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As soil engineers, termites play a key role in the functioning of many tropical and subtropical ecosystems.
This reviews assesses advances in our knowledge of the beneficial influences of termites on ecosystem
functioning and services. Termites are amongst the main macroinvertebrate decomposers in arid and
semi-arid environments, and exert additional impacts through the creation of biostructures (mounds,
galleries, sheetings, etc...) with different soil physical and chemical properties. They influence the
distribution of natural resources such as water and nutrients in the landscape and consequently the
diversity of soil microbes, plants and animals. Surprisingly, considering the wide range of ecosystem
services provided by termites, few researches have been reported on the utilization of termite activity for
the management of soil fertility or for the rehabilitation of degraded soils. In our final section, we discuss
the main obstacles hampering the development of such approaches and we suggest that ecosystems
services provided by termites are not sufficiently appreciated, especially in the context of long-term
processes and possible biotechnologies derived from a detailed knowledge of their biology.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

With the intensification of agriculture over recent decades and the
social and environmental imperative to develop sustainable agricul-
tural practices, there is now a sharp focus on the influence of cultural
systems on soil biodiversity and the role of soil biodiversity in medi-
ating the main ecological functions of the system [80,107]. Amongst
the below-ground biota, soil ecosystem engineers play a key role by
regulating the fluxes of energy and materials across different spatial
and temporal scales [69,71,77,79]. The primary concept in this engi-
neering process is the ability of a key subset of the organisms to create
soil biogenic structures with biological, physical and chemical prop-
erties different from those of the surrounding soil system [69,77].

In the tropics, termites (Isoptera) are arguably the most important
soil ecosystem engineers [16]. Their functional domain (physical
sphere of influence at the point scale) is designated the termitosphere
[34,69,77,78]. In most lowland tropical habitats, where termites are

* Corresponding author. IRD, UMR 211 BIOEMCO, Equipe Transferts, Centre IRD
Bondy, 32 avenue H. Varagnat, 93143 Bondy cedex, France.
E-mail address: pascal jouquet@ird.fr (P. Jouquet).

1164-5563/$ — see front matter © 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ejs0bi.2011.05.005

especially abundant, the termitosphere comprises a large part of the
soil column, challenged only by the functional domain of earthworms
(the drilosphere). Termites have the abilities to forage over long
distances (metres to tens of metres) and to partially control their own
living environments through the creation of nest structures where the
humidity and temperature remain constant throughout all seasons.
This gives them a striking ability to remain active in harsh environ-
ments, or during severe seasons, where most other soil macro-
invertebrates are diminished or eliminated. For instance in arid and
semi-arid tropical savannas, during the dry season termites remain
virtually the only active group of invertebrate detritivores and bio-
turbators, consequently dominating the decomposition processes
[31,131] and the provision of essential ecosystem services [80].
Subjective assessments of the importance of termites, based on
observations of their very high population densities are now sup-
ported by a number of thorough studies which suggest they may
represent 40—65% of the overall soil macrofaunal biomass in some
biotopes [131]. Live biomass densities have been estimated to be from
70 to 110 kg ha~! and from 510 to 1150 g of live weight in the largest
nests [12,131]. Abundances (all genera) can reach up to 15,000 ind m 2
(rarely, but densities between 2000 and 7000 ind m~2 are quite
commonly reported), and individual nests can contain anything from
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a handful of individuals to many millions ([14,61] and references
therein). These values are comparable to the biomass of ungulates and
megaherbivores in African savannas [11,88] and thus strongly justify
both discussion of the importance of termites in the functioning of
tropical ecosystems and their inclusion in all models of processes.

