a suitable procedure for estimating the parameters, 
it seems to be well adapted to several types of data. It 
should enable the seasonal fluctuations of the growth 
rate to be monitored, and imporve the understanding of 
the factors which regulate the populations dynamics. 
The matrix approach is extremely flexible. For exam- 
ple, the number of pupal stages can be increased to 
obtain pupal periods of over 45 days. Formally, these 
matrix model are based on the same principals as the 
model using life tables (Ryan, 1980; Taylor, 1979; 
Allsop, 1985; Williams et al., 1990). They provide 
a more convenient tool for field workers. For these 
reasons and because of the unacceptability of models 
using the fluctuation in apparent density to estimate the 
mortality rates by auto regression, we consider them 
to be more promising. 

The remaining problem is that of the identifiability 
of our model in relation to the ovarian age data. Most 
estimation methods available in the literature assume 
a population in equilibrium (A = 1 or r ,  intrinsic rate 
of increase, = O). It is thus incorrect to use these meth- 
ods to calculate the growth rate later. This problem, 
explained clearly by Van Sickle (1988), is not easy 
to avoid. Hargrove (1993), using the maximum like- 
lihood method, gave an estimation of (A f p) where 
p is the adult mortality. This mortality can be estimat- 
ed if the growth rate X is known. In the same way, 
Van Sickle & Phelps (1988) proposed a solution based 
on an independent estimation of the intrinsic rate of 
increase r . 

Moreover, these methods assuFe a constant adult 
survival. We ourselves put forward this hypothesis to 
facilitate our theoretical approach, but it is clear that 
adult survival depends on the age (Gouteux & Kienou, 
1982 and Hargrove, 1990, in fields; Jordan & Curtis, 
1972, in laboratory). This simplification is thus not 
entirely satisfactory and we are currently working on 
this problem particularly taking into account the dif- 
ference between nulliparous (Ao), young (Al to Ax), 
and older (A4 to AT) female survival rates. 

Another way is to estimate survival rates, which 
ensures total independence of these estimations and 
demographic models. The Jolly-Seber model (Jol- 
ly, 1965) used by Gouteux & Buckland (1984) can 
be improved (see Lebreton et al., 1992). Capture- 
recapture is particularly interesting, given the charac- 
teristics of the tsetse fly (easy to mark, relatively long 
life span) and the development of simple trapping tech- 
niques which are more reliable than hand-net catching 
(Gouteux & Dagnogo, 1986). Recent progress in data 
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analysis (Anderson et al., 1993) further support this 
alternative. 
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Appendix 1: Parametrization of the model 

In this Appendix we will not tackle the problem of 
parameters estimation from field data, which will be 
the object of a later work. The question is here how 
to calculate the coefficients of matrix A from demo- 
graphic parameters, chosen a priori or available in the 
literature. 

Adults survival rate 
Various methods of estimating the adult survival rate 
have been put forward (Gouteux, 1982; Rogers &Ran- 
dolph, 1984; Rogers et al,, 1984; Challier & Turner, 
1985; Hargrove, 1993). The data available in the liter- 
ature will be taken as an example, without discussing 
the validity of these methods. 

Potential and approximated fecundity 
Each female lays one larva every h days. Thus, poten- 
tial fecundity on this period is 0.5 femaledfemale. 
However, because of the adult mortality between times 
t and t + 1, the fecundity of a female of class i is 
approximated by: 

mi 4- aim;+1 
2 

where mi is the mean potential fecundity of females 
aged x, i 5 x < i + 1, on a period of h days. 

Besides, at time t + 1, the number of pupae PO 
is not quite equal to the sum of larvae laid by the 
females during the interval t, t + 1; some of these will 
not survive during this interval of h days. Those laid 
just after t must survive almost h days to be included 
in PO class at: time t + 1. Those laid just before t + 
1 will be almost certainly included in PO class. An 
average larva must survive for one-half interval h, the 
probability of which is ( p ~ ) ’ / ~ ,  if we consider that the 
survival rate of a larva during h days is the same as 
the pupal survival rate PO. Including this correction for 

the parameterization of the fecundity parameters, we 
obtain: 

This equation has been adapted from those given 
by Caswell(l989, p. 11). 

Pupal survival rate 
Given the difficulty of obtaining suitable field data 
to compute the coefficients pi and e;, we propose to 
compute them from the mean pupal survival rate (3) 
and from the mean pupal life span ( 2 ) .  

The structure of the graph (Fig. 2) requires the fol- 
lowing constraints: 

If we assume that survival rate is constant about the 
pupal period life, we have: 

PO = pi = pz + e2 = p3 + e3 = e4 = p .  (A.2) 

Thus, 3 and 3 can be related to pi and e; by: 

Y With Q = E - 25, ß = 2 - 35, y = Z - 45, equations 
(A.2) can be written: 

Expressing PO, p1, e2, e3 and e4 in function of p, p z  and 
p3, we obtain: 

and 

Constraints on p ( 3  < p3 < l) ,  due to (AS), and 
thoseonp2andpg(O<pZ< l , O < p 3 <  1)leadus 
to frame p by pmin and pmax, compute p = Pgniil~pm:lx, p2 
and pg by (AA) and PO, ez, e3 and e4 by (A.2). 

A program, written using MathematicaR language, 
allows to compute these different coefficients and the 
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dominant eigenvalue X of matrix A from values of a, 
3 and 2. 

An example 
Data from Challier (1973) concern Glossina palpalis 
gambiensis. Survival rate and pupal life span (5 and 
5)  have been determined from controlled fields exper- 
iments in Kou forest (Burkina Faso, August 1966). 
Adult survival rates have been estimated from ovari- 
an age distribution of sampled females by geometric 
mean method (Challier & Turner, 1985), and h = 10 
days. 

Input data: 
Pupal survival rate: 3 = 0.82; 
Pupal life span: 2 = 3 1.4 days; 
Adult survival rates: a = 0.776 (daily survival 
rate = = 0.975). 

Parameterization of the model: 
pmin = 0.947028, pma = 0.947284 
po = pl = e4 = p = 0.947156; 
p2 = 0.468442, e2 = 0.478714; 
p3 = 0.337299, e3 = 0.609857; 
Fecundity (fi = f ,  Vi); f = 0.4321 

These values give a growth rate = 1.0232. 

Appendix 2: Sensitivity analysis 

A simple formula to calculate the sensitivity of the 
growth rate X to small changes in the matrix elements 
a;j is given by Caswell (1989, p. 121): 

('4.7) 
ax wiwi -=- 

aaij ( v , ~ )  

where w and w are the right and left eigenvectors cor- 
responding to X and (w, w )  is their scalar product. 

However, this formula can be used if only one ele- 
ment a;j is subject to change, while all the others are 
held constant. To take into account the relationships 
between fi and a; (see Appendix 1) we must use the 
general formula given by: 

Thus, the global sensitivity to survival rate of adults a 
(with ai = a; Vi) is: 

. . .' 
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