CONVENTIONS

SCIENCES DE LA VIE

AGROPÉDOLOGIE

N° 36

1997

Mise en valeur des sols ferrallitiques des massifs du Sud de la Nouvelle-Calédonie.

Évaluation des effets de doses croissantes de phosphate sur une culture de maïs installée sur un faciès ferritique de glacis.

Bernard BONZON
Sylvie DUPONT
Émmanuel BOURDON
Thierry BECQUER
Laurent L'HUILLIER
Patrick LAUBREAUX

Convention Province Sud / ORSTOM N°53-PVF / DDR notifiée le 14 janvier 1991. Avenant 5 du 29/12/1995.

L'INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPÉRATION

CONVENTIONS

SCIENCES DE LA VIE

AGROPÉDOLOGIE

N° 36

1997

Mise en valeur des sols ferrallitiques des massifs du Sud de la Nouvelle-Calédonie.

Évaluation des effets de doses croissantes de phosphate sur une culture de maïs installée sur un faciès ferritique de glacis.

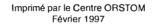
Bernard BONZON
Sylvie DUPONT
Émmanuel BOURDON
Thierry BECQUER
Laurent L'HUILLIER
Patrick LAUBREAUX

Convention Province Sud / ORSTOM N°53-PVF / DDR notifiée le 14 janvier 1991. Avenant 5 du 29/12/1995.

L'INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPÉRATION

CENTRE DE NOUMÉA

© ORSTOM, Nouméa, 1997


/Bonzon, B. /Dupont, S. /Bourdon, E. /Becquer, T. /L'huillier, L. Laubreaux, P.

> Mise en valeur des sols ferrallitiques des massifs du Sud de la Nouvelle-Calédonie. Évaluation des effets de doses croissantes de phosphate sur une culture de maïs installée sur un faciès ferritique de glacis.

Nouméa: ORSTOM. Janvier 1997. 50 p.

Conv.: Sci. Vie; Agropédol.; 36

SOL FERRALLITIQUE ; FERRITIQUE ; MAIS ; PHOSPHORE ; FERTILISATION ; ARRIERE EFFET/NOUVELLE CALEDONIE

SOMMAIRE

AVERTISSEMENT	2
RESUME	3
INTRODUCTION	4
PARTIE I : SITE EXPERIMENTAL DE OUENAROU	
1 - DESCRIPTION DU DISPOSITIF	5
1.1 La carte des sol	
2 - LES PRINCIPAUX RESULTATS EN PLEIN CHAMP - DISCUSSION	8
2.1 Les données qui interviennent dans le calcul des rendements	11
PARTIE II : EXPERIMENTATION EN SERRE SUR L'EFFET DE DOSI COMPLEMENTAIRES D'AMENDEMENT PHOSPHATE APPLIQUEES À U SOL FERRALLITIQUE FERRITIQUE DE GLACIS AYANT RECU 2, 6 ET I/HA DE P ₂ O ₅	JN
1 - INTRODUCTION.	18
2 - MATERIEL ET METHODES	19
2.1 Localisation et réalisation des prélèvements. 2.2 Préparation de la terre. 2.3 Mise en place et conduite de l'expérimentation. 2.4 Emplacement schématique des traitements dans la serre.	19 19
3 - RESULTATS DES OBSERVATIONS ET DES MESURES - DISCUSSION	21
REFERENCES BIBLIOGRAPHIQUES	25
PARTIE III : ANNEXES	
ANNEXE 1 : Calendrier et nature des travaux effectués sur la parcelle en 1994 Résultats du premier cycle cultural en 1994 ANNEXE 2 : Nature des travaux effectués sur la parcelle en 1995 Résultats du deuxième cycle cultural en 1995 ANNEXE 3 : Résultats préliminaires du troisième cycle cultural en 1996 ANNEXE 4 : Expérimentation en serre	43 57

AVERTISSEMENT

Ce rapport rend compte des tous premiers résultats obtenus après trois cycles culturaux d'une culture de maïs sur le faciès ferritique de glacis du site expérimental de Ouénarou. Il s'agit plus précisément de l'étude expérimentale de base au champ, engagée sur ce site en 1994, dans le cadre de la convention de recherche « pour l'étude des facteurs de la fertilité et des conditions de mise en valeur des sols ferrallitiques des massifs du Sud de la Grande Terre ».

Ces recherches ont été conduites au titre de la deuxième opération - relative à l'effets et les arrières effets de doses croissantes d'amendement phosphaté sur un sol ferrallitique ferritique de glacis - de l'avenant 5 de la Convention Province Sud ORSTOM citée précédemment.

Ont contribué à la réalisation du rapport :

- Sylvie Dupont et Laurent L'Huillier du Laboratoire d'Agropédologie de l'ORSTOM;

Par ailleurs, sa publication a fait appel aux services de J-P Mermoud et N. Galaud pour l'édition de l'ensemble.

RESUME

Le phosphore est probablement l'élément le plus limitant dans les sols ferrallitiques ferritiques du Sud de la Nouvelle-Calédonie. Cette étude a pour but l'évaluation des effets et des arrières effets de doses croissantes de phosphate sur une culture de maïs installée en plein champ sur un faciès ferritique de glacis. Elle entre en 1997, dans sa quatrième année de culture. Le premier cycle cultural en 1994 n'a révélé pratiquement que des tendances en ce qui concerne l'influence sur le rendement de maïs de doses croissantes d'amendements phosphaté (2, 4, 6, 8 et 10 t/ha de P_2O_5). Le second cycle, durant l'année 1995 a, par contre, mis en évidence une influence hautement significative de ces mêmes doses initiales sur le rendement. En effet, les rendements en grains varient de 50 à 95 qx/ha, pour les doses de 2 à 10 t/ha de P_2O_5 . Durant le troisième cycle cultural en 1996, on a constaté une chute brutale de tous les rendements qui varient de 1,2 à 22,5 qx/ha de grains pour les mêmes doses de phosphore. Une expérimentation sur vases de végétation sous serre a également été conduite en 1996, pour répondre avec précision à l'effet de doses complémentaires d'amendement phosphaté appliquées au sol de Ouénarou ayant déjà reçu 2, 6 et 10 t/ha P_2O_5 . Ces apports complémentaires se révèlent d'autant plus nécessaires que les doses initiales appliquées en plein champ sont faibles.

Mots clés : Sol ferrallitique, ferritique, maïs, phosphore, fertilisation, arrière effets, Nouvelle-Calédonie

INTRODUCTION

L'étude des facteurs de la fertilité et des conditions de mise en valeur des sols ferrallitiques ferritiques des massifs du Sud de la Grande Terre, lancée modestement en 1989. deux ans avant le démarrage de la convention Province Sud-ORSTOM, a commencé par faire l'objet de recherches expérimentales en serre sur les deux premiers horizons de surface de faciès très proches les uns des autres. Les faciès en question ont été identifiés en 1987 par Didier Blavet et décrits en 1990 par E. Bourdon. Les résultats de ces premiers travaux ont confirmé les carences auxquelles il fallait s'attendre et, surtout, permis de préciser la dose optimale d'amendement phosphaté à appliquer sur maïs (de l'ordre de 7 t/ha de P2O5 mélangées à 3000 t/ha de terre) pour lever la stérilité naturelle de ce type de sol en premier cycle. Ils ont mis en évidence également l'influence de l'amendement phosphaté sur l'assimilation des métaux lourds (nickel, chrome et cobalt), toujours présents à des teneurs élevées, et conduit, de ce fait, à s'interroger sur la toxicité de ces éléments pour les plantes cultivées et sur l'influence des techniques culturales, notamment des fertilisations, sur cette toxicité. Les études réalisées ensuite par le CREA sur la laitue et sur le haricot ont montré que cette dose optimale de 7 t/ha de P₂O₅ était très vraisemblablement applicable aussi à ces deux espèces. Enfin, les vérifications menées en 1994 par le Laboratoire d'Agropédologie sur l'horizon 0-20cm du sol du premier site expérimental de Ouénarou ont permis de valider cette limite initiale pour le mais et montré, par ailleurs, qu'il n'y avait sans doute pas lieu de craindre au départ des carences en oligo-éléments.

Bien que de nombreuses questions demeurent et doivent encore être étudiées en serre, ou en laboratoire, la mise en place et la conduite sur plusieurs années (4 ou 5 ans) d'une expérimentation de base au champ s'imposait à partir de 1992, non seulement pour vérifier le bien-fondé des conseils techniques qui semblaient déjà découler des expériences en serre sur vases de végétation, mais aussi et surtout pour préciser, dans des conditions proches des conditions réelles, l'évolution sous culture de la fertilité modifiée par l'amendement phosphaté indispensable à la mise en valeur de tels sols, notamment la durée des arrières-effets de cet amendement.

PARTIE I

SITE EXPERIMENTAL DE OUENAROU

1 - DESCRIPTION DU DISPOSITIF

1.1 la carte de sol

Les sols de ce site d'expérimentation ont été bien décrits en 1994 (cf carte des sols ciaprès de Bourdon et Edighoffer, 1992). Cette étude a permis de définir et d'organiser le périmètre expérimental pour la conduite de plusieurs essais. Il s'agit d'un sol ferrallitique ferritique de glacis, avec apports colluvio-alluviaux.

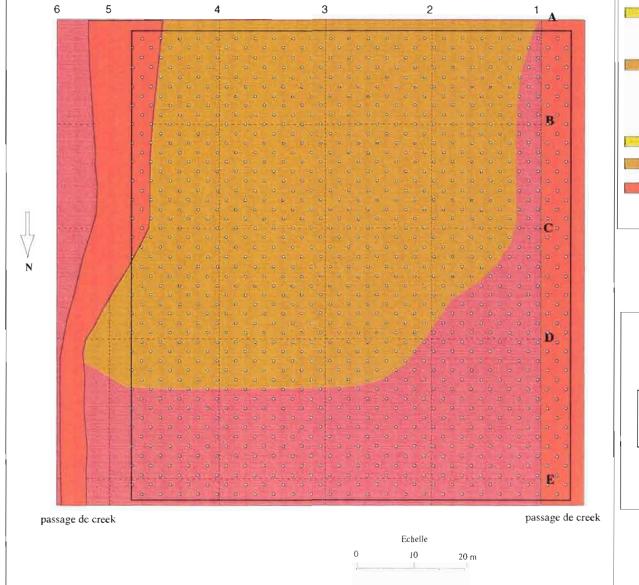
1.2 Description du dispositif expérimental

Le dispositif expérimental est composé chaque année de plusieurs études, la principale étant l'étude des effets de doses croissantes d'amendements phosphatés. Des études annexes, de moindre importance, peuvent évoluer d'année en année. En 1995, le dispositif se décomposait de la facon suivante (cf. plan des expérimentations ci-après) :

- une étude des effets et arrières effets de doses croissantes de P_2O_5 sous forme de phosphate supertriple (2, 4, 6, 8 et 10 t/ha). Cette étude repose sur un carré latin 5*5, marqué (1) sur le plan ;
- l'observation de l'évolution des caractéristiques physiques et chimiques de profils culturaux, situés sur deux faciès pédologiques légèrement différents et sous 3 types d'amendements (4 t/ha de P_2O_5 sous forme de phosphate supertriple seul, 4 t/ha de P_2O_5 et 20 t/ha de scorie de nickel, 4 t/ha de P_2O_5 et 20 t/ha de compost urbain), marqué (3) sur le plan;
- un essai intervariétal de 10 variétés de maïs, sur deux types de faciès de sol, ayant reçus 4 t/ha de P_2O_5 sous forme de phosphate supertriple seul, marqué (5) sur le plan.

En 1995, ce champ de Ouénarou a été semé le 10 mai, avec la même variété de maïs qu'en 1994 (Hycorn 80). En 1996, le semis a eu lieu le 3 juillet avec du Hycorn 83.

Le calendrier et la nature des travaux effectués sur la parcelle expérimentale de Ouénarou sont décrits en annexe 1 pour l'année 1994 et en annexe 2 pour 1995.

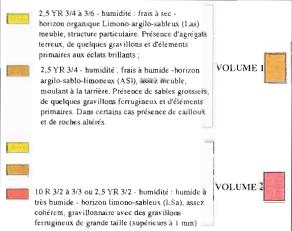

CHAMP EXPERIMENTAL DE OUENAROU

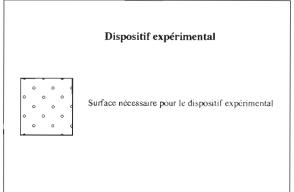
1 - Carte des sols

1 - Carte des s

/ue en coupe des variations latérales des horizons diagnostiques constituant le pédo-comparateur

Cartographie des volumes de sols (vue en plan)

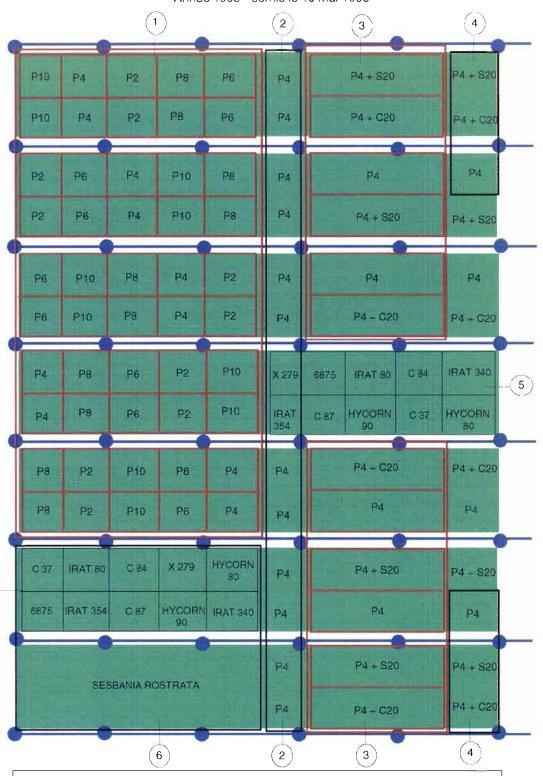

ORSTOM


Centre de Nouméa

Laboratoire d'Agropédologie

S Edighoffer E. Bourdon T. Becquer

Descriptions des horizons diagnostiques constituant les volumes de sols



CHAMP EXPERIMENTAL DE OUENAROU

2 - Expérimentations. Répartition des traitements Année 1995 - semis le 10 mai 1995

P2 = 2 t/ha de P2O5

(5)

P4 = 4 t/ha de P2O5

P6 = 6 t/ha de P2O5

P8 = 8 t/ha de P2O5

P10 = 10 t/ha de P2O5

S20 = 20 t/ha de Scories de nickel

C20 = 20 t/ha de Compost

(1) Evolution des arrières effets du phosphore ;

2 Bande centrale (statut initial du sol);

3 Evolution des propriétés physiques ;

(4) Evolution de la lixiviation;

5 Test de 10 variérés de mais ;

6) Sesbania Rostrata.

2 - LES PRINCIPAUX RESULTATS EN PLEIN CHAMP - DISCUSSION

2.1 - Les données qui interviennent dans le calcul des rendements

Tableau N°1: Données relatives aux calculs des rendements 94, 95 et 96

Sigle	Unité	Signification		Moy	P2	P4	P6	P8	P10
		0		·					
DP	nbre/m ²	Densité de peuplement	94	7,06	7,03	6,96	7,11	6,98	7,21
	,		95	6,66	6,69	6,58	6,61	6,77	6,67
			96	6,38	6,36	6,22	6,47	6,49	6,39
DE	nbre/m ²	Densité des épis	94	7,65	7,23	7,69	7,77	7,54	8,00
	,		95	6,76	6,12	6,71	6,80	7,01	7,16
			96	3,80	2,02	3,82	2,94	5,07	5,16
GRU	g	Poids de 1000 grains	94	339,44	326,79	348,63	335,55	335,15	351,10
			95	271,14	228,74	273,90	281,46	273,41	298,16
			96	129,79	101,33	132,31	105,43	150,95	158,91
NEP	nbre/plt	Nombre d'épis par plant	94	1,08	1,03	1,10	1,09	1,08	1,11
			95	1,01	0,91	1,02	1,02	1,03	1,07
			96	0,59	0,32	0,62	0,45	0,78	0,80
NGE	nbre/épi	Nombre de grains par épi	94	297,75	298,97	299,57	295,63	287,83	306,73
			95	291,58	223,93	321,09	272,55	327,01	313,31
PG	g/plt	Poids de grains par plant	94	110,105	101,36	115,29	108,63	104,66	120,58
			95	102,73	64,86	109,45	105,90	112,34	121,08
			96	24,19	4,05	18,60	7,86	33,11	57,36
QG	g/m ²	Rendement en grains	94	776,51	712,42	803,46	774,70	729,55	862,43
			95	684,47	435,51	722,96	697,37	759,71	806,79
			96	77,67	10,49	54,34	24,67	107,59	191,25
QGcom	qx/ha	Rendement commercial	94	91,35	83,81	94,52	91,14	85,83	101,46
			95	80,52	51,23	85,05	82,04	89,37	94,91
		D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	96	9,13	1,23	6,39	2,90	12,65	22,50
PTF	g/plt	Poids de tiges et feuilles	94	71,39	63,27	69,78	70,61	80,77	72,52
			95 96	128,78	83,22	121,04	123,82	156,68	159,12
OTE	2	Rendement en tiges et feuill		57,54	35,97	56,26	49,02	72,57	73,89
QTF	g/m ²	Kenaement en tiges et jeutit		502,33	444,62	485,85	500,82	559,99	520,37
			95	860,72	558,89	800,58	818,57	1061,49	1064,10
77(4)	/ 1:	Daida da manda a a (ni	96	367,60	227,54	345,86	319,32	472,29	472,98
P(A)	g/plt	Poids de parties aériennes	94	181,50	164,63	185,07	179,25	185,43	193,10
<u> </u>			95 96	209,01	129,73	209,84	201,30	246,98	257,20
O(A)	. 2	Biomasse de parties aérient		69,32	38,63	65,68	52,96	89,10 1289,54	100,24 1382,80
Q(A)	g/m ²	Dioniusse de parties dertent		1278,8	1157,04	1289,31	1275,52		
			95	1395,5	871,58	1388,07	1325,17	1672,77	1719,89
			96	442,41	243,43	400,46	345,76	580,63	641,75

Les densités de peuplement sont en moyenne plus élevées en 94 qu'en 95 et 96, avec cependant des valeurs relativement proches en fonction des doses croissantes de phosphore. De la même manière, la densité d'épis est nettement plus élevée en 94, avec une légère augmentation de cette densité en fonction des doses croissantes de phosphore. En 95, on constate une densité d'épis un peu plus faible, un épi de moins par m², alors qu'en 96 le phénomène est beaucoup plus marqué avec deux ou trois fois moins d'épis par m².

Le nombre d'épis par plant est identique en 94 et en 95, de l'ordre de 1, alors qu'en 96 il varie de 0,32 à 0,8 épis par plant en fonction des doses croissantes de phosphore.

Le poids de 1000 grains diminue au cours des trois cycles culturaux, en 94 il reste constant avec très peu de variations en fonction des doses de phosphore. En 95, on constate une légère augmentation de ce poids de 1000 grains en fonction de doses de phosphore (de 228 g à 298 g pour 2 et 10 tonnes de P_2O_5/ha) et de la même manière en 96, mais avec un poids nettement plus faible (de 100 g à 159 g de 2 à 10 tonnes de P_2O_5/ha). Le nombre de grains par épis est en moyenne légèrement plus élevé en 94 (298 grains par épis, pour 291 grains par épis en 95) avec cependant, un nombre de grains moins élevé pour les doses de 2 et 6 t/ha de P_2O_5 en 95. Le poids de grains par plant augmente régulièrement avec l'augmentation des doses de phosphore au cours des trois cycles culturaux : de 100, 65 et 4 g/plant à la dose de 2t/ha de P_2O_5 en 94, 95 et 96 on passe à 120, 120 et 57 g/plant à la dose de 10 t/ha de P_2O_5 .

Les rendements en grains en g/m² et en qx/ha (cf. Fig.1, ci-après) chutent considérablement en 96. Ils varient de 83 à 101 qx/ha en 94, de 51 à 95 qx/ha en 95 et de 1 à 22 qx/ha en 96 pour les doses de 2 à 10 t/ha de P₂O₅. La première année, le phosphore n'était probablement pas totalement fixé de façon irréversible sur les oxydes de fer du sol, et des quantités relativement importantes ont pu être absorbées par le maïs. Alors que la deuxième et troisième année de culture, le phosphore s'étant fixé fortement au sol, la partie disponible pour la plante étant très faible, il s'en suit une chute des rendements lors du troisième cycle, qui augmentent légèrement en fonction des doses croissantes de phosphore appliquées en plein champ.

De la même façon, la croissance des plants de maïs a été considérablement réduite : les rendements en tiges et feuilles et les biomasses des parties aériennes (cf. Fig.2, ci-après) traduisent, comme les grains, une chute importante en 96.

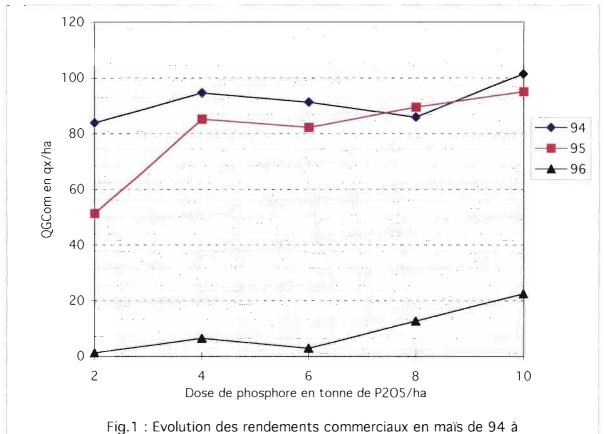
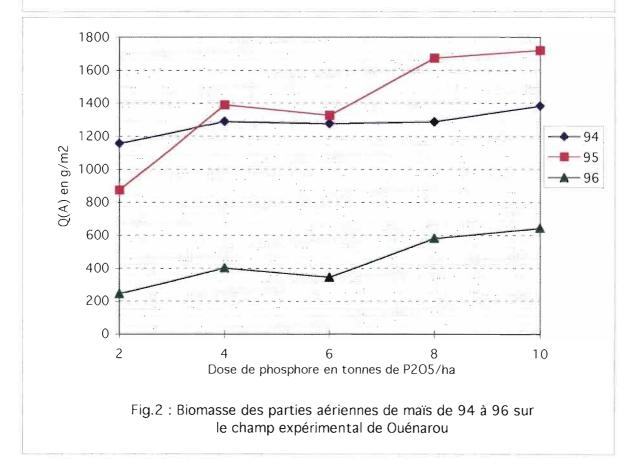



Fig.1 : Evolution des rendements commerciaux en maïs de 94 à 96 sur le champ expérimental de Ouénarou

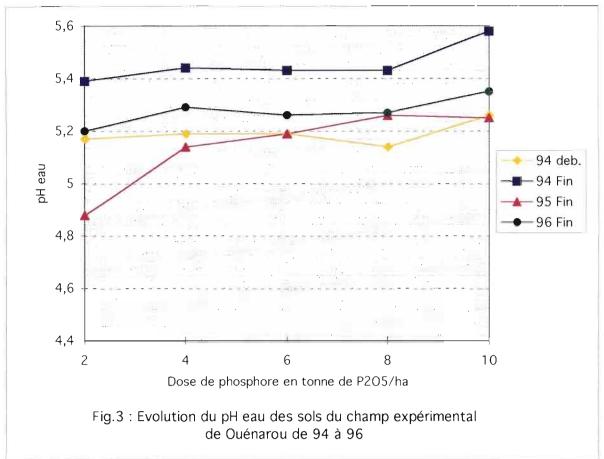
2.2 - Les données sol

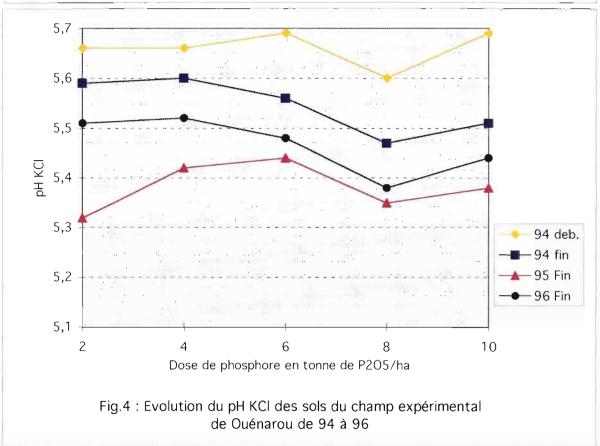
Tableau N°2: Données sols en 94, 95 et les premiers résultats de 96