To demonstrate the several impacts of termites, it is instructive to
consider the functional-group classification based on the types and
the variety of food materials used and the locations of their nesting
and feeding sites. In soil, and at a first approximation, two main
feeding groups of termites can be recognized: the soil- and litter
feeders (including grass foragers). Across all environments inhabited
by termites (the savannas being much greater in extent than the
remaining humid forests), the litter-feeders can be proposed as the
most important ecologically because of their consistent presence and
(commonly but not exclusively) their numerical preponderance in
terms of both species and individuals. Natural or lightly disturbed
semi-natural humid forests, however, support a high diversity of soil-
feeding forms, often with predominant biomass [14]. Soil-feeding
may comprise more than one digestive strategy and process, with
several evolutions or divergent clades [38,85]. Soil- and litter-feeding
termites consume organic matter (humus, ingested with variable
amounts of mineral material, standing or lying dead wood, woody
litter or dead dry standing litter and grasses) and many build their
nests and/or line their galleries with soil particles glued together with
faecal matter [131]. Although belonging to the litter-feeding group,
the fungus-growing termite species (Macrotermitinae) behave
somewhat differently. They are usually litter-foragers (this can include
small woody items) and characterized by an exosymbiosis with
a fungus (Termitomyces sp.), which completes the degradation of the
litter on which they feed [31]. Conversely to the other species, they do
not incorporate faeces into their nests but enrich their constructions
with saliva, which contains easily degradable carbon compounds as
binding agents for silts and clays [56].

Several landmarks syntheses have been published in the last 40
years on the role of termites in soil systems [18,81,86,131], one of the
most recent being the work of Holt and Lepage in 2000 [56].
However, a significant number of new articles have been published
in the last decade and a contemporary dedicated review demon-
strating the influence of termites on soil ecosystem functioning and
updating the growing literature is now appropriate. In this paper we
first review advances in our knowledge of how termites influence
the soil system, plant growth and species diversity in tropical
ecosystems. We then give examples of the utilization of termite
activity for the promotion of ecosystem services in agricultural lands
and identify four obstacles hampering further research on this topic.
Finally, faced with accelerating land-use changes in the tropics, we
briefly consider whether the active manipulation of termite activity
can save or promote ecosystem services in the future.

2. Influence of termites on ecosystem functioning
2.1. Litter decomposition

In purely metabolic terms and in a global context, the decom-
position of plant material is carried out primarily by free-living fungi
and bacteria, but in many tropical habitats termites also contribute
to the consumption and mineralization of a significant part of litter
by processing large quantities of plant material [14,50,132]. This
impact is especially large in more arid regions such as deserts and
dry savannas where the short duration of the rainy season impedes
litter and cattle-dung degradation by flies, beetles and bacterial
and fungal populations [14,119]. This ecological niche is therefore
occupied by termites, which are able to maintain a humid atmo-
sphere in their own colony centres, and can therefore forage for and
process large amounts of litter independently of ambient climate

[30,31,54,129]. A wide range of termite species typically feed on
dead plant material such as wood, bark and straw, being able to
digest woody fibres with the assistance of the gut microbiota, sup-
plementing endogenous enzymes [17]. Even animal products, such
as mammalian hooves and dungs, can also be consumed though
spatially and temporally variable [47—50,104]. Like shredder
organisms, termites can mechanically chop up plant material with
their mandibles and grind it with their gizzard, thereby increasing
the surface area accessible to soil microorganisms, as well as their
own intestinal symbionts and speeding up net decay by protist,
bacterial and fungal agents. One consequence of such termite
activity is a return of organic matter into the soil, via faeces, the
biomass of termite bodies and within their biogenic structures,
which would otherwise be lost to the periodic fires characteristic of
drier savannas and scrublands.

