Time-average fluxes of lead and fallout radionuclides to sediments in Florida Bay, Florida, USA

John A. Robbins	J. Graney
C. W. Holmes,	G. Keeler
R. Halley	M. Tenbrink
M. Bothner	K. A. Orlandini
E. Shinn	D. Rudnick

Recent, unmixed sediments from mud banks of central Florida Bay were dated using ²¹⁰Pb/²²⁶Ra, and chronologies were verified by comparing sediment lead temporal record with Pb/Ca ratios in annual layers of a coral (Montastrea annularis). Dates of sediment lead peaks (1978 \pm 2) accord with prior observations of a six-year lag between occurrences of maximum atmospheric lead in 1972 and peak coral lead in 1978. Smaller lags of 1-2 years occur between the year of maximum fallout and the sediment record of ¹³⁷Cs and Pu. Such lags are consequences of system-time averaging (STA) in which atmospherically derived material accumulates and mix before removal to the sediments and coral. Using time-dependant atmospheric inputs, STA model calculations produced optimized profiles in excellent accord with measured sediment ¹³⁷Cs, Pu lead and corals distributions. Derived residence times of these particle tracers (16 \pm 1, 15.7 \pm 0.7, 19 \pm 3, and 16 \pm 2 years, respectively) are comparable despite differences in sampling locations, in accumulating media, and in element loading histories and geochemical properties. For a sixteen-year, weighed-mean residence time, STA generates the observed six-year lead peak lag. This study shows that, when transient tracers are used to verify ²¹⁰Pb chronologies, potential lag effects resulting from STA processes must be considered. Because of reservoir effects, significant levels or non-degradable, particle-associated contaminants can persist in Florida Bay for many decades following elimination of external inputs. Present results, in combination with STA-models analysis of previously reported radionuclide profiles; indicate that decade- scale time averaging may occur widely in recent coastal marine environments.