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ABSTRACT 

A compartmental model of sleeping sickness is described that takes into account a 
density-dependence of the vector population which is subjected to a regulating 
migratory mechanism. The analysis of the model focuses on the stability of the 
origin, which is assessed through the growth rate ev5 of the infected populations. 
This growth rate is negative if and only if the basic reproduction number Ro is less 
than 1. (In such a case we call ev, the extinction rate). However ev5 and R, do not 
change in a consistent fashion. An example shows that a lowered (which may 
seem a desirable result) can actually slow down the extinction of the epidemic. We 
thus argue that ev, may be a better criterion for extinction than since it takes into 
account in a consistent fashion the time to extinction. This is an important factor in 
the study of control strategies which must be used over a period of time. The 
results are illustrated with numerical examples, and the consequences for control 
strategies are briefly discussed. 

Keywords: Compartmental model, sleeping sickness, differential equations, basic 
reproduction number, extinction rate. 
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1. Introduction 

Sleeping sickness (or African human trypanosomiasis) is endemic in 36 

countries of Sub-Saharan Africa. There is currently a resurgence of this disease in 

Central Africa and it is estimated that approximately 50 million people are exposed 

to sleeping sickness (Cattand, 1994). Mathematical models can help better 

understand the dynamics of this vector-borne disease which is transmitted through 

tsetse flies. In his pioneering work Rogers developed a general model of Africa 

trypanosomiasis (Rogers, 1988a, 1988b, 1989). 

More recently we have proposed a five-compartment differential equations 

model for Trypanosoma brucei gambiense, the Gambian form of sleeping 

sickness that affects western and central Africa (Artzrouni and Gouteux, 1996a). 

Unlike Rogers who considers both human and parasite reservoirs, we consider 

only human hosts. We make this simplifying assumption because there is 

epidemiologic evidence to suggest that animal reservoirs play a negligible role 

during an epidemic of Gambian trypanosomiasis (Kageruka, 1989; Noireau et al., 

1986; Zillmann et al., 1984). Indeed, there is no or little correlation between human 

and animal prevalence rates (see Authier et al. (1 991) for a review). The model 

takes into account the incubation periods of both humans and flies, and assumes 

that both populations remain constant. This model also enabled us to investigate 

control strategies in some detail (Artzrouni and Gouteux, 1996b; Gouteux and 

Artzrouni, 1996). 

In this paper we propose a variant of the model that no longer assumes the 

vector population is closed and constant. The model’s realism increases when 

considering a density-dependence of the vector population which is subjected to 

self-regulating migratory exchanges. These exchanges play a vital role in the 

population dynamics of vectors (Hargrove, 1981 ; Turner and Brightwell, 1986; 

Rogers et al., 1984; Dransfield and Brightwell, 1989). Modeling the control of the 

epidemic through additional vector mortality then becomes more realistic when the 

population is considered open. 
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We will also investigate in detail the rate of extinction of the disease. 

Indeed, field observations show that the infected populations can evolve very 

slowly, and an investigation into the rate at which the disease disappears (or 

spreads) should help in our undestanding of the persistence of sleeping sickness 

in historical foci of the past. (Gouteux et al., 1993; Frezil and Coulm, 1976; Frezil 

and Cuisance, 1994). 

The paper is organized as follows: Section 2 below describes the model 

and its various ingredients (in particular a new approach to the fly bite rate). The 

main theorem concerning the rate of extinction is presented in Section 3. Section 4 

is devoted to a discussion of the results and to a numerical example that illustrates 

how the rate of extinction can be used to compare and assess control strategies. 

The paper closes with a brief conclusion in Section 5. 

2. The Model 

2.1. General description .ri 

We consider an “epidemiologic unit” made of an isolated village surrounded 

by an open population of tsetse flies. There are three vector compartments and 

three human compartments (Figure 1). V,(t), Vi(t), Va(t) are the susceptible, 

incubating, and actively infected vectors at time t (vectors can transmit the parasite 

only during this last stage); V(t) = V,(t)+Vi(t)+Va(t) is the total vector population. 