2.2. Bioturbation and soil formation

One of the major effects of termites in ecosystems is their role in
soil loosening (reduction of bulk density) and both vertical and
horizontal transport through bioturbation, and subsequent
erosions of their constructions. Large amounts of soil are trans-
located from various depths of the profile to the soil surface during
mound-, gallery- and sheeting constructions. This is especially true
with termites of the subfamily Macrotermitinae [56] although it
has also been assessed and documented in the genus Trinervitermes
[25]. Using rare earth element and trace element concentrations,
Sako et al. [117] confirmed that the nests of Macrotermes sp. are
produced through the accumulation of highly weathered soil
originating from deeper layers. The magnitude and route of soil
translocation resulting from termite activity is directly related to
their specific dietary habits and the properties of the soil they use
[5,25,62]. The mounds of humivorous termites are built with
materials coming mainly from the surface horizon and recycled at
this level by erosion. By contrast, the fungus-growing Macro-
termitinae can retrieve their material (wet soil particles) very deep
in the profile, even down to the water table (which might be as low
as 50 m in places such as the Sahel zone of Senegal) [56]. Over time
these effects of termites on soil translocation will have strong
consequences on the profile, making termites agents of pedogen-
esis as well as responsible for the distribution of resources in the
ecosystem [22,42,71].

Soil transported by termites generally contains higher propor-
tions of finer sized particles, and therefore typically demonstrates
different clay mineral compositions than those predominating at
the original surface [4,20,21,39,40,66,90—92]. In addition, termites
have also been considered as weathering agents due to their ability
to transform minerals chemically [62,117]. This process might be
indirect, through the exposure of clays from deeper soil layers to the
atmosphere and the weathering action of rain water, or direct
through soil rehandling by termites. Using laboratory experiments,
Jouquet et al. [62] showed that such rehandling can lead to an
increase of the expandable layers of the silicate clay minerals.
However, the effect depends on the handling intensity required (or
available) for individual constructions [62,63,70]. The exact mech-
anisms by which termites influence clay mineralogical properties
are unknown, however, it can be proposed that the grinding of soil
particles by termite mandibles in the saliva-rich environment of the
buccal cavity increases the surface area exposed to the surrounding
solution, and then a release of interlayer K and the adsorption of
hydrated or polar ions between the layers. If proven to apply in large
areas of the world’s savannas, this cumulated action over decades
and centuries could be an ultimate determinant of soil fertility in
environments dominated by low activity clays, such as kaolinite.
Such arole could be expected across the subfamily Macrotermitinae,
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but Boyer [20,21] suggested neoformation is less common in the
soil-feeding termites.

2.3. Soil organic matter and nutrient cycling

Termite nests and biomass have been characterized as “sinks” as
they withdraw large quantities of litter and soil organic matter
(SOM) from the “normal” decomposition pathways [129]. The
consumption of organic matter by termites is used in the production
of termite biomass and in the building of nest-constructions. The
return input of organic matter and mineral nutrients to the soil
environment occurs via faeces, salivary secretions, corpses and
predators. Mortality, particularly from ant predation, and mound
erosion are important contributors to the turnover and redistribu-
tion of the organic matter and mineral nutrients in the ecosystem.

Except in the case of fungus-growing termites, the SOM content is
usually higher in termite mounds and in the surrounding soil than in
the soil unaffected by termites (considered as a control) [5,23,56]. The
level of this enrichment is directly related to the specific dietary habits
of termites and to the building materials used for nest making [25].
Enrichment becomes significant in poor sandy soils, such as those of
savanna ecosystems, whereas smaller enrichments or none at all take
place in more clayey soils and in organic rich humid forest soils
[23,25]. In the nest structures of fungus-growing termite species, the
quantity and quality of SOM are very variable depending on the
species concerned and on the soil properties. The SOM content in
fungus-growing termite-built structures can be similar [42], higher
[1,8,64], or lower [9,23,33,43,51,66] than the surrounding control soil,
depending on the initial soil properties.

