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Summary - The electrobloning of extracts of potaro roOtS infected with the potaro cyst nemarode, Globodera pallida, and their
label1ing with a polyclonal antibody against chitinases revealed the induction and increases in intensiry of several chitinase
bands with molecular masses in the range 18-80 kDa. The immunolabelling of sections of infecred roots with the antibody
demonstrated the extracel1ular localisation of chitinases and their concentration in the cortex, endodermis and pericycle layer.
The role of these chitinases in the context of plant defences against pathogen anack is discussed. 'D OrsromlElsevier, Paris

Résumé - Identification et localisation des chitinases induites dans les racines de plants de pomme de terre
infestés par le nématode à kyste de la pomme de terre Globodera pallida - L'analyse par électro-transfert d'extraits
provenant de racines de pomme de terre infestées par le némarode à kyste Globodera pallida et leur marquage par un anticorps
polyclonal contre les chitinases a révélé l'induction et l'augmentation de l'intensité de plusieurs bandes correspondant aux chi ti
nases et ayant une masse moléculaire s'étageant de 18 à 80 kDa. L'immuno-marquage par l'anticorps de sections de racines
infestées a démontré la localisation extracel1ulaire des chitinases et leur concentration dans le cortex, l'endoderme et le péri
cycle. Le rôle de ces chitinases dans le contexte de défense de la plante contre les anaques d'agents pathogénes est discuté. ©
OrsromlElsevier, Paris
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Chitinases in plants appear to have an important
function in early embryo development (de Jong et al.,
1992). Chitinases have been detected in woody and
herbaceous plants, including several important crop
species (Boller et al., 1983), and are involved in hor
monai and developmental regulation (Shinshi et al.,
1987; Lotan et al., 1989). Stresses in plants caused as
a result of wounding, physiological stresses, attack by
plant pathogens and treatment with ethylene and sev
eral chemicals and elicitors can induce marked
increases in chitinase activity both locally or systemi
cally (Métraux & Boller, 1986; Boller 1988; Broglie et
al., 1989; Collinge et al., 1993). The type of chitinases
most extensively studied in plants are endo-chitinases
(E. C.3.2.1.14) which randomly hydrolyse internai ~

1,4-linkages of chitin-releasing oligosaccharides of N
acetyl-D-glucosamine (Boller, 1985; Collinge et al.,
1993). Endo-chitinases are involved in the hypersensi
tive or systemic resistance response to microbial
attack (Métraux & Boller, 1986; Boller, 1987; Pan et
al., 1992). Chitin, the natural substrate for chitinase,
has not been reported from plants (Bolier, 1987,
1988) but it is a major component of the cell walls of
many fungal pathogens (Wessels & Sietsma, 1981;
Wessels, 1993) and chitinase has been shown to attack
the cell walls of these fungi in vitro (Young & Pegg,
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1982; Mauch et al., 1988; Broglie et al., 1991). In vivo
analysis of transgenic plants expressing high levels of
constitutive chitinases demonstrated that, compared
with their non-transgenic counterparts, these plants
were more resistant to fungal pathogens and the
development of disease symptoms was delayed (Bro
glie et al., 1991; Benhamou et al., 1993; Samac &
Shah, 1994). The fungal-inhibitory action of chiti
nases was further enhanced when the enzyme was
used in combination with ~-1,3-glucanases(Broekaert
et al., 1988; Broglie et al., 1991).

A potential but indirect role of chitinases in plant
pathogen interactions is as elicitors of defence reac
tions. They are responsible for the release of oligosac
charides from the walls of fungi and plant cells which,
in turn, stimulate the accumulation of compounds
such as phyroalexins, extensin, proteinase inhibitors
and lignin in the host plant as part of a defence mech
anism (Darvill & Albersheim, 1984; Boller, 1987;
Ryan, 1988). Another function attributed to chiti
nases is their involvement in the inactivation of the
lipo-oligosaccharide signal molecules produced by
certain Rhizobium strains (Roche et al., 1991) which
are responsible for the induction of root hair deforma
tions, cortical cell divisions and nodule development
in the roots of legume hosts (Truchet et al., 1991).
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Plant chitinases can be divided into at least three
classes based on their amino acid sequence and cellu
lar localisation (Payne el al., 1990; Shinshi el al.,
1990). Class 1 chitinases are basic isoforms, localised
in the central vacuole, containing a catalytic domain
and a cysteine-rich domain similar tO rubber hevein
that may serve as an oligosaccharide binding site.
Class II chitinases are acidic isoforms with a similar
amino acid sequence to class 1 but they lack the hev
ein domain and are usually found in extracellular fluid
of leaves (apoplastic compartment). Class III chiti
nases are also located extracellularly but show no
homology with class 1 or class II chitinases. This class
includes the Iysozyme/chitinases from papaya, Hevea,
PaTlhenocissus, Rubus and the chitinase of cucumber
(Métraux el al., 1989). A fourth class has been pro
posed by Collinge el al. (1993) which includes the
basic sugar beet chitinase IV, the basic rape chitinase
chB4 and the acidic bean PR4 chitinase.