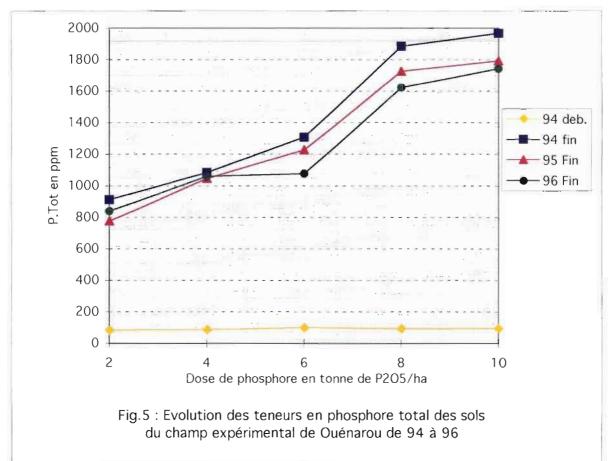
Sigle	Unité	Signification	Moy	P2	P4	P6	P8	P10
pHeau1b		pHeau horizon1 fin de cycle 94	5,45	5,39	5,44	5,42	5,43	5,58
pricatio		95	5,14	4,88	5,13	5,19	5,26	5,25
		début de cycle 96	5,22	5,20	5,29	5,26	5,27	5,35
pHKC11b	-	pHKck horizon1 fin de cycle 94	5,55	5,59	5,60	5,56	5,47	5,51
Pilitorio		95	5,38	5,32	5,42	5,44	5,35	5,38
		début de cycle 96	5,46	5,51	5,52	5,48	5,38	5,44
PT1a	ppm	Phosphore tot horiz I deb cycl94	91,03	82,84	86,76	97,66	92,86	95,04
PT1b	ppm	Phosphore tot horiz I fin cycl 94	1430,95	911,24	1082,58	1308,00	1884,39	1968,54
		95	1312,96	776,00	1044,50	1226,80	1726,40	1791,10
		début de cycle 96	1267,30	838,10	1057,80	1075,70	1622,10	1742,80
PAss1a	ppm	Phosphore ass hori1 déb cycle94	1,74	1,74	0	0	3,48	3,48
PAss1b	ppm	Phosphore ass horiz1 fin cycle94	148,58	62,78	88,50	118,59	219,30	253,75
	•	95	108,36	38,90	68,90	87,70	157,90	188,40
		début de cycle 96	78,92	38,80	49,30	63,70	105,10	137,70
CaE1b	meq/%	Calcium éch horizl fin cycle 94	2,42	1,90	2,09	2,27	2,87	3,00
		95	1,69	1,11	1,41	1,71	1,98	2,24
MgE1b	meq/%	Magnésium éch horil fincycle94	0,72	0,67	0,65	0,70	0,78	0,77
	•	95	0,36	0,31	0,32	0,34	0,39	0,43
NaE1b	meq/%	Sodium éch horiz1 fin cycle 94	0,03	0,03	0,03	0,02	0,03	0,03
	•	95	0,04	0,03	0,03	0,04	0,02	0,05
KE1b	meq/%	Potassium éch hori1 fin cycle 94	0,16	0,15	0,15	0,16	0,17	0,18
		95	0,11	0,09	0,11	0,11	0,12	0,11
CEC1b	meq/%	C.E.C horiz1 fin de cycle 94	6,74	5,55	5,94	6,5	8,04	7,69
	<u> </u>	95	6,73	5,43	6,76	6,88	7,60	7,00
MnE1b	mg/g	Manganèse éch horiz1 fincycl94	0,024	0,020	0,022	0,022	0,029	0,025
		95	0,014	0,015	0,015	0,013	0,016	0,014
MnFR1b	mg/g	Manganèse FR horil fin cycle94	2,72	2,74	2,63	2,77	2,70	2,77
		95	2,71	2,65	2,53	2,79	2,69	2,88
MnDTPA1b	mg/g	ManganèseDTPA horil f.cycl94	986,94	955,10	935,60	986,10	1046,90	1011,00
		95	920,44	869,20	889,60	925,30	980,90	937,20
MnKCl1b	ppm	manganèse Kcl hori1 fin cycle94	28,60	26,70	24,90	31,60	33,60	26,20
		95	21,84	23,70	22,20	20,70	23,70	18,90
NiKC11b	ppm	Nickel Kcl horiz 1 fin de cycle94	3,9	4,8	3,2	3,6	4,0	4,0
	<u> </u>	95	9,64	11,8	8,9	9,2	9,7	8,6
NiDTPA1b	ppm	Nickel DTPA horiz1 fin cycle 94	48,44	50,10	43,9	46,3	51,00	50,90
	FF	95	53,78	55,8	49,8	52,1	56,3	54,9

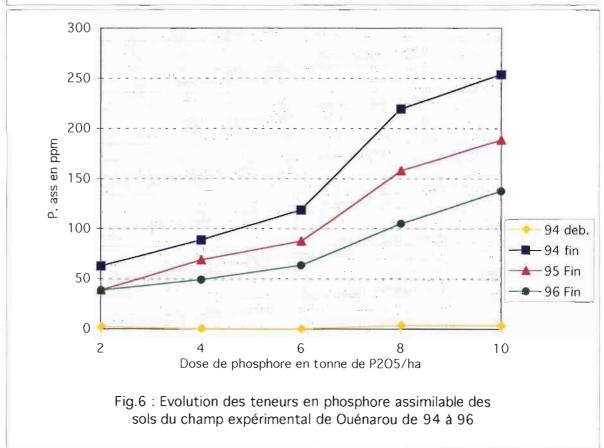
Les valeurs des pH eau et pH KCl (cf. Fig. 3 et 4, ci-après) ont considérablement diminuées à l'issu du deuxième cycle de culture. Un apport d'amendement calcique à la dose de 4,7 t/ha de CaO a donc été réalisé en début d'année 1996 pour relever ce pH. Mais globalement le pH eau des sols de Ouénarou reste encore acide (proche de 5,2) en 96.

Les teneurs en phosphore total et assimilable (cf. Fig.5 et 6, ci-après) sont très faibles en début de cycle 94, c'est-à-dire avant toute intervention, traduisant la très faible fertilité naturelle de ce type de sol ferrallitique ferritique de glacis (90 ppm en phosphore total et 1,7 ppm en phosphore assimilable).


Après l'apport de phosphate supertriple, il y a bien une augmentation des teneurs en phosphore total et assimilable dans l'horizon 0-25 cm en fonction de dose croissantes de P_2O_5 appliquées en plein champ, avec une légère diminution au fur et à mesure des années, vraisemblablement due à des profondeurs de prélèvements différentes, à un léger compactage de l'horizon de surface, aux labours successifs ramenant vers la surface des horizons moins riches en phosphore, et aux exportations par la plante.


La capacité d'échange cationique est globalement modérément élevée, pour ce type de sol, au cours des deux cycles culturaux (6,7 meq% en moyenne en 94 et en 95), elle augmente légèrement en fonction des doses croissantes de phosphore : 5,5 meq% pour 2t/ha de P_2O_5 et 7 meq% pour 10 t/ha de P_2O_5 .


Les bases échangeables calcium, magnésium et potassium échangeables ont globalement des teneurs plus faibles lors du deuxième cycle cultural. On constate cependant, une augmentation progressive des teneurs en fonction des doses croissantes de phosphore.


Les teneurs en manganèse échangeable, facilement réductible, extraites au DTPA et au KCl sont sensiblement identiques au cours des deux premiers cycles culturaux, avec une légère augmentation de ses teneurs extraites au DTPA en fonction des doses croissantes de phosphore.

Les teneurs en nickel extrait au KCl sont assez faibles lors du premier cycle, en moyenne 3,9 ppm, alors que pour le second, elles sont de 9,6 ppm, ce qui pourrait être du à une augmentation de la quantité de nickel lié à la matière organique. Elles diminuent légèrement avec l'augmentation des doses de phosphore. Les teneurs en nickel extrait au DTPA sont proches au cours des deux cycles culturaux, en moyenne autour de 50 ppm (48,8 ppm en 94 et 53,7 ppm en 95). Ces valeurs sont relativement élevées et pourraient générer une toxicité sur les plantes sensibles au nickel (L'Huillier L. 1997).

2.3 - Les éléments dans la plante

Tableau $N^\circ 3$: Teneurs en éléments minéraux dans les plantes en 94 et 95, (les résultats de 96 ne sont pas encore disponibles)

Sigle	Unité	Signification	Moy	P2	P4	P6	P8	P10
TSiO2TF	%	Teneur en silice tiges et feuil. 94	2,84	2,54	2,89	2,66	3,05	3,09
		95	2,25	1,81	2,32	2,02	2,41	2,69
TNTF	%	Teneur en azote tiges feuilles 94	0,19	0,35	0,17	0,21	0,12	0,11
		95	1,09	1,17	0,94	1,09	1,11	1,15
TPTF	%	Teneur en phosp. tiges feuil. 94	0,15	0,07	0,11	0,16	0,19	0,21
		95	0,09	0,08	0,07	0,08	0,09	0,10
TKTF	%	Teneur en Potas. tiges feuilles94	0,81	0,74	0,78	0,85	0,82	0,84
		95	1,28	1,26	1,27	1,25	1,25	1,34
TCaTF	%	Teneur en calcium tiges feuil. 94	0,41	0,40	0,39	0,42	0,42	0,43
		95	0,45	0,41	0,43	0,45	0,44	0,51
TMgTF	%	Teneur en Mg des tiges feuil. 94	0,23	0,22	0,22	0,25	0,23	0,24
		95	0,27	0,30	0,28	0,28	0,25	0,26
TNaTF	%	Teneur en sodium tiges feuil. 95	0,03	0,03	0,03	0,03	0,03	0,03
TCoTF	ppm	Teneur en cobalt tiges feuil. 95	5,8	7	5,2	5,9	4,3	6,6
TCrTF	ppm	Teneur en chrome tiges feuil. 95	42,36	51,6	39,7	44,6	31,5	44,4
TFeTF	ppm	Teneur en fer des tiges etfeuil.95	1459,8	1794,6	1339,1	1551,6	1093,9	1520,0
TMnTF	ppm	Teneur en mangan. tiges feuil. 94	163,54	160,8	152,9	167,3	168,7	168,0
		95	162,42	188,3	155,1	170,4	135,7	162,6
TNiTF	ppm	Teneur en nickel tiges feuille 94	23,34	24,6	21,2	25,0	21,6	24,3
		95	36,34	45,6	32,4	38,4	28,1	37,2
TNiGr	ppm	Teneur en nickel dans grains 94	7,37	9,44	7,8	7,2	6,1	6,3
		95	4,8	6,5	5,2	4,2	4,4	3,7
TAITF	ppm	Teneur en alumini. tiges feuil. 95	256,78	325,6	240,9	264,2	184,6	268,6
TCuTF	ppm	Teneur en cuivre tiges feuil . 95	84,32	119,3	77,2	88,1	58,8	78,2
TZnTF	ppm	Teneur en zinc tiges feuilles 95	45,1	54,6	42,6	47,5	37,3	43,6
PN(A)	g/plt	Immobilisation en N dans PA 94	2,26	2,16	2,35	2,25	2,14	2,39
		95	2,79	1,78	2,65	2,69	3,27	3,56
PP(A)	g/plt	Immobilisation en P dans PA 94	0,51	0,40	0,52	0,50	0,53	0,58
		95	0,38	0,22	0,37	0,36	0,44	0,50
PK(A)	g/plt	Immobilisation en K dans PA 94	0,98	0,84	0,99	1,00	1,03	1,03
		95	1,93	1,23	1,84	1,82	2,29	2,47
PCa(A)	g/plt	Immobilisation en Ca dans PA94	0,30	0,26	0,27	0,30	0,34	0,32
		95	0,58	0,34	0,53	0,55	0,69	0,81
PMg(A)	g/plt	Immobilisation en Mg dansPA94	0,31	0,28	0,32	0,32	0,32	0,32
		95	0,45	0,31	0,45	0,44	0,51	0,54
PSi(A)	g/plt	Immobilisation en Si dans PA 94	2,03	1,60	1,99	1,87	2,44	2,25
		95	3,01	1,63	2,85	2,48	3,79	4,28
PNi(A)	mg/plt	Immobilisation en Ni dans PA 94	2,49_	2,71	2,35	2,53	2,34	2,50
		95	4,77	3,91	4,19	4,8	4,83	6,11
PCr(A)	mg/plt	Immobilisation en Cr dans PA 95	5,15	4,05	4,59	5,21	5,01	6,89
PCo(A)	g/plt	Immobilisation en Co dans PA 95	0,77	0,59	0,68	0,75	0,73	1,09
PMn(A)	mg/plt	Immobilisation en Mn dansPA 94	12,86	11,27	11,87	13,03	14,72	13,43
` '		95	20,46	14,58	19,07	20,73	21,87	26,07

Les teneurs en silice dans les tiges et feuilles de maïs diminuent légèrement au cours des deux premiers cycles de cultures : 2,84 % en 94 et 2,25 % en 95. Elles ont tendance à augmenter avec l'apport de phosphore.

Au niveau de l'assimilation des éléments majeurs, l'azote et le potassium ont des teneurs dans les feuilles bien plus élevées au cours du deuxième cycle de culture, mais ces teneurs sont relativement faibles par rapport aux valeurs normales. Pour l'azote, les valeurs moyennes sont de 0,19 % en 94 et de 1,09 % en 95, pour une valeur normale dans les feuilles de 3 %. Le potassium varie également de 0,81 % à 1,28 %, pour une valeur normale dans les feuilles de 2 %, et des teneurs qui augmentent légèrement en fonction de doses croissantes de phosphore.

Les teneurs moyennes en phosphore dans les feuilles de maïs sont plus faibles en 95 qu'en 94 (0,15 % et 0,09 %). Il y a une légère augmentation de ces teneurs avec l'accroissement des doses de phosphore dans le sol. Mais ces teneurs restent globalement inférieures aux valeurs normales en phosphore dans les feuilles qui varient entre 0,3 et 0,5 % (Edighoffer S. et Bourdon E., 1993).

Les teneurs en calcium varient très peu dans les feuilles d'un cycle sur l'autre : 0,4 % en moyenne avec une valeur normale se situant entre 0,2 et 0,5 %. Pour le magnésium, les teneurs moyennes sont également très proches au cours des deux cycles culturaux, en moyenne 0,2 % qui correspond à la valeur normale en magnésium dans les feuilles de maïs.

Les teneurs en métaux de transition sont assez élevées dans les tiges et feuilles, plus particulièrement les teneurs en nickel (cf. Fig.7, ci-après) qui sont en moyenne plus importantes au cours du deuxième cycle cultural (23 ppm et 36 ppm), avec une tendance à diminuer dans les feuilles quand les doses de phosphore augmentent. Le phénomène se confirme également dans les grains, où une diminution importante des teneurs en nickel est constatée avec l'augmentation des doses de phosphore dans le sol (cf. Fig.8 ci après). Les teneurs en nickel dans les grains sont nettement moins importantes au cours du deuxième cycle cultural (7,37 ppm en moyenne en 94 et 4,8 ppm en 95). Globalement, les teneurs en nickel dans les tiges et feuilles sont élevées et pourraient correspondre à des niveaux toxiques, puisque le seuil de toxicité est de 12 ppm environ (L'Huillier L., 1994). Il est probable qu'il y ait eu une pollution en plein champ par du sol véhiculé par le vent, ce qui semble être confirmé par les très fortes teneurs en chrome et en fer (42 ppm de chrome et 1460 ppm de fer) dans les tiges et feuilles.

Les teneurs en manganèse dans les tiges et feuilles sont relativement proches au cours des deux cycles culturaux (163 ppm en moyenne), et assez variables avec les doses croissantes de phosphore. Ces teneurs en manganèse restent dans la norme pour le maïs qui se situe entre 25 et 300 ppm.

Globalement au niveau des immobilisations en éléments minéraux dans les parties aériennes, on constate qu'elles sont plus élevées au cours du deuxième cycle cultural sauf pour le phosphore qui est beaucoup moins absorbé : 0,51 g/plt en 94 et 0,38 g/plt en 95.

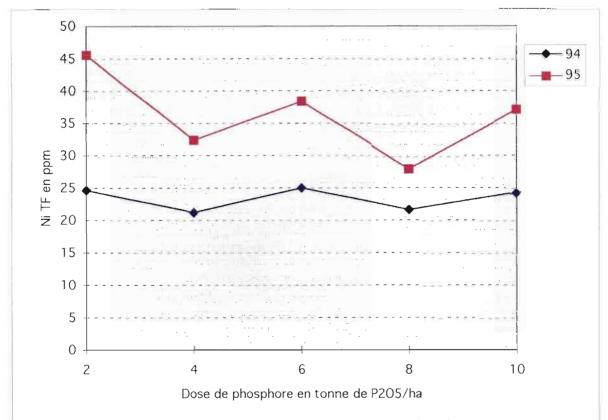


Fig.7 : Teneur en nickel dans les tiges et feuilles de maïs (H80) au cours des deux premiers cycles culturaux sur le champ expérimental de Ouénarou

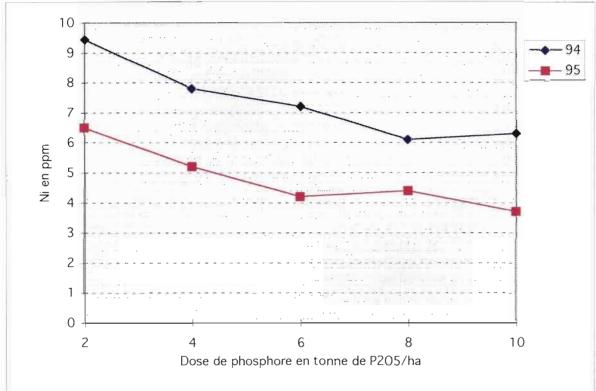


Fig.8 : Teneur en nickel dans les grains de maïs (H80) au cours des deux premiers cycles culturaux sur le champ expérimental de Ouénarou

PARTIE II

EXPERIMENTATION EN SERRE SUR L'EFFET DE DOSES COMPLEMENTAIRES D'AMENDEMENT PHOSPHATE APPLIQUEES À UN SOL FERRALLITIQUE FERRITIQUE DE GLACIS AYANT RECU 2, 6 ET 10 t/ha DE P₂O₅.

1 - INTRODUCTION

L'étude de l'évolution des arrières effets de doses croissantes d'amendement phosphaté, conduite grâce au dispositif expérimental en plein champ installé sur la Station de Ouénarou, entrera en 1997 dans sa quatrième année de culture.

Le premier cycle cultural, en 1994, n'a révélé pratiquement que des tendances en ce qui concerne l'influence sur le rendement de la plante-test de doses croissantes d'amendements phosphaté appliquées un mois avant le semis et mélangées aux 30 premiers centimètres de sol. Pour mémoire les doses de phosphore appliquées en plein champ sont de 2, 4, 6, 8 et 10 t/ha de P_2O_5 et le rendement en tiges et feuilles lors du premier cycle nous a permis de retrouver le pallier à 7 t/ha de P_2O_5 observé antérieurement en serre.

Le second cycle, durant l'année 1995 a, par contre, mis en évidence une influence hautement significative de ces mêmes doses initiales sur le rendement. Le pallier de 7 t/ha de P_2O_5 se retrouvant de nouveau sur les tiges et feuilles. On observe plus précisément une chute importante du rendement sur les parcelles ayant reçu 2 t/ha de P_2O_5 , ce rendement étant significativement plus faible que ceux, croissant très lentement mais statistiquement équivalent, des parcelles ayant reçu 4, 6, 8 et 10 t/ha de P_2O_5 . Une chute proportionnellement comparable a été observée pour la biomasse en tiges et feuilles. Cette baisse significative commençant entre 6 et 8 t/ha, c'est-à-dire au niveau du pallier mis en évidence par les études expérimentales en serres antérieures.

Le troisième cycle cultural en 1996, a également mis en évidence une influence hautement significative de ces mêmes doses initiales sur le rendement. On a pu constater une chute très accentuée du rendement pour les cinq doses de phosphore. En effet, le rendement n'est plus que de 1,23 qx/ha à la dose de 2 t/ha de P_2O_5 et de 22,5 qx/ha à la dose de 10t/ha P_2O_5 .

La question s'est donc posé, de savoir comment réagira le sol et la plante à des doses complémentaires d'amendement phosphaté. Pour y répondre avec précision, une courbe de réponse à des doses croissantes du même amendement phosphaté que celui appliqué en plein champ (du phosphore supertriple) a été établie, sur vases de végétation sous serre (cf. photo N°1, vue générale de la serre ci-après), avec de la terre prélevée sur les parcelles amendées du dispositif expérimental en plein champ. Toutefois, si l'on veut expérimenter 4 doses pour l'amendement phosphaté complémentaire et le faire avec suffisamment de précision en prenant 12 répétitions, il n'est possible de prendre en considération que 3 doses initiales d'amendement. Cela représente un total de 144 vases de végétation (la quantité maximale de vases de végétation par serre est de 150). Pour cette raison, les doses d'amendement initial de 2, 6 et 10 t/ha ont été retenues.

Photo $N^{\circ}1$: Vue générale de la serre

2- MATERIEL ET METHODES

2.1 - Localisation et réalisation des prélèvements

Les prélèvements de terre nécessaires à cette expérimentation en serre ont été réalisés à la fin du deuxième cycle, c'est-à-dire le 22 Novembre 1995. Ces prélèvement ont été effectués à la bêche dans l'horizon (0-25) cm de profondeur, et au milieu des inter-rangs, entre les rangs 2 et 6 des sous parcelles du « bas » et entre les rangs 8 et 12 des sous parcelles du « haut ».

Les sacs, en tissu de polyéthylène, ont été référencés en fonction des cinq doses d'amendement phosphaté appliquées aux sous-parcelles. Cinq lots de sacs ont été ainsi constitués, alors que trois lots de sacs seront utilisés pour les expérimentations en serre. Les parcelles de l'essai devaient subir les mêmes ponctions de sol afin de ne pas engendrer de distorsions entre les traitements de l'expérimentation au champ.

2.2 - Préparation de la terre

Les prélèvements de sols ont été effectués durant une période relativement sèche, ils ont donc été aussitôt tamisés à 6 mm puis homogénéisés. Le séchage de la terre aux tunnels infrarouge a été réalisé 2 mois plus tard, du 4 au 15 mars 1996.

Chacun des trois lots retenus pour l'expérimentation en serre (c'est-à-dire les lots de sols ayant été amendés avec 2, 6 et 10 t/ha de P_2O_5) a alors été partité en échantillons élémentaires, ajustés à 5,4 kg quantité de sol nécessaire au remplissage des pots de 4,6 litres.

2.3 - Mise en place et conduite de l'expérimentation

La technique de culture sur vase de végétation utilisée est celle mise au point par le Laboratoire d'Agropédologie de l'ORSTOM, avec le maïs comme plante-test, choisi en raison de sa sensibilité aux déséquilibres minéraux et de sa rapidité de croissance et de développement. La variété utilisée pour cet essai en serre est Hycorn 83.

La quantité de sol par pot a été déterminée de telle façon que la surface du sol arrive à 3 cm au sommet du vase de végétation. Ainsi, chaque pot a été rempli avec 5,4 kg de sol sec du champ expérimental de Ouénarou, déjà amendés avec trois doses initiales de phosphore (2, 6 et 10 t/ha de P_2O_5). Quatre doses complémentaires d'amendements phosphaté (0, 2, 4 et 6 t/ha de P_2O_5) ont été apportées sous forme de phosphate supertriple aux sols secs.

Une fumure complète a été apportée à tous les pots en trois fractions : au semis, au 10 ème jour et au 18 ème jour de culture. (Cf composition des solutions nutritives de l'essai en serre, annexe 4).

Le semis a eu lieu le 13 mai 1996 et la récolte 35 jours plus tard. Des mesures de hauteurs du sol à la dernière feuille dégainée ont été effectuées tous les deux ou trois jours, avec le calcul des vitesses de croissance.

A la récolte, des échantillons de tiges et feuilles, de percolats et de sols ont été constitués pour être analysés par le Laboratoire Central d'Analyses du Centre. Ces résultats ne sont pas tous disponibles actuellement, ou sont en cours de traitement. En effet, les résultats de ces analyses sont traités statistiquement par un programme informatique du laboratoire.

2.4 - Emplacement schématique des traitements dans la serre

Il s'agit d'un essai factoriel à 2 facteurs principaux et 6 répétitions de 2 pots ;

- 1er facteur principal : les doses initiales d'amendement phosphaté à 3 niveaux de phosphore 2, 6 et $10 \text{ t/ha P}_2\text{O}_5$ (premier chiffre) ;
- 2 ème facteur principal : dose complémentaire d'amendement phosphaté à 4 niveaux : 0, 2, 4, 6 t/ha de P_2O_5 (deuxième chiffre)
- le bloc est le troisième chiffre ;
- la répétition de deux pots est le quatrième chiffre.

2112	2111
1212	1211
2312	2311
1112	1111
3412	3411
2412	2411
2212	2211
1312	1311
3312	3311
3112	3111
1412	1411-
3212	3211
3322	3321
2422	2421
1322	1321
2322	2321
1122	1121
3122	3121
2122	2121
1422	1421
3222	3221
1222	1221
2222	2221
3422	3421

3432	3431
3332	3331
1332	1331
1132	1131
3132	3131
1432	1431
2432	2431
2332	2331
3232	3231
1232	1231
2232	2231
2132	2131
1242	1241
2242	2241
3442	3441
1142	1141
3342	3341
2442	2441
3242	3241
1442	1441
3142	3141
2342	2341
1342	1341
2142	2141

2352	2351
2152	2151
1352	1351
3452	3451
1252	1251
2252	2251
3352	3351
1152	1151
3152	3151
2452	2451
3252	3251
1452	1451
3162	3161
3262	3261
1362	1361
2262	2261
3462	3461
1162	1161
2362	2361
3362	3361
1462	1461
1262	1261
2162	2161
2462	2461

3 - RESULTATS DES OBSERVATIONS ET DES MESURES - DISCUSSION

Les photographies N° 2, 3, 4 et 5 ci-après traduisent la croissance de plants de maïs âgés de 29 jours et cultivés sur un sol de Ouénarou ayant reçu 2t/ha de P_2O_5 et auquel on a rajouté des doses complémentaires de phosphore : 0, 2, 4 et 6 t/ha de P_2O_5 . On remarque que le plant de maïs cultivé sur le sol de Ouénarou avec 2 t/ha de P_2O_5 et sans dose complémentaire, reste chétif et de petite taille (photo N° 2). Par contre, dès qu'on lui rajoute des doses complémentaires de phosphore de 2, 4 et 6 t/ha (photos N° 3, 4 et 5), il augmente en taille et en robustesse.

Les mesures de hauteurs de la dernière feuille dégainée réalisées tous les 2 jours, comme la mesure de la hauteur totale à la récolte au 35ème jour d'expérimentation, ainsi que les vitesses de croissance, ont permis de réaliser les représentations graphiques des interactions sur les hauteurs et sur les vitesses de croissance à différents jours d'expérimentation (cf. Fig. 9 et 10 ci-après).