Termite mound soils have higher levels of total N, greater
cationic exchange capacity and more mineral nutrients (Ca>*, Mg?™,
K™) than surrounding soils [56,100], due to both the concentration
in, and subsequent decomposition of, organic matter within the
mounds and to the creation of stable biogenic aggregates which
protect SOM from microbial decomposition for long periods,
provided the structures are maintained [3,34]. Several studies have
shown that the mineral N levels in termite-constructions (galleries,
sheetings, fungus-comb chambers and mounds) are much higher
than those of the nearby soils, even without visible activity of
termites [101,102]. This may be explained by the higher SOM
mineralization in the biostructures [1], the higher retention of
nutrients or protection of SOM in the soil aggregates [43,52], the
fixation of atmospheric N by symbiotic hindgut bacteria of termites
[31,133] or by the inhibition of nitrification [101]. Denitrification can
also be higher in termitaria than in the surrounding soil [2]. Fewer
studies have been done on the effect of termites on soil P, although
this nutrient is often deficient in tropical soils, and contradictory
results can be found in the literature. The influence of termites on
the total and available P fractions seem to vary according to the
functional group, the part of the termite nest sampled and also
probably to the initial pedological properties. For instance, nests of
soil and litter feeders display greater amounts of available P while
fungus-growing termites tend to increase P sorption [87,92,115].

Unlike other termite feeding-guilds, which mineralise the OM
ingested at high efficiency (up to 90% for cellulose and hemicellulose),
it is suggested that the primary contribution of the soil-feeding
termites is a positive influence on the overall OM dynamics. They
mediate an intense humification process which begins during the gut
transit, where a re-organization and re-integration of SOM with the
mineral soil fraction occurs. This process leads to the formation of
stable clay—humic complexes which are further incorporated as
micro-aggregates in termite-structures, protecting the SOM from
mineralisation [22]. More recently, it has emerged that in the Cubi-
termes clade (sensu [85]) of soil-feeding Termitinae, the digestive
process first releases and then degrades peptide components of SOM,

while polyaromatic substances remain less significantly changed [27].
The significance of this process in the overall scheme of humification
is unclear, but an immediate consequence is the mineralization of
organic N as ammonia [59] and the emission of CH4 and N0 [26,103].
Model humic peptides labelled with ™C were about 30% mineralized
as CO, on passage through the soil-feeder gut [26,103].

At the landscape scale, termite activity plays a primary role in the
distribution of resources. By feeding on organic litter and SOM in
areas surrounding colony centres, termites reduce the inputs that
would otherwise flow to the soil from other organisms. By contrast,
the accumulation of resources in the termite nests lead to the creation
of nutrient patches which contrast with the highly weathered tropical
soils between them. The longest lasting of the mounds, which persist
as inhabited and eroded biogenic structures, remains on scales of
years to decades for some species. These structures seem likely the
main factor generating the patch mosaics that characterize the soils
and vegetation of many tropical landscapes, but more especially
savannas [69,71].

2.4. Hydraulic properties and soil erosion

The role of termites in water infiltration and runoff is closely
related to the importance, structure and arrangement of their
subterranean biogenic structures, which comprise foraging and
storage galleries, feeding chambers and communication channels,
in addition to chambered colony centres (in wholly underground
species) and the foundations of epigeal mounds. Quantitative infor-
mation on the effects of termites on water infiltration into the soil is
sparse. Many observations and a number of exclusion experiments
demonstrate that the harvesting activity of termites creates a dense
network of underground galleries that are connected to the soil
surface by foraging holes through which water can penetrate and
which constitute preferential flow paths [41,55,82,83,125]. Termite
biostructures act therefore as a network of horizontal and vertical
macropores influencing bulk density, aeration, water infiltration and
runoff, then capturing overland flow and (potentially) determining
the hydrological characteristics of watersheds [35,41,128]. The sizes,
types of wall construction, depth distributions and extent of termite
gallery systems differ markedly, depending on the ecological strate-
gies of the species involved and the characteristics of the soil present
[76]. Termite mounds can also influence water infiltration and
nutrient leaching, although this effect is likely to depend on the age
and whether the mounds are inhabited by termites or abandoned. For
instance, in Brazil Riickamp et al. [114] found leaching from mounds
built and inhabited by Cornitermes silvestrii was not different than
from soil, but higher losses of nitrate and lower leaching of dissolved
organic carbon occurred when mounds built by C silvestrii were
subsequently occupied by inquiline species. When colonies are
present (especially the constructors), epigeal mound surfaces are
hardened, leading to rainsplash and channelled runoff, but little
erosion [56].