Although research using antibodies has demon
strated the localisation of chitinases in rOOtS of plants
infected with a fungal pathogen (Benhamou el al.,
1990), no work has been reported on the immunolo
calisation of chitinases in roots or other parts of plants
infected with plant parasitic nematodes. In the present
paper, we report investigations on the occurrence of
chitinases in roots of potato plants infected with the
potato cyst nematode (PCN), Globodera pallida patho
types Pa 1 and Pa2/3, and their localisation in the
infected roots using a polyclonal antibody raised
against chitinases.

Materials and methods

Unless stated otherwise, ail the chemicals used were
from Sigma Chemical Co. Ltd. UK.

POTATO CULTJVARS, EXPERIMENTAL TREATMENTS
AND PROTEIN EXTRACTION

Two potato cultivars were used, cv. Désirée, which
is susceptible to ail pathorypes of G. pallida, and the
experimental clone P55/7, with the Hz gene from
Solanum mullidisseaum conferring resistance to G. pal
lida Pa 1 only (Dunnett, 1961); there are no commer
cial cultivars with complete resistance to G. pallida.
Potato tubers were cut into small cubes (approxi
mately 27 cm3) each with a single sprout, left to heal
for 30 min and then planted singly in 12 cm diameter
plastic pots in 1: 1 mixture of autoclaved sand:loam
and kept in a glasshouse (18°C minimum tempera
ture). Cysts of G. pallida Pa 1 and Pa2/3 from stock
cultures established on differential potato cultivars
were regenerated on cv. Désirée and used after 6
months storage at 4°C. Thirry dry cysts were incorpo
rated into the soil at the time of planting potato tuber
pieces with five replicates per treatment. The majority
of juveniles Q2) from these cysts hatched within 2 to 3

706

weeks and the number of nematodes per g of root
which had invaded in each treatment was determined
(Rahimi el al., 1993). It was consistently 20% of cyst
contents.

To extract proteins from roots, 5-10 g of roots were
washed in several changes of distilled water (DW),
blotted dry and homogenised using a pestle and
mortar. The extract was passed through cheese cloth,
centrifuged at 17 500 g and stored at -20°C until
required. Each extraction was replicated a minimum
of five times. Prior to analysis, extracts were centri
fuged at 40 000 g for 30 min at 4°C.

ELECTROPHORETIC SEPARATION
1\1'\10 ELECTROBLOTTING

The extracts from roots were separated using 7%
SOS-PAGE electrophoresis (Laemmli, 1970) and
electroblotted onto polyvinyline difluoride (PVDF)
membrane as described previously (Rahimi el al.,
1996) and incubated in the primary antibody against
chitinases diluted (1 :3000; v/v) in 5% (w/v) Marvel in
phosphate-buffered saline containing 0.05% (w/v)
Tween (PBST). The polyclonal antibody (a gift from
Dr. E. Kombrink) had been raised against chitinases
purified from potato leaves treated with the elicitor
derived from PhYlOphlhora infeswns.

SEEO STERILIZATION

Seeds of potata cv. Désirée were placed in a glass
tube which had a sieve (60 fim pore size) attached to
one end to retain the seeds. Seed sterilization (Sij
mons el al., 1991) was performed by immersing the
tube in 70% ethanol for 2 min followed by immersing
for 5 min in sterilized distilled water (DW). The seeds
were left to dry overnight in a flow cabinet before
being stored at 4°C in sealed sterile containers.