The human variables are H,(t), H,(t), H,(t): susceptible, asymptomatic 

carriers, and removed humans at time t. (We ignore the incubation period for 

humans which is approximately 12 days; this is a short period compared to the 

duration of the asymptomatic phase which can last several months to several 

years). Only those in the compartment of asymptomatic carriers can transmit the 

\ 

parasite through fly bites. When these carriers enter the second phase of the 

disease (meningo-encephalitic phase) or go to hospital for treatment] then they are 

removed because their risk of being bitten and transmitting the parasite becomes 

negligible. Thereafter they re-enter the susceptible population when they are 

cured. (Or if they die in the removed compartment we consider that they are 
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replaced by the same number of humans (through births) in the susceptible 

compartment, which is mathematically equivalent to a recovery). All humans, 

except the removed ones, are at risk of being bitten by a fly (and can therefore be 

infected by a fly when in the suceptible stage and transmit the parasite while in 

asymptomatic stage). 

Because the human population is assumed constant and equal to H = HJt) 

+ Ha(t)+Hr(t), we note that the system with six compartments can be reduced to five 

variables (and therefore five equations). 

We consider a continuous-time model where the unit of time is three days: 

this is a convenient unit because it is the average time between blood meals for a 

fly. 

2.2. The f/y bife rafe model 

Tsetse flies have on average one blood meal every three days either on 

humans, or preferably on animals. Suppose there is a pool of A, animals that a fly 

may bite. At time t there are also H-Hr(t) humans that a fly may bite. We assume 

that a fly’s preference for animals is measured by a weight factor w that is between 

O and 1, where 0.5 indicates indifference between the two groups. The probability 

I C ~  of biting a man during one time unit (i.e. one three-day interval) is then a 

function of the number of removed individuals Hr(t): 

(1) 
H-Hr(t) - - (H-Hr(t)) x (1 -w> 

(H-HJt)) x (1 -w) + wA, H-Hr(t) + wAJ(1 -w) tl(Hr(t)) = 

We can thus consider that each fly bites with equal probability either one of H-Hr(t) 

humans or one animal out of a fictitious population of A=wA,/(I -w) animals. The 

probability that a fly will bite an infected individual is then Ha(t)qH-Hr(t) + A] and 

that it will bite a susceptible one is (H-H,(t)-Hr(t))[H-Hr(t) + A]. 
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2.3.  The population dynamics of vectors 

We assume that flies have constant birth and mortality rates b and m. In 

addition we assume a simple regulating migratory mechanism: during a time 

interval dt the net growth of the susceptible vector population due to migration is of 

the form k(V,-V(t)); kzO measures the strength of the feedback (i.e. the magnitude 

of the migratory flows) and V, is a critical value of the total population below which 

there is in-migration, and above which there is out-migration. We assume for 

simplicity that migrations occur only in the susceptible compartment: healthy flies 

alone migrate. This assumption is not unreasonable given that even during an 

epidemic the overwhelming majority of flies remains uninfected (Jordan, 1976). 

Flies can become infected primarily during their first blood meal (i.e. while in 

the first three-day age group). Given that the number of flies in this first age group 

is approximately V(t)b, the number of flies at risk of infection is also V(t)b. 

The equation for the incubating fly population is then 

where the first term on the right-hand side represents the newly infected vectors. 

Indeed, Ha(t)/(H-H,(t)-A) is the probability of biting an infected individual, and z2 is 

the probability that a susceptible vector eventually becomes infected after biting an 

infected human; z2 reflects the “intrinsic vectorial capacity” (Leray, 1989) as well as 

an average probability of infection that ignores each patient’s periodic parasitemic 

fluctuations (which are caused by the parasite’s antigenic variations). Finally q is 

the rate at which vectors leave the incubating stage and l /q  is therefore the 

average durations of the incubation period. The term Vi(t)(q+m) thus reflects losses 

due to new infections and deaths. 

Changes in Va(t) occur only through new active infections and deaths: 

The equation for the susceptible compartment is 
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z2Ha(t) ) + k(V, - V(t)) - mV,(t) -- 
dt H - H,(t) +A (4) 

which captures gains due to births (V(t)b) and losses due to new infections as well 

as losses due to mortality within the compartment (mV,(t)); k(V, - V(t)) is the 

migration term. 