Termites sequester SOM and plant nutrients for considerable
periods in their nests, mounds, galleries and other structures. The
breakdown and erosion of nest structures, whether occupied or not,
through the agencies of other organisms (i.e., termitophilous verte-
brates, also cattle), rainfall and perhaps wind, continuously return
their incorporated organic matter and nutrients to the soil. Also, the
roots of surrounding plants frequently take up nutrients from the
often-concentrated stores held in the bases of termite mounds and
within decomposing organic materials in back-filled subterranean
voids. The life span of termite-generated structures, generally
measured from days and months to years or even decades, depends
on the investment of time, energy and resources at the time of their
construction and subsequently allocated for maintenance, their
mechanical stability, on the intensity of individual rainfall events, and
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whether these structures are re-colonized by other termite species or
colonies. Processes of nutrient redistribution can be very fast, on the
scale of a few days in the case of the erosion and redistribution of
nutrients within galleries or sheetings but longer in the case of the
redistribution of nutrients contained in mounds [32]. Termites use
different construction strategies depending on whether the structure
to be built is a lasting (a mound-nest) or a temporary one (sheetings,
runways). Temporary structures built by Macrotermitinae (notably
the rough sheetings placed over the surface of the ground and
potential food items) can be created from the immediately adjacent
soil and relatively little organic matter is supplied as a binding agent,
whereas in the case of nests termites gather components deeper in
soil and incorporate more organic matter [62,64].

As observed with Trinervitermes sp., fine-textured dispersive
material can be deposited close to the mounds to form surface seals
that may continue to modify local infiltration and drainage patterns
until disrupted through the activity of soil fauna or plants [58]. On
sloping surfaces, downhill transport and sorting of materials can be
hastened by the actions of termites. Where prevalent, termites
therefore may contribute materially to the formation of catenas
[130]. Lepage [84] estimated that an 8 m® Macrotermes bellicosus
mound would take 20—25 years to erode. Erosion is very rapid in
the first years after abandonment but the rate then subsides
gradually until it is more or less negligible due to the stabilization
effect of vegetation growth on the remains of the structure.
Temporal scale is important: some termite mounds persist in the
landscape for periods of a decade or more, and their individual
influence on soil profile development during that time may be
negligible. However, over 100s or 1000s of years, the importance of
termites in the turnovers of both mineral materials and organic
matter in the landscape and in the whole soil profiles may be much
greater, such that long-term pedogenesis is mediated by their
activity [29,58,130].

2.5. Vegetation growth and diversity

The concentration of SOM and nutrients in termite nest structures
exaggerates resource patchiness and the structures can be considered
as “fertile islands” or “sinks for nutrients” [5,46,57,60,69,71], which
are beneficial resources for plants. There are also some evidences that
termite nests serve as foci for nutrient redistribution in some land-
scapes and lateral flows have been shown to occur from these islands
to the surrounding environments [29,56,71,105]. In modifying the soil
structure, and especially in increasing the content of clay, termites
may also have strong impacts on the availability of soil water for
plants, added to the accumulation of available nutrients around the
nests from erosion. As a consequence, plant growth on or in the
vicinity of termite mounds is increased [68,75,121,122,124,129] with
an attendant higher capacity to tolerate herbivory [24]. Most studies
show that large mounds built by fungus-growing termites support
different vegetations than the surrounding landscape, with some
species exclusive to the mound sites [65,120,124], and therefore both
generate diversity and affect the overall productivity of the plant
community. Vegetated mounds also enhance spatial heterogeneity in
the landscape [124], and as elevated sites, the larger termite-built
structures may also give plants protection from fire and from land
flooding [29], as well as improved drainage, greater soil depth, higher
soil moisture and improved fertility status [75]. The weathering of
termite mounds and the resulting enhancement of nutrients in their
immediate vicinity may be partially exploited by the roots of adjacent
plants and their associated mycorrhizal fungi [40,121]. Thus the
perimeter zones may be preferential areas for the recruitment of tree
seedlings and may therefore be qualified as ecosystem regeneration
hot spots [124]. However, the hardness and imperviousness of living

termitaria can also discourage and impede the growth of plants
[5,53,81].