On remarque que pour les sols de Ouénarou ayant préalablement reçu 2 et 6 t/ha de phosphore, les apports complémentaires de phosphore (2, 4 et 6 t/ha de P_2O_5) entraı̂nent une croissance toujours plus importante, alors que pour le sol de Ouénarou qui a reçu en plein champ 10 t/ha de P_2O_5 , on observe un plateau de croissance à partir de la dose complémentaire de 4 t/ha de P_2O_5 .

Les analyses de sols, de végétaux et de percolats effectués par le laboratoire d'analyses, que nous n'avons pas encore, devraient nous permettre de mieux connaître la part de phosphore restant disponible pour la plante au bout de deux cycles culturaux.

En conclusion, au bout de 18 mois, des apports complémentaires de phosphore sont donc nécessaire au champ. Ces apports sont d'autant plus importants que les doses initiales étaient faibles : apports d'au moins 6, 4 et 2 t/ha de P_2O_5 pour des doses initiales en plein champ de 2, 6 et 10 t/ha de P_2O_5 . Pour son quatrième cycle en 97, le dispositif expérimental au champ à Ouénarou sera modifié en conséquence avec une subdivision des parcelles, de façon à apporter des amendements phosphatés complémentaires.

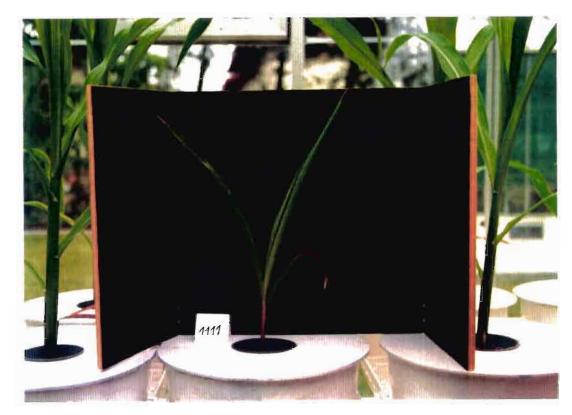


Photo $N^{\circ}2$: Plant de mais âgé de 29 jour, sur un sol prélevé à Ouénarou à la dose de 2 t/ha de P_2O_5 et avec une dose complémentaire de phosphore de 0.

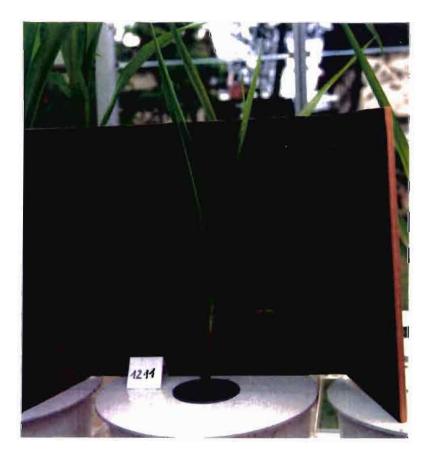


Photo $N^\circ 3$: Plant de mais âgé de 29 jour, sur un sol prélevé à Ouénarou à la dose de 2 t/ha de P_2O_5 et avec une dose complémentaire de phosphore de 2 t/ha de P_2O_5 .

Photo $N^{\circ}4$: Plant de maïs âgé de 29 jour, sur un sol prélevé à Ouénarou à la dose de 2 t/ha de P_2O_5 et avec une dose complémentaire de phosphore de 4 t/ha de P_2O_5 .

Photo $N^{\circ}5$: Plant de maïs âgé de 29 jour, sur un sol prélevé à Ouénarou à la dose de 2 t/ha de P_2O_5 et une dose complémentaire de phosphore de 6 t/ha de P_2O_5 .

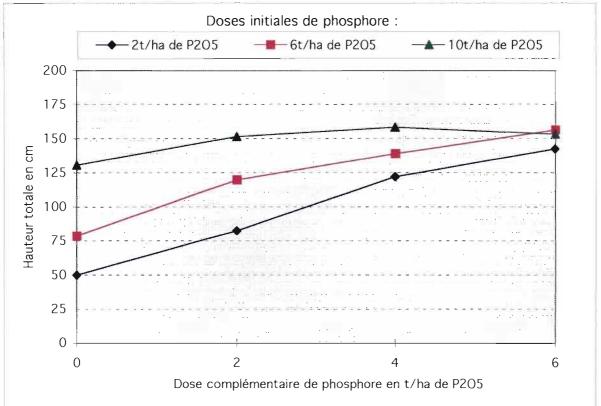
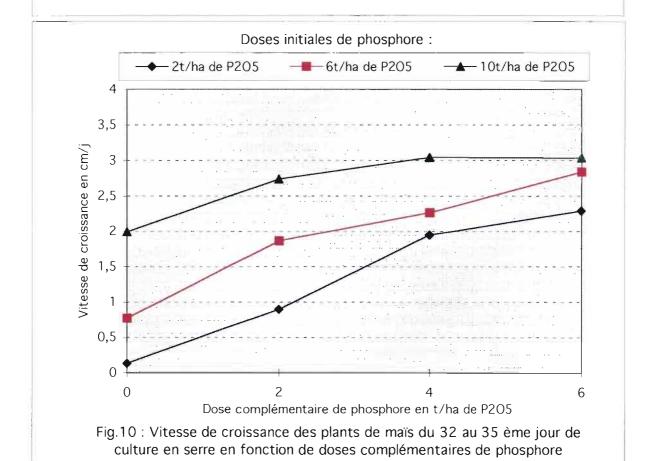



Fig.9 : Hauteur totale des plants de maïs agés de 35 jours en serre en fonction de doses complémentaires de phosphore

REFERENCES BIBLIOGRAPHIQUES

BLAVET D., 1987. Caractères morphologiques et analytiques et commentaires de quelques profils pédologiques (exemples de profils représentatifs des principaux sols des régions Ouest, Nord et Sud de la Nouvelle-Calédonie). Nouméa : ORSTOM 103 p.

BOURDON E., 1990. Variations morphologiques et physico-chimiques d'une parcelle d'expérimentation de la vallée de la Coulée (Sud de la Nouvelle-Calédonie). Nouméa : ORSTOM. *Conv. : Sci. Vie : Agropédol.*, **5** : 36 p.

BOURDON E. et EDIGHOFFER S., 1992. Carte de sol du champ expérimental de Ouénarou.

EDIGHOFFER S. et BOURDON E., 1993. Mise en valeur des sols ferrallitiques des massifs du Sud de la Nouvelle-Calédonie. Enquête sur le statut des nutriments et des métaux lourds chez les végétaux cultivés sur différents faciès ferritiques. 1 - Définition et mise à l'épreuve de la démarche agropédologique grâce à une première enquête réalisée chez Monsieur COCHARD. Nouméa: ORSTOM. Conv.: Sci. Vie: Agropédol., 21:58 p.

L'HUILLIER L., 1994. Biodisponibilité du nickel dans les sols ferrallitiques ferritiques de Nouvelle-Calédonie. Effets toxiques de Ni sur le développement et la physiologie du maïs. Thèse de l'Université de Montpellier II, 20 décembre 1994, 249 p.

L'HUILLIER L., 1997. Mise en valeur des sols ferrallitiques des massifs du Sud de la Nouvelle-Calédonie. Evaluation de la sensibilité au nickel des espèces cultivées. 1 - Premiers résultats sur des espèces maraîchères. Nouméa : ORSTOM. *Conv. : Sci. Vie : Agropédol.*, **35** : 22 p.

PARTIE III : ANNEXES	

ANNEXE 1 : RÉSULTATS DU PREMIER CYCLE CULTURAL EN 1994

CALENDRIER ET NATURE DES TRAVAUX EFFECTUES SUR LA PARCELLE D'EXPERIMENTATION A OUENAROU SUR SOL FERRALLITIQUE DU 11 AVRIL AU 9 SEPTEMBRE 1994

Date	Nature des opérations	Effectif personnel
11 au 14/4/94	Gyrobroyage petite brousse; abattage grosse brousse + profilage drains avec chenillard; export grosses souches, troncs en dehors de la parcelle; passage rotavator et mise en tas des racines. Sur ancienne parcelle: récupération piquets métalliques, gyrobroyage et passage rotavator. Travaux sur abri.	4
27 et 28/4	Export cailloux, roches, souches, troncs; 2ième passage rotavator; profilage drains extérieurs au chenillard	3
4 et 5/5	Export cailloux, souches; 3ième passage rotavator Ancienne parcelle : retrait clôture (poteaux et grillage)	3
16 au 19/5	Transport épandeur M. SANTACROCE + croûte calcaire + urée; délimitation de la parcelle (avec ORSTOM). Epandage croûte calcaire (1,5 t/ha) + urée (140 kg/ha); 4ième passage rotavator; fin retrait clôture Passage rotavator sur ancienne parcelle	3 (+2 ORSTOM)
25 au 27/5	Labour (avec charrue à disques) et extraction roches (avec chenillard) Nettoyage avec chenillard de la périphérie de la parcelle et des drains extérieurs	4
31/5 et 1/6	Piquetage et ouverture drains internes de la parcelle ; 5ème passage rotavator	3
14 au 17/6	Carroyage de la parcelle en vue de l'épandage des amendements (phosphaté, siliceux, organique) avec ORSTOM. Prélèvement d'échantillons de sol et passage de cover-crop dans la parcelle Semis d'un gazon stolonifère (<i>Paspalum wetsteinii</i>) sur les drains internes + roulage Epandage des amendements (2, 4, 6, 8, 10 t/ha de P ₂ O ₅ , 20 t/ha de scories du Nickel, 20 t/ha de compost) avec ORSTOM	7 (+4 ORSTOM)
21 au 24/6	Labour avec charrue à disques. Transport tuyaux d'irrigation, grillage et poteaux sur la nouvelle parcelle. Edification clôture et mise en place réseau d'irrigation	3

/		
29 et 30/6	Mise en place moto-pompe,	3
	Réfection drains bord de parcelle,	
	fin de mise en place du réseau d'irrigation	1
5 et 6/7	Retrait matériel d'irrigation du fournisseur, mise en place et irrigation 1 h	2
2 00 07 1	Confection de la porte d'entrée	_
	•	
11 au 13/7	Amélioration réseau irrigation, soudure tuyaux défectueux, essais irrigation	3
	Mise en place piquets intermédiaires en bois de la clôture	
21/5		
21/7	Transport matériel de préparation de sol et de traitement en pulvérisation	2
25 au 27/7	Transport tracteur et semoir. Retrait réseau d'irrigation.	4
	Traitement insecticide du sol avec du Lindane (Matière active).	:
	Enfouissement avec herse vibrante.	
	Réglage du semoir. Semis mais (semoir pneumatique) à 290 000 pieds/ha	
	Apport d'urée (200 kg/ha) et de sulfate de potasse (142 kg/ha) à côté des	
	lignes de semis par trémies et goulottes sur semoir.	į
	Irrigation 34 mm.	
3 et 4/8	Epandage de 4,3 t/ha superphosphate, 100 kg urée et 100 kg sulfate de	3
3 00 1/0	potasse sur les 9000 m ² constitués des anciennes parcelles et du pourtour de la	J
	nouvelle parcelle.	
	Semis de 15 kg/ha de Paspalum wetsteinii	
ł		
18 et 19/8	Traitement insecticide (m.a. : Fenvalérate) sur mais	2
22 au 25/8	Pose de cordeaux (tous les 6,215 m) et démariage des lignes de maïs.	6
22 44 25/0	Epandage de 1820 échantillons d'urée et de sulfate de potasse (par ligne de	V
i	6.215 m de mais) : 2ième apport nitro-potassique.	
ì	Irrigation 30mm.	
]	Peinture sur piquets bois et pancartes métalliques.	
31/8 et 1/9	Démariage des rangs utiles.	3
31/6 61/9	Mise en place des piquets bois rouges et blancs et peinture des inscriptions de	3
	référence sur pancartes.	
l	Traitement insecticide (m.a.: métamidophos) sur maïs	
	Land Control of the C	
5 au 9/9	Binage des interlignes de maïs avec houe rotative.	3
	Mise en place des pancartes.	(+3 ORSTOM)
	Irrigation 15 mm	
	Nettoyage périphérie de la parcelle	
1	Journée (7/9) d'informations en salle (ORSTOM) et sur terrain (Ouénarou)	
	3ième apport fumure nitro-potassique (1820 échantillons) avec ORSTOM	
	Irrigation 35 mm.	

EFFETS ET ARRIÈRES-EFFETS DE DOSES CROISSANTES D'AMENDEMENT PHOSPHATÉ SUR SOL FERRALLITIQUE FERRITIQUE :

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-A

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	Probabilités des tests F		Moyennes du facteur principal "Dose d'amendement phosphaté"				al té"	Moyennes du facteur subsidiaire		Classement		
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
DP	nbre/m²	Densité de peuplement	7,063	6,35	6,95 6,66	0,1246 0,1053		0,2745	0,2332 0,2444	0,2676 0,2996	7,030	6,967	7,112	6,988	7,216	7,042	7,083	
DE	nbre/m ²	Densité des épis	7,652	12,31	9,83 11,14	0,7439		0,4881 0,6275	0,0315	0,0296	7,237	7,693	7,776	7,548	8,004	7,647	7,656	
GRU	9	Poids de 1000 grains	339,444	7,14	3,98	0,9822		0,7988	0,0284	0,3913	326,790	348,630	335,550	335,150	351,100	339,328	339,560	
NEP	nbre/plt	Nombre d'épis par plant	1,085	11,73	12,85 12,30		0,0227	0,3822	0,1723 0,1810	0,0695	1,029	1,104	1,093	1,087	1,114	1,090	1,081	
NGE	nbre/épi	Nombre de grains par épi	297,751	15,87	12,61 14,33		0,1149	0,0741	0,9821	0,6370 0,4682	298,973	299,574	295,633	287,838	306,737	283,320	312,182	
PG	g/plt	Poids de grains par plant	110,105	20,27	16,57 18,51	0,9598 0,9898	0,1221	0,6504	0,9057 0,8832	0,2021	101,359	115,291	108,632	104,661	120,581	105,460	114,749	
PGE	g/épi	Poids de grains par épi	101,395	18,63	13,28 16,18	0,9326 0,9854		0,3251 0,4550	0,9763 0,9564	0,6720 0,4986	98,551	104,507	99,273	96,799	107,847	96,513	106,278	
œ	g/m²	Rendement en grains	776,515	20,60	13,80 17,53	0,9695 0,9965		0,7110 0,8653	0,9669 0,9301	0,5817 0,3699	712,425	803,461	774,703	729,557	862,431	740,416	812.614	
QGcom	qx/ha	Rendement commercial	91,355	20,60	13,80 17,53	0,9695 0,9965	0,1333 0,2096	0,7110 0,8653	0,9669	0,5817 0,3699	83,815	94,525	91,142	85,830	101,462	87,108	95,602	
PIF	g/plt	Poids de tiges et feuilles	71,395	10,64	14,52 12,73	0,6729	_	0,9956	0,7292	0,5841	63,275	69,780	70,618	80,774	72,528	73,086	69,704	4>5≈3=2=1 4=5>3=2=1
QIF	g/m²	Rendement en tiges et feuilles	502,331	12,42	10,03 13,29	0,3535	- 1	0,9832	0,8403 0,8043	0,6939 0,6065	444,621	485,850	500,821	559,990	520,373	512,941	491,721	4=5=3=2=1 3=2>1 4=5>3=2=1
P(A)	g/plt	Poids de parties aériennes	181,500	11,36	13,68 12,57	0,9740 0,9735	0,7109	0,9156 0,8979	0,4212 0,3723	0,0031	164,635	185,071	179,251	185,435	193,109	178,546	184,454	
Q(A)	g/m²	Biomasse de parties aériennes	1278,847	11,95	9,25 10,69	0,9783	0,6413	0,9235	0,8489	0,2124	1157,046	1289,311	1275,525	1289,547	1382,804	1253,358	1304,335	5=4=2=3>1
TNG	%	Teneur des grainsen N	1,943	3,05	2,31 2,70	0,9739	0,2183	0,0780	0,3818 0,4484	0,0331	1,940	1,939	1,947	1,955	1,932	1,948	1,937	324-2-371
TPG	96	Teneur des grains en P	0,360	14,45	17,95 16,29	0,7999 0,7328	0,9906	0,4218 0,3240	0,6949	0,7959	0,343	0,382	0,362	0,357	0,355	0,350	0,370	
TKG	96	Teneur des grains en K	0,363	14,32	18,27 16,42	0,8462 0,7794		0,3898 0,2830	0,8112 0,8674	0,7483 0,8593	0,358	0,383	0,371	0,351	0,352	0,350	0,376	
TCaG	96	Teneur des grains en Ca	0,004	26,85	18,20 22,94	0,9997	0,8505	0,2418 0,3616	0,9954	0,8524 0,7041	0,003	0,004	0,004	0,003	0,004	0,004	0,003	
TMgG	%	Teneur des grains en Mg	0,132	19,60	23,95 21,88	0,6431 0,4433	0,9751	0,2701	0,7513 0,8046	0,7434 0,8438	0,134	0,139	0,134	0,128	0,124	0,126	0.137	
TSiG	%	Teneur des grains en Si	0,001	316,23	38297 351,19	0,8417 0,7994	0,7370	0,4461	0,7102	0,2920 0,3640	0,001	0,000	0,000	0,002	0,002	0,002	0,000	
TNiG	ppm	Teneur des grains en Ni	7,369	20,37	22,08 21,24	0,9905	0,8093	0,9975	0,6986	0,6541 0,7161	9,444	7,800	7,200	6,100	6,300	7,120	7,618	1>2=3=5=4 1>2=3=5=4
TMn G	ррш	Teneur des grains en Mn	10,900	11,30	16,25 13,99	0,9868 0,9720	0,9966	0,6590	0,4009	0,5807 0,7452	10,800	11,300	11,400	10,600	10,400	10,680	11,120	

EFFETS ET ARRIÈRES-EFFETS DE DOSES CROISSANTES D'AMENDEMENT PHOSPHATÉ SUR SOL FERRALLITIQUE FERRITIQUE : RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-B

Paramètre			Moyenne générale	d variat	fficients de Probabilités des tests F ation en %					M "Do	oyennes d ose d'ame	lu facteur indement	Moye du fa subsid	cteur	Classement			
Sigle	Unité	Signification	}	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
TNTF	%	Teneur des tiges et feuilles en N	0,197	118,76	129,53 124,26	0,3106 0,2782		0,8010 0,7986	0,7366	0,1039 0,1151	0,357	0,176	0,213	0,121	0,116	0,154	0,239	
TPTF	%	Teneur des tiges et feuilles en P	0,154	40,53	18,25	0,7003	0,4237	0,9978		0,1915	0,078	0,117	0.160	0,199	0,216	0,158	0,150	5=4=3>2=1
TKTF	%	Teneur des tiges et feuilles en K	0,812	13,20	12,57 12,89	0,5718 0,6156	0,8206 0,8687	0,8017 0,8507	0,1568 0,1544	0,4898 0,4781	0,747	0.784	0.854	0.827	0,846	0,814	0,809	
TCaTF	%	Teneur des tiges et feuilles en Ca	0,416	9,64	12,31 11,05	0,9759 0,9685	0,6873 0,5791	0,8337 0,7618	0,8009 0,8583	0,6270 0,7519	0,409	0,391	0,422	0,420	0,439	0,426	0,406	
TMgTF	%	Teneur des tiges et feuilles en Mg	0,237	13,90	11,25 12,65	0,9887 0,9985	0,2728 0,3478	0,7705 0,8696	0,9600 0,9486	0,6762 0,5868	0,228	0,226	0,256	0,230	0,247	0,246	0.229	
TSiTF	%	Teneur des tiges et feuilles en Si	2,849	14,49	14.45 14,47	0,9995 1,0000	0,9293 0,9553	0,9550 0,9754	0,4461 0,4506	0,3644 0,3685	2,544	2,892	2,664	3,056	3,090	2,885	2,813	5=4=2>3=1 5=4=2>3=1
TNiTF	ppm	Teneur des tiges et feuilles en Ni	23,340	26,58	24,18 25,41	0,9995 1,0000	0.6529 0,7208	0,4707 0,4730	0,8236 0,8160	0,5911 0,4382	24,600	21,200	25,000	21,600	24,300	24,480	22,200	
TMnTF	ppm	Teneur des tiges et feuilles en Mn	163,540	11.95	13,36 12,67	0,9897 0,9942	0,7226 0,6978	0,6345 0,5995	0,9384 0,9604	0,3227 0,3701	160,800	152,900	167,300	168,700	168,000	169,840	157,240	
TNRch	%	Teneur des rachis en N	0,496	18,35	10,90	0,9160	0,1107	0,6396	0,9992	0,9628	0,471	0,477	0,500	0,549	0,483	0,532	0,460	
TPRch	%	Teneur des rachis en P	0,083	29,88	22,76 26,56	0,7979 0,9039	0,3343 0,4438	0,9843 0,9980	0,9965 0,9954	0,6878 0,4375	0,062	0,071	0,084	0,105	0,093	0,093	0.073	4=5=3>2=1 4=5>3=2>1
TKRch	%	Teneur des rachis en K	0,468	10,63	10,96 10,80	0,8071 0,8283	0,0673 0,0620	0,7325 0,7489	0,9903 0,9950	0,7588 0,8016	0,447	0,449	0,479	0.490	0,476	0,490	0,446	
TCaRch	%	Teneur des rachis en Ca	0,035	29,33	23,30 26,49	0,9513 0,9877	0,1411 0,1870	0,8205 0,9123	0,9790 0,9721	0,6783 0,5780	0,032	0,031	0,033	0.042	0,035	0,038	0.032	
TMgRch	%	Teneur des rachis en Mg	0,069	23,24	17,10 20,40	0,7563 0,8802	0,3199 0,4381	0,3325 0,4536	0,9960 0,9938	0,7466 0,6104	0,068	0,066	0,069	0,076	0,067	0,075	0,063	
TSiRch	%	Teneur des rachis en Si	0,363	20,00	10,84	0,9286	0,6803	0,9176	0,8856	0,8792	0,315	0,360	0,349	0,418	0,375	0,373	0.354	
TNiRch	ppm	Teneur des rachis en Ni	10,820	32,45	33,13 32,74	0,8735 0,8984	0,5879 0,5965	0,2529 0,2446	0,3779 0,3857	0,6427 0,6786	11,000	10,400	10.300	10,300	12,100	10.560	11.080	
TMnRch	ppm	Teneur des rachis en Mn	18,200	30,81	15,80	0,6598	0,8582	0,8634	0,9713	0,9526	15,100	16,300	19,700	21,600	18,300	19,200	17.200	
TFeRch	ppm	Teneur des rachis en Fe	102,180	30,63	24,18 27,59	0,2902 0,3775	0,6451 0,7662	0,1558 0,2075	0,6620 0,3927	0,7824 0,6997	97,000	100,500	102,500	99,000	111,900	98,680	105,680	
(Mg/Ca)TF		Rapport Mg/Ca des tiges et feuilles	0,950	12,29	10,86 11,59	0,9987 0,9999	0,8291 0,8963	0,5842 0,6627	0,4557 0,4348	0,3948 0,3437	0,932	0,957	1,011	0.911	0,938	0,959	0,941	
(Mg/Ca)G	-	Rapport Mg/Ca des grains	57,481	105,70	88,95 97,68	0,1321 0,1638	0,6416 0,7404	0,6107 0,7098	0,8764 0,8555	0,4493 0,4753	43,725	87,037	70,345	39,517	46,777	45,6 06	69,355	
(Mg/Ca)(A)	-	Rap. Mg/Ca tiges+feuilles+grains	1,764	21,70	20,33 21,03	0,8154 0,8686	0,2850 0,3101	0,6468 0,7019	0,9497 0,9542	0,3995 0,3762	1,842	1,912	1,798	1,568	1,702	1,655	1.874	
(Mg/Ca)Rch	-	Rapport Mg/Ca des rachis	3,427	17,95	14,41 16,28	0,9418 0,9834	0,3093 0,3951	0,6159 0,7327	0,4046 0,3664	0,1307 0,0873	3,547	3,589	3,575	3,119	3,303	3,465	3,388	

EFFETS ET ARRIÈRES-EFFETS DE DOSES CROISSANTES D'AMENDEMENT PHOSPHATÉ SUR SOL FERRALLITIQUE FERRITIQUE : RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-C