GROWING STERJLISEO POTATO SEEOS

The culture medium was modified from Knop
(1860) according to Sijmons el al. (1991). The
medium was autoclaved (15 min at 120°C and 105

Pa) and then cooled to SO°C in a flow cabinet: 20-25
ml was poured into individual Petri dishes (9 cm
diameter). After the media had solidified, ten to
twelve sterilised seeds, obtained from cv. Désirée,
were transferred into each Petri dish using fine sterile
forceps. The Petri dishes were sealed using strips of
Parafilm and kept in growth chambers at 18°C. Incu
bation with nematode eggs was performed 7-10 days
after seeds had been sown.

INOCULATION WITH NEMATOOE EGGS

Approximately 100 fil of cysts of G. pallida Pa 1 were
placed in 1.5 ml Eppendorf tubes and soaked in dou
ble-distilled water (DDW) overnight. Cysts were
transferred to an aluminium plate and a piece of glass
rod was used to crush the cysts and release the eggs
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into 60 ml of DDW in a 100 ml measuring cylinder
which was vonexed to separate the eggs and hatched
juveniles from the cyst walls. The suspension was
passed into a beaker through a sieve (60 Ilm pore size)
to retain cyst walls and other debris. The suspension
of eggs and J2 was passed through a 10 Ilm sieve,
resuspended in 10 ml of DDW and pipetted into a
conical-bottomed centrifuge tube and spun ar 1000 g
for 30 s. The liquid was poured our withour disturb
ing rhe pellet of nematodes, replaced wirh 10 ml of
45% (w/v) sucrose solution, vonexed and centrifuged
for 30 s which brought the nemarode eggs to rhe top
of the solution and pellered the debris ar the bottom.
The fraction containing the nematode eggs was imme
diarely rransferred inro rhe 10 Ilm sieve, washed with
DDW to remove sucrase solurion, resuspended in
10 ml of DDW and transferred ro a flow cabinet. Ster
ile syringes (10 ml) were used to draw up first 5 ml of
nematode eggs and then 5 ml of 0.2% (w/v) solution
of HgClz (disinfecrant), shaking them several times to
mix the solutions. After sterilization wirh HgClz for
4 min, the suspension in rhe syringe was gently forced
out through a srerile filter holder conraining a sterile
disc filter membrane (5 Ilm pore size). The srerile
nematode eggs were retained in rhe filter membrane.
The syringe was filled with sterile DDW by removing
the holder and reatraching it, and the nematode eggs
were washed by a gentle flow of water. This was
repeated three times before the syringe was filled with
air which was forced our of the syringe parrially to dry
the eggs. The filter membrane was removed using
sterile forceps, blotted gently and left in a srerile Petri
dish. A flamed scalpel blade was used to cur the mem
brane into four equal pieces and each portion was
used to inoculare a plate. The Petri dishes containing
potato plantiers were unsealed and a sterile scalpel
blade was used to score the surface of the agar in
"tramlines" away from the roors. The Perri dishes were
then inoculated by rubbing the eggs stuck on the sur
face of a piece of membrane againsr the tramlines; in
total, 30 plates were inoculated. The Perri dishes were
sealed and placed in growth chambers ar 18°C. After
7-10 days, the eggs harched and J2 srarred to invade
rhe roots. Conrrols consisred of Petri dishes contain
ing non-infecred planrs.

PREPARATION OF ROOTS FOR IMMUNOLABELLING
WITH ANTIBODY

Ali the non-infecred and infecred roots for analysis
were selected from plants of the same age. At least five
replicares were used for each rrearment. When the
poraro raors had been invaded and J2 had iniriared
development of the feeding site (syncytium), pieces of
roors comaining the syncytium and rissue above and
below the syncytium were cut into 1 mm ponions and
placed in modified plastic tubes (1.0 x 0.5 cm) with
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polyesrer voile (25 ~lm mesh size) stuck on either end.
This allowed infiltrarion of the chemicals into rhe
roots. The procedure for fixarion was modified from
Karnovsky (1965). The rubes were placed immedi
ately in 30 ml srerile tubes comaining fixative (0.1 %
[v/v] glutaraldehyde and 2.5% [w/v] paraformalde
hyde in 0.05 M sodium cacodylare buffer
Na(CH3)zAsOz.3HzO; pH 7.2) for 4 h. The tubes
firred into a roraror which could be placed in a refrig
erator or a freezer as required. The fixa rive was
replaced with three washes of 0.025 M sodium
cacodylate, pH 7.2 for 15 min at 4°C. The roots were
dehydrated by placing the tubes in a series of ethanol
solutions (v/v) of 30% at 4°C, 50, 70, 90, 95 and
100% rotating at -18°C, for 30 min each. The roors
were infiltrared by replacing half of the volume of pure
ethanol in the tube with acrylic resin (LR Whire,
medium grade; The London Resin Co. Lrd., Hamp
shire, UK) and rotating at -18°C for 2 h followed by
replacement of half of this solution with an equal vol
ume of LR White resin and rorating again for 2 h.
This step was repeated a third time. The contents of
rhe rube were poured out and filled with pure LR
White resin for 2 h ar -18°C before emptying the solu
tion and filling with fresh resin and leaving ir roraring
ar -18°C overnight. The resin solurion was then
replaced wirh fresh LR Whire resin and left for 1 h.
Finally, the pieces of roots were embedded in gelatin
capsules size 00 (Agar, UK) filled with resin and lefr
ro polymerise ar 60°C for 24 h. The capsules were left
ar room remperature for another 24 h to harden.