Adding equations (2), (3), (4) yields 

-= dV(t) V(t)(b-m) + k(V, - V(t)) 
dt 

Not surprisingly this is a differential equation in the single variable V(t) that 

expresses the fact that the total population simply changes through migration and 

through the balance between mortality and natality. 

When k+m-b=O then V(t) increases linearly if b>m and remains constant when b=m 

and k=O. When k+m-b#O the solution to the differential equation (5) is 

V(t) = V, - (v,-v(o)>e-(k+“b)t (6) 

where V,=kV,/( k+m-b). If k+m-kO (with b2m since k2O) then the “migratory 

feedback is not strong enough to counterbalance the excess natality and V(t) 

increases without bound. If k+m-b>O, then Eq. (6) is a classical growth equation . 

used by Hargrove (1 981) and others (Lebreton and Millier, 1982). The total 

population converges monotonically to its carrying capacity V,, whether the initial 

population V(0) is greater or smaller than V,. 

We will ignore the two cases that do not lead to an equilibrium vector 

population [k+m-b=O, b>m (linear increase) and k+m-bcO (exponential 

increase)]. We will focus instead on the cases 

CI :  k+m-b>O 

C2: k+m-b=O with b=m and k=O. 

Case C2 is the standard situation of a closed constant population with equal 

birth and death rates. In case CI  the fly population never disappears. Indeed, 

even if the fly population V(t) is very small (or O) then a continuous flow k(V,-V(t)) 

replenishes the population until it reaches its carrying capacity V,=kV,/( k+m-b). 

This equilibrium population Vo depends in particular on the mortality rate m: if m 
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increases (naturally or through vector control) the population does not go to 

extinction but reaches a lower equilibrium level. (Rogers et al. , 1984). 

In forest areas where a focus may have no clear boundaries, the feedback 

parameter k may be larger which implies a V, that is larger and also less sensitive 

to changes in m. On the other hand, in a savanna focus which is more isolated, k 

(and therefore V,) may be smaller, and V, will then be more sensitive to m. 

2.4. The population dynamics of humans 

The two equations for the human populations are: 

dHa(t) H-Ha(t)-Hr(t) 
- Ha(t)rl -= 

H - Hr(t) + A Va(t1~3 dt (7) 

where the first term on the right-hand side of Eq. (7) represents new human 

infections. Each one of the V,(t) actively infected fly has a probability 

[H-Ha(t)-Hr(t)]qH - Hr(t) + A] of infecting a susceptible person and z3 is the 

probability that a susceptible human bitten by an infected fly will become sick. -(t3 is 

the "human susceptibility" ). 
- .  The parameter rl is the transition rate between the asymptomatic and the 

removed compartments. This transition reflects the natural history of the disease 

for infected individuals who move from the first asymptomatic stage to the meningo- 

encephalitic stage when the risk of transmitting the parasite becomes negligible. 

This transition also reflects the detection of infected individuals when they are 

removed to be treated. 

Equation (8) is a routine balance equation for the removed compartment, 

where r2 reflects the recovery of treated individuals. The susceptible population 

H , (t) is known through H, (t)= H - H t)- Ha( t). 
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3. Main result 

We define the system through the vector P(t)= [V(t), Va(t), VJt), Ha(t), H,(t)] 

and the five differential equations (5), (3), (4), (7), (8). We note that the vector 

WO = (Vol O, Vol O, O) (which we call the “origin”) is an equilibrium point of the 

system corresponding to the situation with no epidemic. [ The variable V,(t) does 

not appear in this system but is known through Vi(t)=V(t)-V,(t)-Va(t)]. 

def. 

We define the quantity 

where Vo* is V, in Case CI and is V(0) (the constant total population) in Case C2. 