Paramètre			Moyenne générale			Probabilités des tests F					Moyennes du facteur principal "Dose d'amendement phosphaté"					Moyennes du facteur subsidiaire		Classement
Sigle	Unité	Signification	}	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
CUAN	%	Coeff, d'utilisation apparente de N	23,136	22,40	14,19 18,75	0,8777	0,1371 0,2256	0,3491	0,9745	0,3761 0,1830	22,094	23,733	23,318	21,641	24,893	21,964	24,307	
CUAK	96	Coeff. d'utilisation apparente de K	31,151	16,95	11,63 14,54	0,6893 0,8434	0,9676 0,9958	0,8966	0,7915 0,6993	0,4974 0,3128	26,724	31,122	32,126	32,325	33,456	30,473	31,829	5=4=3=2>1
PNG	g/plt	Poids en N/plt des grains	2,132	18,53	16,01 17,32	0,9659 0,9903	0,1558	0,6838 0,7717	0,8942 0,8814	0,2041 0,1612	1,955	2,234	2,109	2,046	2,314	2,048	2,215	
PPG	g/plt	Poids en P/plt des grains	0,397	26,87	21,12 24,17	0,8787 0,9525	0,8673 0,9456	0,6432 0,7659	0,9696 0,9579	0,8051 0,7263	0,353	0,443	0,388	0,374	0,426	0,368	0,425	
PKG	g/plt	Poids en K/plt des grains	0,401	28,46	21,46 25,21	0,9051 0,9708	0,8130 0,9164	0,4807 0,6155	0,9800	0,7641 0,6482	0,370	0,444	0,399	0,369	0,424	0,369	0.434	
PCaG	g/plt	Poids en Ca/plt des grains	0,004	31,21	24,39 28,01	0.9991 1,0000	0,8155 0,9117	0,6169 0,7428	0,7086 0,3478	0,8707	0,004	0,004	0,004	0,003	0,004	0.004	0,004	
PMgG	g/plt	Poids en Mg/plt des grains	0,145	33,06	25,73 29,63	0,7576 0,8685	0,8100 0,9086	0,2434	0,9703 0,9578	0,7542 0,6556	0,139	0,161	0,143	0,134	0,149	0,132	0,158	
PSiG	g/plt	Poids en Si/plt des grains	0,001	360,96	432,02 398,08	0,8222 0,7805	0,5912 0,4867	0,4777	0,4246 0,3770	0,4121	0,001	0,000	0,000	0,002	0,003	0,002	0.001	
PNiG	mg/plt	Poids en Ni/plt des grains	0,837	52,79	29,59	0,4962			0,9878	0,7342	1,135	0,889	0.782	0,621	0.755	0,734	0,939	
PMnG	mg/plt	Poids en Mn/plt des grains	1,197	24,77	18,03 21,66	0,9365 0,9858	0,8547 0,9477	0,4636 0,6871	0,9740 0,9552	0,6527 0,4942	1,100	1,310	1,220	1,105	1,249	1.120	1,274	
PNTF	g/plt	Poids en N/plt des tiges et feuilles	0,130	109,76	109,05 109,41	0,2513 0,2531	0,2096 0,2098	0,6366 0,6639	0,3407 0,3322	0,1444 0,1403	0,210	0,116	0,144	0,099	0,084	0,110	0,151	
PPTF	g/plt	Poids en P/plt des tiges et feuilles	0,112	41,31	24,08	0,4464	0,4618	0,9989	0,7666	0,0748	0,050	0,082	0,114	0,159	0,156	0,117	0,108	4=5=3>2=1
PKTF	g/plt	Poids en K/plt des tiges et feuilles	0,581	17,87	20,64 19,31	0,1205 0,0925	0,9465 0,9471	0,9870 0,9908	0,4249 0,3847	0,1599 0,1912	0,472	0,549	0,606	0,666	0,610	0,595	0,566	4=5=3>2=1 4=5=3>2=1
PCaTF	g/plt	Poids en Ca/plt des tiges et feuilles	0,297	11,02	23,71 18,49	0,9376 0,6036	0,9611	0,9989 0,9812	0,8390 0,9340	0,0803 0,1679	0,258	0,272	0,298	0,339	0,320	0,312	0,283	4=5>3=2=1 4=5=3>2=1
PMgTF	g/plt	Poids en Mg/plt des tig. et feuilles	0.170	13,78	23,14 19,04	0,9964 0,9848	0,8409 0,5940	0,9903 0,9560	0,9040 0,9623	0,3777 0,5724	0,146	0,158	0,180	0,187	0,180	0,180	0,160	4=3=5=2>1 4=3=5=2>1
PSiTF	g/plt	Poids en Si/plt des tiges et feuilles	2,031	20,29	18,33 19,33	0,9929 0,9987	0,2009 0,2279	0,9938 0,9990	0,7678 0,7554	0,4758 0,4871	1,604	1,992	1,870	2,440	2,250	2,097	1,965	4=5>2=3=1 4=5>2=3=1
PNITF	mg/plt	Poids en Ni/plt des tiges et feuilles	1,655	26,97	22,41 24,79	0.9995	0,4400	0,4699 0,4344	0,9660	0,8472	1,582	1,461	1,752	1,728	1,750	1,779	1,531	
PMnTF	mg/plt	Poids en Mn/plt des tig. et feuilles	11,671	15,09	19,41 17,39	0,9628 0,9470	0,1645 0,1052	0,9933 0,9931	0,9639 0,9852	0,4855 0,6410	10,171	10,563	11,818	13,623	12,182	12,419	10,924	4=5>3=2=1 4=5=3>2=1
PN(A)	g/plt	Poids en N/plt des tig.+ feuil.+ gr.	2,262	21,32	15,48 18,63	0,8661 0,9543	0,1153 0,1693	0,2829	0,9441	0,1066 0,0574	2,165	2,350	2,253	2,145	2,399	2,159	2,366	
PP(A)	g/plt	Poids en P/plt des tig.+ feuil.+ gr.	0,509	22,17	18,61 20,47	0,9092 0,9631	0,8438	0,9558 0,9872	0.9041	0,6341	0,404	0,525	0,501	0,532	0,582	0,485	0,533	5=4=2=3>1 5=4=2=3>1

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Tableau 1-D

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités de	s tests	F	M "Do	loyennes dose d'ame	du facteu endement	r principa phosphat	nl ee"	Moye du fa subsic	cteur	Classement
Sigle	Unité	Signification	ነ	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
PK(A)	g/plt	Poids en K/plt des tig.+ feuil.+ gr.	0,982	15,67	16,31 15,99	0,6649 0,6709	0,9770 0,9881	0,9217 0,9413	0,4420 0,4252	0,2141 0,2247	0,842	0,994	1,005	1,035	1,034	0,964	1,000	
PCa(A)	g/plt	Poids en Ca/plt des tig.+ feuil.+ gr.	0,301	10,78	23,56 18,32	0,9336	0,9680		0,8404 0,9356	0,0756	0,262	0,276	0,302	0,342	0,325	0,316	0,286	4=5>3=2=1 4=5=3>2=1
PMg(A)	g/plt	Poids en Mg/plt des tig.+ feuil.+ gr	0,316	18,22	15,55 16,94	0,7343 0,8232	0,8848	0,4963	0,3188	0.7328	0,286	0,319	0,324	0,320	0.329	0.313	0,319	4-3-322-1
PSi(A)	g/plt	Poids en Si/plt des tig.+ feuil.+ gr.	2,032	20,17	18,39 19,30	0,9933	0,1970 0,2209	0,9942	0,7700 0,7600	0,4859 0,4814	1,605	1,992	1,870	2,442	2.253	2.099	1.966	4=5>2=3=1 4=5>2=3=1
PNi(A)	mg/plt	Poids en Ni/plt des tig.+ feuil.+ gr.	2,491	229,80	15,95	0,9895	0,4432	0,2095	0,2904	0,8053	2,717	2,350	2,534	2,349	2,506	2,513	2,470	
PMn(A)	mg/plt	Poids en Mn/plt des tig.+ feuil.+ gr	12,868	13,83	17,99 16,04	0,9211 0,8787	0,3596 0,2493	0,9920 0,9908	0,9396 0,9711	0,4877 0,6158	11,271	11,873	13,038	14,728	13,431	13,539		4=5=3>2=1 4=5=3>2=1
QNG	g/m²	Immobilisation en N des grains	15,030	18,69	13,07 16,13	0,9750 0,9970	0,1204 0,1831	0,7529 0,8878	0,9656 0,9353	0,6163 0,4302	13,740	15,564	15,028	14,250	16,569	14.375	15,686	
QPG	g/m²	Immobilisation en P des grains	2,797	27,70	19,34 23,89	0,8857 0,9676	0,8809 0,9654	0,6208 0,7810	0,9841 0,9682	0.8878 0.7790	2,497	3,086	2.753	2,601	3.047	2.584	3,010	
QКG	g/m ²	Immobilisation en K des grains	2,831	29,56	20,57	0,9036 0,9768	0,8339 0,9411	0,4616 0,6221	0.9874 0.9743	0,8245 0,6788	2,611	3,097	2,842	2,569	3,035	2,591	3,071	
QCaG	g/m ²	Immobilisation en Ca des grains	0,028	32,06	21,31 27,22	0,9991 1,0000	0,8189 0,9381	0,6204 0,7935	0,7587	0,9542 0,8822	0,025	0,030	0,029	0,024	0,031	0,029	0,027	
QMgG	g/m²	Immobilisation en Mg des grains	1,025	34,60	25,37 30,34	0,7523	0,8165 0,9233	0,2180 0,3080	0,9779	0,7725	0,986	1,124	1,021	0.930	1,065	0.930	1,121	
QSiG	g/m²	Immobilisation en Si des grains	800,0	367,22	444,12 407,49	0.8331 0.7891	0,6118 0,4711	0,4980	0,4476 0,3992	0,4257	0,006	0,000	0,000	0.014	0.020	0,012	0,004	
QNiG	mg/m ²	Immobilisation en Ni des grains	5,907	56,60	31,33	0,4191	0,5933	0,7812	0,9861	0,6665	8,036	6,167	5,614	4,302	5,417	5,159	6,655	
QMnG	mg/m ²	Immobilisation en Mn des grains	8,436	25,11	16,45 21,23	0,9409	0,8845 0,9715	0,5579	0,9884 0,9708	0,7746 0,4329	7,765	9,131	8,684	7.677	8,925	7.856	9,017	
QNIF	g/m ²	Immob. en N des tiges et feuilles	0,933	115,97	114,81 115,39	0,2244 0,2263	0,2246 0,2265	0,6096 0,6369	0,6648 0,6724	0,1386 0,1338	1,505	0,812	1,061	0,682	0,607	0,781	1,086	
QPTF	g/m ²	Immob. en P des tiges et feuilles	0,791	43,03	21,00	0,4550	0,4429	0,9987	0,8199	0,0148	.0,355	0,575	0,802	1,102	1,123	0,825	0,758	5=4=3>2=1
QKTF	g/m²	Immob. en K des tiges et feuilles	4,085	19,22	15,64 17,52	0,1132 0,1476	0,9098 0,9667	0,9786 0,9961	0,3438 0,3899	0,1677 0,1171	3,322	3,812	4,290	4,607	4,392	4,174	3,995	
QCaTF	g/m ²	Immob. en Ca des tiges et feuilles	2,092	12,04	18,76 15,76	0,8690 0,6952	0,9417 0,8378	0,9980 0,9954	0,8909 0,9502	0,1444	1,815	1,895	2,116	2,346	2,287	2,187	1,997	4=5=3>2=1 4=5=3>2=1
QMgTF	g/m ²	Immob. en Mg des tiges et feuilles	1,198	17,50	19,65 18,61	0,9803 0,9864	0,4017 0,3544	0,9670 0,9737	0,9348 0,9578	0,4169 0,4775	1,024	1,096	1,284	1,292	1,295	1,265	1,131	
QSiTF	g/m²	Immob. en Si des tiges et feuilles	14,317	22,69	15,50 19,43	0,9894	0,0725 0,1147	0,9871 0,9990	0,8179 0,7283	0,4119	11,263	13,833	13,297	16,985	16.207	14,759	13,875	4=5=2>3=1 4=5>2=3=1
QNiTF	mg/m ²	Immob. en Nides tiges et feuilles	11,687	32,57	24,63 28,88	0,9983	0,1245 0,1747	0,4367	0,9419	0,7687 0,6560	11,056	10,164	12,471	12,038	12,706	12,530	10,843	

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Tableau 1-E

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	lités de	s tests	F	M "Do	oyennes d ose d'ame	lu facteu ndement	r principa phosphat	ıl lé"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
QMnTF	mg/m ²	Immob. en Mn des tiges et feuilles	82,151	16,78	15,96 16,37	0,9401 0,9696	0,1690 0,1788		0,9811	0,4772 0,4645	71,300	73,589	83,801	94,397	87,669	87,132	77.171	4=5=3>2=1 4=5=3>2=1
QN(A)	g/m²	Immob. en N des tig.+ feuil.+ gr.	15,964	22,40	14,19 18,75	0,8777	0,1371		0,9745 0,9349	0,3761 0,1830	15,245	16,376	16,089	14,932	17,176	15,155	16,772	
QP(A)	g/m ²	Immob. en P des tig.+ feuil.+ gr.	3,588	22,81	15,60 19,54	0.9083	0,8527 0,9533	0,9545	0,9594	0,8392 0,6894	2,852	3,661	3,555	3,703	4,171	3,409	3,768	5=4=2=3>1 5=4=2=3>1
QK(A)	g/m²	Immob. en K des tig.+ feuil.+ gr.	6,915	16,95	11,63 14,54	0,6893	0,9676 0,9958		0,7915 0,6993	0,4974 0,3128	5,933	6,909	7,132	7,176	7,427	6,765	7,066	5=4=3=2>1
QCa(A)	g/m ²	Immob. en Ca des tig.+ feuil.+ gr.	2,120	11,83	18,58 15,58	0,8615	0,9503	0,9981	0,8930 0,9521	0,1434 0,2343	1,841	1,924	2,145	2,370	2,318	2,216	2,024	4=5=3>2=1 4=5=3>2=1
QMg(A)	g/m ²	Immob. en Mg des tig.+ feuil.+ gr.	2,223	20,86	11,53	0,6368	0,8066	0,4604	0,4458	0,9023	2,011	2,220	2,305	2,222	2,360	2,194	2,252	4-3-322-1
QSi(A)	g/m ²	Immob. en Si des tig.+ feuil.+ gr.	14,325	22,59	15,55	0.9899	0.0710	0,9877	0,8201 0,7333	0,4025 0,2350	11,269	13,833	13.297	17,000	16,228	14,771		4=5>2=3=1 4=5>2=3=1
QNi(A)	mg/m ²	Immob. en Ni des tig.+ feuil.+ gr.	17,594	34,70	17,76	0,9724	0.2234	0,1926	0.1737	0,6923	19,092	16,331	18,085	16,340	18,122	17,689	17,498	4-3/2-5-1
QMn(A)	mg/m ²	Immob. en Mn des tig.+ feuil.+ gr.	90,588	15,43	14,26 14,85	0,8882 0,9349	0,3541 0,3921	0,9835 0,9955	0,9685	0,4861 0,4590	79,065	82,720	92,485	102,074	96,594	94,988		4=5=3>2=1 4=5=3>2=1
Ref1a	%	Refus horizon 1 début cycle	5,249	29,94	38,26 34,35	0,6404 0,4736	0,6858 0,5772	0,5935	0,2507	0,0074	5,874	4,809	4,709	5,167	5,687	5,157	5,341	
Ref2a	%	Refus horizon 2 début cycle	5,058	36,66	34,76 35,72	0,9470 0,9746	0,6622 0,7126	0,0163	0,1050	0,8278 0,8415	5,040	5,119	4,854	5,302	4,973	5,090	5,026	
Ref1b	%	Refus horizon 1 fin cycle	2,908	65,04	101,12 85,02	0,3679 0,1834	0,7322	0,9747 0,9223	0,4791	0,6987	1,690	4,640	3,070	3,320	1,820	3,216	2,600	2=4=3>5=1
Argla	%	Taux d'argile horizon 1 début cycle	17,121	13,13	13,44 13,29	0,9602 0,9770	0,9201 0,9431	0,3011	0,4952 0,4840	0,2000 0,2046	16,714	16,686	16,805	17,662	17,740	16,889	17,354	
Arg2a	%	Taux d'argile horizon 2 début cycle	17,962	15,36	10,37 13,11	0,7889 0,9180	0,9237 0,9845	0,3614	0,2119 0,1724	0,6498	17,283	17,553	18,641	17,528	18,803	18,032	17,891	
LF1a ·	%	Limon fin horizon 1 début cycle	39,605	9,65	7,54 8,66	0,0739 0,1010	0,7911 0,8937	0,4037 0,4844	0,4281 0,4838	0,3308 0,2325	38,785	38,905	40,781	40,673	38,883	39,255	39,956	
LF2a	96	Limon fin horizon 2 début cycle	39,120	10,22	5,25	0,2701	0,2343	0,4462	0.4576	0.9877	39,606	37,824	39,418	40,586	38,165	39,305	38,935	
LGla	%	Limon grossier horiz. 1 déb. cycle	4,078	34,56	24,26 29,86	0,9733 0,9967	0,8199 0,9318	0,5893 0,7505	0,9143 0,8583	0,4400 0,2727	4,734	3,727	4.031	3,583	4,314	4,337	3,818	
LG2a	%	Limon grossier horiz. 2 déb. cycle	3,853	27,68	21,74 24,89	0,9733 0,9952	0,4766 0,5956	0,4707	0,4807 0,4680	0,8900 0,8414	4,290	3,413	3,713	3,833	4,018	3,766	3,941	
SF1a	%	Sable fin horizon 1 début cycle	13,773	19,59	17,27 18,47	0,7850 0,8588	0,9785 0,9946	0,3793 0,4398	0,7265 0,7057	0,2442 0,2024	13,314	13,780	14,760	12,934	14,075	14,158	13,387	
SF2a	%	Sable fin horizon 2 début cycle	13,884	33,34	25,46 29,66	0,7865	0,8527	0,0799 0,1120	0,3387	0,0434	13,205	14,312	14,000	13,167	14.734	14,110	13,657	

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Tableau 1-F

	P	aramètre	Moyenne générale	d variat	icients e ion en %	P	robabil	ités de	s tests	F		oyennes d ose d'ame				Moye du fac subsic	cteur	Classement
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
SG1a	%	Sable grosier horizon 1 début cycle	21,894	16,78	14,94 15,89	0,6119 0,6881	0,6979	0,7464 0,8206	0,3139	0,6229 0,5841	23,188	23,402	19,891	21,429	21,562	21,702	22,087	
SG2a	%	Sable grosier horizon 2 début cycle	22,324	19,89	13,16 16,86	0,4298 0,6028	0,1587		0,3657 0,4742	0,9738 0,9287	22,938	23,911	21,513	21,600	21,656	21,931	22,716	
CT1a	%00	Carbone total horiz 1 début cycle	20,963	17,65	14,10 15,98	0,4010 0,4959	0,9109 0,9689	0,3243 0,4147	0,8638 0,8283	0,4375 0,3347	19,628	21,069	20,746	22,116	21,255	21,625	20,300	
CT2a	%00	Carbone total horiz 2 début cycle	17,528	21,69	21,23 21,46	0,6351 0,6695	0,9373 0,9643	0,8269 0,8661	0,4727 0,4708	0.1647 0.1571	16.633	18,160	15,177	19,504	18,167	17,133	17,924	
СТ1ь	960	Carbone total horiz 1 fin cycle	22,018	9,98	12,59 11,36	0,6718 0,4305	0,9902 0,9900		0,1472 0,1637	0,2786 0,3616	21,635	21,701	21,610	23,643	21,503	21,947	22.090	
NT1a	960	Azote total horizon 1 début cycle	1,013	15,39	11,80 13,71	0,3936 0,4886	0,9679 0,9942	0,6749 0,8027	0,8641 0,8177	0,3101 0,2084	0,939	0,974	1,020	1.071	1,060	1,040	0,986	
NT2a	‰	Azote total horizon 2 début cycle	0,868	21,68	13,00	0,6712	0,9410	0,4797	0,4435	0,0153	0,845	0,860	0,793	0,946	0,898	0,856	0,881	
NT16	960	Azote total horizon 1 fin cycle	1,126	10,15	11,57 10,88	0,0616 0,0475	0,9939		0,2818 0,3002	0,0978	1,089	1,082	1,125	1,198	1,134	1,132	1,119	
(C/N)1a		Rapport C/N horizon 1 début cycle	20,712	5,34	6,28 5,83	0,9681 0,9694	0,3609 0,2941	0,9617 0,9619	0,2661 0,2869	0,2668 0,3236	21,052	21,633	20,203	20,684	19,987	20,775	20,648	2=1=4>3=5 2=1=4>3=5
(C/N)2a	-	Rapport C/N horizon 2 début cycle	20,139	11,05	12,73 11,92	0,8057 0,7788	0,7648 0,7304	0,7756 0,7431	0,3581 0,3837	0,5759 0,6617	19,642	21,311	18,935	20,583	20,223	19.964	20,314	
(C/N)1b	-	Rapport C/N horizon 1 fin cycle	19,659	6,04	12,38 9,74	0,9050 0,4418	0,4190 0,1165		0,3350 0,4195	0,4089 0,6542	20,002	20,277	19,238	19,833	18,948	19,505	19,814	
PT1a	ppm	Phosphore total horiz 1 déb cycle	91,037	14,41	13,09 13,76	0,9240 0,9637	0,9972 0,9996	0,8649 0,9196	0,0045 0,0045	0,3513 0,3138	82,840	86,764	97,664	92,868	95,048	91,037	91.037	
PT2a	ppm	Phosphore total horiz 2 déb cycle	89,729	14,29	9,49 12,13	0,7837 0,9172	0,9947 0,9997	0,8732 0,9658	0,3740 0,3029	0,4823 0,3078	85,456	85,892	91,996	99,408	85,892	90,339	89,118	4=3>5=2=1
PT1b	ppm	Phosphore total horiz 1 fin cycle	1430,952	26,23	9,96	0,9905	0,4902	0,9998	0,9684	0,8369	911,240	1082,588	1308,000	1884,392	1968,540	1479,435	1382,469	5=4>3=2=1
PAssla	ppm	Phosph. assimil. horiz 1 déb cycle	1,744	340,04	150,69	0,8189	0,1614	0,4863	0,3490	0.8947	1,744	0.000	0,000	3,488	3,488	1,918	1.570	
PAss2a	ppm	Phosph. assimil. horiz 2 déb cycle	0,785	374,06	192,45	0,6980	0,3950	0,1771	0,3082	0,7131	0,872	0,436	0,000	1.308	1,308	0,698	0,872	
PAss1b	ppm	Phosph. assimil. horiz 1 fin cycle	148,589	66,03	28,93	0,8982	0,2443	0,9964	0,7149	0,7110	62,784	88,508	118,592	219,308	253,752	155,390		5=4>3=2=1
PHEaula	-	pHeau horizon 1 début cycle	5,190	3,19	2,87 3,03	0,7863 0,8540	0,4519 0,6164		0,7611 0,7473	0,0906 0,0736	5,170	5,190	5,190	5,140	5,260	5,164	5.216	
PHEau2a	•	pHeau horizon 2 début cycle	5,168	2,42	1,75 2,11	0,9942 0,9996	0,3188 0,4433	0,2978 0,4169	0,8592 0,7946	0,9031 0,8218	5,120	5,170	5,180	5,170	5,200	5,148	5,188	
PHEaulb	-	pHeau horizon 1 fin cycle	5,455	3,29	2,98 3,14	0,8258 0,8875	0,8928 0,9421	0,7733 0,8403	0,1345 0,1290	0,6961 0,6743	5,393	5,441	5,428	5,432	5,581	5,459	5,451	

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Tableau 1-G

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabi	lités de	s tests	F	M "Do	oyennes o ose d'ame	du facteur endement	r principa phospha	al té"	Moye du fac subsid	cteur	Classement
Sigle	Unité	Signification	ነ	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
PHKClia	-	pHKCl horizon 1 début cycle	5,660	2,45	1,95 2,21	0,3615 0,4599		0,3941 0,4974	0,9763 0,9686	0,0313 0,0201	5,660	5,660	5,690	5,600	5,690	5,620	5,700	
PHKCl2a	-	pHKCl horizon 2 d€but cycle	5,792	3,43	2,59 3,04	0,9400 0,9856	0,8589	0,4517 0,5828	0,4121	0,0497 0,0285	5,760	5,810	5,870	5,720	5,800	5,804	5,780	
РНКСПЬ	-	pHKCl horizon 1 fin cycle	5,550	1,56	1,27	0,9599	0,9952	0,9736 0,9945	0,4558	0,9115	5,598	5,602	5,563	5,476	5,512	5,558	5,542	2=1=3>5=4 2=1=3>5=4
CaEla	meq%	Ca éch.Tucker horiz. 1 déb. cycle	0,868	40,37	35,60 38,06	0,9800 0,9951	0,6186	0,6485	0,4138	0,7791 0,7583	0,823	0,828	0,892	0,733	1,062	0,892	0.843	
CaE2a	meq%	Ca éch.Tucker horiz. 2 déb. cycle	0,602	39,99	34.87 37,52	0,6412 0,7264	0,3518	0,0431 0,0511	0,4638 0,4398	0,4610 0,4027	0,590	0,562	0,604	0,614	0,642	0,583	0,622	
CaE1b	meq%	Ca éch.Tucker horiz. 1 fin. cycle	2,429	18,84	11,09	0,9998		0,9992	0,9966	0,8632	1,903	2,091	2,275	2,873	3,005	2,569	2,290	5=4>3=2=1
MgEla	meq%	Mg éch.Tucker horiz. 1 déb. cycle	0,395	34,28	25,67 30,28	0,9989 1,0000	0,2540 0,3490	0,4819 0,6192	0,9704 0,9533	0,1808	0,364	0,377	0,363	0,414	0,455	0,430	0,360	
MgE2a	meq%	Mg éch. Tucker horiz. 2 déb. cycle	0,315	43,38	24,72	0,4991	0,8779	0,7913	0,4150	0,5770	0,307	0,294	0,238	0,387	0,351	0,306	0,325	
MgElb	meq%	Mg éch. Tucker horiz. 1 fin. cycle	0,719	13,91	15,38 14,66	0,9994 0,9999	0,0144 0,0118	0,9565 0,9651	0,9636 0,9788	0,3263 0,3697	0,677	0,656	0.701	0.789	0,771	0,682	0,755	4=5=3>1=2 4=5=3>1=2
KE1a	meq%	K éch.Tucker horiz. 1 déb. cycle	0,132	32,86	21,37 27,72	0,9656 0,9961	0,7053 0,8668	0,1747 0,2770	0,1613 0,1267	0,6827 0,4520	0,123	0,135	0,124	0,140	0,140	0,133	0,132	
KE2a	meq%	K éch.Tucker horiz. 2 déb. cycle	0,105	25,94	21,72 23,92	0,6445 0,7450	0,9472	0,9059	0,7844 0,7526	0,7244 0,6635	0,097	0.097	0,098	0,129	0,104	0,101	0,109	4>5=3=1=2
KE1b	meq%	K éch. Tucker horiz, 1 fin. cycle	0,168	13,58	19,38 16,73	1,0000	0,1499	0,9619	0,8597	0,4413	0,152	0,159	0,164	0,178	0.185	0,175	0,160	5=4=3>2=1
NaEla	meq%	Na éch.Tucker horiz. 1 déb. cycle	0,159	23,50	34,72 29,65	0,9525	0,4580 0,3396	0,5639 0,3593	0,2207 0,2565	0,3757	0.152	0,151	0,165	0,151	0,178	0,162	0,157	
NaE2a	meq%	Na éch.Tucker horiz. 2 déb. cycle	0,135	31,81	24,44 28,36	0,8428	0,6018 0,7340	0,1032	0,0344	0,3039	0,136	0.129	0,132	0,147	0,133	0,136	0,135	
NaElb	meq%	Na éch.Tucker horiz. 1 fin. cycle	0,033	54,05	55,16 54,61	0,9974 0,9995	0,2532	0.4496	0,7610 0,7779	0,5700 0,5995	0,037	0,038	0,026	0,035	0,030	0,030	0,036	
Sla	meq%	∑bases Tucker horiz. 1 déb. cycle	1,554	26,42	28,65 27,56	0,9985	0,6027	0,7520 0,7463	0,3397	0,4875 0,4333	1,462	1,491	1,544	1,438	1,835	1,617	1,491	
S2a	meq%	∑bases Tucker horiz. 2 déb. cycle	1,158	29,19	25,83 27,56	0,7403 0,8168		0,4088	0,4616	0,2711	1,130	1,082	1,072	1,277	1,230	1,126	1.191	
S1b	meq%	∑bases Tucker horiz. 1 fin cycle	3,349	15,85	10,98	0,9998		0,9991	0,9412	0,7678 0,5972	2,769	2,944	3,166	3,875	3,991	3,456	3,242	5=4>3=2=1 5=4>3=2=1
CEC1a	meq%	CEC Tucker horiz, 1 deb, cycle	4,493	37,30	19,75	0.0337	0,8535	0.0812	0.9062	0,4526	4,153	4,362	4,674	4,489	4,785	4,719	4,266	5 .25-2-1
CEC2a	meq%	CEC Tucker horiz. 2 déb. cycle	3,589	33,76	22,90 28,84	0,9086 0,9790	0,8601 0,9578	0,4931	0,8370 0,7485	0,0374	3,329	3,611	3,143	3,844	4,017	3,417	3,760	
CEC1b	meq%	CEC Tucker horiz. 1 fin cycle	6,748	15,20	14,69 14,95	0,9993 0,9999	0,7655	0,9992 0,9999	0,9661	0,2674	5,556	5,941	6,500	8,044	7,697	7,080	6,416	4=5>3=2=1 4=5>3=2=1