SECTIONrNG ROOT TISSUE AND IMMUNOLABELLrNG
OF ROOT SECTIONS

Roots were sectioned using an ulrracur microtome
(Reichen-Jung, Austria) from a minimum of five rep
licares of infecred and non-infected roors. The sec
rions were cur 200-250 nm in thickness, placed on
microscope slides wirh eighr ro ren wells (ICN, UK)
and heared to 50°C for 1 h to ensure that the sections
adhered to the wells. A quantity (30 Ill) of 0.01 % (w/
v) sodium borohydrate was pipetted into each weil,
left for 10 min then washed thoroughly with DDW;
excess water was shaken off. The secrions were
blocked for 1 h by adding 30 III of 3% (w/v) BSA in
PBS containing 0.02% (w/v) sodium azide. This was
washed off wirh DDW and the sections were then
labelled for 2 h or overnighr wirh 10 III of the primary
antibody againsr chitinases diluted 1: 10 or 1:50 in 3%
BSA!PBS. The antibody was washed off by a quick
rinse in DDW followed by immersing the slides in
PBST (0.05% Tween 20) for 10 min and two changes
of DDW for 5 min each; excess warer was shaken off.
The sec rions were labelled for 1 h wirh 10 III of sec
ondary antibody (anti-rabbit IgG, FITC conjugare)
diluted 1:35 with 3% BSAlPBS. The secondary anti-
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body was washed off and the slides left to dry for
10 min before a solution of glycerol/PBS (Citifluor;
Agar, DI<.) and cover-slips were added. Specificity
controls involved replacing the primary antiserum
with a solution of 3% BSA in PBS or a dilution of
non-immune rabbit serum prepared in 3% BSA/PBS.
The sections were viewed under a fluorescent micro
scope (Olympus BH2; wavelength SOO-S80 nm) and
photographs (Tri-X 400, Kodak or XP2 400, Ilford)
were taken immediately.

rabbit serum showed weak labelling of root tissue and
only the nematode fluoresced strongly (Fig. 3C). By
contrast, probing with the primary antibody resulted
in strong labelling of root sections (Fig. 3D-F). The
binding appeared to be only extracellular.

Longitudinal sections of infected roots were ana
lysed (antibody dilution, 1:SO) and sections, both at
lower (Fig. 4A) and higher (Fig. 4B) magnification,
clearly indicated the extracellular localisation of chiti
nases in the infected roots.

Results
Discussion

Fig. 1. Eleccroblolling of the raot extraets from 4-week-old plants
probed with 1:3000 dilution of the po/yclonal antibody against
chitinases. A: Clone P5517/rom pots conlaining 30 cysts of Glo
bodera pallida Pal or Pa213 (cracks l and Il, respective/y);
crack III is /rom non-infected extraets; B: Cv. Désirée from pots
containing 30 cysts ofG. pallida Pal or Pa213 (tracks l and Il,
respeetive/y; track III is /rom non-infeeted extracts).
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Results from electroblotting experiments revealed
two bands of chitinases induced in the roots of potato
plants (PSSI7 and cv. Désirée) infected with G. pallida
pathorypes Pal and Pa2/3. One of these chitinase
bands had a molecular mass of approximately 60 kDa
and the other chitinase band had a molecular mass in
the range 26-28 kDa. The chitinase bands could not
be associated with resistance to G. pallida; cv. Désirée

ELECTROPHORETIC SEPARATION
AND ELECTROBLOTTING

The electroblotting of the root extracts from PSSI7
(Fig. lA) grown in pots with 30 cysts of G. pallida Pa 1
(track 1) and Pa2/3 (track II) revealed the presence of
two bands with chitinase activity with molecular
masses of approximately 28 and 60 kDa which were
absent in the non-infected treatrnent (track III).