We note that T~ = ~ ~ ( 0 )  =H/(H+A) is the fly bite rate when the removed 

compartment is empty. The quantity R, is the basic reproduction number of the 

epidemic, i.e. the average number of humans infected (via the flies) by a single 

newly infected person (“patient zero”) when the total population has settled to an 

equilibrium value Vo* and there are no infected vectors. Indeed, the quantity 

R1 = Vo* b ~ ~ ~ ~ t 2 q r ~ H l  is the number of flies that become infected since Vo*b flies 

each have a probability T,T~/H of biting patient zero and becoming infected. 

Furthermore, the duration of this exposure is l /r l  (the time patient zero spends in 

the asymptomatic stage). Also R2 = zp3(q/(q+m))/m is the average number of new 

human infections generated by each new infected fly (because q/(q+m) is the 

probability of reaching the active infective stage, l /m is the life expectancy once a 

fly has reached that stage and the probability of biting a susceptible human who 

will become infected is then ~ 1 ~ 3 ) .  R, is then the product R1R2. 

def. 

def. 

def. 

In the sequel we will show that the origin WO is unstable if R p l  and 

asymptotically stable if Ro cl. In this latter case we will give detailed results on the 

extinction rate of the disease, i.e. on the asymptotic rate at which each component 

of the vector W(t) = P(t)-WO approaches O. For example if asymptotically V,(t) - ect 

for some ceo, then we call c the extinction rate of the population Va(t). In an 

analogy with the doubling time of a population, we can then calculate the 

asymptotic “halving time” of the actively infected vector population which is HT = 

def. 
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-I n(O.5)/c. 

We will need the following parameters: 

(1 0) 

s=m(m+q) + rl(2m+q) (1 1) 

t=m(m+q)rl(l -Ro) (1 2) 
p* = s - r2/3 (1 3) 
q* = 23/27 - rs/3 + t (1 4) 

In the theorem we will make use of the fact that p*<O (indeed p* is a quadratic 

polynomial in the unknown m-rl and this quadratic is always negative). 

r = 2m + q + r 

THEOREM. The origin WO is asymptotically stable if bel and unstable if R p l  . We 

next define 

We assume k+m-b>O (Case CI). If R p l  then ev5>O; if Ro<l then ev5<0 and the 

asymptotic growth rates (extinction rates) p(V(t)-V,), P(Va(t)), p(V,(t)-V,), p(Ha(t)), 

p(Hr(t)) of the five components of W(t) are: 

p(V(t)-V,) = -k-m+b (1 6) 

P (Va (0 1 = ev5 (1 7) 
p(Vs(t)-V,) = max [-k-m+b, ev5] (1 8) 

P(Ha(t)) = ev5 (1 9) 

p(H,(t)) = max [-r2, ev51 (20) 

When k=O and m=b (Case C2) then V(t) is constant and the right-hand sides of 

Eqs. (17), (19), (20) remain unchanged. The right-hand side of Eq. (18) becomes 

ev5 . 

PROOF. TO prove stability results at WO for the vector P(t)=(V(t), Va(t), Vs(t), Ha(t), 

Hr(t)) we calculate the Jacobian matrix J at the origin WO: 
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‘-k-m+b O O O O 

9 -q-m -q O O 

b-k O -m O 
-V,b~2 
Hi-A 

-rl O 
t3H o - 
H+A 

O 

O O O r l  4 2  

We consider first the case CI with k+m-b>O .(The case C2 with k=O, m=b follows 

directly from the fact that the system is then four-dimensional (V(t) is constant) and 

the corresponding Jacobian matrix consists of the 4x4 block in the lower right 

corner of J). 

Two obvious eigenvalues are eVl=-k-m+b and ev2=-r,. Elementary but 

long calculations show that the three other eigenvalues (ev3, ev4, eV5) are the roots 

of the cubic equation (in the unknown x): 

def. kv, bZ2ql%3 
H(x) = (m+x)(m+q+x)(rl+x) = Rom(m+q)rl= 

(k+ m- b)H 

By expanding H(x) we obtain 

x3 + rx2 + sx + t = O 

where r,s,t are given in Eqs. (10)-(12). Whether there is one or three real roots, the 

closed-form expressions for the roots ev3, ev4, and ev5 are 
116 

eV3 = 2 j - g )  cos(+ acos(T(---)-1’2)+ -q* p*3 - - r 
3 

where p*, q* are given in Eqs. (13)-(14). The cosine and acosine function are 

defined in the complex domain when the real argument 
-1 ‘2 

def. -q* ( E;) w = - - -  
2 
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of the acosine function has an absolute value larger than 1. 