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Tableau 1-H

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	lités de	s tests	F		oyennes o				Moye du fac subsic	cteur	Classement
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
(S/T)la	%	Taux de satur.horiz. 1 deb. cycle	36,202	27,55	26,16 26,86	0,9967 0,9995	0,9456 0,9736		0,2930 0,2886	0,7103 0,7145	35,067	37,265	34,444	34,278	39,954	35,685	36.718	
(S/T)2a	%	Taux de satur.horiz. 2 deb. cycle	35,561	29,62	23,51 26,74	0,9989	0,4850 0,6336	0,3814	0,9785	0,3873 0,2565	37,838	33,825	37,351	37,245	31.546	38,654	32,467	
(S/T)1b	%	Taux de satur.horiz. 1 fin. cycle	50,337	9,12	12,29 10,82	1,0000	0,9946 0,9933		0,2921 0,3302	0,7188 0,8488	50,356	49,771	49,412	49,289	52,856	50,001	50,673	
(Mg/Ca)Ela	-	Rap. Mg/Ca éch.horiz.1 déb. cycle	0,496	55,28	25,28	0,5845	0,6545	0.1903	0,8210	0,7899	0,504	0,482	0,435	0,583	0,478	0,521	0.471	
(Mg/Ca)E2a		Rap. Mg/Ca éch.horiz.2 déb. cycle	0,565	50,65	26,19	0,0122	0,4689	0,6012	0,2995	0,9227	0,611	0,556	0,405	0,649	0,604	0,573	0,557	
(Mg/Ca)E1b	-	Rap. Mg/Ca éch.horiz.1 fin cycle	0,313	17,02	13,22 15,24	0,9957 0,9997	0,0877	0,9922 0,9992	0,9999 1,0000	0,6168 0,4962	0,375	0.320	0,319	0,284	0,269	0,273	0,354	1>2=3=4=5 1>2=3=4=5
CaElb'	meq%	Ca éch.Ac. Am. horiz. 1 fin. cycle	3,161	26,12	23,40 24,80	0,9974 0,9997	0,2094 0,2400	0,9852 0,9966	0,4311 0,4138	0,7687 0,7511	2,603	2,716	3,028	4,001	3,455	3,223	3,098	4=5>3=2=1 4=5>3=2=1
MgE1b'	meq%	Mg éch.Ac. Am.horiz. 1 fin. cycle	0,686	14,04	14,30 14,17	0,9998 1,0000	0,3718 0,3690	0,8521 0,8787	0,9173 0,9324	0,0815 0,0814	0,636	0,648	0,688	0,733	0,725	0,660	0,712	
KEIP.	meq%	K éch.Ac. Am. horiz. 1 fin. cycle	0,175	19,79	35,47 28,72	0,9982 0,9895	0,3938 0,1474	0,8791	0,6721	0,0085 0,0154	0,151	0.183	0,176	0,171	0,196	0,166	0,184	
NaElb'	meq%	Na éch.Ac. Am. horiz. 1 fin. cycle	0,057	94.04	113,99 104,49	0,7989 0,7450	0,8240 0,7764	0,6809	0.3705 0.6815	0,4907	0,042	0,091	0,052	0,052	0,048	0,048	0,066	
S1b'	meq%	∑bases Ac. Am. horiz. 1 fin cycle	4,079	21,68	19,62 20,68	0,9983	0,2216	0,9854	0,1336 0,1282	0,7252 0,7069	3,432	3,638	3,944	4.957	4,424	4.098	4,060	4=5>3=2=1 4=5>3=2=1
CEC1b'	meq%	CEC Ac. Am. horiz. 1 fin cycle	5,782	19,05	12,02 15,93	0,9955	0,2418	0,9938	0,9748	0,7218 0,4751	5,103	4.876	5,536	6,783	6,611	6,030	5,533	4=5>3=1=2 4=5>3=1=2
(S/T)1b'	%	Tx de satur. AA horiz. 1 deb. cycle	71,071	18,53	15,05 16,88	0,6712 0,7814		0.2098	0,8030 0,7641	0,4985 0,4048	69.371	75.002	71,001	72,078	67,904	69,016	73,127	
(Mg/Ca)Elb'		Rap. Mg/Ca éch.horiz.1 fin cycle	0,233	22,82	17,48 20,32	0,9966	0,2772	0,8924	0,9983	0,5771	0,264	0,246	0,232	0,194	0,226	0,209	0,256	1=2=3=5>4
NiEchla	ppm	Ni échangeable horiz.1 déb. cycle	6,380	54,30	32,13	0,7672	0,4654	0.1157		0,6417	6,300	6,000	5,800	7,300	6,500	7,200	5,560	. 2-3-02-7
Ni Ech2a	ppm	Ni échangeable horiz.2 déb. cycle	4,800	63,59	28,18	0,4319	0,9336	0,4546	0,4240	0,6464	5,000	4,800	3,200	5.700	5,300	4,640	4.960	
NiDTPAla	ppm	Ni DTPA horiz.1 déb. cycle	40,720	28,48	19.16 24.27	0,9957	0,6076 0,7790	0,2991	0,7730 0,6721	0,1763 0,0842	41,000	36,900	40,800	40,300	44,600	42,120	39,320	
NiDTPA2a	ppm	Ni DTPA horiz.2 déb. cycle	34,580	39,92	20,53		0,7718	0,3744	0,7534	0,1336	37,000	32,100	29,500	36,800	37,500	33,360	35,800	
NiDTPA1b	ppm	Ni DTPA horiz.1 fin cycle	48,440	24,16	17,73 21,19	0,9948	0,6836		0,2316 0,1986	0,4295 0,2854	50,100	43,900	46,300	51,000	50,900	48,080	48,800	
NiKCl1b	ppm	Ni KCl horiz.1 fin cycle	3,920	54,53	34,07 45,47	0,9882	0,8936 0,9777	0,4335	0,9465	0,4421	4,800	3,200	3,600	4,000	4,000	3,520	4,320	

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Tableau 1-I

	Pa	aramètre	Moyenne générale	d variat	cients e ion en %	P	robabil	ités de	s tests	F	M "D	loyennes o	du facteu endement	r principa phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification)	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	'
MnEchla	‰	Mn échangeable horiz.1 déb. cycle	0,011	42,35	51,34 47,06	0,9988	0,9852 0,9864	0,1985 0,1442	0,3900 0,3381	0,7163 0,8175	0,011	0,013	0,012	0,011	0,010	0,011	0,012	
MnEch2a	960	Mn échangeable horiz.2 déb. cycle	0,009	100,92	59,99	0,6562	0,3136	0,2435	0,9158	0.2444	0.008	0,009	0,006	0,011	0.009	0,007	0,010	
MnEch1b	%	Mn échangeable horiz.1 fin cycle	0,024	32,33	41,27 37,07	0,9056 0,8628	0,4742 0,3587		0,1643 0,1832	0,6007 0,7263	0,020	0,022	0,022	0,029	0,025	0,024	0,023	
MnDTPA1b	ppm	Mn DTPA horiz 1 fin cycle	986,940	4,67	4,79 4,73	0,9994 0,9999	0,9203 0,9431	0,9984 0,9997	0,7824 0,8005	0,7797 0,8205	955,100	935,600	986,100	1046,900	1011,000	995,600	978,280	4=5>3=1=2 4=5>3=1=2
MnKC11b	ppm	Mn KCl horiz.1 fin cycle	28,600	31,13	35,90 33,60	0,8739 0,8604	0,9571 0,9596	0,8067 0,7796	0,1767 0,1894	0,1711 0,2042	26,700	24,900	31,600	33,600	26,200	28,280	28,920	
MnFRla	ppm	Mn facil. réduct. horiz.1 déb. cycle	2550,600	16,19	7,23	0,6492	0,8494	0,4004	0,9544	0,6433	2530,200	2411,600	2698,500	2496,900	2615,800	2608,080	2493,120	
MnFR2a	ppm	Mn facil. réduct. horiz.2 déb. cycle	2402,860	18,29	7,52	0,6433	0,9495	0,0067	0,1669	0,9182	2440,300		2375,700	2391,200		2408,160	2397,560	
MnFR1b	%	Mn facil. réduct. horiz.1 fin. cycle	2,727	11,98	9,27 10,71	0,9256 0,9785	0,9695 0,9945	0,1302 0,1783	0,3786 0,4394	0,8533 0,7821	2,742	2,639	2,772	2,704	2,776	2,759	2,694	
Res la	%	Résidu anal.tot. horiz.1 déb. cycle	5,480	25,14	12,33	0,9177	0,4605	0,1183	0,8533	0,4029	5,353	5,666	5,552	5,139	5,690	5,333	5,627	
Res2a	%	Résidu anal.tot. horiz.2 déb. cycle	5,837	20,43	12,19	0,9761	0,1061	0,4837	0,2452	0,8348	6,073	5,676	5,886	5,330	6,222	5,869	5,806	
SiO21a	95	Si anal.tot. horiz.1 déb. cycle	4,336	6,80	8,31 7,59	0,9179 0,8959	0,9774	0,0378	0,9331 0,9630	0,3177 0,3982	4,278	4,345	4,369	4,335	4,353	4,438	4,234	
SiO22a	%	Si anal.tot. horiz.2 deb. cycle	4,053	7,78	6,87 7,34	0,8952 0,9475	0.9062 0.9551	0,7166 0,7950	0,3509 0,3736	0,2695 0,2258	3,947	4,103	3,907.	4,126	4,181	4,091	4,014	
TiO21a	%	Ti anal.tot. horiz 1 déb. cycle	0,217	5,09	4,81 4,95	0,9534 0,9791	0,5911 0,6402	0,2945 0,3179	0,4365 0,4429	0,7469 0,7517	0,217	0,220	0,213	0,218	0,216	0,216	0,218	
TiO22a	%	Ti anal.tot. horiz.2 déb. cycle	0,219	5,47	4,17 4,86	0,9279 0,9802	0,6105 0,7446	0,3540 0,4668	0,3748 0,4395	0,1822 0,1134	0,214	0,219	0,221	0,221	0,221	0,218	0,220	
CaO1a	%	Ca anal.tot. horiz.1 déb. cycle	0,041	51,63	38,36 45,48	0,9615 0,9931	0,3865 0,4858	0,6909 0,8252	0,3875 0,4595	0,7659 0,6413	0,039	0,044	0,042	0,029	0,050	0,043	0,039	
CaO2a	%	Ca anal.tot. horiz.2 déb. cycle	0,029	63,58	39,11 52,79	0,3676 0,4486	0,6124 0,8046	0,1624 0,2700	0,1016 0,0756	0,0961 0,0355	0,027	0,030	0,032	0,024	0,032	0,029	0,029	
MgOla	96	Mg anal.tot. horiz.1 deb. cycle	0,553	17,91	8,23	0,4585	0,9691	0,8175	0,3410	0,9820	0,576	0,595	0,529	0,490	0,574	0,559	0,546	
MgO2a	%	Mg anal.tot. horiz.2 deb. cycle	0,575	18,21	13,23 15,91	0,6465 0,7928	0,9912 0,9993	0,8052 0,9174	0,1062 0,0890	0,6094 0,4473	0,533	0,624	0,558	0,538	0,620	0,573	0,576	
Na2O1a	%	Na anal.tot. horiz.1 déb. cycle	0,004	144,83	59,92	0,9519	0,0624	0,4095	0,8852	0,8497	0,004	0,003	0,004	0,003	0,007	0,004	0,005	
Na2O2a	%	Na anal.tot. horiz.2 d€b. cycle	0,003	161,02	153,96 157,53	0,8624 0,9058	0,5865 0,6291	0,0760 0,0790	0,3795 0,3817	0,5894 0,5869	0,002	0,003	0,003	0,004	0,003	0,004	0,002	
K2O1a	%	K anal.tot. horiz.1 déb. cycle	0,003	185,58	89,88	0,8581	0,1024	0,6336	0,7170	0,9285	0,003	0,001	0,005	0,001	0,004	0,003	0,002	
K2O2a	%	K anal.tot. horiz.2 déb. cycle	0,001	288,68	321,45 305,51	0,8067 0,7958	0,0000 0,0000	0,6393 0,6070	0,3295 0,3481	0,6242 0,6970	0,000	0,001	0,002	0,002	0,000	0,001	0,001	
CoOla	%	Co anal.tot. horiz.1 déb. cycle	0,163	19,73	11,72	0,9664	0,9973		0,0594	0,5789	0,170	0,155	0,163	0,156	0,173	0,163	0,164	
CoO2a	%	Co anal.tot. horiz.2 déb. cycle	0,167	19,31	13,67 16,73	0,9974 0,9999	0,9986 0,9999	0,0541 0,0828	0,6860 0,4024	0,1058 0,0539	0,170	0,166	0,169	0,160	0,170	0,170	0,164	

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-J

	P	aramètre	Moyenne générale	d	icients le ion en %	P	robabil	ités de	s tests	F	M "Do	oyennes o	du facteu endement	r princip phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	ľ
Cr2O31a	%	Cr anal.tot. horiz.1 deb. cycle	3,391	10,01	5,61	0,1073	0,9881	0,9190	0,4452	0,9789	3,498	3,556	3,292	3,129	3,478	3,407	3,374	
Cr2O32a	%	Cr anal.tot. horiz.2 deb. cycle	3,422	12,61	7,09	0,0551	0,9806	0,8600	0,3877	0,4976	3,259	3,725	3,398	3,236	3,491	3,391	3,453	
Fe2O31a	%	Fe anal.tot. horiz.1 deb. cycle	60,676	4,93	2,13	0.8104	0,3056	0,2558	0,2790	0,1068	61,286	59,967	60,706	61,372	60,047	60,742	60,609	
Fe2O32a	%	Fe anal.tot. horiz.2 deb. cycle	60,614	4,11	2,39	0,9769	0,3842	0,4727	0,2566	0.7575	60,898	60,304	61,316	61,126	59,424	60,546	60,682	
MnO21a	%	Mn anal. tot. horiz. 1 déb. cycle	1,200	11,76	6,85	0,6418	0,9903	0,3800	0,6921	0,0949	1,196	1,156	1,220	1,176	1,250	1,212	1,187	
MnO22a	%	Mn anal. tot. horiz. 2 déb. cycle	1,191	10,61	7,09 9,02	0,9945 0,9997	0,9983	0,0982 0,1570	0,3781 0,4826	0,1267 0,0576	1,192	1,181	1,205	1,163	1,214	1,202	1,180	
NiOla	%	Ni anal. tot. horiz. 1 déb. cycle	1,172	7,97	6,52 7,28	0,3839 0,4754	0,6478 0,7565	0,3153 0,3950	0,6868 0,3566	0,1677 0,1185	1,168	1,139	1,194	1,192	1,166	1,183	1,160	
NiO2a	%	Ni anal. tot. horiz. 2 déb. cycle	1,169	7,10	6,45 6,78	0,9722 0,9913	0,3296 0,3721	0,4601 0,6037	0,9390 0,9392	0,4977 0,4617	1,177	1,157	1,194	1,187	1,130	1,191	1,147	
A12O31a	%	Al anal. tot. horiz. 1 déb. cycle	7,176	9,91	6,54 8,40	0,9759 0,9976	0,2405 0,3669	0,6656 0,8329	0.8327 0.7345	0,4541 0,3290	7.108	7,579	7,039	6,916	7.237	7,079	7,273	
A12O32a	%	Al anal. tot. horiz. 2 déb. cycle	7,322	8,94	5,37	0,9951	0,0608	0,7089	0,8460	0,6712	7,091	7,655	7,283	7,100	7,481	7,238	7,406	
CuO1a	%	Cu anal. tot. horiz. 1 déb. cycle	0,010	0,00	0,00	0,2957 0,4173	0,2957 0,4173	0,2957	0,4924 0,4193	0,2481 0,1409	0,010	0,010	0,010	0.010	0,010	0,010	0.010	
CuO2a	%	Cu anal. tot. horiz. 2 déb. cycle	0,010	0,00	0,00	0,2957 0,4173	0,2957 0,4173	0,2957 0,4173	0,4924 0,4193	0,2481 0,1409	0.010	0,010	0,010	0,010	0,010	0,010	0.010	
(Mg/Ca)T1a		Rap. Mg/Ca tot. horiz. 1 déb. cycl	25,038	70,10	49,08 60,51	0,4983 0,6638	0,2000 0,2957	0,3125 0,4450	0,7134 0,3781	0,7506 0,5822	30,110	24,643	21,443	28,475	20,520	23,100	26,976	
(Mg/Ca)T2a	-	Rap. Mg/Ca tot. horiz. 2 déb. cycl	36,373	75.99	48,12 63,60	0,2251 0,3561	0,7223 0,8838	0,1081 0,1805	0,2513 0,1970	0,3340 0,1570	38,071	42,548	30,651	37,027	33,569	37,177	35,569	
DQNS1	g/m²	Variation stock N horiz. 1 déb. cyc	24,816	81,53	108,62 96,04	0,8021 0,6952	0,7286 0,6012	0,4760 0,3825	0,7295 0,7983	0,6905 0,8222	33,000	23,760	23,100	27,940	16,280	20,416	29.216	
DQKS1	g/m²	Variation stock K horiz. 1 déb. cyc	3,028	135,12	133,39 134,26	0,9996 1,0000	0,7712 0,8075	0,1417 0,1417	0,3563 0,3499	0,5557 0,4327	2,495	2,064	3,441	3,269	3,871	3,578	2,477	
BiNSP/1	g/m²	Bilan azoté sol-plante / horiz. 1	-34,660	-60,04	-78,54 -69,90	0,6730 0,4522	0,7579 0,6492	0,3751 0,2594	0,8011 0,8618	0,7052 0,8298	-27,195	-35,304	-36,251	-32,568	-41,984	-39,869	-29.452	
BiKSP/1	g/m²	Bilan potas. sol-plante / horiz. 1	-16,377	-26,99	-26,16 -26,58	0,9991 0,9999	0,6517	0,4110 0,4334	0,4724 0,4714	0,4461 0,4410	-17,893	-17,346	-15,747	-15,875	-15,022	-15,977	-16,777	
CUNEst/1	%	Coef. utilis.estimé de N / horiz. 1	54,056	51,03	66.75 59,41	0,6730 0,4522	0,7579 0,6492	0,3751 0,2594	0,8011 0,8618	0,7052 0,8298	63,952	53,203	51,948	56,829	44,348	47,152.	60,960	
CUKEst/1	%	Coef. utilis.estimé de K / horiz. 1	37,779	44,45	43,09 43,78	0,9991 0,9999	0,6517 0,6916	0,4110 0,4334	0,4724 0,4714	0,4461 0,4410	32,019	34,094	40,170	39,684	42,926	39,299	36,259	

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-K

	Pa	aramètre	Moyenne générale	d variat	icients e ion en %		robabil	lités de	s tests	F	M "Do	oyennes dose d'ame	lu facteu ndement	r principa phosphat	ıl eé"	Moye du fa subsic	cteur	Classement
Sigle	Unité	Signification	<u>'</u>	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	'
Res la'	%	Résudu anal.tot. horiz.1 déb. cycle	5,601	22,28	7,91	0,9754	0,0838	0,2023	0,7856	0,9879	5,576	5,888	5,591	5,209	5,743	5,520	5,683	
Res 2a'	%	Résidu anal.tot. horiz.2 déb. cycle	5,828	17,21	14,95 16,12	0,9967 0,9996	0,1303		0,0722 0,0676	0,8098 0,7840	5,650	5,985	5,839	5,560	6,105	5,817	5,839	
SiO21a'	%	Si anal.tot. horiz.1 déb. cycle	4,345	8,15	6,55 7,40	0,6913 0,8032		0,1550	0,9906	0,0661	4,273	4,291	4,338	4,396	4,425	4,468	4,221	
SiO22a'	%	Si anal.tot. horiz.2 déb. cycle	4,162	6,82	10,53 8,88	0,4298 0,2277	0,7496 0,4731		0,3629 0,4275	0,2327 0,3611	4,173	4,082	4,095	4,170	4,290	4,192	4,132	
TiO21a'	%	Ti anal.tot. horiz.1 déb. cycle	0,179	6,88	5,69 6,31	0,9990 0,9999	0,7586 0,8539	0,2579 0,3224	0,8502 0,8216	0,1651 0,1186	0,176	0,180	0,183	0,177	0,179	0,177	0,181	
TiO22a'	%	Ti anal.tot. horiz.2 déb.cycle	0,183	8,31	4,18	0.9992	0,1771	0,3904	0,4803	0,0047	0,181	0,179	0,188	0,181	0,187	0,182	0,184	
CaOla'	%	Ca anal.tot. horiz.1 déb. cycle	0,049	40,36	35,32 37,92	0,9925 0,9988	0,2975 0,3495	0,5700 0,6519	0,8156 0,7980	0,9328 0,9334	0,044	0,051	0,048	0,042	0,058	0,052	0,045	
CaO2a'	%	Ca anal.tot. horiz.2 deb. cycle	0,037	51,64	41,14 46,68	0,7857 0,8854	0,1829 0,2401	0,1465 0,1935	0,3459 0,3117	0,1862 0,1262	0,036	0,043	0,036	0,034	0.036	0,036	0,038	
MgOla'	%	Mg anal.tot, horiz.1 deb. cycle	0.472	22,80	9,36	0,4577	0,9832	0,4722	0,4267	0,7096	0.479	0,508	0,460	0,426	0,489	0,467	0,478	
MgO2a'	. %	Mg anal.tot. horiz.2 déb. cycle	0,487	19,57	12,73 16,51	0,8789 0,9697	0,9975 0,9999	0,6600 0,8318	0,8127 0,7054	0,3536 0,1784	0,496	0,520	0,462	0,443	0,516	0,500	0,475	
Na2O1a'	%	Na anal.tot., horiz.1 déb.cycle	0,001	257,54	294,51 276,64	0,8639 0,8515	0,4461 0,4998	0,3380 0,2849	0,2639 0,2814	0,6736 0,7573	0,002	0,002	0,001	0,000	0,002	0,002	0,001	
Na2O2a'	%	Na anal.tot, horiz.2 déb. cycle	0,001	401,82	279,51 346,11	0,7737 0,9033	0,6242 0,7850		0,0000	0,4461 0,3664	0.001	0,001	0,000	0,000	0,002	0,001	0,001	
K2O1a'	%	K anal.tot. horiz.1 déb. cycle	0,003	91,44	108,73 100,46	0,9987 0,9995	0,9564 0,9535	0,6906 0,6268	0,2908 0,3141	0,9192 0,9688	0,002	0,004	0,003	0,003	0,005	0,004	0,003	
K2O2a'	%	K anal.tot. horiz.2 déb. cycle	0,002	184,78	171,80 178,41	0,4876 0,4373	0,8965 0,9404	0,0441 0,0476	0.8070 0.8036	0.7600 0.7591	0,003	0,003	0,002	0,002	0,002	0,003	0,002	
CoOla'	%	Co anal.tot. horiz.1 déb. cycle	0,148	18,98	11,56	0,6095	0,9990	0,4718	0,4741	0,3462	0,151	0,139	0,148	0.140	0,160	0,149	0,146	
CoO2a¹	%	Co anal.tot. horiz.2 déb. cycle	0,152	20,00	14,94 17,65	0,9787 0,9971	0,9992 1,0000	0,1541 0,2175	0,7170 0,3533	0,0170 0,0099	0,152	0,150	0,157	0,143	0,156	0,155	0.148	
Cr2O31a'	%	Cr anal.tot. horiz.1 deb. cycle	2,986	18,66	9,58	0,4503	0,9724	0,6929	0,7700	0,7471	3,129	3.206	2,850	2,707	3,037	2,935	3,037	
Cr2O32a'	%	Cr anal.tot. horiz.2 déb. cycle	3,050	14,68	8,86	0,6406	0,9923	0,9063	0,0720	0,0302	3,147	3,280	2,894	2,738	3,192	3,047	3,054	
Fe2O3Sp1a'	%	Fe anal.tot. Spec.horiz.1 déb. cycle	59,551	3,77	1,90	0.9974	0.1538	0,4600	0,3224	0,6518	59,946	58,601	59,881	60,282	59,044	59,482	59,620	
Fe2O3Sp2a'	%	Fe anal.tot. Spec.horiz.2 déb. cycle	59,724	4,63	2,05	0,9935	0,1041	0,4805	0,1721	0,9243	60,167	58,973	60,322	60,431	58,729	59,687	59,762	
Fe2O3Col1a'	%	Fe anal.tot. Colo. horiz.1 déb. cycle	61,787	3,05	1,88 2,53	0,9838 0,9989	0,3280 0,4986	0,4178 0,6094	0,1060 0,0792	0,7753 0,4742	62,054	60,954	61,961	62,286	61,680	61,766	61,808	
Fe2O3Col2a'	%	Fe anal.tot. Colo. horiz.2 déb. cycle	61,911	3,57	2,28 2,99	0,9886 0,9993	0,3943 0,5725	0,4946 0,6839	0,3096 0,2447	0,8805 0,7117	62,465	61,162	62,421	62,271	61,234	61,992	61,829	