2.6. Soil animal and microbial biodiversity

The heterogeneity created in soils by the demarcation of the
termite functional domain is a major generator and regulator of soil
biodiversity and promotes ecological stability [6]. As ecosystem
engineers, termites modulate the availability of resources for other
species, such as soil macro- and microfauna and microorganisms,
and create habitats that can be used by a remarkable number of
organisms for nesting, roosting or accommodating stages of their
life cycles [69,127].

Many studies suggest that termite mounds and sheetings could
constitute sites of microbial diversity, with a different assemblage
structure from the parent soil [13,17,23,37,44,45,67,109]. At the
same time, increasing evidences prove that termites are able to
control microorganism numbers and probably diversity in selected
parts of their mounds [111], such that the higher substrate avail-
ability, nutrient content, and moisture levels available promote the
growth of a selected and possibly specialised community of
commensal bacteria and fungi [1,66,118,122].

In addition to constituting a food resource for a wide range of
animals, termite mound nests serve as refuge for a wide range of
animals (inquilines), from other termite species and soil macrofauna
[5,28,108] to small animals, such as birds, reptiles and mammals
during unfavourable times, which species might otherwise face local
extinction in unproductive environments [34,54,108,123]. The greater
vegetation production and quality on and around the termite mounds
therefore provides a template for distribution of prey and predator
communities [108] and also contributes to increased grazing pressure
by ungulate mammals and megaherbivores [54,98,99]. Earth-eating
from termite mounds may also represent important nutritional
resources for a variety of mammals, such as chimpanzees [72,90,91],
elephants [116] and humans [57,89,128]. This behaviour has been
explained by mineral deficiencies in mammal diets, and by the
consequences of a temporary lack of fibre which leads to a rumen
acidosis in herbivore ungulates. In such cases, termite-mound soils
are nutritional supplements acting as a detoxifier due to their high
content of clay and associated exchangeable cations [74].

3. Utilization of termites for the promotion of ecosystem
services in agro-ecosystems

Although their regulatory role in natural habitats is widely
recognized, few studies have been made to test whether termite
activity can be manipulated for the promotion of ecosystem processes
and therefore the provision of goods and services in agro-ecosystems.
Certainly, the higher nutrient content in termite mounds has led to
their use as soil amendments in many traditional agricultural prac-
tices, resulting in better crop yields [19]. Moreover, termite mounds
can foster the development of mycorrhizal fungi [40] and even assist
in the control of crop pests, such as Striga hermonthica, an obligate
root hemiparasite which causes serious yield losses in cereals in Africa
[7]. However, these interventions are small on the scale of the crises
that face contemporary tropical agro-ecosystems [73,107]. Further,
the exploitation of termite mound soils is limited by the slow rate of
nest population renewal, and has only limited sustainability [25].

The ability of termites to develop in harsh environments and to
promote water infiltration in crusted soils as a part of soil rehabili-
tation and vegetation cover regeneration has been strikingly
demonstrated in Africa and Asia [93,94,106,108]. In these studies,
the application of mulch or organic matter on or into the soil, as in
the case of the agricultural and forestry “zai” systems [110], trig-
gered the activity of termites which then created burrows opened
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through the sealed surface of the soil. This results in an increase of
soil hydraulic conductivity and water retention, and a reduction of
the bulk soil density. The change of soil characteristics due to
termite activity is enough to create the conditions necessary for
natural vegetation development and then crop production on
previously degraded bare soils.