The proof will now proceed in three steps. We will first show that ev, has the 

largest real part among the three roots and is real (Step 1). Then we will show that 

if R+l then ev5>0 and if Ro<l then ev5e0. (Step 2). Finally we will obtain the 

results on the convergence rates by considering the basis in which the matrix J is in 

diagonal form (Step 3). 

Step 1 

We define for any real Z the three functions 

acos(Z) 
3 

u3(zf:f*cos ( + 4n/3 

u4(Z) = cos + 2d3 

u5(Z$:f.cos ( acos(Z) ) 
whose real parts are plotted in Figure 2 (together with the cubic Z(u)= 4u3-3u that 

will be used below). The fact that Re[u4(Z)] 5 Re[u3(Z)] 5 Re[u, (Z)] and p*<O 

implies that 

Re(ev4) s Re(ev,) sRe(ev,) (31) 
For Zz-I then u5(Z) = Re[u5 (Z)] (i.e. u5(Z) is real) and us(Z) is then a real 

increasing function of Z for Zz-1. In addition, if Ze-1 then u5(Z) is pure imaginary. 

Given that 

we see that ev, is a real increasing function of W if WZ-I. We will now prove that 

W r - I  by considering W as a function W(r,s,t) of the three parameters r,s, and t. For 

any fixed r,s (i.e. any fixed m, q, rl)  W(r,s,t) is a decreasing affine function of t 

(W(r,s,t)=at+p, WO). W(r,s,t) reaches a minimum W,=W(r,S, m(m+q)r,) for 

t=m(m+q)r, (when &=O). However in this case the three roots of Eq. (22) are -m, 

-m-q, and -rl. Therefore necessarily W, 2-1 since otherwise ev5 would be 
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imaginary. This proves that WZ-1 which implies that u5(W) and ev, are real. 

We define the right-hand side of Eq.(22) as 

Step 2 

We now assume that R d l  (which is equivalent to R*>m(m q)rl). Figure 3a 

depicts a typical example of the cubic H(x) l .  The function cancels out at -m, -m-q, 

-rl and the equation H(x)=R* has one positive root (eV5) as well as two complex 

roots since the horizontal line at R* intersects the function H(x) only once. (There 

would be three real roots for R* small enough). The fact that there is a positive root 

can also be seen from the fact that for -0 H(x) is an increasing function of x that is 

equal to m(m+q)rl at x=O. The equation H(x)=R* then necessarily has a single 

positive root that must be ev, since ev, is a real root that is larger than the real parts 

of ev3 and ev, (see (31)). 

We next assume that R,<1 (i.e. R*<m(m+q)rl ). 

typical function H(x). If R, is the value at which a horizontal line is tangent to H(x) 

then there are three negative roots (ev,, ev3, ev,) if R*< R, (e.g. at R*=R*(l)) and 

two complex and one negative root if m(m+q)rl>R*>Rc (e.g. at R*=R*(2)). 

We will now prove analytically that ev, <O by showing that the right-hand side of 

(32) reaches a maximum of O when W is equal to its largest possible value 

W(r,s,O). We will do this by proving that 

Figure 3b depicts in this case a 

(34) 

The proof will hinge on the fact that the polynomial Z(u)=4u3-3u has (See 

Figure 2): 

In this Figure we have r, m which is usually the case without intervention: the life expectancy 

(1 /m) of the tsetse fly is of the order of one or two months whereas the time spent in the 
asymptomatic stage (1 /rl) is several months to several years. The detection of infected 

individuals can however bring r ,  above m. 