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-L

	Pa	aramètre	Moyenne générale	d variat	icients le ion en %		robabil	lités de	s tests	F	M "Do	oyennes dose d'ame	lu facteur ndement	r principa phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification	<u>'</u>	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
MnO21a'	%	Mn anal.tot, horiz.1 déb. cycle	1,148	11,71					0,4669 0,4254		1,142	1,125	1,134	1,133	1,206	1,158	1,138	
MnO22a'	%	Mn anal.tot. horiz.2 deb. cycle	1,113	18,81					0,7482 0,7304		1,004	1,133	1,139	1,125	1,163	1,144	1,081	
NiO1a'	%	Ni anal.tot. horiz.1 deb. cycle	1,204	14,46	8,31	0,8910	0,1574	0,4992	0,8192	0,0138	1,184	1,132	1,274	1,221	1,211	1,224	1,184	
NiO2a'	%	Ni anal.tot. horiz.2 déb. cycle	1,194	14,36	8,00	0,9561	0,1173	0,3985	0,8670	0,6973	1,188	1,152	1,246	1,237	1,149	1,216	1,173	
Al2O31a	%	Al anal.tot. horiz.1 déb. cycle	6,926	10,39					0,7574 0,7438		6,950	7,170	6,696	6,687	7,129	6,814	7,039	
A12O32a1	%	Al anal.tot, horiz.2 déb. cycle	7,059	10,28	6,16	0,9953	0,1484	0,4219	0,3519	0,6864	6,993	7,149	6,855	6,938	7,358	6,999	7,118	

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du premier cycle cultural (1994)

Tableau 1-Bases échangeables Tucker et Acétate d'Ammonium

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités de	s tests	F	M "Do	oyennes d ose d'ame	lu facteui ndement	principa phosphat	ıl eé"	Moyer du fac subsid	teur	Classement
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
KElb	meq%	K éch.Tucker horiz. 1 fin. cycle	0,168	13,58	19,38 16,73	1,0000 1,0000	0,1499 0,0768	0,9619 0,9182	0,8597 0,9213	0,4413 0,5974	0,152	0,159	0,164	0.178	0,185	0,175	0,160	5=4=3>2=1
KE1b'	meq%	K éch.Ac. Am. horiz. 1 fin. cycle	0,175	19,79	35,47 28,72	0,9982 0,9895	0,3938 0,1474		0,6721 0,7835	0,0085 0,0154	0,151	0,183	0,176	0,171	0,196	0,166	0,184	
NaElb	meq%	Na éch.Tucker horiz. 1 fin. cycle	0,033	54,05	55,16 54,61	0,9974 0,9995	0,2532 0,2460		0,7610 0,7779	0,5700 0,5995	0,037	0,038	0,026	0,035	0,030	0,030	0,036	
NaElb'	meq%	Na éch.Ac. Am. horiz. 1 fin. cycle	0,057	94,04	113,99 104,49	0,7989 0,7450	0,8240		0,3705 0,6815	0,4907 0,6119	0,042	0,091	0,052	0,052	0,048	0,048	0,066	
CaElb	meq%	Ca éch.Tucker horiz, 1 fin. cycle	2,429	18,84	11,09	0,9998	0,2939	0,9992	0,9966	0,8632	1,903	2,091	2,275	2,873	3,005	2,569	2.290	5=4>3=2=1
CaElb'	meq%	Ca éch.Ac. Am. horiz. 1 fin. cycle	3,161	26,12	23,40 24,80	0,9974 0,9997	0,2094	0,9852 0,9966	0,4311 0,4138	0,7687 0,7511	2,603	2,716	3,028	4,001	3,455	3,223	3,098	4=5>3=2=1 4=5>3=2=1
MgElb	meq%	Mg éch. Tucker horiz. 1 fin. cycle	0,719	13,91	15,38 14,66	0,9994 0,9999	0,0144	0,9565 0,9651	0,9636 0,9788	0,3263 0,3697	0,677	0,656	0,701	0,789	0,771	0,682	0,755	4=5=3>1=2 4=5=3>1=2
MgE1b'	meq%	Mg éch.Ac. Am.horiz. 1 fin. cycle	0,686	14,04	14,30 14,17	0.9998	0,3718	0,8521 0,8787	0,9173 0,9324	0,0815 0,0814	0,636	0,648	0,688	0,733	0,725	0.660	0,712	
Slb	meq%	∑bases Tucker horiz. 1 fin cycle	3,349	15,85	10,98 13,63	0,9998		0,9991	0,9412 0,8943	0,7678 0,5972	2,769	2,944	3,166	3,875	3,991	3,456	3,242	5=4>3=2=1 5=4>3=2=1
S1b'	meq%	∑bases Ac. Am. horiz. 1 fin cycle	4,079	21,68	19,62 20,68	0,9983 0,9998	0,2216	0,9854	0,1336 0,1282	0.7252 0.7069	3,432	3,638	3,944	4,957	4,424	4,098	4,060	4=5>3=2=1 4=5>3=2=1
CEC1b	meq%	CEC Tucker horiz. 1 fin cycle	6,748	15,20	14,69 14,95	0,9993 0,9999	0,7655 0,8098	0,9992 0,9999	0,9661 0,9729	0,2674 0,2556	5,556	5,941	6,500	8,044	7.697	7,080	6,416	4=5>3=2=1 4=5>3=2=1
CEC16,	meq%	CEC Ac. Am. horiz. 1 fin cycle	5,782	19,05	12,02 15,93	0,9955 0,9998	0,2418 0,3806	0,9938 0,9997	0,9748 0,9347	0,7218 0,4751	5,103	4,876	5,536	6,783	6,611	6,030	5,533	4=5>3=1=2 4=5>3=1=2
(S/T)1b	%	Taux de satur.horiz. 1 fin. cycle	50,337	9,12	12,29 10,82	1,0000	0.9946 0.9933	0.5647 0.4154	0,2921 0,3302	0,7188 0,8488	50,356	49,771	49,412	49,289	52,856	50,001	50,673	
(S/T)1b*	%	Tx de satur. AA horiz. 1 deb. cycle	71,071	18,53	15,05 16,88	0,6712 0,7814	0,5543 0,6663	0,2098 0,2689	0,8030 0,7641	0,4985 0,4048	69,371	75,002	71,001	72,078	67,904	69,016	73.127	
(Mg/Ca)E1b	-	Rap. Mg/Ca éch.horiz.1 fin cycle	0,313	17,02	13,22 15,24	0,9957 0,9997	0,0877 0,1205	0,9922 0,9992	0,9999 1,0000	0,6168 0,4962	0,375	0,320	0,319	0,284	0,269	0,273	0,354	1>2=3=4=5 1>2=3=4=5
(Mg/Ca)Elb'		Rap. Mg/Ca éch.horiz.1 fin cycle	0,233	22,82	17,48 20,32	0,9966 0,9998	0,2772 0,3713		0,9983 0,9980	0,5771 0,4470	0,264	0,246	0.232	0,194	0,226	0,209	0,256	1=2=3=5>4

ANNEXE 2 : RÉSULTATS DU DEUXIÈME CYCLE CULTURAL EN 1995

CHAMP EXPERIMENTAL DE OUENAROU - ANNEE 1995 IRRIGATION ET PLUVIOMETRIE

Dates	Irrigation haut	Irrigation bas	Pluviométrie	TOTAL
	(mm)	(mm)	(mm)	(mm)
09/05/95			10,00	10,00
10/05/95	semis			0,00
12/05/95	43,00	40,00		40,00
17/05/95			35,00	35,00
23/05/95	45,00	42,00	5,00	47,00
31/05/95	49,00	47,00	17,00	64,00
08/06/95	35,00	32,00	3,00	35,00
15/05/95	45,00	44,00	3,50	47,50
22/06/95	27,00	27,00	3,00	30,00
27/06/95	30,00	30,00	37,00	67,00
06/07/95	37,00	35,00	3,00	38,00
11/07/95	38,00	37,00	5,00	42,00
18/07/95	38,00	36,00	2,00	38,00
26/07/95	56,00	56,00	4,00	60,00
01/08/95	40,00	40,00	5,00	45,00
08/08/95	10,00	10,00	110,00	120,00
16/08/95			46,00	46,00
23/08/95	50,00	50,00		50,00
31/08/95	42,00	42,00	8,00	50,00
06/09/95	38,00	38,00	8,00	46,00
13/09/95	30,00	30,00	20,00	50,00
21/09/95	25,00	24,00	20,00	44,00
27/09/95			48,00	48,00
05/10/95			4,00	4,00
11/10/95			3,50	3,50
18/10/95			18,00	18,00
02/11/95			55,00	55,00
	678,00	660,00	473,00	1 133,00

CHAMP EXPERIMENTAL DE OUENAROU - ANNEE 1995 APPORT D'ENGRAIS

Les quantités indiquées sont pour la surface de l'essai : (7 416 m² de surface irriguée pour l'urée et le sulfate de potasse et 4 242 m² pour le Triple superphosphate épandus sur les bandes de culture)

	TRIPLE	UREE	SULFATE DE
DATES	SUPERPHOSPHATE	(kg)	POTASSE
	(kg/ha)		(kg)
04/05/1995	156		
11/05/1995		148	104
31/05/1995		148	74
15/06/1995		148	74
27/06/1995		148	74
11/07/1995		148	74
26/07/1995		148	
08/08/1995		148	
23/08/1995		74	
	156	1 110	400

CHAMP EXPERIMENTAL DE OUENAROU - ANNEE 1995 TRAITEMENTS PHYTOSANITAIRES

Les quantités indiquées sont pour la surface de l'essai

	Traiteme	ents insecticides		Traitem	ents Fongicide	<u> </u>
Dates	Nom du Produit	Quantité de	Quantité	Nom du Produit	Quantité de	Quantité
		Produit (ml)	d'eau (1)		Produit (kg)	d'eau (1)
24/05/95	Kafil super	0,250	300			
01/06/95	Décis	0,300	300			
08/06/95	Monitor	0,400	300			
16/06/95	Kafil super	0,250	300			
28/06/95	Décis	0,350	400			
06/07/95	Monitor	0,500	400			
19/07/95	Décis	0,300	300			
01/08/95	Décis	0,350	400			
16/08/95	Décis	0,500	600			
24/08/95	Monitor	0,400	400			
07/09/95	Kafil super	0,200	400			
21/09/95	Monitor	0,400	400	Mancobleu	2,4	400
28/09/95				Benlate	0,4	400
05/10/95				Mancobleu	2,4	400
12/10/95	Monitor	0,450	400	Mancobleu	2,4	400
28/10/95	Monitor	0,450	400			

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-1

	Pa	aramètre	Moyenne générale	Coeffi d variati	e	Pı	robabil	ités de:	s tests	F	M "Do	oyennes d ose d'ame	lu facteu ndement	r principa phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification		1	2	L	С	A	S	A*S	1	2	3	4]	5	1	2	
DP	nbre/m ²	Densité de peuplement	6,669	4,41	5,49 4,98			0,3399 0,2510	0,8488 0,8973	0,2072 0,2687	6,698	6,584	6,615	6,770	6,677	6,748	6,590	
DRej	nbre/m ²	Densité de rejets	0,064	75,65	175,70 135,27		0,9951 0,8871	0,9403 0,4526	0,1059 0,1383	0,3047 0,4526	0,031	0,083	0,041	0,073	0.093	0,066	0,062	
GRUR	8	Poids de 1000 grains (plts de réf.)	271,138	12,64	6,70	0,7454	0,4476	0,9911	0,3081	0,2994	228,748	273,902	281,465	273,414	298,159	272,186	270,090	5=3=2=4>1
PGR	g/plt	Poids de grains/plant de référence.	80,231	18,42	10,61	0,9965	0,9928	0,9999	0,4470	0,7912	46,503	88,797	77,483	90,297	98,075	80.977	79,485	5=4=2>3>1
QGR	g/m ²	Rendement en grains des plts de réf	534,780	18,38	6,94	0.9970	0,9933	0,9999	0,9803	0,9631	312,695	587,497	506,625	611.289	655,794	548,765	520,796	5=4=2>3>1
PGUR	g/plt	Poids de grains/plt utile restant	112,965	20,32	11,96	0,9408	0,7208	0,9988	0,8897	0,0674	73,113	119,054	118.709	122,179	131,768	116,231	109.698	5=4=2=3>1
QGUR	g/m ²	Rendement en grains (plts ut. rest.)	752,348	20,08	11,88	0,9525	0,6252	0,9989	0,9781	0,0791	490,696	785,701	782,860	825,825	876,657	785.321	719,375	5=4=2=3>1
PG	g/plt	Poids de grains par plant	102,730	19,09	10,23	0,9755	0.8621	0,9995	0,8960	0,1116	64,862	109,458	105,906	112,342	121,082	105,322	100.138	5=4=2=3>1
Œ	g/m ²	Rendement en grains	684,470	18,94	9,74	0,9803	0,8369	0,9995	0,9881	0,1266	435,516	722,960	697,372	759,713	806,791	712,217	656,724	5=4=2=3>1
QGcom	qx/ha	Rendement en grains commercial	80,526	18,94	9.74	0.9803	0,8369	0.9995	0.9881	0.1266	51,237	85,054	82,044	89,378	94,917	83.790	77,262	5=4=2=3>1
PTFR	g/plt	Poids de tiges et feuilles/plt de réf.	128,782	20,64	13,16 17,31	0,8408	0,9853 0,9990	0,9996 1,0000	0,4516 0,3573	0,0560 0,0223	83,226	121,044	123,825	156,686	159,128	130,284	127,279	5=4>3=2>1 5=4>3=2>1
QTFR	g/m ²	Biomasse des tiges et feuilles	860,722	21,98	14,40 18,58	0,7978	0,9779	0,9995	0,7709 0,3391	0,0122	558,890	800,579	818,547	1061,489	1064,105	882,858	838,586	5=4>3=2>1 5=4>3=2>1
P(A)R	g/plt	Poids de parties aériennes/plt de réf	209,013	17,16	10,25	0,9580	0,9947	0,9999	0,4783	0,1117	129,729	209,841	201,307	246,983	257,203	211,261	206,764	5=4>2=3>1
Q(A)R	g/m ²	Biomasse des parties aériennes	1395,502	18,08	9,93	0,9494	0,9926	0,9998	0,9125	0,0482	871,585	1388,076	1325,173	1672,778	1719,899	1431.623	1359,382	5=4>2=3>1
SQGcom	qx/ha	Rendement cumulé 94-95	171,881	15,62	9,66 12,99	0,9788 0,9984	0,6363 0,8233	0,9959 0,9999	0,3151 0,2440	0,4772 0,2739	135,052	179,579	173,185	175,208	196.379	170,898	172,863	5=2=4=3>1 5=2>4=3>1
PGR/PTFR		Rapport pds grains/ pds Tige+Feuil	0,628	19,31	11,58	0,9803	0,8498	0,9626	0,3926	0,8806	0,552	0,744	0,635	0,585	0,625	0,619	0.637	2=3>5=4=1
NEPfert	nbre/plt	Nombre d'épis fertiles par plant	0,985	9,22	9,00 9,11	0,7001 0,7391	0,6373 0,6731	0,9968 0,9994	0,3922 0,3895	0,0513	0,849	1,005	1,001	1,015	1,054	0,973	0.996	5=4=2=3>1 5=4=2=3>1
NEPster	nbre/plt	Nombre d'épis stériles par plant	0,031	92,78	110,30 101,92	0,2023 0,1524	0,9518 0,9479	0,9829 0,9851	0,9355 0,9628	0,3429 0,4174	0,065	0.018	0,028	0,023	0.020	0,021	0.040	1>3=4=5=2 1>3=4=5=2
NEP	nbre/plt	Nombre d'épis par plant	1,015	10,22	9,80 10,01	0.7095 0.7560	0,1907 0,1999	0,9546 0,9786	0,8389 0,8440	0,1272 0,1166	0,914	1,023	1,029	1,038	1,074	0,994	1,036	5=4=3=2>1 5=4=3=2>1
DEfert	nbre/m ²	Densité d'épis fertiles	6,561	10,60	6,99 8,98	0,6476 0,8182	0,7293 0,8815	0,9906 0,9994	0,1042 0,0817	0,3517 0,1826	5,692	6,604	6,615	6,864	7,030	6,569	6,553	5=4=3=2>1 5=4=3=2>1
DEster	nbre/m ²	Densité d'épis stériles	0,205	93,40	107,38 100,63		0,9418 0,9426	0,9837 0,9880	0,9409 0,9644	0,3647 0,4290	0,435	0,114	0,187	0,156	0,135	0.141	0,270	1>3=4=5=2 1>3=4=5=2
DE	nbre/m ²	Densité d'épis	6,766	11,69	7,53 9,84	0,6409 0,8183		0,9049 0,9802	0,4577 0,4360	0,4939 0,2723	6,128	6,719	6,801	7,019	7,164	6,710	6,822	5=4=3=2>1

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-2

	Pa	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités de:	s tests	F		oyennes o				Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification	1	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
NGPR	nbre/plt	Nbr grains par plants de référence	290,441	16,68	13,35 15,11	0,9877 0,9983	0,9932 0,9993	0,9997 1,0000	0,1837 0,1651	0,4901 0,3857	195,877	321,068	273,907	331,971	329,384	291,702	289,181	4=5=2>3>1 4=5=2>3>1
NGER	nbr/épi	Nor grains par épi	291,580	15,20	10,26 12,97	0,9891	0,9898 0,9993	0.9987 1,0000	0,3880 0,4885	0,7310 0,4668	223,927	321,090	272,555	327,010	313,317	295,399	287,761	4=2=5=3>1 4=2=5>3>1
TCdresTF	%	Teneur en cendres tiges et feuilles	6,635	9,93	5,91	0,8072	0,9042	0,9756	0,9459	0,9261	6,216	6,595	6,424	6,598	7,340	6,752	6,518	5>4=2=3=1
TSiO2TF	%	Teneur en silice tiges et feuilles	2,254	18,93	10,70	0,9585	0,7390	0,9945	0,9105	0,8545	1,810	2,327	2,027	2,418	2,690	2,317	2,192	5=4=2>3=1
TNIF	%	Teneur en azote des tiges feuilles	1,097	9,13	8,36 8,75	0,9800 0,9943	0,7371 0,8018	0,9980 0,9998	0.0371 0.0359	0,4977 0,4665	1,179	0.942	1,098	1,113	1,155	1.097	1,098	1=5=4=3>2 1=5=4=3>2
TPTF	%	Teneur en phosphore tiges feuilles	0,090	14,28	13,72 14,00	0,9982 0,9998	0.4560 0,5812		0,3910 0,3921	0,5660 0,4356	0,087	0,075	0,089	0,092	0,107	0,092	0,089	5>4=3=1=2 5>4=3=1>2
TCaTF	%	Teneur en calcium tiges feuilles	0,455	19,50	9,70	0,3165	0,8858	0,8051	0,4402	0,8535	0,417	0,438	0,456	0,447	0,517	0.459	0,451	
TMgTF	%	Teneur en magnésium tiges feuilles	0.278	7,76	8,51 8,14	0,9761 0,9842	0,9992 0,9998	0,9969	0,3603 0,3286	0,4235 0,4750	0,306	0.281	0,281	0,257	0,265	0,281	0,275	1>3=2=5=4 1>3=2=5=4
TNaTF	%	Teneur en sodium tiges et feuilles	0,035	18,99	14,37 16,84	0,9326 0,9826		0,0478 0,0680	0,9854 0,9775	0,7081 0,5818	0,035	0,035	0,036	0,034	0,034	0,037	0,033	
TKTF	%	Teneur en potassium tiges feuilles	1,280	13,27	11.09 12.23	0,9231 0,9715	0,8928 0,9536	0,2223 0,2758	0,0808 0,0739	0,2163 0,1621	1,268	1,279	1,254	1,259	1,342	1,278	1,282	
TCoTF	ppm	Teneur en cobalt des tiges feuilles	5,800	22,03	19,25 20,69	0,7197 0,8019	0,9995 1,0000	0,9962 0,9996	0,9842 0,9848	0,4524 0,4931	7,000	5,200	5,900	4,300	6,600	6,240	5,360	1=5=3>2=4 1=5=3>2=4
TCrTF	ppm	Teneur en chrome des tiges feuilles	42,360	17,68	21,03 19,43	0,9995 0,9999	0,9993 0,9998	0,9988 0,9995	0,9853 0,9945	0,9549 0,9867	51,600	39,700	44,600	31,500	44,400	45,920	38,800	1=3=5>2>4 1=3=5>2>4
TFeTF	ppm	Teneur en fer des tiges et feuilles	1459,840	17,38	21,75 19,69	0,9997 0,9999	0,9995 0,9998	0,9991 0,9996	0,9870 0,9959	0,9437 0,9844	1794,600	1339,100	1551,600	1093,900	1520,000	1589,840	1329,840	1=3>5=2>4 1=3>5=2>4
TMnTF	ppm	Teneur en manganèse tiges feuilles	162,420	13,02	10,87 11,99	0,9995 1,0000	0,9995 1,0000	0,9978	0.9704 0.9654	0,4886 0,4306	188,300	155,100	170,400	135,700	162,600	168,520	156,320	1=3>5=2>4 1=3>5=2>4
TNITF	ppm	Teneur en nickel tiges et feuilles	36,340	14,53	20,87 17,98	0,9998 0,9999	0,9998	0,9998	0,9840 0,9962	0,9188 0,9815	45,600	32,400	38,400	28,100	37,200	39,320	33,360	1>3=5=2=4 1>3=5=2=4
TAITF	ppm	Teneur en aluminium tiges feuilles	256,780	18,16	15,80 17,02	0,9997 1,0000	0,9995 1,0000	0,9994 1,0000	0,9990 0,9995	0,9621 0,9656	325,600	240,900	264,200	184,600	268,600	282,720	230,840	1>5=3=2>4 1>5=3=2>4
TCuTF	ppm	Teneur en cuivre tiges et feuilles	84,320	32,42	27,05 29,86	0,9979 0,9998	0,9998	0,9949 0,9994	0,9895 0,9887	0,4796 0,3979	119,300	77,200	88,100	58,800	78,200	94,040	74,600	1>3=5=2=4 1>3=5=2=4
TZnTF	ppm	Teneur en zinc tiges feuilles	45,120	23,34	24,29 23,82	0,7303 0,7420	0,7770 0,7923	0,9662 0,9802	0,1052 0,1083	0,6124 0,6544	54,600	42,600	47,500	37,300	43,600	45,320	44,920	1=3>5=2=4 1=3>5=2=4