Compared with the many studies linking earthworm engineering
activity and ecosystem services and consequent experimental
manipulations of earthworm populations, the utilization of termite
activity for the promotion of ecosystem services is clearly underex-
plored. However, the proposition faces several obstacles, and research
has therefore been limited. First, termites are obligate social insects:
in many cases their breeding in culture (or on a semi-industrial scale)
is therefore difficult, slow or impossible (notably with soil-feeders and
the larger mound-building Macrotermitinae). It is also problematic to
bring them directly to the field (as it can be done much more easily
with earthworms) in sufficient numbers to be effective and with the
colony structure and any associated symbiotic relationships intact. It
is also likely that translocated termites would be extremely vulner-
able to predation by ants while they were establishing their foraging
galleries and defenses. Secondly, the development of indigenous
termite activity in degraded land, mainly targeted as fungus-growing
species, can only be achieved by the drilling of organic residues into
the soil column (i.e., the zai system in Burkina Faso) or placement on
the soil surface as mulch [95—97,112]. There is therefore a significant
capital and labour cost before any advantageous result can be
expected, and there may be the additional task of overcoming the
farmers’ perceptions that all termites are pests. Nevertheless, some
pilot work with termites has been reported, for example the trans-
plantation of soil monoliths from fertile to degraded (especially
compacted) plots [10], and many observations link the preservation of
termite communities in agricultural soils to the choice of cover and
forage crops [36,47]. Third, termite activities affect the distribution of
resources in ecosystems through the concentration of nutrients into
their nest structures [71]. This influence of termites on the resource
patchiness increases the complexity of land management. Finally, the
utilization of termite activity for the promotion of ecosystem services
also competes with less sustainable but more immediately attractive
approaches. For instance, the utilization of chemical fertilizers and
pesticides in agro-ecosystems, when affordable, are widely used by
farmers with large and immediate marginal gains of crop yield,
despite concomitant reductions in termite activity and diversity. This
can be illustrated anecdotally: in North-East Thailand, the average
abundance of termite mounds has dropped from 9 to 2 mounds ha™!
in less than 20 years [29]. This decreasing density is mainly explained
by the destruction of termite mounds by farmers who do not see any
reason to preserve termites in their fields, yet the mounds provided
several ecosystem services including maintaining a reservoir of
animal and plant diversity which was usable as food, medicine or
natural pesticides [28,29]. Vegetables (shallot, garlic, chili, tobacco...)
were also cultivated on the fringes of termite mounds [113] and soil
from the termite mounds was used as natural fertilizer, as still
observed in Cambodia (Jouquet, pers. obs.). However such services,
once self-generated in diverse agro-ecosystems, are nowadays in
effect provided by affordable inputs as farmers gain access to chemical
fertilizers, hospitals and markets.

4. Conclusion

Increasing knowledge about the importance of termites for the
maintenance of the integrity and functioning of ecosystems has not
prevented them being seen only as pests of crops, trees and wood.
As a consequence, environmentally unfriendly methods to elimi-
nate pest species are often damaging to beneficial ones. Of
approximately 2800 described species, only 185 are proven pests

[126]. Thus, the main global impact of termites, outweighing their
pest status, is clearly to provide the ecosystem services listed above.
This role is however under-appreciated and more research is
needed to better evaluate the importance of termite activity and
diversity in tropical ecosystems. For instance, more studies must be
performed on the impact of termite diversity on clay properties and
nutrient cycling, and on the distribution and availability of these
resources in the ecosystems. These researches, together with those
dealing with the effect of termites on biodiversity (above- and
below-ground organisms), are important to favour the develop-
ment of field management schemes which will promote the
recovery or enhancement of termite-mediated ecosystem services,
especially in ecosystems subject to disturbance, degradation or
agricultural intensification. For instance, in North-East Thailand, if
the destruction of termite mounds is economically justifiable in the
short term, the strategy is not necessarily sensible further into the
future, and the adoption of cultural practices consistent with the
preservation of natural termite communities may still be the best
bet for the long-term preservation of ecosystem services (reviewed
in [15]). In a changing world with a depletion of global petroleum
resources and an increasing demand for less chemical inputs into
agricultural ecosystems, external inputs may eventually become
both uneconomic and unsustainable. In this scenario it is more
likely that the self-renewing ecosystem services provided by
termites will re-emerge as a relevant option in tropical agro-
ecosystems.
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