1 2  



a. u5(Z) as its inverse for u ~(0 .5 ,  +CO); on this interval &-I & u5(Z)=Re[u5(Z)]. 

b. u3(Z) as its inverse for u E(-0.5,0.5); on this interval -1cZc1 & u,(Z)=Re[u,(Z)]. 

b. u4(Z) as its inverse for u €(-~0,-0.5); on this interval Zc-1 & u4(Z)=Re[u4(Z)]. 

E3(d) = - 
rl 

~ 

A direct substitution shows that the quantity u* = 
r/3 

satisfies the equation 
1 /6 

27 

Z(U*)=~U*~ - 3u*= W(r,s,O) . Since W(r,s,O)>-I the quantity u* is necessarily equal 

to u5(W(r,s,0)). Eq. (34) holds and therefore ev5 reaches a maximum of O when t=O, 

i.e., when Ro=l . Because ev5 is an increasing function of W this proves that ev5c0 

when Rocl  and that all eigenvalues have negative real parts (see (31)). 

Step 3 

When Rocl  the linear approximation at the origin of the system of differential 

equations in the variable W(t) = (V(t)-Vol V,(t), V,(t)-V,, H,(t), H,(t)) can be written 

as 

where D is a diagonal matrix with the eigenvalues ev,, ev,, ev,, ev4, ev5 on the 

diagonal and P is a matrix with the corresponding eigenvectors in its columns. If 
1 we define the functions 

-Vobt2(r2+d) 
E2(d) = (m+d)(H+A)rl 

then the matrix P is 
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P = 

14  

o o E1(ev3) E1(ev4) 

1 Q E2(ev3) E2(ev4) Ez(ev5) (39) 
0 0 E3(ev3> Ev,(ev4) E,(ev5) 



4. Discussion 

4.1. Basic reproduction number or rafe of extinction? 

The quantity ev, of Eq. (1 5) plays a central role in the convergence rates of 

the five variables V(t), V,(t), V,(t) Ha(t) and H,(t). In particular when kc1 then ev, is 

the extinction rate of the actively infected populations Va(t) and Ha(t) (Eq. (1 7) and 

Eq. (1 9)). 

In previous work we focused on R, as a stability criterion of the origin, i.e. 

when investigating control strategies we adopted the classical approach which 

consists in studying parameters values for which & was either above 1 or below 1. 

(Artzrouni and Gouteux, 1996a,b). However bringing Ro just below 1 may be of 

little value since the halving time of the epidemic can then be very long. To 

illustrate this, consider the following set of realistic “baseline” parameter values 

taken from Artzrouni and Gouteux (1 996a, b) (recall that the time unit is 3 days; if we 

assume that every month has 30 days then for example a 25-day incubation 

period translates into a rate q=3/25 = O. 12). 