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995) Tableau 1-3

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités d e	s tests	F		oyennes o				Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification		1	2	 L	С	A	S	A*S	1	2	3	4	5	1	2	
pHeau1b	-	pHeau horizon1 fin de cycle	5,149	3,66	3,21 3,44	0,7479 0,8267	0,9929 0,9989	0,9954 0,9994	0,4867 0,4896	0,9097 0,9071	4,886	5,139	5,199	5,261	5,258	5,132	5,166	4=5=3=2>1 4=5=3=2>1
pHKcllb		pHKck horizon1 fin de cycle	5,386	1,74	2,35 2,07	0,9589 0,9279	0,9999	0,8983 0,8257	0,9698 0,9896	0,6405 0,7827	5,327	5,420	5,441	5,355	5,389	5,343	5,430	
CT1b	mg/g	Carbone total horizon1 fin cycle	20,690	11,97	5,02	0,7470	0,9407	0.5844	0,9926	0,4155	20,073	20.805	20,273	22,051	20,247	21,162	20,218	
NT1b	mg/g	Azote total horizon1 fin cycle	1,154	10,23	5,48	0,9273	0,9837	0,5794	0,9957	0,5570	1,120	1,130	1,143	1,217	1,162	1,186	1,123	
C/N1b		Rapport C/N horizon1 fin cycle	17,936	3,37	2,58 3,00	0,9803 0,9972	0,1225 0,1703	0,9724 0,9954	0,7786 0,7193	0,6338 0,4959	17,970	18,430	17,740	18,120	17,420	17.852	18,020	2=4=1>3=5 2=4=1>3=5
PT1b	ppm	Phosphore total horiz 1 fin cycl	1312,960	22,67	13,90 18,80	0,8703 0,9699	0,1877 0,3088	0,9999	0,9873 0,9604	0,4666 0,2779	776,000	1044,500	1226,800	1726,400	1791,100	1388,040	1237,880	5=4>3=2=1 5=4>3=2>1
PAss1b	ppm	Phosphore assim horiz1 fin cycle	108,360	44,16	30,61 38,00	0,6308 0,7917	0,2086 0,3100	0,9998	0,9428 0,8968	0,6661 0,4768	38,900	68,900	87,700	157,900	188,400	118,120	98,600	5=4>3=2=1 5=4>3=2=1
CaE1b	meq/%	Calcium échang horiz1 fin de ycle	1,694	17,74	18,09 17,91	1,0000	0,9966 0,9992	0,9999 1,0000	0,9745 0,9832	0,6021 0,6336	1,113	1,411	1,716	1,989	2,242	1.804	1,585	5=4=3>2>1 5=4=3>2>1
MgElb	meq/%	Magnésium échang horizl fin de cycle	0,361	18,97	14,04 16,69	0,9999	0,9690 0,9951	0,9920 0,9993	0,9626 0,9395	0,1420 0,0812	0,311	0,323	0.343	0,395	0.435	0,378	0,345	5=4>3=2=1 5=4>3=2=1
NaElb	meq/%	Sodium échang horiz1 fin de cycle	0,042	131,44	106,05 119,42	0,8782 0,9489	0,7099 0,8185	0,2657	0,7990 0,7579	0,4493 0,4509	0,039	0,036	0.049	0,026	0.058	0,033	0,050	
KE1b	meq/%	Potassium échang horiz1 fin cycle	0,114	27,14	18,58	0,9964	0,0089	0,4350	0,0029	0,3812 0,1791	0,099	0,115	0,116	0,121	0,118	0.114	0,114	
CEC1b	meq/%	Capacité échang horiz1 fin cycle	6,736	14,42	12,26 13,39	0,9943	0,7840	0,9953	0,9922	0,5585	5,430	6,760	6,885	7,600	7,006	7,108	6,364	4=5=3=2>1 4=5=3>2>1
(S/T)1b	%	Taux saturation horiz 1 fin de cycle	25,520	14,70	16,70 15,73	1,0000	0,9979	0,9983	0,4328 0,4613	0,1686	22,500	22,600	23,900	28,500	30,100	25,160	25,880	
MnElb	mg/g	Manganèse échang horiz1 fin cycl	0,014	19,13	31,96 26,34	0,9993	0,9616 0,8546	0,8190	0,9622	0,1003 0,1758	0,015	0,015	0,013	0,016	0.014	0,016	0,013	
MnFR1b	·mg/g	Manganèse facil réducti horez1 f cy	2,716	11,69	8,78 10,34	0,9990	0,8851	0,8049 0,9115	0,3128 0,2727	0.6404	2,659	2,537	2,798	2,699	2,889	2,702	2,730	
MnDTPA1b	mg/g	Mangan èse DTPA horiz 1 fin cycle	920,440	5,59	8.48 7,18	0,9862 0,9618	0,9925		0,6869 0,7770	0,6018	869,200	889,600	925,300	980,900	937,200	932,080	908,800	4=5>3=2=1 4=5=3>2=1
MnKcl1b	ppm	manganèse Kcl horiz 1 fin cycl	21,840	18,85	26,61 23,06	0,9997	0,9992		0,9531 0,9824	0,0462	23,700	22,200	20,700	23,700	18,900	23,640	20,040	
NiKcl1b	ppm	Nickel Kcl horizon1 fin de cycle	9,640	31,26	24,94 28,28	0,2161 0,2818	0,9831 0,9974	0,8042 0,8994	0,4997 0,4540	0,0657 0,0422	11,800	8,900	9,200	9,700	8,600	9,880	9,400	
NiDTPA1b	ppm	Nickel DTPA horiz1 fin de cycle	53,780	27,38	14,65	0,9790	0,4463	0,1604	0,2626	0,1568	55,800	49,800	52,100	56,300	54,900	54,160	53,400	
Perte au feu	%	Perte au feu horizon1 fin de cycle	15,743	3,50	1,50	0,8199	0,8084	0,2969	0,9800	0,1651	15,670	15,754	15,696	15,961	15,633	15,832	15,654	
Refus 1b	%	Refus horizon 1 fin de cycle	5,705	22,21	13,59 18,41	0,9776 0,9983	0,0683 0,1197	0,4890 0,7123	0,0045 0,0045	0,4410 0,2104	5,466	6,261	5,601	5,293	5,903	5,705	5,705	
SiO21b	%	Ten eur SiO2 horiz1 fin de cycle	4,335	6,68	4,16 5,57	0,4830 0,6786	0,9343 0,9901	0,5795	0,9299 0,8488	0,0434 0,0165	4,217	4,271	4,341	4,454	4,392	4,385	4,285	

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-4

	Pa	aramètre	Moyenne générale	d variat	icients le ion en %	Pi	robabil	ités de:	s tests	F	Mo "Do	oyennes d se d'ame	lu facteu ndement	r principa phosphat	al e"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification	ì	1	2	L	C	A	S	A+S	1	2	3	4	5	1	2	
CaO1b	%	Teneur calcium horiz1 fin de cycle	0,090	27,54	19,82 23,99	0,9987 0,9999	0,8814 0,9631			0,4869 0,3485	0,061	0,074	0,080	0,109	0,127	0,096	0.085	5=4>3=2=1 5=4>3=2=1
MgOlb	% .	Teneur en Mg horizon1fin de cycle	0,410	19,19	8,30	0,8619	0,9769	0,3729	0,8717	0,8476	0,414	0,402	0,418	0,381	0,436	0,402	0,418	
K2O1b	%	Teneur en K horizon1 fin de cycle	0,001	288,68	288,68 288,68	0,9929 0,9980	0,5539 0,5720		0,9708 0,9792		0,001	0,001	0,001	0,000	0,000	0,000	0,001	
Fe2O31b	%	Teneur en Fe Horizon1 fin de ycle	61,096	3,18	1,76	0,9956	0,1116	0,5574	0,7549	0,4715	61,436	60,363	61,252	61,854	60,575	60,910	61,282	
Al2O31b	%	Teneur en Al horizon1 fin de cycle	7,000	7,37	3,31	0,9962	0,4201	0,6583	0,9930	0,4926	6,992	7,226	6,966	6,729	7,087	6,894	7,106	
MnO21b	%	Teneur en Mn horizon1 fin de cycle	1,098	10,08	4,14	0,8505	0,9951	0,4682	0,1511	0,8771	1,081	1,076	1,110	1,069	1,152	1,099	1,096	
NiO1b	%	Teneur en Ni horizon1 fin de cycle	1,151	9,12	3,78	0,7184	0,1567	0,7133	0,9314	0,3030	1,147	1.090	1,173	1,196	1,151	1,164	1,139	_
CoO1b	%	Teneur en Co horizon1 fin de cycle	0,138	16,99	7,89	0,8513	0,9994	0,4680	0,3821	0,7103	0,136	0,132	0,139	0.133	0,150	0,139	0,137	
Cr2O31b	%	Teneur en Cr horizon1 fin de cycle	2,815	11,39	6,01	0,4524	0,9868	0,7135	0,9750	0,7386	2,899	2,817	2,864	2,607	2,890	2,755	2,876	
TiO21b	%	Teneur en Ti horizon1 fin de cycle	0,181	5,48	3,21	0,9059	0,9255	0,4583	0,9809	0,4700	0,183	0,179	0,183	0,177	0,183	0,179	0,183	
CuOlb	%	Teneur en Cu horizon1 fin de cycle	0,010	0,00	00,0 00,0	0,2957 0,4173	0,2957 0,4173	0,2957 0,4173	0,4924 0,4193		0,010	0,010	0,010	0,010	0,010	0,010	0,010	

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-5

	Pa	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités de	s tests	F	M "De	oyennes o	lu facteu indement	r principa phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification		1	2	L	С	A	S	A*S	1	2	3	4	5	1	2	
TCdresGr	%	Teneur en cendres dans les grains	1,996	11,95	10,53 11,26	0,9951 0,9993	0,7760 0,8508		0,9981 0,9988	0,0490	1,840	1,973	2,105	2,033	2,030	2,116	1,876	
TNGr	%	Teneur en azote dans les grains	1,714	4,70	4,60 4,65	0,9584 0,9794	0,2540 0,2607	0,9394 0,9657	0,3467 0,3468	0,3674 0,3636	1,652	1,699	1,745	1,709	1.767	1,720	1.709	5=3=4=2=1
TPGr	ppm	Teneur enphosphore dans les grains	3251,920	10,46	6,92 8,87	0,9791 0,9981	0,3304 0,4848	0,5792 0,7575	0,3185 0,2574	0,0924 0,0403	3084,300	3215,100	3271,000	3314,500	3374,700	3265,400	3238,440	
TKGR	%	Teneur en potassium dans les grains	0,356	7.98	5,32 6,78	0,9711	0,2694 0,4035	0,0973 0,1561	0,1795 0,1440	0,3518 0,1864	0,358	0,350	0,352	0,359	0,360	0,355	0,356	
TCaGr	%	Teneur en calcium dans les grains	0,000	707,11	707,11 707,11	0,5539 0,5720	0,5539 0,5720	0,5539 0,5720	0,6612 0,6712	0,5539 0,5720	0,000	0,000	0,000	0,000	0,001	0,000	0,000	
TMgGr	%	Teneur en magnésium dans les grains	0,126	7,03	6,10 6,58		0,7572 0,8389	0,7237	0,4803 0,4930	0,4513 0,3901	0,121	0,124	0,127	0,128	0,128	0,126	0,125	
TSiO2Gr	%	Teneur en silice dans les grains	0,003	135,85	203,77 173,17	0,9792 0,9448	0,9352 0,8423		0,4424 0,4847	0,1096 0,1748	0,004	0,004	0,001	0,005	0,003	0,004	0,003	
TNiGr	ppm	Teneur en nickel dans les grains	4,800	21,35	16,62 19,13	0,7991 0,9005	0,8686 0,9476	0,9993 1,0000	0,6907 0,3676	0,3156 0,2188	6,500	5,200	4,200	4,400	3,700	4,680	4.920	1>2=4=3=5 1>2=4=3=5
TCrGr	ppm	Teneur en chrome dans les grains	0,420	82,48	54,99 70,09	0,9970 0,9999	0,3171 0,4658		0,4424 0,3598	0,6799 0,4658	0,400	0,500	0,300	0,500	0,400	0,440	0,400	
TCoGr	ppm	Teneur en cobalt dans les grains	0,780	37,74	70,22 56,37	0,9653 0,8075	0,9438 0,7355		0,7807 0,8826	0,0509 0,0993	0,900	0,800	0,700	0,600	0,900	0,880	0.680	
TMnGr	ppm	Teneur en manganèse dans les grains	5,840	19,75	23,91 21,93	0,9999 1,0000	0,2438 0,1810		0,0045	0,7335 0,8325	5,900	5,700	5,300	6,300	6,000	5,840	5,840	
TFeGr	ppm	Teneur en fer dans les grains	23,160	13,17	11,37 12,30	0,9999 1,0000	0,6213 0,7104		0,0874 0,0814	0,8177 0,7908	24,500	23,700	22,200	22,900	22,500	23,120	23,200	
TAlGr	ppm	Teneur en aluminium dans les grains	0,400	277,64	207,16 244,95	0,5965 0,7386	0,3333 0,4497		0,6726 0,3993	0,9090 0,8473	0,700	0,700	0.200	0.000	0,400	0,520	0,280	
TCaGr	ppm	Teneur en cuivre dans les grains	1,620	38,38	23,64 31,88		0,2208 0,3565		0,7102 0,4245		1,800	1,700	1,600	1,700	1,300	1,680	1,560	
TZnGr	ppm	Teneur en zinc dans les grains	24,420	7,02	5,99 6,52	0,9942 0,9993	0,8785 0,9412		0,6911		25,800	24,600	24,200	24,500	23,000	24,200	24,640	1=2=4>3=5 1=2=4=3=5

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995) Tableau 1-6

	P	aramètre	Moyenne générale	d variat	icients le ion en ‰	P	robabil	ités de	s tests	F	M "D	loyennes d ose d'ame	lu facteu indement	r princip: phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification	}	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
TCdresRch	%	Teneur en cendres dans les rachis	1,786	21,29	8,01	0,9128	0,7133	0,9829	0,2524	0,8072	2,223	1,785	1,737	1,581	1,605	1,780	1,793	1>2=3=5=4
TNRch	%	Teneur en azote dans les rachis	0,488	15,95	13,11 14,60	0,9882 0,9983	0,9352 0,9790	0,8781 0,9464	0,3160 0,2896	0,8351 0,7887	0,538	0,466	0,508	0,487	0,442	0,484	0.492	
TPRch	ppm	Teneur en phosphore dans les rachis	568,540	18,21	17,68 17,95		0,9615 0,9821		0,2279	0,9302	643,400	519,300	592,300	559,400	528,300	572,680	564,400	
TKRch	%	Teneur en potassium dans les rachis	0,553	27,16	12,56	0,8333			0,7239	0,6716	0,723	0,545	0,536	0,477	0,483	0.542	0,564	1>2=3=5=4
TCaRch	%	Teneur en calcium dans les rachis	0,022	23,84	18,54 21,35	0,4461 0,6820	0,6989 0,8195	0,4461 0,6820	0,6845 0,3743	0,4483 0,3310	0,024	0,020	0,023	0,021	0,021	0,021	0,022	
TMgRch	%	Teneur en magnésium dans les rachis	0,056	15,10	13,24 14,20	0,9934 0,9990	0,9983	0,9981 0,9998	0,1537 0,1451	0,8309 0,8134	0,067	0,057	0,060	0,048	0,049	0,056	0.056	1=3>2=5=4 1=3=2>5=4
TSiO2Rch	%	Teneur en silice dans les rachis	0,272	20,92	15,32 18,34	0,9098 0,9750	0,0335 0,0494	0,8969 0,9691	0,4409 0,3795	0,2990 0,1837	0,237	0,293	0.249	0.281	0,302	0,269	0,276	5=2=4>3=1
TNiRch	ppm	Teneur en nickel dans les rachis	7,800	16,38	14,16 15,31		0,3160 0,3756	0.6454	0,3774 0,3553	0,1300 0,0998	8,000	8,100	7,100	7.800	8,000	7,720	7.880	
TCrRch	ppm	Teneur en chrome dans les rachis	7,540	25,27	18,58 22,18	0,9003	0,4885	0,9876	0,2360 0,2028	0,7349 0,5956	6,000	7,900	7,200	7,700	8,900	7,480	7.600	5=2=4>3=1
TCoRch	ppm	Teneur en cobalt dans les rachis	0,740	69,35	59,93 64,81	1,0000	0,5720	0,1303 0,1565	0,3599 0,3889	0,7153 0,6707	0,900	0,700	0.700	0,700	0.700	0.800	0.680	
TMnRch	ppm	Teneur en manganèse dans les rachis	12,020	17,65	12,05 15,11		0,9135	0,7867 0,9151	0,7733 0,6771	0,9175 0,8192	13,100	11,600	12,800	11,100	11,500	11.760	12,280	
TFeRch	ppm	Teneur en fer dans les rachis	95,500	78,54	69,30 74,06		0,1990	0,2614 0,3048	0,7913 0,7740	0,2256 0,1858	72,400	99,700	110,800	84,400	110,200	83,120	107,880	
TAIRch	ppm	Teneur en aluminium dans les rachis	3,100	151,42	165,07 158,39		0,4950		0,6971 0,7281	0,1938 0,2156	2,700	3,400	5,500	1,500	2,400	2,320	3,880	
TCuRch	ppm	Teneur en cuivre dans les rachis	3,000	18,26	16,56 17,43	0,9594 0,9851	0,4731	0,8131 0,8758	0,4149 0,4004	0,0306 0,0249	3,100	3,200	3,100	3,000	2,600	3,040	2,960	
TZnRch	ppm	Teneur en zinc dans les rachis	33,940	25,14	18,22 21,95	0,9487		0,9999	0,4978 0,4318	0,4605 0,3769	41,500	40,900	34,800	28,100	24,400	33,320		1=2=3>4=5 1=2=3>4=5
PNTFR	g/pit	Immobilisation dans les tiges et feuilles en azote	1,412	22,43	15,24 19,17	0,9667 0,9958	0.9974	0,9995 1,0000	0,3553 0,2920	0,0609 0,0279	1,001	1,149	1,344	1,735	1.830	1,426		5=4>3=2=1 5=4>3=2=1
PPITR	g/plt	Immobilisation dans les tiges et feuilles en phosphore	0,119	26,87	15,82	0,9940	·	0,9997	0,7606	0,2881	0.076	0,093	0,111	0,142	0,171	0,122		5=4>3=2=1
PKTFR	g/plt	Immobilisation dans les tiges et feuilles en potassium	1,648	16,42	19,50 18,03	0,9976 0,9989	0,9982	0,9999 1,0000	0,3023 0,3272	0,0625 0,0778	1,062	1,538	1,549	1,970	2,121	1,666	1,630	5=4>3=2>1 5=4>3=2>1
PCaTFR	g/plt	Immobilisation dans les tiges et feuilles en calcium	0,588	23,78	18,12 21,14	0,7278 0,8496		0,9998 1,0000	0,3783 0,4434	0,2102 0,1325	0,346	0,532	0,551	0,699	0,810	0,602	0,574	5=4>3=2>1 5=4>3=2>1
PMgTFR	g/plt	Immobilisation dans les tiges et feuilles en magné sium	0,351	22,79	16,26 19,80			0,9949	0,3498 0,4358	0,1375	0,252	0,341	0,343	0,400	0,419	0.359	0,343	5=4=3=2>1 5=4=3=2>1

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-7

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités de	s tests	F	M "D	loyennes o ose d'ame	du facteu endement	r princip phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification	\	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
PNaTFR	g/plt	Immobilisation dans les tiges et feuilles en sodium	0,045	28,00	20,93 24,72	0,7539 0,8749	0,9318 0,9829		0,9620 0,9402	0,3455 0,2262	0,029	0,043	0,044	0,053	0,054	0,048	0,042	5=4=3=2>1 5=4=3=2>1
PSiTFR	mg/plt	Immobilisation dans tiges et feuilles en silice	3009,082	29,34	18,21 24,42	0,9280	0,9002	0,9997	0,8510 0,7359	0,4211	1633,265	2849,325	2484,912	3792,977	4284,929	3127,695	2890,467	5=4>2=3=1 5=4>2=3>1
PNiTFR	mg/plt	Immobilisation dans les tiges et feuilles en nickel	4,401	32,24	24,50 28,63	0,6822 0,8116	0,2175	0.9620 0.9927	0,9914 0,9873	0,9205 0,8732	3,612	3,738	4,472	4,437	5,747	4,878	3,924	5=3=4>2=1 5>3=4=2=1
PCrTFR	mg/plt	Immobilisation dans les tiges feuilles en chrome	5,123	32,84	24,78 29,09	0,6175	0,1825		0.9921 0.9880	0,9528	4,038	4,555	5,188	4,972	6,859	5,692	4,553	
PCoTFR	mg/plt	Immobilisation dans les tiges et feuilles en cobalt	0,708	34,37	24,44 29,82	0,4071	0,6102	0,9887 0,9990	0,9762 0,9558	0,4939	0,552	0,608	0,700	0,675	1,006	0,771	0,646	5>3=4=2=1 5>3=4=2=1
PMnTFR	mg/plt	Immobilisation dans les tiges et feuilles en manganèse	20,009	27,55	12,84		0,8685		0.9888	0,2422	14,335	18,579	20,324	21,307	25,503	21,091	18,928	5=4=3>2=1
PFeTFR	mg/plt	Immobilisation dans les tiges et feuilles en fer	176,516	34,14	25,76 30,24	0,7385 0,8606		0,9613	0,9927 0,9890	0,9440 0,9086	140,970	154,053	179,764	173,139	234,653	197,214	155.818	5=3>4=2=1 5>3=4=2=1
PNGr	g/plt	Immobilisation dans les grains en azote	1,383	18,59	10,48		0,9932		0,4901	0,7152	0,784	1,508	1,355	1,539	1,731	1,397	1,369	5=4=2=3>1
PPGr	mg/plt	Immobilisation dans les grains en phosphore	0,264	20,22	12,83 16,93	0,9960 0,9998	0,9904 0,9995	0,9998	0,4876 0,3857	0,6649 0,4166	0,151	0,284	0,255	0,298	0,330	0,267	0,260	5=4=2=3>1 5=4=2=3>1
PKGr	g/plt	Immobilisation dans les grains en potassium	0,285	19,16	13,31	0,9926	0,9932		0,3286	0,6395 0,4499	0,169	0,308	0,274	0,323	0,352	0,287	0.283	5=4=2=3>1 5=4=2=3>1 5=4=2=3>1
PCaGr	g/plt	Immobilisation dans les grains en calcium	0,000	707,11	707,11	0,5539 0,5720	0,5539	0,5539 0,5720	0,3384	0,5539 0,5720	0,000	0,000	0,000	0,000	0,001	0.000	0.000	J=4=2=371
PMgGr	g/plt	Immobilisation dans les grains en magnésium	0,101	18,92	12,54		0,9949	0,9999	0.7291	0,8538 0,6914	0,057	0,110	0,099	0,115	0,125	0,103	0.099	5=4=2=3>1 5=4=2=3>1
PSiGr	mg/plt	Immobilisation dans les grains en silice	2,444	145,73	210,62 181,11	0,9147 0,8211	0,8726 0,7490	0,7734	0,4766	0,0616 0,0965	1,639	2,716	0,613	4.484	2,766	2,929	1,958	3-4-2-371
PNiGπ	mg/plt	Immobilisation dans les grains en nickel	0,369	25,24	23,61 24,44	0,9451 0,9746	0,9993	0,9743 0,9912	0,2607 0,2549	0,4742 0,4929	0,302	0,455	0,328	0,396	0,366	0,365	0.373	2=4>5=3=1 2=4>5=3=1
PCrGr	mg/plt	Immobilisation dans les grains en chrome	0,033	100,26	87,37 94,04	0,9374 0,9759	0,6799	0,7694 0,8484	0,7717	0,2196	0,014	0,042	0,024	0,044	0,039	0,038	0.027	2-7/1=1=1
PCoGr	mg/plt	Immobilisation dans les grains en cobalt	0,063	54,30	68,42 61,76	0,9861	0,6347	0,9390 0,9162	0,7933	0,1769 0,0963 0,1288	0,039	0,075	0,058	0,057	0.088	0,071	0,055	
PMnGr	mg/plt	Immobilisation dans les grains en manganèse	0,459	38,00	31,15 34,74	0,9886	0,4712	0,9162 0,9935 0,9993	0,0358	0,1288 0,8515 0,8086	0,245	0,493	0,412	0,570	0,574	0,458	0,460	5=4=2>3=1 5=4=2=3>1
PFeGr	mg/plt	Immobilisation dans les grains en fer	1,851	23,41	16,88	0,9980	0,9906	0,9977	0,4077 0,4874	0,8039	1,233	2,076	1,698	2,041	2,208	1,889	1,813	5=2=4=3>1 5=2=4=3>1

r

, 4-

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-8

	P	aramètre	Moyenne générale	variat	icients le ion en %	P	robabil	ités de	s tests	F	M "D	loyennes ose d'ame	du facteu endement	r princip phospha	al ité"	du fa	ennes cteur diaire	Classement
Sigle	Unité	Signification	1	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
PN(A)R	g/plt	Immobilisation dans les parties aériennes en azote	2,795	17,43	10,78 14,49	0,9796 0,9985	0,9949 0,9998	0,9999	0,4806 0,3736	0,1317 0,0502	1,785	2,657	2,699	3,273	3,560	2,824	2,766	5=4>3=2>1 5=4>3=2>1
PP(A)R	g/plt	Immobilisation dans les parties aériennes en phosphore	0,382	20,08	10,28	0,9921	0,9879		0,7393		0,228	0,378	0,366	0,440	0,501	0,389	0,376	5=4=2=3>1
PK(A)R	g/plt	Immopbilisation dans les parties aériennes en potassium	1,933	15,51	17,52 16,54	0,9981 0,9994	0,9978	0,9999	0,3217 0,3417	0,0574	1,231	1,845	1,822	2,293	2,473	1.954	1,913	5=4>2=3>1 5=4>2=3>1
PCa(A)R	g/plt	Immobilisation dans les parties aériennes en calcium	0,588	23,72	18,28 21,18	0,7342 0,8521	0,9035 0,9682	0,9998	0,3754	0,2032 0,1304	0,346	0,532	0,551	0,699	0,811	0,602	0,574	5=4>3=2>1 5=4>3=2>1
PMg(A)R	g/plt	Immobilisation dans les parties aériennes en magnésium	0,452	20,34	13,70	0,9696 0,9964	0,7842	0,9987	0,7221 0,3819	0,1046 0,0478	0,309	0.451	0,442	0,515	0,544	0.462	0,442	
PSi(A)R	mg/plt	Immobilisation dans les parties aériennes en silice	3011,526	29,32	18,19	0,9269 0,9883	0,8997	0.9997	0,8525 0,7378	0,4199	1634,904	2852,040	2485,525	3797,461	4287,695	3130,625	2892,426	5=4>2=3=1 5=4>2=3>1
PNi(A)R	mg/plt	Immobilisation dans les parties aériennes ennickel	4,770	30,66	23,71 27,41	0,5976 0,7277	0,1858	0,9544	0,9883	0,9159 0,8730	3,914	4,192	4,800	4,832	6,113	5,243	4,298	5=4=3>2=1 5>4=3=2=1
PCr(A)R	g/plt	Immobilisation dans les parties aérien nes en chrome	5,155	32,77	24,55 28,95	0,6344 0,7729	0,1717	0,9732	0,9926 0,9885	0,9526 0,9210	4,052	4,597	5,212	5,016	6,898	5,730	4,580	
PCo(A)R	g/plt	Immobilisation dans les parties aériennes en cobalt	0,772	33,19	23,37	0,4065	0,4709	0,9909	0,9839	0,4896	0,591	0,683	0,758	0,732	1,095	0,842	0,701	5>3=4=2=1 5>3=4=2=1
PMn(A)R	g/plt	Immobilisation dans les parties aériennes en manganèse	20,468	27,39	12,77	0,3933	0,8639	0,9908	0,9877	0,2587	14,580	19,071	20,736	21,876	26,077	21,549	19,387	5=4=3>2=1
PFe(A)R	g/pltr	Immobilisation dans les parties aériennes en fer	195,026	32,60	23,89 28,58	0,6332 0,7785	0,1803 0,2575	0,9651 0,9943	0,9924 0,9873	0,9444 0,8994	153,299	174,813	196,740	193,545	256,734	216,107	173,945	5=3>4=2=1 5>3=4=2=1
QNTFR	g/m2	Immobilisation en azote dans les tiges et feuilles par m2	9,443	23,99	17,36 20,94	0.9436	0,9611	0,9994	0,3731	0.0769	6,724	7,599	8,915	11,739	12,239	9,659	9,227	
QPTFR	g/m2	Immobilisation en phosphore dans les tiges et feuilles par m2	0,794	28,26	17,89 23,65	0,9899	0,9380	0,9996	0,8765	0,3941	0,512	0,618	0.736	0,960	1,144	0,827	0,761	5=4>3=2=1 5>4>3=2=1
QKTFR	g/m2	Immobilisation en potassium dans les tiges et feuilles par m2	11,012	16,79	20.94	0,9973	0,9957	0.9999	0,4333	0,0618	7,129	10,167	10,234	13,351	14,180	11,279	10,745	
QCaTFR	g/m2	Immobilisation en calcium dans les tiges et feuilles par m2	3,935	25,30	21,13	0,6638	0,8838	0,9997	0,7417	0,2192	2,323	3,520	3,658	4,746	5,429	4,075	3,796	
QMgTFR	g/m2	Immobilisation en magnésium dans les tiges et feuilles par m2	2,348	23,97	18,53 21,42	0,9562 0,9904	0,5838	0,9934 0,9994	0,7837	0.1214 0.0750	1,693	2,253	2,286	2,712	2.797	2,428	2,268	
QNaTFR	g/m2	Immobilisation en sodium dans les tiges et feuilles par m2	0,299	29,11	22,37 25,96	0,7682	0,9250	0.9931	0,9748	0,3924	0.197	0,283	0,295	0,360	0,361	0,323	0,275	5=4=3=2>1 5=4=3=2>1 5=4=3=2>1
QSiTFR	mg/m2	Immobilisation en silice dans les tiges et feuilles par m2	20177,914	31,12	21,37 26,70	0,8754 0,9731	0,8764	0,9995	0,8887 0,8175	0,2763	10989,639	18856,789	16563,953	25814,605	28664,607	21216,729	19139,105	5=4>2=3=1 5=4>2=3>1
QNiTFR	mg/m2	Immobilisation en nickel dans les tiges et feuilles par m2	29,417	32,47	25,12 29,02	0,6444 0,7721	0,9647 0,0940 0,1295	0,9610	0,9939	0,8983 0,8468	24,244	24,635	29,755	30,130	38,321	32,888	25,946	5=4>2=3>1 5=4=3>2=1 5>4=3=2=1
QC/TFR	mg/m2	Immobilisation en chrome dans les tiges et feuilles par m2	34,215	32,55	25,19 29,11	0,7721 0,5975 0,7274	0,1293 0,0828 0,1143	0,9919	0,9918	0,8468	27,097	30,008	34,485	33,784	45,699	38,369	30,060	5>3=4=2=1 5>3=4=2=1 5>3=4=2=1
QCoTFR	mg/m2	Immobilisation en cobalt dans les tiges et feuilles par m2	4,729	33,59	24,41 29,36	0,7274 0,4196 0,4397	0,5588	0,9901	0,9930 0,9844 0,9726	0.4500	3,704	4,014	4,653	4,568	6,706	5,185	4,273	5>3=4=2=1 5>3=4=2=1 5>3=4=2=1