The cv. Désirée showed a similar pattern of chiti
nase activity to that of PSSI7 (Fig. lB). Infection with
G. pallida Pa 1 (track I) induced two chitinase bands
with molecular masses of approximately 26 and 60
kDa which were absent in the non-infected treatment
(track III). The infection with Pa2/3 (track II) only
induced a chitinase band of 60 kDa.

In addition, several other bands (not arrowed) also
showed increases in intensity in the extracts from
infected plants of both the cultivars.

IMMUNOLABELLING OF ROOT SECTIONS

Transverse sections from non-infected roots (con
trois) demonstrated that, when the primary antibody
against chitinases was replaced with a solution of 3%
BSA/PBS, no binding was visible (Fig. 2A). When the
primary antibody was replaced with a dilution of 1: 10
non-immunised rabbit serum (Fig. 2B), weak fluores
cence was observed on the edges of the root sections
and within the cells. Similar1y, only weak fluorescence
of the root tissue was apparent when the antibody
against chitinases was used (Fig. 2C, D).

Sections from roots infected with G. pallida Pa 1
showed clear labelling. The immunolabelling of roots
2 weeks after invasion by G. pallida Pa 1 showed
marked induction of chitinases (Fig. 3). The first set
of sections (Fig. 3A, B) were from areas of infected
roots several cm away from the nematode body and
were probed with 1: 10 dilution of the non-immunised
rabbit serum or the primary antibody against chiti
nases. Whilst probing with non-immunised rabbit
serum showed only very weak labelling of root tissue
(Fig. 3A), probing with the primary antibody resulted
in strong labelling in the cortex, endodermis and peri
cycle layer (Fig. 3B). Probing with non-immunised
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c D

Fig. 2. The immul10labelling of lransverse seclions (200 nm lhick) of non-infecled rOOI. The seC/ions were labelled wùh primary amibody
againsl chùinases or a Subslùwe followed by labelling wùh 1:35 dilwion of secondary anlibody (ami-rabbù IgG, FITC conjugale). A:
The primary amibody was replaced wùh 3% solwion of BSA/PBS; B: The primary amibody was replaced wùh 1: 10 dilwion of non
immunised rabbù serum; C, D: The seC/ions were labelled wùh 1: 10 dilulion of amibody againsl chùinases. (Abbrevialions: cc: cen/ral
cylinder; co: corœx; en: endodermis; n: nemalOde, pei: pericycle layer; Scale bar = 150 pm).

is susceptible ta both pathorypes of G. paUida,
whereas P5517 is susceptible to Pa2/3 but resistant to
Pa 1. Therefore, the immunolabelling experiments
were only done on cv. Désirée infected with G. paUida
Pa 1. There were also no differences in the timing of
appearance of these chitinases after nematode inva-

Vol. 21, no. 6 - 1998

sion by Pa 1 in P5517 (incompatible interaction) and
by Pa 1 in cv. Désirée (compatible interaction)
(Rahimi, 1994). It has also been shown that in P5517,
the exoglucanase and ~-D-glucosidase activities were
only significantly increased after inoculation with
G. paUida Pa 2/3 (Rahimi et al., 1996). A similar pat-
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Fig. 3. The immunolabelling oj
transverse seaions (200 nm
thick) of root infected wi!h Glo
bodera pallida Pal. The seaions
were wbe/led wùh 1: 10 dilution
of TlOn-immunised rabbi! serum
(A, C) or 1:10 dilution of the
primary amibody agaimt chili
nases (B, D-F) followed by w
be/ling wilh 1:35 dilution oj
secondary antibody. A, B: The
sections were taken from areas oj
roots away /rom the nemawde's
head; C - F: The labelling oj
sections of roOi /rom the region
where the nematode was embed
ded. (Abbreviations: see legend
to Fig. 2; Scale bar =150 J.lm).

Fundam. appl. NemalOl.