v c  

I Parameter 1 
5,000 

I Value 

I ! I 
I H I  300 

I T1 I o. 1 

I 1 o. 1 

I 0.62 I I 
I 

~~~ 

141 0.12 (incub. = 25 days) 

I rl I 0.0075 (asympt. stage = 13.33 months) I 
I I b l  1/15 

I m 1 1/15 (life expect. = 1.5 months) 1 
I v o  I 5,000 I 
Table 1: Baseline values for parameters 

, 
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With these parameter values, Ro= 0.886, eV5=-7.539*1 O-4 and the halving time 

expressed in months is HT = 
O. 1 ln(0.5) 

eV5 
- 92 months. Even though R, is well below 

1 , it takes more than seven years for the infected population to be cut in half. If 

however the death rate m could be increased to 1/10 (through trapping or any other 

control method that increases the vector mortality) then R, drops to 0.273; Vol the 

equilibrium vector population, drops to 2,727, and the corresponding halving time 

HT is (still) over one year (13 months). 

If 5 and r, of Table 1 are taken equal to 0.068 and 0.00525 (with other 

parameters kept unchanged) then Ro=0.860 and ev5=-6.705*1 

corresponding halving time of 103 months. This example shows that depending on 

how the parameters are modified, a decrease in the basic reproduction number - 

which may seem a desirable result - can actually increase the halving time (by 

almost a year in the present example). The paradox of a decrease in R, bringing 

about a more protracted epidemic confirms that simply lowering Ro may not be the 

desirable outcome of a control strategy. 

with a 

Although Ro is biologically meaningful, the parameter ev5 (or the halving 

time HT) is an epidemiologically more useful criterion for extinction since it 

incorporates the rate at which the disease dies out l .  This is particularly significant 

in the study of optimal control strategies since an important factor is how long a 

given strategy must be used to obtain a given result (for example a 90% decrease 

of the infected population). 

4.2. Control strategies 

We will now briefly explore the implications of these results for the study of 

optimal control strategies. These strategies involve vector control (which increase 

the vector mortality m) and the detection of infected individuals (which increases 

r,). All other parameters are kept constant (Artzrouni and Gouteux, 1996b). 

In the past the computational simplicity of Ro was an advantage, but today with algebraic 

manipulation softwares such as Mathematka@ and Mathcad@, the relative complexily of the 
closed-form expression for ev5 is immaterial. 
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Although the expression (1 5) for ev, is a complicated function of rl and m, the 

relationship between ev, and these two parameters appears clearly when one 

considers ev, as the largest root of H(x)=R* (Figures 2a,b). Indeed, if m increases 

with fixed rl, then the intersection of H(x) with the vertical axis moves upward, and 

ev, decreases without ever going below -rl: no matter how much vector mortality is 

increased, the rate of extinction ev, cannot be brought under -rl. Hence in 

endemic situations in which infected persons may stay several years in the 

asymptomatic stage, the halving time will also be several years, regardless of any 

attempts at vector control. Similarly if rl is made to increase through aggressive 

screening, then ev, cannot drop below -m. 

These relationships are explored more precisely in Figure 4 which 

represents ev, as a function of rl and m, for 0.0075~ rl ~ 0 . 2  and 1/15<m<0.4. (The 

lower bounds thus correspond to the baseline values of Table 1). The figure 

clearly shows how the "steepest descent" on the surface will depend on the initial 

("pre-intervention") level of rl and m. If the initial values are those of Table 1, we 

are at the top right corner of the graph (point A) and the steepest decrease in ev, is 

obtained by increasing both rl and m in order to stay in the "valley of steepest' 

descent". If m=0.23 (about the middle of the interval, with the same value of rl : 

point B) then it is apparent that further increasing m leaves ev, virtually 

unchanged. The steepest descent is obtained by increasing rl alone. (This 

increase could go all the way to the valley in which both parameters should then 

increase in tandem). Similarly, if rl is about 0.10 (point C) then m should be 

increased first and then both variables should increase together. 
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5. Conclusion 

There is evidence to suggest that density-dependent phenomena play an 

important role in the population dynamics of tsetse flies. Our goal here was to 

contribute to our understanding of these phenomena by proposing a model of the 

spread of sleeping sickness that incorporates a regulating migratory mechanism. 

We plan in the future to use available field data to assess in greater detail the 

validity of the regulating term k(Vc-V(t)). In particular we will need to obtain rough 

estimates of the parameter k that measures the strength of the feedback. 

We also studied in detail the rate of extinction ev, and argued that this rate is 

a better measure of the potential spread of the disease than R, because ev5 

incorporates the rate at which the disease will die out. The well-documented 

persistence of sleeping-sickness foci in various areas of Africa could thus be 

explained by the transmission’s slow dynamics which we plan to investigate 

empirically through the rate of extinction ev,. [We note that if ev, is just below O, 

then as discussed the convergence to extinction will be slow. Although we have 

not dwelt on the case of epidemic flare-up, it is also the case that an ev, just above 

O will give rise to a very slowly expanding infection]. 

Models that incorporate the reality of open and fluctuating vector populations 

and that include a measure of the duration of the epidemic should contribute to a 

better uderstanding of a serious disease that still affects large areas of Africa. 
****************** 
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k(Vc-V( t)): migration term 

Vectors 

Asymptomati r i  ~ q 2 7 )  
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Figure 1: Compartments of the model 
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Figure 3a: Cubic H(x) of Eq. (22) ( R O A ,  i.e. R*>m(m+q)ri). 



Figure 4: Value of ev5 as a function of 
r l  and m. 