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-9

	Pa	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	ités de	s tests	F	, M "D	loyennes ose d'amo	du facteu endement	r princip phospha	al té"	Moye du fa subsi		Classement
Sigle	Unité	Signification	1	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
QMnTFR	mg/m2	Immobilisation en manganèse dans les tiges et feuilles par m2	133,884	28,86	15,99	0,3681	0,8384	0,9869	0,9863	0,1488	96,211	122,772	135,327	144,681	170,429	142,553	125,216	5=4=3>2=1
QNGr	g/m2	Immobilisation en azote dans les grains par m2	9,223	18,47	7,69	0,9975	0,9935	0,9999	0,9740	0,8781	5,268	9,986	8,861	10,426	11,574	9,475	8,971	5=4=2=3>1
QРGт	g/m2	Immobilisation en phosphore dans les grains par m2	1,758	19,61	10,79	0,9970	0,9924	0,9998	0,9288	0.7949	1,017	1,880	1,669	2,019	2,207	1.811	1.706	5=4=2=3>1
QKGr	g/m2	Immobilisation en potassium dans les grains par m2	1,900	18,75	10,75	0,9943	0,9945	0,9998	0,8843	0,7844	1,137	2,035	1,789	2,188	2,351	1,949	1,851	5=4=2=3>1
QCaGr	g/m2	Immobilisation en calcium dans les grains par m2	0,001	707,11	707,11 707,11	0,5539 0,5720	0,5539 0,5720	0,5539 0,5720	0,3384 0,3283	0,5539 0,5720	0,000	0,000	0,000	0,000	0,007	0,003	0,000	
QMgGr	g/m2	Immobilisation en magnésium dans les grains par m2	0,675	18,21	10,44	0,9941	0,9963	0,9999	0,9764	0.9285	0,385	0,725	0,646	0,781	0,836	0,700	0,649	5=4=2=3>1
QSiGr	mg/m2	Immobilisation en silice dans les grains par m2	16,412	147,42	213,57 183,50	0,8955 0,7859	0,8614 0,7295	0,7759 0,6055	0,4918 0,4157	0,0567 0,0892	10,924	17,412	4,006	30,327	19.393	19.977	12.847	
QNiGr	mg/m2	Immobilisation en nickel dans les grains par m2	2,463	27,42	24,21 25,86	0.9358 0.9740	0,9986	0,9588 0,9862	0,1577 0,1494	0,4827 0,4315	2,035	3,002	2,130	2,688	2,458	2,479	2,446	2=4>5=3=1 2=4>5=3=1
QCrGr	mg/m2	Immobilisation en chrome dans les grains par m2	0,219	102,02	89,12 95,79	0,9208 0,9660	0,6712 0,7554	0,7558 0,8354	0,8233 0,8058	0,2031 0,1633	0,093	0,274	0,161	0,305	0,262	0.259	0.180	
QCoGr	mg/m2	Immobilisation en cobalt dans les grains par m2	0,422	52,03	67,67 60,36	0,9894 0,9871	0,7535 0,6472	0,9533 0,9293	0,8519 0,9052	0,0762 0,1061	0,261	0,496	0,374	0,386	0,593	0,484	0,360	5=2=4>3=1
QMnGr	mg/m2	Immobilisation en manganèse dans les grains par m2	3,043	37,59	31,74 34,79	0,9871 0,9978	0,8870 0,9484	0,9951 0,9994	0,3330 0,3096	0,7737 0,7268	1,643	3,251	2,621	3,881	3,817	3,103	2,982	4=5=2=3>1 4=5=2>3=1
QN(A)R	g/m2	Immobilisation en azote dans les parties aériennes	18,666	18,34	11,29 15,23	0,9719 0,9975	0,9923 0,9996	0,9999 1,0000	0,8606 0,7453	0,1221 0,0458	11.992	17,585	17,776	22,165	23,813	19,134	18,198	5=4>3=2>1 5=4>3=2>1
QP(A)R	g/m2	Immobilisation en phosphore dans les parties aériennes	2,553	20,32	9,56	0,9914	0.9874	0,9998	0,9723	0,7182	1,529	2,498	2,406	2,979	3,351	2,638	2,467	5=4=2=3>1
QK(A)R	g/m2	Immobilisation en potassium dans les parties aériennes	12,912	15,70	18,63 17,22	0,9980 0,9991	0,9975	1,0000	0,3743 0,6733	0,0606 0,0753	8,265	12,202	12,023	15,539	16,531	13,228	12,596	5=4>2=3>1 5=4>2=3>1
QCa(A)R	g/m2	Immobilisation en calcium dans les parties aériennes	3,937	25,22	21,2 23,34	0,6710 0,7677	0,8876 0,9489	0,9997 1,0000	0,7428 0,7105	0,2145 0,1634	2,323	3,520	3,658	4,746	5,436	4,077	3,796	5=4>3=2>1 5=4>3=2>1
QMg(A)R	g/m2	Immobilisation en magnésium dans les parties aérienns	3,023	21,28	15.52 18,62	0,9646 0,9943	0,7896 0,9060	0,9984	0,8652 0,8051	0,1054 0,0573	2,078	2,979	2,932	3,493	3,634	3,129	2,918	5=4=2=3>1 5=4=2±3>1
QSi(A)R	g/m2	Immobilisation en silice dans les parties aériennes	20194,326	31,10	21,36 26,68	0,8939 0,9724		0,9995	0,8897 0,8189	0,3560 0,2005	11000,563	18874,201	16567,959	25844,932	28684,000	21236,709	19151,951	5=4>2=3=1 5=4>2=3>1
QNi(A)R	g/m2	Immobilisation en nickel dans les parties aériennes	294,173	32,47	25,12 29,02	0,6443 0,7721	0,0940 0,1295	0,9610	0,9939	0,8983 0,8468	242,446	246,357	297,550	301,301	383,210	328,880	259,466	
QCr(A)R	mg/m2	Immobilisation en chrome dans les parties aériennes	342,147	32,55	25,19 29,11	0,5975 0,7274	0,0828	0,9736	0,9947	0,9418	270,971	300,083	344,849	337,842	456,990	383.689	300,605	
QCo(A)R	mg/m2	Immobilisation en cobalt dans les parties aériennes	47,290	33,59	24,41 29,36	0,4196			0,9844 0,9726	0,4500 0,2980	37,040	40,138	46,527	45,680	67,063	51,849	42,730	5>3=4=2=1 5>3=4=2=1
QMn(A)R	mg/m2	Immobilisation en manganèse dans les parties aériennes	1338,844	28,86	15,99	0,3681	0,8384	0,9869		0,1488	962,113	1227,726	1353,274	1446,811	1704,295	1425,529	1252,158	5=4=3>2=1

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du second cycle cultural (1995)

Tableau 1-10

	Pa	aramètre	Moyenne générale	d variat	icients le ion en %	Pı	robabil	ités de:	s tests	F	M "Do	oyennes d ose d'ame	lu facteur endement	principa phosphat	al té"	Moye du fac subsid	cteur	Classement
Sigle	Unité	Signification		1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
Mg/CaTFR		Rapport Mg/Ca dans les tiges et feuilles	1,034	16,20	7,11	0,9713	0,9559	0,9952	0,3858	0,8951	1,237	1,064	1,036	0,970	0.863	1,039	1,029	2>1=3=4=5
Mg/CaGr		Rapport Mg/Ca dans les grains	0,429	707,11	707,11 707,11	0,4461 0,4280	0,4461 0,4280	0,5539 0,5720	0,6612 0,6712		0,000	0,000	0,000	0,000	2,145	0.858	0,000	
Mg/CaRchR		Rapport Mg/Ca dans les rachis	4,328	20,67	14,04 17,67	0,9378 0,9887	0,5649 0,7367		0,9145 0,8500		4,895	4,730	4,345	3,822	3.850	4,488	-	1=2=3>5=4
Mg/CaP(A)R		Rapport Mg/Ca dans les parties aériennes	1,325	16,90	7,85	0,8942	0,8418	0,9781	0,0064	0,7610	1,503	1,412	1,333	1,254	1,121	1,325	1.325	1=2=3>4=5
Mg/CaEib		Rapport Mg/Ca horizon1 fin de cycle	0,229	19,11	13,89 16,71	0,9257 0,9820	0,0936 0,1382		0,4730 0,4550		0,291	0,242	0,205	0,203	0,202	0,225	0,232	1>2=3=4=5 1>2>3=4=5
CUANR	%	Coefficient d'utilisation apparente de l'azote	36,558	18,34	11,29 15,23	0,9719 0,9975	0,9923 0,9996		0,8606 0,7453		23,487	34,441	34,814	43,409	46,637	37,474	35,641	5=4>3=2>1 5=4>3=2>1
CUAKR	%	Coefficient d'utilisation apparente du potassium	71,894	15,70	18,63 17,22	0,9980 0,9991			0,3743 0,6733		46,021	67,941	66,945	86,522	92,042	73,653	70.136	5=4>2=3>1 5=4>2=3>1

ANNEXE 3 : RÉSULTATS PRÉLIMINAIRE DU TROISIÈME CYCLE CULTURAL EN 1996

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du troisième cycle cultural (1996)

Tableau 1-1

	P	aramètre	Moyenne générale	d variat	icients le ion en %	P	robabil	lités de	s tests	F	M "Do	oyennes dose d'ame	du facteu endement	r principa phospha	al té"	Moye du fa subsid	cteur	Classement
Sigle	Unité	Signification	\ 	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
DP	nbre/m ²	Densité de peuplement	6,389	8,98	7,64 8,34	0,2931	0,7279 0,8183	0,1582 0,1933	0,4051 0,4383	0,7728 0,7296	6,366	6,221	6,470	6,490	6,397	6,329	6,449	
GRUR	g	Poids de 1000 grains (plts de réf.)	129,790	33,00	34,13 33,57	0,4979 0,4992	0,3746 0,3651		0,3835 0,3932	0,3980	101,335	132,310	105,431	150,956	158,917	133,057	126,523	5=4=2>3=1
PGR	g/plt	Poids de grains/plant de référence.	11,777	97,51	62,16 81,77	0,7830 0,9224	0,7027 0,8686	0,9964 0,9999	0.8803 0.7833	0,5670 0,3270	2,658	9,421	3,940	16,525	26,343	13,497	10,057	5=4=2>3=1 5>4=2=3=1
QGR	g/m ²	Rendement en grains des plts de réf	74,805	99,50	65,21 84,12	0,7130 0,8710	0,6740 0,8413	0,9964 0,9999	0,8242 0,7217	0,4800 0,2704	15,887	54,595	26,436	108,337	168,770	84,670	64,939	5=4=2>3=1 5>4=2=3=1
PGUR	g/plt	Poids de grains/plt utile restant	12,421	103,78	40,07	0,5791	0,7123	0,9980	0,3768	0,4359	1,397	9,179	3,919	16,588	31,021	13,071	11,771	5>4=2=3=1
QGUR	g/m ²	Rendement en grains (plts ut. rest.)	78,821	105,30	42,26	0,4520	0,6916	0,9979	0,4734	0,1685	8,951	54,472	25,032	107,516	198,132	81,938		5>4=2=3=1
PG	g/plt	Poids de grains par plant	24,198	96,87	46,09	0,6898	0,7339	0,9980	0,8439	0,4955	4,055	18,600	7,859	33,114	57,364	26,568	21.828	5>4=2=3=1
QG	g/m ²	Rendement en grains	77,673	102,30	43,54	0,4934	0,7043	0,9980	0,3527	0,2329	10,493	54,347	24,678	107,593	191,256	82,317		5>4=2=3=1
QGcom	qx/ha	Rendement en grains commercial	9,138	102,30	43,54	0,4934	0,7043	0,9980	0,3527	0,2329	1,234	6,394	2,903	12,658	22,501	9,684	8 592	5>4=2=3=1
PTFR	g/plt	Poids de tiges et feuilles/plt de réf.	57,547	36,63	22,74 30,48	0,3235 0,4944	0,1374 0,2297	0,9920 0,9996	0,7718	0,4784 0,2426	35,976	56,261	49.024	72,576	73,899	59,889		5=4>2=3=1 5=4>2=3=1
QTFR	g/m ²	Biomasse des tiges et feuilles	367,604	39,38	26,54 33,58	0,2624 0,3911	0,0704 0,1129	0,9891	0.4276 0.4752	0,2999	227,543	345,864	319,328	472,299	472,986	379,051	356,157	
P(A)R	g/plt	Poids de parties aériennes/plt de réf	69,325	44,16	25,97	0,4670	0,3708	0,9955	0,8661	0,5843	38,634	65,682	52,964	89,101	100,242	73,386	65,263	5=4>2=3=1
Q(A)R	g/m ²	Biomasse des parties aériennes	442,409	46,42	29,40 38,85	0,4328 0,6193	0,2603 0,4054	0,9946 0,9998	0,7314 0,3933	0,4154	243,430	400,459	345,764	580,636	641,756	463,722	421,096	5=4>2=3=1 5=4>2=3=1
PGR/PTFR		Rapport pds grains/ pds Tige+Feuil	0,161	61,51	48,45 55,37	0,9128 0,9711	0,7300 0,8428	0,9996 1,0000	0,9698 0,9585	0,8500 0,7872	0,050	0,154	0,064	0,207	0,330	0,188	0,134	
NEPfert	nbre/plt	Nombre d'épis fertiles par plant	0,439	37,24	29,50 33,60	0,4928 0,6258	0,9659 0,9929	0,9999	0,9795 0,9725	0,2878 0,2027	0.152	0,446	0,260	0,617	0,720	0,487	0,391	5=4>2>3=1 5=4>2>3=1
NEPster	nbre/plt	Nombre d'épis stériles par plant	0,158	60,69	41,17 51,86	0,4359 0,6018	0,3779	0,8206 0,9366	0,3711	0,7173 0,4801	0.172	0,175	0,194	0,164	0,087	0,150	0,167	
NEP	nbre/plt	Nombre d'épis par plant	0,597	25,19	20,16 22,82	0,8826 0,9527	0,9210 0,9739	0,9999	0,9640 0,9525	0,2305	0,325	0,621	0,454	0,781	0,806	0,637	0,558	5=4>2>3=1 5=4>2>3>1
DEfen	nbre/m ²	Densité d'épis fertiles	2,787	38,65	28,34 33,89	0,2334 0,3283	0,9143 0,9769	0,9999	0,9688 0,9478	0,0594 0,0321	0,954	2,706	1,659	4,002	4,614	3,057	2,517	5=4>2>3=1 5=4>2>3=1
DEster	nbre/m ²	Densité d'épis stériles	1,018	64,50	44,52 55,42	0,3950 0,4507	0,4683 0,6994	0,8020 0,9231	0,6925 0,4040	0,6352 0,4412	1,068	1,120	1,286	1,068	0,550	0,950	1.087	
DE	nbre/m ²	Densité d'épis	3,805	27,18	22,47		0,7073	0,9998	0,8808 0,8564	0,1024	2,022	3,826	2,945	5,070	5,163	4,006	3,604	5=4>2=3=1 5=4>2>3>1

RÉSULTATS OBTENUS SUR LE FACIÈS DE GLACIS

DE L'EXPÉRIMENTATION INSTALLÉE SUR LA STATION FORESTIÈRE DE OUÉNAROU

Résultats du troisième cycle cultural (1996)

Tableau 1-2

Paramètre			Moyenne générale	Coefficients de variation en %		Probabilités des tests F				Moyennes du facteur principal "Dose d'amendement phosphaté"					Moyennes du facteur subsidiaire		Classement	
Sigle	Unité	Signification	}	1	2	L	C	A	S	A*S	1	2	3	4	5	1	2	
pHeau1a	-	pHeau horizon1 début de cycle	5,227	1,37	1,34 1,36	0,9991 0,9999	0,9995 1,0000	0,9883 0,9964	0,9956 0,9977	0,4783 0,4754	5,206	5,297	5,261	5,271	5,349	5,312	5,242	5=2>4=3=1 5=2>4=3=1
pHeau2a	-	pHeau horizon2 début de cycle	5,406	2,49	2,21 2,35	0,9575 0,9852		0,8351	0,3957 0,4173	0,0578 0,0455	5,306	5,406	5,437	5,419	5,461	5,421	5,391	
pHKCL1a	-	pHKCL horizon1 début de cycle	5,467	0,87	1,17 1,03	0,9905 0,9869		0,9997 0,9999	0,9823 0,9948	0,0659 0,0948	5,510	5,524	5,481	5,380	5,442	5,492	5,443	2=1=3=5>4 2=1=3=5>4
р́НКСL2а	-	pHKCL horizon2 début de cycle	5,860	2,35	1,85 2,11	0,9885 0,9986	0,9955 0,9996	0,5782 0,7024	0,9697 0,9582	0,4482 0,3371	5,848	5,892	5,920	5,830	5,812	5,898	5,823	
CTla	mg/g	Carbone total horizon1 déb. cycle	22,924	9,39	6,85 8,22	0.9775 0.9971	0,9897	0,7843 0,9023	0,2953 0,2531	0,5587 0,3994	22,424	22,686	22,742	24,473	22,295	23.010	22,838	
CT2a	mg/g	Carbone total horizon2 déb. cycle	14,648	26,76	14,59	0,7415		0,1858	0,9038	0,7665	14,891	14,701	14,001	15,780	13,866	14,108	15,188	
NT1a	mg/g	Azote total horizon1 deb. cycle	1,195	9,30	8,74 9,02	0,9170 0,9543	0,9903 0,9977		0,1636 0,1602	0,1303 0,1157	1,179	1,142	1,206	1,257	1,191	1,198	1,192	
NT2a	mg/g	Azote total horizon2 déb. cycle	0,770	24,73	14,58	0,7626	0,9704	0,0298	0,8646	0,7058	0,783	0,757	0,764	0,798	0,746	0,744	0,795	
C/N1a	-	Rapport C/N horizon1 deb. cycle	19,209	5,04	5,21 5,12	0,9806 0,9908	0,6986 0,7108	0,9447 0,9632	0,1372 0,1406	0,0787 0,0804	19,002	20,022	18,848	19,480	18,693	19,233	19,185	
C/N2a	-	Rapport C/N horizon2 deb. cycle	19,058	4,85	4,11 4,49	0,9842 0,9970	0,8592 0,9287		0,3449 0,3795	0,7799 0,7355	19,022	19,773	18,198	19,754	18,543	18,949	19,167	2=4=1>5=3 2=4=1>5=3
PTla	ppm	Phosphore total horiz 1 deb, cycl	1267,300	28,36	14,32	0,4735	0,4206	0,9994	0,7798	0,3300	838,100	1057,800	1075,700	1622,100	1742,800	1300,360	1234,240	5=4>3=2=1
PT2a	ppm	Phosphore total horiz 2 deb. cycl	501,960	39.75	52,37 46,49	0,6013 0,4662	0,9269 0,8829	0,9962 0,9962	0,9160 0,9561	0,8539 0,9420	300,000	387,100	541,100	541,100	740,500	432,600	571,320	5>4=3=2=1 5>4=3=2=1
PAss1a	ppm	Phosphore assim horiz1 deb. cycle	78,920	60,98	20,71	0,2998	0,1436	0,9966	0,4975	0,7146	38,800	49,300	63,700	105,100	137,700	80,560	77,280	5=4>3=2=1
PAss2a	ppm	Phosphore assim horiz2 deb. cycle	22,600	74,46	103,98 90,43	0,8872 0,7922	0,8907 0,7978	0,9990 0,9991	0,7956 0,8658	0,8847 0,9651	8,300	13,100	15,200	24,900	51,500	18,160	27,040	5>4=3=2=1 5>4=3=2=1
Pass/PT1a	-	PAs/PT horizon1 début de cycle	5,934	40,29	36,41 38,40	0,5563 0,6233	0,3818 0,4325		0,4826 0,4661	0,3722 0,3320	4,185	4,679	6,686	6,450	7,668	5,727	6,140	5=3=4>2=1 5=3=4>2=1
PAss/PT2a	-	PAs/PT horizon2 début de cycle	3,778	30,57	32,72 31,66	0,9904	0,8920 0,9051	0,9997	0,2438 0,2532	0,7595 0.8164	2,623	3,176	2,830	4,268	5,995	3,723	3,833	5>4=2=3=1 5>4=2=3=1

ANNEXE 4 : EXPÉRIMENTATION EN SERRE EN 1996

EFFETS DE DOSES COMPLÉMENTAIRES D'AMENDEMENT PHOSPHATÉ APPLIQUÉES À UN SOL FERRALLITIQUE FERRITIQUE DE GLACIS AYANT DÉJÀ REÇU 21 MOIS PLUS TÔT 2, 6 ET 10 t/ha DE P₂O₅

Nature et doses des solutions nutritives à utiliser

Produits	Concentration des solutions en g/l	Volume	Quantités d'éléments apportées en mg par pot de 4,675 l									
	8	1er jour	10eme jour	18eme jour	N	P	K	S	В	Cu	Mo	Zn
NH4NO3	102,459	10	10		716,8							
(NH ₄) ₂ SO ₄	169,140	-	-	10	358,4			410,2				
K ₂ SO ₄	77,223	10	-	-			346,5	142,1				
Na ₂ B ₄ O ₇ , 10H ₂ O	3,086	10	-	10					7,00			
CuSO ₄ , 5H ₂ O	3,130	10	-	10				4,0		15,94		
(NH ₄) ₆ Mo ₇ O ₂₄ , 1.5 H ₂ O	0,160	10	-	10	0,1						1,80	
ZnSO ₄ , 7 H ₂ O	2,400	10	-	10				2,7				10,92
Quantités	1075,3 690		346,5 222	559,0 358,7	7,00 4,50	15,94 10,22	1,80 1,16	10,92 7,00				

Remarques

- 1 Les quantités de nutriments, exprimées en kg/ha, correspondent aux réserves maximales du sol utilisées par la plante entière pour réaliser une production de grain sec de 15,66 t/ha dans le cas de l'hybride double de maïs haut-producteur XL 399, cultivé sur le sol peu évolué d'apport alluvial très fertile de la vallée de la Douencheur, en face de Bourail. Ces réserves ont été estimées à partir des exportations d'éléments par les parties aériennes de la plante, les exportations d'éléments par les racines étant estimées au dixième des exportations des parties aériennes.
- 2 S'agissant de l'azote, un coefficient d'utilisation de 0,6 a cependant été appliqué à l'exportation en cet élément par la plante entière 414 kg/ha pour rendre compte des réserves du sol effectivement nécessaires.
- 3 Les quantités de nutriments, exprimées en mg/pot, dérivent des précédentes en considérant que le volume de sol exploité par cette culture est de 3.10⁶ litres à l'hectare, et que le volume de sol contenu dans les pots utilisés étant de 4,675 litres.