Chilinases induced by Globodera pallida

A

B

Fig. 4. Longitudinal seClions (200 nm lhick) ofrool infecœd wilh Globodera paUida Pal and labelled wùh 1:35 dilution ofsecondary
anlibody. (Abbreviations: see legend 10 Fig. 2; Scale bars: A = 15 pm; B = 8 pm).

tem of pathogenesis-related (PR) prorein production
in P5517 was observed by Rahimi et al. (1993) where
the susceptible interaction resulted in the accumula
tion of a greater number of PR proteins than the
resistant interaction with Pa 1. Together, these results
indicate that increased activity of ~-l ,3-glucanase,

Vol. 21, no. 6 - 1998

~-D-glucosidase and chitinase does not relate directly
ta resistance ta G. pallida but are more likely ta be
part of a general plant response ta pathogen invasion.

The immunolabelling of sections from roots of cv.
Désirée infected with G. pallida Pa 1 showed strong
binding of the polydonal antibody ta several areas.

7 J J



S. Rahimi et al.

The labelling appeared ta be in the cortex, endoder
mis and pericycle layers. Both the transverse and lon
gitudinal sections showed that the antibody bound
mainly to chitinases that were located extracellularly.
Very weak binding also was apparent in the central
cylinder of both the infected and the non-infected sec
tions. Sections of nematodes fluoresced strongly when
either non-immunised rabbit serum or the primary
antibody were used; this is Iikely to be the result of
non-specific binding.

PR proteins appeared in leaves and roots of potata
plants after infection with G. pallida (Rahimi et al.,
1993) and severaJ of these new Jeaf proteins were
~-1 ,3-glucanases which increased significantly only in
intercellular extracts of leaves and leaf homogenates
(Rahimi el al., 1996). In contrast, when the extracts
from leaves and roots of nematode infected plants
were analysed for increased levels of chitinases using
enzyme assays (Rahimi, 1994), only the extracts from
the infected roots showed increases in chitinase activ
ity of which exochitinases were significant. The
present research confirms that the majority of chiti
nases induced in potata roots invaded with G. pallida
are exochitinases. Whether these classes of chitinases
are produced intracellularly in response to nematade
invasion and are then transported to the extracellular
spaces or are produced and located extracellularly is
uncertain but analysis of roots at different times after
infection (results not shown) indicated no intracellu
lar location of chitinases. Ir is probable that the type of
chitinases localised in potataes infected with G. pallida
belong ta class III chitinases which are extracellularly
localised and are possibly basic in nature. Clearly,
there may be other groups of chitinases induced in
potata roots by G. pallida which our antibody failed ta
detect due ta its binding specificity.

Several studies have shown that various prepara
tions of chitinases can be used successfully ta control
plant parasitic nematodes both in vùro and in soil
(Miller & Sands, 1977; Mercer el al., 1992), although
the mode of action is unknown. For chitinases to be
involved directly in plant defence reactions, they
require a substrate, chitin, in the pathogen. Although
chitin is a major structural component of nematode
egg shells, it is absent in other Iife cycle stages, includ
ing J2, of nematades (Bird & Bird, 1991). Thus, it is
unlikely that the class of chitinases identified and
localised in the present work is involved directly in
plant defence reactions against nematode attack. The
chitinases may be involved in other pathways resulting
in resistance or tolerance of potato plants to invasion
of other pathogens. For example, chitinases may play
a secondary function as signal molecules which elicit
the induction of other PR proteins or metabolites
which are involved in plant-defence reactions. After
invasion of potata plants by G. pallida and the appear-
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ance of chitinases in roots, large amounts of new pro
teins including glucanases and glucosidases
accumulated in the leaves (Rahimi el al., 1996). Ir is
possible that the accumulation of these new leaf pro
teins was triggered by chemical signaIs from the
infected roots; chitinases may have an important func
tion in triggering this process which may eventually
impart resistance in potata plants to subsequent aerial
or root infections. Chitinases in plants exhibit hormo
naI and developmental regulation (Shinshi el al.,
1987; Lotan el al., 1989) and an increase in chitinase
activity may have a hormonal or developmental func
tion.

The present studies demonstrate the appearance of
chitinases in roots after invasion with po tata cyst nem
atade, G. pallida, and the localisation of these chiti
nases in infected roots. Further work is required to
isolate and sequence these chitinases in order to con
firm their classification and ta define their function in
infected roots.
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